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ABSTRACT

In this thesis we use the concept of sigma base to study
the metrizability of various topological spaces. Chapter I is
devoted to the definition of basic terms, a proof of Urysohn's
Metrization Theorem, and an introduction to sigma structures.

In Chapter II various sigma bases are defined and their
inter-relationships, as well as their relationships to other
topological concepts, are studied. The Nagata-Smirnov
Metrization Theorem and the Bing Metrization Theorem are among
the theorems studied in this chapter.

First countable spaces that have useful sigma base
characterizations are studied in Chapter III. In particular,
sigma base characterizations are developed for semi-metric
spaces and developable spaces. We prove a theorem due to
Heath, that a semi-metric space with a point countable base is
developable. We also prove that a developable paracompact

space is metrizable.

Sigma refinements that are used in Michael's characterizations

of paracompactness are introduced in Chapter IV and then used to

develop M; spaces as defined by Ceder. We prove that M; spaces

are paracompact and perfectly normal and prove that first countable

M3 spaces are semi-metric spaces. Finally, we generalize both the

Nagata-Smirnov Theorem and Bing's Theorem, by proving that a

ii



topological space is metrizable if and only if it is T;

and has a sigma cushioned point countable pair-base,
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Chapter I

Introductory Concepts

1.1 Int;oduction.

We assume that the reader is familiar with set theory
and consequently we draw freely upon set-theoretic theorems
and definitions without recourse to proof or explanation.

In 1.2 the notions of topological spaces and bases
for topologies are introduced. Section 1.3 gives
definitions of most of the basic terms that will be used
throughout the work, although occasionally the definition
of a particular concept may be deferred until needed.

Following the definition of metric spaces in 1.4,
the problem of metrization of topological spaces is
introduced., Urysohn's metrization theorem is studied in
some detail in order to acquaint the reader with the type
of proof that one encounters when studying these problems.
Then we consider the metric structure of the EFuclidean plane
and, from a brief analysis of various bases for this structure,
formulate the concept of sigma structure (o-structure). In
succeeding chapters, various c-structures are introduced
and studied in a topological setting.
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1.2 Topological Spaces.

Definition 1.2.1.

A topological space (X,1) is a set X and a

family Tt of subsets of X such that:
(1) et (B is the empty set);
(2) X e 13
(3 if U,ve T then U N Ve ;
(4) the union of an arbitfary collection of elements

of T 1s a member of T.

The elements of X are referred to as -points., 1 1is
called a topology on X and the elements of T are called
open sets. Sometimes X 1is referred to as a topological
space, or just as a space, the family 1 being understood.
We mention, in passing, that the same set can be given
different topologies by choosing different families of sets
to form t. In fact, many examples and counter examples in
topology are constructed by imposing different topologies on

the Euclidean plane.

Definition 1.2.2.

A base B for a topology T on X 1s a collection B

of open sets such that if x € U and U e 1 then there
exists some V e B such that x ¢ VC U. Equivalently, B

is a base for 1 1f and only if each member of 1 1is the
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union of members of B and each member of B is in =r.

Definition 1.2.3.

A subbase S for a topology T on X 1is a collection

of open sets such that the collection of finite intersections
of members of S forms a base for 1. If X  1is a nonempty

set  then any family of subsets of X is a subbase for a

unique topology on X.!

1.3 Basic Definitions.

In the following definitions (X,t) 1is a topological

space and the sets in question are subsets of X.

Definition 1.3.1.

The complement of a set A 1is denoted by A® and is the

set X - A.

Definition 1.3.2.

A set A is closed if A% ¢ t (that is, if A% 1is open).

Definition 1.3.3.

The closure of a set A is denoted by & and is defined by

A= N {C | AcC and C 1is a closed subset of X}. It
is an easy consequence of the definitions of topological space

and closed set that A is a closed set.

For a more complete discussion of the definitions of base
and subbase see Kelley [10], pages 46-48.



Definition 1.3.4.

A point x 1is an accumulation point of a set B if every

open set containing x contains some y # x such that y e B.
It is not difficult to show that A = A U A' (where A'

denotes the set of all accumulation points of A).

Definition 1.3.5.

The interior of a set A 1is denoted by A° and is the

union of all open subsets of A. A set A 1is a neighbourhood

of a point x 1if x e A°.

Definition 1.3.6.

T

If BcC X then 171 generates a topology T on B in

the following way. A subset U of B 1is open relative to B

if there is some open set V e t such that U=B N V.

T is a topology on B and (B,t') is called a-subspace of

X,1).

Definition 1.3.7.

A function f with domain X and range contained in a
topological space Y is continuous if, for any set U open

in Y, the set f~l[U] is open in X.

Definition 1.3.8,

f :X>Y is a homeomorphism if the following conditions

are satisfied:

(1) £ 1is a bijection;



(2) f is continuous;

(3) f~! 4is continuous.

Definition 1.3.9.

Suppose {Xu | o € I} is an arbitrary collection of

topological spaces where I is some index set. Then the

product set P =7T{X, ’ o € I} of these spaces is the set
of all functions f mapping I into (J{Xy | o e I} such

that f(a) € X4 for all o e I. Let o e I and U, be

an open subset of X,. Define W to be the set of all
points f ¢ P such that £(a) € U, and let S be the set
of all such sets W. From the remark following Definition
1.2.3 we see that S 1is a subbase for a unique topology on
P. The product set with this topology is called the product

space and the topology is called the product topology.

Definition 1.3.10.

A topological space is a T; space 1if, given distinct
points a and b in it, there are open sets U and V
such that a ¢ U, a ¢V, beV, and b ¢ U. It is easy
to see that a space is T; 1if and only if each set consisting

of a single point is closed.

Definition 1.3.11.

A topological space is a Hausdorff space if, given

distinct points a and b in it, there are disjoint open



sets U and V such that a € U and b e V.

Definition 1.3.12.

A topological space is a regular space if, given a closed

set B and a point a ¢ B, there are disjoint open sets U
and V such that a € U and B¢ V. An alternative
characterization of regularity is the following: a
topological space is regular if given an open set U and a
point a € U, there is an open set V such that
aeVeVcU., It is easily seen that these two definitions
are equivalent. Some authors use the term regular to imply

a regular and T; space.

Definition 1.3.13.

A topological space is normal if, given disjoint closed
sets A and B, there exist disjoint open sets U and V
such that AcC U and B V. It can be shown that a
topological space is normal if and only if, given a closed
set A and an open set U such that A C U, then there is

an open set V such that AC VeV cu.

Definition 1.3.14.

A topological space is perfectly normal if it is normal

and if every closed set A 1is a Gs (that is, A is the

intersection of a countable collection of open sets).



Definition 1.3.15.

A cover of a topological space X is a family C of
subsets of X whose union is X. A cover is an open

(closed) cover if all the sets in it are open (closed).

Definition 1.3.16.

If C and S are covers of X and S C, then §

is a subcover of the cover C of X.

Definition 1.3.17.

If C and R are covers of X and, given A € R there
exists B e C such that AC B, then R is a refinement
of C. If the sets in R are open (closed) themn R is

an open (closed) refinement.

Definition 1.3.18.

A collection of subsets of X 1s locally finite (locally

countable) if, given x € X there is some open set U
containing x such that U meets (has a non-empty intersection
with) at most finitely (countably) many elements in the

collection.

Definition 1.3.19.

A collection of subsets of X 1s point finite (point

countable) if each point in X 1is in at most finitely

(countably) many members of the collection.




Definition 1.3.20.

A topological space is compact if every open cover of

it has a finite subcover.

Definition 1.3.21.

A topological space is Lindelof if every open cover

of it has a countable subcover.

Definition 1.3.22.

A topological space is paracompact if it is Hausdorff

and every open cover has a locally finite open refinement.

Definition 1.3.23.

A collection L of open sets of X 1is a local base at

x € X if, for any open set U containing x there exists

Vel such that x ¢ VC U.

Definition 1.3.24.

A topological space is first countable if each point

has a countable local base.

Definitionh 1.3.25.

A topological space is second countable if it has a

countable base.

Definition 1.3.26.

A set A is demse in B if BC A. Clearly, A 1is

dense in X if and only if X = A or, equivalently, if and
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only if any open set containing =x € X contains a point

ae A, A 1is dense if it is dense in X.

Definition 1.3,27.

A topological space is separable if it contains a

countable dense subset.

Definition 1.3,28.

A family of subsets of X is discrete if the closures
of its members are pair-wise disjoint and if the union of any

subcollection of the closures of the sets is closed.

Definition 1.3.29.

A collection C of sets is closure preserving if, for

any subcollection D of C, the closure of the union of the
sets in D is equal to the union of the closures of the sets

in D.

Defintion 1.3.30.

A base B for a topological space X is a uniform base

if, given x € X, any infinite subcollection of elements of B,

each of which contains x, is a local base at <x.

Definition 1.3.31

A collection of sets is star finite (star countable) if

each set in the collection meets at most finitely (countably)

many members of the collection.



10

Definition 1.3.32.

A topological space is strongly paracompact if every open

cover of it has a star finite open refinement.

Definition 1.3.33.

A topological space is locally separable if every point

is contained in an open set that, when considered as a subspace,

is separable.

Definition 1.3.34.

A topological space is locally second countable if each

point is contained in an open set that, when considered as a

subspace, 1s second countable,

Definition 1.3.35.

A base B for a topology on X 1is a locally countable

base if each point in X is contained in an open set that

meets at most countably many members of B.

Definition 1.3.36.

A property P of topological spaces is a hereditary
property if, whenever a space X has P, then every subspace

of X has P.

1.4 Metric Spaces.

Definition 1.4.1.

A metric on a set X is a real-valued function,
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D : X x X >R, such that for arbitrary points x , y and =z

in X:
(1) D(x,y) = 0;
(2) D(x,y) =0 4if and only if x = y;
(3) D(x,y) = D(y,x);
(4) D(x,v) < D(x,z) + D(z,y) (triangle inequality).

If D is a metric for a set X, we refer to (X,D)

as a metric space or, if D 1is clearly implied by the

context, we refer to X as a metric space.

Definition 1.4.2.

Let (X,D) be a metric space. A subbase § for a
topology on X 1is defined as follows: U € S if for some

x € X and for some real number ¢ > 0, U ={y e X | D(x,y) < e},

and such a set U is denoted by S(x,e¢) and is called an open
sphere of radius ¢ centred at x, We recall from Definition 1.2.3

that this topology, called the metric topology induced on X

by D, is unique.

Theorem 1.4.1.

Let (X,D) be a metric space. Then X with the metric
topology, is:

(1) perfectly normal;

(2) paracompact;

(3) first countable.
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(1) This result follows from Theorem 4.2.5 (page 58).
(2) Stone proves this in [22].
(3) The first countability of metric spaces follows from

Definition 1.4.2 and the fact that S is a base.

Definition 1.4.3.

A topological space (X,T) 1is metrizable if there is
a metric D on X such that the metric topology induced on

X by D is T.

From Theorem 1.4.1 we see that if a topological space
is metrizable then a great deal is known about the space.
Consequently, much study has been concentrated upon the
problem of finding necessary and sufficient conditions
that a topological space possessing various properties be
metrizable.

The basic approach to the metrization problem for a
given class of spaces is usually to try to find some metric
space into which each member of the class can be embedded by
a homeomorphism. This turns out to be a worthwhile line of
attack because if a given topological space (X,t) 1is
homeomorphic to a subspace of a topological space (Y,t')
and the space Y is metrizable, then X 1is metrizable.
The proof is easy: let X and Y be such spaces, let

f :X->Y be a homeomorphism from X onto a subspace of Y
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and let D : Y x Y =+ R, be a metric for the topology on Y.
Clearly D* : X x X » Ry defined by D*(x,y) = D(£(x),f(y))
for x,y € X 1is a metric on X. To show that the topology
induced Ey D* on X coincides with the given topology T
on X we proceed as follows: let S be defined for D%

as in Definition 1.4.2. Then,

(1) every member S(x,e) of 8 ig in T

since S(x,e) = f [S(f(x),e)];

(2) if Uet and x € U, then, since

£f71 is continuous, there exists some

e > 0 such that S(x,e) = f7L[S(f(x),e)] C U.

From (1) and (2) it follows that S is a base for = ?
on X. Therefore D* induces the original topology on X and
(X,t) 1s metrizable.

Frqm the preceding theory, one is led immediately to
the conclusion that problems of metrizability often reduce
to problems of finding a "big'" metric space and homeomorphisms
that embed other spaces in the big space. In the following
section, we soon become aware that putting the theory into

practice can become a Herculean labour.
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1.5 The Work of Tychonoff and Urysohn.

The first solution of an important metrization problem
was due mainly to Tychonoff and Urysohn. One important phase
of Tychonoff's research was devoted to the study of products
of topological spaces. He proved that any product of compact
spaces is compact. He also proved that a regular Lindelof
space is normal. Urysohn proved Lemma 1.5.4 which is the

key to Theorem 1.5.1.

Theorem 1.5.1 (Urysohn's Metrization Theorem).

A second countable T; space is metrizable if and only
if it is regular.
Proof.

If a topological space is metrizable then it is
regular by Theorem 1.4.1.

To prove that a regular second countable T, space is
metrizable we will proceed along the following path. We
show that a regular Lindelof space is normal and that a
second countable space is Lindelgf. Then we prove
Urysohn's Lemma. This lemma allows us to construct certain
functions that we can use to embed the space homeomorphically
in a known metric space and thus conclude that the space is

metrizable.
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Lemma 1.5.1.

A second countable topological space is Lindeldf.
Proof.

Let X be a second countable topological space and let
C be an open cover of X. We must show that C contains
a countable subcover.

X has a countable base B = {B;, B,, ...}.
For any x € X there exists U € C such that x e U.
Since U 1is open, there is some B; € B such that
x e BC U. If B* is the set of all such B;, then B¥*
covers X. For every B; e B* there is at least one set
U e C such that B;C U. For each Bj choose one such set
and denote it by Uj. Clearly U;, Uy, ... 1is a countable

subcover of C. Therefore the space is Lindeldf.

Lemma 1.5.2 (Tychonoff).

A regular Lindelof space is normal.
Proof.

Let A and B be disjoint closed sets in a regular
Lindelof space X. By regularity we know that for every
a € A there is an open set G(a) such that
ae Ga)c G(a) and G(a) N B = §. Consequently, the
family composed of the set A® and all the sets G(a) such

that a € A 1is an open cover of X. This cover must
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contain a countable subcover C = {AS, Gy Gyy Ggy -
It follows that AC Gl 9] G2 U G3 «+o + Performing a similar
construction for B, we obtain a sequence of open sets
Hy, 1i=1, 2, ..., such that:

H, N A=¢ and BCH U H, U H U ...

We now define two sequences of open sets {Ui}
and {V;} as follows:

U, =Gy, V; =H N @€

and, for n > 1,

n-1

n

_ T N\C _ -—,C

‘Un—Gnﬂ(!,Vi),Vn—Hnﬂ(lalUi)
i=1 i=1

Finally, we define the disjoint open sets G and H by:

It is apparent that AC G and BC H. Therefore the

requirements for the normality of a space are satisfied and

the lemma is proved.

Lemma 1.5.3.

The set of dyadic fractions is denmse in [0,1]. (The
dyadic fractions are the rational numbers of the form k/2%

that lie in [O,l]P for non-negative integers k and n).
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Proof.

From Definition 1.3.26 it follows that the theorem will
be proved if for each x e (0,1) there is a dyadic fraction
arbitrarily close to x. Evidently this is so, since x is
between dyadic fractions that are arbitrarily close

together.

Lemma 1.5.4. (Urysohn's Lemma).

Let F; and F, be disjoint closed subsets of a
normal space X. Then there exists a continuous function
f: X~ [0,1] such that £[F;] = {0} and f£[F,] = {1}.

Since F; N F, =0, FC cm where F; 1is closed
and cm is open. By Definition 1.3.13, there is an open
set G(1/2) such that F,C G(1/2) C G(1/2) CF,C

Similarly, there are open sets G(1/4) and G(3/4) such that
Fic G(1/4) C G(174) € G(1/2) C G(1/2) C G(3/4) C G(374) C Fy©.

Proceeding in this way we construct, for every dyadic fraction

a in (0,1), a set G(a) with the property that if a and b

are two such dyadic fractions and a < b then G(a) . G(b).

We also define G(1) = cm. We define f : X -+ [0,1] as follows:
1 if x ¢ Fos

f(x) =
_inf {t | x e G(t)}, if x ¢ F,
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We note that F,C G(t) for all dyadic fractioms in [0,1]
and hence f(x) = 0 for # e F;. Therefore f[F;] = {0},
f[Fz] = {1} and f : X > [0,1].

The theorem is proved if we show that £ is continuous.
Since a function is continuous if the inverse images of sets
in a subbase are open, we need only show that £~1[[0,a)] and
£71[(b,1]] are open for all a,b e (0,1).

Suppose X € f'l[[O,a)]. Then f(x) ¢ [0,a), so
there is some dyadic fraction t such that x e G(t) where
0 2 £f(x) <t < a since the dyadic fractions are dense in

[0,1] (Lemma 1.5.3).

Therefore f£~1[[0,a)] & U {G(t) ‘ t < at. (1)
Suppose x e U{G(t) | t < a} them x e G(s) for
some s < a, so f(x) = inf {s | x ¢ G(s)} < a and

f(x) € [0,a). Thus x ¢ f_l[[O,a)], and
ui{c) | t<alc £1[[0,a)] (2)
From (1) and (2) we conclude that
f-l[[O,a)] = U{G(t)| t <al}; and, therefore f-l[[O,a)] is open.
To prove that £ ![(b,1]] 4is open we use an argument
similar to the one used above to show that
£710(b,1]] = uiG, | t> bl

Therefore f 1is continuous and the lemma is proved.

Definition 1.5.1.

The Hilbert cube I 1is the set of all real sequences
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s = {s,} such that 0 < s, £ 1/n for all n. The function

n

D:Ix1I+R), defined for any s,t € I by
- 1/2

D(s,t) = z | s, ~ th |;1
o=l —

is a metric on 1I.

Lemma 1.5.5.

If X is a normal second countable T; space, then
there is a homeomorphism from X onto a subspace of the
Hilbert cube.

Proof.

If X 4is finite then X i1s a discrete space and is
homeomorphic to any subset of I that has the same number
of points.

If X 4is infinite then consider a countable base
B = {B;, By, B3, ...}. Clearly there are only a countable
number of pairs (BS,Bt) such that E;-C:Bt. We enumerate
them (Bsn,Btn), n=1, 2, ... . By Lemma 1.5.4, there
is, for each of these pairs, a continuous function
f, ¢ X > [0,1] such that £[Bg ] = {0} and £[B¢ °] = {1}.

Now we define f : X ~ I by:
£(x) = (£1(x)/2, £,(x)/22, £5(x)/23, ..., £,(x)/2", ..0)
Since for every n,

0<f,(x) <1
therefore 0 < fn(x)/Zn < 1/2" < 1/n

and hence f(x) is a point in I.
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To show that f is an injection we need to demonstrate
that distinct points x and y have distinct images £(x)
and f(y). Let x and y be distinet points. Since X 1is
T, there is a set Bi in the base such that x e By and
y ¢ By. Since X is normal and T; and hence regular, there
is a Bj in the base such that x € BjCZ‘EECZ Bi. Therefore
(Bj,Bi) is one of the ordered pairs enumerated previously.
Suppose it is the m~th ordered pair. Then fm[Bj] = {0} and
fm[Bi¢] = {1}. Thus fp(x) = 0 and fp(y) =1 and
£(x) # £(y). Therefore f is an injection.

In order to prove that f dis a homeomorphism it remains
to be shown that both f and f-! are continuous. First,
we show that f is continuous.

Iet peX and e > 0. There exists a positive integer

o

m such that ) 1/2m < g2/2, Thus, for all x ¢ X

n=m-+1
[DEE),E@ENIZ = ) | f.&) - £,(p) |2
n=1 n
m )
= ) | fax) - £ 12+ ] ] fux) - fa(e) |2
n=1 an n=m+1 on

00

m
Jol faG) - fa(@) 2+ ] 1/2"
n=1 2n n=m+l

n

N

m
Yol fa(x) - fo(p) |2+ €2/2.
n=1 on




21
For each n, 1 < n g m, the function fn is continuous,

so there is an open neighbourhood G, of p such that, if

x e Gp, | f,&x) - £,(p) |2 < €2/2m.
m
Now, if we take G = fﬁ\ G,s 1t follows that for any x ¢ G
n=1
m
[DCE(x), £(p))I2 < T [(e2/2m)/20] + £2/2
n=1

< (e2/2m) + e2/2 = ¢2.
Therefore £ is continuous.
Finally, to show that =1 is continuous, relative to the
induced topology on f[X], it is sufficient to prove that, if
V 1is an open subset of X, then f[V] is open.
Suppose that V 1is an open subset of X and f 1(y) ¢ V.
Then there is an open set By from the countable base, such
that f~1(y) ¢ By C V and an open set B such that
£=1(y) € BsC Bg CB <V
and hence the pair (Bg,B,) has some enumeration r in the set
of ordered pairs used to construct f£f.
Consider the open sphere
B={a | D(y,a)? < 1/2r%2},
Llet M=B N f[X]. Then M is open in the restricted topology

on f[X]. Suppose a €M, Then a = f(x) for some x € X and

so a = (fl(x)/2, fz(x)/ZZ,..., fr(x)/Zr, «+.+) by definition of
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Also

5]

D(y,a)? = ) | fr(y) = f3(x) [2 < 1/2T*2
k=1 : 2k

and, in particular,

| fr(y) - fr(x) |2 < 1/27%2,
21‘

Hence, | fr(y) - fy(x) |2 < 1/22. But fr(y) = 0, hence,
‘ f.(x) | < 1/2, and it follows by the definition of £,
that x e By. Therefore f[Bg] is open and it follows that
f[V] is open. Therefore f ! is continuous on £[X].

By definition it follows that £ is a homeomorphism of
X onto a subspace of the Hilbert cube, and this concludes the
proof of Lemma 1.5.5.

From the lemmas it follows that a second countable
regular T, space X 1is normal and hence can be mapped
homeomorphically onto a subspace of the Hilbert cube. Since
the Hilbert cube is a metric space it follows that X is
metrizable and Theorem 1.5.1 is proved.

We note that Example 2.4.2 (page 35) demonstrates that
‘the regularity condition in Theorem 1.5.1 cannot be weakened

to a Hausdorff condition.

1.6 The Concept of o-structures.

Another very fruitful method of investigating problems

of metrization has been to look at various metric spaces,
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abstract properties that appear to be common to them, and
then study the properties in a general setting to try to discover
those properties that will imply metrizability.
Consider the Euclidean plane R, and define for

x = (X1, Xp) and y = (y1, y2) 1in Ry,

D(x,y) = /(x; - y)% + (x, - y,)2.
Then D dis a metric.

To determine one property that the metric topology on R2
possesses we proceed as follows: 1let S be the class of all
open spheres in R,. For each positive integer n let

By = {UeS | radius of U is 1/n}
and let B = U{By}, i=1, 2, ... . Then B is a base for
the metric topology on R,. This construction can be
generalized to form a base for any given topological space where
the topology is induced by a metric. We see that B is the
union of a countable number of structures, structures that bear
certain relationships to one another. For example, if m > n
then B, 1is an open refinement of Byj.

A second property of R, can be demonstrated by forming

sets T

m DYy selecting from each B (as defined above) all

the open spheres centred at points having two ratiomal
co-ordinates. We see that each T, contains countably many sets.

It is also easy to see that T = y{T;}, i =1, 2, .,,, for a base

for R, and, since T 1is a countable collection of countable classes,

T is a countable base.
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Another feature of the structure of R, is that we can
reduce the B, even further. Let Mi be the set of all open
spheres of radius 1/2i~1 and centre (m/21i-1, n/2i-1) for
arbitrary integers m and n. Then M = L){Mi}, i=1, 2, ...,
is a base and each M; 1is locally finite. Theorem 2.2.1,
which we shall study later, asserts that a regular T, space
which has a base that is the union of couﬁéably many locally
finite collections is metrizable. The converse of this theorem
is also true. Roughly speaking, the topology of any metric
space can be separated into countably many locally finite levels.

Thus the metric space R2 possesses within itself,
structures of a very specialized nature. Structures, such as
these that are formed by the union of countably many, usually
similar, structures, have attracted some attention from

mathematicians. In topology, structures of this nature are

often referred to as sigma structures or as O—

where the blank is filled in with the word or words that describe

2 In this thesis we propose to study

the structures in the union.
some sigma structures that are of interest to topologist; in

their attack on problems on metrization. In Chapter II we study
sigma structures that are bases. In Chapter III we concentrate

on first countable spaces and, in Chapter IV on paracompactness

and metrization of spaces.

2 For example, see Kuratowski [11], page 234.
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Definition 1.6.1.

A g-structure (sigma structure) is the union of countably

many structures. If the structures are of the same'nature the
word "structure" is often replaced by words that in some way
describe these structures and/or the o-structure itself. We
assume that the structures used in forming the c-structure are
put into one-to-one correspondence with the positive integers
and we denote the structure corresponding to i as the i-th

level in the o-structure.




Chapter II
Sigma Bases

2.1 Introduction.

Definition 2.1.1.

A o-base (sigma-base) for a topological space (X,t) is
a o-structure B that is a base for T on X. That is,
B=uU{Bi} i=1, 2, ... where B; is the i-th level of B.
Also, we have the conventional underétanding that in the term
"o base" the word(s) in the blank describes the levels
of the o-structure.

Every topological space has a o-base: to display one
for the space (X,T1) we set By =71 for i =1, 2, ... and
B = U{B;}. Consequently, to show that a particular
topological space has a o-base tells us little. However, to
know that a topological space has a o-base with various
properties will be useful in determining the structure of the
space.

In this chapter we study various cardinality restrictions
on the levels of o-bases. The line of attack is to consider
local cardinality restrictions and global cardinality
restrictions. If every point of a topological space X has
at least one open neighbourhood that satisfies a particular

property, say P, then P 1is called a local property of the

26
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space. If the open set X satisfies P then P is called a

global property.

To dispense with global cardinality restrictions on the
levels is easy. We let (X,7) be a topological space and B
a base for Tt on X. In the case that B 1is a finite base,
the structure of the space is easily determined: we show later
(page 32) that a T; space with a point finite base possesses a
discrete topology, that is, every subset is open. In the case
that B 1is a o-finite base then, clearly, B is a o-countable
base, and, if B dis a o-countable base then B 1is a countable
base. On the other hand, if B 1is a countable base, then it
is easy to show that B is a o-countable base: we note that
B= yU{B;} such that B; =B for i =1, 2, ... . Also,
using the method of Example 2.3.1 (page 35), we can construct a
o-finite base from any countable base. Therefore we arrive at
the following equivalences for bases of T on X:

countable <=+ o-countable <+ o-finite.

Consequently, the problem of the metrizability of spaces
with any of these bases, is solved in full by Urysohn's

Metrization Theorem (Theorem 1.5.1).

2.2 Local Cardinality Restrictions of a Finite Nature on the Levels.

In the early 1950's a breakthrough occurred in the theory

of metrization of topological spaces. In 1950, Nagata [17]

published a proof of the first satisfactory solution of the problem
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of metrizability of a space. Shortly thereafter, Smirnov [19]
published his proof of the same theorem, which we denote

Theorem 2.2.1. 1In 1951, Bing [ 3] proved an equivalent theorem,

our Theorem 2.2.3.

Theorem 2.2.1 (Nagata-Smirnov Metrization Theorem)

A topological space is metrizable if and only if it is
regular and T; with a o~locally finite base.
Proof.

Suppose (X,D) 1is a metric space. Then according to
Stone [22], X dis paracompact. Therefore, every open cover
of X bhas a locally finite open refinement. For every positive
integer i, let Ri be the set of all open spheres of
radius 1/i. Then R; is an open cover of X and has a
locally finite open refinement L;. We claim that Li is the
i-th level for a o-locally finite base. Clearly the Ly
are locally finite and we need only show that B = LJ{Li}
is a base. If x € X and U is an open set containing x
then there is an n such that the sphere of radius 1/n
centred at x 1is contained in U. Since L; covers X for

every 1 then LG covers X and there is a set in L2n
that contains x, say S(y,2n). This set must lie within the
sphere of radius 1/n centred at x, as otherwise there is a

point p that is in S(y,2n) and not in S(x,n). And then,

since p is not in S(x,n), D(x,p) 2 1/n. But since x
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and p are both in S(y,2n), we have
D(x,p) < D(x,y) + D(y,p) < 1/2n + 1/2n = 1/n.
Thus x € S(y,2n) € S(x,n) C U, and therefore B 1is a
base, and hence a o-locally finite base.

We shall not prove here that a regular T, space with a
c-locally finite base is metrizable, but refer, for example, to
Nagata [17] or Smirnov [19]. Rather we shall sketch a proof
which is modelled upon the proof of Urysohn's Metrization
Theorem. First perfect normality is proved, and then the space is
embedded in the generalized Hilbert space H', where Tt is
the cardinality of the o-locally finite base.

We see that Theorem 2.2.1 is more general than Theorem 1.5.1.
In fact, the proof that a regular space with a countable base is
metrizable follows directly from Theorem 2.2,1. Theorem 2.2.1
and Theorem 2.2.3 (page 30 brought to a satisfactory conclusion
decades of research on the metrizabllity of topological spaces.
We note that Example 2.4.2 demonstrates that regular cannot be

replaced by Hausdorff in Theorem 2.2.1.

Theorem 2.2.2,

A discrete collection of sets in a topological space is
locally finite.
Proof.

Let X be a topological space and D a discrete collection

of subsets of X. Let x ¢ X. Then we have two cases to consider.
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Case 1.
x¢ UlA | AeD}
If x¢ U{A | A e D} then x 1is in the open set
(ula | A« DI)° that meets no members of D.
Case ii. E
xe U{A | A e D} é
If xe U{A | A e D} then, since by the definition of é
discrete it follows that U{A [ A e D} = y{A | A e D}, %
x e U{A | A eD}; and, x € A for some A e D.
Since U{B [ B#A, BeDy=U{B | B#A, Be D} and

since A N B=@ for all B # A, such that B ¢ D, therefore

x ¢ U{B | B # A, Be D}. Consequently x is in the open set
(U{B | B#A, Be D})® that meets only one member of D,
namely A.

Therefore any point x € X 1is in an open set U that
meets at most finitely members of D, and, thus, D 1is a

locally finite collection of sets.

Theorem 2.2.3 (Bing [3]).

A topological space is metrizable if and only if it is
regular and T, and has a o-discrete base.
Proof.

Let X be a regular T; space with a o-discrete base.

B = LJ{Bi}; i=1, 2, ... . Then, by Theorem 2.2,2, B 1is a
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o-locally finite base and by Theorem 2.»2'1-" X 1is metrizable,
Let X be a metric space, In [ 2] Stone shows that for
every positive e, X has a cover C= U{Ry }, i=1, 2, ...,
such that for each i, Req is a discrete collection of

closed sets each of diameter less than €.

For each i we will derive from Ry a discrete
collection of open sets Seqi® such that R , is a
el
refinement of Sei’ and the diameter of each member of Seqi

is less than ¢.

Let E ¢ Rei and let

D= U{A | AeR.s A?E}
Then D= U{A | AeR_, A#E)
= U{A | AeR, A#EL

b

Since E N A =0 for all A e Ry such that A # E.

Therefore E N D = @.

For every x e E the distance from x to D is a positive

number, say d(x); as otherwise, x € D = D. We let d(E) be

the diameter of E, and note that 0 < d(E) < €. For every

d(E))/3}. And we let

x e E we let r(x) = min {d(x)/4, (e
U(E) = U{S(x,r(x)) | x € E}. Then Sgq = {UE) | Ee R4}

is a discrete collection of open sets each of which is of diameter

less than «.

Finally, the members of { s_. }, where e =1/k, and 1

and k are arbitrary positive integers, can be used to form
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levels in a o-discrete base and the theorem is proved.

Example 2.4.2 (page 35) demonstrates that the regularity
condition cannot be removed in Theorem 2.2.3.

If X is a Tl space with a point finite base then for
any x € X,{x} is the intersection of finitely many open sets
and consequently is open. Therefore every subset of X is
open and X possesses the discrete topology.

One may attempt to generalize Theorem 2.2.1 by considering
regular T, spaces with o-point finite bases. This attempt
fails, since Example 2.4.4 (page 37) is a non-metrizable T

1

space that is regular and has a o-point finite base.

2.3 Local Cardinality Restrictions of a Countable Nature on

the Levels.

If a topological space X has a o-point countable base
then clearly, it must have a point countable base. Also, the
converse implication obviously holds. For spaces with point
countable bases, we have the following metrization theorems.
For proofs, the reader is referred to Mischenko [16] and Stone

[21].

Theorem 2.3.1 (Mischenko).

A compact Hausdorff space with a point countable base is

metrizable.
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Theorem 2.3.2 (Stone).

A regular T1 space X that is the union of a point

countable family of open sets Sa each of which is locally
separable and metrizable, is metrizable (and locally separable).

We wish to show that X has a point countable base.

Since every A ¢ Sa is metrizable and hence paracompact,
it follows that the collection of open spheres of radius 1/n
has a locally finite, and hence, point finite open refinement.
Thus each A has a point countable base and the union of all
these point countable bases will be a point countable base for
X since Su is point countable.

Little is known about spaces with o-locally countable bases.
Clearly, a space with a locally countable base has a o-locally
countable base, and a space with a o-locally countable base has
a point countable base. Example 2.4.4 (page 37) displays a
space with a point countable base but with no o-locally countable
base. Example 2.4.3 (page 36) describes a space with a o-locally
finite base, and hence a o-locally countable base, but no locally
countable base,

For locally second countable spaces we do have the following
theorem due to Aleksandrov [1] which gives a result concerning

the metrization of spaces with locally countable bases.



34

Theorem 2.3.3 (Aleksandrov).

For, ;he metrizability of a regular T, space that is
locally second countable, each of the following conditions is
necessary and sufficient:

(1) paracompactness;

(2) strong paracompactness;

"(3) the existence of a point countable base;

(4) the existence of a locally countable base;

(5) the existence of a star countable base.

Since a space with a locally countable base, clearly, must

be locally second countable, Theorem 2.3.3 yields the following

metrization theorem.

Theorem 2.3.4.

A regular T1 space with a locally countable base is
metrizable.

The converse implication, that every metric space has a
locally countable base, ig false, as is pointed out in Example
2.4.3 (page 36).

Before proceeding to the examples in section 2.4 we summarize
some of the conclusions of this chapter:

If (X,t) 1is a topological space we arrive at the following

implication diagram concerning bases for T on X.
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countable <+ o-countable <+ g-finite

|

locally + g¢-locally <+  o~locally
countable countable finite
point > o—poinf <+  o-point
countable countable finite

If X 1is a regular T1 space then we have the following

implications concerning metric spaces and metrization:

separable «— countable <+  countable
metric base g-discrete
¢ base
locally
countable
base
metric ++ og-locally finite <> o-discrete
base base

2.4 EBxamples.

Example 2.4.1 A o-Finite Base for R,.

Consider R with the usual topology. Clearly, the set
of all open intervals with rational endpoints is a base for
this topology. Therefore if we enumerate this countable set
and take L; to be the i th set in the enumeration, then
B = kJ{Li},i =1, 2, ..., is a o-finite base for R;. Clearly,
this construction can be used to form a o-finite base for any

space with a countable base.

Example 2.4.2 A Non-Regular Hausdorff Space with a Countable Base,

Let X be the open unit sphere in Rj.
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If x is in X and x 1is not the origin then as a
local base at x we use open subsets of X (open in the usual
topology of R,) that contain x but not the origin. We
construct a neighbourhood system about the origin in the following
manner. From every open sphere with radius less than or equal to
one, centred about the origin we delete all the points, except
the origin, that are on or above the =x-axis: the collection of
the above sets is a base for a topology on X.

X, with this topology, is a Hausdorff space since it is
evident that any pair of points can be separated by disjoint open
sets.

X 1is not regular: denote the set of points (the origin
excluded) that are on or above the x-axis by A. Clearly
X - A 1is open. Hence A 1is closed. If we attempt to separate
A and the origin by disjoint open sets we see that any open set,
U, containing A must contain at least one point directly below
every point, except the origin, on the =x-axis in X. And every
open set containing the origin therefore must contain a point
of U.

Clearly, X has a countable base, say B = {B,Li=1, 2, ...
The o-base formed by putting only the set B; in the i th level

is a oc-locally finite base and also a o-discrete base.

Example 2.4.3 A Metric Space with No Countable Base.

Consider the open unit sphere U in the plane. We define a
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distance function as follows: if a and b are on the same
radius of U then the distance from a to b is the usual
Euclidean distance. If a and b are on different radii, then
the distance from a to b is the Euclidean distance from a
to the origin plus the Euclidean distance from the origin to b.
It is easy to show that this distance function is a metric and
therefore gives rise to a metric topology on U, Since the
space is metrizable we conclude, using Theorem 2.2,1, that the
space has a o-locally finite base. If B is any base for the
space then any element U of B containing the origin will
contain uncountably many points of the space.

It is clear then because of the structure of the space that
U must contain uncountably many elements of B. Therefore it
is impossible for the space to have a locally countable base.
It follows from this that the space does not have a countable

base.

Example 2.4.4 A Non-Metrizable Paracompact Space with a Point

Countable Base.!

Let X be the set of all points in the open unit square as
well as those points of the forms (r,0) or (r,l) where r is
any rational between 0O and 1. We order the points of X
lexicographically, that is, (xl,xz) < (yl,yz) if x <y, or

if X =Y, and X, <Y, We define a base for a topology on X

1 The author is grateful to Professor S. Willard for communicating
this example to him.
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as follows:

If x, y, ze X and x <y < z, under the defined order
relation, then {u | we X and x < u < z} 1is an open set
contalning vy.

If Y = [0,1] x [0,1] is given the order topology used
above then Y 48 a compact Hausdorff space, and is therefore
regular. Since the properties of being Hausdorff and regular
are hereditary, and since X 1s a subspace of Y, therefore X
is a regular Hausdorff space.

To show that X i1s paracompact we let C be any open cover
of X and B = {x = (x,%,) | x e X, x, =0 or x,= 1}.
Then, since B is countable, B = {xi}, i=1, 2, ... . For
some U, & €, x; € Uy, and there is some open set V; such that
x, £V, U, vhere V) = {xeX | (r;, ry) <x< (rg, r,) ond
Ly Tyy Ty and r, are rationals between 0 and 1}.
£ x, 4 v, then x, ¢ VT and 1f x, ¢ U, € C then there is a

v of the same form as V; such that x, € Vzc:'U2 and

2
v;‘(WV?'w . If %, eV, then we define V, = V,. Proceeding
in this manner we define a Vy for each Xy Therefore

Ve {vg} =1, 2, ... is a pairwise disjoint countable cover

of B. If W= kJ{Vi} and if x ¢ W then, clearly x has a
neighbourhood meeting at most two elements of V. If x € W then

x 18 in only one element of V. Therefore V 1is a locally

finite family of subsets of X.
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X - W is a collection of disjoint metric, and therefore
paracompact, spaces. It is evident that X - W has a cover C'
such that:

(1) C' 1is a locally finite collection of open

subsets of X;
(2) each element of C' 4is contained in some
element of C.

We conclude that V U C' is a locally finite refinement
of C, and, since X 'is Hausdorff, it follows that X is
paracompact.

X has a point countable base. We define B; to be the
set of all open intervals of X with end points (%7, %x,) and
(yl, yz) such that X1 X5 ¥, and y, are rationals. We
define B2 to be the set of all open intervals of X with
end points (Xl’ xz) and (xl, x3) such that X, is irrational
and x_ and X, are rational. It follows that B = B1 U 32
is a point countable base. Also B2 is clearly the union of
countably many disjoint collections of open sets and therefore
by suitable selection of levels from subsets of B a o-point
finite base can be formed,

Finally X 1is not metrizable. If X were metrizable
then every closed set would be a Gg, (Theorem 1.4.1 (page 11)), and
A= {(xl, Xz) | 0 < x; <1, x; is rational, x, = 0 or x, = 1}

would be a Gs. But if this were true it could be shown that
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the set of rational points in (0,1) is a G; in R, with

respect to the usual topology. This is not true and therefore

X 1s not metrizable.




Chapter IIT

First Countable Spaces

3.1 TIntroduction.

In Theorem 1.4.1, it was pointed out that all metric spaces
are first countable. In this chapter various first countable
spaces are studied by investigating o-bases that give rise to
their topologies. We begin by introducing a o-base characterization

of first countable spaces.

Theorem 3.1.1.

A topological space X is first countable if and only it
has a o-base such that:
(1) each level covers X;
(2) for every x € X there exists some selection of
sets, one taken from each level, that is a local
base at X.

Proof.

Assume that X is a first countable space. Then for each
point x € X there exists a countable collection
{g(n,x)}y, n=1, 2, ..., that is a local base at x. We form
levels for a o-base B by setting By = {gi,x) | =x e X}.
Clearly, B = LJ{Bij, i=1, 2, ...; is a o-base that satisfies
the required conditioms.

Assume that X has a o-base that satisfies the given

41
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conditions. Then, clearly, each point x has a countable

local base and the theorem is proved.

3.2 Semi-metric Spaces.,

One method of studying metric spaces is to vary the
definition of the distance function on a space. Such a method
was used to derive a class of spaces called semi-metric spaces
by K. Menger (see [18] for pertinent references). These spaces
were intensively studied in the 1920's and 1930's by Frechet [7],
(he called them E spaces), Wilson [25], and Chittenden [5]-
More recently, interest in semi-metric spaces and their
relationships to metric spaces, has been renewed, primarily as
a result of the efforts of F. B, Jones and his students (see for

example Seminar on Semi-metric Spaces in [2]).

Definition 3.2.1.

A seml-metric on a set X 1is a real valued function
D:Xx X~ R1 such that for any x, y e Xt

(1) D(x,y)

v

0;

i

(2) D(x,y) = 0 if and only if x =y;

(3) D(x,y) = D(y,x).

In the original definition, as formulated by K. Menger, a
gemi-metric space was a set X with a semi-metric D, however
such a space is not necessarily a topological space, and consequently,

the definition has been modified to pertain to topological spaces.
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Definition 3.2.2.

A topological space X is a semi-metric space if there

exists a semi-metric D on X such that for every AC X,
A= {x | inf{d(x,y) | vy eA =0}}.
There are several characterizations of semi-metric spaces-
For example, see Heath [8] and Ceder [4]. TIn the next theorem
we develop a o-base characterization for semi-metric spaces,
that will be useful in proving some of the theorems that

follow.

Theorem 3.2.1.

A T, space X is semi-metric if and only if it has a
o-base B = LJ{Bi} such that:
(1) for each i and for each x ¢ X there is a

particular element b(i,x) of B{ containing x;

(2) {b@,x)}, i=1, 2, ..., 1is a local base at x;
(3) for every x € X and every open set U containing

X, there is an n such that, if m > n and

y £ U5, x ¢ b(m,y).

Proof.
Suppose X 1is a semi~-metric space with a semi-metric D.
We define for every x € X and for each positive integer i,

c(i,x) = {y | D(y,x) < 1/i} and b(i,x) = (c(i,x))°.

We now show that the o-structure B formed by taking
By = {b(i,x) | x € X} as the i th level satisfies the

requirements of the theorem.
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(1) x & b(i,x).

Consider the set c¢(i,x)¢. Tor every y e c(i,x)¢,
D(y,x) > 1/i. Therefore
inf{D(y,x) | y e c(i,x)®} > 1/1 > 0. By Definition 3.2.1
x ¢ E?E:ESE. and there is some open subset of c(i,x) containing
X. Therefore x e c¢(i,x)° = b(i,x).

(2) {pv@,x)} is é local base at x,

Let U be an open set containing x. Then it follows
from part 4 of Definition 3.2.1 that for some i,
c(i,x) CU. By (1) above, x € b(i,x)C c(i,x) — U. Therefore
{b(i,x)} is a local base at x.

(3) Givem x € X and an open set U containing x, there
is an n such that, if m>n and y e U° then x ¢ b(m,y).
If for each 41, 1= 1, 2, ..., there is some yi € U¢ such that
x ¢ b(1,y;), then inf{D(x,y) | vy e Ut} =0 and, by part 4 of
Definition 3.2.1, x e UC. This contradiction yields the
conclusion that, for some k, x ¢ b(k,y) for all y e UC.
Clearly if m > k the conclusion also holds.

Finally, from (2) above, we see that the o-structure B 1is

a og-base, and therefore the first part of the proof is complete.

Suppose, on the other hand, that a T; space X has a o-base

that satisfies conditions (1) - (3) in the statement of the theorem.

Then we define the function D : X x X - R1 as follows. If

x,y € X then D(x,y) = inf{l/1i ! x € b(d,y) or y e b(i,x)}.
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It is easy to show that D satisfies Definition 3.2.2.

Therefore X is a semi-metric space and the theorem is proved

.

It follows from condition (2) in Theorem 3.2.1 that every
semi-metric space is a first countable space. The non-
metrizable space of Example 2.4.4 (page 37) is first countable.
It is also paracompact and has a point countable base. It
cannot be a semi-metric space since Theorems 3.4.3 and 3.4.2
would then imply that the space is metrizable. Therefore we
draw the conclusion that first countable spaces are not

necessarily semi-metric spaces.

3.3 Developable Spaces.

Another result of the search for characterizations of
metric spaces which was undertaken during the early part of this
century, was the development of the theory of Moore spaces, named
after R. L. Moore. For an account of this work the reader is
referred to Jones [9]. In this section we study a class of
spaces, called developable, that includes as a sub-class the

family of Moore spaces.

Definition 3.3.1.

A topological space X 1is developable if there is a sequence
Gys Gy, ... of open covers of X such that if x e X and U is
an open set containing x then there is an n such that every

member of Gn containing x is a subset of U. The sequence
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15> Gys ... is called a development for X,

Definition 3.3.2.

A topological space X is a Moore space if it is regular,

Tl’ and developable,

Theorem 3.3.1.

A topological space X 1is developable if and only if it has
a development which is a o-base such that:

(1) each level covers X;

(2) for any x e X, any selection of sets containing x,

where one set is chosen from each of the levels, is a
local base for the topology at x.

(The reader is invited to compare the statement of this
theorem with the statement of Theorem 3.1.1 and with the definition
of uniform base, Definition 1.3.30.)

Proof.

Suppose X is developable and that G;, G,, ... 1s a
development for X.

Let x be any point of X and let {U;}, i=1, 2, ...,
be any collection of sets containing x such that Uj € Gy for
each 1. Let V be any open set containing x. By definition
there exists n such that every element of Gn that contains
x 1s a subset of V. Therefore x e U CV and it follows that
B= U{Gi}, i=1,2, ..., is a o-base that satisfies the

requirement of the theorem.
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On the other hand, suppose that B = L){Bi} is a o-base
that satisfies the hypothesis of the theorem. Then to show that

By» By, ... 1is a development for the topology on X, let U be

any open subset of X and let x be any point in U. Then we
wish to show that for some i, every member of B; that contains

X 1s a subset of U. Assume that for every j there is an

C

element of Bj that contains x and meets U~ . Clearly the

collection of these element cannot be a local base at x. And
therefore there exists j such that every member of Bj

containing x 1is contained in U. Consequently, Bl’ BZ, oo

is a development for the topology on X and the theorem is proved.

Theorem 3. 3.2.

A developable T; space is a semi-metric space.

Proof.
Let X be a developable T; space and let G;, Gy, .. be
a development for X. For every x e X and i1i=1, 2, ..., we

can choose g(i,x) such that =x e g(i,x) € Gy

We define:
i
b(i,x) = M\ g(i,x)
j=1i
B; = {b(i,x) | x e X}, and

B=uU{By}, 1=1, 2,

Let U be an open subset of X and x e U. It follows that,
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if y ¢ U then x ¢ g(k,y) and, clearly, x ¢ b(j,y) for
j 2 k. Therefore by Theorem 3.2.1 X 4is a semi-metric space.
From the preceeding theorem we see that every Tl
developable space is semi-metric. The converse implication, that

every semi-metric space is developable, is false, (see Example 3.5.1).

3.4 Metrizability of First Countable Spaces.

In this section we discuss some of the ways in which
semi-metric spaces, developable spaces and metric spaces are

related.

Theorem 3.4.1.

A metric space is a developable space.
Proof.

Let (X,D) be a metric space. We recall that S(x,e) is
the open sphere of radius e, centred at x. For each positive
integer i we define G; = {S(x,1/1) | x e X}. Clearly,

G

G is a development and the theorem is proved.

19 Gos e

Corollary.

A metric space is a Moore space.

Example 3.5.2 demonstrates that there are Moore spaces that

are not metrizable.

Theorem 3.4.2 (Bing [3]).

A topological space is metrizable if and only if‘it is

developable and paracompact.
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Proof.

If a topological space X is metrizable then by
Theorem 3.4.1 it is developable. Also, by Theorem 1.4.1, it
is paracompact.

Let X be developable and paracompact. Since a paracompact
space is normal and Hausdorff (Dieudonné [6]), X is regular and
T,, and we need only show that X has a o-locally finite base
in order to use the Nagata-Smirnov metrization theorem (page 28).

Let G;, Gy, ... be a development for X. For each i, let
Bi be a locally finite open refinement of Gi‘

Let U be open and x ¢ U. Then for some j, every element
of G; containing x 1is contained in U. Since Bj refines G

J

there is some V in Bj and some W in Gj such that x € VC VW,

j)

But W U, therefore x e VC U and so B = U{Bi}, 1, 2, ...,
is a o-base, and a o-locally finite base. Therefore X 1is

metrizable, and the theorem is proved.

Theorem 3.4.3 (Heath [8]).

A semi-metric space with a point countable base is

developable.
Proof.

Let X be a semi-metric space with a o-base B, as in
Theorem 3.2.1; and a point countable base C.

For each x ¢ X we let c(l,x), c(2,x), ... be a simple

ordering of the elements of C containing x, and, for each n,
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we let h(n,x) = b(n,x) N c(n,x). We well order X, and, for
each x € X and each positive integer n we let y[n,x] be

the least z e X such that x e h(n,z). Finally, for each

X € X and each n we let

g(n,x) = b(n,x) N (N{h(i,y[i,x]) | 1

IA

n})
n(ﬂ{c(j,)’[i,x]) ‘ X € C(j ’Y[iaX]): h|

A

<n, i <n}).

We wish to show that the o-structure whose n-th level is
G, = {g(q,x) l x € X} satisfies Theorem 3.3.1.

If x 1is any point in X and {xi}, i=1,2, ..., is
any sequence of points of X, such that for each i,
x e g(i,x;) then the theorem will be proved if we show that
{g(i,xi)}, i=1, 2, ..., is a local base at X.

If U 1is any open set containing x then there exists m
such that c(m,x)C U. Also, by Theorem 3.2.1 there exists n
such that if i 2n and x € b(i,y}) then y e c(m,x).

Therefore, in particular, if 1 > n then =x; € c(m,x). Also,

i
if z = y[n,x] then 2z ¢ c(m,x) and it follows that for some
p, c(p,z) = c(m,x).

Since x ¢ c(p,z) N h(n,z) by Theorem 3.2.1 there exists
q such that if i > q then xj e c(p,z) N h(n,z). Therefore,
for all i = q, yln,xj] < z with respect to the well ordering

of X. But, for all i 2 n, x e g(i,x4)C h(n,yln,x4]1), so

that z = y[n,x] 4 y[n,x;]. Therefore, for all 1 2> n+ q,
yln,x34] = z, so that for i2n+4q+p,

g(isxi) C.C(P,Y[n,xi]) = c(p,z) = c(m,x) C U, Therefore,
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"{g(i,x4)}, 1 =1, 2, ... 1is a local base at x and the theorem
is proved.
Corollary.

A topological space X 1is metrizable if and only if it is
a paracompact, semi-metric space with a point countable base.
Proof.

Let X be metrizable., Then, by Theorem 1.4.1, it is
paracompact, by Theorem 3.4.1 it is developable and by Theorem
2.2.1 it has a O-locally finite base which is clearly a point
countable base.

Let X be a paracompact, semi-metric space with a point
countable base. Then by Theorem 3.4.3, X is developable and
therefore by Theorem 3.4.2, X 1is metrizable.

The conclusions of this chapter are summarized by the

following implication diagram for topological spaces.

paracompact semi-metric developable
space with a point <> metric space paracompact
countable base space

|

Moore space

l

seml-metric space 5 developable
with a point countable T1 space
base

l

semi-metric space

first countable T, space
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3.5 Examples.

Example 3.5.1 A Semi-metric Space that is not Developable.

This example is due to L. McAuley [12]. Consider R2 with
the usual metric d. We let X be the set of points in Rz’ and
Y the set of points along the x-axis of R,.

If x € X -Y and k is the first positive integer such that
S(x,1/k) N Y = ¢ then we define for each positive integer n,

S(x,1/k) 4if n

IA

k
b(n,x) =

v

S(x,1/n) if n > k.

If x=(x,0) e Y and n is any positive integer then,
b(n,x) = {x} U {y = (yl, y2) | v ex, v, # x, and
d(y,x) + |y, / (v, = x| < 1/n}.

If we define By = {b(i,x) ] x € X} then it is evident

that B = U{B;j},i =1, 2, ..., is a o-base for a topology on X.

?
We also see that the conditions of Theorem 3.2.1 are satisfied
and that therefore the space is semi-metric.

A straight forward calculation shows that this space is
regular. Also, the space is separable, since
R={x = (x,, xz) | xeX-Y and X, X, are rational} 1is
a countable dense subset. A separable metric space must have a
countable base. Therefore, since the topology on X cannot have
a countable base, X is not metrizable.

To show that X 4is not developable we proceed as follows.
For each positive integer n we define

G, = {b(n,x) | xeY or x-= (x,,%,) and |x2| 2 2/nl}.
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Clearly, G = y{Gy}, i =1, 2, ..., is a o-closure
preserving base for X. Therefore, since X 1is regular and
Tl’ X 1is paracompact and perfectly normal (Definition 4.2.1
(page 55), Theorem 4.2.3 (page 58), Corollary to Theorem 4.2.4
(page 58), and Theorem 4.2.5 (page 58)). Therefore X

cannot be developable, since Theorem 3.4.2 (page 48) tells us

that a developable paracompact space is metrizable.

Example 3.5.2 A non-metrizable Moore space.

We modify example 3.5.1 by defining for each x = (xl,O) eY
and each positive integer n, b(n,x) = S((Xl’ 1/n), 1/n U {x}.
If x ¢ X -Y, then b(n,x) is as defined in Example 3.5.1.
If B; = {b(i,x) | xe X} then B=uy {B}, i=1, 2, ...,
is a o-base for a topology on X. Clearly, the conditions of
Theorem 3.3.1 are satisfied and therefore X 1is a developable
space,

X 1is a regular Hausdorff space and therefore it is a Moore
space. X 1s separable, but not second countable and therefore

not metrizable.



Chapter IV

Paracompactness and Metrization.

4.1 Paracompactness and o-structures.

In 1944, J. Dieudonné [6] introduced the notion of a
paracompact space: a Hausdorff space for which every open cover
has a locally finite open refinement. Dieudonné also gave some
of the topological properties of paracompact spaces. In particular,
he showed thé£ paracompact spaces are normal.

Beginning in 1953, E. Michael published a series of papers
[13, 14, 15] in which he gave several characterizations of
paracompact spaces. Several of Michael's theorems are stated

below.

Theorem 4.1.1.

A regular T; space X 1is paracompact if and only if
every open cover of X 'has a g-locally finite open refinement.

(That is, an open refinement U= yf{U;}1i=1, 2, such that

Ty

each Uy is a locally finite collection of sets.)

Theorem 4.1,2.

A regular T, topological space X is paracompact if and

only if every open cover of X has a o-closure preserving open

refinement.

54
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Definition 4.1.1.

If U and V are collections of subsets of a topological

space X then U is cushioned in V, 1f for every G € U there

is H(G) ¢ V such that, if U* isg any subset of U,

UG | GeUT*I CU{H®G) | G e U*}.

Definition 4.1.2.

If V is a cover of a topological space X, and

U= U{uy}, i =1, 2, +++, is a refinement of V such that Uj

is cushioned in V for all i, then U 1is a o-cushioned

refinement of V.

Theorem 4.1.3.

A Tl space X 1is paracompact if and only if every open

cover of X has an open o-cushioned refinement.

4,2 Mi-spaces.

The Nagata-Smirnov Theorem shows that regular T, spaces
with o-locally finite bases are metrizable. This fact and Michael's
Theorems ofvthe previous section led J. Ceder to the study of
spaces with o-bases that have the properties of the o—-refinements
in Michaél's Theorems. Ceder calls these spaces M; spaces, and

studies them in [4]. .

Definition 4.2.1.

An M; space is a regular T; space that has a o-closure

preserving base.
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Definition 4.2.2,

A collection B of subsets of X is a quasi-base for the
topology on X if, for any open set U and x € U, there exists

Ve B such that x e V' VO U.

Definition 4.2.3.

An M, space is a regular T; space that has a o-closure

preserving quasi-base.

Definition 4.2.4,

Let B be a collection of ordered pairs P = (PysP,) of
subsets of a topological space X, such that Plc: P2 for all
P e B. Then B 1is called a pair-base for the topology on X
if P; is open for all P € B and if, for any x ¢ X and open
neighbourhood U of =x, there exists a P ¢ B such that

xe P, CP,CU. B is called cushioned if for every B* < B,

U{P, | PeB*lCuU{P, | P e B}
B 1is g-cushioned if it is the union of countably many cushioned

subcollections.

A og~cushioned point countable (point finite) pair-base is a

o-cushioned pair base, such that each x ¢ X appears in at most
a countable (finite) number of Pl's in the ordered pairs in a

given level.

Definition 4.2.5.

An M3 space is a T; space with a o-cushioned pair-base.
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The Mi spaces are part of a hierarchy of topological
spaces that includes metric spaces and paracompact spaces. We

develop, now, relationships between members of this hierarchy.

Theorem 4.2.1.

A locally finite collection of subsets of a space X is
closure preserving,
Proof.

Let B be any locally finite collection of subsets of a
space X, and let B* C B.

We wish to prove that

U{A | A e B*¥} = U{A | A e B*}.

It is apparent that

U{A | AeB*}C U{A | A e B*].

Suppose x ¢ A for all A ¢ B*, Since B is locally finite,
there exists an open set U, such that x e U and U has a
nonempty intersection with at most, finitely many elements of B,
and, hence, with at most finitely mahy elements of B*, say

Ay, Agy wees Ag.

n

Clearly V = U(\([_) Ai)c is an open set that contains X and
i=1

v N (u{A | A e B*}) = @. Therefore, X ¢ U{A | A e B*l;

and we have UIA | A e B*} CU{A | A e B*}. Thus, B is

closure preserving and the theorem is proved.

Theorem 4.2.2.

A metrizable space is an Ml space.
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Proof.
Let X be a metrizable space. Then, X is regular and
T, and by Theorem 2.2.1, X has a g~locally finite base.
Therefore, by Theorem 4.2.1, X has a o-closure preserving base

and the theorem is proved.

Theorem 4,2.3,.

An M, space is an M, space.
Proof.
The theorem follows, since a o-closure preserving base is

clearly a o-closure preserving quasi-base.

Theorem 4.2.4.

If a regular space X has a o-closure preserving quasi-base
then X has a g-cushioned pair-base.
Proof.

let B = L){Bi}, i=1, 2, ..., be a o-closure preserving base
quasi-base for X. For each i we define Py = { (e, | ve B; ).
Then P = kJ{Pi}, i=1, 2, ..., is o-cushioned. Also, since
X 1is regular, P is a o-cushioned pair-base; and the theorem
is proved.

Corollary.

An M, space is an Mj; space.

Theorem 4.2.5.

An M, space is paracompact and perfectly normal.

3
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Proof.

Let X Dbe an M3 space with a o-cushioned pair-base
B=y{B;}, i=1, 2, ..., where each B; is a cushioned
collection of pairs, (Pl,Pz).

Let C be an open cover of X. TFor each x ¢ X there
exists some U(x) € C such that x & U(x). Also, there is some
Bj and some (Pl(x), Pz(x)) € Bj such that

x e Pi(x) € Py(x) C U®x).
We define Ry = {P)(x) | xeX and (P;(x),P,(x)) ¢ By}.

If R = LJ{Rj}, i=1, 2, ..., then R is an open
o-cushioned refinement of C and since X is Tl’ by
Theorem 4.1.3, X 1is paracompact.

Since every paracompact space is normal, to prove that X
is perfectly normal, it is sufficient to show that every closed
subset of X dis a qs set (the intersection of a countable

collection of open sets).

Let F be a closed subset of X.

Let G, = (UL, | (9,,P,) € By and P, F°D) .

It follows from the defiﬁition of cushioned that

Fc G, for n=1, 2, ... . Also each G, is open. It is
easy to prove that F = N{Gy}, n=1, 2, ... . Therefore, X

is perfectly normal and the theorem is proved.
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The preceeding theorems give us the following implication
diagram for topological spaces:
Metrizable space
+
M; space
¥
M, space
¥
M, space
4
paracompact and perfectly normal space.
With respect to the converse of the above implications, we
note that every M; space is not metrizable, as Example 3.5.1
(page 52) demonstrates. Also, there are paracompact, perfectly
normal spaces that are not MS’ For example, Sorgenfrey's
half open interval space [20] is paracompact and perfectly
normal, but the product of the space with itself is not paracompact.
Ceder [4] proves that a countable product of M; spaces is M;.
Therefore, since an M3 space is paracompact, the half open
interval space cannot be Ma. Finally, whether or not any of the
implications regarding My spaces can be reversed is not known,
but the author guesses that Ml’ Mz, and M3 spaces are all

equivalent.

4.3 Metrization of M; Spaces.

In this section, we develop a metrization theorem that is
equivalent to the Nagata—-Smirnov Theorem and to Bing's Theorem.
The type of o-base used imposes fewer restrictions than the o-bases

of the other two theorems. In Theorem 2.2.3, we showed that a
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metric space has a o-discrete base. From Theorem 2.2.2 it
follows that a g-discrete base is a o-locally finite base.
Theorem 4.2.1 shows that a o-locally finite base is a og-closure
preserving base. In a regular space, a g-closure preserving
base can be used to construct a c-cushioned pair-base (Theorem
4.2.4). Iﬁ the metrization theorem of this section we require
the existence of a o-cushioned pair-base. Also, local
finiteness of the levels in the two original theorems is
replaced by point countability of levels in this theorem. Before

we can prove the theorem, we must introduce a new class of spaces.

Definition 4.3.1.

A Nagata space X 1is a T; space such that for each

x € X there exist sequencesof neighbourhoods of x,
{Un(x)}, n=1,2, ..., and {S;(x)}, n=1, 2, ..., such that:
(1) for each x € X and every open set U
containing x there exists 1 such that
x e U;(x)°C U;(x)C U3
(2) for every x,y € X, S, (x) N S,(¥) # 0
implies that x e Un(y)-
(We recall that a neighbourhood of x mneed not be open,

but that it must contain an open subset that contains x.)

Theorem 4.3.1.

A Nagata space is a semi-metric space.
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Proof.
Let X be a Nagata space as in Definition 4.3.1.
For each x ¢ X we define:
n
b(n,x) = (/M $;(x))°.
i=1
For each n we define:
B, = {b(n,x) | X g X};

Then B = U{B;jL4 i1 =1, 2, ..., is a o-base for the
topology on X since each b(n,x) is open and since each
Sp(x) C Un(x).

If xe¢ X and U 1is any open set containing x, then
there is some k such that x e Up(x)C U. If j 2k and
x ¢ b(j,y) for some y e X, then x e Si(y), and by the
definition of Nagata space Sk(y)C: Uk(x). Therefore,
b(j,y)C U, and y e U. Thus, the conditions of Theorem 3.2.1

are satisfied and it follows that X is a semi-metric space.

Theorem 4.3.2 (Ceder [ 41]).

A topological space is a Nagata space if and only if it is
first countable and Mj.
Proof.

Let X be a Nagata space; then X is first countable. We
define P = {(S,(x)°, U (x)) | xe X} for n=1,2, ...

Then P = LJ{Pn},n =1, 2, v, is a o-cushioned pair-base for X.
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Let X be M3 and first countable. For each x g X,
we let {W,(x)}, n =1, 2, ..., bea local base at x. We
also let B = U{B,}, n=1, 2, ..., be a g-cushioned pair-base
for X. We assume for each n that (X,X) € B,.

For any positive integers m and n and for any x e X,

we define:

Un,n() = N, [ Wce, ¢, P,) € Byl
and
Smyn(x) = AR, | wx <P, (B, P,) € B}
- U{-]-E;l I X ﬂf Pz, (Pl’ Pz) € Bn}-
It is readily verified that upon suitable indexing, we get
{S(x)}, k=1, 2, ... and {Upx)}, k=1, 2, ... that satisfy

Definition 4.3.1.
Therefore the theorem is proved.
We are now in a position to state and prove the main theorem

of this section.

Theorem 4.3,3.

A topological space is metrizable if and only if it is T,
and has a o-cushioned point countable pair-base.
Proof,

Let X be metrizable. Then X 1is Tj.

By Theorem 2,2.1, X has a o-locally finite base B. By
Theorem 4.2.1, B is a o-closure preserving base. If B is

used to construct a o-cushioned pair-base as in Theorem 4.2.4,
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then we see that the base so constructed is a o-cushioned point
finite pair-base. Therefore a metrizable épace is T, and has
a g-cushioned point countable pair-base.

On the other hand, assume that X is T; and has a
o-cushioned point countable pair-base. Then X is an M,
space. Clearly, X is first countable and from Theorem 4.3.2,
X is a Nagata space. Therefore, it follows from Theorem 4.3.1
that X 1is a semi-metric space. From this, and the fact that
X has a point countable base, by Theorem 3.4.3, X 1is developable.
Since X 1is an M, space, by Theorem 4.2.5, X is paracompact.
Finally, by Theorem 3.4.2, we have that X is metrizable.

Therefore the theorem is proved.

The following corollaries are direct consequences of this
theorem.

Corollary 1 (Ceder [4]).:

A topological space X is metrizable if and only if it is
an M; space with a o-closure preserving point finite base.

Corollary 2 (Heath [8]).

A regular T, space is metrizable if and only if it has a

o-closure preserving base with point countable levels.
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