
Developing a Generic Academia Mobile Short

Messaging System Using the Notion of Design

Patterns

MSc. Thesis

By

Jesse Canuel

Submitted in Partial Fulfilment for the Degree in MSc in Computer

Science, Department of Computer Science, Lakehead University,

Under the Supervision of Dr. Sabah M. A. MOHAMMED

Thunder Bay, Ontario, CANADA

April 2005

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1^1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliothèque et
Archives Canada

Direction du
Patrimoine de l'édition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre référence
ISBN: 0-494-10650-6
Our file Notre référence
ISBN: 0-494-10650-6

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Canada

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

1 would like to thank my supervisor Dr. Sabah M.A. MOHAMMED, for his
clear advice and encouragement during this thesis.

1 would also like to thank my internal examiner Dr. Jinan A.W. FIAIDHI for
her prompt and precise evaluation of this thesis.

I would also like to Dr. Francis Allaire for dedicating his personal time to
thoroughly correcting this paper.

I would also like to thank all my classmates and Lakehead University for
helping me in furthering my education.

Last and by no means least, thanks to my family, my co-workers and friends
who have given me their support and encouragement throughout my studies.

11

13/03/2005 Department o f Computer Science

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Designing reusable applications is vital area of research. Design patterns are
an innovative notion that promotes reusability. This thesis attempts to develop
generic and reusable Short Messaging Systems that can be used by the
academia environment using the notion of design patterns.

In this thesis the design and implementation of the two essential parts of
any Short Messaging System is carefully investigated and compared to the
relevant traditional approaches. Both the Short Messaging Service Center
(SMSG) and the Mobile Station (MS) have been fully implemented as generic
units based on selected design patterns.

In chapter 2, we investigated possible developing platforms to house the
SMSG. Different servers were also discussed. Ideally, the developing platform
should not limit the choice of server. JSP was used to develop the SMSG
application because it was found to operate properly on any server. The
second part of chapter 2 discussed three possible implementations of the
SMSG application. The first uses a simple architecture of only one JSP page.
The second realizes that true generality is only achieved through the use
design patterns and it implements the SMSG application with the aide of the
Model, View and Controller (MVG) design pattern. The third implementation
tries to enforce this crucial design pattern through Struts, which is based around
the MVG design pattern.

Chapter 3 includes three stages that were used to develop a SMSG
application for sending and receiving SMS messages. The first stage included
a crude SMSG application that lacked all structure. It placed all of the business
logic with the presentation logic, thus, making the page hard to read. The
second stage proposed separating the business logic and presentation logic
with a design pattern. The MVG design pattern was used and a lot of structure
was gained. Now that we have this great design pattern aiding the architecture
of the SMSG application we needed a way to enforce it. In the third
implementation we used Struts, which automatically applies and enforces the
MVG design pattern.

In Chapter 4, we explained the architecture of a MS. We also outline the
necessary steps for a mobile device to send and receive SMS messages.
J2ME is introduced as the preferred developing platform for a MS application.
This chapter also introduces two MS applications for sending and receiving
SMS messages. The first SMS application was developed by Sun
Microsystems and is easily deployable. However, it didn’t have a design
pattern so the second SMS application proposed two design patterns that will
serve the architecture some structure. The two design patterns were the MVG
and the Wizard Dialog.

Finally, in Chapter 5, conclusion and future research trends are discussed.

Ill

12/04/2005 Department of Computer Science

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

Acknowledgements..il

Abstract.. iii

1. Reviewing Short Messaging Services Technologies................................ 1

1.1 Overview...1

1.2 SMS Architectures...5

1.3 Current SMS Technologies... 7

1.3.1 Current SMS Technology for SMSC... 7

1.3.2 SMS on the Mobile Station..8

1.3.3 WAP Short Messaging Systems... 9

1.3.4 .NetCF... 9

1.3.5 J2MESMS..10

1.4 Design Patterns... 13

1.4.1 Strategy Design Pattern... 15

1.4.2 Command Design Pattern...16

1.4.3 Model View Controller Design Pattern...................................... 17

1.4.4 Using Design Patterns in MS Design.. 19

1.5 Useful APIs for SMS Systems.. 20

1.5.1 Java Server Pages.. 21

1.5.2 JavaPhone API.. 23

1.5.3 NET Mobile Web SDK and ASP.NET...................................... 23

1.6 XHTML... 24

1.7 Summary.. 27

2. Designing a Generic Faculty Short Message System Center..................28

2.1 Why Generic SMSC...28

2.2 Deploying a Web-Based SMSC using SimpleWire.............................. 29

2.3 Deploying a Web-Based SMSC System...30

2.3.1 Deploying a Web-Based SMSC System using J2EE JSP 30

2.3.2 Deploying a Web-Based SMSC System using Tomcat Apache32

2.4 Composing a Java Server Page... 34
iv

13/03/2005 Department o f Computer Science

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4.1 An Enhanced SMSC Model... 35

2.4.2 An Enhanced SMSC Model Based on MVC Design Pattern... 36

2.4.3 An Enhanced SMSC Model Based on MVC Design Pattern

using Struts..37

2.5 Summary...38

3. Implementing a Generic Faculty Short Message System Center Using

Various MVC Design Pattern Implementations..40

3.1 SMSC using JS P ... 40

3.2 MVC SMSC using JSP...41

3.3 MVC SMSC Implementation Using Struts...44

3.4 Summary...47

4. Developing a Generic Mobile Station.. 49

4.1 Introduction...49

4.2 MS General Architecture..49

4.3 Choosing the Right Test-beds for MS Stations.....................................52

4.4 Traditional MS SMS Standards......................... 53

4.5 Developing the MIDP of the MS Station..54

4.6 Reviewing some Essential J2ME API... 55

4.7 Developing a Generic Mobile Station SMS application using J2ME.... 58

4.7.1 Sun Microsystem’s MS SMS Application.........................59

4.7.2 A Generic MS Application using the MVC and Wizard Design

Patterns..61

4.8 Summary...63

5. Conclusions and Future Research.. 67

5.1 Thesis Summary and Findings... 67

5.2 Analytical Comparison of the Generic SMS Applications.....................68

5.3 Chapter Summary.. 69

5.3.1 Chapter 1.. 69

5.3.2 Chapter 2 .. 69

5.3.3 Chapter 3 ...70

5.3.4 Chapter 4 .. 70
V

13/03/2005 Department o f Computer Science

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3.5 Chapter 5 ...71

5.4 Future Research Directions...71

References.. 75

Appendices... 85

Appendix A SMSC source code using JSP.. 85

Appendix B MVC SMSC source code using JSP.......................................91

Appendix C MVC SMSC using Struts Source Code...................................99

Appendix D An Generic MS J2ME Example... 109

Appendix E A Generic MS Application for Sending and Receiving SMS

messages 120

VI

13/03/2005 Department o f Computer Science

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Reviewing Short Messaging Services Technologies

1.1 Overview

With the ever-growing population of wireless networks and mobile devices,
such as, cell-phones, pagers, personal digital assistants (PDAs), etc., there
must be a way to send and receive information to and from these devices.
There are numerous ways of sending and receiving text-messages to these
devices and one of the more popular methods is using Short Message Service
(SMS) or also known as Cell Broadcast System (CBS). Some of the other
popular methods include Wireless Application Protocol (WAP), i-mode, or
General Packet Radio Service (GPRS). SMS is known for having a simple user
interface, unlike WAP’s rich Web-like interface [Xu, 2003]. SMS is widely
supported in wireless telephones in most European and Asia-Pacific countries
[Laird, 2001] and it will continue to grow in the other countries, such as, in the
USA.

IB

w

É

ft
A

t
%

Figure 1.1: Worldwide growth of SMS use

SMS originated in Europe around 1991. It was part of the Global System for
Mobile Communications (GSM) Phase 1 standard. The first SMS message was
sent in December 1992 from a PC to a mobile phone on the Vodafone GSM
network in the UK [Harron, 2002]. From there SMS just took off and it
continued to grow rapidly. The use of the text messaging is growing every
month. Between January & December 2000, SMS use grew from 4 billion to 15
billion messages per month [Butts, 2001]. Please refer to Figure 1.1 where it
clearly illustrates an increase of 375% in one year.

13/03/2005 Department o f Computer Science

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1800

1600

1400

1200

I 1000

g *00

600

400

1 i ifa l no. o f te x t mi"(vaiit’x

i
1

I I
1 i ¥ i i s Ë I f 1 i l i V

__________S

Figure 1.2: Text Messaging Growth (SMS): UK GSM Network Operator
Totals June 2000

What a phenomenal amount. SMS slowly picked up popularity in North
America but it is among one of the favourites now though. Figures released by
the Mobile Data Association (MDA) revealed that Person-to-Person SMS text
messaging for June 2002 stand at 1.3 billion and are up by 380 million on the
previous year. Please refer to Figure 1.2 [Harron, 2002].

The architecture of SMS is relatively simple. Typically, a mobile device
would send another mobile device a text message. Either the receiving end or
the sending end doesn’t have to be mobile. It could be a PC, Fax Machine,
Email, or any IP address. When a text-message is sent, it is sent to the Short
Messaging Service Centre (SMSC). The SMSC will manage sending the
message to the mobile device, even if the mobile device is off or out of range.
The SMSC will send a request to the mobile device’s Home Location Register
(HLR) to find the roaming customer. The HLR will then inform the SMSC if the
customer is available. If the customer’s mobile device is “inactive” then the
SMSC will store the message for a period of time. When the mobile device
becomes active once again the HLR will notify the SMSC and inturn the SMSC
will SMS the message to the mobile device. The actual architecture of SMS will
be discussed more thoroughly later.

13/03/2005 Department o f Computer Science

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SMS has the following benefits:

• It is inexpensive

• Convenience of “anytime and anywhere”

• Popularity

Since SMS is so cheap the cost of sending SMS messages is less than
other data oriented mobile services such as WAP [Xu, 2003]. The cost of
sending a message has two different types of costs, the cost of the phone and
the cost of the message. Practically most phones are SMS enabled, whereas,
WAP enabled phones are expensive. The cost of sending a message is 0.02
Euro in Philippines, 0.04 Euro in Japan and 0.11 Euro in Western Europe
[Marcussen, 2002].

The benefit of “anytime and anywhere” is a great advantage to SMS. As
long as the mobile device is equipped with SMS and its switched on then that
user can send a SMS message “anytime”. The user doesn’t have to worry
about if the receiving mobile device is on or off because the SMSC will handle
delivery of the message. The “anywhere” is more or less a feature of the
mobile device.

Popularity becomes a benefit to SMS because it helps to bring the prices of
SMS enabled phones lower. Also if SMS is a service that everyone wants then
it will be a cheap service. The more popularity that SMS is exposed to the
better off it is.

There are two different types of SMS applications:

Point-to-Point: An acknowledgement of receipt is provided to the
sender.

• Cell Broadcast: This allows for a number of unacknowledged
(general) messages to be broadcasted.

The two types of user applications are categorized under Consumer-based
and Commercial/Enterprise applications. It is not uncommon to find 90% of a
network operator’s total SMS traffic being accounted for by the applications to
come in this section [Buckingham, 2000]. Examples of SMS consumer
applications generally include;

13/03/2005 Department o f Computer Science

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Peer-to-Peer: This is usually the exchange of a simple text-message
from one mobile-device to another. The message is typically inputted
from the mobile device’s keypad. A message might consist of, “Can you
meet me for supper?” This is the most common type of use of SMS
[Malhotra, 2001].

• Information Services: This is when SMS is used for retrieving stock
quotes, weather reports, lottery results, etc. Basically, any information
that can fit into a short message can be delivered by SMS.

An information service is usually received after a mobile-device makes a
request. For instance, to receive the winning lottery numbers one might
send “WLN”, to a predefined number. Then a few moments after
sending the message the mobile-device would receive the latest lottery
numbers.

Information services should be simple to use, timely, personalized and
localized [Buckingham, 2000].

• Advertising: SMS can be used as a form of low-cost advertising for
businesses. For instance, a cell-phone provider could send great cell­
phone packages to their subscribers. Another form of advertising would
be if the mobile-user has provided their cell-phone number to a business,
then that business can send them special alerts. These alerts could be
anything from informing them of great sales, or that their order is ready
for a pickup, or maybe that there are some clothes in the store that is
their size. SMS can be a very cost effective advertising tool.

• Voice and Fax mail notifications: This simply sends the mobile-device a
text-message that they have new mail waiting. The message would
typically state from who the mail came from and possible the subject (if
applicable).

Listed below are some examples of SMS Commercial/Enterprise applications:

• Customer Service: Quite often SMS can assist in avoiding expensive
customer service centres person-to-person voice calls. A lot of
businesses (or corporations) have multiple sites spread out over entire
continents and even over different countries. They can cost efficiently
send SMS messages to anywhere in the world, whereas, making
telephone calls suffer from varying long-distance charges. Most long-

13/03/2005 Department o f Computer Science

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

distance calls vary from country to country but a SMS text-message has
a flat rate.

Job Dispatch: SMS can be used to deliver jobs to a worker out in the
field. For instance, a worker could leave the office in the morning with
only 2 work-orders but providing that he has a mobile-device then he
could receive more work requests. This helps a business operate more
efficiently because the more recent work requests could have more
urgency.

1.2 SMS Architectures

The SMS architecture is concerned with delivery of the message. It also deals
with what happens when the customer’s mobile device is turned off or is out of
range. The architecture also needs to concern itself with how the Mobile
Station should receive information. A Mobile Station is the mobile receiving
device. The architecture defines how SMS operates from all aspects. The
following are descriptions of the SMS architecture elements [Malhotra, 2001]:

• MS Mobile Station, a wireless terminal that is capable of receiving
and sending alphanumeric messages.

• SIM Subscriber Identity Module, otherwise known as a SIM card.
This card is for identify the subscriber. This card will also be
used for storing old undeleted messages on the mobile device.

• BS The Base Station is for communicating between the Mobile
Station and the Mobile Switching Centre. The BS consists of
controllers. Base Station Controllers (BSC), and Base
Transceiver Stations (TBS), also known as “cells”.

• SME Short Message Entity, which can be a device like a mobile
phone, which is capable of receiving and sending alphanumeric
messages.

• STP Single Transfer Point is used for operating on possible foreign
networks such as X.25 or TCP/IP.

• HLR Home Location Register is for storing information in the
database about the Mobile Station’s subscriber record and

13/03/2005 Department o f Computer Science

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

possibly configuration record.

VLR Visitor Location Register is the temporary data store in each
Mobile Switch Centre where information about roaming
subscribers is stored. This is what gives a mobile device the
ability to go roaming outside of the subscription.

SMSC The responsibility of the Short Message Service Centre is for
storing and forwarding messages to and from the Mobile Station.
This is achieved through a combination of hardware and
software.

An SMS system can be viewed as a three-tier architecture. It consists of the
Interface Layer, Implementation Layer and Transport Layer. The three layers
are used for the following functions:

Interface Layer:

• Implementation
Layer:

This layer is generic and doesn’t depend on any
messaging protocols. It typically will contain
messaging interfaces that are used in providing
the basic definition of a message [Ghosh, 2003].
The basic definition is used for sending and
receiving SMS messages.

The implementation layer is used for ensuring
that the SMS message is the proper length and if
it’s not then this layer will perform segmentation
and concatenation of the message for the
underlying protocol [Ghosh, 2003]. It also
contains classes that can implement the Interface
Layer to access wireless messaging
functionalities on a mobile device.

• Transport Layer: This layer contains the actual implementation
protocols that carry messages to the mobile
device. This layer can also contain additional
security protocols [Vogler, 2000].

13/03/2005 Department o f Computer Science

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.3 Current SMS Technologies

SMS can be developed In multiple different languages (or environments). For
instance, SMS supports C, Java, Perl, Visual Basic, ActiveX, etc, which
environment is chosen largely depends on the developer’s preference. The
chosen environment can also depend on how much exposure the developer
wishes their SMS application to have. If an SMS system is developed on a
programming language that isn’t largely supported then the SMS System isn’t
very useful. What different SMS Systems could be developed? Well, there are
two different flavours of SMS technology. We could have SMS for the mobile
device (sending or receiving) or SMS technology for PCs or servers.

1.3.1 Current SMS Technology for SMSC

As mentioned earlier, SMSC is the SMS Centre and is responsible for
storing and forwarding messages to and from the mobile device. That’s the
short of it, but it’s actually responsible for a little bit more. The SMSC is
responsible for storing and forwarding but it’s also responsible for queuing
messages, billing the sender, and/or returning receipts if necessary. In order
for a SMS message to reach it’s destination it must pass through a SMSC.
What is a SMSC? It’s a combination of hardware and software. The software
has the feature of sending a text message via a website. This can be a very
useful feature if someone wishes to send a message from his or her PC. Then
the recipient will be guaranteed to receive the SMS message because of the
SMSC.

There are quite a few services that offer SMSC and quite often these
services are free, i.e., one could send a SMS text message to a mobile phone
for free. However, this wasn’t always the case because the pioneers to SMSC,
which are BellSouth Mobility, PrimeCo, and Nextel, among others [CSL, 2003],
only offered the service on the action mobile device. SMS had to slowly evolve
and develop from there. As Figure 1.3 illustrates it can handle any form of
email, voice mail, websites, or mobile devices. Since the SMSC can handle all
of these different forms it makes SMS a better system. The more various
different forms SMSC can handle the more generic the SMS system is and the
more generic then the more useful it will be.

13/03/2005 Department o f Computer Science

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Voice Mail

HLRj
Em ail

 n STP l-m fM SCl-------J Mobile Device ..»«J 4SMSC

Webpage

Mobile Device

Figure 1.3: SMSC basic network

1.3.2 SMS on the Mobile Station

For the mobile device there are a limited number of SMS applications. One
could use J2ME, Wireless Application Protocol, or a native platform. The
server-side of the SMS application has a little bit more say as to what has to
handle the incoming (or outgoing) SMS message. If the SMS application was
built around J2ME then the server should know how to read and handle this
J2ME application message.

To give a brief comparison of J2ME, WAP, and other native platforms, they
are highly unalike. J2ME applications are known for having more features and
security than WAP applications [Yuan, 2002]. WAP pages are known for
having less risk of software crashes and/or virus attacks. This is because WAP
is a think-client development protocol; J2ME is a development platform
specifically for smart applications.

J2ME is slightly ahead of the native platforms because it allows one to write
platform independent applications and thus the applications are highly portable.
The Java platform’s portability stems from its execution model [Yuan, 2002]. In
general, the portability stems from the Java Virtual Machine (JVM) and how the
JVM processes Java bytecode into machine code. All of this is executed at
runtime. Native applications typically don’t verify the code before executing it
but the JVM does a two-byte bytecode verification. J2ME suffers from the fact
that the standard J2ME API does not provide a way to access an underlying

13/03/2005 Department o f Computer Science

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

device’s SMS features [Yuan, 2002]. This implies that not all J2ME devices are
SMS compatible.

1.3.3 WAP Short Messaging Systems

Wireless Application Protocol (WAP) was developed by the WAP Forum as
a standard specification. It was designed with mobile devices in mind. It
bridges the gap between the mobile world and the Internet [Brady, 2000]. The
WAP Forum’s goal was to offer a weblike experience on a mobile device. In
order for a phone to be WAP enabled a relatively simple microbrowser has to
be installed. The microbrowser requires limited resources, because the
microbased-services and applications reside temporarily on the server.

The WAP Forum developed a new wireless webpage language, which they
called Wireless Markup Language (WML). Any WAP application is written in
WML. They are designed for low power and are a subset of XML. WML
requires a DTD, which lists the local tags that can be used [Brady, 2000]. Since
the WAP Forum developed WML it only makes sense that they specify the
DTD. The problem with WML is that not all phones can intrepret it. Some
phones can display WML and others can use stripped-down versions of HTML
[Biggs, 2002].

WML organizes webpages in a card/deck metaphor. The deck is referred to
as a complete webpage and the card is a small portion of the webpage.
Typically cards are designed for the size of the mobile display device, i.e., a
card wouldn’t be larger than a cell-phone’s screen.

WAP requires a WAP gateway. The reason for this is because the mobile
device and a server communicate in two different languages. There must be
an extra server between them to handle the translation [Brady, 2000]. The
WAP gateway is often referred to as WAP Proxy.

1.3.4 .NetCF

.Net OF is one of the leading standards for developing applications on a
mobile device. .Net OF stands for Net Compact Framework. It is part of the
Microsoft .Net environment, which implies that .Net OF will inherit a lot of the

13/03/2005 Department o f Computer Science

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.Net framework. However, it is compact so this is considered a lightweight
version. Microsoft .Net CF is currently the overwhelmingly preferred
development and run platform for applications on mobile hardware which use
the latest Microsoft Windows CE compact operating system [Yuan, 2003]. How
suitable would .Net CF be for developing a generic Mobile Station application
for sending and receiving SMS messages?

First, let’s look at how the .Net CF operates and functions. All code written
on the .Net Framework platform is called managed code [CM20143]. When
code is “managed” it comes with a few assurances:

• There are no bad pointers

• It’s impossible to create memory leaks

• Supports strong type-safety

The Common Language Runtime (CLR) for the .Net CF runs regular Net
byte code applications. The .Net CF API is just a subset of the standard .Net
API library. The Net CF API’s primary concern is for mobile application
development [Yuan, 2003].

Net CF is a lightweight platform that is great for developing a mobile
application. However, it’s lacking generality. As with most Microsoft developed
products, the .Net CF only operates on the Windows CE operating system.
Although, the Windows CE is highly deployed and used worldwide it still only
consists of a small part of today’s mobile device population [Yuan, 2003]
[CM20143]. The Net CF is great to develop in but it’s not highly supported.
Thus, .Net CF should not be considered when contemplating a generic MS
application for sending and receiving SMS messages.

1.3.5 J2MESMS

J2ME is Sun's answer to mobile devices. It stands for Java 2 Platform,
Micro Edition. One of the huge benefits for using Java is that its platform
independent and can therefore run on multiple platforms. The hugest
constraint with programming for a mobile device is the fact that the device has
limited memory, battery life, display size, processing power, and network
bandwidth. As Yuan and Long state it, “It would be impossible to port the

13/03/2005 Department o f Computer Science 10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

complete functionalities of an application running on a sophisticated set-top box
to a cell-phone.” [Yuan, 2002]

J2ME was developed not to handle every single device, because that
wouldn’t be feasible but to handle most devices. The design of J2ME had the
J2SE (Java 2, Standard Edition) in mind. J2ME includes Java virtual machines
and a set of standard Java APIs defined through the Java Community Process,
by expert groups whose members include leading device manufacturers,
software vendors, and service providers [Kluyt,2002], J2ME basically took the
classes of J2SE and kept what was suitable and micro-sized the rest. By
“micro-sizing”, they either deleted some of the not so necessary functionality or
they decreased large objects to more micro objects. They tried to do all of this
without taking away from necessary Java components [Muchow, 2002].

There are two different types of J2ME configurations. There is the
Connected Limited Device Configuration (CLDC) and the Connected Device
Configuration (CDC). The CLDC is typically for small resource constrained
devices, for instance, cell-phones. The CDC was built with high-end PDA’s in
mind that are equipped to handle powerful processes. Configurations comprise
a virtual machine and a minimal set of class libraries. They are used for
providing the basic functions that a mobile device might need. These classes
are nothing more than a suggestion and can be elaborated onto if one so
chooses. A device that implements the CDC has the following characteristics
[Muchow, 2002]:

• 512 kilobytes (minimum) memory for running Java programs

• 256 kilobytes (minimum) for run-time memory allocation

• Network connectivity, possibly persistent and high-bandwidth

And the typical characteristics of a device that implements the CLDC:

• 128 kilobytes of memory for running Java programs

• 32 kilobytes of memory for run time memory allocation

• A limited user interface

• Runs on battery power

• Wireless network connection, low bandwidth

13/03/2005 Department o f Computer Science 11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

One typical drawback to the CLDC is its limited power to do mathematical
processing. This actually becomes a security hazard that has to be addressed.
Implementing secure applications is much harder, due to the CLDC
configurations limited mathematical functionalities and the scant processing
power of many of the underlying devices [Yuan, 2002]. Surprisingly, CLDC
mobile devices are the most widely used of the mobile devices so enabling
security on these devices is very important [Muchow, 2002].

In this section, J2ME was introduced. J2ME can be thought of as a subset
of the Java platform designed specifically for the development of mobile device
applications. In Table 1.1, the comparison between .Net CF and J2ME is
outlined. The J2ME has some obvious advantages over the .Net CF.

Net CF J2ME
Connected

Device
Configuration

J2ME
Connected

Limited Device
Configuration

Device
Requirement

Powerful,
expensive

Powerful,
expensive

Cheap,
pervasive

Cost High High Medium

Language
Supported

C#, VB.Net Java Java

Platforms Pocket PC,
Windows CE

Major mobile
platforms except

Palm OS

All mobile
platforms

Market Focus Enterprise Enterprise Consumer and
Enterprise

Table 1.1; A comparison between .Net CF and J2ME

13/03/2005 Department o f Computer Science 12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.4 Design Patterns

What are design patterns? Design patterns are solutions to identified
reoccurring problems at the development stage of an application. Once a
problem has been identified then the best practices of experienced object-
oriented software developers is applied [Geary, 2001], also known as, applying
a design pattern.

These patterns are important for a number of various reasons. They allow
the developer to verbally explain their code (or logic) in a unified method. A 0
developer might not understand Java but they will understand the concept
behind a design pattern so a design pattern can be used to break the language
barrier. Design patterns are also important because the developer can learn
from other developers quickly and efficiently. If they notice the pattern deriving
in their application logic then the design pattern can be applied to help them
with this problem. Design patterns let you leverage the developer community’s
collective experience by sharing problems and solutions that benefit everyone
[Hurst, 2002].

The Gang of Four (GOF) are commonly referenced when referring to design
patterns. The GOF are among the forefathers of most design patterns. Their
particular design patterns are grouped into three categories Creational,
Structural, and Behavioural. These three categories have certain
characteristics that will aide a developer if they start experiencing a recurring
problem. If a developer is experiencing problems developing a certain piece of
software then they might turn to a Creational design pattern; however, if they’re
experiencing a performance problem with an application that has already been
developed then they might apply a Behavioural design pattern to correct this
problem.

Table 1.2 illustrates the possible design patterns for the three classified
categories that the GOF developed. As one can visibly see there are many
solutions for the three categories. This is extremely useful since there are far
too many behavioral problems for a single design pattern approach to solve all
of them.

Creational Structural Behavioral

Abstract Factory Adapter Chain of Responsibility

13/03/2005 Department of Computer Science 13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Creational Structural Behavioral

Builder Bridge Command

Factory Method Composite Interpreter

Prototype Decorator Iterator

Singleton Façade Mediator

Flyweight Memento

Proxy Observer

State

Strategy

Template Method

Visitor

Table 1.2; Design pattern space [Gamma et al, 1994]

Design patterns are crucial to the architecture of any developing software.
They offer an abstract way of developing code. When design patterns are
applied properly they assist in making the application in question very generic.
This is achieved by providing structure to the application. Also, everything in
the application has a proper place and a purpose. For instance, if the
developer decides that the presentation logic could use some more work, well,
in a classical sense then the entire application would require an overhaul. If a
design pattern is applied to the design of the application at the development
stage then replacing the presentation logic is really quite simple. The reason
for this is that the presentation logic is separate from the business logic. Thus,
because a design pattern was used everything has a proper place.

As Table 1.2 illustrates, there are multiple design patterns already
developed, in fact, books upon books have been written about them. In other
words, there are far too many to discuss here. However, a few selective design
patterns will be analysed to see if any can be applied to the developing SMSC
System. The next three design patterns were selected on purpose in an

13/03/2005 Department o f Computer Science 14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

attempt to find an appropriate design pattern to aide the architecture of the
SMSC application. If a design pattern is applied properly then it can easily
become the most beneficial part of the application. This is the reason why so
much focus has been placed on design patterns.

1.4.1 Strategy Design Pattern

The Strategy design pattern is one of the classical design patterns that has
been classified by the GOF as a behavioral design pattern. This particular
design pattern is used for encapsulating a family of algorithms and separating
them into their own algorithm. This makes them highly interchangeable at
runtime. More simply put, an object and its behaviour are separated and put
into two different classes [Garcia, 2000].

When should this design pattern be applied? Use the strategy pattern
whenever [Tarr, 2000];

• Many related classes differ only in their behaviour

• You need different variants of an algorithm

There are several advantages to using this design pattern. For one, it
makes maintenance on a single object easier by separating that class into
separate subclasses based on behaviours. The subclasses are known as a
Strategy.

An example of an applied Strategy pattern is when a class wants to decide
at run-time which algorithm it should use to sort an array. If there are lots of
sort algorithms available then this task can become very sticky. However, if we
encapsulate the different sort algorithms using the Strategy pattern then this
task becomes relatively easy. A class diagram of this example has been
provided in Figure 1.4.

13/03/2005 Department o f Computer Science 15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o

ContreteStrategyA
+ void : A^rithm lnteifaceO

 ConcreteStrategyB
+ void : AlgprithinInteifaceO

+ void : AlgoriihmkferJdctO

Concrete StratesprC

+ void : A^tnthmlnterfaceO

~ AStralegy : aStrategy

+ void : ContextInteiface()

Context

Figure 1.4: Strategy Design Pattern Class Diagram

1.4.2 Command Design Pattern

The Command design pattern is also a classical design pattern. The
Command design pattern is for sending an abstract command to a class. In
this case, the object that orders the command doesn’t care who will handle the
command. The command design pattern encapsulates the concept of the
command into an object [Garcia, 2000].

I n v o k e r 1
“ A C o m m a n d ; c o m m a n d

1 . .* + v c id : »x «c u t^ O

CO znxnax\d.« XB c u t e O

/A

Macro Command
-*• A C o m m a n d D : a C o m m a n d

• v o i d : eXBCUteO

v o id ex e cu t« 0 ^

r e c e iv e r s .a ctio n S O
}

v o id execu teO {
r e ce iv e r l .action lC

concrete Cojnmandl
R e ce iv e r l ; receiverl

' v o i d : e x e c u te O
* v o i d : a c t io n lO

c o n c r e t e C o m m a n d s
“* R e ce iv e rs ; receivers
+ v o id ; executeO

■ v o i d ; a c t io n S O

Figure 1.5: Command Design Pattern Class Diagram

13/03/2005 Department o f Computer Science 16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If the object that orders the command doesn’t care who the recipient is then
who does? Well, the actual Command object will receive the command and
distribute it to the proper object. One of the advantages of this design pattern is
that all of the objects will be using a central Command object. Thus, if the
recipient of a command changes then only one object needs to be updated.
Figure 1.5 shows a Command pattern class diagram [Geary, 2002].

If we were developing a Graphical User Interface (GUI) that has more than
one button and each button does a different action. For each button there will
be a menu item that performs the same action. What is the most efficient way
to develop an application with these specifications? Probably one of the most
efficient ways to solve this problem is to create an action listener for all buttons
and menu items [Geary, 2002] [Tarr, 2000]. This is actually the Java Swing
solution and almost all object-oriented framework implement the Command
pattern [Geary, 2002].

1.4.3 Model View Controller Design Pattern

Model-View Controller (MVC) is a design pattern that is widely used
because of its architectural pattern. MVC is not a classical design pattern and it
cannot be classified under the three categories presented by GCF. It is
classified as a Architectural Design Pattern [Gamma et al, 1994]. MVC is good
at distinguishing the separation between the user interface and application
control.

The Model contains the core functionality of application components [Ping
et. al, 2003]. It is used for representing low-level behavioural states. The
Model should do all of the transformations on that state and effectively it
manages the data of the state. The Model has no knowledge of either the View
or the Controller.

13/03/2005 Department o f Computer Science 17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Model

View

View

View

Controller

Cmtrdller

Figure 1.6: The ModelA^lew/Controller architecture

The View is for visual display. It actually should not have any logic to
process. A Model can have more than one View [Sundsted, 1998]. The View’s
purpose is to retrieve data from the Model via objects that were previously
created from the Controller. It needs to be notified when the state changes
[Sundsted. 1996]. The View has no knowledge of the Controller.

The Controller is in charge of the Model object. It will create any objects
that the View will use and it also manages any requests. The Controller is the
object that provides the means for user interaction with the data represented by
the Model [Sundsted, 1996]. It will provide the means for information in the
Model to change and it will also inform the View of the changed state. It too
interacts with the Model via a reference to the Model object.

One of the most general forms of the MVC design pattern is displayed in
Figure 1.6. In this example, there are multiple controllers, one Model, and
multiple views. The benefit of MVC is that there is a clear separation between
each of the components of a program. Also, the binding between the Model
and the View is dynamic, which implies that it occurs at run-time, rather than at
compile time [Sundsted, 1996].

One of the benefits of the MVC design pattern is that a lot of programming
languages are built around this design pattern. Thus, if the programming
language is built around MVC then MVC can easily be applied to a developing
program. Java is among one of the many languages that use the MVC design
pattern and it was carried over into the design of JSP, which is what will be
discussed next.

13/03/2005 Department o f Computer Science 18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The MVC design pattern could be used In a generic SMSC application by
applying Its superior architectural design to aide In the construction of the
application. If MVC Is applied then the user has the satisfaction of knowing that
everything has a proper place In the architecture of the application. Thus, the
application will have a solid generic background In the development stage and
an easily maintainable architecture for the future.

1.4.4 Using Design Patterns in MS Design

Since the MS operates entirely different from regular PC’s some various
different design patterns exist. The Cascading Menu pattern, the Wizard Dialog
pattern, or the Slide Show pattern Is just some of the MS design patterns that
can be applied. One will notice quite quickly that these design patterns are just
as Important as the classical design patterns.

The Cascading Menu pattern Is based off of the MVC design pattern but It’s
a scaled down version. There Is no Controller In this pattern. The View and the
Model will communicate directly with each other. The View will render Itself
based on the current state of the Model [Hul, 2002]. Thus, the View Is
changing dynamically as the Model updates.

The Wizard Dialog pattern reflects current Installation wizards that are
driven by two buttons, “Next” and “Back”. This design pattern Is often useful
because It will collect all of the user Input via asking a series of questions
before executing a command [Hul, 2002]. This design pattern will effectively
replace a web Input form that couldn’t possibly fit on a mobile device’s display
screen. Instead of asking for the user’s name and address all at once, the
Wizard Dialog design pattern will ask for the user’s name and wait for him to
press the “Next” button before prompting him for his address.

The Pagination pattern Is a design pattern based on breaking pages content
up Into small viewable pages that can be seen on the mobile device. Quite
often pages are too large for the mobile device’s display screen. The smaller
pages will contain a subset of the complete content [Hul, 2002]. The user will
go from page to page by pressing a key on the mobile device.

The final design pattern that will be discussed that Is particular to the MS Is
the Slide Show pattern. This design pattern also mimics the desktop version
because It’s a series of screens that will automatically go from screen to screen
without any user Interaction. The sequence appears as It Is programmed; users

13/03/2005 Department o f Computer Science 19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cannot control the sequence’s pace or order [Hul, 2002]. Typically, there Is a
long enough pause between slides to let the user view the content on the
screen before going to the next screen.

Which design pattern would suit the needs of a generic MS application for
sending SMS messages? Two design patterns that do not apply are the Slide
Show and Pagination pattern. The Slide Show Is for displaying a series of
screens on the mobile device that are automated. The Pagination pattern Is
used for displaying a lot of text on the screen. A generic MS application for
sending SMS messages doesn’t require these design features. It doesn’t have
a whole bunch of screens that need to be automated and It has no large
amounts of text that need to be displayed. It might have some text to be
displayed when a message Is received; however, SMS text-messages are not
allowed to be large enough to require the assistance of the Pagination design
pattern. A generic MS application could use the Wizard Dialog pattern or the
Cascading Menu pattern. Since the Cascading Menu pattern Is for Inputting
Information before performing a task then this would appear to be more
appropriate. However, the Wizard Dialog pattern also effectively collects data
and It has “Next” and “Back” buttons.

The generic MS application will apply the Wizard Dialog pattern and also the
MVC design pattern. The Wizard Dialog pattern will provide structure for
collecting the destination address and the text-message prior to sending or
replying to a SMS message. This will be a useful design pattern because the
user will have the ability to navigate through the use of the buttons. The MVC
design pattern will handle the presentation logic and the business logic. It will
actually encapsulate the Wizard Dialog pattern and govern Its very existence.

1.5 Useful APIs for SMS Systems

To develop a generic SMS System one needs to use building blocks that are
easily transferable to just about anywhere. This Implies that the developing
technology used is a crucial step in the development of the Integral SMS
System. It should be widely supported and also preferably as generic as
possible, meaning that It shouldn’t make any assumptions. Another way to look
at the system being generic Is If some piece of code was written for a mobile
device but the exact same code worked on the PC without any alterations then
that would be very generic.

13/03/2005 Department o f Computer Science 20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Another component that will be investigated Is Java Server Pages (JSP).
These server pages are highly generic and transferable to any system. JSP Is
used for enhancing servlets.

1.5.1 Java Server Pages

Java Server Pages (JSP) was Introduced by Sun Microsystems and Is a
fundamental part of J2EE. It was originally developed as an alternative to
Microsoft’s Active Server Pages (ASP). JSP technology Is an open freely
available specification developed by Java Community Process (JCP)
[Mahmoud, 2003]. JSP Is for dynamic webpages that easily elevate servlets to
the next level. It also makes It easy to separate the static and dynamic parts of
a webpage. Thus, the confidential systematic part of the webpage can remain
hidden.

Before JSP and before dynamic webpages there were CGI scripts. CGI Is
often referred to as a first generation solution. The problem with CGI Is that for
every request a new script was required. Therefore, CGI was dynamic but it
wasn’t easily serviceable nor upgradeable. It also suffered from the vicious
write, compile and deploy lifecycle.

Second generation mingled the static and dynamic parts of the web
together. These solutions Included web server vendors providing plug-ins and
APIs for their servers [Mahmoud, 2001]. Problems with the second generation
occurred when the solutions became platform dependent. An example of this
would be Microsoft’s ASP. In order to operate ASP the server must be
operating a Microsoft server. This very well could be a drawback because the
server shouldn’t have to be Microsoft just because the software Is Microsoft.
There are some third-party plug-ins that will do the transformation from ASP
back to an alternative server, such as the Tomcat server. The third-party
software Is called a “porting product”.

Another second generation example Is servlets. These use Java technology
and can easily be used to write server-side scripts. The problem with servlets Is
that they still suffer from the same llfe-cycle that a CGI script suffers from.
They suffer from the write, compile and deploy lifecycle [Mahmoud, 2001].

JSP Is a third generation solution. It extends ASP but Is compatible with any
platform. This makes perfect sense because It was developed with Java
technology and Java’s motto Is, “write once, run anywhere.”

13/03/2005 Department o f Computer Science 21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In order to get JSP up and running on a web server one needs to conform to
the JSP and servlets standards. One-way to do this is to download J2EE off of
Sun’s website (free of charge) and install it. A JSP page is nothing more than
regular XHTML code (or XHTML-tags) with strategically placed bits of Java
code throughout the page. How does this work? Well, when the browser Is
Interpreting the JSP page, the web server will compile the code Into a Java
servlet. This servlet Is nothing more than a second-generation solution. The
servlet engine then loads the servlet class, which executes It to create dynamic
XHTML to be sent to the browser [Mahmoud, 2001].

The Table 1.3 below will do a quick comparison of JSP to ASP and other
solutions, such as, CGI scripts.

JSP ASP Other
(i.e. CGI Scripts)

Platforms Most popular
platforms

Microsoft
Windows (other

platforms requires
the third-party

software that was
discussed earlier)

Most popular
platforms

Web Server Any web server Personal Web
Server or

Microsoft IIS

Any Web Server

Scripting
Language

Java VBScript, Jscrlpt Perl

Customizable
Tags

Yes No No

Reusable Cross-
Platform
Components

Yes No No

Database
Integration

ODBC or JDBC ODBC

13/03/2005 Department o f Computer Science 2 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

JSP ASP Other
(i.e. CGI Scripts)

Dynamic HTML Yes Yes No

Table 1.3: A comparison of JSP to ASP and other solutions

1.5.2 JavaPhone API

The JavaPhone API was developed by Sun Microsystems and some of the
key leaders in the telecommunication Industry. It was developed to assist the
market’s demands In creating a unified telephone. This miracle telephone
would be able to surf the Internet, manage your day, store telephone numbers,
run Java Applets, etc [Green,2004], Basically, It would do everything that a PC
can do plus have the mobility of a cell-phone. Well, what better programming
language to develop a telephone like this other than Java? It’s platform
Independent and the unified telephone would fall under the, “Write once. Run
anywhere,” motto that accompanies Java.

The JavaPhone API has lots of diversity and many dynamic features. A
developer could do almost anything In developing a JavaPhone application.
They could even develop a telephone that supports a SMSC System.
However, the JavaPhone API cannot be used directly to develop the SMSC
Center. A JavaPhone Application Is the entire phone’s Interface, not just one
part of It. When It’s used directly to develop a single feature, such as the
SMSC Center, then we would effectively be using plain Java to develop this
feature. JavaPhone API Is the platform for developing applications and
deploying dynamic Information services on Internet screenphones or wireless
smartphones [Knudsen, 2003].

1.5.3 .NET Mobile Web SDK and ASP.NET

Microsoft Introduced the .NET-programmIng environment In the year 2000 at
their Professional Developers Conference. The actual environment Is known
for being an entire framework. The .NET framework Includes ASP.NET, which
Is In fact the next level of ASP. ASP.NET pages can be developed In any .NET
language such as, VB.NET, C++, etc. [SIvakumar, 2001]. Figure 1.7 shows the

13/03/2005 Department o f Computer Science 23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.NET framework architecture. As the figure explains, the .NET framework is
convenient because the developer only needs to write code once and it will
work on any web browser or any mobile device.

The .NET framework eliminates browser checks and it decides whether to
deliver HTML versus WML content based on the target it. There is no need to
learn multiple languages because all that is required is ASP.NET, which
implicitly implies that there is no need to learn WML. The NET framework has
a very nice drag and drop application development. Why wouldn’t everyone
want to develop pages in the .NET framework? Well, one is limited to Microsoft
products and operating systems or servers. Also, when new versions of WML
or HTML are released, one will have to wait until Microsoft announces support
for the new version [SIvakumar, 2001]. Since one of the main concerns is
generality then the .NET environment is not ideal for this SMSC.

Mobile
Device

Internet

IIS Web Server

.NET/Mobile Web Framework

Windows 2003 Server

Netscapeinternet
Explorer

ASP.NET Application with VB.NET

Figure 1.7: NET Architecture

1.6 XHTML

Is Hyper Text Markup Language (HTML) generic enough for this SMSC? It is a
fairly known fact that the HTML Document Type Definition (DTD) is web-

13/03/2005 Department o f Computer Science 24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

browser dependent [Balani,2001]. This implies that the Netscape web-browser
version of HTML might vary slightly to Microsoft’s Internet Explorer web-
browser. True, that the variances would probably be small enough that the
developing SMSC could ignore it but its best not to. Thus, we need a better a
solution.

XHTML is shorthand for Extensible Hyper Text Markup Language. It is
basically one step above HTML. XHTML is combination of XML with HTML and
is often written arithmetically like [LCTTP, 2001];

XML + HTML = XHTML

What makes XHTML a better choice than HTML? Well, because it is part
XML it then must conform to XML rules. This implies that all tags must be
closed. For instance, if the
 tag is used then it should be closed by doing
either of the following:

</br>
or </ br> (recommended)

One of the other XML rules is that the tags should be in lower-case
[Pemberton et. al., 2000]. In comparison to HTML where either of the following
is valid:

or

XML is case-sensitive and thus one should always be extremely careful
about capitals. XML also doesn’t allow elements to be improperly nested. It’s
based on a First In Last Out (FILO) methodology. For example:

<i> this is valid </i>
<i> this is valid only in HTML </i>

XML attributes should always be in lower-case with the values in quotes.
HTML doesn’t care either way about this. One might place the attribute value in
quotes but it is not mandatory. It’s entirely up to the individual. The nice thing
about XHTML is that all of this ambiguity is resolved because XML is a stricter
language.

13/03/2005 Department o f Computer Science 25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Why doesn’t XHTML vary from web-browser to web-browser? The answer
to that question is that because XHTML allows the programmer to define the
Document Type Definition (DTD), whereas, HTML makes use of a predefined
DTD. Thus, depending on the web-browser the HTML-tags will vary because
the DTD is built into the web-browser.

XHTML declares that the DTD should always be the first line in an XHTML
document [LCTTP, 2001]. The web-programmer could do one of two things.
They could create a personal DTD and define all of the tags or they could use a
predefined DTD. The drawbacks of the first method are that they would have to
write all of the tags that their website might possibly use. For example, if a
web-browser was attempting to interpret an XHTML web page but there was an
undefined tag then it would display an error message. Creating personal DTD’s
can be tedious and time consuming. Luckily there is still the alternative method
of using a public DTD. One simply specifies the URL in the first line of the page
and the browser knows to reference that DTD whenever it discovers a new tag.
The most popular spot for referencing a public DTD is at W3C’s website. W3C
is the maker of XHTML and thus their DTD is always current and always
expanding. Therefore, if there is a new XHTML tag then as soon as it’s been
publicly approved it will be added to their DTD.

W3C has three different flavours of DTD’s and they vary depending on
one’s needs. The first is called Strict and should be used for a clean markup
that will have a presentation that is clutter-free. It should also be used with
Cascading Style Sheets (CSS) [LCTTP, 2001]. The next DTD is called
Transitional and should also be used for a clean markup that will have a
presentation that is clutter-less. This one could be used if the browsers don’t
support Cascading Style Sheets. The third and final DTD is called Frameset.
This is used when the XHTML page wishes to utilize HTML’s Frame tag. The
frame tag is used for partitioning the window.

The “Generic Web-Based SMSC" does use XHTML because it is obviously
more generic than HTML. The SMSC also utilizes W3C’s Transition DTD.
Although, the Cascading Style Sheet is a useful feature it is not highly
supported in all web-browsers and its interpretation varies from one web-
browser to the next. The idea is to create as general of a SMSC as possible.

13/03/2005 Department o f Computer Science 26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.7 Summary

In this chapter. SMS was introduced as a text-messaging system. Although
there are numerous other SMS Systems already developed most of them suffer
from various different drawbacks. For instance, in Barry Harron's [Harron,
2002] thesis, he used Java technology, which is good because Java is a
generic programming language but his application was only concerned with the
PC sending a message to the mobile device. Therefore, he didn’t develop a
generic SMS System but a generic SMSC. Another drawback occurs in Vivek
Malhotra [Malhotra, 2001] paper because the source code will only work on a
Microsoft PC or Server. The reason being is that it is written using Active
Server Pages and VBScript, both of which are not supported on every
Operating System. The need for an entirely generic SMS System is evident
and not just the SMSC but the whole SMS System. After all this is one of the
key attributes to a successful SMS System. The other keys are for it to be cost
efficient, easily deployable, and for it to work anywhere at anytime.

Half of the battle in developing generic SMS applications is choosing the
proper developing platform and the other is choosing the proper architecture.
The first half can be easily achieved through the use of Java technology. Java
has been proven to be a generic language to develop applications for, either a
SMSC or a mobile device. Since Java can be developed to run on any platform
or almost any mobile device this makes it very cost efficient, easy to deploy and
it can work anywhere at anytime. The other half has to pay close attention to
design patterns. Applying a design pattern, such as MVC, will help immensely
to make the application generic.

13/03/2005 Department o f Computer Science 27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Designing a Generic Faculty Short Message System Center

2.1 Why Generic SMSC

Having a generic Short Message System Center (SMSC) is very crucial. How
can a generic SMSC be achieved? Well, generality is most often achieved
through a solid developing platform and having the proper design architecture.
The developing platform should be deployable on any server. The design
architecture is very important too because it is the backbone of the application.
Essentially the developer needs to understand how to properly develop the
application currently and in the future. Therefore, a design pattern, i.e., MVC,
will be applied to the architecture of the SMSC application. The MVC design
pattern will provide a good solid backbone for the SMSC application.

In this Short Message System Center (SMSC) a couple of things will appear
to be different than other SMSC’s but they will be rightfully justified. This is a
web-based SMSC opposed to an application based SMSC. This makes the
SMSC accessible from any PC at anytime. One might argue that this SMSC
will now require an Internet connection, which is true but an Internet connection
is already required for the sending process of an application-based SMSC. An
application-based SMSC suffers from the drawback that it must be installed on
every PC that the user wishes to send an SMS text message from. Thus, if one
had a PC at home and another at work then they would have to install it
multiple times. Another drawback occurs when the application needs to be
upgraded or patched. Well, the n-user must do this on their own or it has to be
built into the application to check for updates. If it is built into the application
then it will be stealing the user’s bandwidth while they’re trying to utilize it for
something more productive.

However, a web-based SMSC doesn’t suffer from this at all. All of the
SMSC content lies on the web-server and all of the updating is completed on
one spot, i.e., the server. Then, the next time that they login to send a text-
message the update will already be present. All of this updating and installation
will be completed without any interactions from the user. A web-based SMSC
naturally does not have to be installed on every PC. The user simply has to
remember the URL, which could be made easy with the proper Domain Name
Server (DNS). For instance, it’s easy to remember where to go to check one’s
mail if it’s simply by replacing "www" with “mail”, i.e., mail.yahoo.com.

Since all of the installation will be completed on the server, one must be
very careful choosing the server. The server that is chosen will largely depend

13/03/2005 Department o f Computer Science 28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

on which environment the SMSC was written in. If the server is a Microsoft
based server then one could use Active Server Pages (ASP) or Java Server
Pages (JSP). If the server is anything other than Microsoft then ASP will not
work without some help from third party software. However, JSP still works
regardless of the server. Therefore, a “Generic Web-Based SMSC" should be
written entirely in JSP. This chapter provides details on designing such a
generic SMSC system.

2.2 Deploying a Web-Based SMSC using SimpleWire

The actual sending of the message could be handled any number of ways but
for the purpose of this SMSC, SimpleWire can be chosen for the purpose of
deploying it on the web. It is a SMS web-based company that has a web-server
dedicated specially for sending and receiving SMS text-messages to and from
mobile devices. It can also receive SMS text-messages from a PC or another
server, which is precisely what the “Generic Web-Based SMSC” needs.

Initial registration is free with SimpleWire. When one registers with
SimpleWire she is provided with a SimpleWire demo account. The account
comes with a virtual phone number, subscriber’s ID, and a subscriber’s
password. The virtual phone number is good for sending messages to the
SimpleWire account. When a message is in the SimpleWire inbox it looks like
Figure 2.1.

Figure 2.1: SimpleWire Inbox

13/03/2005 Department o f Computer Science 29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Upon registering for the SimpleWire account she is provided with a wide
variety of SimpleWire SDK’s for developing languages such as, C, C++, Java,
ActiveX, etc. The Java SDK was chosen here because of its ability to operate
on many different operating systems. Listing 2.1 illustrates how a plain-text
message can be deployed using SimpleWire API. In order to make the text-
message demo operate properly all one must do is replace the Subscriber’s ID,
password and virtual phone number with the ones that SimpleWire provides
upon registering the account. Also, before running the application one must
ensure that they’re connected to the Internet. If there is no Internet connection
present or if there is an error with the subscriber’s ID, password, or virtual
phone number then the output will simply say, “Message was not sent!” The
demo is not sophisticated enough to distinguish between the different errors.
However, SimpleWire does return an error code and one could easily interpret
the error.

2.3 Deploying a Web-Based SMSC System

The SMSC System should be developed to deploy on any server. Java is a
platform independent language and the same can be said for JSP. Therefore,
a server requirement should be that it has to be able to run Java based
applications. The other requirement of the server is almost redundant but it
must be specified. The server should also be able to run on any platform.

If the developing language isn’t constraining then the SMSC System should
in theory work on any server. For this particular SMSC two servers were
chosen. The first was Java 2 Enterprise Edition (J2EE) and is Sun’s Java
server. The second was Tomcat, which is part of the Apache project. Both are
Java servers that naturally support the use of JSP and JSP’s precedent,
servlet’s.

2.3.1 Deploying a Web-Based SMSC System using J2EE JSP

J2EE stands for Java 2 Enterprise Edition and is Sun Microsystems’ version
of creating a Java server. Although JSP will function on any server J2EE was
chosen because it’s cost effective and it’s a good generic environment to
develop the “Generic Web-Based SMSC” in. Plus, J2EE is 100% employable
on any operating system. J2EE has nothing to do with the final output of the

13/03/2005 Department o f Computer Science 30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SMSC. The JSP written makes no J2EE assumptions and it will work on any
server that supports JSP. One can acquire J2EE by downloading it for free
from Sun’s website. J2EE comes packaged in two different formats, one that
can be unpackaged on a Microsoft based machine and the additional one that
functions on other operating systems.

After installing J2EE one must create a new web application. The web
application will be used for setting all of the customizable parameters for the
“Generic Web-Based SMSC”. It will also be used for compiling the SMSC. To
create a new web application the following steps should be followed;

1. Start the “Deploytool”

2. Click File->New->Web Component

3. Click “Create new stand-alone WAR Module”

4. Choose an appropriate location for the WAR module

5. Under context Root enter something like:
/faculty

• There’s no need to place an extra forward slash '/’

• Whatever is entered here will be where the user has to go in order
to send an SMS text-message, i.e.,

http://localhost:8080/facultv

6. Click “edit contents” and add a JSP page

• You must add a JSP page, even it it’s blank

7. Click “Next”

8. Select “JSP” and click “Finish”

Now the JSP page can be viewed by following the above link.

Whenever a change occurs to the JSP page one must recompile the entire
page. This will instruct J2EE to re-cache the servlet. Thus, when an individual
enters the site they will be accessing the cached servlet. This will ensure a
quick load of the JSP page because it will only be executed as opposed to
being recompiled and then executed every time someone accesses

13/03/2005 Department o f Computer Science 31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://localhost:8080/facultv

it.

* Copyright (c) 1999-2001 SImplewire, Inc. All Rights Reserved,
* Shows how to send a wireless message containing text in Java.

' Please visit www.simplewire.com for sales and support.

* @author SImplewire, Inc.
* @version 2.5.1
* @since jdk1.2
*******************•»****•*+ •*********** ♦ * * ♦ * * + •**♦♦♦***

import com.simplewire.sms,*;

public class send_text {
public static void main(StringO args) throws Exception {

SMS sms = new SMS();

II Subscriber Settings
sms,setSubscriberlD("123-456-789-12345");
sms.setSubscriberPasswordC'Password Goes Here");

II Message Settings
sms,setMsgPin("+11005101234");
sms.setMsgFromC'Demo");
sms,setMsgCallback("+11005551212");
sms,setMsgText("Heilo World From SImplewire!");

System,out,println("Sending message to SImplewire.,,");

// Send Message
sms,msgSend();

// Check For Errors
if(sms,isSuccess())

System,out,println("Message was sent!");
else {

System,out,println("Message was not sent!");
System.out,println("Error Code: " + sms,getErrorCode());
System.out,println("Error Description: " + sms,getErrorDesc{));
System.out.printlnfError Resolution: " + sms,getErrorResolution() + ”\n“);

}

Listing 2.1: Simple Send Text Example using SimpleWire API

2.3.2 Deploying a Web-Based SMSC System using Tomcat Apache

Tomcat can be downloaded from the Apache website. Tomcat was
developed for open source purposes to be used with servlets and JSP pages.
Tomcat itself is the servlet container that is used in deploying servlets and JSP

13/03/2005 Department o f Computer Science 32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.simplewire.com

pages on the web. The version of Tomcat that was downloaded for the SMSC
System implements the Servlet 2.3 and JSP 1.2 specifications from Java
Software [Apache, 2005]. Since Tomcat is linked to Java, the Java SDK is
required in order for Tomcat to operate properly.

To get the Tomcat server operating the following steps should be carried
out. Download the Windows zip file for a Windows platform, or download the
tar for almost any other platform. Once the file has been uncompressed verify
that a compatible version of Java SDK is present. Compatible versions are
specified in the “RUNNING.txt” file that is present with the Tomcat download. If
the current version of Java is non-compatible then download a new version
from Sun’s website. The final step requires that a new environment variable be
created called, “CATALINA_HOME.” This variable will store the path of the
directory into which Tomcat has been installed. Now the Tomcat server is
ready for deployment. To start the server, execute the startup script located in
Tomcat’s bin directory.

After the server has started its time to create a web application, e.g., the
SMSC System. To create a new web application these basic steps should be
followed:

1. Create a new directory inside the “webapps” directory, e.g.,
“SMSC_System”

• This will be used for referencing the new web application on the
web

2. Place a valid JSP page inside the new directory, e.g., “smsc.jsp”

3. Restart the Tomcat server

4. In a web-browser, reference the new web application by entering
something similar to following:

• http://localhost:8080/SMSC Svstem/smsc.isp

If changes are made to the JSP page while the Tomcat server then simply
refresh the webpage and Tomcat will automatically detect the change,
recompile the servlet and redeploy it. All without having to bring down the
server.

13/03/2005 Department o f Computer Science 33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://localhost:8080/SMSC

2.4 Composing a Java Server Page

We already know how a JSP page is compiled and we know partly how it is
deployed. Well, then there is only one more question that needs to be
answered. How can one develop a generic JSP page?

A JSP page is a combination of HTML and server side script. In this case,
the server side script will be Java. The actual page can be composed in
several different manners. For instance, one could separate the HTML and
Java by placing all of the Java in a separate file. Or, another example would be
to, place all of the HTML and Java in the same file.

By placing all of the HTML and Java in separate files then the personal
methodology is completely hidden. The JSP page will handle most of the
methodology and JavaScript will handle sometimes a little bit of it. Quite often
individuals will actually go as far as to place his or her JSP page in a completely
separate place on the server and most often it will be password protected. This
ensures that the personal algorithms will not be comprised. Another advantage
of this method is that the same algorithm can be applied to multiple other HTML
files. Thus, the server side script is updated once and it affects multiple JSP
pages. Effectively, the static Java code is becoming more dynamic. Please
refer to Listing 2.2 and Listing 2.3 where this example has been illustrated with
basic HTML and a simple JSP example.

<html>
<body>
<h1>What is your name?</h1>
<form actlon="SimpleForrriHandler,jsp" method=“get”>
Name: <input type=”lext" name="firstName">

<lnput type=''submlt">
</form>
</body>
</html>

Listing 2.2: A simple HTML form

<html>
<body>
<%
// Grab the variable from the form.

String firstName = request,getParameter("firstName");
%>
< % - Print out the variable. -% >

13/03/2005 Department o f Computer Science 34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<h1 >Hello, <%=firstName%>! </h1 >
</body>
< / h t m l > _____________

Listing 2.3: A simple JSP handler for the Basic HTML form

The downfall to arranging a JSP page in this manner is that it makes for
possible tedious maintenance. For instance, if a programmer has been hired to
maintain the JSP page but does not have access to all of the files then they will
have to ask their supervisor for approval. This could very well become a waste
of time if the supervisor is out of the office. Also, if multiple pages are using the
same server side script then one must be very careful when updating the script.
A slight change could alter other pages in a negative way making them
inoperable. Now that a couple of different scenarios have been introduced.
Let’s look at three different methods in more detail.

2.4.1 An Enhanced SMSC Model

There are many different ways to compose a JSP page. We already know
how a JSP page is compiled and we know partly how it is deployed. Well, then
there is only one more question that needs to be answered. How can one
develop a generic JSP page?

A JSP page is a combination of XHTML and server side script. In this case,
the server side script will be Java. The actual page can be composed in
several different manners. For instance, one could separate the XHTML and
Java by placing all of the Java in a separate file. Or, another example would be
to, place all of the XHTML and Java in the same file. Each of these methods
has various different perks but they’re only advantageous if the JSP page is
simple [Seshadri, 1999]. The reason for this is that these methods encourage
the developer to mix business logic with presentation logic. If the JSP page is
complex then it can become a delicate job to modify it.

Other developing languages that encourage this style of employing dynamic
pages are ASP and Hypertext Preprocessor (PHP) [Mercay and Bouzeid,
2002]. This style of creating dynamic webpages is known as Model 1
Architecture. The characteristic of this model is that of a collection of JSP files.
In this model the JSP page is responsible for processing the incoming request
and replying back to the client [Seshadri, 1999]. This model is notorious for

13/03/2005 Department o f Computer Science 35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mixing business logic with presentation logic. Thus, the final JSP page will be
infested with a combination of scriplets and Java code. This leads to a
complicated and tedious job of maintaining the JSP page [Unger, 2000].

2.4.2 An Enhanced SMSC Model Based on MVC Design Pattern

The first model is effective at sending a SMS message, however, it lacks
any type of structure. This second model proposes to gain immense amounts
of structure in the design of the application by applying a design pattern such
as, MVC. Applying the MVC design pattern to a JSP page is often referred to
as rescuing the JSP and servlet world [Mercay and Bouzeid, 2002].

How is this MVC design pattern represented inside the design of this SMSC
model? Well, in this case there is only one Model, one Controller and one
View. The Model is created through the use of JavaBeans. The View is
simulated with JSP pages. The Controller is a servlet. Why would one want to
use a design pattern on a JSP page? Well, design patterns are one of the key
elements in making an application generic [Sundsted, 1998]. They provide
structure for current development and they offer an abstract view to solve a
logical problem.

How does this all work? The Controller servlet is the front-end that handles
all of the HTTP requests. It will also create any necessary JavaBeans or
objects for the JSP. Finally, the Controller servlet will also determine which JSP
page to forward the request to [Seshadri, 1999]. The Controller servlet is also
used for computation intensive tasks. The JavaBeans are used for storing
information. The information might be user information from a form or
requested information. The JSP page will have absolutely no processing logic
with itself [Mercay and Bouzeid, 2002]. It is used as a presentation layer. The
responsibilities of the JSP page are to retrieve any objects created by the
Controller servlet. It should only extract the dynamic content and place it within
the static page.

This model is definitely an improvement from the Model 1 Architecture. It
separates the business logic from the presentation logic. It also has a design
pattern to base the intended construction around. The design pattern will help
eliminate random logic in the presentation layer. Or in other words, as the site
grows and expands this problem will effectively be eliminated if the design
pattern is followed. The drawback to this model of the SMSC is that the MVC

13/03/2005 Department o f Computer Science 36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

design pattern does not have to be followed. It still leaves the door open for a
lot of misplaced code [Unger, 2000].

2.4.3 An Enhanced SMSC Model Based on MVC Design Pattern using

Struts

Struts is an open source initiative sponsored by the Apache Software
Foundation. It is based around the MVC design pattern. It was actually
developed to encourage the MVC design pattern within a web application’s
presentation layer [Coen and Nanduri, 2003]. Struts uses JSP to help achieve
the presentation layer. Struts is often referred to as a generic Controller servlet
in the MVC design paradigm.

The Controller servlet is built right into the Struts framework. The Struts API
comes with several classes that are created by the Controller servlet. The
generic Controller servlet will provide the initial entry point for all HTTP requests
routed to Struts [Mercay and Bouzeid, 2002]. As with the previous model, the
generic Controller servlet will automatically create JavaBeans based on request
parameters. One of the things that distinguish Struts from the previous model
is that the Struts framework has a built-in implementation of the Controller
servlet. In the previous model, the developer has to build the Controller servlet.

In Struts, the model is represented as one or more JavaBeans. As with the
generic Controller servlet. Struts provides a wide variety of built-in classes for
handling the Model, e.g., the Action, ActionForm or Action Error classes. The
JavaBeans of the Model are typically represented by one of the following forms
[Mercay and Bouzeid, 2002];

1. Form Beans: Holds any attribute that was passed either on
URL or in a POST.

2. Request Beans: Holds information needed to generate HTML,
XHTML, XML, etc.

3. Session Beans: Holds session information that persists between two
HTTP requests by the same user.

In the previous model’s case, the developer is not provided with any
predefined JavaBeans and must build these objects from scratch.

13/03/2005 Department o f Computer Science 37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The View is basically represented the same as in the last implementation’s
case because both use JSP. The only minor change is that Struts provides tag
libraries for inserting the dynamic content. The libraries will assist in making the
presentation layer well-formed and avoid using any Java code in the View. The
libraries are [Mercay and Bouzeid, 2002].

1. HTML; Helps create well-formed HTML tags

2. Beans: Assists with manipulating Beans

3. Logic: Implements logic constructs based on bean values

4. Template: Handles page templates

Struts handles all of its request-to-action mappings by reading a
configuration file called, “struts-config.xml.” Each mapping defined in this file
causes an instance of the ActionMapping class to be constructed and loaded
[Agerwai, 2003]. A mapped object is related to an Action class that implements
it. Optionally an ActionForm bean can be used to store the request’s data form.

Struts offers an innovative way of representing the MVC design pattern.
The actual Struts framework makes it unarguably easy to develop and maintain
Enterprise Applications. The tag library comprises the most robust presentation
described [Unger, 2000], which makes developing a generic application safe.
However, Struts does have a few drawbacks. For instance, if the Enterprise
Application is complex then the struts-config.xml file can become complex and
difficult to maintain. It has been suggested that Microsoft Visio or StrutsGUI will
help organize the struts-config.xml [Coen and Nanduri, 2003].

2.5 Summary

This chapter proposed several ways to deploy an SMSC. It investigated how
design patterns could be applied to the SMSC to make it more robust and tidy.
The first version proposed was very unkempt and it required some work. In the
following version the MVC design pattern was applied to the SMSC architecture
and this helped immensely with the organization of the SMSC. The third and
final version suggested Struts to aid in the development. Struts is very useful
since it automatically applies the MVC design pattern. It also proved to be
useful because the components of the MVC design pattern are already

13/03/2005 Department o f Computer Science 38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

developed in a generic way and it is manipulated to meet one’s needs. For
instance, Struts comes with action classes to handle the “Controller” part of the
MVC design pattern. This prevents the developer from starting the MVC design
pattern from scratch and quite possibly making a critical design error. It also
makes the MVC more object-oriented since this design pattern can be quickly
applied through the use of objects.

On top of developing the SMSC in three different methods this chapter also
discussed feasible servers for the SMSC to live in. Two servers were
discussed and both are suitable for the “Generic Web-Based SMSC”. Both
servers discussed are Java based servers that will support JSP and servlets.

Lastly, this chapter discussed a Java API called, SimpleWire. SimpleWire is
the server that will be delivering the SMS message to and from the SMSC.
SimpleWire was chosen because it was found to be effective and it met the
SMS standards. A service had to be chosen and this is a good choice.
SimpleWire supports Java and it guarantees service to the major global leading
mobile devices.

13/03/2005 Department o f Computer Science 39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Implementing a Generic Faculty Short Message System

Center Using Various MVC Design Pattern Implementations

With so many SMSC’s already built and deployed the need for another almost
isn't there. However, it is still evident that the need for a new SMSC is required
[Harron, 2002]. The previous SMSC suffer from a lack of generality, see
Section 1.7. This chapter develops a generic SMSC based on MVC design
pattern. There are many reasons why the MVC design pattern promotes
generality.

In this chapter, three different implementations to the generic SMSC
application are presented. One that utilizes just JSP technology and two that
take advantage of the MVC design pattern. Their consequences are discussed
in the chapter conclusion.

3.1 SMSC using JSP

In this model, the business logic has been mixed with the presentation logic. It
makes the SMSC incredibly easy to develop, however, it is not the greatest for
readability. Appendix A.1 illustrates the server-side JSP page that is used for
viewing and sending the message. As one can see, the XHTML code is
intertwined with the Java code.

The JSP page in Appendix A.1 is laid out as follows. First, the title is
defined and outputted to the screen. Then error-checking is executed amongst
the XHTML output. Further down in the interpretation the logic behind sending
a message has been inserted and is in fact processed. To send a message,
one simply creates a new SMS object, which is in fact a SimpleWire object.
SimpleWire requires that a Subscribers ID, password, the receiving phone
number, and lastly the message. After the SMS object has been initialized then
the SMSC makes a call to msgSend and the SimpleWire server will deliver the
message. Upon sending the message the SMSC verifies that it was sent
successfully by making a call to isSuccess. The SMSC will display a
verification of the message’s status.

This method of deploying the SMSC has lots of generality. As we already
know, JSP and XHTML are standards that cover multiple platforms. Is the
XHTML in Appendix A.2 produced by this SMSC well-formed? It is considered

13/03/2005 Department of Computer Science 40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to be well-formed by W3C XHTML validator’s standards and therefore can be
considered as generic as XHTML [McLaughlin, 2000]. This model is a generic
version of the SMSC, however, it suffers from a lack of structure. It simply
places all of the business logic and presentation logic into one jumbled up
mess. The “Generic Faculty SMSC” has been captured in Figure 3.1. This
method of composing the SMSC lacks structure because it doesn’t have a
design pattern [Seshadri, 1999].

Generic Faculty SMSC

Message:

Individual's Telephone N um ber (use a
com ma to delimit multiple phone

numbers):

Send 1 Reset I

I will not bother SimpleWire

Figure 3.1 : Screen shot of the SMSC using just JSP

3.2 MVC SMSC using JSP

This model attempts to learn from the previous model’s flaws while attempting
to build off of its pros. Once again, the strong points of the first model were it
uses a universal developing language JSP, the produced output is the strictly
standardized XHTML and its generality. It lacked structure. How can structure
be added to this SMSC? Well, the most efficient way is to apply a design
pattern, such as, MVC. The MVC design pattern specifies where the business

12/04/2005 Department o f Computer Science 41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

logic and presentation logic should be placed [Sundsted, 1996]. It also frowns
upon mixing the two. Figure 3.2 illustrates a block-diagram of this method and
it will be discussed in subsequent paragraphs to follow.

Controller Servlet waits for an
HTTP Request

Ï
View sends an HTTP Request

to the Controller

/ \/ I f there a re \
Report the error / errors then \

\c re a te an e m ry^
\ report /

\I
The Controller sends the content of the j

message to the Model

I
The Model will attempt to send the and

return the message status

I
The Controller returns the

I message status to the view

Figure 3.2: The MVC Flow Diagram of the SMSC

The MVC design pattern is broken into three parts, that is, the Model, View
and Controller. This version of the SMSC naturally uses the same distinctions.
The Model, View and Controller were called “ModeI.java”, “View.jsp” and
“Controller.java”, respectively. The three can be located in Appendix B.1,
Appendix B.2 and Appendix B.3, respectively. In this model, the SMSC starts
with the Controller. The Controller checks for any http requests, if none then it

12/04/2005 Department o f Computer Science 42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

forwards the browser to the View and idly waits for a request. Once there is a
request, then it does some error-checking and it will attempt to send the
message by informing the Model to send the message. If there was an error,
either with the phone number or with sending the message, then the Controller
will forward the error onto the View so that the user can correct the error. Once
again, if there was no error and the message was sent successfully then the
Controller will inform the View to display that. A UML diagram has been
provided in Figure 3.3 to show the associations between the different segments
of code.

HttpSeiviet ? s

View
ConlroHer

tdoGel
+doPost
+foi'watd

Model

+sendMessage

SMS

+isSuccess
+msgSend

- +selMsgCailfa3ck
+setMsgFrom
+setMsgPi!i
+selMsgText
+setSubscribei!D
+seîSubscribeiPasswotd

Figure 3.3: The MVC UML Diagram of the SMSC

The Controller’s job is a really important one and everything in the SMSC
revolves around it. In this model, the Controller is a servlet and it’s superclass,
or parent, is the HttpServlet class. The HttpServlet class is part of the J2EE
bundle. The Controller overrides two of the parent’s methods, both of which
are for retrieving the user information from the View. The methods are called,
“doGet” and “doPost”. The latter simply makes a direct call to "do G et”. doGet
will do some error-checking to make sure that the user inputted a correct phone
number and a message. If an error is found then it will store the error-message
in the error-variable and call the “forward” method. The “forward” method will
redirect the browser back to the View. However, if there were no errors
detected then the Controller will proceed to give all of the heavy processing to
the Model. The Model will return a message stating if the message was sent

12/04/2005 Department o f Computer Science 43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

properly or not and the Controller will pass this information onto to the View so
that the user can see it.

The View looks similar to the previous model. There are a few significant
changes though that should be pointed out. First, the error-checking is no
longer executed from the JSP page. In terms of error-checking, the View
checks for an error in the error-variable and displays one if there is one found.
The XHTML-form is almost the exact same except for the value of the action-
attribute in the form-tag. The previous model required this attribute to be the
same JSP because it had all of the error-checking and sending logic. In this
model, the value of the action-attribute should be the Controller servlet. The
last change is that the sending logic has been moved to the Model.

The Model is a JavaBean. This JavaBean creates a new SMS object that
will be used to communicate with the SimpleWire server. The JavaBean will
inform the SimpleWire server of the Subscribers ID, password, the receiving
phone number and the message. This differs from the previous model where
the JSP page did all of this. The Model will inform the Controller of the sent
message’s status.

This model builds off of the previous models generality. It uses the same
generic developing languages, such as, Java and JSP. It also has a distinctive
generic output of XHTML. This model exceeds the previous attempt because
of its structure that has been provided through the use of the MVC design
pattern. If the design pattern is followed when developing the SMSC it will have
lots of structure [Shin, 2003]. However, how can the design pattern be
enforced? It’s really optional and if there are multiple developers working on
the same project then one of them might not understand MVC. If they don’t
understand the design pattern then how are they supposed to follow it?

3.3 MVC SMSC Implementation Using Struts

In the previous two models, the flaws were fairly obvious. The first didn’t have
a design pattern and the second had a marvellous design pattern but no means
to enforce it. This model will also use the MVC design pattern and it will
enforce this structure with Struts. This implementation models the MVC design
pattern with a Model JavaBean, a Controller servlet, and a View JSP page.
Struts was built for this very purpose [Cavaness, 2002]. If the SMSC doesn’t
have a Model JavaBean, Controller servlet and View JSP page then Struts will

12/04/2005 Department o f Computer Science 44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

not deploy. Thus, this enforces the design pattern. All of this is imposed
through the “struts-config.xml” file that can be viewed in Appendix C.4. Struts
checks this XML file to see what the Model is called and where it’s located.
Please refer to Figure 3.4 for the UML diagram that explains the Struts
relationships.

As mentioned earlier, this model doesn’t start with the Controller. It starts by
interpreting the “struts-config.xml” file. This XML file will instruct Struts as to the
whereabouts of the Model and the Controller. Struts uses this file to define the
servlet and the JavaBean. It also explains what to do when the user clicks
“send” from the View. There should be an “action-mapping” for every XHTML-
form in the JSP page. The action-mapping will define which Action servlet to
use and it also specifies which Form bean to reference. After the interpretation
of the XML file, the View is loaded and the SMSC waits idly for an http request.

When there is a request. Struts will use the servlet that was defined in the
“struts-config.xml” file to handle the request. In terms of the MVC design
pattern, this is known as, the Controller, which can be viewed in Appendix C.1.
Unlike the previous model, the Controller doesn’t do any error-checking. The
Controller simply retrieves the information that the user specified and passes
this information onto the Model. If this was all successful then the Controller
will forward a “success” to the View, or, a “failure” for the opposite case. In the
configuration XML file, different JSP pages can be specified for a “success” or a
“failure”. Sometimes a special-case has to be handled differently.

The error-checking has been passed onto the form-JavaBean, please see
Appendix C.3. In Struts, every XHTML-form must have it’s own JavaBean,
which should be filled with “get” and “set” methods for every attribute in the
XHTML-form [Cavaness and Keeton, 2003]. On top of the “get” and “set”
methods this JavaBean can also throw Struts-errors. In the “struts-config.xml”
file, one can specify where the errors are located. When a Struts-error has
been thrown then the View will check the specified location for the error-code,
please see Appendix C.6. Next to every error-code is an appropriate error-
message, which the View will automatically display.

The Model, in terms of sending the message, is the exact same as the
previous SMSC. Since, the Model is a JavaBean, there was no need to make
any modifications to it. After all, one of the main features of a JavaBean is that
they are pluggable [Deitel and Deitel, 1999].

12/04/2005 Department o f Computer Science 45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SendMessage

Action 7
(from 4l«(aurt)

SendAcllont :
> ̂ rara ; ' ;

êxecute

SendForm *
z (f ro m d e tk A Q ̂s ■■

(flnW)
—r t u g s s a g è
.-^photneNum ber; ; ; •

-« •g e tM e s s a g e
“frg etP h o n a lM u m b fer :
^8^etMessage'
^s^tPhoneNumber
>frvalidat9

Model
(from «frrfauttj '

♦ sBndMessaos

SMS
(fr̂ ni 9M8)

-frhsSuccess
■ - f h n s g S ô n d , :. r % i , j ;
- + s e t M 9 gCaMb:at::k ' ; : ̂
• f r s e tM a g F ro m U : U
-► s e tM s g P tn .
- f r s s tM s g T e x t ; . ; , ;
V s e tS ù b s c r ib é r iP ; ■
" frse t S u b s c r ib e rP a s svyo r d

Figure 3.4: JSP Struts UML Diagram

G e t th e F o n n
/ V a lu e s

Struts (Controller)
Servlet

Request
instantiate

Instantiate

j Model
J JavaBean j

I Send the
! Message and
I report success
I or failer

Response j

(F o rm)
JavaBean

Action
class called

from the
Form

Produce HTTP
response

(HTML. XHTM L,
XML. C S V ...)

Browser

Figure 3.5: JSP Struts Flow Diagram

12/04/2005 Department o f Computer Science 46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Not only does Struts enforce the use of the MVC design pattern through the
use of “struts-config.xml” file but it also has a few catches for the View too. In
order for a form to operate properly in Struts, the Struts' tags must be used
[Hightower, 2004. The DTD to the Struts tags are defined in the opening lines
of the JSP page. The only drastic change between a Struts-tag and an XHTML
tag is that the word “html” is placed at the beginning of every tag. One other
minor change is that Struts has changed the tag-attribute-name from “name” to
“property”. Other than that, the View looks just like the previous model.

How does the Struts implementation fare up against the others in terms of
generality? Well, the most important thing to observe is that Struts is operating
on the same server that the other two methods operate on too. The other thing
is to see if the output from the View is well-formed or not. This is especially
crucial because the JSP page was using personal Struts tags that would be
considered not well-formed. One will notice by checking Appendix 0.5 that
Struts does a conversion and the output is most certainly well-formed by W3C’s
standards [Dudney and Lehr, 2004]. Struts is just as general as the other two
implementations.

Struts has the generality, and it not only uses a design pattern but it
enforces one. Is this a sufficient enough implementation for the “Generic Web-
Based SMSC? It most certainly is, however, one could enhance their SMSC
further by using XSLT with Struts.

3.4 Summary

This chapter implemented three versions of the “Generic Web-Based SMSC”.
All three versions are extremely generic and function well so one gets the
chance to become fussy about design issues.

The first version illustrated shows the JSP mingling with the XHTML. This
has been proven to be bad for current and future maintenance. Following the
model of the MVC design pattern, the presentation logic, i.e., XHTML, should
be separate from the business logic, i.e., JSP. In other words, this version
should not be followed because it promotes poor design architecture.

The second version implemented used the MVC design pattern to help
organize the architecture. The design goals of the MVC design pattern are to
separate the presentation logic from the business logic. This proved to be quite
feasible and the outcome was extremely readable. Providing that the developer

13/03/2005 Department o f Computer Science 47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

knows about MVC and understands it then this version is quite feasible. Even if
the developer does understand MVC this version still suffers from the
disadvantage that the developer has to continually build the MVC from scratch.
Why can’t MVC be bundled in objects so that one can quickly implement it?

The third and final SMSC version implemented used Struts. As mentioned
earlier, Struts automatically applies the MVC design pattern. It not only applies
it but it also enforces it. This aides immensely in the amount of time it takes to
apply the MVC design pattern. Plus since most of the design pattern is bundled
in the Struts’ objects, it can be quickly applied to the SMSC. Struts is a very
object-oriented package that offers the MVC design pattern as objects that can
be implemented quickly.

13/03/2005 Department o f Computer Science 48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Developing a Generic Mobile Station

4.1 Introduction

The wireless device is most often referred to as the Mobile Station (MS). An
MS could be a cell-phone, PDA, Pocket PC, etc. Our general concern is for
MS’s that are capable of receiving and sending SMS message. An MS is now
the preferred term for describing the mobile device that a subscriber uses to
communicate with a mobile network. The MS can also be described as a
wireless terminal that is capable of receiving and sending alphanumeric
messages [Malhotra, 2001].

There are many ways to design MS stations, however, any generic MS
application should pay close attention to design patterns. These patterns play
a crucial role in developing any application and this definitely includes MS
applications. Some of the traditional design patterns can still be applied to an
MS application but MS applications have slightly different design issues than
regular applications. This is because mobile devices suffer from different
drawbacks like limited viewing space and/or limited power. Therefore, if there
are different problems then various different patterns will exist for the MS.
Where there are patterns there are also design patterns to help correct these
structural problems. Some famous MS design patterns consist of the
Cascading Menu pattern, the Wizard Dialog pattern, or the Slide Show pattern
[Hui, 2002].

In addition to the usage of design patterns, the programming language used
for developing MS stations is also crucial for having a generic mobile platform.

4.2 MS General Architecture

The MS’s responsibility is to send and receive SMS messages. To start the
process, the MS must be turned on and within broadcast range. When the MS
is initially turned on it will register with the network. Network registration takes
place by a text-message going out to the Visitor Location Register (VLR), which
in-turn will contact the Home Location Register (HLR). The HLR will verify that
the MS should have network coverage or not. At this point, the HLR will inform
the VLR of the MS’s network coverage status. It will also check to see if the MS
has unsent text-messages that need to be sent to the MS. If there are any then

13/03/2005 Department o f Computer Science 49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

it will inform the SMSC that the MS is now recognized by the mobile network to
be accessible and thus the message(s) can be delivered [Harron, 2002].

After the MS is registered with the network it’s ready to send and receive
text-messages. First off, to send a message the MS transfers the message to
the Mobile Station Center (MSC) via it’s operating frequency. The send
process is demonstrated in Figure 4.1. All MS operating frequencies are
outlined in the wireless technologies document [Alphonse and Rajkotia, 2002].
The MSC is used for switching connections between MS, or between MS and
the fixed network [Malhotra, 2001]. The fixed network could in fact be any IP
address. The MSC will ask the VLR for confirmation that the message does not
violate any restrictions, i.e., the MS could have some restrictions placed on it or
a country might not allow text-messages. If the VLR okays the message then
the MSC will forward the message onto the SMSC. The SMSC will deliver the
message, and send an acknowledgement back to the MSC that the message
was delivered successfully [Harron, 2002]. The MSC will forward the
acknowledgement to the MS so the user can see the message’s status.

The MS receives a text-message from the SMSC but there is a lot more
going on than a simple message being received. All of the steps can be viewed
in Figure 4.2. The SMSC starts this process by contacting the HLR for the
whereabouts of the MS. The HLR will have routing-information stored in it’s
database. After the SMSC has the routing-information it will send the message
to the MSC using the forward short message operation [Harron, 2002]. It is the
responsibility of the MSC to retrieve the subscriber information from the VLR.
Quite often the VLR will force the MSC to authenticate itself. Once the
subscriber information has been retrieved the MSC will send the message to
the MS. Finally, the MSC will send the message status back to the SMSC. If
all of the steps were successful then the SMSC will remove the message from
its queue, otherwise it will attempt to resend it at a later date.

13/03/2005 Department o f Computer Science 50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B É S B B W lM i é t i É É l

t . A u 'W b V w u u v i t M K t ^ fV U W I t lA . 'V)k « t

2. Message
TîMJsfer

7. status F4egoft

3. Send ktfo tor 9 » r t Message

4. Fow aid Short Message

î SaSutjflUtSM

I Sb. Aefcnowtortgement (Optional)

S. OeVm y Repent

Eg

Figure 4.1 : Sending a SMS message from an MS to an SME

i.a uB to itiiM

'!

a - S o c K i f t Q u a n q j

W orm aaonfof 1
shoft message^ j

3 . f Q m a f d t S I xmI M e s s a g e

I

Deifverv jflDpiSl

7. Status Report
^ - ” J - -

j

> 4a. Send Wo
) M̂TT-SM

4b.SeodWo
fo ft tT S M (a o k)

5. Message Transfer

4 ^
Authentication

Figure 4.2: Sending a SMS message from an ESME to an MS

13/03/2005 Department o f Computer Science 51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3 Choosing the Right Test-beds for MS Stations

Test-beds and their toolkits play an important role in developing successful MS
applications. There are numerous MS available on the Internet. With so many
MS already out on the market it becomes hard to find the proper one. There is
at least one available for each mobile device. This chapter selected two MS’s
that claimed to be effective test-beds and they are the Nokia MS
http://www.forum.nokia.com/main/ and Microsoft’s Pocket PC MS
http://www.microsoft.com/downloads/details.aspx?FamilvlD=359ea6da-fc5d-
41 cc-ac04-7bb50a134556&displavlanq=en for comparison.

Nokia’s MS is built from J2ME technology. This gives them the advantage
of knowing that any software built that is developed for the Nokia MS will also
operate on over 50 company’s MS [Knudsen, 2002]. The reason for this is that
over 50 mobile companies support the J2ME runtime environment, MIDP,
which gives it the advantage of being very stable on a wide variety of mobile
devices. The Nokia MS supports MIDP 2.0 and MIDP 1.0. MIDP has already
been adopted as the platform of choice for mobile applications and is deployed
globally on millions of mobile devices [Knudsen, 2002][Ciucci et. al, 2002].

In comparison, the Microsoft Pocket PC’s MS is built from Net CF
Framework technology. This implies that it will only operate on mobile devices
that support Microsoft Windows CE and just this operating system. This is a
huge drawback since the Microsoft Windows CE only has a small portion of the
market [Yuan, 2003] [CM20143]. Thus, when an application is developed for
the Microsoft Pocket PC platform it cannot be highly deployable.

If one were to develop a MS then it would be wise to develop it from J2ME
technology. This not only assists with making the MS wider spread and more
deployable but a developer has the confidence of knowing that he doesn’t have
to test his MS application on multiple mobile devices. If an MS application
operates properly on one mobile device that supports the J2ME runtime
environment, MIDP, then it will operate properly on all mobile devices that
support MIDP. This is definitely a generic feature about J2ME that one cannot
ignore when they are developing an MS or MS applications.

13/03/2005 Department o f Computer Science 52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.forum.nokia.com/main/
http://www.microsoft.com/downloads/details.aspx?FamilvlD=359ea6da-fc5d-

4.4 Traditional MS SMS Standards

With millions upon millions of SMS messages being sent and received the
demand for a SMS standard is almost required. All of the SMSC’s shouldn’t
vary by much or the VLR, HLR, MSC or MS wouldn't know what to do with the
message. Or if the MS’s all had their own version of a SMS message then two
different MS’s couldn’t send SMS messages between each other. Luckily,
there are standards that are enforced. The SMS standard document is called,
“TIA/EIA-637-B” [TIA, TIA/EIA-637-B] and is often referred to as the technical
requirements that form a standard for a SMS message [Alphonse and Rajkotia,
2002]. This document only deals with sending and receiving a SMS message
and does not concern itself with the quality or reliability of the SMS message.

A SMS can send and receive message in either the analog or the spread
spectrum (CDMA) mode. Figure 4.3 shows a simplified view of the network
carrying SMS, including only a single SMS message relay point [Alphonse and
Rajkotia, 2002]. The “TIA/EIA-637-B” [TIA, TIA/EIA-637-B] article clearly
outlines in detail the three different SMS network-layers that were explained in
Chapter 1.2.

Mobile Station
(Bearer service

end point)

Base Station
(Bearer service

relay point)

MC (Bearer
service end

point)

SMS Teleservice
Layer

SMS Transport
Layer

SMS Relay Layer

Link Layer

Figure 4.3: SMS Protocol Stack [Alphonse and Rajkotia, 2002].

13/03/2005 Department o f Computer Science 53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5 Developing the MIDP of the MS Station

The Mobile Information Device Profile (MIDP) is a crucial part of the J2ME. It is
the backbone when running a J2ME application on a mobile device. It is, in
fact, a standard Java runtime environment for today’s most popular mobile
information devices [Knudsen, 2002]. The MIDP does not deploy a J2ME
application all-alone. MIDP was designed to run on top the Connected Device
Configuration (CLDC), which is described in JSR-139 [Ciucci et. al, 2002]. An
overview of CLDC was presented in Chapter 1.3.5. As with most developing
Java platforms, the MIDP was defined through the Java Community Process
(JCP) under JSR-118 and JSR-037. This gives MIDP the advantage over other
runtime environments because over 50 companies contributed in the
production of this [Ciucci et. al, 2002].

MIDP has been around long enough to have two versions developed. This
is the reason why there are two Java specifications in the JCP for MIDP. The
first version just offered the required core functionality so that a mobile
application could work properly. It wasn’t very sophisticated but it was still
highly deployable on multiple mobile devices. The second version was based
on the first version and fortunately it’s also backwards compatible. This implies
that all of the applications that were written for the first version are automatically
deployable on a mobile device that supports the second version of MIDP. The
second version offers an enhanced user interface, multimedia , more extensive
connectivity, and end-to-end security. These features have been outlined in
greater detail below:

User Interface: The second version of MIDP enhanced the
user interface by offering a better foundation
to graphics. Naturally, it had to be optimized
for the small display size, have varied input
methods, and offer other native features of
modern mobile devices [Knudsen, 2002].
MIDP is capable of offering navigation through
the use of the mobile device’s keypad, touch
screens, and small keyboards. The enhanced
user interface also manages local data
securely and MIDP applications are executed
from the mobile device.

13/03/2005 Department o f Computer Science 54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Multimedia

Extensive Connectivity

MIDP is quite efficient at handling Multimedia
applications [Ciucci et. al, 2002]. Through the
use of a high-level Ul API, developers have
utmost control over graphics when they need
it. MIDP multimedia comes with built-in audio
so it makes it easier for a MIDP application to
have sound. This will make it straightforward
for a user to notice an error if the MIDP
application “beeps” at them.

The extensive connectivity that was offered in
the second version of MIDP was really crucial
in order for MIDP and J2ME to survive. It not
only offers leading connectivity standards that
include HTTP, HTPPS, server sockets, serial
port, etc. [Knudsen, 2002] but it also made it
possible for a MIDP application to send and
receive a SMS or CBS message. With so
many applications requesting the transmission
of a text-message via a mobile device it’s no
wonder that the MIDP specification was
enhanced to offer this service.

End-to-end security End-to-end security offers MIDP applications
the chance to use existing secure options
when required. For example, a MIDP
application that needs to send or receive
encrypted data can now do this because MIDP
now supports https and thus it would also
support SSL.

4.6 Reviewing some Essential J2ME API

Why was J2ME chosen for developing a generic Mobile Station application for
sending and receiving SMS text-messages? Well, J2ME is in a class of its
own. There are only a limited number of choices when selecting a
programming language to develop a mobile application. While, there are
competitors to J2ME but J2ME surpasses them in generality and in the case of
SMS, functionality too. J2ME’s opponent, .Net CF, doesn’t quite have the

13/03/2005 Department o f Computer Science 55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

generality that J2ME has because J2ME is platform independent. .Net CF is
not platform independent because .Net CF applications only operate on
Windows CE Operating System. This gives J2ME more versatility and also an
advantage over other mobile programming languages.

In order to create a generic MS application the J2ME developing language
must be utilized. What does J2ME have to offer in terms of providing the
developer control over a mobile device? The J2ME API is quite extensive and
very thorough when it comes to a handling a mobile device. There are certain
classes that have to be utilized in order for a J2ME application to operate a
mobile device. The classes will be outlined below:

• MIDIet The MIDIet class is used by all of the applications because
this allows the application management software to control
the MIDIet. Once the application management software
has control then this allows it to create, start, pause and
destroy a MIDIet. A MIDIet is a set of classes designed to
be run and controlled by the application management
software via this interface [Sun, J2ME-API]. It is the
responsibility of the application management software to
maintain which MIDIets are active. This is achieved by
using the start and pause states. It is possible for a MIDIet
to change it’s own state but it must inform the application
management software of such a change.

• Alert The Alert class is used for relaying information back to the
user. Typically, a message, or an alert, would only be
displayed on the screen for a short period of time. Alert
should only be used for displaying error(s) or other
exceptional conditions. If the Alert is very important and it
is crucial that the user reads it and acknowledges it then
the Alert’s display time could be set to infinity. In this case,
it would be the responsibility of the user to dismiss it.

• Command The Command class is purely a construct class that merely
encapsulates the action but the actual action is handled
through an interface [Sun, J2ME-AP1]. If a J2ME
application wishes to control a button on a mobile device
then it would use this class. Please refer to the example
provided in Appendix D for a further example.

13/03/2005 Department o f Computer Science 56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Display Use the Display class to handle all input and output to the
mobile device. There can only be one instance of the
Display class per a MIDIet. Since the Display class doesn’t
have a constructor, one obtains the instance of Display by
calling, “getDisplay” method. Typically, the user interface
objects that are viewed on a display device are contained
within the Displayable object.

Displayable The Displayable class encompasses all objects that can be
displayed. A Displayable object have a title, a ticker, zero
or more commands and a listener associated with it [J2ME
API]. By default, a new Displayable object is not visible,
the title is null, there are no commands present and lastly,
there isn’t a listener associated with it.

The classes mentioned above can be used to create a MIDIet but that
MIDIet doesn’t have any text-messaging capabilities. In order for a J2ME
application to offer SMS capabilities the following classes have to be utilized;

• T extbox First off, we need to provide means for the user
to enter a destination address and a text-
message. The Textbox class is introduced for
this purpose. It displays a screen on the mobile
device that allows the user to enter and edit text.
The developer has the ability to specify a
maximum size, which is the maximum size a
destination address or text-message can be.
This maximum will be enforced by the MIDIet.
The mobile device will decide how many rows
and columns to display depending on its display
size.

MessageConnection After the user has composed the message then
we need means of sending it. To start this
process MessageConnection is required because
this class provides the basic functionality for
sending and receiving message [Sun, J2ME-
API]. In order to send or receive a message the

13/03/2005 Department o f Computer Science 57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Message class is required because this class has
the means to store the message. The
MessageConnection will automatically calculate
how many message segments to break the text-
message up into. The developer might set a
Textbox maximum at a 1000 characters but the
actual size of a SMS text-message cannot be
that large. Therefore, a large text-message
might need to be sent in separate segments so
that it can meet the standards.

MessageListener

Message

To receive messages, the MessageListener
interface should be implemented and it should be
registered with the MessageConnection. Thus,
when new messages are received the
MessageConnection will be notified and the
developer must use MessageConnection’s
“receive” method. Another rule that must be
followed is that the receive method should never
be called inside MessageListener because it can
never occupy itself with receiving messages.

The Message class is the base interface for
messages of varying types [Sun, J2ME-API],
This implies that the message stored in this
object is not necessarily a text-message. The
Message class can be used for storing generic
non-specific messages. These messages could
be plain text or binary.

4.7 Developing a Generic Mobile Station SMS application using J2ME

There are any number of J2ME SMS applications already pre-built and pre­
deployed. Sun Microsystems even provides a pre-built J2ME SMS application
that can be deployed on any mobile device that supports J2ME. Their J2ME
SMS application will be presented here in this Chapter. The SMS demo
application is an example MIDIet suite that demonstrates SMS features. The
demo uses MIDP 2.0. On top of the Sun SMS application a further enhanced

13/03/2005 Department o f Computer Science 58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SMS application will be presented that has been restructured and made more
generic by using design patterns.

4.7.1 Sun Microsystem’s MS SMS Application

In the J2ME toolkit the SMS application is called, “SMSDemo.” The SMS
demo is broken into 3 different classes.

• SMSReceive Used for displaying received SMS messages

• SMSSend Prompts for a destination address and a message

• SMSSender This class will do all of the sending and receiving of SMS
messages

This particular demo was built for the Java 1.4 SDK. To simulate the SMS
demo on an emulator use the “run” script located in the “bin” directory. The
emulator that is displayed will be considered the mobile device for the duration
of this demo. It can be viewed in Figure 4.4.

Figure 4.4: Sun MIcroSystem’s Emulator

The application management software, i.e., the emulator, can utilize the
SMSReceive object. It will specify when to start, pause and destroy the MIDIet.
The SMSReceive object does override these methods so that they will operate

13/03/2005 Department o f Computer Science 59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

properly. When a SMSReceive object is initiated it creates an instance of the
SMSSender object. This object will be used later if the user chooses to reply to
a received message. The SMSReceive object has the ability to handle user
actions, i.e., the user might press the “exit” key and the SMSReceive should do
the appropriate action.

When the SMSReceive object starts it will designate a message listener and
it will also start the receive message thread. In this particular application, the
SMSReceive object handles the thread. The thread will check for a received
message with the aide of the MessageConnection object. If it finds a received
message then it will display the message on the screen and continue to check
for more incoming messages. At this point, the user has the option to reply and
the thread will add this action command to the user’s display area.

SMSReceive is destroyed when the SMS connection is closed. Also, the
receive-thread is stopped and the object is nullified.

The next object that will be discussed is the SMSSend object. This is
similar to the previous MIDIet except that it does the reverse role. This object
handles retrieving the destination address and text-message from the user. It
too handles user commands and it will perform the appropriate actions. When
this object is initiated it creates a destination address object and it too creates
an SMSSender object. When the user is ready to compose a message they
are prompted for a destination address. The destination address is tested to
ensure that it’s valid. If it is valid then the message is sent through the use of
the SMSSender object.

The SMSSender object is the only object in this application that doesn’t
extend the MIDIet class. When an instance of this is created a TextBox object
is also created that will be used for inputting the message. The SMSSender
object has a prompt and send method. This method will display the input
TextBox object and SMSSender will wait idly for the user to click the “send”
button. When the “send” button is pressed it will be detected and controlled by
creating a new Thread that SMSSender will handle. To send the message the
SMSSender object creates a new MessageConnection object. The body of the
message will be passed to the MessageConnection object and it’s
corresponding “send” method will be called. If there are any errors then they
will be caught by the SMSReceive object.

This SMS application that was developed by Sun with mobile devices in
mind works quite efficiently. It achieves its goal of sending and receiving SMS
text-messages all through the use of J2ME technology. It was built for MIDP

13/03/2005 Department o f Computer Science 60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.0 and the latest version of CLDC. Since it utilizes J2ME, it also comes with
certain guarantees. For instance, it will be easily deployable on any mobile
device that supports MIDP 2.0, which is currently supported by over 50
companies [Knudsen, 2002].

How could the provided SMS application be enhanced further? After it’s
been tested and it works properly then a design pattern could be applied.
Design patterns are proven to help with the current and future maintenance and
architecture of the application. Also they assist in making application generic.
With so many design patterns to choose from, one has to be very careful to
apply the correct pattern. In order to apply the design pattern, the pattern must
exist in the code first.

4.7.2 A Generic MS Application using the MVC and Wizard Design

Patterns

This chapter will introduce a generic MS application for sending and receiving
SMS applications. The application is built from J2ME technology. J2ME was
chosen because it has been proven to be the most generic solution for
developing applications for mobile devices. Two design patterns have been
applied to the architecture of this application. They are used to assist in
developing the application. Through the use of the design patterns and the
developing language the proposed MS application is generic.

The first design pattern that was applied to the generic MS application for
sending SMS messages was the MVC design pattern. The Cascading Menu
pattern was considered first because this particular design pattern is actually a
scaled down version of the MVC design pattern. However, the SMS application
required the use of the Controller so the entire MVC design pattern was used.
The MVC design pattern was implemented with 4 classes. The Controller can
be viewed in Appendix E.1. The View can be viewed in Appendix E.4. There
are two Models. One Model for sending a message, which can be viewed in
Appendix E.3 and the other Model, is for receiving a message, which can be
viewed in Appendix E.2.

The Controller does all of the message listening and all of the command
listening. Effectively, everything passes through the Controller and it will
distribute the work appropriatly. Please refer to the UML diagram in Figure 4.5.
In Figure 4.5, the Controller can be viewed as the core component of the

13/03/2005 Department o f Computer Science 61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

generic MS application. There are associations between the Controller to the
Models and vice versa. The same relationship exists between the Controller
and the View. The View and the Model never communicate directly with each
other.

SMS_MS_View
Ifromdefeu#)

contentAlert
destinationAddressBox
display
errorAlart
messageBox
screen
sendingAlert

SMS_MS Controller
(fnom je k u H)

SMS MS Model Send
(from d e b u lt)

!-------------
;____________tu s e s> .
i 0 -1 smsController.
} sms V iew
i
!

backCommand
createCommand
doneCommand
exitCommand
nextCommand
replyCommand
sendCommand
smsPort

smsController

content
destinationAddress
message
msg
senderAddress
sehdSMSConn
smsPort
thread

; «uses»~ ^

Î smsController'

receiveModel

SMS MS Model Receive
(fromaewg

msg ,
senderAddress
smsconn

: thread

Figure 4.5: The UML Diagram of the Generic MS SMS Application

Let’s consider the case when a message is received as in Figure 4.6. The
Controller would test to see if there is a new message on the queue. If one
exists then it would tell the Model to retrieve it. When the Model is finished
retrieving the message it would inform the Controller that it has completed. The
Controller would tell the View to display the message on the screen. The
Controller also informs the View to display two buttons for the user. One of the
buttons is for exiting and the other is for replying. If the user clicks the “exit”
button then the Controller exits the application. If the user clicks the “reply”
button then the Controller tells the View to display a textbox on the screen for
inputting the user’s message. In this case, there is no need to input the
destination address because we already know it.

13/03/2005 Department o f Computer Science 62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A similar situation occurs for sending a SMS message in Figure 4.7. When
the user clicks “new” button the Controller tells the View to input the destination
address and to display two buttons. The first button will exit out of the compose
section of the SMS application. The other is for moving to the next stage of the
message composition. The Controller will wait idly for the user to input the
destination address. After the address has been inputted it tells the Model to
test if the destination address was correct. If it was not correct then the
Controller tells the View to display an error message on the screen. If it was
correct then it would inform the View to display the textbox for inputting the
message. When the user finishes inputting the message then it tells the Model
to send the message to the destination address. If all of this was successful
then the Model informs the Controller and in turn the Controller informs the
View. Naturally, the View displays a message sent confirmation on the mobile
device’s display screen for the user’s information.

Obviously the MVC design pattern played the most crucial role in this MS
application, however, the Wizard Dialog pattern was used too. This design
pattern is for collecting information before performing a task [Cepa and Mezini,
2003]. Therefore, this design pattern was used to retrieve the destination
address and text message before sending the message to the intended inbox.
Both Figure 4.6 and Figure 4.7 illustrate the Wizard Dialog pattern. The first
Figure shows it at the very ending where the user clicks the “Reply” button then
the Wizard Dialog plays it’s small but important role of collecting the user data.
In the second Figure, the Wizard Dialog is used throughout the entire Figure
because the entire Figure is collecting user data.

4.8 Summary

In this chapter, the Mobile Station was introduced in greater depth. The
process of sending and receiving a SMS message was explained. The SMS
standards were also introduced because these standards are crucial in order
for a SMS message to conform to the rest of the SMS messages.

J2ME was introduced as the preferred language of choice for developing a
mobile device application. It’s runtime environment, MIDP, is supported on
over 50 companies that produce mobile devices. This makes it highly
deployable and very generic. The advantage of J2ME is that it follows Java’s
motto of “Write once, run anywhere.” The J2ME API is quite extensive and
programming in J2ME is just as easy as programming in J2SE.

12/04/2005 Department o f Computer Science 63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T h e C o n tro lle r
d e te c ts th e m e ssa g e

"M essage \s
R e ce ive d

M S
C o n tro lle r

T h e C o n tro lle r d e le g a te s th e _
w o rk to th e re c e iv e M ode l

R e c e iv e
M o d e l

T h e M o d e l re tu rn s th e
re c e iv e d m e ssa g e

T h e C o n tro lle r te lls th e V ie w
to d is p la y th e m e s s a g e

T h e C o n tro lle r lis te n s fo r the
"D o n e " o r "R e p ly " bu tto n

T h e I
C o n tro lle r I

T h e V ie w

T h e C o n tro lle r d e le c ts the
"D o n e " bu tto n an d q u its

I A p p lic a tio n
Id le

T h e C o n tro lle r lis te n s fo r the
"B a ck " o r “ S e n d " bu tto n

T h e C o n tro lle r d e te c ts th e "B a ck *
b u tto n an d te lls th e V ie w to d isp la y

th e d e s t in a tio n a d d re s s ^

Wizard Dialog Pattern

T h e V iew

T h e
C on lroH e r

The Controller detects the
“Reply" button and tails the
View to Input tho message

A p p lic a tio n
Id le

T h e V ie w

line Controller detects the
“Send" button and tells the
Model to send the message

Figure 4.6: A flow diagram for a message ttiat Is received. Ttie MVC and
Wizard Dialog design patterns can be visibly noted

One of the SMS applications that were discussed in this chapter was
distributed by Sun and automatically comes with the J2ME package. It is
generic and very dynamic. One could easily deploy this on any mobile device
that supports MIDP. The only visible drawback of this MS application is that it’s
lacking a design pattern. Without a design pattern the application will become
tedious to maintain.

12/04/2005 Department o f Computer Science 64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

message
The Controller detects the ^

"new" message button ^
MS

Controller
The Controller tells (he View (o
input the destination address

The View
The Controller detects Hie 'nexl'i-------- ,-------

button and tellE the Model t o ------ J

The
verify Itie destination address

Model I

Ttie Model detects that the J
destination is invalid

I The Controller tells the View
I display an error and le-input —

r 4 - |
j Controller t

The V

The Model accepts ttie
destination address

The Cortnolier tells (ho View
to input the message

The Controller waits

The Controller listens for the
"Back* or Send' button

c
The

Controller

The Controller detects the'Back*
button and tells the View to display

the destination address
A(inliu<iticn

The Coptrotter detects the
"Send* txjiton and tells the
Model to send the message

Figure 4.7: A flow diagram for sending a SMS message. The MVC and
Wizard Dialog design patterns can be visibly noted

The other SMS application that was discussed in this chapter was the
generic MS application for sending and receiving SMS messages. It too is very
generic and dynamic. One could easily deploy this on any mobile device that
supports MIDP. Obviously, this MS application built upon the previous MS
application’s advantages, however, this application is slightly more
sophisticated because two design patterns were applied to its architecture.
MVC is the main design pattern and it affects the entire architecture. The
Wizard Dialog design pattern was applied for retrieving user input before
sending the SMS message.

Both applications have been tested on the J2ME emulator that Sun
provides. They were also further tested on Motorola’s emulator and Nokia’s

13/03/2005 Department o f Computer Science 65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

emulator. The generic MS application for sending and receiving SMS
messages lives up to the test. Since it is deployable on these emulators that
support J2ME runtime environment, MIDP, then the developer has the
satisfaction of knowing that it will be highly deployable on a wide variety of
mobile devices.

13/03/2005 Department o f Computer Science 66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Conclusions and Future Research

5.1 Thesis Summary and Findings

This thesis developed two generic applications. Both are used for sending and
receiving SMS messages. The first application was a web-based SMSC. The
latter was a mobile-application that could be easily deployed on mobile devices.
We found that the most ideal way to achieve generality for the web-based
SMSC was through the notion of design patterns.

The SMSC utilizes these findings by first building the SMSC with the aide of
JSP. JSP is an extraordinaire language to develop with [Dyck, 2000] but it’s
clearly too easy for a developer to stray from an architectural design, if one is
even present. We turned to design patterns to help maintain the generality.
The MVC design pattern offered the necessary structure that was required.
The MVC design pattern is quite often paired with JSP. The reason for this is
that MVC design pattern strives to make the developer’s job as abstract as
possible [Sauter et al, 2004]. This is achieved by breaking an application into
three components. That is, the Model, which does the brute work, the View,
which is strictly used for display purposes, and the Controller, which governs
the entire program. We found that this implementation worked fine, however, it
was still too easy to deviate from the design pattern. Thus, the Struts
framework was introduced. Not only does Struts implement the MVC design
pattern but also it enforces it. The best part about Struts is that it enforces the
MVC design pattern through the use of objects and XML [Sauter et al, 2004].
The Struts’ objects are used for quickly applying the MVC design pattern and
the XML configuration file is the backbone that verifies the objects were used
properly. The Struts MVC SMSC implementation proved to be the most
generic. It not only has a good developing language like Java but it also has an
enforced design pattern.

The SMS application for sending and receiving text-messages for mobile
devices also uses Java technology. However, the mobile device only has
limited resources so the Java Community developed J2ME. We found J2ME
relatively easy to develop with and it is by far the most generic developing
platform for mobile devices [Subramanian, 2001]. It’s runtime environment,
MIDP, is supported on over 50 companies that produce mobile devices.

There were two implemented versions of the SMS application for the mobile
device. The first was an application that is provided by Sun Microsystems.
This application was developed with J2ME technology. It naturally works and

13/03/2005 Department o f Computer Science 67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

since it was developed using J2ME it could be easily deployable, however, it
doesn’t use a design pattern. Since design patterns add to current and future
maintenance, plus they add to the generality [Sauter et al, 2004] then this
application was not satisfactory.

We looked at design patterns for mobile devices and discovered that the
Wizard Dialog pattern would be useful when the user is composing a new SMS
message. The Wizard Dialog pattern offers the proper structure to collect
information via two buttons, i.e., “back” and “next” before performing a task
[Brown and Dhaliwal, 2002]. Thus, we applied that design pattern but we were
still not satisfied because the rest of the application was lacking structure. We
feared that it would lose its generality over time. To maintain the entire
application the MVC design pattern proved to be useful once again. For the
SMS application for mobile devices, the main design pattern was MVC and
within MVC the Wizard Dialog pattern was used.

5.2 Analytical Comparison of the Generic SMS Applications

Although there are numerous other SMS Systems already developed most
of them suffer from various different drawbacks. For instance, in Barry Harron’s
thesis, he used Java technology, which is good because Java is a generic
programming language but his application was only concerned with the PC
sending a message to the mobile device. Therefore, he didn’t develop a
generic SMS System but a generic SMSC. Another drawback occurs in Vivek
Malhotra paper because the source code will only work on a Microsoft PC or
Server. The reason being is that it is written using Active Server Pages and
VBScript, each of which may not be supported on other Operating Systems.

In comparison to the generic SMSC and MS applications, the SMSC wasn’t
written with just Java but JSP. Another plus comes to the generic SMSC when
one starts to analyse the architecture of it. The other SMSC did not apply a
design pattern and we found this to be a critical error in their designs. With the
use of the design patterns and JSP the SMSC is deployable on any server.
Thus, the generic SMSC is easily and highly maintainable.

As with the SMSC’s, there are lots of MS’ applications. We didn’t care for a
lot of them though. The existing applications were not generic enough or they
had poor architectural designs. We chose a nice generic developing platform,
J2ME that is highly deployable on countless mobile devices. J2ME offers the

13/03/2005 Department o f Computer Science 68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

generality that we were trying to succeed. Any of the SMS applications
developed for the mobile device lacked any type of structure. It is hard to
achieve generality without structure and structure is gained by utilizing design
patterns. Thus, we decided that the generic MS application required a design
pattern.

The need for an entirely generic SMS System is evident and not just the
SMSC but the whole SMS System. After all this is one of the key attributes to a
successful SMS System. The other keys are for it to be cost efficient, easily
deployable, and for it to work anywhere at anytime. This can be easily
achieved through the use of Java technology. Java has been proven to be a
generic language to develop applications for, either a SMSC or a mobile device.
Since Java can be developed to run on any platform or almost any mobile
device this makes it very cost efficient, easy to deploy and it can work anywhere
at anytime.

5.3 Chapter Summary

5.3.1 Chapter 1

This Chapter investigated the idea of having a generic SMS and the
traditional SMS system architecture has been explained. For example, it
explained the difference between the SMSC and MS. The Chapter also
explained current SMS applications for the SMSC and MS. It outlined possible
developing platforms for a SMS application, detailing their pros and cons.

5.3.2 Chapter 2

This chapter’s focus is on developing a generic SMSC application. The first
part of this chapter explores the differences between a local SMS application
and a web-based SMS application with the web-based prevailing. The next
part of the chapter discusses possible platforms to house the web-based SMS
application. We decided upon Java’s JSP as the primary developing platform
because the JSP technology has the Java motto of “write once, run anywhere.”
The final part of this chapter investigated how to build the SMSC using JSP
technology. There were three implementations that were investigated, all used
JSP and the last two used a design pattern. The first was generic but lacked
structure. It proposed to place all of the business and presentation logic in the

13/03/2005 Department o f Computer Science 69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

same JSP page. The second implemented the MVC design pattern, which
improved the structure of the SMSC application immensely. However, we grew
concerned that the MVC would be lost in future extensions so the third
implementation investigated the possibilities of using Struts to enforce the MVC
design pattern.

5.3.3 Chapter 3

This chapter developed a generic SMSC application for sending and
receiving SMS messages. This chapter outlines the three stages in order to
achieve this goal. The first part of this chapter implements the generic SMSC
through the use of a single JSP page. This operated properly, however, it could
be improved enormously by adding some organization to the logic. The second
part of this chapter implemented the generic SMSC application by developing it
through the MVC design pattern. This pattern divides the logic and distributes
the work. In other words, it offers structure and stability. The last part of this
chapter realizes the importance of the MVC design pattern and comprehends
how crucial it is that the MVC design pattern is executed exactly. The final
implementation uses Struts to impose the MVC design pattern on the structure
of the SMSC application. This is achieved because Struts will not deploy if the
MVC design pattern has deviated from the norm.

5.3.4 Chapter 4

This chapter explains the architecture of a MS. The first part outlines in
detail the necessary steps in order to send and receive a SMS message. It
also discusses SMS standards, which are essential if one is to develop a
generic MS application. Next it investigates test-beds for developing this
generic application. Naturally, the main concern is for the test-bed to support a
generic developing platform. Lastly, the first part of this chapter introduces
possible design patterns for mobile devices. The second part of this chapter
realizes J2ME as a generic developing platform and begins to exam the J2ME
API. After the programming language has been fully introduced two MS
applications for sending and receiving SMS messages are introduced. The first
SMS application was developed by Sun Microsystems and is easily deployable.
However, it didn’t have a design pattern so the second SMS application

13/03/2005 Department o f Computer Science 70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

proposed two design patterns that will serve the architecture some structure.
The two design patterns were the MVC and the Wizard Dialog.

5.3.5 Chapter 5

This chapter presents the summary, findings, and the future work of this
research.

5.4 Future Research Directions

Ideally, the applications developed should be easily extensible so that they can
grow with the ever-changing mobile world. We aim to extend the applications in
the following way.

1. The SMSC could be extended to output XML. This would ensure that the
SMSC application’s output is in a uniform format [Zimmermann, 2001].
Once the output has been unified then the output can be easily deployed to
any program [Jeuring, 2004]. For instance, the SMSC could send a text-
message to an XML Messenger. Or possibly send a message to a future
messaging system that has not even been developed yet. If the output is
offered in XML then it can be further improved with Extensible Stylesheet
Language for Transformation (XSLT). XSLT is used for transforming
unreadable XML documents into readable data [Laird, 2002]. Thus, if the
SMS output ever became unreadable one could use XSLT to translate the
XML into a readable format. Therefore, the SMSC will continue to grow with
the ever-changing world and not left behind it.

2. As for the MS, this is a generic application that is highly deployable. It’s
output conforms to the SMS standards. Therefore, it shall remain a
readable format as long as the standards don’t change. Our future aim is to
see the MVC design pattern enforced on the mobile device. Since the MS
application’s generality is gained largely through the design pattern the SMS
application needs means to enforce this. It literally needs a Struts built for
the mobile device. Unfortunately there are no current frameworks that offer
this type of solution.

12/04/2005 Department o f Computer Science 71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Our future research will also explore the idea of extending both SMS
applications to handle any type of multimedia, not just plain text. This type
of messaging is referred to as Multimedia Messaging Service (MMS) [Brown
and Dhaliwal, 2002]. The scope of MMS currently encompasses audio,
pictures, streaming video, etc [Hayes, 2004]. An idealistic MMS application
should be highly deployable on any operating system and executable on
any server [Hayes, 2004]. It should also have the capabilities of handling
any type of current and future multimedia format [Shen et al, 2004].
Preferably all of this should be executed in real-time [Shen et al, 2004].
How close are the current SMS applications to achieving these goals and
what further enhancements should be made?

To extend the developed SMS applications to MMS applications we would
need to ensure that the network supports the multimedia formats. Then we
would create an even more generic JavaBean. In terms of the MVC design
pattern, the JavaBean is the Model and it does all of the sending and
receiving. Thus, the JavaBean will need to understand the incoming and
outgoing multimedia formats. The View component needs to be altered
slightly to handle varying display formats and audio playback. Lastly, the
Controller would need a few logical controlling statements. Most definitely
research would be required to investigate the use of different design
patterns. For instance, the Command pattern might be useful because the
Controller would receive notice of an incoming message and it wouldn’t
bother determining which type of message but just forward it to the
Command object. Then the Command object would have all the types
stored and the proper actions to handle them. A similar case would occur
for the View. The Controller would tell the Command object to display a
message: the Command object would determine the message’s format then
pass the command to the View.

The current SMSC application is fundamentally built around the MVC design
pattern and naturally this design would remain throughout and MMSC
application. In order for the current SMSC application to handle MMS
messages, it would need to be able to handle binary messages as well as
plain text messages. The current SMSC architecture for sending a
message is displayed in pseudo in Figure 5.1. How much of the current
SMSC application would be reusable in the MMSC application? Well,
naturally the View has to be altered so that the user can specify a different
type of multimedia. The Controller will need an extra control statement to
see what type of multimedia the user is trying to send. The current Model
would be reusable providing that a second Model is created for transmitting

13/03/2005 Department o f Computer Science 72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

binary messages. The new pseudo code is laid out in Figure 5.2. This
illustrates the necessary logic in sending a MMS message from a new
sophisticated MMSC application. As one can see, the current Model is
reused and the Controller is basically reused too. A brand new View would
be required but the View is nothing more than cosmetic though so this isn’t a
huge deal.

User wan ts to send a message

The View returns the information and the
Controller tells the Model to transmit the message

The Controller tells the View to collect the
information

Figure 5.1: Pseudo code for sending a plain text message from the SMSC
application.

User wan ts to send a message

 " T " —

Ttie Controller tells the View to collect the
information

T "
The View returns the information and the

Controller determines the type of message

 ; -------------------------

Yes

A new MMS
Model sends the

message

s the\
message\
type of /

The current
Model sends the

message

Figure 5.2: Pseudo code for sending a MMS message from a MMSC
application.

13/03/2005 Department o f Computer Science 73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lastly, how conveniently easy would It be for these SMS applications to
encrypt and decrypt the messages for transmission over public places? In
both Instances, the encryption and decryption could utilize the latest
technology by simply plugging the security Into the Transport Layer prior to
any public transmission [Brady, 2000]. A flow diagram has been provided In
Figure 5.3. For the SMSC one would use the Transport Layer Security
(TLS) protocol standard. It offers all of the necessary components required
to make a personal SMS message secure and safe. For Instance, It offers
message Integrity, privacy to a transmitted message, and It authenticates a
received message. These are all obviously very Important features of any
security system [Vogler, 2000]. The MS would use a slightly different
security system. This one Is called the Wireless Transport Layer Security
(WTLS) and It offers the same features except that they’re built for a mobile
device [Brady, 2000]. For Instance, a mobile device doesn’t support 128 bit
encryption because It doesn’t have the power to compute numbers that
large. Therefore, the WTLS uses a smaller bit-encryptlon [Saarinen, 2000].
This solution requires no alterations to either of the SMS applications;
however, the security Issues behind sending an unencrypted message Is
quite unsafe and this area should be reviewed.

(WirelessTransport Encrypt
Layer Security) Message

(Transport Layer
Security)

Transmit

(WIrelessT ransport Decrypt
Layer Security) Message

(WirelessT ransport
Layer Security)

Message

MS

Message

Transmit

MS

Message

Message

MS

SMSC

Decrypt
Message

Encrypt
Message

Figure 5.3: A flow diagram for sending a SMS message. For security
purposes the message has been encrypted and decrypted.

13/03/2005 Department o f Computer Science 74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References

[Agarwal, 2004] Puneet Agarwal, “Struts best practices,” article presented by

http.7/www.lavaworld.com, September 2004.

[Alphonse and Rajkotia, 2005] Jean Alphonse and Purva Rajkotia, “TIA/EIA-

637-B,” technical document presented by Telecommunications Industry

Association, January 2005.

[Apache, 2005] Apache Tomcat, “The Apache Jakarta Project,” published by

Apache, http://iakarta.apache.org/tomcat/index.html. 2005.

[Balani, 2001] Naveen Balani, “Deliver XHTML applications to mobile devices,”

Developer Works tutorial, www.ibm.com/developerworks, August 2001.

[Biggs, 2002] Wes Biggs, “Smart and simple messaging,” article presented by

developerWorks IBM, February 2002.

[Brady, 2000] Dermot Brady, “Development of a WAP-enabled Unit Fund

Management Application using WML and ASP,” Dissertation from the Faculty of

Informatics, University of Ulster, March 2000.

[Brown and Dhaliwal, 2002] Graham Brown and Josh Dhaliwal, “Multimedia

Messaging 2002,” published by The Wireless World Forum, May 2002.

[Buckingham, 2000] Simon Buckingham, “What is SMS?” Mobile Streams,

http://www.gsmworld.com/technology/sms/intro.shtml, 2000.

13/03/2005 Department o f Computer Science 75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.lavaworld.com
http://iakarta.apache.org/tomcat/index.html
http://www.ibm.com/developerworks
http://www.gsmworld.com/technology/sms/intro.shtml

[Butts and Cockburn, 2001] Lee Butts and Andy Cockburn, “An Evaluation of

Mobile Phone Text Input Methods,” Third Australasian User Interfaces

Conference, Australian Computer Society Inc, July 2001.

[Cavaness, 2002] Chuck Cavaness, “Jakarta Struts 1.1,” article presented by

Atlanta Java Users Group (AJUG), August 2002.

[Cavaness, 2003] Chuck Cavaness and Brian Keeton, “Jakarta Struts Pocket

Reference,” by O’Reilly first edition, 2003.

[Cepa and Mezini], Vasian Cepa and Mira Mezini, “MobCon: A Generative

Middleware Framework for Java Mobile Applications,” article presented by

Darmstadt University of Technology, November 2003.

[Ciucci et al, 2002] Fabio Ciucci, Glen Cordrey, Jon Eaves, David Hook, Myank

Jain, Neil Katin, Steve Ma, Ravi Reddy, and Wai Fung, “Mobile Information

Device Profile, v2.0 (JSR-118),” article presented by Motorola Inc., Sun

Microsystems Inc. and Java Process Community, 2002.

[Coen and Nanduri, 2003] Michael Coen and Amarnath Nanduri, “Jump the

hurdles of Struts development,” article presented by http://www.javaworld.com.

April 2003.

[Deitel and Deitel, 1999] Harvey Deitel and Paul Deitel, “Java: How to

Program,” published by Prentice Hall, 3'̂ ̂Edition, 1999.

13/03/2005 Department o f Computer Science 76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.javaworld.com

[Dudney and Lehr, 2004] Bill Dudney and Jonathan Lehr, “Jakarta Pitfalls:

Time-Saving Solutions for Struts, Ant, JUnit, and Cactus (Java Open Source

Library),” published by Wiley, January 2004.

[Dyck, 2000] Timothy Dyck, “Four Scripting Languages Speed Development,”

published by Ziff Davis Publishing Holdings Inc., February 2000.

[Gamma et al, 1994] Erich Gamma, Richard Helm, Ralph Johnson, and John

Vlissides, “Design Patterns: Elements of Reusable Object-Oriented Software,”

published by Addison-Wesley Professional Computing Series, August 1994].

[Garcia, 2000] Antonio Garcia, “Command Design Pattern,” article presented by

Rice University, September 2000.

[Garcia, 2000] Antonio Garcia, “The Strategy Design Pattern,” article presented

by Rice University, September 2000.

[Geary, 2001] David Geary, “Amaze your developer friends with design

patterns,” article presented by http://wvwv.iavaworld.com. October 2001.

[Geary, 2002] David Geary, “Take command of your software,” article

presented by http://www.iavaworld.com. June 2002.

[Ghosh, 2003] Soma Ghosh, “Extend J2ME to Wireless Messaging,” article

presented by developerWorks IBM, http://www-106.ibm.com/, February 2003.

[Green, 2004] Roedy Green, “JPhone Design Ideas,” article presented by

Canadian Mind Products, www.mindprod.com. August 2004.

13/03/2005 Department o f Computer Science 77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://wvwv.iavaworld.com
http://www.iavaworld.com
http://www-106.ibm.com/
http://www.mindprod.com

[Grehan, 2002] Rick Grehan, “Get the JavaPhone,” article presented by

JavaPro,

http://www.fawcette.com/iavapro/2002 04/maqazine/columns/iavatoqo/, April

2002 .

[Hapner, Burridge and Sharma, 1999] Mark Hapner, Rich Burridge, and Rahul

Sharma, “Java Message Service,” published by Sun Microsystems, November

1999.

[Harron, 2002] Barry Harron, “A Generic Short Messaging Service Application,”

MSc Thesis from the Faculty of Informatics University of Ulster, September

2002 .

[Hayes, 2004] Ed Hayes, “Multimedia Messenger,” article presented by

Phantom Applications New Zealand Agent, www.phantomapps.co.nz. May

2004.

[Hepper and Hesmer, 2003] Stefan Hepper and Stephan Hesmer, “Introducing

the Portlet Specification, Part 1,” article presented by http://www.javaworld.com,

August 2003.

[Hepper and Hesmer, 2003] Stefan Hepper and Stephan Hesmer, “Introducing

the Portlet Specification, Part 2,” article presented by http://www.javaworld.com,

September 2003.

[Hightower, 2004] Rick Hightower, “Jakarta-Struts Live,” published by

SourceBeat, http://www.serverside.com. 2004.

13/03/2005 Department o f Computer Science 78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.fawcette.com/iavapro/2002
http://www.phantomapps.co.nz
http://www.javaworld.com
http://www.javaworld.com
http://www.serverside.com

[Holmes, 2002] Bill Holmes, “SMS (Short Message Service) - Technical

Overview,” California Software Labs,

http://www.cswl.com/whiteppr/tech/sms.html, January 2002.

[Hui, 2002] Ben Hui, “Big designs for small devices,” article presented by

http://www.javaworld.com. December 2002.

[Hurst, 2002] Walter Hurst, “Design patterns make for better J2EE apps,” article

presented by http://vwvw.iavaworld.com. June 2002.

[Jeuring, 2004] Johan Jeuring, “Generic Programming Introduction XML,” article

presented by Institute of Information and Computing Sciences, www.cs.uu.nl.

September 2004.

[Kluyt, 2002] Cnno Kluyt, “Java 2 Platform, Micro Edition (J2ME); JSR 68

Cverview,” in http://java.sun.com/j2me/overview.html, August 2002.

[Knudsen, 2002] Jonathan Knudsen, “Mobile Information Device Profile (MIDP)

Cverview,” article presented by Sun Microsystems,

http://iava.sun.com/products/midp/overview.html. November 2002.

[Knudsen, 2003] Jonathan Knudsen, “Introduction to Java Phone API,” article

presented by Sun Microsystems,

http://iava.sun.com/products/iavaphone/overview.html. March 2003.

[Laird, 2001] Cameron Laird, “SMS: Case study of a Web services

deployment,” article presented by developerWork IBM, http://www-

106.ibm.com/, August 2001.

12/04/2005 Department o f Computer Science 79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cswl.com/whiteppr/tech/sms.html
http://www.javaworld.com
http://vwvw.iavaworld.com
http://www.cs.uu.nl
http://java.sun.com/j2me/overview.html
http://iava.sun.com/products/midp/overview.html
http://iava.sun.com/products/iavaphone/overview.html
http://www-

[Laird, 2002] Cameron Laird, “XSLT Powers a New Wave of Web Applications,”

Linux Journal, Volume 2002 Issue 95, March 2002.

[LOTTP, 2001] LCTTP, “XHTML,” W3C Recommendation summary by

Michigan State University Libraries, Computing, & Technology Training

Program, March 2001.

[Mahmoud, 2001] Qusay Mahmoud, “Web Application Development with JSP

and XML Part 1: Fast Track JSP,” article presented by Sun Microsystems,

http://www.sun.com, June 2001.

[Mahmoud, 2003] Qusay Mahmoud, “Developing Web Applications with Java

Server Pages 2.0,” article presented by Sun Microsystems, http://www.sun.com,

July 2003.

[Malhotra, 2001] Vivek Malhotra, “Introduction to SMS,” tutorial presented by

developerWorks, IBM, http://www-106.ibm.com/, Cctober 2001.

[McLaughlin, 2000] Douglas McLaughlin, “Clean Up Your Act with XHTML,”

article presented by Intercom, http://www.intercom.ora, November 2000.

[Mercay and Bouzeid, 2002] Julien Mercay and Gilbert Bouzeid, “Boost Struts

with XSLT and XML,” article presented by http://www.javaworld.com, February

2002.

[Mittal, Moffet, and Wutka, 2003] Kunal Mittal, Alan Moffet and Mark Wutka,

“Creating HTML Forms with Java Server Pages,” online tutorial put on by Sams

13/03/2005 Department o f Computer Science 80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.sun.com
http://www.sun.com
http://www-106.ibm.com/
http://www.intercom.ora
http://www.javaworld.com

Publishing, http://www.samspublishing.com/articles/ article.asp?p=102175&seqNum=1, December

2003.

[Muchow, 2002] John Muchow, “J2ME 101, Part 1: Introduction to MIDP’s high-

level Ul,” Portions of this tutorial are used with permission from the book Core

J2ME Technology and MIDP, http://www-106.ibm.com/, September 2002.

[Pemberton et al, 2000] Steve Pemberton, Daniel Austin, Jonny Alexsson,

Tantek Celik, Doug Dominiak, Herman Elenbaas, Beth Epperson, Masayasu

Ishikawa, Shi’icki Matsui, Shane McCarron, Ann Navarro, Subramanian

Peruvemba, Rob Relyea, Sebastian Schnitzenbaumer and Peter Stark,

“XHTML 1.0 - The Extensible HyperText Markup Language (Second Edition),’’

W3C Recommendation, www.w3.org/TR/2002/REC-xhtml1-20020801, January

2000 .

[Ping et al, 2003] Yu Ping, Jianguo Lu, Terence Lau, Kostas Kontogiannis,

Tack Tong, and Bo Yi, “Migration of Legacy Web Applications to Enterprise

Java Environments - Net.Data to JSP Transformation,” Centre for Advanced

Studies and Engineering Research Council by IBM, March 2003.

[Saarinen, 2000] Markku Saarinen, “Attacks against the WAP WTLS Protocol,”

article presented by University of Jyvaskyla, May 2000.

[Sauter et al, 2004] Patrick Sauter, Gabriel Vogler, Gunther Specht, and

Thomas Flor, “Extending the MVC Design Pattern towards a Task-Criented

Development Approach for Pervasive Computing Applications,” Proc. Int. Conf.

on Architecture of Computing Systems - Crganic and Pervasive Computing

13/03/2005 Department o f Computer Science 81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.samspublishing.com/articles/
http://www-106.ibm.com/
http://www.w3.org/TR/2002/REC-xhtml1-20020801

(ARCS 2004), Augsburg, 23.-26. March 2004, Spinger-Verlag, LNCS 2981,

2004, pp. 309-321

[Seshadri, 1999] Govind Seshadri, “Understanding JavaServer Pages Model 2

architecture,” article presented by http://www.javaworld.com. December 1999.

[Shen et al, 2004] Jun Shen, Pei Sun, Jianming Zhang and Song Song, “iMMS:

Interactive Multimedia Messaging Service,” article presented by International

Business Machines Corporation, www.ibm.com. November 2004.

[Shin, 2003] Sang Shin, “MVC Pattern & Framework,” article presented by

JavaPassion, http://www.iavapassion.com. November 2003.

[Sivakumar, 2001] Srinivasa Sivakumar, “Building Mobile Web Applications with

.Net Mobile Web SDK & ASP.Net,” article presented by Wireless Developer

Network, www.wirelessdevnet.com. January 2001.

[Subramaniam, 2001] Venkat Subramaniam, “Servlets, JSP, Struts and MVC,”

article presented by http://www.aailedeveloper.com/download.aspx, March

2001 .

[Sun, J2ME-API], Sun Microsystems, “J2ME API,” published by Sun

Microsystems, iava.sun.com/i2me/. 2002.

[Sundsted, 1996] Todd Sundsted, “Observer and Observable,” article presented

by http://www.javaworld.com, October 1996.

[Sundsted, 1998] Todd Sundsted, “MVC Meets Swing,” article presented by

http://www.javaworld.com, April 1998.

13/03/2005 Department o f Computer Science 82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.javaworld.com
http://www.ibm.com
http://www.iavapassion.com
http://www.wirelessdevnet.com
http://www.aailedeveloper.com/download.aspx
http://www.javaworld.com
http://www.javaworld.com

[Tarr, 2000] Bob Tarr, “The Command Pattern,” article presented by University

of Maryland, September 2000.

[Tarr, 2000] Bob Tarr, “The Strategy Pattern,” article presented by University of

Maryland, September 2000.

[TIA, TIA/EIA-637-B] TIA, “TIA/EIA Standard; Short Message Services for

Wideband Spread Spectrum Systems,” published by Telecommunications

Industry Association, www.tiaonline.orq. May 2002.

[Under, 2000] Kevin Under, “Solve your servlet-based presentation problems,”

article presented by http://www.javaworld.com, November 2000.

[Vieregger, 2003] Carl Vieregger, “Develop Java Portlets,” article presented by

http://www.javaworld.com, February 2003.

[Vogler, 2000] Dean Vogler, “Security Issues In Wireless Environments,” article

presented by Motorola Labs Communication Systems and Technologies Labs,

October 2000.

[Xu, Teo, and Wang, 2003] Heng Xu, Hock Hai Teo, Hao Wang, “Foundations

of SMS Commerce Success: Lessons from SMS Messaging and Co-opetition,”

proceedings of the 36th Hawaii International Conference on System Sciences,

IEEE, 2003.

[Yuan and Long, 2002] Michael Yuan and Ju Long, “Securing wireless J2ME,”

Center for Research in Electronic Commerce, University of Texas, http://www-

106.ibm.com/, June 2002.

13/03/2005 Department o f Computer Science 83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.tiaonline.orq
http://www.javaworld.com
http://www.javaworld.com
http://www-

[Yuan, 2002] Michael Yuan, “Mobile P2P messaging. Part 1,” Center for

Research in Electronic Commerce, University of Texas, http://www-

106.ibm.com/, December 2002.

[Yuan, 2003] Michael Yuan, “Let the mobile games begin. Part 1,” article

presented bv http://www.iavaworld.com, February 2003.

[Zimmermann, 2001] Tilo Zimmermann, “Unified XML Messaging for Business

Partners in the Publishing, Print, Pulp & Paper Industries,” proceedings by

deepX Ltd., October 2001.

13/03/2005 Department o f Computer Science 84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www-
http://www.iavaworld.com

Appendices

Appendix A SMSC source code using JSP

Appendix A.1 A Generic JSP example of the “Generic Web-Based SMSC”

<!DOCTYPE html PUBLIC "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitlonal.dtd">

<html>

<% String title = new String("Generic Faculty SMSC”); %>

<%@ page import=”com.simplewire.sms.*" %>

<head><title><%= title %></title></head>

<body bgcolor="white">

<table width="300" border="1">

<tr>

<td align=”center">

<h2><%= title % x/h 2>

<%

String strPormMessageQ = request.getParameterValues('b(tMessage"),

String strFormlndividualD = request.getParameterValuesC'txtFaclndividual");

String err = strMessage = strlndividual =

if(strFormMessage != null)

{

strMessage = strFormMessage[0];

if(strMessage.equals/""))

{

err = "An error has occurred and one or more errors are highlighted in red";

}
}

else

strMessage = "";

if(strFormIndividual != null)

{
strlndividual = strFormlndividual[0];

if(strlndividual.equals/'"'))

{
err = "An error has occurred and one or more errors are highlighted in red";

13/03/2005 Department o f Computer Science 85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitlonal.dtd

}
else

{

// valid phone number separations are ' or or or or '\n',

// my phone number separation will be a space

charQ chars = strlndIvidual,toCharArray();

if (chars.length == 0)

{
en- = "Invalid phone number!!";

strlndividual =

}

int startPos = 0;

boolean newNumber = true;

String strNumber = new String/"");

if/chars[0] 1= > ') strNumber =

for/Int i = startPos; i < chars.length; i ++)

{

if/chars[i] == " |1 charsp) == || chars/i] == '\n' || chars[i] == || chars[i] == '+' || chars[i] == V)

{

// eat these characters

while/i < chars.length && /chars[i] == " || chars/i] == || chars[i] == '\n' || chars[i] == || chars[i] =
'■r' II chars[i] == V))

i-n-;

if/i < chars.length)

{
if/strNumber.equals/""))

StrNumber + =

else
StrNumber + =

}

I--;

}
else if/! Character.isDigit/chars[i]))

{
err = "Invalid phone number!!";

for/;i<chars.length; i-r-t-)

StrNumber += Character.toString/chars[i]);

break;

13/03/2005 Department o f Computer Science 86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}
else

StrNumber += Character.toString(chars[l]);

}
strlndividual = strNumber;

}
}

else

strlndividual =

out.println("" + err + "

");

%>
<table width="250” cellspacing="0" cellpadding="0" border="0">

<tr>

<td>

<% if(strMessage.equals('"') && strFormMessage 1= null) out.println(""); %>

Message:

<% if(strMessage.equals("”) && strFormMessage 1= null) out.println(''"); %>

<form name="test" method="get" action="index.jsp">

<textarea rows="4" cols="20" name="txtMessage"><%= strMessage %></textarea>

<% if(strlndividual.equals("“) && strFormlndividual != null) out.println(""); %>

lndividual's Telephone Number (use a comma to delimit multiple phone numbers):

<% if(strlndividual.equals("") && strFormlndividual 1= null) out.println(''"); %>

<center>

<textarea rows="4" cols="20” name="txtFaclndividual"><%= strlndividual %></textarea>

</center>

<center>

<input type="submit" value="Send" />

<input type=”reset" value="Reset" />

<%
out.println("

");

if(! strMessage.equals/"") && I strlndividual equals/"") && enr.equals/""))

{

String QstrMsgPins = strlndividual.split/",");

SMS sms = new SMS/);

sms.setSubscriberlD("799-948-986-29352");

sms.setSubscriberPassword/"D437A165");

13/03/2005 Department o f Computer Science 87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sms, setMsgT ext(strMessage);

// Send Message
for(int i = 0: i < strMsgPins.length; i++)

{

sms.setMsgPln(strMsgPins[i]);

sms.msgSendO;

// Check For Errors

if(sms.lsSuccess())

{

out.printin/"Message was sent to " + strMsgPins[i] + "!
");

}
else

{

out.prlntln("”);

out.prlntlnC’Message was not sent to " + strMsgPlns[l] + "!
’’);

out.printlnC'Error Code: " + sms.getErrorCode() + "
");

out.printlnC'Error Description: " + sms.getEmorDescO + "
");

out.println(”Error Resolution: " + sms.getErrorResolution() + "
");

out.println("");

}

out.println("
");

}

}
else

{

out.printlnC'l will not bother SimpleWire");

}
%>

</center>

</form>

</td>

</tr>

</table>

</td>

</tr>

</table>

</body>

</html>

13/03/2005 Department o f Computer Science

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A. 2 XHTML Output from the SMSC using JSP

<!DOCTYPE html PUBLIC "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transltlonal.dtd">

<html>

<head><title>Generic Faculty SMS Center</title></head>

<body bgcolor="white">

<table wldth="300” border="1”>

<tr>

<td allgn="center">

<h2>Generlc Faculty SMS Center</h2>

<table width="250" cellspacing="0" cellpaddlng="0" border="0">

<tr>

<td>

Message:

<form name=”test" method="get" action="index.jsp">

<textarea rows="4" cols="20" name="txtMessage"></textarea>

 Individual's Telephone Number:

<center>

<input type="text" value="" name="txtFaclndividual" />

</center>

<center>

<input type=''submit” value="Send" />

<input type=”reset" value=”Reset” />

I will not bother SimpleWire

</center>

</form>

</td>

</tr>
</table>

</td>

</tr>

13/03/2005 Department o f Computer Science 89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transltlonal.dtd

</table>

</body>

</html>

13/03/2005 Department o f Computer Science 90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B MVC SMSC source code using JSP

Appendix B. 1 The Model JavaBean as viewed from the SMSC

import java.io.*;

import com.simplewire.sms.*;

public class Model {

public static String sendMessage/String strNumber, String strMessage)

{
String QstrMsgPins = strNumber split/",");

String returnMessage =

SMS sms = new SMS{);

sms.setSubscriberlD(’799-948-986-29352");

sms.setSubscriberPassword("D437A165'');

sms.setMsgText(strMessage);

// Send Message

for(int i = 0; i < strMsgPins.length; i++)

{

sms.setMsgPin(strMsgPins[i]);

sms.msgSendO;

// Check For Errors

if(sms.isSuccessO)

returnMessage += "Message was sent to " + strMsgPins[i] + "!
";

else

{

returnMessage += "";

returnMessage += "Message was not sent to " + strMsgPins[i] + "!
";

returnMessage += "Error Code: " + sms.getErrorCodeQ + "
";

returnMessage += "Error Description: " + sms.getErrorDesc() + "
";

returnMessage += "Error Resolution: " + sms.getErrorResolution/) + "
";

returnMessage += "";

}

returnMessage += "
";

13/03/2005 Department o f Computer Science 91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

return returnMessage;

}

// Is this a valid phone number?

public static booiean isPhoneNumberValid(String strNumber, Controller controller)

{

// valid phone number separations are ' ', or or or or ’\n',

// my phone number separation will be a comma

charQ chars = strNumber.toCharArrayO;

if (chars.length == 0)

return false;

int startPos = 0;

StrNumber =

if(chars[0] != '+') strNumber = "+";

for(int i = startPos; i < chars.length; i ++)

{
if(chars[i] == " || chars[i] == || chars[i] == '\n' || charsp] == || charsp] == '+' || charsp] == V)

{
II eat these characters

while(i < chars.length && (charsp] == ” j| charsp] == || chars[i] == '\n' || charsp] == |
charsp] == || chars[i] == '\r'))

i++;

if(i < chars.length)

{
if(strNumber.equals(""))

StrNumber += "+";
else

StrNumber +=

}
i--;

}

else if(! Character.isDigit(chars[i]))

{

return false;

}
else

StrNumber += Character.toString(chars[i]);

13/03/2005 Department of Computer Science 92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}
controller.strNumber = strNumber;

return true;

}
}

Appendix B. 2 The View JSP implemented from the SMSC

<!DOCTYPE html PUBLIC "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<%@ page import="java.util.Enumeration;" %>

<htmi>

<% String title = new String("A Generic SMSC using the MVC Design Pattern"); %>

<head><title><%= title %></title></head>

<body bgcolor="white">

<%
// populate the error string

String error = new String((String)request.getAttribute("en'or"));

// populate the Message (if applicable)

String bctMessage = new String((String)request.getAttribute("message"));

// populate the phone number (if applicable)

String txtFaclndividual = new String((String)request.getAttribute("numbers"));

%>

<table width="300" border="1">

<tr>

<td align="center">

<h2><%= title % x/h 2>

<table width="250” cellspacing="0" cellpadding="0" border=”0">

<tr>

<td>

<%= error %>

<% if(bctMessage.equals("") && !error.equals("")) out.println(""); %>

Message:

<% if(txtMessage.equals("") && !error.equals("")) out.println(""); %>

13/03/2005 Department o f Computer Science 93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd

<form name="test” method="post" action="Controller">

<textarea rows="4” cols="20" name="txtMessage"><%= txtMessage %></textarea>

<% if(brtFaclndividual,equals('"') && !error.equals{'"')) out.println("<fontcolor=\"RED\">"); %>

lndividual's Telephone Number (use a comma to delimit multiple phone numt3ers):

<% if(bctFaclndividual.equals("'') && !error.equals('"')) out.println(""); %>

<center>

<textarea rows="4” cols=''20" name="txtFaclndividual"><%= txtFaclndividual %></textarea>

</center>

<center>

<input type=”hidden" value="sent" name="action" />

<input type="submit" value=”Send" />

<input type=''reset” value="Reset” />

</center>

</form>

</td>

</lr>

</table>

</td>

</tr>

</table>

</body>

</html>

Appendix B.3 The Controller Servlet Implemented from the SMSC

import Java.io.*;

import javax.servlet,*;

import javax.servlet.http.*;

public class Controller extends HttpServlet {

public String strNumber;

public String strMessage;

public void doGet(HttpServletRequest request, HttpServletResponse response)

throws lOException, ServletException

{

13/03/2005 Department o f Computer Science 94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

String strFormMessageQ = request.getParameterValues(”txtMessage");

String strFormActionQ = request.getParameterValues("action");

String strFormlndividualO = request.getParameterValues("txtFaclndividual"):

String error = strAction =

// Initialize the variables

StrNumber =

strMessage =

if(strFormAction != null)

{
StrAction = strForm Action [0];

if(StrAction.equalsC'sent"))

{
// then they clicked "submit"

if(StrForm Message != null && strFormlndividual 1= null)

{
strMessage = strForm Message[0]:

StrNumber = strFormlndividual[0);

if(strMessage.equals(""))

{
error = "An error has occurred and one

or more errors are highlighted in red

";
forward(error, request, response);

}
else if (!Model.isPhoneNumberValid(strNumber, this))

{

error = "The given phone number is
invalid";

forward(error, request, response);

}

else

{
// call the JavaBean to do the 'heavy' processing

error = "" +
Model.sendMessage(strNumber,strMessage) + "

";

fonward(error,request,response);

}
}

else if(StrForm Message == null && strFormlndividual == null)

{

error = "An error has occurred and one or more
errors are highlighted in red

";

forward(error, request, response);

}

13/03/2005 Department o f Computer Science 95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

else if(strFormMessage == null)

{
StrNumber = strFormlndlvldual[0];

error = "An error has occurred and one or more
errors are highlighted in red

";

fonward(error, request, response);

>
else if(strFormlndividual == null)

{

strMessage = strForm Message[0];

error = "The given phone number is
invalid";

fonvard(error, request, response);

}

else

{
// they haven't submitted anything and the error should be nothing

forward(error, request, response);

}
else

{

// they haven't submitted anything and the error should be nothing

forward(error, request, response);

public void forward(String error, HttpServletRequest request, HttpServletResponse response) throws
lOException, ServletException

{

// Set the attribute and Forward to hello.jsp

request.setAttribute ("error", error);

request.setAttribute ("message", strMessage);

request.setAttribute ("numbers", strNumber);

getServletConfig().getServletContext().getRequestDispatcher("A/iew.jsp").forward(request, response);

}

/ * *

* We are going to perform the same operations for POST requests

* as for GET methods, so this method just sends the request to

* the doGet method.

* /

13/03/2005 Department o f Computer Science 96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

public void doPost(HttpServletRequest request, HttpServletResponse response) throws lOException,
ServletException

{

doGet(request, response):

}

}

Appendix BA Output of for the Generic SMSC using the MVC Design Pattern

<!DOCTYPE html PUBLIC ''http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

<head><titIe>A Generic SMSC using the M'v'C Design Pattern</title></head>

<body bgcolor=''white">

<table width=''300” border=''1">

<tr>

<td align=''center”>

<h2>A Generic SMSC using the MVC Design Pattem</h2>

<table width=''250" cellspacing= "0 " ceilpadding=''0" border="0''>

<tr>

<td>

Message;

<form name=''test” method=' post " action=''Controller">

<textarea rows=''4” cols=''20" name=''txtMessage"></textarea>

lndividual's Telephone Number (use a comma to delimit multiple phone numbers):

<center>

<textarea rows=''4” cols=''20" name=''txtFaclndlvidual''></textarea>

</center>

<center>

13/03/2005 Department o f Computer Science 97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd

<input type="hidden" value="sent” name=''action" />

<input type="subfnit" value=”Send" />

<input type="reset" value=’’Reset " />

</centar>

</form>

</td>

</(r>

</tabla>
</td>

</tr>

</table>

</body>

</html>

13/03/2005 Department o f Computer Science 98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix C MVC SMSC using Struts Source Code

Appendix C. 1 Struts SendAction Servlet

//package Controller;

import javax.servlet.http.*;

import org.apache.struts.action.*;

import java.io.*;

public final class SendAction extends Action

{
public SendForm form;

public ActionForward execute(ActionMapping mapping, ActionForm form, HttpServletRequest request,
HttpServletResponse response)

{

SendForm f = (SendForm) form; // get the form bean

// Get the Telephone Number

String strNumbers = f.getPhoneNumber();

// Get the Message

String strMessage = f.getMessage();

if(strNumbers.equals("") || strMessage.equals(""))

return (mapping.findForward(''failure"));

String msg =

msg = “” + Model.sendMessage(strNumbers, strMessage) + ”

"

request.setAttribute(’'error", msg);

request.setAttribute("message", strMessage);

request.setAttributeC'numbers", strNumbers);

// Forward control to the specified success target

return (mapping.findForward(”success”));

}

}

13/03/2005 Department o f Computer Science 99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix C.2 Struts the ViewJSP

<!DOCTYPE html PUBLIC "http://www,w3.org/TR/xhtml1/DTD/xhtml1-transitlonal.dtd">

<%@ page language=”java'’ %>

<%@ taglib url=''/WEB-INF/stnjts-bean,tld" preflx="bean'' %>

<%@ taglib uri="A'VEB-INF/staits-html,tld" prefix=''html" %>

<%@ taglib uri="A/VEB-INF/staits-logic.tld" prefix=''logic" %>

<%@ page import=”java.util.Enumeration;" %>

<html>

<% String title = new String("Generic SMSC Enforcing the MVC Design Pattern with Struts"); %>

<%

// populate the error message

String strError = (String)request.getAttribute("error");

if(strError == null)

StrError = "";

II populate the phone number (if applicable)

String strNumber = (String)request.getAttribute("numbers");

if(strNumber == null)

StrNumber = "";

// populate the Message (if applicable)

String strMessage = (Stnng)request.getAttribute('message'');

if(strMessage == null)

strMessage =

% >

<head><title><%= title %></title></head>

<body>

<table width="300" border="1">
<tr>

<td align="center">

<h2><%= title % x/h2>

<table width="250" cellspacing="0" cellpadding-'O" border="0">

<tr>

<td>

<html:errors/>

<%= StrError %>

13/03/2005 Department o f Computer Science 100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www,w3.org/TR/xhtml1/DTD/xhtml1-transitlonal.dtd

Message:

<html:form action="SendMessage.jsp">

<html:textarea rows="4" cols=''20" property=''message''></html:textarea>

lndividual's Telephone Number (use a comma to delimit multiple phone numbers):

<center>

<html:textarea rows="4" cols="20” property=''phoneNumber"></html:textarea>

</center>

<center>

<html:submit value="Send” />

<html:reset value=”Reset'' />

</center>

</html:form>

</td>
</tr>

</table>

</td>

</tr>

</table>

</body>

</html>

Appendix C.3 Struts the SendForm JavaBean

//package Controller;

import javax. servlet, http. HttpServletRequest;

import org.apache.struts.action.*;

public final class SendForm extends ActionForm

{
/* Telephone Number 7

private String phoneNumber =

public String getPhoneNumber()

{
return (this.phoneNumber);

}

13/03/2005 Department o f Computer Science 101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

public void setPhoneNumber(String phoneNumber)

{
this.phoneNumber = phoneNumber;

}

/* Message */

private String message = null;

public String getMessageO

{
return (this.message);

}

public void setMessage(String message)

{
this.message = message;

}

public ActionErrors validate(ActionMapping mapping, HttpServletRequest request)

{
// Log the forms data

servlet.logC'phoneNumber:" + phoneNumber);

servlet.log("message: " + message);

// Check for mandatory data

ActionErrors errors = new ActionErrors{);

if (phoneNumber == null || phoneNumber.equaIsC"""))

errors.add(""Phone Number"", new ActionError(""errors.phoneNumber"'));

else if(! Model.isPhoneNumberValid(phoneNumber, this))

errors.add('"Phone Number"", new ActlonError(""errors.invalidNumber'"));

if (message == null || message.equals(""""))

errors.add(""Message ", new ActionError(""errors.message""));

return errors;

}

}

Appendix C.4 Struts the struts-config.xml file

<?xml version-'1.1" encoding=""ISO-8859-1"" ?>

13/03/2005 Department o f Computer Science 102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<!DOCTYPE struts-config PUBLIC

"-//Apache Software Foundation//DTD Struts Configuration 1.2//EN"

"http://jakarta.apache.org/struts/dtds/struts-conflg_1_2.dtd">

<struts-config>

< !- ========== Form Bean Definitions =

<form-beans>

<form-bean name="sendForm"

type="SendForm"/>

</form-beans>

< !- ========== Action Mapping Definitions ==========^

<action-mappings>

<action path="/SendMessage"

type="SendAction"

name="sendForm"

input="/SendMessage.jsp"

scope="request">

<forward name="success" path="/SendMessage.jsp"/>

<forward name="failure" path="/SendMessage.jsp"/>

</action>

</action-mappings>

<message-resources parameter="MessageResources" />

</struts-config>

< !- ========== Action Mapping Definitions ==========

<action-mappings>

<action path="/SendMessage"

type="SendAction"

name="sendForm"

input="/SendMessage.jsp"

scope="request">

<forward name="success" path="/SendMessage.jsp"/>

13/03/2005 Department o f Computer Science 103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://jakarta.apache.org/struts/dtds/struts-conflg_1_2.dtd

<forward name="failure" path=7SendMessage.jsp"/>

</action>

</action-mappings>

<message-resources parameter="MessageResources" />

</struts-config>

Appendix C. 5 Struts Output

<!DOCTYPE html PUBLIC "http://www.w3.org/TRyxhtml1/DTD/xhtml1-transltional.dtd">

<html>

<head><title>Generic Faculty SMS Center (JSP and Struts)</title></head>

<body>

<table width="300" border="1">

<tr>

<td align="center">

<h2>Generic Faculty SMS Center (JSP and Struts)</h2>

<table width="250" cellspacing="0" cellpadding="0" border="0">

<tr>

<td>

Message:

<fonn name="sendForm" method="post" action="/Faculty_JSP_Struts/SendMessage.do">

<textarea name="message" cols="20" rows="4"x/textarea>

lndividual's Telephone Number:

<center>

<input type="text" name="phoneNumber" value="">

</center>

<center>

<input type="submit" value="Send">

<input type="reset" value="Reset">

</center>

13/03/2005 Department o f Computer Science 104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.w3.org/TRyxhtml1/DTD/xhtml1-transltional.dtd

</form>

</td>

</tr>

</table>

</td>

</tr>

</table>

</body>

</html>

Appendix C. 6 Struts ' Error Codes

— standard errors -

errors.header=<h4xfont color="red">Error:</fontx/h4xUL>

errors.prefix=

errors.suffix=</Ll>

errors.message=Please specify a message in the text box below

errors.phoneNumber=Please specify a telephone number

errors.invalidNumber=lnvalid phone number!!

errors.footer=

- validator -

errors.invalid={0} is invalid.

errors.maxlength={0) can not be greater than {1} characters.

errors.minlength={0} can not be less than {1} characters.

errors.range={0} is not in the range {1} through {2}.

errors.required={0} is required.

errors.byte={0} must be an byte.

errors.date={0} is not a date.

errors.double={0} must be an double.

errors.float={0} must be an float.

errors.integer={0} must be an integer.

errors.long={0} must be an long.

errors.short={0} must be an short.

errors.creditcard={0} is not a valid credit card number.

errors.email={0} is an invalid e-mail address.

- other -

errors.canceNOperation cancelled.

errors.detail={0}

errors.general=The process did not complete. Details should follow.

errors.token=Request could not be completed. Operation is not in sequence.

- welcome -

welcome.title=Struts Blank Application

13/03/2005 Department o f Computer Science 105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

welcome.heading=Welcome!

welcome.message=To get started on your own application, copy the struts-blank.war to a new WAR file using the
name for your application. Place it in your container's "webapp" folder (or equivalent), and let your container auto­
deploy the application. Edit the skeleton configuration files as needed, restart your container, and you are on your way!
(You can find the application.properties file with this message in the A/VEB-INF/src/java/resources folder.)

Appendix C. 7 The Model object for the Struts MVC Implementation

import java.io.*;

import com.simplewire.sms.*;

public class Model {

public static String sendMessage(String strNumber, String strMessage)

{
String QstrMsgPins = strNumber.split(",");

String retumMessage =

SMS sms = new SMS();

sms.setSubscriberlD(”799-948-986-29352”);

sms.setSubscriberPassword(”D437A165");

sms.setMsgT ext(strMessage);

II Send Message

for(int i = 0; i < strMsgPins.length; i++)

{
sms.setMsgPin(strMsgPins[i]);

sms.msgSendO;

II Check For Errors

if(sms.isSuccess())

retumMessage += "Message was sent to " + strMsgPins[i] + "!
";

else

{

retumMessage += "";

retumMessage += "Message was not sent to " + strMsgPins[i] + "!
";

retumMessage += "Error Code: " + sms.getErrorCode() + "
";

retumMessage += "Error Description: " + sms.getErrorDesc() + "
";

retumMessage += "Error Resolution: " + sms.getErrorResolution() + "
"

retumMessage += "";

13/03/2005 Department o f Computer Science 106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

retumMessage += "
";

}

return retumMessage;

}

// Is this a valid phone number?

public static boolean isPhoneNumberValid(String strNumber, SendForm sendForm)

{
// valid phone number separations are ' or ', or or or '\n',

// my phone number separation will be a comma

char|] chars = strNumber.toCharArray();

if (chars.length == 0)

return false;

int startPos = 0;

StrNumber =

if(chars[0] 1= '+') strNumber = "+";

for(int i = startPos; i < chars.length; i ++)

{
if(chars[i] == " || charsp] == || chars[i] == '\n' || chars[i] == || chars[i] == '+' || chars[i] == \r')

{
// eat these characters

while(i < chars.length && (chars[i] == ’ ' || chars[i] == || chars[i] == '\n' || chars[i] == |
charsp] == '+' || chars[i] == '\r'))

i++;

if(i < chars.length)

{

if(strNumber.equals(""))

{

StrNumber += "+";

}
else

StrNumber +=

}
i—;

)
else if(!Character.isDigit{chars[i]))

{

13/03/2005 Department o f Computer Science 107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}

}

return false;

}
else

StrNumber += Character.toString(chars[i]);

}

sendForm.setPfioneNumber(strNumber);

return true;

13/03/2005 Department o f Computer Science 108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix D An Generic MS J2ME Example

Appendix D. 1 The SMSReceive Class

/•

* @(#)SMSReceive.java 1.9 03/06/22

* Copyright (c) 1999-2003 Sun Microsystems, Inc. All rights reserved.

* PROPRIETARY/CONFIDENTIAL

* Use is subject to license terms

* /

package example.sms;

import javax.microedition.midlet.*;

import javax.microedition.io.*;

import javax.microédition.Icdui.*;

import javax.wireless.messaging.*;

import java.io.lOException;

/ * *

* An example MlDlet displays text from an SMS MessageConnection

* /

public class SMSReceive extends MlDlet

implements CommandListener, Runnable, MessageListener {

/** user interface command for indicating Exit request. */

Command exitCommand = new Command("Exit", Command.EXIT, 2);

/** user interface command for indicating Reply request */

Command replyCommand - new Command("Reply", Command.OK, 1);

/** user interface text box for the contents of the fetched URL. */

Alert content;

/** current display. */

Display display;

/** instance of a thread for asynchronous networking and user interface. */

Thread thread;

/** Connections detected at start up. */

StringO connections;

/** Flag to signal end of processing. */

boolean done;

13/03/2005 Department o f Computer Science 109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/** The port on which we listen for SMS messages 7

String smsPort;

/** SMS message connection for inbound text messages. */

MessageConnection smsconn;

/** Current message read from the network. */

Message msg;

/** Address of the message's sender 7

String senderAddress;

/** Alert that is displayed when replying */

Alert sendingMessageAlert;

/** Prompts for and sends the text reply 7

SMSSender sender;

/** The screen to display when we return from being paused */

Displayable resumeScreen;

/ • *

* Initialize the MlDlet with the current display object and

* graphical components.

7

public SMSReceiveO {

smsPort = getAppProperty{"SMS-Port”);

dispiay = Display.getDisplay(this);

content = new Alert("SMS Receive”);

content.setTimeout(Alert. FOREVER);

content.addCommand(exitCommand);

content.setCommandListener(this);

content.setStringC'Receiving...");

sendingMessageAiert = new Alert(''SMS", null, null, AlertType.INFO);

sendingMessageAlert.setTimeout{5000);

sendingMessageAiert.setCommandListeneit this);

sender = new SMSSender{smsPort, display, content, sendingMessageAiert);

resumeScreen = content;

}

/ • *

* Start creates the thread to do the MessageConnection receive

* text.

* It should return immediately to keep the dispatcher

13/03/2005 Department o f Computer Science 110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

* from hanging.

7

public void startAppO {

/** SMS connection to be read. 7

String smsConnection = "sms://:" + smsPort:

/** Open the message connection. 7

if (smsconn == null) {

try {

smsconn = (MessageConnection) Connector.open(smsConnection);

sm sconn. setMessageListener(this);

} catch (lOException ioe) {

ioe.printStackTrace();

}
}

/** Initialize the text if we were started manually. 7

connections = PushRegistry.listConnections(true);

if (connections == null || connections.length == 0) {

content.setStringC'Waiting for SMS on port " + smsPort + "...");

}

done = false;

thread = new Thread(this);

thread.start();

display.setCurrent(resumeScreen);

}

/ * *

* Notification that a message arrived.

* @param conn the connection with messages available

7

public void notifylncomingMessage(MessageConnection conn) {

if (thread == null) {

done = false;

thread = new Thread(this);

thread.startO;

}

)

/** Message reading thread. 7

public void run() {

/** Check for sms connection. */

try{

13/03/2005 Department o f Computer Science 111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

msg = smsconn.receiveO;

if (msg != null) {

senderAddress = msg.getAddress();

content.setTitle(”From: " + senderAddress);

if (msg instanceof TextMessage) {

content.setString(((TextMessage)msg).getPayloadText());

} else {

StringBuffer buf = new StringBuffer();

byteQ data = ((BinaryMessage)msg).getPayloadData();

for (int i = 0; i < data.length; i++) (

int intData = (int)data[i] & OxFF;

if (intData < 0x10) {

buf.append("0");

}

buf.append(lnteger.toHexString(intData));

buf.appendC ');

}
content.setString(buf.toStringO);

}

content.addCommand(replyCommand);

display.setCurrent(content);

}
} catch (lOException e) {

// e.printStackTraceO;

}

)
r
* Pause signals the thread to stop by clearing the thread field.

* If stopped before done with the iterations it will

* be restarted from scratch later.

7

public void pauseAppO {

done = true;

thread = null;

resumeScreen = display.getCurrent();

}

/ • *

* Destroy must cleanup everything. The thread is signaled

* to stop and no result is produced.

* @param unconditional true if a forced shutdovm was requested

7

public void destroyApp(boolean unconditional) {

13/03/2005 Department o f Computer Science 112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

done = true;
thread = null;

If (smsconn != null) {

try {

smsconn.closeO;

} catch (lOException e) {

// Ignore any errors on shutdown

}

}

}

/ * *

* Respond to commands, including exit

* @param c user interface command requested

* @param s screen object initiating the request

7
public void commandAction(Command c, Displayable s) {

try {

if (c == exitCommand || c == Alert.DISMISS_CGMMAND) {

destroyApp(false);

notify DestroyedO;

} else if (c == replyCommand) {

replyO;

}
} catch (Exception ex) (

ex.printStackTraceO;

}

}

/ * *

* Allow the user to reply to the received message

7

private void reply() {

II remove the leading "sms://" for diplaying the destination address

String address = senderAddress.substring(6);

String statusMessage = "Sending message to " + address +

sendingMessageAiert.setString(statusMessage);

sender. promptAndSend(senderAddress);

}
}

Appendix D.2 The SMSSender Class

13/03/2005 Department o f Computer Science 113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/*
* @(#)SMSSender.java 1.5 03/10/29

* Copyright (c) 1999-2003 Sun Microsystems, Inc. All rights reserved.

* PROPRIETARY/CONFIDENTIAL

* Use is subject to license terms

* /

package example.sms;

import javax.microedition.io.*;

Import javax.microedition.Icdui.*;

import javax.wireless.messaging.*;

import java.io.lOException;

/ * *

* Prompts for text and sends it via an SMS MessageConnection

* /

public class SMSSender

implements CommandListener, Runnable {

/** user interface command for indicating Send request */

Command sendCommand = new Command("Send", Command.OK, 1);

/** user interface command for going back to the previous screen */

Command backCommand = new Command("Back", Command.BACK, 2);

/** Display to use. */

Display display;

/** The port on which we send SMS messages */

String smsPort;

/** The URL to send the message to */

String destinationAddress;

/** Area where the user enters a message to send */

TextBox messageBox;

/** Where to return if the user hits "Back" */

Displayable backScreen;

/** Displayed when a message is being sent */

Displayable sendingScreen;

/ * *

* Initialize the MlDlet with the current display object and

* graphical components.

*/

13/03/2005 Department o f Computer Science 114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

public SMSSender(String smsPort, Display display,

Displayable backScreen, Displayable sendingScreen) {

this.smsPort = smsPort;

this.display = display;

this.destinationAddress = null;

this.backScreen = backScreen;

this.sendingScreen = sendingScreen;

messageBox = new TextBox{"Enter Message", null, 65535, TextField.ANY);

messageBox.addCommand(backCommand);

messageBox.addCommand(sendCommand);

messageBox.setCommandListener(this);

}

r
* Prompt for message and send it

7

public void promptAndSend(String destinationAddress)

{
this.destinationAddress = destinationAddress;

display.setCurrent(messageBox);

}

/**
* Respond to commands, including exit

* @param c user interface command requested

* @param s screen object initiating the request

7

public void commandAction(Command c, Displayable s) {

try {

if (c == backCommand) {

display.setCurrent(backScreen);

} else if (c == sendCommand) {

display.setCurrent(sendingScreen);

new Thread(this).start();

}
) catch (Exception ex) {

ex. printStackT race();

}
}

/**
* Send the message. Called on a separate thread so we don’t have

13/03/2005 Department o f Computer Science 115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

* contention for the display

7

public void run() {

String address = destinationAddress + + smsPort;

MessageConnection smsconn = null;

try {

/** Open the message connection. 7

smsconn = (MessageConnection)Connector.open(address);

TextMessage txtmessage = (TextMessage)smsconn.newMessage(
MessageConnection.TEXT MESSAGE);

txtmessage.setAddress(address);

txtmessage.setPayloadText(messageBox.getStringO);

smsconn.send(bdmessage);

> catch (Throwable t) {

System out.println("Send caught: ");

t.printStackTraceO;

}
if (smsconn != null) {

try {

smsconn.closeO;

} catch (lOException ioe) {

System.out.println("Closing connection caught: ");

ioe. printStackT race();

}
}

}
}

Appendix D.3 The SMSSend Class

r
* @(#)SMSSend.java 1.5 03/03/02

* Copyright (c) 1999-2003 Sun Microsystems, Inc. All rights reserved.

* PROPRIETARY/CONFIDENTIAL

* Use is subject to license terms

7

package example.sms;

13/03/2005 Department o f Computer Science 116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

import javax.microedition.midlet.*;

import javax.microedition.io.*:

import javax.microedition.Icdui.*;

import javax.wireless.messaging.*;

import java.io.lOException;

/**
* An example MlDlet to send text via an SMS MessageConnection

*/
public class SMSSend extends MlDlet

implements CommandListener {

/** user interface command for indicating Exit request. */

Command exitCommand = new Command{"Exit", Command.EXIT, 2);

/** user interface command for proceeding to the next screen */

Command okCommand = new Command("OK", Command.OK, 1);

/** current display. */

Display display;

/** The port on which we send SMS messages */

String smsPort;

/** Area where the user enters the phone number to send the message to */

TextBox destinationAddressBox;

/** Error message displayed when an invalid phone number is entered */

Alert errorMessageAlert;

/** Alert that is displayed when a message is being sent */

Alert sendingMessageAiert;

/** Prompts for and sends the text message */

SMSSender sender;

/** The last visible screen when we paused */

Displayable resumeScreen = null;

/**
* Initialize the MlDlet with the current display object and

* graphical components.

*/
public SMSSendO {

smsPort = getAppPropertyC'SMS-Port");

display = Display.getDisplay(this);

destinationAddressBox = new TextBox("Destination Address?",

null, 256, TextField.PHONENUMBER);

13/03/2005 Department o f Computer Science 117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

destinationAddressBox.addComnnancl(exitCommand);

destina tionAddressBox.addCommand(okCommand);

destinationAddressBox. setCommandListener(this);

errorMessageAlert = new Alert("SMS", null, null, AlertType.ERROR);

errorMessageAlert.setTimeout(5000);

sendingMessageAiert = new Alert("SMS“, null, null, AlertType.INFO);

sendingMessageAiert.setTimeout(5000);

sendingMessageAlert.setCommandListener(this);

sender = new SMSSender(smsPort, display, destinationAddressBox,

sendingMessageAiert);

resumeScreen = destinationAddressBox;

}

r
* startApp should return immediately to keep the dispatcher

* from hanging.

7

public void StartAppO {

display.setCurrent(resumeScreen);

}

r
* Remember what screen is showing

7

public void pauseAppQ {

resumeScreen = display.getCurrent();

}

/**
* Destroy must cleanup everything.

* @param unconditional true if a forced shutdown was requested

*/
public void destroyApp(boolean unconditional) {

}

/**
* Respond to commands, including exit

* @param c user interface command requested

* ©param s screen object initiating the request

13/03/2005 Department o f Computer Science 118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7

public void commandAction(Command c, DIspiayabie s) {

try {

if (c == exitCommand || c == Aiert.DiSMiSS_COMMAND) {

destroyApp(false);

notifyDestroyedO;

} eise if (c == okCommand) {

promptAndSend();

}
} catch (Exception ex) {

ex.printStackTraceO;

}
}

r
* Prompt for and send the message

7

private void promptAndSend() {

String address = destinationAddressBox.getStringO;

if (!SMSSend.isVaiidPhoneNumber(address)) {

errorMessageAlert.setStringC'invaiid phone number");

display.setCurrent(errorMessageAiert, destinationAddressBox);

return;

>
String statusMessage = "Sending message to " + address +

sendingMessageAiert.setString(statusMessage);

sender.promptAndSendC'sms://" + address);

}

r
* Check the phone numtjer for validity

* Valid phone numbers contain only the digits 0 thru 9, and contain

* a leading

7

private static boolean lsValldPhoneNumber(String number) {

char] chars = number,toCharArray();

if (chars.length == 0) {

return false;

}
int startPos = 0;

// initial '+' Is OK
If (chars[0]=='+') {

startPos = 1 ;

13/03/2005 Department o f Computer Science 119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}
for (int i = startPos; i < chars.length; ++i) {

If (!Character.lsDlgit(chars[l])) {

return false;

}
}
return true;

}
}

Appendix E A Generic MS Application for Sending and

Receiving SMS messages

Appendix E. 1 The Controller for the MS Application

Import javax.wlreless.messaglng.MessageConnectlon;

Import javax.wlreless.messaging.MessageLlstener;

Import javax.microedltion.midlet.MIDIet;

Import javax.microedltion.Icdui.CommandLlstener;

import javax.microedition.Icdui. Alert;

Import javax.mlcroedltion.Icdui.Command;

Import javax.microedition.Icdui.Displayable;

import javax.microedition.Icdui.Display;

import java.io.lOException;

/**
* An example MIDIet displays text from an SMS MessageConnection

7

public class SMS_MS_Controller extends MIDIet implements Command Listener, MessageLlstener

{
// Create global variables

SMS_MS_View smsView;

SMS_MS_Model_Receive receiveModel;

SMS_MS_Model_Send sendModel;

Command exitCommand = new CommandfExIt", Command.EXIT, 2);

13/03/2005 Department o f Computer Science 120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Command doneCommand = new Command("Done", Command.CANCEL, 2);

Command replyCommand = new Command(”Reply", Command.OK, 1);

Command createCommand = new CommandfNew", Command.OK, 1);

Command nextCommand = new Command("Next", Command.OK, 1);

Command backCommand = new Command("Back", Command.CANCEL, 2);

Command sendCommand = new Command("Send”, Command.OK, 1);

String smsPort;

public SMS_MS_Controller{)

{
II Initialize variables

smsPort = getAppProperty("SMS-Port");

smsVlew = new SMS_MS_View(this, exitCommand, createCommand);

receiveModel = new SMS_MS_Model_Receive(ttiis);

sendModel = new SMS_MS_Model_Send(this):

II get the Display object for this MIDIet and pass It to the View

smsView.setDisplay(Display.getDlsplay(this));

}

// Start the application

public void startAppO

{

II Open a new connection

receiveModel.openNewConnectionC’sms://:" + smsPort);

// Start the receive Thread

receiveModel.start();

II Display the screen

smsVlew.setCurrentDisplayO;

}

I I A new message has just been received better retrieve it

public void notifylncomingMessage(MessageConnection conn)

{
I I A new message was received and we should start the Thread

receiveModeI.startO;

}

// A new message has been received and we should Inform the View

public void messageReceived(String message. String senderAddress)

{

13/03/2005 Department o f Computer Science 121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

smsView,setDestinationAdressString(senderAddress.substring(6));

smsView.displayMessage(message, doneCommand, replyCommand);

}

// Pause the application

public void pauseAppO

{
receiveModel ,pause();

smsView.setDisplayable(smsView.getDisplayableO);

}

// Time to close the application

public void destroyApp(boolean unconditional)

{
receiveModel.destroyO;

}

// The user pressed a button and we should handle it

public void commandAction(Command c, Displayable s)

{
try

{
If (c == Alert.DISMISS_COMMAND || c == exitCommand)

{
destroyApp(false);

notifyDestroyedO:

}
else if (c == doneCommand)

{
II return to the main screen

smsView.setCurrentDisplayO;

}
else if (c == replyCommand)

{
// we already know the address so just retrieve the message

smsView.inputMessage(backCommand, sendCommand);

}
else If (c == createCommand)

{
smsView.inputDestination(exitCommand, nextCommand);

}
else if (c == nextCommand)

{

13/03/2005 Department o f Computer Science 122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

// we better check that the phone number is correct

if(!sendModel.isPhoneNumberValid(smsView.getDestinationAddressString{)))

{
smsView.setErrorMessageC'Invalid phone number");

smsView.setCurrentDisplay(smsView.getError(),
smsView.getDestinationAddressO);

return;

}
smsView,inputMessage(backCommand, sendCommand);

)
else If (c == backCommand)

{
smsView.inputDestinatlon(exitCommand, nextCommand);

}
else if (c == sendCommand)

{
// Notify the user that the message will be sent

smsView.setSendDisplayStringC'Sending message to " +
smsView.getDestinationAddressStringO + ",..");

smsView.setCurrentDisplay(smsView.getSendDisplayO);

II Tell the Model to send the message

sendModel.setDestinationAddressString(smsVlew.getDestinationAddressStringO);
sendModel.setSMSPort(smsPort);

sendModel.setMessage(smsView.getMessageStringO);

sendModel.startO;

}

}
catch (Exception ex)

{
ex.printStackT race();

}
}

}

Appendix E.2 The Model for Receiving SMS messages

import javax.wlreless.messaging.MessageConnection;

import javax.wlreless.messaging.Message;

import javax.wlreless.messaging.TextMessage;

import javax.wlreless.messaging.BinaryMessage;

import javax.microedition.Icdui.Alert;

13/03/2005 Department o f Computer Science 123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

import ja v a x .m icroédition,io.Connector;

import java.io .lO Exception;

public class SMS_MS_Model_Receive implements Runnable

{
// Create global variables

Thread thread;

MessageConnection smsconn;

SMS_MS_Controller smsController;

Message msg;

String senderAddress;

8 MS_MS_Model_Receive(S MS_MS_Controller smsController)

{
// Initialize variables

this.smsController = smsController;

smsconn = null;

thread = null;

}

// Open a new SMS connection for receiving text messages

public MessageConnection openNewConnection(String smsConnection)

(
if (smsconn == null)

{
try

smsconn = (MessageConnection) Connector.open(smsConnection);

smsconn. setMessageListener(smsController);

catch (lOException ioe)

ioe.printStackT race();

}
}

return smsconn;

}

// Close the SMS connection

public void closeConnectionO

{

13/03/2005 Department o f Computer Science 124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

this.destroyO:

>

// Check to see if there are any new SMS messages

public void startO

{
II Start receiving messages

if (thread == null)

{
thread - new Thread(this);

thread.StartO;

}
}

// Retrieve the new message

public void run()

{
String message = new String("");

II Check for sms connection

try

{
msg = smsconn.receiveO;

if (msg != null)

{
senderAddress = msg.getAddress();

if (msg Instanceof TextMessage)

{
message = ((TextMessage)msg).getPayloadText();

}
else

{
StringBuffer but = new StringBuffer();

byte] data = ((BinaryMessage)msg).getPayloadData();

for (int i = 0; i < data.length; i++)

{
int intData = (int)data(i] & OxFF;

if (intData < 0x10)

{
buf.appendC'O");

}
buf.append(lnteger.toFlexStrlng(intData));

buf.appendC ');

13/03/2005 Department o f Computer Science 125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}

message = buf.toSlringO;

}
smsController.messageReceived(message, senderAddress);

}
} catch (lOException e) {

// e.printStackT race():

}
}

// Pause the receiving

public void pauseO

{
thread = null;

return;

}

// Close the SMS Connection and stop the thread

public void destroyO

{
thread = null;

if (smsconn != null) {

try {

smsconn.closeO;

} catch (lOException e) {

II Ignore any errors on shutdown

}
}

return;

}
}

Appendix E.3 The Model for Sending SMS Messages

import javax.wireless.messaging.MessageConnection;

import javax.wireless.messaging.Message;

import javax.wlreless.messaging.TextMessage;

import javax.wireless.messaging.BinaryMessage;

13/03/2005 Department o f Computer Science 126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

import javax.microedition io.Connector;

import javax.microedition.Icdui.Alert;

import java.lang.Thread;

import java.io.lOException;

public class SMS_MS_Model_Send Implements Runnable

{
// Create global variables

Thread thread;

MessageConnection sendSMSConn;

SMS_MS_Controller smsController;

Message msg;

String senderAddress;

String destlnationAddress;

String smsPort;

String message;

Alert content;

S MS_MS_Model_Send(S MS_MS_Controller smsController)

{
// Initialize variables

this.smsController = smsController;

content = null;

sendSMSConn = null;

thread = null;

}

// Is this a valid phone number?

public txoolean isPhoneNumberValid(String address)

{

char] chars = address.toCharArray();

if (chars.length == 0)

return false;

Int startPos = 0;

// initial '+' is OK

if (chars[0]=='+')

13/03/2005 Department o f Computer Science 127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

StartPos = 1 ;

for (int i = startPos; i < chars.length; ++i)

if (!Character.isDigit(chars[i]))

return false;

return true;

}

// Set the destination address

public void setDestinationAddressString(String destinationAddress)

{

this.destinationAddress = destinationAddress;

}

// declare the SMS port to send the message on

public void setSMSPort(String smsPort)

{
this.smsPort = smsPort;

}

// set the message

public void setMessage(String message)

{
this.message = message;

}

II Time to send the message so we better start the Thread

public void StartO

{
II Send a message

if (thread == null)

{

thread = new Thread(this);

thread.StartO:

}

}

II Send the message to the destination address

public void run()

{
String address = "sms://" + destinationAddress + + smsPort;

13/03/2005 Department o f Computer Science 128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sendSMSConn = null;

try

{
// Open the message connection

sendSMSConn = (MessageConnection)Connector.open(address);

TextMessage txtmessage =
(TextMessage)sendSMSConn.newMessage(MessageConnectlon.TEXTMESSAGE);

txtmessage.setAddress(address);

txtmessage.setPayloadText(message);

sends MSConn.send(txtmessage);

}

catch (Throwable t)

{
System.out.println("Send caught: ");

t.printStackTraceO;

}
If (sendSMSConn != null)

{

try

{
sendSMSConn.close();

}
catch (lOException ioe)

{
System.out.printlnC’Closing connection caught: ");

ioe.printStackT race();

}
}

}
}

Appendix E.4 The View for displaying received messages and for composing new

messages

import javax.microedition.Icdui.Alert;

Import javax.microédition.Icdui.AlertType;

import javax.microedition.Icdui.Command;

import javax.microedition.Icdui.Displayable;

import javax.microedition.Icdui.Display;

import javax.microédition.Icdui TextBox;

13/03/2005 Department o f Computer Science 129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

import javax.microedition.Icdui.TextField;

public class SMS_MS_View

{
// Create global variables

Alert contentAlert;

Alert errorAlert;

Alert sendingAlert;

SMS_MS_Controller smsController:

Display display;

Displayable screen;

TextBox destinationAddressBox;

TextBox messageBox;

SMS_MS_View(SMS_MS_Controller smsController, Command exitCommand, Command createCommand)

{
// Initialize variables

this.smsController = smsController;

contentAlert = new Alert("A Generic MS SMS Application");

contentAlert.setTimeout(Alert.FOREVER);

contentAlert.addCommand(exltCommand);

contentAlert.addCommand(createCommand);
contentAlert.setCommandListener{smsController);

contentAlert.setStringC'What would you like to do now?");

errorAlert = new Alert("SMS", null, null, AlertT ype. ERROR);

errorAlert.setTimeout(5000);

sendingAlert = new AlertfSMS", null, null, AlertType.INFO);

sendingAlert.setTimeout(5000);

sendingAlert.setCommandListener(smsController);

destinationAddressBox = new TextBox("Destination Address?", null, 256, TextField.PHONENUMBER);

// Initialize the viewing screen

screen = contentAlert;

}

II Set the display object for the mobile device

13/03/2005 Department o f Computer Science 130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

public void setD lsplay(D isplay display)

{

this.display = display;

}

// Set the display object and the display for the mobile device

public void setCurrentDisplay(Displayable screen)

{

this.screen = screen;

display.setCurrent(screen);

}

// Set the display for the mobile device

public void setCurrentDisplayO

{

display.setCurrent(screen);

}

// Set the display for the mobile device

public void setCurrentDisplay(Alert error, TextBox textbox)

{

display.setCurrent(error, textbox);

}

// Set the display for the mobile device

public void setCurrentDisplay(TextBox textbox)

{

display.setCurrent(textbox);

}

// Set the display for the mobile device

public void setCurrentDisplay(Alert alert)

{

display.setCurrent(alert);

}

// Set the display for the mobile device

public void setDisplayable(Displayable screen)

{

this.screen = screen;

}

// Return the display object for the mobile device

13/03/2005 Department o f Computer Science 131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

public D isplayable getDisplayable()

{

return display.getCurrent();

}

// Display the received message

public void displayMessage(String textMessage, Command doneCommand, Command replyCommand)

{
Alert message = new Alert("");

message.setTltle("From: " + getDestInationAddressStringO);

message.setTimeout(Alert.FOREVER);

message.addCommand(doneCommand);

message.addCommand(replyCommand);

message.setCommandListener(smsController);

message.setStrlng(textlVlessage);

setCurrentDisplay(message);

}

I l Alter the content Alert string

public void setContentString(String string)

{
contentAlert. setString(string);

}

I l Composing part of the View

public void inputDestination(Command exitCommand, Command nextCommand)

{
destinationAddressBox.addCommand(exltCommand);

destinationAddressBox.addCommand(nextCommand):

destinationAddressBox.setCommandListener(smsController);

setCurrentDisplay(destinationAddressBox);

}

I l Specifying an error

public void setErrorMessage(String errorAlertMessage)

{

error Alert.setString(errorAlertlVlessage);

}

// Returning the error object

13/03/2005 Department o f Computer Science 132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

public Alert getError()

{

return errorAlert;

>

// Returning the destination address object

public TextBox getDestinationAddress()

{

return destinationAddressBox;

}

// Return the destination address string

public String getDestinationAddressString()

{

return destinationAddressBox.getStringO;

}

// Specify the destination address as a String

public void setDestinatlonAdressString(String addressStiing)

{
destinationAddressBox. setString(addressString);

}

// Specify the sending message

public void setSendDisplayString(String sendString)

{

sendingAlert.setString(sendString);

}

// Retrieve the user's message

public void inputMessage(Command backCommand, Command sendCommand)

{

messageBox = new TextBox("Enter Message", null, 65535, TextFleld.ANY);

messageBox.addCommand(backCommand);

messageBox.addCommand(sendCommand);

messageBox.setCommandListener(smsController);

setCurrentDisplay(messageBox);

>

// Return the user's message

public String getMessageStringO

{

13/03/2005 Department o f Computer Science 133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

return messageBox.getStringO;

}

// Sending Message part of the View

public Alert getSendDisplay()

{
return sendingAlert;

}
}

13/03/2005 Department o f Computer Science 134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

