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ABSTRACT

STUDY OF HETERO AROMATIC ENEDIYNE 

AND SUBSTITUTED BENZOTHIOPHENE SYNTHESIS

WITH

RELATIVE REACTIVITY OF SUBSTITUTED ARYL 

IODIDES IN THE SONOGASHIRA REACTION

Mohammad Selim Hossain Supervisor:

Lakehead University Dr. C. Gottardo

Enediyne compounds have captured the imagination of chemists since their 

discovery as a class of natural products. Because of their cytotoxicity, these compounds 

are not suitable for use in cancer treatment. As a result, chemists have aimed to reduce 

their toxicity, improve stability and elucidate the mechanism of their cyclization reaction. 

The Sonogashira coupling reaction is used to synthesize a number of heteroaromatic 

enediynes and has been examined. By coupling a number of alkynes with 2,3- 

dibromothiphene a number of corresponding disubstituted enediynes were produced. In 

order to get fused bicyclic heteroaromatic products both thermal and photochemical 

Bergman cyclizations have been performed with these enediynes. To date, the attempted 

cyclizations have not been successful.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Beside this, a series of competitive reactions was carried out to determine the 

relative reactivity of substituted aryl iodides in the Sonogashira reactions. These reactions 

were carried out in co-catalyst system composed of Pd/Cul. The competitive reactions 

between iodobenzene and a number of 3- and 4-substituted iodobenzenes provided 

relative rates which were compared to the theoretical electron densities of the iodide- 

bearing carbon. Generally, electron withdrawing substituents in the para- and meta- 

positions increased the reactivity, while donating substituents decreased the rate of 

reaction. It was found that resonance effects have a greater effect on reactivity than 

inductive effects.

Ill
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Chapter One

CHAPTER ONE

A SYNTHETIC AND MECHANISTIC REVIEW OF 

ENEDIYNE CHEMISTRY

1.1 Introduction

Man’s fascination with natural products goes back to ancient times. With the 

discovery of Salicin from willow tree extracts and the development of aspirin in 1899, the 

art of exploiting natural products became a molecular science. The discovery of a class of 

compounds called the enediynes in the mid 1980’s and its subsequent drug development 

represented another milestone in the history of natural products, and marked the 

beginning of a new chapter in drug discovery, in which bacteria were added to the plant 

kingdom as a source of biologically active compounds. Indeed, a large portion of today’s 

major drugs have their origin in nature. Interest in enediynes has grown because of their 

anticancer activity;^ this class of naturally occurring compounds can selectively cleave 

DNA. However, enediynes are toxic, and some of them are unstable for biological 

application. Researchers are currently trying to synthesize and develop analogues, and to 

investigate mode of action in order to better control their activity. The goal of many 

researchers is to prepare enediynes, using a synthetically simple strategy, that contain an 

active site that could be activated in a controlled manner.

In this thesis, reviews of anticancer agents and the bicyclic heteroaromatic fused 

ring systems will be presented, followed by reviews of synthetic methodology most 

commonly used in enediyne synthesis and reactions under which they can cyclize.

- 1 -
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Chapter One

1.2 Classes Of Naturally Occurring Enediynes

Five classes of naturally occurring enediynes are known. The enediyne family of 

antibiotics (Fig. 1) is characterized structurally by an enediyne core unit consisting of two 

acetylenic groups conjugated to a double bond or incipient double bond within a 9- or 10- 

membered ring.^”̂  To date, five unique 9-membered enediynes (1-5) (Fig. 1), often 

designated as the chromoprotein enediynes, and five additional distinct naturally 

occurring 10-membered enediynes (6-10) (Fig. D have been elucidated structurally.^'^ In 

general, these enediynes contain three distinct structural elements; a DNA-recognition 

unit, which serves to deliver the metabolite to its target DNA; an activation component, 

which sets the stage for cycloaromatization; and the enediyne "warhead," which 

cycloaromatizes to a highly reactive diradical species and, in the presence of DNA, results 

in oxidative strand scission of the targeted sequence.*''^ In vitro and in vivo studies are 

consistent with the role of enediynes as DNA-damaging agents and suggest that they may 

even favour cleavage at certain chromosomal sites and/or tertiary s tru c tu re s .A lth o u g h  

this extraordinary reactivity invokes incredible potency (some enediynes are >8,000- 

fold), the enediynes are similar to most cytotoxins in their general lack of tissue 

specificity. However, targeting via polymer-assisted delivery devices l-poly(styrene- 

maleic acid)-conjugated neocarzinostatin or conjugation to tumor-specific monoclonal 

antibodies (as in the 6-based Mylotarg) has led to clinical success.

-2
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Figure: 1
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Chapter One

Figure: 1 (cont.)
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1.3 Mode Of Action

The enediyne group is often called a warhead because it is ready to cyclize, 

forming benzene via a highly reactive 1,4-benzeniod diradical intermediate. This 

diradical intermediate is responsible for the oxidative DNA cleavage. This cyclization 

process is named the Bergman cycloaromatization reaction.*'^ The enediyne group readily 

cyclizes via a diradical intermediate that cleaves the DNA, giving rise to enediynes’ 

powerful antitumor activity. The anti tumor activity of enediyne natural products stems

- 4 -
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Chapter One

from their ability to cleave double stranded DNA (ds DNA), which induces cell 

apoptosis/^ The biological mode of action occurs along one of two general pathways, 

depending the type of enediyne structure (Scheme 1). The majority of enediynes undergo 

Bergman cyclization.*'* The sequence that leads to this cyclization begins when a cellular 

thiol, such as glutathione attacks the trisulfide bond, liberating a thiolate which then 

reacts with the unsaturated enone via 1,4- addition. The resulting rehybridization of the 

bridgehead carbon (sp^ to sp^) induces a conformational change that decreases the 

distance between diyne termini in 12.

Schem e 1

HS-R’H0,„

S -S-S R

AcNH ORAcNH (R O
12

11

cleaved DNA dsDNA

AcNH OR
14

HO.,

AcNH OR
13
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The Bergman cyclization now proceeds readily to afford the j7-benzyne diradieal 13 that 

abstracts two hydrogen atoms, one each from the opposite strands of a complementary 

base pair producing the arene 14.*  ̂The chemical consequences of these hydrogen atom 

abstractions lead to double-stranded DNA cleavage, which induces apoptosis.*^

There are four principle effects of the enediynes on the cell: 1. Mutagenicity; 2. 

Antimitotic activity associated with eell-cyele arrest; 3. Apoptosis induction; and 4. 

Differential induction. Mutagenicity, the capacity to induce mutations, of enediynes has 

been shown to be sulf-hydryl dependent and varies with concentration, which is 

proportional to the cytotoxicity. That is, as the surviving fraction of cells diminishes, 

there is an increase of the percentage of remaining cells with a mutant phenotype. 

Enediynes act as antimitotic agents by inducing a temporary delay in division. Mitosis is 

a process that takes place in the nucleus of a dividing cell, involves typically a series of 

steps consisting of prophase, metaphase, anaphase, and telophase, and results in the 

formation of two new nuclei each having the same number of chromosomes as the parent 

nucleus. Cell growth remains blocked for some period of time, usually one hour, 

demonstrating a decrease in the mitotic index. The antimitotic effect is irreversible. 

Stable, designed enediynes appear to block apoptosis induction (genetically determined 

destruction of the cell by internal stimulation). Competitive inhibitors, such as receptor- 

ligand-like interactions, are not universally seen in natural enediynes. The determination 

of whether a particular cell undergoes apoptosis or differentiation is a function o f the 

endogenous properties of that cell rather than the concentration or nature of the enediyne.

6 -
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All of the enediyne antibiotics were originally derived by fermentation of 

mieroorganisms. The various species organisms produced different enediyne complexes.

1.4 Cycloaromatization

The enediynes remain among the most potent antitumor agents to have been 

discovered in the past decade.* Activation of the enediynes to undergo 

cycloaromatization reactions results in the formation of highly reactive diradical 

intermediates. The diradical species engage in atom transfer chemistry to produce neutral 

arene products, in the process inducing damage to key macromolecules. Several of the 

naturally occurring members of the enediyne family of antibiotics have entered clinical 

trials, and this has prompted the design of synthetic enediynes, where the enediyne 

“warhead” is conjugated to a targeted delivery vehicle. This section of the review will 

describe recent efforts using chemical synthesis to identify and improve the target 

specificity of designed enediynes and to establish efficient methods to achieve activation. 

Finally, new horizons will be examined, including the use of post-cycloaromatized 

enediyne templates as recognition elements for unique DNA and RNA 

microenvironments. The Bergman cyclization*'* has received much of attention in the 

literature since almost all of the natural anticancer agents that have been discovered 

function through this mechanism. However, there are other cycloaromatization pathways 

that have been elucidated; those are the Myers-Saito cyclization,*^ the Schmittel 

cyclization*^’*̂ and the Tandem cyclization.*’*̂

-7 -
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1.4.1 Bergman Cyclization

Jones and Bergman reported a reaction which has since been known as the 

Bergman cyclization''' in 1972. They reported that enediynes undergo thermal cyclization 

on heating. Bergman then proposed a mechanism for this cyclization. His proposed 

mechanism involves a biradical intermediate which could abstract hydrogens from a 

hydrogen donor source which leads to the final aromatic product (Scheme 2).

Schem e 2

(15)

A 2H

(16) (17)

Although there is no direct evidence of the existence of biradical, there is indirect 

evidence such as radical trapping experiments using TEMPO.^*' There are a number of 

factors which influence the reactivity of enediynes. Nicolaou et al. studied a class of 

enediynes^' and reported that the reactivity towards Bergman cyclization could be 

determined by distance calculated and observed between acetylenic carbons (cd). It was 

concluded in their report that distances {cd) lower than 3.20Â cyclized spontaneously at 

all temperatures via the intermediate (Scheme 2). Enediynes with {cd) distance 3.20 to 

3.31Â cyclize at 25°C, while distances greater than 3.31Â are stable at 25°C.
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Grissom has found that the addition of one alkyl unit on a terminal carbon 

increases the activation energy from 25.1 kcal/mol to 28.1 kcal/mol.^^ When a second 

alkyl unit was added the cyclization barrier was raised to 34.0 kcal/mol. It was concluded 

that the thermal stability of enediyne was a direct result of cd alone. The limitations of 

Nicolaou's conclusions have been discussed greatly. James P. Snyder has examined a 

series of reactions and concluded that although cd and reactivity of enediynes are related 

in monocyclic systems, they do not apply consistently to more complex ring systems.^^ In 

related calculations, the transition state for cyclization was shown to possess 35% 

biradical character, lending support to Bergman’s proposed mechanism. As a result, 

Snyder proposed that fusion of additional rings introduces competitive strain; these 

compounds do not benefit from the diminished kinetic barriers enjoyed by shorter cd in 

monocyclic systems.^^

Magnus et al. conducted kinetic studies on enediynes to correlate between strain 

energy and its reactivity.^'* They concluded that the cyclization rates of enediynes are 

influenced by strain-energy modulation in the pseudocyclic transition state. From their 

experimental observation it has been concluded that the rate of cyclization is governed 

much more strongly by strain energy rather than the proximity of the acetylenic carbon 

{cd distances). Other studies reinforce this conclusion, including an elegant comparison 

between computer modeled cd, rates and strain energy, and those determined by 

experiment, which found excellent correlation between theoretical and experimental 

values.^^’̂ ^

-9
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Another factor involved in determining the activity of enediynes to cyclization is 

the eleetronie effect. Several aspects of this category have been studied to date, including 

heteroatomic effects, solvent dependence, aryl ring substitutions, and acetylenic 

substitutions. In order to investigate how electronic factors influence the rate of 

cyclization, Kim et al. synthesized some aromatic heteroatomic enediynes (29 - 32) and 

did some kinetics experiments.^^

,N

N

(18) (19) (20)

H

H
(21)

It has been reported that non-aromatic enediynes have shorter half-lives than 

arenediynes, however, the influence of the double bond has yet to be c larified .K im  et 

al. concluded in their report that eleetron-withdrawing substituents associated with the 

double bond tend to inerease the Bergman cyclization. The synthesized enediynes (18 - 

21) were used to measure their respeetive aetivation energy utilizing an Arrhenius 

relationship (rate of disappearanee of enediyne versus time). The measured activation 

energy was compared to analogous nonheteroatomic enediynes (21). Compounds 19 and 

20 were found to have decreased activation energies compared to 21. Enediyne 20 was 

found to be the most reactive aeyclic arenediyne studied to date. It was determined that 

the activation energy of the enediyne inereased due to the addition of the aromatic ring in 

compound 18 relative to 21.^  ̂ If electron-withdrawing groups are attached to a proximal

- 1 0 -
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21position to the propargylic carbon 22, there appears to be a rate accelerating effect. 

Vinyl substitution has also been studied and the results appear to indicate that electron- 

withdrawing groups lower the rate of reaction by increasing activation energy (22, 23, 

2 4 ) 22,28 studies^^’̂ '̂̂  ̂ have been employed on benzannulated enediynes (25)

and they found that the nature of double bond has little to no effect on reaction rate , 

although it may cause a change to rate limiting step.^^’̂  ̂During the observation of these 

experiments, cyclized products were formed in better yields with less polar solvents, and 

the half-lives were found to correlate linearly with dielectric constants and E t(3 0 )  

values.^ This observation is intriguing because it has been reported that cyclization of 

similar enediynes is solvent independent. More study is necessary to examine whether 

this phenomenon is general for cyclizations.

(22) (23)
Ck

Ck

cr

(24)

(25) (21)

In 1994 Turro et al. reported the Bergman photochemical cyclization of 26/^ 

They irradiated this compound in a number of solvents and the product (27) formed was 

the expected Bergman cyclization product (Scheme 3). This was further evidenee of the 

formation of a biradical intermediate.

-11
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Scheme 3

2H-

(27)

A further successful report on Bergman photochemical cyclization has been 

presented by the same group but with a more in-depth study of their previous results. 

Different kinds of products were found on cyclization of 26, one of which was Bergman 

cyclization product 27, others being various photoreduction products (28-30) (Scheme 4). 

The cyclization of 31 yields only Bergman cyclization product 32 (Scheme 5).

- 1 2 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter One

Scheme 4

bu,2H-

i-PrOH

(26)

P H

(28)

(29)

(30)
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Scheme 5

bu, 2H

A mechanism was proposed for this cyclization in order to explain the various 

types of products what were formed in the cyclization reaction. It was suggested that the 

cyclization occurs from the singlet excited state and that photoreduction occurs from the 

triplet excited state. This assumption is based on the theory that the quantum yield of 

fluorescence depends on the rigidity of the molecule.^^ If rigidity is decreased, the chance 

of other modes of deactivation, such as intersystem crossing, is higher. In 31 two benzene 

groups make the compound more rigid which prevents intersystem crossing from the first 

excited singlet state to the first excited triplet state. Since photoreduction occurs from the 

triplet state, only 32 forms (Scheme 6). Since 26 is less rigid, intersystem crossing is 

more likely, allowing for more photoreduction to occur (Scheme 7).

-14
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Scheme 6

1[31]

(31)

1[31]

Schem e 7

^  (32)

hu
1[26]

1[26]

1[26] 

3 [26]

(27)

3 [26]

(28) + (29) + (30)

1.4.2 Myers-Satio Cyclization

Neocarzinostain chromophore (1), does not react through Bergman cyclization 

but still exhibits the same ability to cleave DNA strands. This is another form of 

cycloaromatization known as Myers-Satio cyclization which occurs in eneyne-allene

-1 5 -
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systems 34.^  ̂The proposed mechanism is very close to the Bergman cyclization (Scheme 

8). Three major differences have been found between Bergman and Myers-Satio 

cyclization. Firstly, the Bergman cyclization involves in enediyne system whereas the 

Myers-Satio cyclization involves reaction of eneyne-allene systems. Secondly, Myers- 

Satio cyclization goes through a less reactive o, %-biradical from the eneyne-allene 

starting material, whereas, the Bergman cyclization has a very reactive a, o-radical 

intermediate. Finally, Bergman cyclizations are moderately endothermie so heating is 

often required for cyclization to occur but Myers-Satio cyclizations are quite 

exothermic.

Schem e 8

R

(34)

A

(35)

2H-

R

,R

(36)

1.4.3 Schmittel Cyclization

The Schmittel cyclization is typically a Myers-Satio cyclization in which the 

simple exchange of a hydrogen at the alkyne terminus with an aryl group redirects the 

thermal reaction mode from the Myers-Satio cyclization to a Schmittel cyclization, 

resulting in a five-membered rather than six-membered ring (Scheme 9).^  ̂ The aryl 

substituents help the reaction to proceed rapidly. The effect of the aryl group is very clear 

as it stabilizes the radical intermediate which increases the rate of this C2-C6 cyclization.

- 1 6 -
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Scheme 9

A t

(37)

A

Ar

(38)

Ar

2H-

(39)

1.4.4 Tandem Cyclization

Bergman and Myers-Satio cyclization proceed through a biradical intermediate. 

The intermediate biradical could further react which leads to hi- and polycyclic systems 

(Scheme 10). ’̂ These cyclizations are termed “Tandem cyclizations”.

Schem e 10

MeOOC'

(40)

MeOOC

(41)

MeOOC

(41a)

MeOOC

2H-

(42)

Higher temperatures (150-200°C) are required in this cyclization so sometimes the 

starting material decomposes. Since Bergman cyclization requires such high temperatures 

and Myers-Satio cyclization does not, Tandem cyclization has now been performed in 

enyne-allene systems and may occurred at physiological temperatures (37°C) (Scheme 

11).

-17
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Scheme 11

SOOPh
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(43)

MeOOC

SOOPh

(44)

2H-

MeOOC

SOOPh

(45)

1.5 Carbon-Carbon Cross Coupling Reactions

Generally, carbon-carbon cross coupling reactions of vinyl or arylhalides with 

acetylenes arc used to synthesize enediynes and compounds in the formation of 

benzothiophenes, benzofurans and indoles. They have been investigated since the early 

1960’s and dramatically improved in recent times.

1.5.1 S tephens-C astro Coupling

Stephens and Castro coupled alkynes with arylhalides in 1963.^^ Synthesized 

cuprous acetylides undergo a substitution reaction with arylhalides (Scheme 12). They 

also studied the reactivity of ^am-substituted iodobenzenes towards coupling with 

cuprous phenyl acetylide. The trend of reactivity was found to be that I>Br>Cl (fluorides 

does not react at all). It was observed that the reactions proceeded better if electron- 

withdrawing groups or poorly electron-donating groups were attached to the arylhalides 

(N02>H>Me0). It was also found that the reaction would not occur if  the halogen 

(leaving group) was not bonded to an sp^-hybridized carbon. It is very difficult to

18-
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synthesize cuprous acetylide and its high degree of instability is the major drawback of 

this reaction.

Scheme 12

pyridine  ̂ \  /    \  /

(48)

1.5.2 Sonogashira Coupling

Although the Stephens-Castro coupling procedure was good enough in the 

formation of desired coupled product, the reactivity of the cuprous acetylides and the 

extreme conditions required made a milder procedure desirable. This procedure was 

modified so that cuprous acetylides were generated in situ. The modified reaction is the 

Sonogashira coupling reaction.^^ The classic Sonogashira reaction involves the use of 

PdCh, PPhj, Cul and an amine solvent, generally triethylamine (Scheme 13). 

Bromoalkenes, iodoarenes and bromopyridines were coupled with acetylenes at room 

temperature. The phosphine adds to the palladium metal, allowing for the electronics and 

the sterics of the catalyst to be adjusted. The role of the amine is to remove acidic 

material that is produced in the reaction and the role of Cul is not yet completely known. 

It has been found that the rate of reaction is slow in the absence of Cul and the rate is 

significantly increased in the presence of Cul.^*’̂  ̂ Due to the low reactivity of the 

arylbromides, strong reaction conditions were required to couple arylbromides and 

terminal alkynes. In order to improve the reactivity, aryliodides were used instead of
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arylbromides. The more polarizable C-I bond faeilitated higher yields in coupling.

Scheme 13

(PPh3)2PdCl2 , Cul 
-R -----------------------------

EtsN

To date, the mechanism of this reaction has not been elucidated; however, the 

generally accepted one is that proposed by Sonogashira (Scheme 14).^  ̂ In his proposed 

mechanism, Pd(0) is considered an active catalyst, therefore, the first step is a reduction 

of the pre-catalyst from a Pd(II) state to Pd(0). The catalyst Pd(0) that is generated enters 

the catalytic cycle and oxidatively adds an aryl or vinyl halide. The oxidative addition is 

followed by alkylation of the adduct to yield the aryl or vinyl alkynyl complex of 

palladium. The coupled product is formed by reductive elimination, regenerating the 

Pd(0) catalyst. It was found that the Cul has a vital role to the progress of reaction; 

however, this proposed mechanism does not indicate what role it plays in the reaction. 

The main improvements of this reaction have been made only in the catalyst and solvent. 

The most common catalysts used are Pd(PPh3)4, PdCl2(PPh3)2 and Pd/C. It has been 

found that both the Pd° and Pd̂ "̂  species are effective in this reaction, since the Pd^^ can 

be reduced in the initial step. Thorand and Krause have suggested that a better choice of 

solvent is THF,‘̂° the reason being that it appears to aid in minimizing the amount of 

Glaser coupling (oxidative homocoupling of the alkyne) that will occur if oxygen is not
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completely excluded from the reaction system. The reactivity o f this coupling reaction is 

the same as the Stephen-Castro coupling with I>Br>Cl and the presence of electron- 

donating groups lower the activity while electron-withdrawing groups promote the 

reaction.

- 2 1 -
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Scheme 14
(PP%)2PdCl2

^  CuI/Et2NH
-R

[NEt2H2]Cl

(PPhshPd— (-

R'X

CuI/Et^NH
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1.5.3 G rignard-Sonogashira Coupling

The coupling with an alkyne and aryl Grignard in place of an aryl halide has been 

performed which is a very recent improvement of the Sonogashira coupling reaction 

(Scheme 15)/^ The yields are good to excellent even when electron-donating substituents 

are present. The most surprising consideration in this result is that the acidic nature of 

hydrogen attached to the sp hybridized carbon should interfere with Grignard reagents. 

Therefore, the expected result of the reaction would be a deprotonation of the alkyne with 

no coupling occurring. However, this deprotonation reaction only occurs to sparing 

degrees with the main product being that which would be expected from a standard 

Sonogashira coupling.

From this literature review, it can be seen that enediyne chemistry has become a 

useful tool in the synthesis of novel compounds;'^^ however, the potential of enediynes 

has been overlooked in the synthesis of heteroaromatic systems.

Schem e 15

Mg (PPh3)2PdCl2, Cul

(50)

EtsN, -R
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1.6 The Fisher Indole Synthesis

The most general synthesis of indoles is the Fisher indole synthesis, in which the 

phenylhydrazone of an aldehyde or ketone is treated with a catalyst such as BF3, ZnCB, 

or polyphosphoric acid (PPA)."*  ̂The result of this reaction is a substituted indole (52).

Schem e 16

BF3—0 Et2

(51)

N acetic acid, 65 C
N H

(52)

The preparation of an unsubstituted indole requires using the phenylhydrazone of 

pyruvic acid (53). The resulting indole (54) contains a carboxylic acid group, which 

undergoes decarboxylation to yield the unsubstituted product (55) (Scheme The 

decarboxylation occurs only at 250°C, so the extreme reaction temperature makes this 

synthesis difficult to perform. It is hard to synthesize unsubstituted indole, so the 

determination of a simple method to do so is described. Since the structures of the three 

(thiophene, indole and furan) bicyclic heteroaromatic compounds differ only in the 

heteroatom it would be advantageous to develop a synthetic strategy using the same 

method to synthesize all three.

24
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Scheme 17
COOH

,N
NH 

(S3)

BF,
XOOH

25(#C

NH 

(54)

NH

(55)

1.6.1 Modern Methods Of Benzothiophene, Benzofurans And Indole 

Synthesis

The synthesis of all three classes of compounds via coupling of an aromatic iodide 

derivative with alkynes catalysed by a Pd/Cul system has been reported.'*'*’'’̂  A cross 

coupling reaction is carried out between ortho-substituted halobenzene, starting material 

(56), and the alkyne. The resulting product (57) can then spontaneously cyclize with the 

substituents in order to form the heterocyclic ring of the final product (58) (Scheme 

1 8 ) 44,45 Yhe efficiency of the cyclization depends upon the nature of the R group, the

base, and the reaction conditions.44,45

Scheme 18

Cul, Pd(PPh3)2Cl2 , EtgN 
 ►

-R]
NH

(57) EL (58)

'N '
I

R i
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For the preparation of benzothiophene, the heteroatom substituent is thiol. 

Similarly, for benzofurans or indoles an hydroxyl or amine functionality would be 

required, respectively. By using this'̂ '̂  and other methods,"*  ̂very high yields (>99%) have 

been obtained, but this method has a major drawback. Once the product has been 

obtained (benzothiophene, indoles or benzofurans) substitution reactions cannot occur on 

the benzene nucleus, because the reactivity of carbons of heterocyclic ring is much 

greater. To obtain substitution on the benzo positions, it would have to be present in the 

initial starting material which can lead to problems. If substituents like amino or hydroxy 

groups are present in an additional site to which a cyclization can occur, then the 

cyclization may occur there rather that at the desired site (Scheme 19). This would lead to 

the undesired products. It is these shortcomings that the work described herein is 

designed to overcome.

Scheme 19

OHOH

NH

(59) (60)
NH

R
(61)

R i
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1.7  Benzothiophenes, Benzofurans And Indoles

Benzothiophenes 62, benzofurans 63 and indoles 64 are analogues of each other. 

All three consists of a six membered aromatic ring which is fused to a five-membered 

heteroatomic ring. The main difference between them is the nature of heteroatom, so all 

three compounds can generally be studied together and a common method of 

synthesizing all three compounds would be desirable.

(62)

NH

(63) (64)

There are many naturally occurring, biologically active compounds that contain 

benzothiophene, benzofuran and indole cores. Melatonin (N-acetyl-5 methoxytryptamine) 

65 is a simple example of an indole and one that is highly studied. Melatonin is an 

important antioxidant hormone produced especially at night in the pineal gland. Its 

secretion is stimulated by the dark and inhibited by light.T ryptophan 6 6  is converted to 

serotonin'*^ 67 and finally converted to melatonin. The suprachiasmatic nuclei (SCN) of 

the hypothalamus have melatonin receptors and melatonin may have a direct action on 

SCN to influence "circadian" rhythms. Melatonin is metabolised to 6 -hydroxy-mel in the 

liver and the main metabolite excreted is ô-sulphatoxy-mel."^^ Isolated measurements of 

mel are difficult to interpret given its circadian secretion, however urinary excretion of 6 - 

sulphatoxy-mel may be helpful in studying pineal function especially in children.

-2 7 -
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Raloxifene 6 8 , a naturally occurring benzothiophene derivative belongs to a class 

of drug called "selective (o)estrogen receptor modulators" or "SERMs"."*  ̂ It is able to 

attach itself to specific tissues in the body which are stimulated by oestrogen (female-type 

hormone) including bone. One of oestrogen’s most important roles is to stimulate the 

production of new bone as part of the process by which the quality of the bones is 

maintained. Raloxifene, like oestrogen, can also stimulate target sites in bone tissue. 

When oestrogen levels fall (as they begin to after change of life) the bones become thin 

or brittle with the result that fractures are likely to occur. This is one of the common ways 

by which osteoporosis, which is associated with reduced bone density, occurs. Raloxifene 

is therefore used to maintain or increase bone density and thereby reduce the occurrence 

of fractures in post-menopausal women (or younger women without ovaries) who are at 

risk of osteoporosis or in whom osteoporosis is established. A further interesting effect of 

Raloxifene is that it also binds to oestrogen target sites on the breast but in this case it 

blocks stimulation of breast tissue by oestrogen^® (a means by which many breast cancers 

develop). Raloxifene might therefore be considered as an alternative to HRT in 

osteoporosis if there are concerns about breast cancer due to a strong family history for 

the patient.

2 8 -
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-NH-
O

NH

(65)

NH

(66)

O
OH

NH

HO

OH

(68)

1.8 Synthesis And Applications Of Enediynes

Currently, new methods are being utilized in the design of enediynes, their 

synthesis, and their reactivity. The widespread approach uses a palladium coupling 

reaction between the alkyne and ene m o ie t i e s .N u s s  et al. have been utilizing the 

Norrish type II cleavage of an a,P-unsaturated carbonyl to form the desired enediyne.^'* 

Grissom et al. have utilized tandem Bergman cyclization reactions to synthesize two- and 

three-fused-ring systems.^®’̂  ̂ Finally, it has been found that by using the different metal 

ions, Cu(II), Zn(II) and Mg(II) with a Mg(II) complexed enediyne Bergman cyelization is 

promoted since the activation barrier to cyclization is lowered.

Several factors must be considered for potential medical applications of enediyne 

analogues. The enediyne must have a planar component that can easily interact with 

DNA. The enediyne or its analogue must also be thermally stable at physiological 

conditions, and exhibit very low or no cytotoxicity. The activation of the analogue toward
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter One

the Bergman cyelization must have a spécifié, controllable trigger e.g. light. It should be 

synthetically simple. In this thesis, carbon-carbon cross coupling reactions and Bergman 

cyclization will be examined as a potential means of synthesizing substituted 

benzothiophenes. In Chapter Two, an outline for a novel approach to benzothiophene 

synthesis will be presented along with the preliminary steps taken in applying this 

methodology. This will be followed, in Chapter Three, by a series of competitive 

reactions of substituted aryl halides performed to determine their relative reactivities.
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CHAPTER TWO

A STUDY OF SUBSTITUTED BENZOTHIOPHENE SYNTHESES

2.1 Introduction

In the preceding chapter, a review of enediyne chemistry was presented along 

with synthetic methods for the preparation of fused bicyclic heteroaromatic systems. In 

this chapter, an approach to the synthesis of substituted benzothiophenes is presented 

using a novel methodology. Enediynes may form an aromatic ring when they cyclize, so 

it may be possible to prepare benzothiophenes tfom thiophenes having substituents on the 

six-membered ring. This reaction scheme involves performance of a Sonogashira 

coupling reaction between an alkyne and 2,3-dibromothiophene (Scheme 20). The 

reactivity at C-2 is much higher than that at C-3 because of the heteroatom. This results in 

a mixture of products 70 and 71. Compound 70 can be isolated and subjected to another 

Sonogashira reaction (Scheme 21). The ability to conduct each coupling reaction 

individually allows for a change of alkyne, thereby providing a means of introducing 

differing substituents into the system.

Schem e 20

Br/

S Br 

(69)

-R
C-C coupling +

(70) (71)
RR
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Scheme 21

C-C coupling

(70) (72)

R'

R

After completion of the second coupling reaction to give 72, the l,5-diyne-3-ene 

functionality is formed. A Bergman cyclization can then be used to close the ring and 

form the substituted benzothiophene (Scheme 22). The nature of substituents on the 

benzene portions of the ring system can be determined by the initial alkynes used in the 

cross couplings.

Schem e 22

(72)

2H-
R'

'S "  ^  R

(74)

It has been mentioned in Chapter One that Bergman cyclization is known to proceed 

through both thermal and photochemical reaction pathways. This provides alternate 

methods to synthesize benzothiophenes.

The substituents on C-5and C- 6  of the final product can be predicted by 

substituents on the alkyne terminal of the enediyne. It would be possible to introduce

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter Two

substituents at the C-4 and C-7 positions through the biradical intermediate during the 

cyclization (Scheme 23). Substituents on the five-membered ring of the system can

Schem e 23

R”

(73)

2R"I

R"

R

R

(75)

either be present on the initial 2,3-dibromothiophene or can be easily inserted using 

electrophilic aromatic substitution. It is believed that the same methodology can also be 

useful for indoles and benzofurans. This study focuses on benzothiophenes due to the 

commercial availability of the 2,3-dibromothiophene (72) starting material, and the time 

frame of the research project.

2.2 Synthetic Studies On Substitu ted  Benzothiophenes

Commercially available 2,3-dibromothiophene is the starting material. This 2,3- 

dibromothiophene was coupled with a number of alkynes (Scheme 24) by using the 

Sonogashira reaction. retrafe'5 (triphenylphosphine)palladium(0 ) [Pd(PPh3)4] is the 

catalyst, Cul is a co-catalyst and diisopropylamine is the solvent. Diisopropylamine was 

chosen to function as both the solvent and the base^^. Reactions were completed in a 

sealed pressure tube and at 90-110°C for 13 hours under a nitrogenous atmosphere with 

stirring.^^ With standard conditions (at room temperature) it was found that no coupling
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occurs at C-3 position. Therefore, higher temperatures were needed to prepare the 

disubstituted compounds.

____________________________Schem e 24

Br
/

(69)
Br

diisopropylamine, Cut, 
Pd(PPh3)4

R +

R R
76; R = Ph 
77:R = C H 20H  
78:R=Si(CH3)3
7 9 :R = C (C H 3 )2 0 H

80:R = Ph
8 1 :R = C H 2 0 H

82:R=Si(CH3)3
83:R = C (C H 3)20H

84:R = Ph 
85:R = C H 20H  
86:R=Si(CH3)3
87:R = C (C H 3)20H

Our successful reactions utilizing this technique were done with 2,3-dibromothiophene 

and phenylacetylene, trimethylsilylacetylene and 2-methyl-3-butyn-2-ol resulting in 84, 

86, 87 respectively. Compound 84 and 87 were separated from the reaction mixture and 

purified very easily and with good yields (8 6 % and 8 8 % respectively). Compound 8 6  and 

mono-coupled product 82 have almost similar polarities and retardation factor (Rf) in 

most solvents. 8 6  was isolated from the reaction mixture and purified by column 

chromatography in low yield (37%). However, propargyl alcohol (77) does not couple 

with 2,3-dibromothiophene under these conditions. The formation of 85 could not be 

confirmed by either GC-MS or TTC. It has also been found from GC-MS result that we 

did not get the compound 81 under these conditions. Furthermore, at low (70-85°C) and 

high (115-130°C) reaction temperature it was not possible to obtained either compound 

81 or 85. This result is most likely due to interference from the hydroxyl group during the 

coupling reaction. During the separation of enediyne compounds a number of byproducts

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter Two

were found. These are most likely the dimer of alkynes (88-91), triphenylphosphine oxide 

(0 =PPh3) and mono-eoupled products (80-83).

R— ^ ^ — R

88:R  = Ph 
89: R = CH20H  
90:R  = Si(CH3)3 
91:R  = C(CH3)20H

The dimer of alkynes (88-91) and mono-coupled products (82-85) were separated easily 

from fhe reaction mixture with column chromatography by using hexanes and ethyl 

acetate (95:5) in most cases. Triphenylphosphine oxide ((0 =PPh3)) interfered with 

products and difficulties arose with the isolation of products. Column chromatography 

was run several times mostly using hexanes to purify the enediyne compounds from 

triphenylphosphine oxide (0 =PPh3).

The general reactivity observed for the coupling reaction suggests that the polarity 

of the mono, di-coupled and starting materials impacted the isolated yields. The isolations 

of enediyne 84 and 87 were simple due to the high retention on silica relative to mono- 

eoupled products. The tertiary hydroxyl group is suffieiently shielded by the two adjacent 

methyl groups; thereby it does not affect the coupling reactions and resulted in the higher 

yield of 87. On the other hand, we propose the lack of success with propargyl alcohol is 

directly related to the primary hydroxy group. It is also may possible that the eleetron- 

withdrawing nature of this alkyne may have heightened the reactivity or the ability of
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mono-coupled products (83) to hydrogen bond with another equivalent of alkyne and 

may have made the coupling of second alkyne more energetically favorable. The TMS di

coupled products were more difficult to isolate than the phenyl substituted products. It 

was observed that the retention factor for di-coupled Ph and di-coupled tertiary alcohol 

enediynes were very different from those of their corresponding mono-coupled products, 

which basically simplify the isolation and purifications as well.

2.3 Cyclization Of Enediynes

As has been mentioned previously, the Bergman cyclization reaction proceeds 

through both photoehemical and thermal pathways. Therefore, both types of cyclization 

were attempted in order to generate substituted benzothiophenes from the enediynes that 

were successfully synthesized (Scheme 25). An explicit hydrogen atom source such as 

1,4-cyclohexadiene is not required for all the tellurium-mediated thermal cyclization 

reactions that were attempted.^* For all photochemical cyclization reactions 1,4- 

cyclohexadiene was used as the hydrogen atom source.

Schem e 25

i) 1,4-cyclohexadiene, dichloromethane
, bu or

 ►

ii) NaBH4, 10% NaOH, CgHg,
Adogen 464 phase transfer, hydrazine 
monohydrate. Te (powder)

84:R =Ph 
8 6 ;R =Si(C H 3 ) 3  

87:R -C (C H 3)20H  
92:R = H

93:R =Ph
94:R=Si(CH3)3
95:R=C(CH3)20H
96:R =H
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Compound 84 was the first synthesized product to be subjeeted to cyclization conditions. 

Unfortunately, this eompound (84) shows a great stability under both sets of reaction 

conditions with no cyclized products nor other thermal degradation or photoreduetion 

products being formed. This is most likely due to large cd resulting from the bulky Ph 

substituents, so the lack of cyclization is not surprising. However, a successful 

photochemical cyclization of an enediyne with Ph substituents (31) has been reported by 

Evenzahav et It may be that the cd in 84 is slightly larger than 31 due to the five- 

membered ring having smaller internal angles. In addition, the heteroaromatic nature of 

this ring may alter the eleetronies enough that photochemical excitation does not occur. 

The difference in the outcome of these reaetions might be determined by the relative 

phase of the moleeular orbital lobes at the acetylenic carbon atoms in these systems. In 

31, the orbital lobes, at the two acetylenie carbon atoms, have the same phase in the 

HOMO of the tetraene and the HOMO, after exeitation of the system, might have altered 

its phases. Two such acetylenie lobes can undergo photochemical cyclization. The 

presence of a heteroatom in 84 may prevent such a photochemical reaction. Furthermore, 

it is believed that a compound can only undergo photochemical cyclization with (4n + 2 )7t 

system s.T his (4n + 2)ti is present in 31 while in 84 it is not.

Compound 87 was used for the next set of cyclizations. Again, no cyclized 

product was observed in either thermal or photoehemical conditions. It shows a 

remarkable stability with no degradation produets detected. This might due to the 

presenee of tertiary alcohol groups, which would exert a great deal of steric interaction, 

forcing alkyne ends apart and preventing reaction. The same lack of reactivity under both
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thermal and photochemical conditions was also observed for compound 8 6 . Under these 

conditions no degradation, polymerization or reduction products were detected tfom 8 6 .

Our group has previously worked with compound 92 (Scheme 25) and it has been 

concluded that substituents are not preventing the cyclizations of enediynes.Turro at el. 

report a solvent dependence for photochemical Bergman reactions where ethanol results 

in the highest yields of product.^"  ̂ It was also previously reported by our group that 

cyclization of heteroaromatic enediynes did not depend on solvent or photo sensitizer as 

well. As discussed earlier, it is believed that photochemical Bergman cyclization occurs

from the singlet excited while photoreduetion occurs from triplet state.35

The cd distances for the various enediynes were calculated theoretically at both 

the MOP AC and MM2 levels. The results are reported in Table I.

Table 1: Theoretical Calculations of th e  c d  Distance

Enediyne MOPAC (A) MM2 (A)

84 4.373 4.408

86 4.400 4.400

87 4.392 4.392

92 4.473 4.409

TMS-, phenyl and 3-methyl-3-hydroxy substituted enediynes had estimated cd between 

4.473 - 4.373Â; all of the results fall outside of the critical ranges determined by
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Nicolaou^’ and Schreiner^' by approximately 1Â. It was unclear if their lack of reactivity 

was due to their larger cd, less reactive singlet state or a combination of these factors. The 

lack of reactivity may be a factor of the non-rigid acetylenie units, which would have to 

be overcome by adding a signifieant amount of heat energy, rendering it less reactive.

Turro et al. have reported successful photoehemical cyclization of compounds 26 

and 31,^“̂ the cd distances again found to be outside of the critical range established by 

Nicolaou^’and S c h re in e r.(26:4.059Â by MOPAC and 4.051Â by MM2, 31:4.082Â by 

MOPAC and 4.078Â by MM2) In Schreiner’s study, it was found that the range is very 

precise given that some compounds, even though only slightly outside the range, do not 

cyelize. In Turro’s results, it appears that the critical range is not as large a factor in the 

photochemical cyclization as in the thermal mechanism. However, the compounds we 

investigated here do not cyclize in either photochemical or thermal conditions.

2.4 Future Work

The Sonogashira coupling reaction can be applied very effectively to the synthesis 

of enediynes. Additional work has to be done in order to extend the range of enediynes 

that can be made. Thermal cyclization could be attempted at higher temperatures than 

have been reported here. Radieal trapping agents can be used instead of 1,4- 

cyclohexadiene to investigate the reaction pathways. Further studies are required in order 

to improve cyclization and to expand the area of enediynes.
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CHAPTER THREE

RELATIVE REACTIVITY OF SUBSTITUTED ARYL IODIDES 

IN THE SONOGASHIRA REACTION

3.1 Introduction

The inductive and resonance effects of substituents in the meta- and ^ im 

position of the benzene ring on the Sonogashira coupling reaction^^ were investigated by 

varying both the electron-withdrawing (EW) and electron-donating (ED) nature of the 

substituents. Earlier work^^ showed that electron-withdrawing groups increased the 

reactivity of coupling reaction while electron-donating groups decreased the reactivity 

according to the following order p-'NOz > H > /j-OCHs in the para- position. For this 

competitive reactivity study, a series of meta- and para- substituted iodobenzenes was 

selected. All of these substituted iodobenzenes varied from strongly electron-withdrawing 

to electron-donating and commercially available as well. A para- or meto-substituted 

iodobenzene was subjected to an intermolecular competition coupling reaction of an 

alkyne with iodobenzene in the presence of the co-catalyst system composed of Pd/Cul. 

At the end of reaction, the reaction mixture was run through the gas chromatogram (GC) 

in order to determine the relative reactivity of the substituents.

The reaction conditions for the Sonogashira competitive coupling reaction were chosen 

from the literature.^^ retmkz'5 (triphenylphosphine)palladium (0 ) was used as a catalyst.
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and cuprous iodide as a co-catalyst, as those have provided efficient couplings in the 

literature. TMS-acetylene has been chosen as the alkyne, and triethylamine was chosen as 

the base. In an attempt to optimize Sonogashira’s coupling, variations in starting 

materials, and the order of addition of the alkyne and the catalyst were made.'*  ̂High 

yields were observed when the reaction was completed in THF, equal or exceeding 

Sonogashira’s yields after one hour."*® It was also observed that the rate of the reaction 

increased when THF was used as the solvent, while the rate of Classer coupling 

decreased, and when the alkyne was introduced with a slow, drop wise addition. All of 

these reactions were performed at room temperature. Initially, the intermolecular 

competition was carried out using 1 equivalent (1  mmol) each of iodobenzene and the 

substituted iodobenzene in the presence of 0.5 equivalents (0.5 mmol) of TMS-acetylene, 

2 mol % Pd (0.20 mmol) and 6  mol % Cul (0.06).

A series of experiments was run to obtain pure alkynyl products for each of the 

compounds studied. This pure product was analyzed via GC using a known amount of 

alkyne and biphenyl to obtain an Rf value for each. When the kinetic experiments were 

performed a measured amount of biphenyl was added to the GC mixture and the yield of 

each alkyne (substituted and unsubstituted) was calculated using the previously measured 

Rf. Then the relative rates of reactivity were calculated as well.

The use of such a large amount of TMS-acetylene did not support the kinetic 

relationship developed and the competition reactions were performed again with 0.05
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equivalents of alkyne. All of the other reaction conditions were the same as before. The 

general reaction equation is shown in Scheme 26.

Scheme 26

0

TMS

Pd(PPh3)4, Cut, H 3N , IH F , 
^ — TMS

R

+

IM S

0

R = OH, O h ,  CN, N O 2, CF3, 
OCH3, C2H 5, NH2

R

97: R = m-OH 
99: R  = W-CH3 
101: R  = w-CN 
103: R  = W-NO2 
105: R = W-CF3 
107: R  = OT-OCH3 
109: R  =  W-C2H 5 
111: R  = m -NH2

98: R = p-On 
100:R=j9-CH3 
102:R =/7-C N  
104: R  = p -N 0 2  
106: R  =p-CV2, 
108: R = /5-OCH3 
110: R  = /i-C 2H 5 
112: R =yj-NH2

We have calculated the rate constants from competitive reactions between 

iodobenzene and a number of meta- and para- substituted iodobenzene in the 

Sonogashira reaction. These results were compared with the theoretical electron densities 

of iodide hearing carbon and were also used to assume the type of intermediate in the rate 

determining step by established linear correlations. Our data and plots support the 

previous observations.^^ (see Appendix for full details)

3.2 Relative Reactivities For The Competitive Coupling Study

A series of intermolecular competitive reactions were performed to establish 

relative reactivities due to changing the electronic nature of substituents, as described 

above. We correlated the relative rate constants with Hammett substituents constants (a.
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Ĝ , a"). The relative rate constants for Sonogashira coupling reactions (using 0.5 

equivalent of TMS-acetylene) are tabulated in Table 2.

Table 2: Relative Rate C onstants Of Sonogashira Coupling Reaction 
With 0.50 Equivalents TMS-Acetylene

E ntry R Itrelative

1 m-NOg 0.68

2 m-CFa 0.88

3 m-Me 1.40

4 m-OMe 0.43

5 m-OH 5.29

6 m-NHa 0.67

7 p-NOa 0.76

8 p-CF 3 1.03

9 p - E l 1.63

10 p-M e 0.98

11 p-OMe 1.49

12 /> 0 H 5.08

13 p-NHa 0.31
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Table 3: Electron Density of Iodide-Bearing Carbon

3(R=) Electron Density 4(R=) Electron Density

m-OMe -0.090 p-OMe -0.017

m-N0 2 -0.179 P-NO2 -0.099

m-CFs -0.155 P-CF3 -0.115

m-Me -0.123 p-Me -0.135

m-OH -0.087 p-OH -0.172

m-NH2 -0.065 P-NH2 -0.188

H -0.129 - -

* Calculations performed using MOPAC 2002 Version 1.33 CAChe, PM3 Hamlitonlan used.

The kreiative results (Table 2) and electron densities (Table 3) do not exhibit the same 

trends. From kreiative we can determine the order of reactivity from most reactive to least 

reactive as: m-OH > j?-OH > p-Ei > p»-OMe > m-Me > pi-CFs > p?-Me > m-CF] > ji -̂NGa > 

m-NOz > m-NHi > m-OMe > P-NH2. Calculations show the following trend in electron 

density at the iodide bearing carbon from lowest electron density to highest electron 

density: m-NH2< m-OH < m-OMe < P-NO2 < p-CFj, < m-Me < H < p>-Me < m-CF; < p- 

OMe < p  -OH < m-N0 2  < P-NH2 . This result was unexpected and might be due to 

various reasons. For the hydroxy substituent, this is due to the inductively withdrawing 

nature in the meta-position, since that makes it more reactive than iodobenzene. The 

acidity of the hydroxyl proton might also affect reactivity, possibly through interference
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with catalyst or base. The reactivity of para-ethylbenzene was also unexpected. The 

electron donating nature of ethyl substituent should have made it less reactive than 

iodobenzene; however, the opposite effect was observed. This indicated that the weakly 

electron-donating ethyl substituent was different from the iodobenzene. The same effect 

was also observed for m-iodotoluene. The effect of methyl substituent was not very 

different from iodobenzene. The para-iodoanisole reacts faster than iodobenzene. This 

reactivity was attributed to the inductively electron-withdrawing nature of the substituent 

which should be less important than the electron donation by resonance. The methoxy 

substituent is an electron-withdrawing group by induction but not by resonance and 

showed a greater reactivity than iodobenzene was not expected. The electron- 

withdrawing m-iodo-a,a,a-trifluorotoluene shows unexpected reactivity. The CF3 group 

is supposed to affect the electronic nature and accelerate the reaction but we did not 

observe this. The strongly electron-withdrawing NO2 group in iodobenzene also shows 

unexpected reactivity; again the relative rate o f reaction should have increased.

We tried to fit these observations to a linear relationship.^^ Plotting logkreiative 

against substituent constant, a, gives three graphs (Graph 1, 2 & 3). None of these graphs 

shows linear relationship and their linear regression value was unexpected. We then tried 

to fit the linear relationship between logkreiative and substituent constant ct without hydroxy 

group but the relationship did not improve.
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Graph 1; Plot of lo g k r e ia t iv e  against Opfor com petitive ra te  reaction 
betw een iodobenzene and substitu ted  iodobenzene:

R = 0 .3 5 580678

- 0.2  -

Graph 2: Plot of logkreiative Against Op̂  for Com petitive Rate Reaction 
Between Iodobenzene And Substitu ted  Iodobenzene

R-a.22S3S®3OS -

.0.4 -

S
1

g 0.0  -

-0  .4 -

0.0 3.5
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Graph 3: Plot o f  logkreiative Against Op For Com petitive Rate Reaction 
Between Iodobenzene And S ubstitu ted  Iodobenzene

0.4 -

013O.0

Next we proceeded with the intermolecular competition reaction which was 

carried out by the same procedure only with 0.05 equivalent of TMS-acetylene. The 

kinetic relationship developed upon a constant [S]/[US] ratio and with 0.5 equivalent of 

TMS-acetylene it is not reasonable to assume that this ratio is maintained over the course 

of the reaction. To ensure accuracy the reaction mixture was analyzed at least two times 

for each experiment. The experimental results (relative rate constants, kreiative) are 

tabulated in Table 4.
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Table 4: Relative Rate Constants Of Sonogashira Coupling With 0.05 

Equivalent TMS-Acetylene

Substituents kreiative Substituents kreiative

m - H O z 4.2 P-NO2 67.7

m-CFa 5.0 P-CF3 7.2

m-CN 2.9 p-CN 4.7

m-OH 0.3 p-OH 1.1

m-CHg 1.4 p-CHa 0.5

m-OCHg 1.0 P-OCH3 0.37

p-Et 0.36

m-NH2 0.3 P-NH2 0.1

From kreiative (Table 4) we can determine the order of reactivity from most reactive to least 

reactive as: / 7-NO2 > p-CV^ > m-CFg > j?-CN > m-NOa > m -CN  > W-CH 3 > p -O H  > m- 

O CH 3 > P -C H 3 > P -O C H 3 > p-Et > m-OH > m -N H i > p-NHa- The high reactivity of 

nitrobenzene and the p-iodo-a,a,a-trifluorotoluene were expected due to strong electron- 

withdrawing nature of their substituents in a resonant (para) position. The greater 

reactivity of CN was also found which was also expected. Besides this, the electron- 

donating substituents compounds exhibited the reverse reactivity. A large decrease in 

relative reactivity was observed with the reaction of iodoaniline. It showed that it is less 

reactive than iodophenol and iodoanisole. This reactivity trend was expected as NHa
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substituent is less electron withdrawing than both OH and OCH 3 substituents. It eould be 

explained that with two lone pairs of electrons on the oxygen atoms in OH and OCH 3 , 

and the increased electronegativity of O with respect to N, the substituents decrease the n- 

donation into the ring relative to aniline. The alkyl substituted iodobenzenes were more 

reactive due to their weaker electron donating nature. The calculated value indicated that 

p-ethyliodobenzene was less reactive than j9-iodotoluene.

Three graphs are obtained by plotting of logkreiative against substituent constant a. 

It is worth mentioning that although most of the relative reactivity was expected the 

graphs do not have a linear regression values (R) closer to 1.

Graph 4: Plot of logkreiative Against Op For Competitive Rate Reaction 
Between Iodobenzene And Substituted Iodobenzene

S lope = • = 1.508033 
R = 0.850864

0.5

O)
-0.5 0.5

-0.5
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Graph 5: Plot of lo g k r e ia t iv e  Against Op̂  For Competitive Rate Reaction
Between Iodobenzene And Substituted Iodobenzene

S  l o p e  =  •  =  0 . 9 5 5 5 4 1  
R =  0 . 7 7 3 5 1 7

0.5

O)
0.5

-0.5

Graph 6: Plot Of logkreiative Against Op For Competitive Rate Reaction 

Between Iodobenzene And Substituted Iodobenzene

Slope = • = 1 .209316  
R =  0 .776502

0.5
-0.5
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Graph 7: Plot of lo g k r e ia t iv e  Against Op For Competitive Rate Reaction
Between Iodobenzene And Substituted Iodobenzene (OH Exclude)

Slope = * =1.645517 
R= 0.908288

0 . 5

U)
- 0 . 5 0 . 5- 0 . 5

It is very interesting that although these graphs did not fit linearly with the exclusion of 

only the OH a straight line with reasonable R values was obtained. By excluding OH 

(Graph 7 and Graph 8  and Graph 9) were obtained.

The behaviour of the hydroxyl substituent does not fit the standard Hammett 

relationship. Perhaps the acidity of hydroxyl proton affects reactivity through interference 

with catalyst or base. It might also interfere through H-bonding with catalyst or base. 

Among the three plots (Graph 7, 8  and 9) Graph 7 gives a line with good regression. In 

Graph 7, the two most powerfully electron-withdrawing substituents NO2 and CF3 lie 

away from the straight line, indicating that j^-iodonitrobenzene and p-iodo-a,a,a- 

trifluorotoluene poorly correlate with others.
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Graph 8: Plot of lo g k r e ia t iv e  Against For Competitive Rate Reaction
Between Iodobenzene And Substituted Iodobenzene (OH Exclude)

S lope = • = 1.084834  
R =  0.853605

0.5

0.5
-0.5

Graph 9: Plot Of logkreiative Against Op For Competitive Rate Reaction 
Between Iodobenzene And Substituted Iodobenzene

Slope = * =1.38149 
R =0.861713

0.5

U)
0.5

-0.5
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The inductive effect of the ̂ -NOa substituent which will be essentially similar in each of 

resonant species, has been omitted, but the mesomeric and conjugative effects have been 

included. The conjugative effect of the m-NOa substituent is transmitted ultimately to the 

reaction centre only through an inductive effect. However, the conjugative effect can be 

transmitted directly from the ̂ -NOz substituent to the reaction centre where the transition 

state ion will be stabilized substantially by delocalization of its charge and thus increasing 

the reactivity. The ability to stabilize the change in electron density at the reaction centre 

by an atom attached directly to the benzene ring in such reactions during the rate limiting 

step will he obviously differ from one compound to another.

The positive value of the slope, p (Graph 7) suggests that the development of 

substantial negative charge in the transition state or the rate-limiting step. The value of 

slope (for Graph 7, slope is 1.38) is greater than 1 which indicates that at the reaction 

centre electron density is increased in the transition state. If |p| > 1 that means reaction 

centre is more sensitive to the substitution than benzoic acid (for benzoic acid p = 1 at 

25°C) and, therefore, the rate-limiting step involves an increase in electron density at the 

reaction centre. Based on the proposed Sonogashira mechanism, the rate limiting step 

might be on the oxidative addition to the palladium catalyst (Scheme 27). This addition 

results in the development of negative charge at the reaction centre; the palladium is 

directly attached to the substituted benzene ring in the forming intermediate (rate-limiting 

step). The reaction is thus accelerated by the electron-withdrawing substituents. So this 

can be regarded as a measure of the susceptibility of a reaction to the electron-donating or 

electron-withdrawing effect exerted by a substituent; where that for m- and /^-substituted 

benzoic acids at 25°C is p = +1. The higher magnitude of the p can be regarded as a
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measure of the change in charge density at the reaction centre during formation of the 

transition state or on proceeding from one side of the equilibrium to the other. The 

development of charge in the transition state goes hand-in-hand with bond breaking 

between the reaction centre and the leaving group, our proposed rate-limiting step can 

perhaps be constructed as some indication of the extent of such reactions.

Scheme 27
(PPh3)2PdCl2

(PPh3)2Pd— (- -R )2

R 'X

R'
Proposed rate 
limiting step

CuI/Et^NH
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3.3 Conclusion

The relative reactivity study correlated with previously established data and 

h y po thesis .It could be concluded that substituents that were in a ^am-position to an 

aryl halide exerted a significant resonance and mesomeric effect that governed the 

reactivity. The overall reactivity trend was very similar to the and Op values for the 

substituents except OH. The trend of reactivity in meto-position was not always obvious. 

Strong electron-withdrawing substituents increased reactivity through induction. 

Electron-donating substituents are expected to decrease the reactivity. A less pronounced 

effect occurred when the substituents was not in a resonant position where weaker 

inductive forces played a role.
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CHAPTER FOUR

EXPERIMENTAL

4.1 General Experimental Techniques, Instrum enta tion , and

Materials

All experiments were performed in flame-dried flasks under positive pressure of 

N2 unless otherwise stated in the procedure. Coupling reactions were performed in 15 mL 

Ace pressure tubes, flame-dried under N%. Thermal cyclizations were performed in 38 mL 

Ace pressure tubes which had been flame-dried under N2. Photochemical cyclizations 

were performed in quartz tubes flame-dried under N2 and irradiated with a Hanovia 200 

W medium pressure Hg arc lamp at 25 ± 1°C. Liquid, moisture and air sensitive reagents 

were introduced to reaction mixtures through rubber septa using a syringe. All reactions 

were completed under inert an atmosphere of nitrogen or argon, and all yields reported 

are isolated yields unless otherwise stated.

Solvents used for experiments were subjected to drying prior to use. Specifically, 

tetrahydrofuran (THF) was distilled from potassium, dichloromethane (CH2CI2) was 

dried over molecular sieves for six hours, triethylamine (EtsN) and diisopropylamine 

('Pr2NH) were dried over calcium hydride and distilled over P 2 O 5 . Reaction progress was 

monitored using analytical thin layer chromatography (TEC) and gas chromatography 

(GC).
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TLC was performed on silica gel of 2-17 pm particle size, 60 Â pore size and a 

thickness pf 250 pm with a 254 nm fluorescence indicator. The solvents used are reported 

in parentheses and the concentrations were in molarities at 25°C. Visualization of spots 

was achieved by viewing under UV light. GLC was performed on Hewlett Packard 5890 

equipped with flame ionization detector (FID) using a 30 m by 0.25 nm DB-5HT column 

composed of (%5 phenyl) methylpolysiloxane. The carrier gas was nitrogen or helium 

with a flow rate of 2.0 mL/min and a column head pressure of 21 psi. The temperature 

program used was the following: initial temperature =80°C, initial time = 5 minutes, rate 

lO'C/minute, final temperature = 280°C, final time 10 minutes. Gas chromatography-mass 

spectrometry (GC-MS) was used to identify the mass of GC peaks.

Excess solvents were removed in vacuo on a Buchi rotary evaporator at pressure 

obtained by water aspirator. All crude samples and purified compounds were stored in the 

freezer under nitrogen at -10°C. Reaction mixtures were purified by liquid 

chromatography. Separation was attained using 70-230 mesh silica gel. The solvent 

system used for separation was determined by analytical TLC.

Proton nuclear magnetic resonance (^HNMR) spectra were obtained on a Varian 

AS500 using the ^^^^INOVA NMR spectrometer system, VNMR 6 .1C software and a 

switchable PF6  NMR probe at room temperature (unless otherwise stated). Deuterated 

chloroform (CDCI3) was the solvent used with an internal standard of 1% 

tetramethylsilane (TMS). Chemical shift values are reported in parts per million (ppm) in 

the form: chemical shift (multiplicity, coupling constant in Hz, integration). '^C NMR
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spectra were obtained on the same instrument, using the same solvent. CDCI3 ( 8  77.0) 

was used as the internal standard, with values reported in ppm downfield from TMS.

Infrared (IR) spectra were measured on either a Perkin Elmer 1320 IR 

spectrometer or a Bruker lFS- 6 6  Fourier transform infrared (FTIR) spectrometer with a 

resolution of 4 cm '\ All spectra were determined neat unless otherwise noted, in the 

transmission mode using KBr plates and are reported as wavenumbers. Ultraviolet 

spectra were measured using a Perkin-Elmer Lambda 11 spectrometer, in ether or 

dichloromethane (CH2CI2) using a quartz cuvet, and are reported as wavelength of 

maximum absorption (in nm) with the corresponding molar absorptivity (e).

Tetrakis(triphenylphosphine)palladium(0)^^ was synthesized using previously 

described methods. All other chemicals for which procedures are not listed were 

purchased from Aldrich.

4.2 Preparations

Experimental For Chapter Two

1,2-(diphenylethynyl)thiophene 84

2,3-Dibromothiophene (0.112 mL, 241 mg, 1.0 mmol) 

tefrafc(triphenylphosphine)palladium(0) (24 mg, 0.02 mmol), and Cul ( 24 mg, 0.02 

mmol) were combined in diisopropylamine (4.0 mL) in a dry pressure tube. The system 

was degassed with argon for 4-5 minutes. Phenylacetylene (0.275 mL, 256 mg, 2.5 

mmol) was added. The tube was sealed and allowed to stir in an oil bath at 90-110°C for

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter Four

13 hours. The mixture was filtered through Celite with diethyl ether. Excess solvent was 

removed in vacuo and the product purified by column chromatography (hexanes: 

ethylacetate = 95:5) to give 245 mg (8 6 %) of 84 as a brown solid.

TLC (hexanes: ethylacetate = 95:5): Rf: 0.15.

UV(CH2 Cl2): Xmax = 277(e = 0.5)

IR(neat): 3111, 3081, 3060, 2925, 2201,1600,1490,1445,1070, 1027, 755, 690.

^HNMR(CDCh): 5 7.55-7.34(m, lOH, Ph), 7.22(d, J = 5.0 Hz, lH,H-4), 7.10(d, J = 5.0 

Hz, IH, H-5).

^^CNMR(CDCl3): 6  130.4,128.4,127.4, 125.2,122.1,121.8, 96.6, 92.6, 83.0, 81.0.

MS: (284 (100), 239(13), 142(7), exact mass calcd for C20H12S m/z 284.066, obsd m/z 

284.079.

bis-2,3-(3-hydroxyl-1 -propanyl)thiophene 85

2,3-Dibromothiophene (0.112 mL, 241 mg, 1.0 mmol)

tetrafe(triphenylphosphine)palladium(0) (24 mg, 0.02 mmol), and Cul ( 24 mg, 0.02 

mmol) were combined in diisopropylamine (4.0 mL) in a dry pressure tube. The system 

was degassed with argon for 4-5 minutes. Propargyl alcohol (0.145 mL, 2.5 mmol) was 

added. The tube was sealed and allowed to stir in an oil bath at 90-110°C for 13 hours. 

The mixture was filtered through Celite with diethyl ether. No product (by GC-MS) was 

obtained.
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1 .2 -èz5 -(trimethylsilylethynyl)thiophene 8 6

2,3-Dibromothiophene (0.112 mL, 241 mg, 1.0 mmol)

tetrafe's(triphenylphosphine)palladium(0) (24 mg, 0.02 mmol), and Cul ( 24 mg, 0.02 

mmol) were combined in diisopropylamine (4.0 mL) in a dry pressure tube. The system 

was degassed with argon for 4-5 minutes. Trimethylsilylacetylene (0.353 mL, 245 mg, 

2.5 mmol) was added. The tube was sealed and allowed to stir in an oil bath at 90-110°C 

for 13 hours. The mixture was filtered through Celite with diethyl ether. Excess solvent 

was removed in vacuo and the product purified by column chromatography (hexane : 

ethylacetate = 95:5) to give 245 mg (86%) of 8 6  as a dark liquid.

TLC (hexanes: ethylacetate = 95:5): Rf: 0.15.

UV(CH2 Cl2): Xmax = 293(c = 0.6)

IR(neat): 2984, 2100,1292, 1184, 1101, 949, 835, 775.

'HNMR(CDCls): 6  7.09(d, J= 5.0 Hz, IH, H-4), 6.97(d, J = 5.0 Hz, IH, H-5), 0.27(s, 9H, 

Si(CH3)3),

0.26(s, 9H, Si(CH3)3).

"CNMR(CDCl3): 6  129.46,127.63, 127.27,125.95, 103.62, 98.94, 98.78, 96.36, 0.101. 

^^SiNMR(CDCl3): 6  (-)16.89, (-) 17.30

MS: 276(77), 200(10), 172(12), 122(17),73(158), exact mass calcd Ci4H2oSSi2  /wÆ

276.544, obsd m/z 276.077.

2.3-bis-(3-hydroxy-3-methylbut-3-ynyl)thiophene 87

2,3 -dibromothiophene (0.112 mL, 241 mg, 1.0 mmol)

tetrakis(triphenylphosphine)palladium(0) (24 mg, 0.02 mmol), Cul ( 24 mg, 0.02 mmol)
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were combined in diisopropylamine (4.0 mL) in a dry pressure tube. The system was 

degassed with argon for 4-5 minutes. 2-Methyl-3-butyn-2-ol(0.242 mL, 210 mg, 2.5 

mmol) was added. The tube was sealed and allowed to stir in an oil bath at 90-110°C for 

13 hours. The mixture was filtered through Celite with diethyl ether. Excess solvent was 

removed in vacuo and the product purified by column chromatography (hexane : 

ethylacetate = 95:5) to give 245 mg (86%) of 87 as a brown solid powder.

TLC (hexanes: ethylacetate = 95:5): Rf: 0.15.

UV(CH2 Cl2): Xmax = 284(e = 1.3 )

IR(neat): 3333, 2963, 2924,1423, 1421, 978, 918, 704.

^HNMR(CDCl3): 5 7.13(d, J = 5.0 Hz, IH, H-4), 6.94(d, J = 5.0 Hz, IH, H-5), 1.63- 

1.58(m,12H, CHs).

^^CNMR(CDCl3): 5 129.17, 126.70, 125.89, 101.90, 98.07, 76.62, 74.79, 65.82, 31.59, 

31.45,31.09.

MS: 248(38), 230(16), 215(100), 200(28), 87(28), 170(50), exact mass calcd for

C14H16O2S m/z 248.3392 obsd m/z 248.080

4.3 General Procedure For Thermal Cyclizations

The enediyne (0.20 mmol) was dissolved in benzene (1.0 mmol) with Adogen 

phase transfer 464 catalyst (0.02 mL) and degassed with N2 for 2 minutes in a vial. In a 

round bottomed flask, aqueous 10% NaOH (1.0 mL) with NaBH4 (15 mg, 0.40 mmol) 

and hydrazine monohydrate (0.05 mL) were degassed with N2 for 2 minutes. The benzene 

solution and the tellurium powder (28 mg, 0.22 mmol) were added to the aqueous 

solution and the mixture was clamped in a sonicating bath at 40°C for 6 hours (with N2
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balloon). The mixture was rinsed into separatory funnel (methylene chloride) and the 

organic layer was washed with water ( 2 X 5  mL) and bleach ( 2 X 2  mL). The organic 

layer was dried over magnesium sulphate and rinsed through a thin pad of silica gel using 

methylene chloride.

4.4 General Procedure For Photochemical Cyclizations

A solution of enediyne (0.20 mmol) and 1,4-cyclohexadiene (160 mg, 0.19 mL, 

2.0 mmol) was combined in quartz reaction vessel with methylene chloride ( 4.0 mL). 

The solution was degassed for 2 minutes with argon. The reaction mixture was irradiated 

for five hours using a mercury vapor arc lamp. Then the mixture was examined for 

products using GC-MS.

4.5 General Procedure For Competitive Rate Reactions

The intermolecular competition was carried out using 1 equivalent each of 

iodobenzene and the substituted iodobenzene in the presence of 0.05 equivalents of TMS- 

acetylene(0.07 mL), 2 mol % Pd (24.0 mg, 0.02 mmol) and 6  mol % Cul(24.0 mg, 0.06 

mmol), THF (2.50 mL). After a standard reaction time of 5 hours, a GC of the mixture 

was run (internal standard biphenyl) and the relative rates of reactivity were calculated.
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4.6 Spectroscopic Characterization For Competitive Rate 

Reactions

l-Phenyl-2-trimethylsilylethyne:

^HNMR(CDCl3): 5 7.62-7.4 (m, 5H, Ph), 0.20-0.04 (m, 9H, CH3).

'^CNMR: 6  133.67, 132.58, 129.11, 129.05, 89.63, 84.07, 2.49.

IR(neat): 2200, 2100, 1790, 1650, 1510, 1290, 1200, 1100, 870, 710.

MS: 174(65), 160(55), 159(100), 129(45), 105(48) exact mass calcd for CnH^Si m/z

174.07 obsd m/z 174.

in-(2-trimethylsilylethynyl)PhenoI (97) :

^HNMR (CDCI3): 5 7.07 (s, IH), 6.96 (d, J= 7.0 Hz, IH), 6.90 (t, J= 7.5 Hz, IH), 6.84 (d, 

J= 8.0 Hz, IH), 4.89 (br. s., IH), 0.13 (s, 9H).

'^CNMR (CdCh): 5 155.2, 129.5,124.3, 118.7, 116.2, 104.9, 94.5, 89.78, 0 .0 .

IR (neat): 3400, 2860,2060, 1545, 1535, 1200, 1005, 800.

MS: 190 (19.5), 175 (100), 145 (4.6), 8 8  (3.6).

/ 7-(2 -trimethylsilylethynyl)Phenol (98):

^HNMR (CDCI3): Ô 7.70-7.29 (m, 4H), 0.219-0.189(s, 9H, Si(CH3)3).

*^CNMR(CDCl3): Ô 155.8, 141.7,133.6, 115.3, 105.0, 92.3, 0.0.

IR(neat): 2890, 2178, 2067, 1790,1650,1482,1320,1178,1100, 833.

MS: 190.04(45), 175(100), 144(10), 115(9), 87(13), exact mass calcd for CnHnOSi m/z

190.08 obsd m/z 190.04.
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»j-(2-trimethyIsilylethynyl)toluene (99) :

^HNMR (CDCI3): Ô 7.36 (s, IH), 7.40 (t, J= 7.3 Hz, IH), 7.18 (d, J= 7.2 Hz, IH), 2.32 (s, 

3H), 0.26 (s, 9H).

'^CNMR (CDCI3): 5 138.0, 132.4, 129.3, 129.0,128.2,128.0, 115.4, 93.8, 34.9, and 0.0. 

IR (neat); 3030, 2970, 2845, 2145, 1595, 1483, 1248.

MS: 188 (17.8), 173 (100), 143 (5.4).

/ 7-(2 -trimethyIsilylethynyl)toluene (100) :

'HNMR (CDCI3): Ô 7.12- 6.84 (m, 4H), 2.2l(s, CH3), 0.002(s, 9H, Si(CH3)3).

‘^CNMR (CDCI3): 5 138.60, 131.83, 128.91, 119.98, 105.30, 93.20, 30.92, 0.07.

IR(neat): 3000, 2100, 1510, 1253, 1050, 873.

MS: 188.11(27), 173.08(100), 143(7), exact mass calcd for Ci2Hi6Si/n/z 188.10 obsd m/z 

188.114.

m-(2-trimethylsiIylethynyl)benzonitrile (101):

MS: Exact mass calcd for CnHnSiN m/z 199.3274, obsd m/z 199.

Spectra were compared to the literature values "̂*.

^-(2-trimethylsilylethynyI)benzonitrile (102) :

^HNMR (CDCI3): 5 7.49-7.3 l(m, 4H), 0.008-(-) 0.007 (m, 9H, Si(CH3)3). 

^^CNMR(CDCl3): 135.54,131.87,129.39,118.28,112.99,102.49, 97.67, 0.021. 

IR(neat): 2990, 2849,2220, 2183,1600,1470,1389,1275, 900, 850.
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MS: 199(95), 184(100), 154(90), 129(55), 103(70), 77(68), exact mass calcd for

C12H13S1N m/z 199.3274, obsd w/z 199.

/M-nitro(2-trimethylsilyIethynyl)benzene (103) :

‘HNMR (CDCI3): 5 8.18 (dt, J= 8.2, 1.2 Hz, IH), 7.75 (dt, J= 8.0 Hz, IH), 7.49 (t, J= 6 . 6  

Hz, IH), 7.22 (s, IH), 0.26 (s, 9H).

’^CNMR (CDCI3): Ô 148.0, 137.6, 129.3, 126.9, 125.0, 122.9, 102.1, 97.8, 0.0.

IR (neat): 2900, 2840, 2155, 1455, 1245.

MS: 219 (7.0), 204 (100), 158 (22.0), 143 (13.0).

/7-nitro(2-trimethylsilylethynyl)benzene (104) :

‘HNMR (CDCI3): Ô 7.62-7.19(m, 4H), 0.126-0.002(s, 9H, Si(CH3)3).

‘̂ CNMR (CDCI3): Ô 132.66, 132.57, 129.11, 129.02, 94.34, 81.29, 2.45.

IR(neat): 3000,2161, 1600, 1508, 1430, 1120, 875.

MS: 219.033(23), 204(100), 158(30), 143(14), exact mass calcd for CuHuSiNOz m/z 

219.072 obsdm/^ 219.03.

/M-a,a,a-trifluoro(2-trimethylsilylethynyl)toIuene (105):

^HNMR (CDCI3): Ô 7.76 (t, J= 5.0 Hz, IH), 7.36 (d, J= 7.5 Hz, IH), 7.32 (s, IH), 7.27 (d, 

J= 7.0 Hz, IH), 0.32 (s, 9H).

^^CNMR (CDCI3): Ô 132.7, 127.5, 123.0,122.6, 121.5, 120.9, 103.9, 101.9, 100.7, 0 .0 .

IR (neat): 2960,2160, 2060, 1489, 1430,1330, 1330, 1250, 1135,1070, 895.

MS: 242 (8.5), 227 (100), 197 (5.1).
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/j-a,a,a-trifluoro(2-trimethylsilylethynyI)toluene (106) :

^HNMR (CDCI3): 6  7.41-6.99 (m, 4H), 0.175(s, 9H, SiCCH])]).

'^CNMRfbr(CDCl3): 132.7,127.5, 123.0,122.6,103.9,101.9, 100.7, 0.0.

IR(neat); 1710, 1600, 1500, 1393,1242, 1200, 1000.

MS: 242.04(37), 227.01(100), 196.97(16), 164.08(9), 151(7), 8 8 (8 ), exact mass calcd for

CizHnSiFs m/z 242.3159 obsd m/z 242.04.

m- (2-trimethylsilyIethynyl)anisole (107):

'HNMR (CDCI3): Ô 7.39 (dd, J= 9.0, 2.4 Hz, IH), 7.26 (s, IH), 7.13 (t, J= 9.0 Hz, IH),

7.06 (dd, J = 8.5, 2.4 Hz, IH), 3.36 (s, 3H), 0.37 (s, 9H).

'^CNMR (CDCI3): 6  139.5, 134.3, 130.1, 122.4, 120.3, 110.09, 101.1,98.2, 56.0, 0.0.

IR (neat): 2995, 2950,2150, 1580, 1480, 1248, 1155.

MS: 204 (27), 189 (100), 146 (8.0).

p-  (2-trimethylsilyIethynyl)anlsoIe (108):

'HNMR (CDCI3): Ô 7.22-7.07(m, 4H), 3.61(s, CH3), 0.48(m, 9H, Si(CH3)3).

'^CNMR (CDCl3 ) : 6  159.7,133.98, 114.29,113.7,105.68,92.3,55.78,0.575.

IR(neat): 2997, 2850, 2200, 2089, 1600, 1510, 1250, 1180, 1075, 875.

MS: 204.04(62), 189.01(100), 173(18), 146(18), 94.5(10), exact mass calcd for 

CizHieSiO 7M/̂  204.097 obsd /M/z 204.04.
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//-(2 -trimethylsilylethynyl)ethylbenzene (1 1 0 ):

'HNMR(CDC13): Ô 7.30-7.04(dd, 4H), 2.55(q, CH2), 1.30(t, CH3), 0.16(s, Si(CH3)3). 

‘^CNMR(CDCl3): 5 144.87, 131.90, 127.71, 120.23, 105.34, 93.16, 30.88, 15.30, 0.55. 

IR(neat): 2910, 2143,1393, 1391,1383,1387, 1283,1200,1069.

MS; 202(30), 187(100), 153(10), 125(10), 103(20), 77(14), exact mass calcd for CuHigSi 

m/z 202.34 obsd m/z 202.

»i-(2 -trimethylsilylethynyl)aiiilme (1 1 1 ):

'HNMR (CDCI3): Ô 7.65 (t, J= 8 Hz, IH), 6 . 8 6  (dm, J= 8 Hz, IH), 6.78 9 (s, IH), 6.63 

(dm, J= 8.0 Hz, IH), 3.52 (s broad, 2H, NHz), 0.22 (s, 9H, CH3).

'^CNMR (CDCI3): 5 146.14, 129.91, 122.47, 118.24, 115.63, 123.78, 105.38, 93.47, 0.04. 

IR (neat): 3465, 3374,2156.

/j-(2 -trimethylsilylethynyl)aniline (1 1 2 ):

'HNMR (CDCI3): 5 7.75-6.61 (m, 4H), 5.23(s, NH2), 0.20-0.09 (m, 9H, Si(CH3)3). 

'^CNMR (CDCI3): 6  133.45, 130.90, 125.85, 124.79, 118.15, 114.69, 1.47.

IR(neat): 3400, 2897, 2100, 1625, 1575, 1275, 1250, 1100, 800.

MS: 189.089(40), 174.06(100), 144.07(8), 130(6), 87(7), 75(6), exact mass calcd for

CiiHisNSi m/z 189.09 obsd m/z 189.08.
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APPENDIX

GC DATA
Table 5 -  Competitive Rate Experiment Data For lodotoluene Versus 

lodobenzene

TMS-acetylene Used

Peak Area Peak area

meta- H- para- H-

11.67(RT) 9.34(RT) 11.87(RT) 9.33(RT)

0.05 Equivalent 4818 5102 2843 7975

Biphenyl
Amount Peak Area Amount Peak Area

0.0004 gm 268480 0.0003 gm 711600

Table 6 -  Competitive Rate Experiment Data For lodoanisoles Versus
lodobenzene

TMS-acetylene Used

Peak Area Peak Area

meta- H- para- H

14.43(RT) 9.32(RT) 14.90(RT) 9.34(RT)

0.05 Equivalent 13873 19358 3829 14932

Biphenyl
Amount Peak Area Amount Peak Area

0.0006 gm 244440 0.0005 gm 141080
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Table 7 -  Competitive Rate Experiment Data for lodoanilines versus
lodobenzene

TMS-acetylene Used

Peak Area Peak Area

meta- H- para- H

16.19(RT) 9.32(RT) 16.74(RT) 9.32(RT)

0.05 Equivalent 5708 30998 3744 46172

Biphenyl
Amount Peak Area Amount Peak Area

0.0004 gm 216940 0.0004 gm 196400

Table 8 -  Competitive Rate Experiment Data for lodophenol versus
lodobenzene

TMS-acetylene Used

Peak Area Peak Area

meta- H- para- H

16.42(RT) 10.28(RT) 16.20(RT) 9.34(RT)

0.05 Equivalent 4091 50573 3319 11905

Biphenyl
Amount Peak Area Amount Peak Area

0.0004 gm 299970 0.0005 gm 134430
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Table 9 -  Competitive Rate Experiment Data for
lodobenzotrifluorides versus lodobenzene

TMS-acetylene Used

Peak Area Peak Area

meta- H- para- H

9.02(RT) 9.35(RT) 9.16(RT) 9.31 (RT)

0.05 Equivalent 59766 9894 28939 3348

Biphenyl
Amount Peak Area Amount Peak Area

0.0004 gm 236120 0.0002 gm 105070

Table 10 -  Competitive Rate Experiment Data for lodonitrobenzenes
versus lodobenzene

TMS-acetylene Used

Peak Area Peak Area

meta- H- para- H

16.97(RT) 9.36(RT) 17.21 (RT) 9.39(RT)

0.05 Equivalent 45922 21834 71286 2083

Biphenyl
Amount Peak Area Amount Peak Area

0.0005 gm 149510 0.0007 gm 532970
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Table 11 -  Competitive Rate Experiment Data For lodoanilines versus
lodobenzene

TMS-acetylene Used

Peak Area Peak Area

meta- H- para- H

15.76(RT) 10.26(RT) 15.74(RT) 10.09(RT)

0.05 Equivalent 47118 13733 57319 10174

Biphenyl
Amount Peak Area Amount Peak Area

0.0003 gm 450330 0.0003 gm 370670

Calculations and Kinetic T reatm ent for Competitive Rate Reactions:

The relative rates were calculated by allowing a mixture of the iodides 

(substituted [S] and unsubstituted [US]) to react with a small amount of the alkyne [A], 

S + A —> SA 

US + A USA

The competing reactions are assumed to have the same rate law:

-d[S]/dt = d[SA]/dt = MS]'[A]"

-d[US]/dt = d[USA]/dt = W U S]'[A ]°

Dividing one equation by the other we obtain:
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d[SA]/d[USA] =VÂ:6s([S ]/[U S ]/-----------------  [1]

In this experiment, S and US are the two iodides competing for a small amount of alkyne. 

The reaction can be treated as pseudo-first order so:

d[SA]/d[USA] = ks/kus [S]/[US]---------------------[2]

Assuming the ratio [S]/[US] is approximately constant, and equal to the ratio [S]o/[US]o, 

equation [2 ], after integration, becomes:

[SA]t/ [USA]t = Wc/.^S]o/[US]o 

or

(nSA/nUSA)t = ks/kus (nSO/nUSO) —................... [3]

W ithks/koS =  krelative

Thus, the relative rate constants could be calculated from equation [3] from GC results. 

The relative constant are then fit to Hammett equation [with O p], Graph 7.

Correlative = log [ks/kus]---------------------------------------- —- [4]
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