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ABSTRACT

Creation or maintenance of moose habitat through logging requires an understanding of 

how particular timber-harvest practices affect nutritional interactions of adult females and their 

subsequent production of young. I compared ultrasonographic fat measurements of free-ranging 

adult female moose in northwestern Ontario, Canada, 1998-2001, inhabiting two forest 

management regimes; a modified clear-cut, following the Timber Management Guidelines for  

the Provision o f Moose Habitat, and an unmodified, progressive, and contiguous clear-cut. I also 

determined pregnancy and in utero twinning by radioimmunoassay of pregnancy-specific protein 

B (PSPB) and compared the number of expected calves bom to the number of calves surviving to 

winter. As an adjunct to evaluation of reproductive performance, I also examined blood 

parameters, hair mineral content, and stress hormone metabolite concentration in feces.

For these comparisons to be made, however, reference ranges for blood and hair 

parameters needed to be established and the effects of handling, individual, temporal, and spatial 

factors on blood parameter variability measured. Likewise, the radioimmunoassay used to 

quantify stress hormone metabolites in feces had not been previously used in moose and the 

affinity of the antibody to the fecal glucocorticoid (GC) metabolites of moose was unknown.

In Chapter 1, Validation o f a generalized fecal glucocorticoid assay for use in moose, I 

investigated whether a commercially available multi-species assay (ICN Biomedicals) accurately 

reflected acute adrenal activation in moose. Recent development of assays for GC metabolites 

has provided a non-invasive means to assess a variety of human-induced disturbances and 

environmental conditions on free-ranging animals. Fecal samples are easy to collect year-round 

and provide an integrated reflection of all GC secretion over a period of time prior to sample 

collection; however, species-specific differences in steroid metabolism necessitate validation of

11
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the assay used to quantify GC concentration. I pharmacologically challenged 2 captive-raised 

moose (1 male and 1 female) with adrenocorticotropin hormone (ACTH). A change in fecal GC 

metabolite levels was detected at 15 and 22 hours after the administration of the ACTH and 

levels remained elevated for 12 and 50 hours, respectively. Accuracy and parallelism tests 

demonstrated there was negligible interference from other substances in the feces and that the 

antibody binds with serially diluted fecal GC metabolite extracts in a dose-dependent manner. I 

concluded the ICN Biomedicals’ antibody could be used to detect a stress response in moose. 

Further study will be required to define seasonal patterns in adrenal activity, measure response to 

different types of stress, and evaluate the consequences of chronically elevated stress hormones.

In Chapter 2, Comparative health status, nutritional condition, and productivity o f female 

moose in northwestern Ontario under two forest management regimes, the age structure 

(assessed by tooth wear), body size, and manner in which animals were handled were shown to 

be similar between landscape treatments. Reference ranges generated for blood chemistry, 

hematology, and hair mineral content are presented. After controlling for the effects of handling 

and sampling year, body fat and/or landscape treatment explained little of the variance in these 

parameters.

In 1999-2000,1 collected feces and evaluated stress hormone metabolite concentrations. 

Values were similar between landscape treatments and comparable to values observed in wild 

Alaskan moose during mid-winter. Because fecal metabolites represent stress hormone secretion 

over the previous 1-2 days, the values obtained are unaffected by capture stress making this 

technique suitable for monitoring adrenal activity in free-ranging moose.

February body fat stores in adult females averaged 8.54% and exhibited little annual 

variation. Successfully raising a calf to winter modestly affected lipid reserves (8 vs. 9%) and

111
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apparently did not affect subsequent reproductive effort. Nutritional condition and intrauterine 

fecundity were similar between landscape treatments. Estimates exceeding 165 calves in 

utero/100 cows were indicative of populations below K carrying capacity. Calf survival to 

winter (Jan - Feb) was greater in the clear-cut landscape modified by the Timber Management 

Guidelines for the Provision o f Moose Habitat than the progressive, contiguous clear-cut (67.3 

calves/100 cows vs. 44.2 calves/100 cows) however, which suggested environmental factors 

affecting calf survival were different between the 2 landscape treatments.

IV
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CHAPTER 1 

VALIDATION OF A GENERALIZED FECAL 
GLUCOCORTICOID ASSAY FOR USE IN MOOSE

INTRODUCTION

Measurement of metabolic activity enhances our understanding of the adaptive responses 

animals make to challenges from their environment. Physiological responses to stress are 

mediated by glucocorticoids (GC) (Selye 1950, Ingle 1952, Munck et al. 1984, Buckingham et 

al. 1997). Stress-induced GC secretion produces marked effects on energy metabolism (Dallman 

et al. 1989, Rijnberk and Mol 1997) and suppresses immunologic responsiveness through 

modulation of intracellular mediators (Munck et al. 1984). While a normal stress-response is 

necessary to maintain homeostasis, prolonged exposure to elevated GCs may suppress growth 

(Wehrenberg et al. 1990), inhibit sexual maturity (Ramaley 1974), impair normal reproduction 

(Brann and Mahesh 1991, Rivier and Rivest 1991), and reduce resistance to disease (Goulding 

and Flower 1997). The primary mammalian GCs are cortisol and corticosterone (Norris 1997). 

These steroid hormones are released into the systemic circulatory system through activation of 

the hypothalamic-pituitary-adrenal (HPA) axis. Increases in serum concentrations may be 

apparent within 10 minutes of the onset of the stimulus (Gwazdauskas et al. 1972). Metabolism 

occurs in the liver and the resulting conjugated metabolites are excreted in the urine and the bile 

(Rijnberk and Mol 1997).

In animals not influenced by any extraordinary stress, low basal levels of circulating GCs 

are the result of episodic pulses of adrenocorticotropin hormone (ACTH) (Krieger 1978, Antoni 

1986, Jacobson and Sapolsky 1991). During stress, the mechanisms regulating GC production
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are more complex (Aguilera 1994); however, GC levels maintained above basal values are 

indicative of repeated or persistent stressful stimuli.

Evaluation of endogenous adrenal activity is made difficult by the need for repeated 

sampling. Restraint or capture is stressful to animals and the overwhelming influence of 

handling on serum GC concentrations is well documented (Franzmann et al. 1975a, Wesson et 

al. 1979a, Hastings et al. 1992). More recently, measurements of urinary and fecal GCs and/or 

their metabolites have been suggested as an alternative approach to detecting stress responses 

without disturbing study animals (Miller 1988, Miller et al. 1991, Saltz and White 1991a, Saltz 

and White 1991b, Wasser et al. 1997). Measurements of excreted metabolites provide an 

integrated reflection of GC production over a period of time prior to sample collection (Rijnberk 

and Mol 1997, Harper and Austad 2000). Fecal sampling has the additional advantage of being 

better suited to field application, as feces can be collected year-round (Miller et al. 1991, Brown 

et al. 1994, Millspaugh et al. 2001).

Interspecific variation in steroid metabolism requires validation of the assay used for 

quantification of fecal GC metabolites (Wasser et al. 1997). Wasser et al. (2000) demonstrated 

the ability of a commercially available multi-species corticosterone antibody (̂ ^̂ I; ICN 

Biomedicals, Inc., Costa Mesa, CA 92676, USA; Cat. No. 07-120102) to detect increases in fecal 

GC metabolite concentration after adrenocorticotropic hormone (ACTH) administration in 

several animal species, including elk (Cervus elaphus roosevelti). The affinity of the antibody to 

the fecal GC metabolites of moose (Alces alces) however, is unknown. A pharmacological 

challenge with ACTH would establish whether fecal assays accurately reflect acute adrenal 

activation in moose. In vertebrates, ACTH administration mimics a natural adrenal stress 

response by causing a rapid rise in circulating GCs (i.e., cortisol and corticosterone), followed by
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a return to baseline within a few hours. The same pattern should occur in feces, with the onset of 

the peak excretion of metabolites delayed by a species-specific lag time. My objective was to 

demonstrate the affinity of the ICN antibody to moose fecal GC metabolites.

METHODS

M oose and Facilities

Because the study objective was to demonstrate the affinity of the ICN antibody to moose fecal 

GC metabolites (as opposed to determining a mean response by moose to ACTH stimulation) 1 

or 2 animals was of sufficient sample size (S. Wasser, University of Washington, Seattle, 

personal communication). Trials were conducted with two moose (a 9-year-old male and a 9- 

year-old nonpregnant female) held at the Kenai Moose Research Center (MRC), approximately 

60 km northeast of the town of Soldotna, Alaska (60°N, 150°W, elevation 90 m). Animals 

generally resided within 2.6 km^ pens and were fed an aspen-based pelleted ration (Table 1.1) to 

supplement available natural browse (aspen {Populus tremuloides), birch (Betula papyrifera), 

and willow {Salix spp.)) during winter (November -  April): they fed on natural browse only 

throughout the remainder of the year. Prior to Trial 1 both animals were restricted to a 4-hectare 

pen for 2 months and were fed the pelleted ration almost exclusively. In late winter, animals 

were acclimated to individual outdoor pens (3.1 by 15.2 m) over a 4 day period prior to 

administration of the ACTH. The following year, the female spent the entire winter in the 2.6 

km^ pen prior to Trial 2. Trial periods, animal information, and ACTH doses are listed in Table 

1.2. Both moose were dam-raised in captivity, but had been used in previous studies and were 

accustomed to daily human contact and confinement in small handling pens.
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Table 1.1. Nutritional composition of the aspen-based pelleted moose ration (Don’s Alaskan 

Moose Ration, Alaska Mill and Feed, Anchorage).

Nutrient“
Dry matter (%) 92
Gross energy (kcal/kg) 4450
NDF** (%) 35.725
ADF*' (%) 20.035
Lignin (%) 2.74
Crude protein (%) 10.59
In vitro DMD*' (%) 70.64
Selenium (ppm) 0.257
Vitamin E (lU/kg) 5.62
“Original ration formulated by Schwartz et al. (1985) with additional Selenium and Vitamin E 
(Stephenson et al. 2001).
Neutral Detergent Fiber (NDF), Acid Detergent Fiber (ADF), and Dry Matter Digestibility 
(DMD) see Van Soest (1994).

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Table 1.2. Trial periods, animal data, and ACTH doses administered to moose in this study.

Trial Date Animal Mass (kg) % Body 
Fat“

ACTH Dose 
(lU/kg)

1 2-6 May, 2000 Male 550 17 1
1 2-6 May, 2000 Female*’ 485 15 1
2 28-31 March, 2002 Female*’ 465 9 3

“Percent body fat determined from relationship with ultrasonographic measurements of rump fat 
thickness developed by Stephenson et al. (1998).
*The same female was used in both trials.
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Feeding  and Fecal  Sam ple  Collection

Each morning, moose were offered the pelleted ration ad libitum and refusals were 

collected and weighed (± 0.01 kg). Water and an American Stockman® trace mineralized salt 

block (IMC Salt Inc., Overland Park, KS 66210, USA) were always available. Feces were 

collected at regular intervals (-24 hours) prior to ACTH injection and then all feces were 

collected for the next 3-4 days after injection. Moose either defecated onto a polypropylene 

woven fabric ground cover (AMOCO Fabrics and Fibers Company, Atlanta, GA 30339, USA) or 

onto snow. Both substrates allowed urine to pass through which minimized any urine 

contamination and served to keep the feces clean. To facilitate fecal collection, moose were 

provided a freshly cut browse stem (aspen, birch, or willow) while the entire defecation was 

gathered into a plastic, resealable bag. Defecations were labeled with date and time, weighed (± 

0.01 kg), and thoroughly mixed. From the mixture, 2 samples (-  50 g wet matter each) were 

collected into separate, labeled containers and were stored frozen (-18°C) within 1 hour post­

collection until laboratory analysis (within 2-3 months); one sample from each defecation was 

shipped overnight on dry ice to the University of Washington to be assayed (see below) and the 

second was dried to constant mass at 55°C in a forced-fan oven to determine dry matter weight. 

ACTH A dm inistration  and  Radioimmunoassay

Moose were temporarily restrained, without anesthesia, on an enclosed livestock scale 

and received a single dose of ACTH administered intramuscularly in a highly concentrated (200 

lU/ml) slow-release gel synthesized by a pharmacist (Hadfield’s Pharmacy, Edmonds, WA 

98026, USA). The female had been walked onto the scale box at weekly intervals during 

previous studies, but the bull’s weight was only infrequently determined and he was less familiar 

with the procedure. During Trial 1, the bull became highly agitated and aggressive during the
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first attempt to restrain him on the scale. The ACTH dose was successfully administered to the 

bull 1 hour later. The female was calm during dosing procedures in both trials. All fecal 

samples were assayed using the ICN corticosterone antibody. Steroids were extracted from 0.2 g 

dry matter feces by vortexing in methanol (K. Hunt, University of Washington, Seattle, WA 

98195-1800, USA). Accuracy and parallelism tests determined whether interference from other 

substances in the feces occurred and to what extent the antibody binds with serially diluted fecal 

GC metabolite extracts in a dose-dependent manner (Abraham et al. 1977, Jeffcoate 1981).

The procedures met standards of care and conditions for the use of animals set by the 

Lakehead University Animal Care Committee (Canadian Council on Animal Care 1984,1993) 

and the Alaska Department of Fish and Game.

RESULTS

Dry M atter Intake and  Excretion

During both trials, daily dry matter food intake and excretion were stable (Table 1.3). 

These data provided evidence that animals were acclimatized to the diet and experimental 

conditions.

ACTH Challenges 

Trial 1

The female’s fecal GC metabolite levels (11.6 ± 3.4 ng/g ) were higher (pooled- to.o5(2)io = 

2.6363, P = 0.0249) than the male’s (7.2 ±2.1 ng/g ) prior to ACTH challenge. Furthermore, the 

female’s highest fecal GC metabolite levels were observed prior to administration of the ACTH 

and there was no indication of a response afterwards (Figure 1.1), hence necessitating a second 

trial.
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Table 1.3. Daily food intake and fecal output (X  ± SD) of moose during ACTH challenge 

trials. All mass values are expressed as dry matter.

Trial No. of Animal Daily Intake Fecal Mass Excretion Rate Daily Fecal
Days (kg) (kg) (excretions/day) Mass (kg)

1 5 Male 9.21 ±0.40 0.37 ±0.11 8.7 ± 0.58 3.18 ±0.03
1 5 Female 6.58 ± 0.67 0.32 ± 0.09 7.7 ± 0.58 2.43 ± 0.23
2 4 Female 7.49 ± 1.19 0.33 ± 0.09 8.3 ±2.89 2.71 ± 1.06
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Figure 1.1. Fecal glucocorticoid metabolite excretion of 

a female moose following ACTH (1 lU/kg) injection.
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The male’s fecal GC metabolite levels spiked at 19 ng/g dry matter feces between 15 and 

22 hours after administration of the ACTH and returned to pre-injection levels within 12 hours 

(Figure 1.2).

Trial 2

Comparison of the female’s basal fecal GC metabolite levels between Trial 1 and Trial 2

were different (X  = 11.6 and X = 27.8 ng/g, pooled-fo.o5(2)9 = -9.5928, P < 0.0001). A change 

in her fecal GC metabolite levels was detected at about 22 hours after the administration of the 

ACTH and levels remained elevated for about 50 hours (Figure 1.2).

R a d io im m u n o a s s a y  V a l id a t io n

The accuracy tests had a slope close to 1 and showed negligible interference effects from 

other substances in the feces (Figure 1.3). The parallelism tests showed that dilutions of moose 

feces were more-or-less parallel to corticosterone standards (Figure 1.4).

DISCUSSION

My data suggest measurement of fecal GC metabolites with the ICN antibody can be 

used reliably to detect an acute stress response in moose. Accuracy and parallelism tests 

demonstrated there was negligible interference from other substances in the feces and that the 

antibody binds with serially diluted moose fecal GC metabolite extracts in a dose-dependent 

manner. The 15-22 hour lag time for the appearance of hormone metabolites was consistent with 

gut passage rate studies in moose on similar diets (Schwartz et al. 1986, Hubbert 1987) and was 

characteristic of the pattern observed in other ruminants (Wasser et al. 2000, Millspaugh et al. 

2002). Without further study, however, interpretation of absolute fecal GC metabolite levels and 

the rate at which they are excreted should be made cautiously. The excretion pattern of GC 

metabolites has only recently been studied (Wasser et al. 2000, Millspaugh et al. 2002) and
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factors that affect steroid metabolism (Wiltbank et al. 2000) or gut transit time (Palme et al.

1996) may influence GC metabolite concentration observed in feces. For example, Millspaugh 

et al. (2002) observed a two-fold difference in fecal GC excretion rate (12 h vs. 24 h) in the same 

white-tailed deer challenged with ACTH in spring and fall, respectively.

The ACTH dose ( l o r  3 lU/kg) administered to moose in this study apparently stimulated 

sufficient adrenal activation to detect a response in fecal GC metabolite concentration. The peak 

excretion levels of GC metabolites I observed post-ACTH injection, however, were comparable 

to the lower range of values observed in wild moose apparently uninfluenced by acute stress 

(Tomeo 2000, Chapter 2). Control of GC production is complex and a dose dependent response 

to ACTH has not been established. Results of ACTH doses reported by others to study fecal GC 

response to stress vary considerably (<1 to 12.5 lU/kg; Wasser et al. 2000, Millspaugh et al. 

2002). In a blood study, Bubenik et al. (1994) induced a 4-fold increase (-130-430 nmol/L) in 

circulating GC levels within 90 minutes after intravenous administration of 40 lU total ACTH in 

male yearling Alaskan moose (A. alces gigas). The 50 h period of elevated metabolite excretion 

exhibited by the female following 3 lU ACTH/kg injection was considerably longer than the 12 

h period in the male following 1 lU ACTH/kg and could have been a result of the greater ACTH 

dose. It is possible however the male’s sharp response in Trial 1 was influenced by the stress he 

experienced during the dosing procedure, rather than the ACTH itself, as no response was 

observed in the female. Alternately, the failure to detect a response in the female during Trial 1 

could be explained by improper, or incomplete ACTH administration.

Basal values for the female prior to Trial 2 were higher than before Trial 1; following a 

winter during which her diet was only minimally supplemented with the pelleted ration and she 

foraged more naturally in the 2.6 km^ enclosure. In addition, she weighed 5% less and her body
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fat was 40% lower. Perhaps basal GC metabolite levels may be elevated in animals in poorer 

nutritional condition.

The highest levels of GC metabolites were detected in the feces of the female prior to the 

administration of ACTH in Trial 1. This suggests she experienced some sort of stressor before 

the trial began. It is unlikely that moving her into the small pen was disturbing, however, she did 

experience some distress that affected her intake during the day following confinement. It is 

possible that the male had been preventing her from eating as much as she wanted at a common 

feeder over several days prior to the trials. During her first day in the small pen she consumed 

approximately 7 kg dry matter of feed. The following day she consumed just 3 kg, was lethargic, 

and did not defecate for several hours. Over the third and fourth day her intake increased to 7 kg 

dry matter and was stable by the time the ACTH challenge trial began. Animals on restricted 

rations of a pelleted diet containing large amounts of concentrate may experience subacute forms 

of bloat or acid indigestion if not gradually introduced to the feed (Van Soest 1994). The 

resulting imbalance may have been a cause of discomfort and reduced rumen motility 

stimulating increased GC release.

Because the profile of the HPA axis response may vary considerably according to the 

nature of the stimulus (Buckingham et al. 1997), more study is required to distinguish between 

the different types of stress. Important questions to address are how long levels stay elevated 

and what are the consequences? Furthermore, a temporal approach for animals with known 

nutrition could demonstrate the effects of body condition on fecal GC metabolite levels.
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CHAPTER 2

COMPARATIVE HEALTH STATUS, NUTRITIONAL 
CONDITION, AND PRODUCTIVITY OF FEMALE MOOSE IN 
NORTHWESTERN ONTARIO UNDER TWO FOREST 
MANAGEMENT REGIMES

INTRODUCTION

Understanding how animals are influenced by habitat variation requires examination of 

the ecological processes at spatial and temporal scales relevant to both the species and the 

conditions under study. Populations exhibit dynamic behavior across broad spatial scales and 

require analysis at the landscape level (Holling 1992, Forbes and Theberge 1993, Breininger et 

al. 1995, Rempel et al. 1997a). Landscape size will differ according to species; occupying some 

spatial scale intermediate between a species’ home range and its regional distribution (Dunning 

et al. 1992). The composition of habitat types and the spatial arrangement of those habitats 

describe the landscape pattern (Turner et al. 1989). Animal populations respond to the pattern 

according to their life history requirements and the resultant environmental factors (either 

favorable or unfavorable) acting upon them (Morrison et al. 1992).

Assessment of a species’ distribution and demographics can reveal the influence of 

landscape pattern on populations (Caughley 1977, Van Home 1983, Hobbs and Hanley 1990), 

however, an understanding of cause-and-effect mechanisms is needed to determine the processes 

that control animal responses (Parker et al. 1999, Roloff and Kemohan 1999). The adaptability 

of ungulates to northern environments is largely influenced by nutritional constraints that affect 

mass and body composition (Cook et al. 1996, Parker et al. 1999). Acquisition and conservation 

of energy and protein fluctuate, dependent on environmental limitations and nutrient partitioning
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within the animal. Changes in mass and body composition relative to metabolic demands 

provide a measure of environmental quality (Franzmann 1977, Gerhart et al. 1996).

The inherent capacity of a landscape to sustain ungulate populations is modified by both 

density dependent (e.g., competition among animals for forage) and independent (e.g., snow 

depth and temperature) factors. Increased competition for resources is coupled with declines in 

reproduction and recruitment (McCullough 1979, Clutton-Brock et al. 1987). Deep snow cover 

reduces the available browse (Schwab et al. 1987) and increases energy expended while traveling 

to obtain forage (Parker et al. 1984). In addition, temperature may affect feed intake (Renecker 

and Hudson 1986) and alter daily patterns of habitat utilization (Schwab and Pitt 1991).

Changes in mass and body composition in moose are driven by seasonal differences in 

forage availability and quality (Schwartz et al. 1987a). As selective browsers, intake in moose is 

constrained by their ability to locate high quality foods, maximize consumption, and maintain 

rapid passage rates (Renecker and Schwartz 1998). Early successional deciduous browse species 

compose the majority of the diet of moose (Houston 1968, Stevens 1970, Regelin et al. 1987, 

Renecker 1987). Summer leaf diets are efficiently digested by moose, whereas, winter twig diets 

contain greater amounts of indigestible plant structural components that limit nutrient intake. 

Consequently, summer is critical for building fat and protein reserves (Van Ballenberghe and 

Miquelle 1990) that are used during winter when nutritional requirements cannot be met 

(Schwartz et al. 1987b, Parker et al. 1999).

Because resources allocated to reproduction cannot also be used for growth and/or storing 

energy, reproductive effort is limited by the nutritional status and body composition of the dam. 

Reproduction is a series of tissue generating events including ovulation, fertilization, and 

implantation of the embryo, gestation, parturition, and milk production for the neonatal young
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(Swenson 1973). While costs of gestation increase exponentially to nearly 50% above 

maintenance metabolism during the third trimester when most of the fetal birth mass is accrued, 

in general, the energy costs of lactation are 2 to 3 times that of gestation (Oftedal 1985, Robbins 

1993). In addition, protein needs increase dramatically towards the end of pregnancy and remain 

high through the peak of lactation (Orskov 1992). As a result, lactating moose fail to gain 

weight until lactation is diminished despite high consumption of food (Regelin et al. 1985). 

Females that have experienced lactation subsequently enter winter in poorer nutritional condition 

than nonparturient females, or females that gave birth but subsequently lost their calf and did not 

lactate (Sand 1997, Testa and Adams 1998). The costs of reproduction can be measured in terms 

of loss of body mass or fat, which may have consequences for future reproduction and survival 

(Sand 1997, Testa and Adams 1998). Higher costs of reproduction are indicative of factors 

influencing nutrition of ungulate populations (Adamczewski et al. 1987, Clutton-Brock et al. 

1983, Clutton-Brock and Stevenson 1996).

Forest cutting, which has replaced fire as the principal rejuvenating agent of the boreal 

forest in recent decades, increases forage production for moose (Peek et al. 1976, Crete and 

Jordan 1982, Thompson and Stewart 1998). Utilization of cutover landscapes by moose, 

however, is likely affected by the pattern in which it is cut (Peek et al. 1976, Hamilton et al. 1980, 

Timmermann and McNicol 1988), spatial patterns in forage availability (Risenhoover 1986, 

Renecker and Hudson 1986), and by the foraging strategy used by moose (Moen et al. 1997). In 

addition, potential habitat suitability may further be affected by alterations that change predator- 

prey dynamics (Schwartz and Franzmann 1991), influence levels of parasitism and disease 

(Lankester and Samuel 1998), or expose animals to increased human disturbance (Millspaugh et
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al. 2001) and/or risk of harvest (Rempel et al. 1997a). Accordingly, some timber management 

practices may produce vegetation patterns more beneficial to moose than others.

My objective was to demonstrate whether landscape-level patterns resulting from two 

forest management practices had an effect on the health, nutritional condition, and productivity 

of cow moose inhabiting: 1) a modified clear-cut (MCC), following the Timber Management 

Guidelines for the Provision o f Moose Habitat (Moose Habitat Guidelines; OMNR 1988); and 2) 

an unmodified, progressive and contiguous clear-cut (PCC). The Moose Habitat Guidelines 

provide moose habitat through timber management planning by protecting or enhancing 

particular habitat requirements (e.g., 120 m buffers surrounding aquatic feeding sites, 80-130 ha 

clear-cut block). Timber-harvest occurred over the same period on both of the areas compared, 

beginning in 1978, and produced two contrasting landscape patterns (Rempel et al. 1997a, Welch 

et al. 2000). The habitat suitability indices (HSI) for moose (Allen et al. 1987) between the 

MCC and PCC, however, were similar (0.85 and 0.83 respectively) (Rempel et al. 1997a).

During 1977-1992, moose densities increased within PCC but not within MCC, due in part to 

increased hunter access within MCC (Rempel et al. 1997a).

STUDY AREA

The 5,625 km^ study area was located on the Canadian Shield southeast of the town of 

Dryden in northwestern Ontario, centered at approximately 92°45TV, 49°15'N (Figure 2.1). The 

rolling topography of the area ranged in elevation from 300 to 550 m above sea level. The forest 

was transitional between the Quetico Great Lakes - St. Lawrence Forest Region and the English 

River Boreal Forest Region to the north (Rowe 1972). Post-glaciation soil characteristics 

(generally less than 1 m deep and coarse in texture) and climate favored the development of 

eastern white and red pine (Pinus strobus, P. resinosa) communities, but frequent wildfires and
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Figure 2.1. Map of the study area in northwestern Ontario, Canada, 1998-2001. Logging 

followed Timber Management Guidelines fo r  the Provision o f Moose Habitat (MCC) in the 

Manitou and Seine Forest Management Areas (FMA). The Wabigoon FMA was a progressive 

and contiguous clear-cut (PCC). Shading indicates areas in each FMA where timber harvest has 

occurred.

Manito

30 km
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logging activities have allowed various boreal species to become established (Rowe 1972). 

During this study, the forest was characterized by pure and mixed-wood stands of jack pine 

(Pinus banksiana), trembling aspen (Populus tremuloides), balsam poplar (P. balsamifera), 

white birch (Betula papyrifera), and white and black spruce (Picea glauca, P. mariana). Balsam 

fir (Abies balsamea), eastern white cedar (Thuja occidentalis), eastern larch (Larix laricina), and 

eastern white (Pinus strobus) and red pine (P. resinosa) occurred, but were less common 

(Rodgers et al. 1995). Commonly available browse species used by moose included june berries 

(Amelanchier spp.), mountain ash (Sorbus americana), red osier dogwood (Comus stolonifera), 

trembling aspen, willow (Salix spp.), white birch, mountain maple (Acer spicatum), beaked hazel 

(Corulus comuta), balsam fir, pin cherry (Prunus pensylvanica), green alder (Alnus structa var. 

crispa), and speckled alder (A. incana var. rugosa) (Rempel et al. 1997b).

Two portions of the study area where moose were collared had been logged following 

Moose Habitat Guidelines: 1) the MCC landscape within the Manitou Forest Management Area 

(FMA) was approximately 15 x 40 km (Figure 2.1) and 2) the MCC landscape Seine FMA was 

approximately 15 x 30 km. The Manitou and Seine FMAs were about 50 km apart. The 

Manitou FMA was dominated by white and black spruce, while the Seine FMA had a larger jack 

pine component (Rodgers et al. 1995). A third portion of the study area where moose were 

collared was logged without following Moose Habitat Guidelines. The PCC landscape within 

the Wabigoon FMA was approximately 15x30 km and was dominated by jack pine (Rodgers et 

al. 1995).

The study area was located within the Low Boreal Wetland Ecoregion of Canada 

(National Wetlands Working Group 1988). The land surface area was nearly 50% water.
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including numerous narrow streams and rivers less than 10 m wide and ponds and lakes ranging 

in size from 10 to 100 ha (Rodgers et al. 1995).

Cold winters and relatively dry, warm summers characterized the climate of the study 

area. Temperatures frequently reached 25°C in summer, -25°C in winter, and fell to as low as 

-45°C in winter (Environment Canada). Mean annual precipitation is 70 cm (Environment 

Canada). Snow depth was generally < 70 cm during the study, but often became crusted after a 

mid-winter thaw in February (A. Rodgers, OMNR, personal observation).

M E T H O D S

M o o s e  C a p t u r e , H a n d l in g , a n d  S a m p l e  C o l l e c t io n

NAVSTAR-based GPS collars (LOTEK Engineering Inc. 1993) were maintained on 60 

free-ranging adult female moose (35 in the MCC and 25 in the PCC) from January 1995 to 

February 2001 (Welch et al. 2000). Moose were recaptured during January and February each 

year and fitted with refurbished collars. This period normally represented the onset of late winter 

when moose movements began to be restricted by snow. Moose were pursued by helicopter and 

captured by hand-held net-gun. The duration of the chase (the time from when initial pursuit 

began until the moose was netted and on the ground) was recorded. Once netted, moose were 

hobbled, blindfolded, and maintained in semi-stemal recumbency during handling. Body 

temperature was monitored with a rectal mercury-bulb thermometer and the maximum 

temperature observed was recorded. Blood was collected by jugular venipuncture using 3.8 cm 

18 gauge needles (Monoject®, Sherwood Medical Co., St. Louis, MO, USA) into various blood 

collection tubes (Sarstedt Monovette®, Germany). The time of blood collection was recorded 

and samples were protected from freezing. A fecal pellet was obtained directly from the rectum, 

crushed, and placed into a sterile 100 ml polypropylene container with 10 ml of 85% ethanol
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(Ethyl Alcohol Anhydrous, Anachemia, Montreal, QE, Canada) and transported at ambient 

temperature (-18 to +5°C) for 2 - 8 hours. Hair was collected into resealable plastic bags for 

determination of mineral status.

I measured the width of the wear on the occlusal surface of the front incisors (± 0.5 mm) 

to assess age. Tooth wear measurements were compared to those of known age animals 

determined from cementum annuli (Sergeant and Pimlott 1959). Body condition was evaluated 

in two ways. A subjective condition score on a scale of 1 -10 (Franzmann 1977) was assigned to 

each moose. A portable ultrasound (Aloka 210, Corometrics Medical Systems, Inc., 

Wallingford, CT, USA) with 5MHz linear array transducer was used to measure the maximum 

thickness (± 0.1 cm) of rump-fat as a predictor of total body fat (Stephenson et al. 1998).

The first time an individual moose was captured, total length along the dorsal body 

contour from the hairless patch on the nose to the base of the tail, chest girth, hind foot (hoof 

included), and shoulder height were measured.

Each moose was physically examined for external parasites (i.e., Dermacentor 

albipictus), injuries, and evidence that would suggest the animal was unhealthy. Superficial 

abrasions were treated with a topical antibacterial and moose with deep or purulent injuries were 

given a 35 ml intramuscular injection of oxytetracycline. All moose were given a 5 ml 

intramuscular injection of a solution containing vitamin E and selenium as a preventative 

measure for capture myopathy (Spraker 1993) prior to release. The procedures met standards of 

care and conditions for the use of animals set by Ontario Ministry of Natural Resources and the 

Lakehead University Animal Care Committee (Canadian Council on Animal Care 1984, 1993).
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B l o o d , F e c a l , a n d  H a ir  A n a l y s is

Typically, up to 22.5 ml of blood was collected for serum, 7.5 ml in 

ethylenediaminetetraacetic acid (EDTA) tubes for complete blood counts and blood smears, 5 ml 

in nonenzymatic coagulation citrate tubes for fibrinogen concentration determination, and 1.2 ml 

in sodium fluoride tubes for glucose concentration determination. Serum and plasma were 

removed from whole blood by centrifugation within 12 hours and stored at -20°C until assayed. 

Complete blood counts (CBC) (Coulter MD-2 automated cell counter), hematological profiles 

(mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular 

hemoglobin content (MCHC), red cell distribution width (RDW) calculated from direct 

measurement of hematocrit (Hct), hemoglobin (Hb), and red blood cell count (RBC)), and 

creation of blood smears were completed within 36 hours by technicians at the Dryden District 

General Hospital (Dryden, ON, Canada). Differential leukocyte and platelet counts from blood 

smears and chemistry profiles were completed within 1 month by technicians at the Animal 

Health Laboratory, University of Guelph (Guelph, ON, Canada). Serum cortisol, progesterone, 

and thyroxine concentrations were determined by solid-phase, chemiluminescent immunoassay 

with the Immulite Automated Analyzer (Diagnostic Products Corp., Los Angeles, CA, USA). 

Fibrinogen concentration was determined by fibrometer method. All other chemistry values 

were determined using the Hitachi 911 automated system (Boehringer Mannheim, Indianapolis, 

IN, USA). There was no insert for sodium (Na), potassium (K), or chloride (Cl), but these were 

run on the Hitachi system by indirect ion selective electrode. Serum insulin-like growth factor 

(IGF-I) concentration was determined by IGF-1 RIA (Nichols Institute Diagnostics, San 

Clemente, CA, USA) (R. Nachriener, Michigan State University, East Lansing, MI, USA). 

Pregnancy and in utero twinning were determined by a moose-specific RIA for pregnancy-
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specific protein B in serum (PSPB - Huang et al. 2000) (G. Sasser, BioTracking, Moscow, ID, 

USA).

Fecal samples were stored at -20°C until processed (within 12 months). Fecal 

glucocorticoid metabolite (GC) concentrations were determined by solid-phase ^^I 

radioimmunoassay (ICN Biomedicals, Inc., Costa Mesa, CA, USA) (K. Hunt, University of 

Washington, Seattle, WA, USA).

Total nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and 

sodium (Na) concentration in hair samples were determined by an automated combustion method 

(Gavlak et al. 1994) by technicians at the Soil and Nutrient Laboratory, University of Guelph 

(Guelph, ON, Canada).

Not all variables were measured for each moose due to limited quantity of sample or 

other factors.

R e p r o d u c t iv e  S u c c e s s

In early December of each year, cows were relocated by telemetry from rotary-wing 

aircraft and visually observed to determine calf survival. Numbers of calves at heel during 

recaptures later in January-February were also recorded. The maximum number of calves 

observed with a cow in either December or January-February was used to determine the number 

of calves surviving to winter.

W in t e r  S e v e r it y

Winter weather summaries and a winter severity index (WSI) were based on 

Environment Canada (EC) snow and temperature data collected at the Dryden airport (Station 

no. 6032119) during the winters of 1998-2001. The mean daily temperature for each month was 

calculated by summing the average of the hourly temperature (± 0.1 °C) recordings (0500 h
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through 2000 h) for each day and dividing by the number of days in the month. The mean daily 

snow depth for each month was calculated by summing the daily snow-on-ground measurements 

(± 0.1 cm) for each month and dividing by the number of days in the month.

The WSI was based upon the relative increase in energy expenditure for 1) locomotion in 

snow (Parker et al. 1984) and 2) temperatures outside the thermal neutral zone (TNZ) of moose 

(Renecker and Hudson 1986). The relative sinking depth in snow (RELSINK) was based on the 

relationship between brisket height (BH) and snow depth (SNOWDEPT) as modified by 

Miquelle et al. (1992):

RELSINK = (SNOWDEPT -  BH) x 100 

I assumed average brisket height of female moose was 103 cm. The relative increase in energy 

expenditure to travel through snow (RELINC S) was then calculated as

RELINC S = (0.71 X RELSINK X e «-Oi^xrelsink^ ^  lOO.

A lower critical temperature (TLC) has not been demonstrated for moose, even though heat 

production estimates have been conducted in temperatures as low as -30 °C (Renecker and 

Hudson 1986). Moose are susceptible to heat stress in winter, however, when temperatures 

exceed -5  °C. The relative increase in energy expenditure when temperatures exceeded the TNZ 

(RELINC T) was calculated as

RELINC T = (((0.925 x °C) + 23.54) -  18.78) -  18.78.

A day without snow on the ground and a mean temperature within the TNZ for moose was equal 

to 1. With snow depth and temperature weighted equivalently, the total daily relative increase in 

energy expenditure (RELINC TOTAL) was then calculated as

RELINC TOTAL = ( (RELINC S x 0.5) + 0.5 ) + ((RELINC T x 0.5) + 0.5).
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The WSI was then the difference between RELINC TOTAL and the actual number of days in 

winter. I defined winter as November through April and the WSI was calculated as

WSI = RELINC TOTAL -  181 (Non-Leap Years)

WSI = RELINC TOTAL -  182 (Leap Years).

D a t a  A n a l y s is

To demonstrate homogeneity among moose sampled between treatments, I compared 

incisor occlusal surface wear (as an index of age) using a two-tailed t-test with pooled variances, 

and evaluated moose handling measures using MANOVA techniques. I used Pearson correlation 

coefficients and MANOVA techniques to determine similarities among morphology parameters 

for moose sampled from each area. I compared the proportion of females with an offspring at 

heel between treatments with Fisher’s Exact tests and examined annual differences within 

treatments using a normal approximation of the chi-square test (Zar 1999). Paired-sample t- 

testing was used to examine the mean difference in fecal GC concentrations between the years 

1999 and 2000. Effects of handling, individual, temporal, and spatial factors on variability were 

modeled in a forward stepwise multiple regression analysis for each blood parameter. 

Transformations were used to improve normality when appropriate. All categorical factors were 

treated as dummy variables, and factors entered into the model in the order of handling effects 

first (body temperature and elapsed time between capture and sampling), individual effects 

second (body fat), then area, and year. Alpha-to-enter and alpha-to-remove were set at 0.01 and 

0.05, respectively. I analyzed mineral concentrations in hair for statistical differences between 

area and year for all moose, using MANOVA techniques.

I calculated the reference ranges for blood chemistry, hematology, and mineral 

concentrations in hair for female moose as the interval between the 2.5 and 97.5 percentiles. By
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convention, the reference interval for an analyte with a Gaussian distribution is bound within 2 

standard deviations below and above the mean. Many analyte distributions were asymmetrical, 

however, and an approach other than the conventional method for determining reference 

intervals was necessary. Two methods discussed by Farver (1997) included 1) the use of 

transformations, and 2) the use of percentiles. Logarithmic or square root transformation of the 

analyte values may make the distribution more Gaussian (Zar 1999) allowing for the 

conventional calculation of the reference interval. These boundaries then can be expressed in 

terms of the original values by retransformation (Farver 1997). Retransformed values may still 

be biased (Zar 1999). Alternatively, estimation of the 2.5 and 97.5 percentiles directly, without 

any distribution assumptions, gives an unbiased estimate of the reference interval. The 

percentile method, however, is less precise for distributions with long tails (Bland 2000). 

Expected frequencies of the number of outliers per moose blood panel were calculated from a 

binomial expansion of (p + qŸ, where p  is the probability of an outlier (0.05) and q was the 

probability of no outlier (0.95), and k is the number of blood variables (38) (Fadley 1998). From 

the binomial model, animals with at least 6 outlying blood values were suspected to have clinical 

concerns beyond that expected by chance (i.e., the probability of 6 or more outliers per 

individual < 0.01). Standard MANOVA techniques, t-tests, and regression analyses were 

performed using SYSTAT® 10 software (Copyright® 2000 by SPSS Inc.). I analyzed repeated 

body fat measures with a mixed linear model (PROG MIXED) (SAS® System Version 8, 

Copyright® 1999-20(X) SAS Institute Inc.) with timber-harvest treatment, year, and calf-at-heel 

status as factors potentially influencing fatness. Calf-at-heel status was a fixed effect because it 

represented at least all levels of the factor about which inference was made (0 or 1). The 

individual moose was a blocking factor within timber-harvest treatment with random effects.
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The design was not a connected block-treatment because both treatments were not applied to 

each moose. I fit the model using all potential factors and then used a backward stepwise 

removal procedure (a-to-remove = 0.05) to select an appropriate smaller model.

R E S U L T S

E s t a b l is h in g  H o m o g e n e it y  o f  E x p e r im e n t a l  U n it s

The lower jaw from 22 study animals that died between 1995 and 2001 were collected. 

Age, of those animals that died, ranged from 2.5-16.5 years; 50% of these animals were greater 

than 11.5 years of age. Age determined from cementum annuli of incisor-form teeth was 

positively correlated with occlusal surface wear (Figure 2.2, tooth wear data were only available 

for 15 of the 22 jaws collected). Age predicted from this relationship suggests 95% of the 

animals collared during the study were between 2.5 and 11.5 years old. Comparisons of tooth 

wear data between the timber-harvest treatments indicated the age structure of the sample

populations was similar (Xmcc- Xpcc= -0.3 nun, pooled-to.o5(2)6i = 1.2385, P = 0.2209).

Absolute body size measurements were similar between timber-harvest treatments 

(Fo.o5(2)4/99 = 0.4941, P = 0.7400). Correlation of morphometric measurements was variable for 

moose within MCC (Table 2.1) and PCC (Table 2.2). Pearson correlation coefficients, among 

the various measurements after pooling all moose, were generally small (Table 2.3).

Handling measures for moose captured by hand-held net-gun fired from a helicopter are 

presented in Table 2.4. All four handling measures were different among the 3 years (1999- 

2001) for which data were available (Table 2.5); however, handling of animals between timber- 

harvest treatments was similar (F4/i22= 0.4792, P = 0.7515). The effect of increased pursuit and 

restraint times was an increase in moose body temperature (Table 2.6). Squared semipartial 

correlations (s^)  for pursuit and restraint times with body temperature were 0.2217 and 0.0819,
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Figure 2.2. The relationship between age determined from cementum annuli and incisor 

occlusal surface wear of female moose in northwestern Ontario, Canada, 1995 -  2001. The 

number above each point is the sample size.
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Table 2.1. Pearson correlation coefficients for morphometric measurements (± 1 cm) of adult 

female moose in winter, captured in the progressive clear-cut landscape treatment (PCC) 

northwestern Ontario, Canada, 1995-2001.

Parameter Shoulder Height Chest Girth Hind Foot Length Body Length
n 47 47 47 47
Mean (±SD) 190.8 ± 10.6 210.2 ±14.6 78.4 ± 2.3 291.0 ± 17.7
CV 0.06 0.07 0.03 0.06
Shoulder Height 1.0000
Chest Girth 0.5366 1.0000
Hind Foot Length 0.2255 0.4842 1.0000
Body Length 0.2181 0.4617 0.4559 1.0000

Table 2.2. Pearson correlation coefficients for morphometric measurements (± 1 cm) of adult 

female moose in winter, captured in the modified clear-cut landscape treatment (MCC) 

northwestern Ontario, Canada, 1995-2001.

Parameter Shoulder Height Chest Girth Hind Foot Length Body Length
n 58 58 58 58
Mean (± SD) 189.9 ±9.4 209.0 ± 13.3 78.9 ± 2.7 290.0 ± 16.3
CV 0.05 0.06 0.03 0.06
Shoulder Height 1.0000
Chest Girth 0.4093 1.0000
Hind Foot Length 0.1260 - 0.0706 1.0000
Body Length 0.1527 0.1891 0.2638 1.0000

Table 2.3. Pearson correlation coefficients for morphometric measurements (± 1 cm) of all adult 

female moose in winter, captured in northwestern Ontario, Canada, 1995-2001.

Parameter Shoulder Height Chest Girth Hind Foot Length Body Length
n 105 105 105 105
Mean (± SD) 190.3 ± 10.0 209.5 ± 13.8 78.7 ± 2.5 290.4 ± 16.8
CV 0.05 0.07 0.03 0.06
Shoulder Height 1.0000
Chest Girth 0.4739 1.0000
Hind Foot Length 0.1635 0.1643 1.0000
Body Length 0.1861 0.3236 0.3404 1.0000
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Table 2.4. Pearson correlation coefficients® of handling measures for moose captured by hand­

held net-gun fired from a helicopter in northwestern Ontario, Canada, 1999-2001.

Pursuit
(min.)

Restraint
(min.)

Elapsed Time 
(min.)

Body Temperature 
(°C)

n 159 159 159 166
Median 5 12 17 39.3
Mean ± SD 6.3 ± 5.4 13.2 ±5.6 19.6 ±8.3 39.31 ±0.83
Range 1-28 4 - 4 2 5 - 4 8 37.7-42.4
Pursuit 1.0000
Restraint 0.2048 1.0000
Elapsed Time 0.6430 0.8668 1.0000
Body
Temperature 0.5634 0.3515 0.5897 1.0000
‘ Values are the coefficients for the logio - normal transformed data.

Table 2.5. Multivariate analysis of variance of handling measures of moose as a function of 

year, treatment, and year by treatment, northwestern, Ontario, Canada, 1999-2001.

Source of Variance Wilks’ Lambda (A) DF Multivariate F P
Year 0.6267 8/244 8.0289 <.0001
Treatment 0.9845 4/122 0.4792 0.7515
Treatment by Year 0.8603 8/244 2.3827 0.0173
Univariate Tests Variable Univariate F
Year Pursuit 2/125 8.5380 0.0003

Restraint 2/125 29.7298 <.0001
Elapsed Time 2/125 30.3507 <.0001
Body Temperature 2/125 9.0906 0.0002

Treatment Pursuit 1/125 0.0865 0.7692
Restraint 1/125 0.8483 0.3588
Elapsed Time 1/125 0.3975 0.5295
Body Temperature 1/125 0.4172 0.5195

Treatment by Year Pursuit 2/125 6.1823 0.0028
Restraint 2/125 1.8288 0.1649
Elapsed Time 2/125 1.0573 0.3505
Body Temperature 2/125 2.0854 0.1286
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Table 2.6. Results from regression analysis of body temperature against other handling 

measures of moose captured by hand-held net-gun fired from a helicopter, northwestern Ontario, 

Canada, 1999-2001.

Coefficient (P) SE t P

Constant 1.5778 0.0039 406.2131 <.0001

logioPursuit 0.0140 0.0021 6.7774 <.0001

logioRestraint 0.0145 0.0035 4.1199 0.0001

Model:
logio(Body Temperature) = 1.5778 + 0.0140 logio(Pursuit) + 0.0145 logio(Restraint) + e 
2̂.728 = 41.2091, P <.0001, 0.3822, n =  131_________________________________
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respectively. A large proportion of variance in body temperature was unexplained by my 

measures.

W in t e r  S n o w  D e p t h  a n d  T e m p e r a t u r e

Snow depth measured at the Dryden airport during winter 1998-2001 was generally less 

than 40 cm and temperatures were moderate (Figure 2.3). Comparison of early winter severity 

indices (Table 2.7) suggested metabolic costs prior to capture were higher in 1998 and 2(X)1 than 

in 1999 and 2(X)0, mainly because of lower snow depths.

H e m a t o l o g y  a n d  S e r u m  C h e m is t r y

Effects of Handling, Individual, Spatial, and Temporal Factors

Reference ranges for hematological parameters and serum chemistries are presented in 

Tables 2.8 and 2.9, respectively. Handling (time elapsed between initiation of pursuit and 

sample collection and body temperature) and temporal (year) factors accounted for large portions 

of the variability in many of the blood parameters, while individual (body fat) and timber-harvest 

treatment accounted for relatively little of the variation in only a few variables (Tables 2.10 and 

2.11). Body fat positively influenced measures of pregnancy hormones (P4 and PSPB) and red 

blood cell indices (Hb and Hct). Higher values of serum K and AST and lower values of urea 

were associated with the PCC treatment.

Statistical Outliers

The binomial expansion model yielded 34 (13%) individual outliers (i.e., an excess of 6 

blood parameters responsible for the outlier status). Seventeen of these animals had been 

censored from reference range determination because of abnormalities detected by physical 

examination at capture (e.g., existing fractures, injuries inflicted by wolves, injuries to the skin 

and deeper soft tissues on the back of the neck associated with collar attachment). The
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Figure 2.3. Mean (± SD) daily snow depth and temperature during winter in northwestern Ontario, Canada, 1998-2001 (Environment 

Canada, Station no. 6032119, Dryden).
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Table  2.7. Comparison of early-winter (November-January) severity indices for moose in 

northwestern Ontario, Canada, 1997-2001.

Winter

Mean 
Snow Depth 

(cm)

Winter
Severity

Index
(Snow)

Mean
Temperature

CC)

Winter
Severity

Index
(Temp.)

Winter 
Severity 

Index (Sum)
1997-1998 20.8 10.4 -8.2 0.7 11.1
1998-1999 10.2 4.1 -10.3 1.2 5.3
1999-2000 12.1 6.0 -8.5 1.8 7.8
2000-2001 16.3 8.4 -11.2 1.7 10.1
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Table 2.8. Hematology values of adult female moose captured by hand-held net-gun fired from a helicopter in northwestern Ontario, 

Canada, January-February 1998-2001. Reference ranges calculated as the interval between the 2.5 and 97.5 percentiles.

WBC Seg Band Lymph Mono Eos Baso RBC^ Hb Hct MCV MCH MCHC RDW Pit MPV
n 218 218 218 218 218 218 218 65 218 218 218 218 218 217 217 215
units X 10^/1 X 10*/1 X 10*/1 X 10*/1 X 10*/1 X 10*/1 X 10̂ /1 X 10'2/Ig/I m fl Pg g/1 % X lO /̂I fl

2.5* 4.05 0.695 0 1.718 0 0 0 6.504 154.4 0.420 63.50 22.85 345.5 15.94 42.2 5.64
97.5* 16.77 5.720 0.026 10.500 0.752 1.788 0.421 8.408 205.5 0.575 74.55 26.85 369.5 20.96 309.00 9.96
Min 2.3 0.51 0 0.28 0 0 0 4.79 124 0.35 61.9 2 2 .1 343 14.8 7 0

Max 20.4 8.62 0 .1 2 12.96 1 .6 6 3.57 0.98 9.20 2 1 1 0.59 75.5 27.3 373 23.0 396 1 2 .0

“ Red blood cell reference range calculated from 1997 samples. The Coulter MD-2 automated cell counter used during 1998-2001 
reported values greater than 7.00 as 7 .0 0 ^ . The MD-2 did store the actual RBC count internally, however, which was used to 
calculate the subsequent RBC indices (i.e., Hct, MCV, MCH).
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Table 2.9. Serum chemistry values of adult female moose captured by hand-held net-gun fired from a helicopter in northwestern 

Ontario, Canada, January-February 1998-2001. Reference ranges calculated as the interval between the 2.5 and 97.5 percentiles.

Fibr LD T4 Cort IGF-I P4 PSPB Ca P Mg Na K Cl TPro Albu Glob A:G
n 192 166 221 221 220 221 207 221 221 221 221 221 221 221 221 221 221
Units g/1 U/1 nmol/1 nmol/1 nmol/1 nmol/1 ng/ml nmol/1 nmol/1 nmol/1 mmol/1 mmol/1 mmol/1 g/1 g/1 g/1 -

2.5*** 1.67 174.8 35.1 68.2 1.21 1.01 0 2.293 1.060 0.96 141.6 3.66 85.6 72.6 30.6 28.1 0.611
97.5*** 4.99 448.7 86.5 209.5 19.13 23.35 1683.9 3.099 2.571 1.59 160.5 5.45 104.5 94.5 53.5 55.1 1.779
Min 0.7 110 23 50 0 0 0 2.05 0.81 0.9 135 3.2 81 68 26 24 0.45
Max 7.2 615 100 249 23.6 27.4 2358 3.17 2.71 1.7 169 5.9 106 111 58 75 2.00

Urea Crea Glue Choi T-Bili C-Bili U-Bili AP GGT AST CK GD BHBA NEFA Osmo Hapt Na:K Ca;P
n 221 221 221 221 221 221 221 221 221 221 221 221 221 221 221 221 221 221
Units mmol/1 pmol/1 mmol/1 mmol/1 pmol/1 pmol/1 pmol/1 U/1 U/1 U/1 U/1 U/1 mmol/1 mEq/1 mmol/1 g/1 - -

2.5*** 1.26 117.4 5.61 1.581 0.6 0 0 67.4 5.6 70.6 105.6 0.6 202.7 0.06 279.6 0.041 27.6 1.026
97.5*** 4.05 206.4 11.74 2.919 5.9 1.5 3.5 1539.7 50.5 180.4 1054.6 8.5 449.5 0.45 320.9 1.930 41.5 2.494
Min 0.9 105 2.2 1.42 0 0 0 55 4 65 87 0 186 0 271 0.01 26 0.92
Max 5.0 213 13.3 3.36 7 2 6 1860 154 269 3370 16 576 2.3 340 2.73 46 3.23
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Table 2.10. Factors influencing winter blood hematology values of female moose captured by 

hand-held net-gun fired from a helicopter in northwestern Ontario, Canada, 1999-2001.

Parameter Source of Variation DF é F P
WBC Year 1/125 0.0553 7.3213 0.0078
Hb Body Fat, Year 2/122 0.2436 19.6413 <.0001
Hct Body Fat, Year 2/122 0.2535 20.7101 <.0001

Table 2.11. Factors influencing winter blood chemistry values of female moose captured by 

hand-held net-gun fired from a helicopter in northwestern Ontario, Canada, 1999-2001.

Parameter Source of Variation DF F P
Fibr Elapsed Time, Year 2/108 0.3414 27.9870 <.0001
LD Year 1/80 0.1415 13.1888 0.0005
Cort Elapsed Time 1/129 0.2469 43.6276 <.0001
IGF-I Body Temperature 1/127 0.0916 13.9102 0.0003
? 4 Body Fat, Year 2/125 0.2550 21.3936 <.0001
PSPB Body Fat 1/119 0.1255 18.2280 <.0001
Ca Elapsed Time, Body Fat, Year 3/124 0.4925 40.1078 <.0001
Mg Elapsed Time, Year 2/128 0.1597 12.1606 <.0001
Na Year 2/128 0.3375 32.6027 <.0001
K Year, Treatment 2/128 0.1275 9.3496 0.0002
Cl Year 1/129 0.3570 71.6120 <.0001
TPro Elapsed Time, Body Fat 2/125 0.1036 8.3386 0.0004
Albu Year 2/128 0.5578 80.7205 <.0001
Glob Year 2/128 0.3699 37.5782 <.0001
Urea Treatment 1/129 0.0465 6.2970 0.0133
Crea Elapsed Time 1/129 0.0959 14.7931 0.0002
Glue Body Temperature, Year 2/128 0.2984 27.2258 <.0001
T-Bili Year 1/129 0.2574 44.7052 <.0001
AST Treatment 1/129 0.0748 10.4328 0.0016
CK Elapsed Time 1/129 0.0618 9.5575 0.0024
GD Year 1/129 0.0572 7.8286 0.0059
BHBA Year 2/128 0.5286 71.7578 <.0001
Hapt Year 1/129 0.1775 27.8299 <.0001
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contribution from individual non-outliers, non-censored outliers, and censored outliers to the 

total number of outlying values among each of the blood components is presented in Figure 2.4. 

Comparison of the values that were responsible for creating outlier status between censored and 

non-censored individuals suggested differences. There was a trend among the censored animals 

for high Fibr, Cort, TPro, Glob, Hapt, and Pit and low T4, Albu, A:G, Na, Osmo, and RBC 

(Figures 2.5 and 2.6). There was no apparent trend among the non-censored individual outliers. 

M in e r a l  S t a t u s

Reference ranges for hair mineral content are presented in Table 2.12. Annual 

differences in nitrogen, phosphorus, calcium, and sodium levels accounted for most of the 

variation (Table 2.13); however, a trend towards significance (P = 0.0508) was observed for the 

timber-harvest treatment effect. Examination of the univariate statistics suggested a difference in 

mean potassium content (P = 0.0416) between treatments. Median potassium levels for moose 

residing in MCC were approximately 15% higher than PCC in 1998, 1999, and 2001 (Figure 

2.7).

S t r e s s

Fecal GC metabolite concentrations were similar during winter 1999 and 2000 ( X 1999 -

X 2000= 3.72 ng/g, SDoiff = 21.75, paired-to.o5(2)45, P = 0.2520). After pooling data for both 

years, comparison between timber-harvest treatments suggested fecal GC metabolite levels were 

not different (P = 0.0673, Figure 2.8).
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values among each of the blood components.
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Table 2.12. Hair mineral concentration of adult female moose captured by hand-held net-gun 

fired from a helicopter in northwestern Ontario, Canada, January-February 1998-2001. 

Reference ranges calculated as the interval between the 2.5 and 97.5 percentiles.

N% P% K% Ca% Mg% Na%
n 218 216 216 216 216 216
2.5* 15.050 0.00924 0.01879 0.0524 0.01204 0.00219
97.5* 17.526 0.06363 0.12223 0.1652 0.02519 0.09307
Min 13.70 0.0081 0.0110 0.045 0.0112 0.0010
Max 18.47 0.1210 0.1656 0.205 0.0268 0.1199
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Table 2.13. Multivariate analysis of variance of winter moose hair mineral concentration as a 

function of year and timber-harvest treatment, northwestern Ontario, Canada, 1998-2001.

Source of Variance Wilks’ Lambda (A) DF Multivariate F P
Year 0.5479 18/600 7.9017 <.0001
Treatment 0.9430 6/212 2.1341 0.0508
Treatment by Year 0.9032 18/600 1.2223 0.2367
Univariate Tests Variable Univariate F
Year Nitrogen 3/217 8.0133 <.0001

Phosphorus 3/217 10.9832 <.0001
Potassium 3/217 0.8503 0.4678
Calcium 3/217 14.6326 <.0001
Magnesium 3/217 1.3010 0.2750
Sodium 3/217 14.7326 <.0001

Treatment Nitrogen 1/217 0.2176 0.6414
Phosphorus 1/217 0.0427 0.8365
Potassium 1/217 4.2006 0.0416
Calcium 1/217 0.5654 0.4529
Magnesium 1/217 2.5481 0.1119
Sodium 1/217 0.0517 0.8204

Treatment by Year Nitrogen 3/217 0.7258 0.5376
Phosphorus 3/217 0.7896 0.5009
Potassium 3/217 0.6890 0.5597
Calcium 3/217 3.0086 0.0312
Magnesium 3/217 0.2112 0.8885
Sodium 3/217 0.0357 0.9910
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Figure 2.7. Comparison of annual potassium levels in female moose hair between timber- 

harvest treatments, northwestern Ontario, Canada, January-February 1998-2001. Box plots show 

the median (center line), upper and lower quartiles (edges of the box), and range (whiskers or 

special symbols). Outside values are plotted with asterisks (*) and far outside values are plotted 

with empty circles (°). The number above each box is the sample size. PCC = progressive, 

contiguous clear-cut, MCC = modified clear-cut.
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Figure 2.8. Comparison of immunoreactive fecal glucocorticoid metabolites in female moose 

between timber-harvest treatments®, northwestern Ontario, Canada, February 1999-2000. Box 

plots show the median (center line), upper and lower quartiles (edges of the box), and range 

(whiskers or special symbols). Outside values are plotted with asterisks (*). PCC = progressive, 

contiguous clear-cut, MCC = modified clear-cut.

“Pooled -  to.o5(2).ii7 = 1.18474, P = 0.0673; npcc = 52, X = 60.4, SD = 15.44; nucc = 65, X = 
55.0, SD = 15.66.
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N u t r i t i o n a l  C o n d it io n  

Body Fat

I obtained 250 measures of rump-fat thickness from 96 individual moose (Table 2.14). 

Because of telemetry collar malfunctions, deaths, and release of some individuals, fat data were 

collected from only 26 individuals in all 4 years (1998-2001); 2 or fewer measurements were 

obtained from 45 moose. Using a general linear model for analysis would require deletion of 

subjects that had any missing data. Mixed model methodology does not require complete data 

and can accommodate unbalanced designs, as long as the missing data are random (Littell et al. 

1996). Examination of the descriptive statistics for 51 animals (MAXFAT, n = 180, X = 1.51, 

Median = 1.50, Range = 0.1-4.2) from which I obtained at least 3 rump-fat measures suggested 

the data were not greatly different from the complete data set of 96 moose; therefore, I used the 

data from the 51 animal subgroup for further analysis.

The mixed model extends the general linear model by allowing specification of the 

covariance matrix of the independent random errors (Littell et al. 1996). I assessed the 

covariance structure of repeated rump-fat measurements within individual moose and present 

model fitting information in Tables 2.15 and 2.16. I chose a compound symmetric covariance 

structure for inference in the final model. A generalized least squares fit of a mixed model with 

compound symmetric error structure is equivalent to ordinary least squares for balanced data 

(Littell et al. 1996).

Calf-at-heel status in winter was the only statistically significant factor that remained in 

the model (Tables 2.17 and 2.18). Adult cows accompanied by one or two calves from the 

previous spring had significantly less rump-fat than those that did not (P < 0.0001, Figure 2.9). 

Differences in mean rump-fat thickness associated with annual (Figure 2.10) and timber-harvest
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T a b l e  2 .14 . Comparison of rump-fat thickness (cm)'*, percent total body fat^, kilograms total body fat^, and calf status between 

timber harvest treatments in northwestern Ontario, Canada, January-February 1998-2001.

Treatment Females with calf Females without calf All Females

n Mean Median Range n Mean Median Range n Mean Median Range

PCC® 46 1.07 cm 1.00cm 0-3.2cm 59 1.85cm 1.70cm 0.1-4.8cm 106" 1.51cm 1.45cm 0-4.8cm
MCC'' 88 1.29cm 1.30cm 0-2.9cm 53 1.78cm 1.80cm 0-4.2cm 144" 1.48cm 1.40cm 0-4.2cm
Total 134 1.22cm 1.10cm 0-3.2cm 112 1.81cm 1.80cm 0-4.8cm 250 1.49cm 1.40cm 0-4.8cm

PCC 46 7.81% 7.66% 5.61-12.17% 59 9.40% 9.10% 5.82-15.45% 106 8.70% 8.58% 5.61-15.45%
MCC 88 8.26% 8.28% 5.61-11.56% 53 9.25% 9.30% 5.61-14.22% 144 8.64% 8.48% 5.61-14.22%
Total 134 8.11% 7.87% 5.61-12.17% 112 9.33% 9.30% 5.61-15.45% 250 8.67% 8.48% 5.61-15.45%

PCC 46 23.80kg 23.01kg 12.36-46.44kg 59 32.03kg 30.47kg 13.43-63.48kg 106 28.40kg 27.80kg 12.36-63.48kg
MCC 88 26.14kg 26.21kg 12.36-43.25kg 53 31.27kg 31.53kg 12.36-57.09kg 144 28.11kg 27.27kg 12.36-57.09kg
Total 134 25.34kg 24.08kg 12.36-46.44kg 112 31.66kg 31.53kg 12.36-63.48kg 250 28.23kg 27.27kg 12.36-63.48kg

PCC denotes Progressive clear-cut.
MCC denotes Modified clear-cut.
Cows with undetermined calf status were used in the totals.

** MAXFAT = Maximum rump-fat thickness, percent ingesta-free body fat = 5.61 + 2.05(MAXFAT), kilograms ingesta-free body fat 
= 12.36 + 10.65(MAXFAT) (Stephenson et al. 1998).
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Table 2.15. Covariance structure model fitting information for the mixed model analysis of 

repeated rump-fat measures. Smaller values of adjusted Akaike’s Information Criterion (AICc) 

and Schwarz’ Bayesian Criterion (BIC) indicate a better fit. The^-statistic is the null model 

likelihood ratio test.

Structure Description AICC BIC DF / P
UN Unstructured 69.1 86.9 9 23.31 0.0055
cs Compound Synunetry 59.4 63.2 1 15.62 <.0001
AR(1) Autoregressive( 1 ) 61.1 64.9 1 13.88 0.0002
ARH(l) Heterogeneous AR(1) 64.1 73.3 4 17.25 0.0017
ARMA(1,1) Moving Average AR(1) 60.8 66.4 2 16.33 0.0003
CSH Heterogeneous CS 62.6 71.9 4 18.72 0.0009
FA(1) Factor Analytic 64.8 79.3 7 23.05 0.0017
HF Huynh-Feldt 61.0 70.2 4 20.35 0.0004
FA l(l) Equal Diagonal FA 60.0 69.2 4 21.37 0.0003

Table 2.16. Covariance structure model fitting information foi the mixed model analysis of 

repeated rump-fat measures (following backward stepwise removal of non-significant effects). 

Smaller values of adjusted Akaike’s Information Criterion (AICc) and Schwarz’ Bayesian 

Criterion (BIC) indicate a better fit. The;^-statistic is the null model likelihood ratio test.

Structure Description AICC BIC DF / P
UN Unstructured 60.3 78.2 9 22.42 0.0076
CS Compound Symmetry 50.4 54.2 1 14.97 0.0001
AR(1) Autoregressive( 1 ) 51.4 55.2 1 13.99 0.0002
ARH(l) Heterogeneous AR(1) 54.8 64.1 4 16.84 0.0021
ARMA(1,1) Moving Average AR(1) 51.5 57.2 2 15.93 0.0003
CSH Heterogeneous CS 53.8 63.1 4 17.89 0.0013
FA(1) Factor Analytic 55.9 70.5 7 22.30 0.0023
HF Huynh-Feldt 53.1 62.4 4 18.59 0.0009
F A l(l) Equal Diagonal FA 52.4 61.7 4 19.29 0.0007
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Table 2.17. Effects of covariance structure (Table 2.15) on F-tests of rump-fat thickness. The row by column intersection is the P- 

value for the effect associated with the specified covariance structure.

Effect
Covariance Structure

VC UN CS AR(1) ARH(l) ARMA(1,1) CSH FA(1) HF FA l(l)
TRT 0.1068 0.1941 0.1598 0.1371 0.1431 0.1598 0.1404 0.1819 0.1618 0.1771
YEAR 0.2067 0.0874 0.1078 0.2028 0.2339 0.1169 0.1265 0.1319 0.1210 0.1202
ATHEEL <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001
TRT*YEAR 0.1720 0.1457 0.1244 0.1069 0.0867 0.1181 0.0964 0.1251 0.1179 0.1169
ATHEEL*YEAR 0.6810 0.4321 0.5397 0.5717 0.4838 0.5620 0.4993 0.4116 0.3585 0.2956
TRT*ATHEEL 0.8470 0.8833 0.8121 0.9273 0.9121 0.8327 0.7447 0.8480 0.8789 0.9690
TRT*ATHEEL*YEAR 0.4907 0.3031 0.3998 0.4112 0.4470 0.3766 0.4665 0.3698 0.3856 0.3871

Table 2.18. Effects of covariance structure (Table 2.16) on F-tests (following backward stepwise removal of non-significant effects) 

of rump-fat thickness. The row by colunui intersection is the F-value for the effect associated with the specified covariance structure.

Effect
Covariance Stmcture

VC UN cs AR(1) ARH(l) ARMA(Ll) CSH FA(1) HF FA l(l)
ATHEEL 0.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001
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Figure 2.9. Calf-at-heel status and corresponding ultrasonographic measurements of mmp-fat 

thickness (square-root transformed data) in female moose, northwestern Ontario, Canada, 

January-February 1998-2001®. Box plots show the median (center line), upper and lower 

quartiles (edges of the box), and range (whiskers). The number above each box is the sample 

size.

“Effect: ATHEEL F 1/163 = 26.67, P = <0.0001.
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Figure 2.10. Annual ultrasonographic measurements of rump-fat thickness (square-root 

transformed data) in female moose, northwestern Ontario, Canada, January-Febmary 1998- 

2001. Box plots show the median (center line), upper and lower quartiles (edges of the box), and 

range (whiskers or special symbols). Outside values are plotted with asterisks (*). The number 

above each box is the sample size.
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treatment (Figure 2.11) were not significant. In contrast to annual and treatment effects, 

successfully raising a calf to winter negatively affected fat stores by 2 0 % (least squares means

estimate (± SE) for MAXFAT, X atheel=o = 1-73 cm ± 0.03, DF = 97.3; X atheei^ i = 117 cm ± 

0.03, DF = 79.9).

Body Condition Scores

Body Condition Score (BCS) was positively related to rump-fat thickness, but the 

relationship appeared to be curvilinear (Figure 2.12). In addition, most of the scores given to 

moose utilized only a small range of the available scale. Only 10 of 249 scores were less than 6  

(MAXFAT Mean = 0.48 cm, SD = 0.48, Range = 0 -1 .5 )  and 5 moose were given a BCS greater 

than 8 (MAXFAT Mean = 3.42 cm, SD = 0.74, Range = 2.6 -  4.2). The remaining 234 scores 

were between 6  and 8  (MAXFAT Mean = 1.49 cm, SD = 0.80, Range = 0 -  4.8). These data 

suggest BCS was relatively insensitive to the differences in nutritional condition I observed.

BCS were similar between timber-harvest treatments (Fi/231 = 0.0052, P = 0.9428). Comparable 

to rump-fat thickness, BCS was negatively affected by calf-at-heel status (Fi/231 = 12.9259, P = 

0.0004).

R e p r o d u c t io n

Pregnancy-specific protein B (PSPB) concentration in blood suggested pregnancy 

(95%CI = 88.4-96.3%) and twinning (95%CI = 65.4-78.7%) rates of adult females in my sample 

were high (Table 2.19). Contingency table analysis stratified by year, further suggested 

pregnancy (%̂ = 0.5433, Mantel-Haenszel P = 0.4611) and in utero twinning rates (%̂ = 1.5010, 

Mantel-Haenszel P = 0.2205) were similar between treatments. The proportion of cows 

observed with at least one calf at heel the following winter (Table 2.20) was similar each year
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Figure 2.11. Ultrasonographic measurements of rump-fat thickness (square-root transformed 

data) in female moose inhabiting 2 timber-harvested landscapes in northwestern Ontario, 

Canada, January-February 1998-2001“. Box plots show the median (center line), upper and 

lower quartiles (edges of the box), and range (whiskers or special symbols). Outside values are 

plotted with asterisks (*). The number above each box is the sample size. PCC = progressive, 

contiguous clear-cut, MCC = modified clear-cut.
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Figure 2.12. Scatter plot with a fitted line (LOESS smoothed line, tension = 0.950) 

demonstrating the relationship between Body Condition Score (BCS) and rump-fat thickness 

(MAXFAT) (all moose measured and scored 1998-2001, n = 249).
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T a b l e  2.19. In utero pregnancy and twinning determined by pregnancy-specific protein B 

(PSPB) measured in moose in northwestern Ontario, Canada, January-February 1998-2(X)1.

Year Parameter Progressive clear-cut Modified clear-cut
Pregnant 27 34

Single 7 6

1998 Twins 20 28
n

in utero
31 38

Calves: 100 Cows 151.6 163.2
1999 Pregnant 27 31

Single 7 8
Twins 20 23

n
in utero

27 31

Calves: 100 Cows 174.1 174.2
2000 Pregnant 21 26

Single 7 4
Twins 14 22

n
in utero

22 31

Calves: 100 Cows 159.1 154.8
2001 Pregnant 23 32

Single 7 3
Twins 16 29

n
in utero

23 34

Calves: 100 Cows 169.6 179.4
Total Pregnant 98 123

Single 28 21
Twins 70 102

n
in utero

103 134

Calves: 100 Cows 163.1 167.9
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T a b l e  2 .20. Number of calves at heel observed with radio-collared moose during winter in 

northwestern Ontario, Canada during 1999-2001.

Winter Parameter Progressive clear-cut Modified clear-cut
Alone 21 13
Single 7 18

1998-1999 Twins 1 2
n 29 33

Calves at heel: 100 Cows 31.0 66.7
Alone 17 13
Single 8 17

1999-2000 Twins 0 4
n 25 34

Calves at heel: 100 Cows 32.0 73.5
Alone 6 13
Single 17 21

2000-2001 Twins 0 0
n 23 34

Calves at heel: 100 Cows 73.9 61.8
Alone 44 39
Single 32 56

Total Twins 1 6
n 77 101

Calves at heel: 100 Cows 44.2 67.3
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within MCC (x^o.o5 ,(2 )2 =  0.0126,0.990 <P<  0.995), but the proportions were different within 

PCC (5̂ 005,(2)2 = 13.023, 0.001 < P<  0.005). Overall, the proportion of cows observed with at 

least one calf at heel in winter was greater in MCC than PCC (0.65 versus 0.47, x̂ o.o5,(2>i = 6.027, 

Fisher’s Exact test P = 0.016).

DISCUSSION

H e a l t h

Alterations from normal hemostasis occur during stress and the significance of these 

changes on diagnostic interpretation of moose physiological characteristics is not completely 

understood. Evaluating the effects of physical-restraint capture techniques on blood parameters 

was particularly important in my case because moose are more commonly sampled following 

chemical immobilization (Schmitt and Dalton 1987). Results from my analysis of animal 

handling measures revealed significant annual differences that could be attributed to different 

capture personnel in different years. Furthermore, I demonstrated that handling measures (i.e., 

elapsed time and body temperature) affected several blood parameters. Many other studies that 

have examined the effects of different restraining techniques have clearly demonstrated that 

without standardization of collection methods, blood values are more indicative of the state of 

stress at the time of sampling than actual physiological condition of individuals (Seal et al. 1972; 

Wesson et al. 1979a,b; Kams and Crichton 1978; Mautz et al. 1980). Capturing free-ranging 

moose over large areas by hand-held net-gun fired from a helicopter does not easily facilitate 

consistency. The animal’s reactions to the helicopter, environmental conditions (e.g., closed vs. 

open habitat, snow conditions, ambient temperature), and capture crew experience influence 

capture efficiency, which ultimately affects animal welfare. Interpretation of diagnostic tests 

without careful examination of the sampling technique must be regarded cautiously.

59

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



None of the blood variables I examined adequately explained variation in 

ultrasonographically measured rump-fat depth of cow moose. Many blood components have 

previously been evaluated for their usefulness in determining past nutrition in deer species. 

Serum proteins (Franzmann and LeResche 1978, Messier et al. 1987, DelGuidice et al. 1992, 

Brown et al. 1995), non-protein nitrogen (urea N; Seal et al. 1972,1978; DelCalesta et al. 1975; 

DelGuidice et al. 1987,1990,1992; Brown et al. 1995), cholesterol (Seal et al. 1978; DelGuidice 

et al. 1987,1990; Messier et al. 1987), non-esterified fatty acids (NEFA; DelCalesta et al. 1975, 

Seal et al. 1978, Card et al. 1985, Brown et al. 1995), thyroid hormones (thyroxine (T4) and 

triiodothyronine (T3); Seal et al. 1972,1978; DelGuidice et al. 1987, 1990,1994; Brown et al. 

1995; Cook et al. 2001), and erythrocyte evaluation (RBC, Hb, PCV; Franzmann and LeResche 

1978, Seal et al. 1978, DelGuidice et al. 1992) have been consistently associated with nutrition 

or body condition in both observational and experimental studies. Individually, the relationships 

have lacked the sensitivity (large variance in response) and the specificity (response attributed to 

protein, energy, or protein*energy interaction) necessary to quantify consequential differences in 

nutrition or condition of individuals. For example, serum urea N (SUN) is reduced by low 

protein intake and consequently has been one of the most widely used indices of nutritional 

quality (Harder and Kirkpatrick 1996). Studies in white-tailed deer {Odocoileus virginianus; 

DelGuidice et al. 1994) and reindeer (Rangifer tarrandus tarrandus; Sakkinen et al. 2001) have 

demonstrated, however, that SUN levels remain unchanged in animals fed low protein diets 

containing sufficient energy, even though animals may lose up to 25% of their initial mass. 

Relationships between blood values and the zunount of fat in an animal’s body also exhibit poor 

predictive capability (Messier et al. 1987 -  fat content = -4.81 + 0.147(total serum protein), R^ = 

0.36; Keech et al. 1998 -  rump-fat depth = 0.28 + 1.68(creatinine) -  0.03(AST), = 0.34), or
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are affected by seasonal interactions (Cook 2000 -  no relationship between body fat (%) and T4 

in September, body fat (%) = -6.229 + 2.997(T4), = 0.72 in December, body fat (%) = -7.151

+ 2.693(T4), R  ̂= 0.65 in March).

Still, comparisons of blood profile data may be a useful procedure to assess the general 

health of animals (Fadely 1998, Trumble and Castellini 2002). Blood profile evaluation requires 

quantification of the natural variability in blood components and determination of reference 

ranges (Jain 1993, Gascoyne et al. 1994). Examination of the values that result in outlier status 

may reveal environmental or disease factors acting at the population level. In this study, the 

trend observed in abnormal hemograms of compromised (i.e., censored) individuals was 

consistent with their injuries. Fibrinogen, Glob, and Hapt are acute phase proteins and are 

elevated in infections and inflammatory conditions (Jain 1993). Hypoalbuminemia may be a 

result of decreased synthesis or increased catabolism (Kaneko 1997a) and is associated with 

chronic infection and inflammation (Jain 1993). The presence of markedly elevated serum 

protein concentration is the probable cause of an accompanying hyponatremia (low serum 

sodium) because electrolytes are dissolved only in the aqueous phase (Carlson 1997). Secretion 

of thyroid hormones from the thyroid gland is regulated by thyroid stimulating hormone (TSH) 

and is inhibited by glucocorticoids (Kaneko 1997b). Endotoxins produced in wound sepsis 

activate biosynthesis of platelets (Dodds 1997). Anemia from reduced erythropoiesis is caused 

by chronic inflammation (Duncan et al. 1994). The lack of a trend among the non-censored 

individual outliers suggests no common cause for their aberrant status.

In contrast to other body tissues that are in a state of dynamic flux, hair is formed in a 

relatively short time and becomes isolated from the body’s continuing metabolic activities 

(Hopps 1977). Mineral concentrations in hair have been correlated with deficiencies associated
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with nutritional disease (Flynn et al. 1977). The significance of the difference in moose hair 

potassium content that I observed between PCC and MCC is difficult to establish. The 

potassium requirement of ruminants is about 0.6 -  0.8% of the diet (NRC 1984). Signs of 

abnormal potassium balance (including weakness, paralysis, or hyperexcitability due largely to 

changes in membrane potential (Brobst 1997)) were not observed in my study. Very little is 

known about the mineral requirements of moose (Schwartz and Renecker 1998), but potassium 

intake should normally be adequate because both terrestrial and aquatic plants are replete in 

potassium (Wilde 1962), at least during the growing period. Winter forages may have lower 

available potassium (Robbins 1993), but the large hindgut in concentrate selectors, such as 

moose, probably functions to conserve and absorb essential minerals (Holand and Staaland 

1995).

Hair mineral levels reflect element accumulation over a period of time prior to collection, 

and therefore, are suggestive of differences in potassium balance during late summer/fall hair 

growth. Franzmann et al. (1975b) demonstrated variation in 4 macro-mineral elements of moose 

hair, including potassium, associated with seasonal changes in nutrition. Mean (±SD) potassium 

levels in hair taken from Kenai Peninsula moose were lowest in May (0.0258% ± 0.0074) and 

highest in October (0.2090% ± 0.0762). The large range of potassium levels I observed in 

February (0.0110 -  0.1656%) was not drastically different, but reference values for moose hair 

elements have not been determined previously. Anke (1965) reported hair potassium levels 

related to body stores required for normal development in domestic cattle as 0.0300%. This 

would suggest that most of the animals 1 sampled were likely meeting minimum requirements. 

The consistent differences in hair potassium levels between PCC and MCC likely point to a 

divergence in diet composition, or, lower potassium levels in similar forage species. Peek et al.
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(1976) reported differences in potassium content of the winter twigs of aspen, beaked hazel, and 

willow associated with conifer plantations in northern Minnesota. Mineral concentrations may 

also decline with increased intensity of moose browsing (Danell and Bergstrom 1989).

Another major consideration in the understanding of habitat alteration on ungulate 

population health is the effect of physiological stress. Measurments of GC metabolites in feces 

were similar between landscape treatments and provided an integrated reflection of all GC 

secretion over the previous 1-2 days (Chapter 1). In addition, the ranges in fecal GC metabolite 

concentration I observed were similar to values obtained from moose in rural central Alaska, 

USA during March (n = 211 ,25-116  ng/g feces, Tomeo 2000). In contrast, fecal samples 

collected within Alaska’s largest urban area (Anchorage, -260,000 residents in 2000), exhibited 

a range of values twice as great (n = 62, 5 4 -2 2 1  ng/g feces). Anthropogenic factors (e.g., 

harassment from domestic dogs, interactions with motorized vehicles, fragmentation of suitable 

moose habitat) likely contributed to the high stress levels observed in the Anchorage moose 

population (Tomeo 2000). Interestingly, moose in the Anchorage area may also be at K carrying 

capacity (KCC) as evidenced by damage to preferred browse species and an observed twinning 

rate of 5-7 twins: 100 cows (personal communication, R. Sinnott, Alaska Dept, of Fish and 

Game). Further studies are needed to demonstrate the response of fecal GC to a variety of 

already well-known physiological stressors (i.e., poor nutrition, reproduction, high temperature, 

deep snow), as well as the lesser-understood neurogenic varieties (e.g., interactions with 

predators, conspecific aggressions).

N utritional Condition

Measurement of animal condition over an extended period may indicate the optimal level 

of nutrition obtainable on a landscape and may demonstrate the degree to which body condition
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is sensitive to variation in landscape pattern. Obtaining repeated measures of individual body 

condition from large free-ranging ungulates, however, has been limited by a lack of practical and 

reliable techniques for monitoring body fat and mass. More recently, Stephenson et al. (1998) 

developed predictive equations of total body fat and body mass from ultrasonographic fat 

measurements for application in live animals. The ultrasound technique provides a direct 

measure of body condition, which can be monitored relative to nutrition, reproductive success 

(gestation and lactation), and energy expenditure (Stephenson et al. 1998).

Ultrasonographic fat measurements were similar between landscape treatments. February 

body fat stores in northwestern Ontario females averaged 8.54% ingesta-ffee body fat (IFBFAT) 

and fluctuated no more than 0.4% annually. For comparison, female moose in Alaska’s boreal 

forest regions average 7-10% IFBFAT in March (T. Stephenson, California Department of Fish 

and Game, personal communication). Significant annual differences (-3.9% IFBFAT) in moose 

body fat stores have been reported when the number of days that snow levels were greater than 

53 cm (moose “knee height”) increased from 0 - 1 7  (Stephenson 1996). If moose in this study 

attained similar fatness each fall, then these data suggest that the climatic conditions moose 

experienced during early winter did not affect the rate at which body fat stores were used.

Although significant, calf-at-heel status only modestly affected adult female lipid 

reserves in February (8  vs. 9% IFBFAT). Testa and Adams (1998) observed a greater difference 

(9 vs. 15% IFBFAT) between female Alaskan moose with and without a calf present in 

November. Females in this Alaskan population also exhibited low twinning rates (12%) and 

experienced reproductive pauses in years following successful calf rearing. A decline in 

pregnancy (98 vs. 77%) and twinning (31 vs. 10%) rate was observed in a separate Alaskan 

moose population when mean March body fat estimates declined between years from 9 to 8 %
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(Keech et al. 2000). In this study, I did not obtain estimates of calf survival before December of 

each year. I determined that > 89% of the collared females were pregnant each year, however, 

and it is likely that many of the cows without a calf present in December experienced some 

duration of lactation. Thus, I may have underestimated lactation costs. My data suggests, 

however, that there were not any negative effects on subsequent reproductive effort for those 

females that successfully raised a calf.

Productivity

The reproductive potential for moose is determined by the age of first reproduction, litter 

size, length of reproductive cycle, and reproductive life (Schwartz 1998). The adult pregnancy 

rate of North American moose is 84.2% and is consistent (CV 6 .8 %) over a wide variety of 

habitats and winter conditions (Boer 1992). Fecundity is more variable and is a sensitive 

indicator of habitat quality (Franzmann and Schwartz 1985). Boer (1992) reviewed 12 North 

American moose studies and reported average intrauterine fecundity rates for populations below, 

near, and above KCC as 124.1, 106.1, and 88.0 calves/100 adult females, respectively. The 

constant pregnancy rates and high annual in utero twinning I observed are indicative of 

populations below KCC. The suggestion that neither MCC or PCC moose are nutritionally 

limited is consistent with previous work that indicates forage production for moose in boreal 

forest regions is greatest 10-30 years following disturbance (Eastman 1974, Kelsall et al. 1977, 

Doer 1983).

Although fecundity was similar between landscape treatments, the number of calves 

surviving to winter was greater in MCC than PCC. Some reproductive losses of moose occur 

during late gestation (Testa and Adams 1998, Stephenson et al. 2001), but the vast majority 

generally occurs as neonatal losses within the first few months after birth (Gasaway et al. 1977,
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Ballard et al. 1981, Franzmann and Schwartz 1986, Testa 1998, Keech et al. 2000). We 

observed wolves {Canis lupus) and attributed deaths of radio-collared adult moose to wolves in 

both MCC and PCC. Black bear (Ursus americanus) were also conunon during summer. In 

addition, hunters in Ontario regularly harvest calves, but higher calf harvest in PCC does not 

agree with Rempel et al. (1997a) whose research suggested the PCC moose population increased 

because of limited hunter access (i.e., lower road density than MCC).

Conclusions

Consistent with the similarity of habitat suitability indices for moose between the MCC 

and PCC landscapes (Allen et al. 1987, Rempel et al. 1997a), differing landscape-level patterns 

resulting from forest management practices in each had little effect on the health, nutritional 

condition, or reproductive effort of cow moose. However, calf survival to winter was greater in 

the MCC landscape that incorporated the Timber Management Guidelines for the Provision of 

Moose Habitat (OMNR 1988) than the progressive, contiguous clear-cut, suggesting 

environmental factors affecting calf survival were different between the 2 landscapes. These 

results highlight the need to use a combination of techniques to evaluate the capacity of habitats 

to support animals.
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APPENDIX I. Hematological parameters and some causes for their deviation from normal
(Duncan et al. 1994, Kaneko et al. 1997).

Abbreviation Parameter Change
RBC Red blood cell count Increase: excitement, dehydration. Decrease: anemia

Hb Hemoglobin concentration Increase: excitement, dehydration. Decrease: anemia

Hct Hematocrit Increase: excitement, dehydration. Decrease: anemia

MOV Mean corpuscular volume 
Mean corpuscular

Increase: reticulocytosis. Decrease: iron deficiency

MCH hemoglobin Decrease: iron deficiency, reticulocytosis
MCHC Mean corpuscular 

hemoglobin concentration
Decrease: iron deficiency, reticulocytosis

ROW Red cell distribution width Increase: anemia, reticulocytosis

Pit Platelet coimt Increase: excitement, endotoxins. Decrease: splenic congestion

MPV Mean platelet volume Increase: responsive thrombopoiesis. Decrease: platelet destmction diseases

WBC White blood cell count Increase/Decrease: caused by change in the number of any leukocyte
Seg Segmented neutrophils Increase: excitement, parturition, corticosteroids, infection, inflartunation, hemorrhage, 

toxins, malignancy. Decrease: increased tissue demand, reduced production

Band Band neutrophils Increase: diminished storage reserve of mature (segmented) neutrophils

Lymph Lymphocytes Increase: excitement, infection. Decrease: corticosteroids, acute systemic infection

Mono Monocytes Increase: disease, bacteremia

Eos Eosinophils Increase: parasitism, hypersensitivity

Baso Basophils Increase: hypothyroidism, endocrine disease
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APPENDIX II. Intemational System of Units (SI) conversion factors: Hematology (Duncan et
al. 1994, Kaneko et al. 1997).

Abbreviation Parameter
Conventional

Unit
X Conversion 

Factor
SI

Unit
RBC Red blood cell count X loVpl 1 X lO'^/l
Hb Hemoglobin concentration g/dl 10 g/1
Hct Hematocrit % 0.01 14

MCV Mean corpuscular volume fl same fl
MCH Mean corpuscular hemoglobin Pg same pg
RDW Red cell distribution width % same %
MCHC Mean corpuscular hemoglobin 

concentration %(g/dl) 10 g/1
Pit Platelet count X 10^/ pi 1 xlO ’/l
MPV Mean platelet volume fl same fl
WBC White blood cell count X lOV pi 1 X lO’/l
Seg Segmented neutrophils X 10^/ pi 1 X 10®/1

Band Band neutrophils X 10^/ pi 1 X 10^/1

Lymph Lymphocytes X lOV pi 1 xlO ’/l
Mono Monocytes X 10^/ pi 1 xlO ’/l
Eos Eosinophils X lOV pi 1 xlO ’/l
Baso Basophils X 10^/ pi 1 X lO’/l
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APPENDIX III. Chemistry parameters and some causes for their deviation from normal
(Duncan et al. 1994, Kaneko et al. 1997).

Abbreviation Parameter Change
Albu Albumin Increase: dehydration. Decrease: disease, malnutrition, blood loss

A:G Albumin:Globulin ratio Decrease: selectiye loss of albumin or increased globulins

AP Alkaline phosphatase Increase: acute or chronic hepatic disease, bile-duct obstruction

AST Aspartate amino transferase Increase: soft tissue damage, liver, kidney, or pancreas injury

C-Bili Bilirubin, conjugated Increase: hepatic disease, bile-duct obstmction

T-Bili Bilirubin, total Increase: internal hemorrhage, hepatic disease, sepsis, starvation

U-BiU
Ca

Ca:P

Bilirubin, unconjugated 
Calcium

CalciumiPhosphorus ratio

Increase: hepatic disease, cholestatic disorders
Increase: acidosis, excessive bone resorption, parathyroid disease, renal disease. 
Decrease: alkalosis, malnutrition, malabsorption, hypoalbuminemia, renal disease

Cl Chloride Increase: dehydration, acidosis. Decrease: alkalosis

Choi Cholesterol Increase: postprandial, disease. Decrease: malnutrition

Cort Cortisol Increase: stress, malnutrition

CK Creatine kinase Increase: soft tissue damage

Crea Creatinine Increase/Decrease : relative to muscle mass, renal disease

Fibr Fibrinogen Increase: acute inflammatory disease

Glob Globulin Increase: acute inflammatory disease, disease, abnormal hepatic function

Glue Glucose Decrease: hepatic insufficiency, renal disease, malnutrition

GD Glutamic dehydogenase Increase: hepatic necrosis, bile-duct obstruction

Hapt Haptoglobin Increase: acute inflammatory disease

IGF-I Insulin-like growth factor I Decrease: malnutrition, hypothyroidism, sepsis, corticosteroids

LD Lactate dehydogenase Increase: soft tissue damage

Mg Magnesium Decrease: dietary deficiency, malnutrition

NEFA
Osmo

P

Non-esterified fatty acids 
Osmolality

Phosphorus

Increase: diminished caloric intake, pancreas disease
Correlated with serum Na except when serum water content deviates widely from normal, 
or when abnormally high levels of foreign low-molecular-weight substances are present in 
the blood
Increase: renal disease, parathyroid disease. Decrease: dietary deficiency, parathyroid 
disease

K Potassium Decrease: diarrhea, excessive renal loss, dietary deficiency

PSPB Pregnancy-specific protein B

P4
Na

Progesterone
Sodium Increase: dehydration. Decrease: disease, diarrhea, blood loss, adrenal insufficiency, 

sequestration of fluid (e.g., peritonitis)

Na:K Sodium;Potassium ratio

T« Thyroxine, total Decrease: disease, malnutrition

TPro
Urea

Total serum protein 
Urea

Decrease: nitrogen loss
Increase: tissue protein catabolism. Decrease: diminished protein intake, hepatic 
insufficiency

BHBA P-Hydroxybuterate Increase: diminished caloric intake

GGT y-Glutamyl transferase Increase: chlolestatic disorders
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APPENDIX rV. Intemational System of Units (SI) conversion factors: Chemistry (Duncan et
al. 1994, Kaneko et al. 1997).

Abbreviation Parameter Conventional Unit X Conversion Factor SI Unit
Albu Albumin g/dl 10 g/1
AP Alkaline phosphatase U/1 same U/1
AST Aspartate amino transferase U/1 same u /1

C-Bili Bilirubin, conjugated mg/dl 17.10 pmol/1
T-Bili Bilirubin, total mg/dl 17.10 pmol/1
U-Bili Bilirubin, unconjugated mg/dl 17.10 pmol/1
Ca Calcium mg/dl 0.2495 nmol/1
Cl Chloride mEq/1 1 mmol/1
Choi Cholesterol mg/dl 0.02586 mmol/1
Cort Cortisol pg/dl 27.59 nmol/1
CK Creatine kinase U/1 same U/1
Crea Creatinine mg/dl 88.40 pmol/1
Fibr Fibrinogen mg/dl 0.01 g4
Glob Globulin g/dl 10 g/1
Glue Glucose mg/dl 0.05551 mmol/1
GD Glutamic dehydogenase U/1 same U/1
H apt Haptoglobin mg/dl 0.01 g/1
LD Lactate dehydogenase U/1 same U/1
Mg Magnesium mg/dl 0.4114 nmol/1
NEFA Non-esterified fatty acids mEq/1 same mEq/1
P Phosphorus mg/dl 0.3229 nmol/1
K Potassium mEq/1 1 mmol/1
P4 Progesterone ng/ml 3.18 nmol/1
Na Sodium mEq/1 1 mmol/1
T4 Thyroxine, total pg/dl 12.87 nmol/1
TPro Total serum protein g/dl 10 g/1
Urea Urea mg/dl 0.1665 mmol/1
BHBA P-Hydroxybuterate mg/dl 0.096 mmol/1
GGT Y-Glutamyl transferase U/1 same U/1

83

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.


