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ABSTRACT

In this thesis the author develops a 14 degrees-of-freedom (DOF) full-car model. The 

model draws from and improves upon features and setups of certain existing vehicle 

dynamics models. The proposed model provides a means to simulate vehicle ride and 

handling behaviors. An accurate prediction of such behaviors will lead to the proper 

control and design of vehicles.

The vehicle’s kinematics and dynamics are developed to reflect the interactions 

between the rigid mass elements of the model such as the vehicle body and the wheels. 

The mathematical model includes the nonlinear characteristics of the tires, the three 

dimensional motions of the sprung and unsprung masses, the inertial coupling between 

the sprung and unsprung masses, and the restraints and forces imposed by the suspension 

components. The frictional forces developed at the road-tire contacts are modeled by the 

single point contact version of the Lund-Grenoble (LuGre) dynamic friction model. An 

extension of the LuGre friction model is presented to take into account the coupling 

between the rotational and translational motions of the wheels.

Three different numerical study cases are selected to verify the model’s capability in 

representing various vehicle dynamic situations with respect to the model’s accuracy and 

to the model’s range of applicability.
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The issue of active suspension is subsequently discussed. A non-switching sliding 

mode controller is incorporated into the proposed vehicle model and a substantial 

reduction in the spectral intensity of a vibration mode of the vehicle body is achieved.

Simulation results suggest that the rigorous modeling and mathematical 

development yields a model that captures satisfactory ride comfort and vehicle 

performance.
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CHAPTER 1 

INTRODUCTION

1.1 Vehicle Dynamics -  A Historical Perspective.

The study of vehicle dynamics started probably in the early 1930s [1.1]. The tools used in 

those days were mainly experimental observations. Ride comfort was first considered an 

important issue of vehicle performance during this period. This period also saw 

theoretical development that led to the practical design of suspension systems.

From the 1930s to 1950s, the importance of achieving a satisfactory compromise 

between ride comfort and vehicle handling performance was recognized. The importance 

of the main force-generating element, the tire, had also been recognized by experimental 

measurement of the force and moment properties. Accordingly, the design of the 

suspension system was advanced. It is interesting to note that the development of 

independent suspension was introduced during this period [1.1].

For the next three to four decades, the maturing theories and technologies expanded 

significantly. More accurate rig results and mathematical models were developed for 

which the tire and vehicle dynamics behaviors could be studied and verified

1
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experimentally. Dynamic analysis was also broadened to consider studies of vehicle 

stability, handling and vibration to predict ride comfort [1.1].

The last decade or two witnessed research in vehicle dynamics moving toward and 

relying on more and more the development of computer modeling and simulation 

methods [1.2]. Currently, these computer codes provide a range of ride and handling 

models of varying degrees of complexity, which could hardly be prepared manually. All 

of the commonly required calculations for vehicle dynamics studies have been embodied 

in multi-body system (MBS) dynamics codes. These codes are expressed and solved 

either numerically or analytically. The latter approach has the advantage of fast 

simulation run time and ease of parameter change and control system implementation. 

Depending on user preference, there are many computer packages commercially 

available. Examples of stand-alone packages include ADAMS/CAR [1.3] and CarSim 

[1.4]. There are also “add-ons” available that serve the same purpose such as the many 

Matlab “tool boxes” contained in [1.5].

Although one could logically suggest the use of these codes for a vehicle dynamic 

study, the complexity of these codes makes it difficult to add user routines or add-ons, not 

to mention that one may not be able to test the different underlying assumptions inherent 

in the development of such codes. In addition, due to the complexity and the size of the

2
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output data that the codes tend to generate, it is difficult to introduce and investigate 

various control schemes. Therefore, in this thesis the author will propose and develop a 

vehicle model that is of medium complexity, but nevertheless one that is able to capture 

the physical essence of ride comfort and vehicle handling performance.

1.2 Objectives.

The author will propose a vehicle dynamics model consisting of a rigid vehicle body and 

rigid wheels, having independent suspensions connecting the vehicle body and wheels, 

and taking into consideration tire-road interaction. The model will be able to address ride 

and handling simulations, and ride comfort control applications. The scope of the model 

presented will include derivation of the vehicle dynamics model, modification of the 

Lund Grenoble (LuGre) dynamic friction model [1.6], numerical case studies for the 

modeling verifications by using Matlab [1.7], and control application using the 

non-switching sliding mode control technique for the improvement of ride comfort.

1.3 Organization of the Thesis.

The thesis contains seven chapters.

Chapter 1 deals with the introduction.

3
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Chapter 2 presents an overview of some existing vehicle dynamics models and their 

applications.

In Chapter 3, the development of a 14-degrees-of-freedom (DOF) full-car dynamic 

model is described. The model considers the vehicle body, suspensions as well as the 

wheel motions in a pre-selected coordinate system. Derivations of equations of motion 

are governed by the principles of Newtonian mechanics. The coupling of some equations 

is addressed. Simplification of the proposed model and comparisons to existing models 

are then presented.

Chapter 4 is concerned with a crucial component of the vehicle model, the dynamic 

friction, or the road-tire contact force. It focuses on the LuGre model. Extension of the 

existing one-dimensional friction model to a two-dimensional model is made and 

validated. The 2-D LuGre model is subsequently introduced into the full-car model o f 

Chapter 3.

Chapter 5 is where the developments of Chapters 3 and 4 come together and are 

applied. Three numerical case studies are included to demonstrate the applicability and 

accuracy of the proposed model.

Chapter 6 introduces the non-switching sliding mode control technique to the

4
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proposed vehicle model. A pitch-bounce car model is used to demonstrate the 

effectiveness of the sliding mode control technique.

1.4 Relevant Terminologies.

A few terminologies are introduced here to facilitate the understanding of Chapter 2 in 

particular. With reference to Figure 1.1, translation along the x-axis is the longitudinal or 

forward motion; lateral or sideward motion is the translation along the y-axis and bounce 

refers to the vertical (z-axis) translation of the main body of the vehicle. The rotations 

about the x-, y- and z-axes are known as the roll, pitch, and yaw, respectively. A wheel’s 

rotation about its spin (y) axis is its spin (co) and its vertical motion (z) is its bounce.

longitudinal

Z
bounce

Figure 1.1 Vehicle Motions

5
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CHAPTER 2

OVERVIEW OF VEHICLE DYNAMICS MODELS

In studying vehicle dynamics, three essential components are considered for typical 

ground vehicles, the main body of the vehicle (sprung mass), the suspension system, and 

the wheels (unsprung masses). The vehicle’s kinematics and dynamics can be described 

from the interactions among those rigid bodies. The incorporation of road-tire interaction 

is also an essential part of vehicle dynamics. Therefore, “it is important to construct a 

mathematical model that includes the nonlinear characteristics of the tires, the general 

three dimensional motions of the sprung and unsprung masses, the required inertial 

coupling between sprung and unsprung masses, and an accurate representation of the 

restraints and forces imposed by the suspension components” [2 .1].

Vehicle dynamics covers a wide range of subject material because it is a study of 

anything relating to vehicle systems. However, two major areas have been studied 

extensively; ride comfort and vehicle handling performance [2.2], Even today many 

researchers are seeking ways to further improve ride comfort and vehicle handling by 

developing analytical tools, and by advancing control techniques to attain the desired 

goal.

6
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Simply to avoid the complexity of coupled vehicle modes, many researchers have 

studied ride comfort and vehicle handling separately. Logically one could ask, “How can 

this be justified when it is clear in the real world the vehicles are subjected to ride and 

handling inputs simultaneously?” [2.2], The two aspects are inextricably linked to one 

another. However, it may be difficult, if not impossible, to analyze or simulate all the 

vehicle dynamics simultaneously.

2.1 Existing Vehicle Dynamics Models.

Many vehicle models have been developed. They were derived by considering energy 

equilibrium or dynamic equilibrium. In general, these models can be classified into three 

types: (i) the quarter-car model, (ii) the half-car model, and (iii) the full-car model.

2.1.1 Ouarter-Car Models

A quarter-car model consists of one wheel and associated suspension, and a body mass. 

Due to its simplicity in modeling and the relative ease in obtaining analytical results, the 

model is primarily used to study vehicle ride comfort and to implement advanced control. 

In this 2-DOF model, the vertical motions of body mass (sprung mass) and the associated 

wheel and suspension masses (unsprung masses) are considered.

7
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m

a. One DOF b. Two DOF

Figure 2.1 Quarter-Car Models [2.3]

Hac and Fratini presented their work on vehicle ride comfort using the “skyhook” 

damping control law [2.3], The mathematical vehicle models used were quarter-car 

models with one DOF (Figure 2.1a) and two DOFs (Figure2.1b), respectively. It should 

be mentioned that in this chapter, figures retain their original notations; that is, notations 

used in the references. In Chapter 3 however, figures will be annotated by symbols 

consistent with those used in this thesis. The model in Figure 2.1a used a single DOF to 

describe the vertical response, Ziit), of the sprung mass after road signal 12(f) is inputted. 

The 2-DOF model shown in Figure 2.1b considered motions of both the sprung and 

unsprung masses. In addition to the spring (ki), a linear passive damper (Cp) was also 

introduced. It should be pointed out that u(t) in both models represents the “continuously
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variable real time damping” forces that were governed by the “skyhook” damping control

law.

A similar model was used by Simon [2.4], The focus of his work was also on the 

primary suspension systems. Various suspension systems, conventional and 

non-conventional, were evaluated and compared for obtaining the optimal trade-off 

relationships between ride and handling. A prototype of a continuously variable 

semi-active system implementing the “skyhook” control algorithm was constructed, and 

tested for its dynamic effect on vehicles. The work was also based on a quarter-car model 

of 2 DOFs (Figure 2.2).

damper
spring

spring

Figure 2.2 A 2-DOF Quarter-Car Model [2.4]
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2.1.2 Half-Car Models

A half-car model typically consists of either the left or right half of a vehicle, or the front 

or rear half of the vehicle. The former is usually called the pitch-bounce model (Figure 

2.3a), while the latter is the roll-bounce model (Figure 2.3b). There is also the so-called 

roll-yaw model that includes, as its DOFs, the lateral, roll and yaw motions of the 

vehicle.

. (B

Figure 2.3a Half-car model involving pitch motion

Figure 2.3b Half-car model involving roll motion

10
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Chen et al. [2.5] presented a pitch-bounce model along with their work on 

constrained Hx  control to active suspension systems on a vehicle. The half-car model had 

4 DOFs, the bounce and pitch of the vehicle body and the bounces of the two wheels. The 

suspension and tire were modeled by linear springs and viscous dampers. Gawade et al. 

showed the in-plane 7-DOF mathematical model of a three-wheel vehicle to study the 

influence of bump profiles on occupant injury [2.6]. The planar three-wheeled vehicle 

model considered the motions of longitudinal, bounce and pitch of vehicle body, and the 

motions of bounce and rotation of the wheels (Figure 2.4).

z f
Figure 2.4 Planar Model of a Three-Wheeled Vehicle [2.6]

11
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2.1.3 Full-Car Models

Further to their in-plane model [2.6], Gawade et al. developed a three dimensional model 

of the three-wheeled vehicle with suspensions and compliant tires [2.7]. It had 6 DOFs 

for the vehicle body, and another 6 DOFs describing the vertical displacements and 

rotation motions of the wheels (Figure 2.5).

Figure 2.5 Full-Car Model of A Three-Wheeled Vehicle [2.7]

For this seemingly simple full-car model, a good amount of detail had to be 

incorporated. For example, transformation matrices were used to describe the relation 

between the inertial coordinate frame and body centered coordinates. These matrices 

were written in terms of three independent Euler angles (the yaw, roll, and pitch angles). 

The equations of motion also took into account the steering effect. The so-called “Magic

12
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Formula” [2.8] was used to describe the tire’s behavior in the lateral direction for 

different slip angles, and the Coulomb friction model was used to describe rolling 

resistance, or the tire’s behavior in the longitudinal direction.

A simplified full-car model, together with the 2-D LuGre friction model, was 

presented by Villella in [2.9] to study the handling responses with implementation of the 

input-output linearization control technique. The main focus of the work was on 

incorporating the LuGre dynamic friction model into the full-car model and on simulating 

the handling responses under a less aggressive lane change maneuver by the driver over a 

smooth road.

Villella’s model was developed with reduced complexity in mind. The suspensions 

were absent. They were replaced by four rigid joints, which resulted in a 7-DOF model. 

The DOFs were, the longitudinal, lateral, and yaw motions of the vehicle body, and the 

rotation motion of each wheel. As for the absence of suspensions, the equations of normal 

reaction forces among the four wheels were determined analytically by using static force 

balance in the z direction, static moment balances about the pitch and roll axes, and a 

hypothetical suspension model with infinitely large values of the spring stiffness. 

Accordingly, the normal reaction forces depend only on the geometric parameters of the 

vehicle, the steering angles, and the tire-road friction functions.

13
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2.2 The Proposed Vehicle Dynamics Model.

This thesis proposes a 14-DOF full-car model. This model can be viewed as an improved 

version on those presented in [2.7, 2.9]. Specifically, the vehicle body will have 6 DOFs 

representing the six rigid body motions. Each wheel will have a bounce and a spin motion 

associated with it. Suspensions will be present, so will road-tire interaction. The detailed 

description and derivation of the model will be presented in the next two chapters, where 

the reader may note that, for the kinematics, this thesis draws upon and expands the work 

presented in [2.9]. For the dynamics, however, the free-body diagrams of Reference [2.6] 

will be utilized where appropriate. This more general full-car model will then be 

simplified to quarter- and half-car models, and to full-car models with fewer DOFs.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3

THE 14-DOF FULL-CAR DYNAMIC MODEL

The first step in vehicle modeling is a thorough understanding of the physics -  kinematics 

and dynamics -  of motion of the vehicle. This chapter is devoted to such a task, to 

develop a 14-DOF full-car mathematical model. This model, like any other car models, 

will provide a means to simulate vehicle dynamic behaviors which can further lead to the 

proper design and control of vehicles.

The study of motion will inevitably involve the setup and use of frames of 

references. Once the kinematics, the absolute accelerations in particular, is understood, 

the Newton’s laws are applied in order to establish the required equations of motion. 

These equations of motion are then simplified so as to compare with other car models. 

This not only validates the proposed full car model, it also demonstrates the versatility of 

the model.

3.1 Coordinate Systems.

Four frames of reference are used throughout the study. They are introduced below.

1) Global coordinates X-Y-Z

15
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The global coordinates are used to measure the absolute position of the vehicle. It is an 

earth-fixed frame of reference, and considered as an inertial frame [3.1]. Its origin is 

arbitrary, but chosen as the position that the center of gravity of the vehicle body takes 

when t = to- Note that the origin is fixed once chosen.

2) Vehicle body coordinate frame x-y-z

This coordinate frame is associated with

unit vectorsi , j , k  (Figure 3.1). It is a

x / frame that is simultaneously coincident

with the vehicle body’s center of gravity 

Figure 3.1 Vehicle body frame of reference
CG, but it is not vehicle-fixed in that the

x- and y-axes do not rotate as the vehicle rolls and pitches; That is they don’t rotate about

the longitudinal and the lateral axes. Instead they are parallel to the ground all the time,

and are instantaneously aligned with the vehicle’s longitudinal and lateral axes,

respectively, while the z-axis is determined by the right hand rule. The advantages o f such

a setup include, ( 1) that only one rotation matrix is required for coordinate transformation;

and (2) that x-y-z can be regarded as the vehicle’s principal axes of mass moments of

inertia, under the assumption of small roll and small pitch. The rotation matrix required

for the transformation from x-y-z to X-Y-Z is,

16
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' X
Y ■ =

Z

cosy? — siny? 0 
siny> cos tp 0

0 0 1
(3.1)

where <p is the yaw angle and is determined b y ^  =  f  <pdt with being the yaw rate.
J t0

3) Wheel centered coordinate frame xCWin-ycw,n-Zcw,n

This coordinate frame has unit vectors Cw,»Jcw,n»4»,» attached to the wheel center CWn, 

with the xCWfn-, ycw,n- and ztx ,r axes being parallel to the vehicle’s x-, y- and z-axes, 

respectively (Figure 3.2). Hence this frame differs from the vehicle body frame only in 

their coordinate origins. Unless stated otherwise, the subscript n denotes the wheel and 

takes on values of 1 through 4.

4) Wheel base coordinate frame xbWin-ybWttl-zbw,n

The wheel base coordinate frame is attached to a wheel’s base, with the ybwM-axis being 

parallel to the wheel’s rotation axis (the spin axis), the xbWifl-axis parallel to the ground, 

and the z^,„-axis parallel to the z-axis of the vehicle body (Figure 3.2). The frame rotates 

with the wheel as it steers, or it is wheel-fixed. That is, the wheel base coordinate frame 

differs from the wheel center coordinate frame by the steering angle 6n of the wheel. The 

wheel center unit vectors tCWJl, ]cw.n, krw nand the wheel base unit vectors \„J%n, jbWi„,kbw nare 

related by,

17
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ĉw,n COs6n %w,n ~  @njbw,n %w,n ~  ^ ^ ^ n ^ c w ,n  “I” STn.dn j cw rl

jcw ,n  s i l l  On ibw,n ~b COS Qnjbtu.n Of jbw,n  — s i l l 0n tcw n  -\- COS On jew ,n  ( 3 .2 )

kcw,n kbw,n ^bw,n ^cw,n

cw.

bw,n

bw,n

bw.n

Figure 3.2 Wheel center and wheel base coordinate frames of reference

Figure 3.3 compares the four coordinate frames mentioned above. It illustrates how 

they relate to each other. It is noted that the earth-fixed X-Y-Z, vehicle body x-y-z and 

wheel base XbW,n-ybw,n-Zbw,n frames of reference follow the SAE recommended practice 

[3.2]. As will be seen later, the equations that govern the general, nonlinear motion o f the 

vehicle are written in terms of the vehicle body frame of reference x-y-z. This choice of 

frame of reference greatly simplifies the derivation and calculation of the vehicle model. 

It should finally be pointed out that wheel chamber (rotation of a wheel about the 

xCWiH-axis) is not considered in this study.

18
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Figure 3.3 The four frames of reference used
yaw

lateral

longitudinal  ̂f

Z
bounce

Figure 3.4 The full-car model
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3.2 The 14-DOF Full-Car 

Model.

The full-car model has in total 14 

DOFs. They are x, y, z, (p, 7 , ip,

z l , z 2 i z 3 i z 4> W 1 >w 2 I w 3 I w 4

(Figure 3.4, Z4 and07 , u 4 not 

shown) where x, y, z, p, 7 , (p are the 

longitudinal, lateral, bounce, roll, 

pitch, and yaw motions of the 

vehicle body; z 1,z 2 ,z 3 , z 4 the 

bounce motions of the left front, 

right front, left rear and right rear 

wheels, and W] ,u>2 ,<^3 ,cu4 the 

angular motion (spin) of the left 

front, right front, left rear and right 

rear wheels, respectively. Features 

of this 14-DOF full-car model are,

a) The vehicle body is treated as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



a rigid body (the sprung mass as per terminology of [3.2]) with the six DOFs,

x,y,z,<j>, 7 ,<p;

b) Each wheel is modeled as a rigid body (the unsprung mass [3.2]) with bounce 

motion zn and spin con;

c) The wheel bounce zn is considered independent of z, the bounce of the vehicle body. 

Moreover, the bounces of the wheels are considered independent of each other, so are the 

spins;

Such a setup obviously has independent suspensions in mind, but can easily 

accommodate solid axle suspensions. In vehicle modeling, it is often the practice to have 

2 DOFs for each axle [3.3], With independent suspensions, these two axle DOFs turn out 

to be the bounce motions of the wheels at the ends of the axle; while for solid axle 

suspensions, one may choose to use, as the axle DOFs, the bounce of the axle’s roll 

center and the axle rotation [3.4], with the latter being easily transformed to the former 

(Figure 3.5).

d) It should then be noted that each wheel center is connected to the vehicle body 

through a “spring-damper” combination, km and csn; In addition, the Coulomb friction can 

be included (see [3.6]). However, such friction (stop) force is not considered in the 

present study.

20
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e) The tires are considered linear springs with spring constants ktn\ a 2-Step tire 

stiffness model [3.6] may also be incorporated and considered in the future work; and

f) The steering of the wheels is not treated as a DOF. However, as can be seen in 

Chapter 4, steering is incorporated into the model through tire-road interaction, hence 

becoming “a state”.

A schematic of the full car model is shown in Figure 3.6 where zsn denotes road 

profile, or terrain.

track width w

axle roll center
axle rotation

*
roll center bounce

Figure 3.5 Axle roll center bounce and axle rotation as DOFs

Zsl

Z*4

Figure 3.6 Schematic of the 14-DOF full-car dynamics model (spins not shown)
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Other 14-DOF full-car models available in the literature have same or similar setup 

of DOFs. For example, the same DOFs were used in [3.3 -  3.5], It is interesting to note 

that, while Reference [3.3] pointed out that the 14-DOF model “is quite suitable for 

simulating vehicle response under significant (±10 degrees) roll motions”, Reference [3.5] 

suggested that “the effect of the anti-roll bar is not negligible”, and included a simple way 

to integrate the roll stiffness with the suspension model. On the other hand, Reference 

[3.6] presented a 16-DOF full-car model. They were, six DOFs (longitudinal, lateral, 

bounce, roll, pitch and yaw) for the vehicle body, three DOFs per axle (axle roll, bounce 

and steer for solid axle suspensions, and left wheel bounce, right wheel bounce and axle 

steer for independent suspensions), and one DOF (the spin) per wheel. It is noted that the 

model in [3.6] included that of the steering system; as a result, steering angles were 

governed by the equations of motion of the steering system. Since steering is not modeled 

in the present study, steering angles are incorporated as inputs rather than as DOFs.

3.3 Kinematics of Vehicle Body and Wheels.

3.3.1 Velocity and Acceleration at Center of Gravity of the Vehicle Body, CG.

Vcg and A cg are conveniently expressed in terms of unit vectors i , j , k of the vehicle body 

frame x-y-z (Figure 3.1)

22
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Since the vehicle body frame rotates with angular velocity components of [0, 0,<^],

absolute velocity and absolute acceleration measured with respect to the global frame 

X-Y-Z which is inertial.

3.3.2 Velocity and Acceleration at a Wheel Center. CWn.

In determining the velocity and acceleration at a wheel center CWn, one starts with the 

velocity and acceleration of the point that is at the top end of the suspension connecting 

the wheel center and the vehicle body. Since such a point is a point in the vehicle body, 

one has,

where Vcg is the velocity of vehicle body’s CG written with respect to the x-y-z frame,

or the angular velocity vector of the x-y-z frame is f t  =  ipk , one can write

i — Cl x i = tpj, j  =  O x j  =  —ipi, k — SI x k — 0 (3.4)

so that A cg becomes

(3.5)

It is noted that, though Vcg and A cg are expressed in terms o fx, y, z and i , j , k  , they are

^ "vb,n ^ 'eg  “h X (3.6)

Q — (fik is the angular velocity vector of the frame, and rvb,n is the relative position

23
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vector of the top end of the suspension with respect to CG. It can be shown that (Figures 

3.7a, b)

r vb,n =  xni +  V n j +  (~Xn sin 7  +  Vn sin (j))k
(3-7)

-  xni +  ynj  +  (-a ^ 7  +  yn(t>)k 

where x„ and yn are the x- and ^-coordinates of a wheel center n (see Figure 3.7c). They

can be determined by the wheelbase and track width of the vehicle. Note that the small

roll and small pitch assumption has been invoked in equation (3.7). Substitution of Vcg, £2

and rvb,n yields,

V vb,n = ( i  -  <pyn)i + (y + <pxn) ]  + zk (3.8)

and

A b,n  =  [x  ~  a  -  'ey -  ^ 2xn ) i  +  ( y  +  Cpxn +  (pi. -  (p2yn ) j  +  zk (3.9)

V - _ ----------- - f T l r
---- ■•'6

Z ’

J _________" ''~ 'J X
—■ 1 - xu sinY

Figure 3.7a Side view of the vehicle body showing — xn sin 7

Figure 3.7b Front view of the vehicle body showing yn sin <fi
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Now, if it is assumed that the wheel centers will assume the x- and y-components of

Vvb,n and A vb,n, so that the relative motion between the vehicle body and the wheels will

only occur in the vertical direction (or along the ^-direction). The velocity and

acceleration of the wheel centers are then,

Vcw,n = { i - v y n ) i  +  (y  +  <pxn ) 3 +  Znk (3.10)

and

Aw,n = { x -  (pyn - < p y -  + { y  +  +  y x  -  <f2yn ) j  + znk (3.11)

Longitudinal Axis x

i
1

Lateral Axis 
v

Figure 3.7c Locations of wheel centers in the vehicle body frame of reference
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It should be mentioned that VCW:ll and A CWtn are absolute velocity and absolute 

acceleration measured with respect to the X-Y-Z frame but expressed in terms of x, y, z 

and i , j , k .  The relative displacement between a wheel center and the vehicle body 

represents the compression experienced by the suspension located between the wheel and 

the vehicle body. This relative displacement and its time-derivative are 

A zn = z -  xn s in 7  +  yn sm<f) -  zn = 2 -  xny  +  yn<f> -  zn
(3.12)

A zn - z -  x„7 cos7  +  yn(j)cos<j>- zn = z -  xny  + yn(f> -  zn 

It should be pointed out that the present treatment of the kinematics of the wheel 

centers is different from that of [3.6] in which the wheel centers were regarded points in 

the vehicle body. Such a treatment, however, leads to the same expression for A CWin. 

Details of such an approach are presented in Appendix A.

3.4 Dynamics of Vehicle Body and Wheels.

Once the absolute accelerations at CG of the vehicle body and at CWn of the wheel 

centers are determined, free-body diagrams (FBDs) should be sketched and Newton’s 

second law of motion applied. In the derivations that follow, certain FBDs of [3.7] are 

utilized where appropriate. However, all equations of motion are re-developed. It is noted 

that all equations of motion are written with respect to the x-y-z coordinates.
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3.4.1 Linear Motions of the Vehicle Body.

The reaction force exerted by a wheel center onto the lower end o f the “spring-damper” 

combination is (see Figure 3.8, showing forces from wheels 2 and 3 only),

Fn =  Px * + pv 1 ~  Pz k (3 13)ltj cw ,n y c w .n  J  z cw ,n  \ J , i  J /

Therefore, the equations of motion are, by virtue of Newton’s second law of motion,

(1) for the linear motion in the longitudinal direction

M bx = M bw  + Y J PXcv (3.14)

(2) for the linear motion in the lateral direction

M by  =  +  J 2 py,:. ,  (3.15)

and (3) for the linear motion in the vertical direction (or the bounce motion)

M bz = M bg - ^ P Zmn (3.16)

4

Note that in above equations, the summation is with respect to n, that is, This
n —1

notation is used throughout the remainder of the thesis unless stated otherwise.
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Ka

> c vV,:

Figure 3.8 FBD of vehicle body 
(showing forces and torques from wheels 2 and 3 only)

3.4.2 Angular Motions of the Vehicle Body.

To arrive at the equations of motion for the angular motions of the vehicle body, one 

recognizes that the x-y-z frame is a rotating frame of reference. Since the frame rotates 

about the z-axis only (that is, =  0,0  ̂ =  O,0 2 =  p ), while the vehicle rotates relative 

to the x-y-z axes with the angular velocity components of [ <j>, 7 , 0 ], the angular velocity 

components of the vehicle body are then u x =  Qx +  <fr —  <j>, u)y =  f l y +  7  =  7  and 

ujz =  f l , +  0 =  p. The equations of angular motion of the vehicle body are therefore 

[3.8]

=  a i 7 )

where the angular m omentum  about the CG is [3.7]

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where the angular momentum about the CG is [3.7]

(3.18)

In equation (3.18), Ixxg, Iyxg and Izxg are the mass moments of inertia of the vehicle body 

about the x-, y-, and z-axes, respectively. Terms such as Istxg, for example, denote the 

mass product of inertia of the vehicle body about the s- and f-axes, and =  I yxxg, 

lyz.cg =  Izy.cg and I Izcg = I zxcg. Since symmetry in the x-y and y-z planes can be 

reasonably assumed for most vehicles, this leads to I Tgcg = Jyxcg = I yz cg = I zycg = 0. 

Equation (3.18) then simplifies to

It is then recognized that Ixzxg, or I7XCn, is either not available for most vehicles, or 

when available, is many orders of magnitude smaller than Ixxg, I rxg and Izxg and may be 

neglected. This leads to a further simplification of equation (3.19) that gives rise to

(3.19)

h*cg CXX'QljJXi -f- Iy cgUJyj I ZCg'UJ ~k (3.20)

Substituting equation (3.20) into (3.17) yields,

H ^ x , c g  — Ix jC g ^ x  ~  Iy ,cgU yQ z — 7x,cg4> ~  ^y,cgi 'P

=  ly ^ c g ^ y  +  kXiCgu>x Clz  =  I y , c g l  +  7x ,cg<t>'f

^ l ^ Z,cg — Iz,cgUz — ̂ z,cg'f
(3.21)
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where the left hand sides (LHS) represent the sums of moments due to forces about the x-, 

y-, and z-axes, respectively. The angular motion about the longitudinal x-axis (or the roll 

motion) is then governed by

^■x,cg4> Iy ,cg 'Y V  E  [ P z (Wn Un ] COS (!) E  [ Py,.w:l z v jji ]

=  Iy ,c g 'i (P  ~  Y l \ P z m n lln  ] — Y ^ [ P y Clwnz w,n ]

the angular motion about the lateral y-axis (or the pitch motion) by

^ .< * 7  =  -Iw ftP  +  E E  +  I n ]  COS 7  +  E [ E „ , „ E ™ ]

=  +  E  E  +  E [ e „ , „  Z n ] +  E [ e „ . „  Z w,n  ]

(3.22)

(3.23)

and the angular motion about the vertical z-axis (or the yaw motion) by

I,i,{P =  +  E f r . . . * " ]  0 -2 4 )

The FBD of the vehicle body as viewed from the x-axis, y-axis and the top is given 

in Figure 3.9. In equations (3.22) and (3.23), zw,n = zn + H  - z  is the z-coordinate 

difference between the CG and a wheel center at time t. H  is the initial z-coordinate 

difference, see Figure 3.10. Obviously, z(0) = z«(0) = 0.
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Figure 3.9a FBD of the vehicle body as viewed along the jc-axis 
(wheels included for reference only)

. 0

cw.4

P;z  cw,4

Figure 3.9b FBD of the vehicle body as viewed along the y-axis 
(wheels included for reference only)
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-vc\v,2

cw,3

Figure 3.9c FBD of the vehicle body as viewed along the top 
(wheels included for reference only)

.--------

Figure 3.10 Vehicle body as viewed along the y-axis showing H, z  and zn
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3.4.3 Forces on the Wheel Base and Equations of Motion of the Wheels.

•cw,u
cw„

CW.
CW.ll

'CW,11

fy,n

N,'n

Figure 3.11 Forces exerted by road surface onto the wheel bases

Reaction force exerted by the road surface onto a wheel base is (Figure 3.11)

■ffcw.n F'fx,n* bw,n ^'fy,n3bw,n ^r j^b w ,n

( ^ fa ,n  c®® @n 3“ F fy  n sin. On'jicw^n (3 .25)

4" ( F fx ,n  @n F fy tn COS 0n j j Cw,n ^ n ^ c w ,n

where equation (3.2) has been applied. With the FBD of a wheel (Figure 3.12), applying 

Newton’s second law of motion, the equations of motion of the wheel center are,

(1) for the linear motion in the longitudinal direction

[:x -  (pyn }m n =  [ipy +  (p2xn }mn -  Px ^ n -  Ffx n̂ cos0„ +  Ffy>n s in 6n (3.26)

(2) for the linear motion in the lateral direction

[y +  ipxn } m n = - [ < p x -  (p2yn } m n -  PVcwn -  F ^ n sin#n -  F ^ n cos6n (3.27)
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CWJi

O W i ,

k
'  CW .ll

C W .ll

Figure 3.12 FBD of a wheel

(3) for the linear motion in the vertical motion

m nzn =  PZcwn +  m ng -  N n (3.28)

and (4) for the spin motion of the wheel, by considering the spin axis of a wheel (spin 

axis passes through the wheel center and is parallel to ytw.n-)

(3.29)

It is observed that the LHS of equations (3.26) and (3.27) each involves two 

acceleration terms. On the other hand, equations (3.28) and (3.29) do not exhibit the 

coupling between accelerations. Obviously, existence of such coupling complicates 

equation solving.

Ispin^n tF 1fxtn
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3.4.4 Forces Developed in the Spring-Damper Combinations.

All “spring-damper” combinations considered are assumed massless. Equilibrium of each 

in the vertical direction yields

PzCWin =  Pzcw,n + ks n ( z -  Xnl +  yn<t> -  Zn ) +  csn (z  -  Xny  +  ynj> -  zn ) (3 .30)

where ksn, csn are the spring constant and damping coefficient of the spring-damper 

combination, P® is the initial spring force required to support the vehicle body weight

Mbg. It is found that

_  n , _ b d _  n b c -.a _ ci d -.ft ., cl c
Pr  . =  M u g -,— , P* 0 — M u g -,—  * =  M bg - — ,P 2U . =  M bg  ,

z r.w, 1 I  W  c w .2 I  W  c w ,3 I  W  c w <& I  y j

4 (3.31)
E p L , n  =  M bg.
71 =  1

with 1 = a + b, and w = c + d being the wheelbase and track width, respectively. The x- 

and y- components of the forces are determined as follows, from equations (3.26) and 

(3.27)

=  M  +  <pyn + <py +  kp2xn ] m n -  FfXiU cos 9n + Ffyjn sin 9n (3.32)

Py^n = [~y -  <pxn ~  ¥>* + F2Vn ] m n -  Ffx>n sin 8n -  Ffyin cos 8n (3.33)

3.4.5 Forces Developed in the Contact Points Between a Wheel and Road Surface.

If A^is the tire’s stiffness and zm the road profile, respectively, equilibrium in the vertical 

z-direction yields (Figure 3.13)
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N n  =  P L . n  + m n 9  +  h n { z n -  Z s n ) (3.34)

P7̂c w ji

Figure 3.13 Free body diagram of a wheel 
(showing only forces in the z-direction)

3.4.6 Bounce and Spin Motions of the Wheels.

Substituting equations (3.30) and (3.34) into (3.28) yields,

mn^n =  kgnZ Q̂ sn 3“ k̂ n)zn ksn(xn'y

~k^snz CsnZn Csnip̂ nif Un'P') 3“ kinZm
(3.35)

and equation (3.29) is repeated here for easy reference.

(3.36)

3.4.7 Bounce Motion of the Vehicle Body.

Substitution of equation (3.30) into (3.16) gives,

M bz  =  -  J 2 l k™ ( z + Vn(t> -  s n7 -  zn ) +  csn(z +  yn4> -  xnj  -  zn )\ (3.37)
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It is noted that the four equations govern in g ^  (equation 3.35) andcu7t (equation 3.36), and 

the equation governingz  (equation 3.37) are not coupled to one another. This, however, is 

not the case with the longitudinal, lateral, roll, pitch and yaw motions of the vehicle as 

demonstrated by equations (3.38)-(3.42) given below.

3.4.8 Longitudinal, Lateral, Roll. Pitch and Yaw Motions of the Vehicle Body. 

Defining M tot — M b +  Y  m n which is the total mass including that of the vehicle and 

those of the wheels. Substituting equation (3.32) into (3.14) yields

MfotX ~  Y ^{y n m n \V  

M-by^p 'y ] ( Ffx n cos 6n Ffy>n sin 6n ) -T y  '  [ ipy -f- <p xn j Tnn

Substituting equation (3.33) into (3.15) results in,

MtotV +  Y j  ̂ Xnm n W

Mfoiip y   ̂( Ffx n sindn +  Fjy^n cos 9n ) y   ̂[ipx <p> yn j Tnn

Substituting equations (3.30) and (3.33) into (3.22) gives,

y  ]y y  1 ^w.n^n \ <p  d~ Ix,cg&

lyfigi^P d- y  '  [ ( ̂ fx,n d- COS 9n ) Zŵn ]

~  Xn l  +  Vn<l> ~  Zn) ] Vn  }  ~  5 Z { [ C« * ~  X ^  ~  Zn) ]Vn  }

+ Y { [ v i  ~  V2yn]zw,nrnn }

(3.38)

(3.39)

(3.40)
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Substituting equations (3.30) and (3.32) into (3.23) results in,

^  1 f \ x  y  '  [ Vn^w,n^n ] Iy,cg'~f

IxjCg&̂ P ""I- y  / -̂ rt y  y [ ( F'fx.n C*-® ^fy.n Sin @n ) %w,n ]

+ I ] { [ M 2 -  Xn l  + Vn4> -  A O K  } +  2 { [ c m( i -  xn l  +  Vn<P ~  Zn) \x n } (3 '41)

+ S  {[ W  +  ^ Xn ] Z'» , A  }

And substituting equations (3.32) and (3.33) into (3.24) yields,

- J 2 ^ n m n]x  +  Y j { Xnm n \y  +  {hfig  +  +  y n ) ™ n \ } v

y  1 [ (^fx,n sin Ffytn cos 9n 'j xn ] “H y   ̂[(Ffx.n cos9n ^fy,n sin $n ) yn j (3.42)

- ^ { [ ^  -  ^ 2l/n](®nWn )} -  ^ 2 {[vni +  V2^ ](l/» "* n )}

Equations (3.38) through (3.42) form a set of five simultaneous equations that can 

be recast into the following matrix form,

a 41

a 51  a 52

a 32 a 33 a 35

a 44 a 45

025 y 2̂
a 35 ■ <j) ■ =  63

• j  64

(3.43)

where the nonzero elements are

(3.44a)
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and

h  -  M byip +  ^ 2  [ 'fV + ^ xn } m n -  ( Ff*,n COS dn ~  Ffy,n sin ) (3 .44b)

h  =  ~ M bx<p -  [fix ~  V2yn ]m n -  ( Ffx,n sin 9n +  F ^ n cos 9n ) (3.44c)

n J z w,n

h  =  h f i g W  +  Z ^ { [ ^  _  ^ V n  \ z w,nmn } 

T  ̂  ' [ ( Ffx,n  sin 9n T  Fjy^n cos 9n )  zw>n ]

- ^ { [ ksn{z ~  Xnl +  Vnfi “  Zn)]yn )

'y y {[ <-'sn(-̂  x n i  +  y n4> z n) ] y n |

4̂ d~ 'y 1 { f P̂V 4“ Xn ^ZwnVfln |

+ 5 Z  Tn ~ J 2 K  F f C 0 S  9n ~  F fy,n s i n  9 ,

+ J 2 t t k ™ (Z -  Xn l  +  V vti ~  z n ) } X n }  

+ S { [ Cs n ( ^  -  Xni  +  Vn4> ~  z n ) } x n }

5̂ y  / [ ( Ffx,n 9n Ffy,n sin 9n ) y n ]

y  1 [ ( Ffx,n sin 9n +  Fjy^n cos 9n ) x n ] 

- J 2 { l v x  -  V 2y n ] ( x nm n ) }  

~ Y l { [ F y  +  F 2X n } ( y nm n ) }

(3.44d)

(3.44e)

(3.44f)

The 5x5 coefficient matrix [A] of equation (3.43) is rank-sufficient. In fact, by 

inputting the matrix into the symbolic computation software MAPLE [3.9] (see Figure 

3.14a), the matrix can be inverted analytically (see Figure 3.14b, where the five separate 

rows vectors represent each row elements of the [A f’matrix). Or it can be inverted 

numerically depending on computational effectiveness. Note that the [A] matrix is 

time-varying (see, for example, elements a jj and a . 4 5 )  which requires inversion at every
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time step of integration. Following inversion, the five equations become decoupled. The 

linear and angular accelerations can then be determined. That is

h f  (3.45)j 4> 7 ]Tv>\ =  [ 4 f 1 b\ fh h

’ a l l 0 0 0 al5~
0 a l l 0 0 a.25
0 a32 a33 0 a35

-a32 0 0 a44 a45
a l5 a25 0 0 a55

Figure 3.14a [A] Matrix as inputted into MAPLE

a l  I a55 -  a25 ‘ a 15 a25
a l l  ( a l l  a55 -  a l 5 2 -  a252) ’ a l l  ( a l l  a55 -  a l 5 2 -  a252) 

a l5
a l l  a55 — a l 5 2 -  a252 

a!5  a25

, 0 , 0 ,

a l l  a55 -  a ! 5 ‘
a l l  ( a l l  a55 -  al5~ -  a25~) a l l  ( a l l  a55 -  a l 5 2 -  a252) 

a25

, 0 , 0 ,

a l l  a55 -  a 15' — a25"

a!5  ( - a l l  a35 + a32 a 25 )
a33 a l l  ( a 11 a55 -  a l 5 -  a25 )

a l l  a32 a55 -  a l l  a25 a35 -  a32 a!5~ 
a33 a l l  ( a l l  a55 -  a l 5 2 -  a252)

1
, 0 , -

-« / /  a35+ a32 a25
«33 ’ ’ a33 ( a l l  a55 -  a ! 5 2 -  a252) 

a l  1 a32 a55 + a l  1 a !5  a45 -  a32 a252 a25 ( a l l  a45 + a32 a 15)

1

a44 a l l  ( a l l  a55 -  a l 5 l -  a25~) a44 a l l  ( a l l  a55 -  a l 5 z -  a25L)

a l l  a45 + a32 a l5

T7>0

a44 ’ a44 ( a l l  a55 -  a l 5 2 -  a252)

a l5 a.25
a l  1 a55 -  a l5 " -  a25~ a l l  a55 -  aJ5~ -  a25

a l l

7 . 0 , 0 ,

a l l  a55 — al5~  -  a25l

Figure 3.14b [A]'1 Matrix as determined by MAPLE
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Now that the entire set of 14 equations of motion, equations (3.35), (3.36), (3.37) 

and (3.45) with n = are defined, they will be rewritten in the state variable format, 

with the 28 state variables b e in g s, z2, z3, z4, u u uj2, w3, cu4, z, x, y, </>, 7 , </?, zu z2, z 3, 

i 4,cj1,cu2,cj3,cj4,i,i;,y,(/>,7 ,0 . Of these state variables, the vehicle body velocities x, y  are 

velocities written in terms of the local (vehicle body) coordinates. They should be 

transformed to the global (earth-fixed) coordinates as follows

X  =  x cos ip — y sincp
(3.46)

Y  =  isiny? +  ycosp

such that the 28 state variables are now z1,z 2, z 3,z 4 ,uj1,Lo2, u 3,LU4,z,X,Y,(j),j,p>, z4, z 2, z 3, 

z 4 , u u l j 2 , u j 3 , l ) 4 ,  z, X ,  Y,<j>, 7 , ( p .  They can then be solved for by numerically integrating 

the 28 first-order ordinary differential equations (ODEs) by a ODE solver such as the 4-th 

order Runge-Kutta method. It should be noted that in equation (3.46), (p is the yaw angle 

which is a state variable and is the integral of yaw rate over the time interval to to t,

t
(pdt .

0

3.5 Simplification of the 14-DOF Full-Car Model.

In this section, the versatility of the previously presented full-car model will be

demonstrated. The full-car model will be simplified to various car models available in the

literature, ranging from quarter-car models and half-car models to other full-car models.
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Most of the models have been surveyed or reviewed in Chapter 2. For easy reference,

they will be recited and renumbered. It should be noted that, in Figure 3.15 through 3.18,

the symbols have been changed, from what were used in the respective references, to 

those used in the thesis. This is done with consistency in mind.

3.5.1 Simplification to Ouarter-Car Models

Quarter-car models, which include just one wheel and the associated suspension and the 

vehicle body mass, are widely used for suspension analysis. A quarter-car model can be 

obtained by neglecting friction and by setting x =  y =  cf) =  ' j  —  i p = x  =  y =  <p —

7  =  <̂  =  ii =  j/ =  )̂ =  7 =  (/3 =  0, 7  =  <p =  a; =  y =  (/) =  7  =  (/3 =  0,

M w, ksn ks, csn cs, kf-rj kf-, zsn zs, zn zw, zn zw, Tn 0 . Equations

(3.35) through (3.42) are then reduced to

Myj'zw ks (z zw) +  cs (z zw ) -f- kf (zs zw) (3.47a)

M hz  =  - 4 [ks ( z  -  zw ) + cs (z -  zw)} (3 .47b)

It is further found that equations (3.36) and (3.38) through (3.42) are identically equal to 

zero. Since the sprung mass is M s =  Mb /  4, un-sprung mass is the wheel mass Mw, one 

then has
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t

Equations (3.48) and (3.49) are identical to

M sz  =  ~ [ k s (z  -  zw) + cs(z -  zw)] (3.49)

M w Zw (z zw) 4- cs ( z zw)

~\~kt (zs zw)
(3.48)

N w

equation (2.1) of [3.10] and equation (8) of [3.11]

respectively, and equations (2 .1) and (2.2) of

i— TM m m m m m m m m m

Figure 3.15 A quarter-car 
model [3.13] illustrated in Figure 3.15.

[3.12]. A typical quarter-car model [3.13] is

3.5.2 Simplification to Pitch-Bounce Half-Car Models

Half-car models typically include the so-called pitch-bounce models, the roll-bounce 

models and the roll-yaw models [3.10]. The pitch-bounce models represent the left- or 

right-half of the vehicle, or two axles of the vehicle. The roll-bounce models consist of 

the front- or rear-half of the vehicle, or a single axle. Both the pitch-bounce and the 

roll-bounce models include the bounce motions of the vehicle and wheels. To the contrast, 

the roll-yaw models have no bounce motions [3.10], including instead only the lateral 

motions as the DOFs of the models. The more general roll-yaw models are not discussed 

here because torsional deflections in the suspensions have also not been considered; and
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steering angles have also not been included as DOFs of the system. A typical pitch-

bounce model is shown in Figure 3.16.

z A
  ........-....... ..X

Mb. ly.o? ! (-Q<x

Z i

'"'bid Qk up

r m
k,:\ 1

X

r L
u p

. k u  ^

L t . L k i .

Figure 3.16 A half-car model showing pitch and bounce motions [3.14]

Setting x  ^ y  =  cf) =  ifi =  x  =  y  =  ^  =  ip =  x ^ y  =  4> = ip =  0 ,Tn =  uin =  u n 

F fx,n  =  Ffy n —  0, and considering only the vertical force components from the

suspensions, equations of motion (3.35) through (3.42) are reduced to,

Tn.n Zn k sn ( Z Zn %n~i) "b dsn ( ^  X ,  A &tn ( z sn )

XlfjZ }  '  [ ksn (Z Zn X n ^f ) Csn {z Zn Xn y )  j

ly .cg 'J  'y  1 { [  ^sn •A iT) ~b ^ sn ( % %n •^n'T) ] }

(3.50)

(3.51)

(3.52)

Equations (3.36), (3.38), (3.39), (3.40) and (3.42) are identically equal to zero. Note 

that Equations (3.50), (3.51) and (3.52) are identical to equations (la), (lb), (lc) and (Id)

of [3.14],
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3.5.3 Simplification to Roll-Bounce Half-Car Models

Mathematically, the roll-bounce models are not very different from the pitch-bounce

models. The assumptions axex = y = y  = if = x = y — 'j = ip = x — y — /

<p =  0 , Ffx>n =  Ffy .n = Tn =  u n — u n =  0. The equations of motion for this case

reduce to

ksn ( z  Zn yn(f>) +  Csn ^Z Zn +  2/ri*̂ ) T  ( z sn z n ) (3.53)

MbZ =  ~ J 2 [ k sn ( z  -  z n +  Vn<P) +  Cm(z ~  Zn +  yn<j>)] (3.54)

^ x tcg& ^  ] i  [ ksn (z  z n "T Vnft)  T  ^sn{z  z n T  J / n 0 ) ] y n } (3.55)

H

Zi

Zsi ^

_ Mb, Xx \ C G :

V .

k ,  CD

Ks. H  I Csi

/ / / /7/ / / / / / /

cts CDKt:

K s2 j”] -  I Cs2

I

A
• Z i

A  ZS2

Figure 3.17 A half-car model showing roll and bounce motions [3.15]

A roll-bounce half-car model is shown in Figure 3.17. Physically pitch-bounce and

roll-bounce models are however different and serve different purposes. Though both can

be used to analyze suspensions, the roll-bounce models enable the investigation of
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rollover of vehicles; while the pitch-bounce models are appropriate for ride comfort 

analysis.

3.5.4 Simplification to a 7-DOF Full-Car Models.

The 7-DOF full-car model is often studied ([3.12, 3.16, 3.18], and with the seat bounce 

excluded in [3.17, 3.19]). These DOFs are shown in Figure 3.18, including the bounces of 

the vehicle body and the wheels, respectively, and roll and pitch. To simplify the 14-DOF 

model to the 7-DOF one, one needs to setx =  y =  ip = x — y — <p = x  =  y =  Cp =  0, 

Tn — con = u>n = FfXtn — Ffy<n = 0 .  As a result, the equations of motion become, 

mnzn =  ksn(z - z n -  x„7 +  yn4>) + csn[z -  zn -  xnj  +  yn<j>) + ktn (zsn -  zn ) (3.56)

M b'z =  -  J 2 [ k ™ O  -  z n +  Vn<t> - X n l )  +  Csn(z -  Zn +  -  Xnj) ]  (3 .5 7 )

'y / 1 [ ksn {z zn %n'y +  2/n*̂ ) "F can( i Zn ~  Xn'j -+- 2/n0)j?/n |  (3.58)

Iy,cg^f y  y {[ ̂ STi {z  zn ~~ "F yn4>) "F Csn (z Zn Xn 7  +  yn<f>)̂ Xn J- (3.59) 

Equation (3.36), (3.38), (3.39) and (3.42) are identically equal to zero. Equation 

(3.56), (3.57), (3.58) and (3.59) hence form the equations of motion of the model.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 3.18 A 7-DOF full-car Model [3.12]

3.6 Concluding Remarks.

In this chapter, a 14-DOF full-car dynamic model has been developed. The resulting 

equations of motion are equations (3.35) through (3.42). The last five equations, (3.38) 

through (3.42), are coupled and have to be solved simultaneously.

The full car model can be simplified to (1) a quarter-car model defined by equations 

(3.48) and (3.49); (2) a pitch-bounce half-car model defined by equations (3.50) -  (3.52); 

(3) a roll-bounce half-car model defined by equations (3.53) -  (3.55); and (4) a 7-DOF 

full-car model defined by equations (3.56) -  (3.59). These simplified models will be
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tested with results presented in Chapters 5 and 6 . Before proceeding, however, the 

modeling of friction forces has to be dealt with.
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CHAPTER 4 

ROAD-TIRE FRICTION

So far all necessary components of the dynamic model of a vehicle have been considered 

with the exception of the friction force. As was concluded in Section 3.5, vehicle motion 

is primarily determined by the interaction forces between the tires and the road, or the 

road contact forces. Therefore, one of the crucial elements of vehicle modeling is to 

properly model the road-tire friction force.

This chapter deals with this crucial element of road-tire friction. A brief literature 

review will first be given, followed by the details of the 1-D and 2-D LuGre dynamic 

friction models. For purpose of comparison other friction models such as the “Magic 

Formula” and the 3-D brush model are also looked at. The chapter concludes with 

formulation needed to incorporate the 2-D LuGre friction model into the dynamic full-car 

model that was presented in Chapter 3.

4.1 Literature Review.

The behavior of road-tire friction is well known to be highly nonlinear. Many friction 

models have been proposed attempting to capture the essence of the complicated friction 

phenomena with reasonable complexity [4.1]. Since there is a wide range of physical
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phenomena that cause friction, from elastic and plastic deformations, to fluid mechanics, 

etc., the nature of the models is quite different. They can be static or dynamic. They can 

be described by differential equations, differential-algebraic equations, and so on [4.1].

Traditionally road-tire friction was modeled by a static (or steady-state) model. 

However, this steady-state point of view was rarely valid since in reality the tires can 

experience continuous phase change between vehicle’s acceleration and braking. This 

called for the need in developing friction models that would capture the transient 

behaviour of the road-tire contact forces under time-varying velocity. These dynamic 

friction models are usually described by ordinary differential equations.

A friction model discussed extensively in the recent literature [4.2-4.7] came to the 

author’s attention. This dynamic friction model, known as the LuGre model, was 

introduced [4.8] as the result of collaboration between Lund Institute of Technology of 

Sweden and Laboratoire d ’Automatique de Grenoble of France (LuGre). The LuGre 

friction model has been demonstrated to be an accurate model for capturing most of the 

steady-state and transient friction behaviours that have been observed experimentally, and 

to be suitable for the type of in-depth exploration of wheel torque capability [4.2 -  4.8, 

4.10],
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The LuGre model can be used when considering the cases of either rigid or 

non-rigid road-tire contact. The rigid contact case treats the wheel as rigid; as a result, the 

single point contact lump model is formulated [4.4, 4.5, 4.7]. The non-rigid contact 

renders a distribution model to describe the interaction on the contact patch [4.2 - 4.4, 

4.6]. The distributed model would no doubt yield friction behaviors that are closer to 

reality. However, in keeping with the rigid wheel assumption adopted in Chapter 3, and in 

aim of simplicity of modeling and numerical simulation, the focus of the present study 

will be on the point contact LuGre model. The distributed formulation will be 

recommended for future work.

The advantage of the point contact LuGre model is that the physical parameters 

entering the model can be selected by a vehicle designer to match the experimental data 

and be used to describe the condition of road surface. Most importantly, the model is 

appropriate for normal vehicle motion situation, such as steady-state or transient phases 

between braking and acceleration; not to mention that the LuGre model has been 

extensively discussed and applied due to its simplicity in model derivation, ease of model 

parameter identification, and high accuracy in predicting the frictional behaviors.
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4.2 The LuGre Dynamic Friction Model.

In Chapter 3 it has been shown that two components of friction force, Ffi and Fjy (see, for 

example, Figures 3.11 and 3.12, and equations (3.25) and so on), are needed to determine 

the motions of the vehicle. Thus, a two-dimensional friction model is required for 

describing the longitudinal and lateral frictions. Such forces are needed in various vehicle 

dynamics simulation studies, especially vehicle handling studies. The longitudinal and 

lateral frictions are related to N, the normal force developed at the contact point between 

the tire and the road surface:

FfZ = HxN , Fjy — flyN (4 .l)

where /ix and /uy are the coefficients of friction in the longitudinal and lateral directions, 

respectively. They are also known as the normalized tire friction. Note that the subscripts 

x  and y  denote the x;w- and yt,w-axes (of the wheel base coordinate frame) defined in 

Section 3.1, see Figure 3.2 in particular. In this chapter the subscript n ( n =  1, ..., 4) has 

been dropped for simplicity. It is understood that the equations and discussions presented 

in this chapter are applicable to all four tire-road contact points.

4.2.1 The One-Dimensional LuGre Dynamic Friction Model.

The LuGre Model interprets friction as the interaction of microscopic surface asperities
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which act as the bristles (rubber elements of the tire) and deflect as the surfaces move 

with respect to one another (Figure 4.1). The deformation of the bristles gives rise to the 

friction. The frictional force is given as a function of internal deflected state rj, (see [4.2] 

for example), with rj(t) satisfying the differential equation

Direction of motion

Figure 4,1 The average internal deflected state tj in the direction of motion

* 1(1) _ K
dt g(vr ) (4.2)

and the friction is related through

, ^ ( t )  , T T
0 0 7 7 (f)  +  o'! — 77 h 0 2 V rdt N (4.3)

and the coefficient of friction, pi, is

, dr){t) , T[M = cr077(t) +  h tr2Vr (4.4)

In equations (4.2) through (4.4), rj(t) is the internal state that describes the deflection of

an elementary rubber element, Vr is the relative velocity between the contact surfaces, N

is the contact normal force exerted on the wheel by the ground, oo is the rubber lumped
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stiffness, cry is the rubber lumped damping, 02 is the viscous relative damping, andg (V r ) 

is a speed dependent sliding function which represents the transitions between the static 

and kinetic friction coefficients as a function of relative velocity between the contact 

surface.

( 1̂ 1 f
g(vr ) = gk + (gs -

where pik is a parameter representing kinetic friction, g s a parameter representing static 

friction, and vs the Stribeck velocity [4.9], which refers to the low slip or low relative 

velocity region, where a decrease in friction force is seen. The constant parameter <5 in 

equation (4.5) is known as the Stribeck exponent [4.6]. It is a shape parameter used to 

capture the steady-state friction or slip characteristic, and typically has values in the range 

of 0.5 to 2.0 [4.6]. The Stribeck velocity and shape parameter affect the rate of transition 

between g s and /uk. Figure 4.2 shows how viV and 8 affect g ( Vr ). Typically, a smaller v5 or 

a larger <5 suggests a quicker transition from fis to ftk-

US
0.2

0.18

0 .16

>
01

0.14

0 1 2

10050-100 -50 0

0.2

0 18

0  16

01

0 .14

v s  I n c r e a s e s

-100 -50 0
Vr (m/s)

50 100

Figure 4.2 The effect on g (Vr ) due to changes in friction parameters
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4.2.2 The Two-Dimensional LuGre Dynamic Friction Model.

The extension of the LuGre friction from the longitudinal one-dimensional (1-D) model 

to the longitudinal and lateral two-dimensional (2-D) model has been proposed in [4.3,

4.5 - 4.7]. A simple extension would be to assume that the bristle deflections are 

directionally independent, so as to apply equation (4.2) along the longitudinal (x) and 

lateral (y) directions separately. This would result in,

dr)X)y ( .t)  _  y  _  P Q s . j /  I Vrx,y \ . .

dt gx,y {VrXiy) ,y

Equation (4.6) should be looked at as two independent sub-models where gx<y (Vrx ŷ )

were two independent friction functions with two different sets of parameters; that is,

— f  ( - T * f9x ( Vrx ) fĴ kx T  (/i sx S1 and gy (Vry) fi^y -b (/i sy /i^ )e  v

Physically this would mean that two bristles would deflect independently in two

directions. In reality there is only a single bristle at the contact point; therefore there 

exists a single, unique, friction [4.6]. A different expression for gx y ( Vrx ŷ ) was given in 

[4.6],

9x,y  ( Vrx,y ) —
Vy rx,y

9(Vr) (4.7)K

Equation (4.7) yields positive longitudinal and lateral components of the road-tire 

sliding friction force g(V r ) (see Figure 4.2). Substituting equation (4.7) into equation (4.6)

yields the deflection equations for the combined longitudinal and lateral motion. Unlike
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in equation (4.6), the two sub-models are now coupled with the sliding friction function

and the relative speed. That is,

d^ {t) = V  _ ^,y\Vr\  
dt ra-» g(Vr ) Vx's

where the longitudinal and lateral frictional coefficients are, from equation (4.3),

d V x ty  ( t )
ftx.y ^Qx,yVx,y ( O  "f“ &lx.y ^  1“ &2x,y*rz,y

^0  x }yVx,y ( ^ x,y
v  <r0x,v \VT\ \ (4 '9)

rayt/ „ { \ r  \ 'tfz-.V ' &2x,y*rx,yg{vr)

where a0x, a 0y are the bristle stiffness constants; a lx, crly are the bristle damping coefficient 

constants; a n d a r e  the bristle viscous damping coefficient associated with the x  

and y  directions, respectively. These parameters can be identified from experimental data 

if possible, or pre-assigned as constants for simulation purposes.

4.3 Steady-State Characteristics.

In most literature it is common that the steady-state friction characteristics are expressed 

as a function of slip coefficients. In 2-D steady-state friction model, the lateral friction is 

expressed as a function of slip angles, and the longitudinal friction as a function of slip 

ratio. The steady-state analysis of friction models is widely employed in the study of 

road-tire interaction.
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The steady-state characteristics of the deflected rubber element are obtained by

setting
d'H' (£)— - j ----- to zero and by solving equation (4.8) to obtain [4.10]

d t

(4.10)

Substituting equation (4.10) into (4.9), the steady-state frictional coefficients are found to 

be [4.10]

This steady-state solution can be used to calibrate and identify the model parameters by 

fitting this model to experimental data or to the “Magic formula” which will be 

introduced in the next section.

4.3.1 The “Magic Formula” .

One of the most well-known models for static frictional coefficient is the Pacejka’s model

[4.11], also known as the “magic formula” . This model has been shown to suitably match 

experimental results and accurately describe the tire steady-state curves. It has been the 

benchmark for validating the steady-state conditions for dynamic tire friction models. In 

Reference [4.11] Pacejka presented the following formula for describing the friction 

function.

\ y r \

(4.11)

H =  D sin ( C  arctan ( B M  — E  ( B M  — arctan ( B M )))) (4.12)
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where M  is either the longitudinal slip ratio s, or slip angle /?. The parameters B, C, D  and 

E  can be identified through curve-fitting with experiment data. Different sets of 

parameters can then be used to generate plots of the longitudinal friction coefficient, pix(s), 

as a function of slip ratio, s, and plots of the lateral friction coefficient, ////?), as a 

function of slip angle, /?. Thus, to observe the relation of steady-state friction 

characteristics between the LuGre and the “magic formula” and to identify the parameters, 

it is convenient to express the LuGre friction model in terms of the slip coefficients.

4.3.2 Definition of Slip.

In vehicle dynamics, slip is the relative motion between a tire and the road surface it is 

moving on. This slip can be generated either by the tire's rotational speed (co) being 

greater or less than the free-rolling speed (Vx). It is usually described as a ratio or 

percentage slip (s), or by the tire's plane of rotation being at an angle to its direction of 

motion, which is also known as the slip angle (fi). Examining equation (4.2), one may 

realize that when the vehicle travels at a constant speed with no slip and no steer at the 

contact interfaces between the tires and the road, that is, where Vr = 0, the right hand side 

(RHS) of equation (4.2) becomes zero, or the dynamic deflection of the bristle, r\(t), is 

constant; since the bristle has no initial deflection, the dynamic deflection is then rj(t) = 0 .
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From equation (4.3) it is seen that the tire friction forces described by the LuGre friction 

model is zero, or Ff= 0.

The relative velocity is defined in the wheel plane x-y where O is the contact point 

(Figure 4.3) with the following components

Vrx =  V  cos ( 0 )  +  ru) =  VX + ru> 

Vnj = V s m { j 3 )
(4.13)

so that

v  = Jv 2 + V 2v r \  'n r  ' v r-y (4.14)

rco

Vr
Vx

Direction 

of Motion

Vr

Vx

iII Direction 

|| of Motion

yb»

Figure 4.3a Slip for braking

v  =  W + v ? is

Figure 4.3b Slip for acceleration

In equation (4 .1 3 )/ — V ^  ~r ry js  w h e e i hub translational speed along the 

direction of travel with components I 

slip angle or the angle between the direction of travel and the longitudinal axis of the

wheel coordinate. Note that for the wheel-center coordinate frame defined in Chapter 3, a

; [1 /1 Vy ]. uj is the wheel hub rotational speed; @ is the
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wheel coordinate. Note that for the wheel-center coordinate frame defined in Chapter 3, a 

negative wheel angular velocity co implies a forward motion.

The longitudinal slip s, and the lateral slip q, both need to be defined under two 

separate cases, braking and acceleration. For the braking case (Figure 4.3a), the slips

(identified by a subscript b) are given by

V  cos {(3) +  ru! Vr
S 6=  V  cos ( [3) = X

yr (4.15)
96 =  4 f -  =  tan(/?)

* X

For the case of acceleration (Figure 4.3b), the slips (identified by a subscript a) are

V  c o s ( P )  +  rui Vrs =  =  —-  rcj >  — vr and w ^  0
r u  rw  .

Vr (4.16)
qa =  —  =  (1 -  sa )tan (13) 

rw

The longitudinal slip is always positive within the interval [0, 1]. When s = 0 there is no 

sliding, whereas j  = 1 indicates full sliding or skidding. The lateral slip is a function of 

slip angle and directionally dependent.

With the slip rates now defined, n SSx c s ) and p,SSy ( (3) of equation (4.11) can be 

determined. For braking, the sliding function g (Vr ) in equation (4.5) becomes

-[£A cgg±a.»f (4_17)
S(F-) = M* + (Ms -  Mfc)e 1 ;

and for acceleration

S(Fr ) = r t +(«,-A*i)e 1 l’' J l j
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Finally, the frictional parameters are, from equation (4.11)

g(Vr)< ? ( K )I • .    + &2x*z
'Jlb(0')~ + &b~ \/Qb (0)~ +

= + OfyVz 96 (/5) (4.19)

for steady-state braking at some constant velocity, V, and 

9 ( V r )
4(5,?)

'Jla.ipy + Sa2
■ a’2xrijJ ^0’ 4 ( ,5 S ,„

g ( V r )

+ "2sra; 9a (^) (4.20)

for steady-state driving at some constant a>. It should be pointed out that the steady-state

behavior of the LuGre dynamic road-tire friction model can only be obtained for a

specified constant velocity V  or constant angular velocity co, and may be validated with

the Pacejka’s “magic formula”.

4.4 Validation of Steady-State Behavior with the Magic Formula.

To validate the steady-state behavior of the LuGre model presented above, experimental 

data presented in [4.2] are used as the basis of comparison. Reference [4.2] listed two sets 

of parameters, used in conjunction with the “magic formula”, for vehicle braking and 

cornering. These two sets of parameters are given in Table 4.1, along with parametric 

values used in the present study. It is seen that parameter B  has a value of 18.0 instead of

the 0.178 listed in [4.2]. The 18.0 value is found after a number of trials-and-error in the 

present study. This is necessary in order to best-fit experimental data of [4.2]. The source 

of the discrepancy is not fully understood. One possible cause may be the lack of units in
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[4.2]. The resulting tire static curves, plots of friction force versus slip, are shown in 

Figure 4.4.

As to the LuGre model, model parameters are identified by best-fitting the 

steady-state behavior, equation (4.19), to the “magic formula” plots. In Figure 4.4, the 

plots are those of forces Fx(s) and Fy(S). They are obtained by multiplying equation (4.19) 

by a normal force, N  = 2000N, which was used in [4.2]. The LuGre model parameters are 

identified after a number of trials-and-error in the present study. They are listed in Table

4.2 as well. Note that cr2x and co.y are set to zero, which implies an dry frictional contact 

assumption. It is also noted that the jus has a value greater than unity. This is because /us 

and fxk are simply frictional parameters used in conjunction with the LuGre friction model. 

They are not to be interpreted as the coefficient of friction used with the well-known 

theory of dry (Coulomb) friction. In Figure 4.4, Fx is plotted as a function of s for braking 

by setting /? = 2.0° and V  = 60 km/h. On the other hand, the plot of Fy versus /? is obtained 

with the setting of 5 = 0.05 and V =10  km/h. The very close match between the “magic 

formula” and the LuGre model as seen in Figure 4.4 shows that by selecting appropriate 

parameters, the LuGre model provides an excellent representation for the steady-state 

behavior of the road-tire friction.
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Table 4.1 Magic Formula Parameters
Parameters B C D E

Ref. [4.2]
Fx (braking) 0.178 1.55 2193 0.432

Fv (cornering) 0.244 1.5 1936 -0.132

Present study
Fx (braking) 18.0 1.55 2193 0.432

Fy (cornering) 0.244 1.5 1936 -0.132

Table 4.2 LuGre Model Parameters
Parameters Mk Es Vs S &2x &2y

Present

study

Fx (braking) 0.72 1.35 5.5 0.75 0.0 0.0

Fy (cornering) 0.65 1.35 5.5 0.75 0.0 0.0

2 5 0 0
M agic

2000

1500

z

1000

0.2 0 .4  0  6
L ongitudinal S lip , s

2000
-  • -  M agic  
-—  L uG re

1500

1000

500

z

-500

-1000

-1 5 0 0

-2000
-20 -15 -10

Slip  A ngle (d eg ). (5

Figure 4.4 Steady-state friction forces Fx(s) and Fy(fi)

4.4 Incorporating the LuGre Friction Model.

The dynamic LuGre model, in the form of equation (4.9), is derived under the assumption 

that the wheels travel along the longitudinal, or x-direction only, In order to incorporate 

the steering of the wheels, it is then considered that a wheel is rotated from the 

longitudinal direction by an angle of, say, 6 (see Figure 4.5b). Since “The changes in the
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bristle deflection are measured as a result of rotation of the measurement frame rather 

than as a result of changes in the actual displacement” [4.10], only the transferring from 

the measurement frame x-y-z to the global coordinate frame X-Y-Z is required. It should 

be noted that in Figure 4.5a the measurement frame x-y-z initially coincides with the 

X-Y-Z global coordinate frame. As shown in Figure 4.5, this measurement frame is in fact 

the wheel base coordinate frame defined in Chapter 3. The wheel rotation is taken as the 

steering input 6{t) from the driver. Note that the deflection of a bristle, tj, always makes 

an angle of X with respect to the global coordinate X. Expressing the tj vector with respect 

to the wheel base coordinate frame, one has,

r
/

 (-----

X

Figure 4.5a Bristle deformation 
before rotation

t e d )

/
/

/
/

/

/ /

/
/

Figure 4.5b Bristle deformation 
after rotation

V =  Vx%w + Vyjbw + Vzk'bw (4.21)
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The bristle deflection component ̂ m ay  be neglected because it is assumed to be small 

compared to the longitudinal and lateral deflections. Equation (4.21) becomes

V  = Vx%w + rjyjbw (4.22)

Next, the time derivative of the bristle deformation expressed in the wheel base 

coordinate frame can be written as

V  =  Vxkw +  Vyjbw + Vx%w + Vyjbw (4.23)

Since the wheel base coordinate frame rotates only about zbw as the wheel steers (see 

Figure 3.2), one has

4m 0̂zbjbw > jbw ”  !ĵ zb%w (4.24)

where u zb is the rotational velocity of the wheel about zbw. Substituting equation (4.24)

into equation (4.23) yields

V  = ( Vx ~ UzbVy ) L  + ( Vy + ^zbVz ) Jbw (4.25)

where the coupling effect due to combined translational and rotational motion of the 

wheel is clearly reflected by terms such as ojzbrjx andu zbr)y. Next, equation (4.8) is revised

taking into account (4.25) so that

d r h W = _ ^ , Wr\ 
dt  rx g ( V T ) V x +  zbVv

d V y ( t )  (To, |F r  I ( 4 ' 2 6 )

dt ry g( VT) Vy Uzbr]x
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Finally, the dynamic tire frictional coefficients with respect to the wheel base coordinate 

frame are,

Mr =  <70zVx ( t )  +  CTla. +  a 2 x V rx

VOxVxd) + CTlx
V'x ~ "g(vr ' ) r]x + UJ:sbT,y

d r )  { t )

+ a2x̂ 11
(4.27)

=  * o y Vy  (  t ) +  o-iy +  a 2 y V ril

=  O - O y V y ( t )  +  & l y
y/ l"r0</ I Fr I „ ) | _ T̂
V m  . Tjy ^ z b V x  ^ 2 -y ^ r y
ry ' / (F)

The final task is to extend the friction model, equation (4.27), from a single wheel to the 

full-car model. Since the wheels are not modeled as separate systems from the vehicle 

body, the friction model needs to be defined with respect to the vehicle body frame as 

was done in Chapter 3.

Y
A \

bw,2

cg 1

L ateral Axis, y

/'

Longitudinal Axis, x

GLOBAL
- > X

Figure 4.6 Total bristle deflection with respect to the global frame
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As illustrated in Figure 4.6, the total rate of rotation of the wheel base frame with 

respect to the global frame is the sum of the yaw rate of the vehicle body, p , and the 

steering ra te6 ( t ) . For a full-car model, the n-th ( n  =  1 , ,  4 ) bristle dynamic equation 

and tire frictional parameters are obtained from equations (4.26) and (4.27)

and,

Vx,n W  =  K x , n  ~  Vx,n + ( < ?  + # n  C < ) )
9 { V r,n )

Vy,n W  =  V ry>n -  ~  {<P +  On ( t ) ) r ) x<n
9  ( Vr;n )

M z;, n  & Q x V x ,n  ^ l x V x ; n  ( / )  & 2 x ^ r x , ?

<rox\Vr,

(4.28)

vv T X J I
9

fty ,n  Oy V y,n  ( O  ~h (7l y 9 y , n ^ )  ^2 -y^ry ,'

<*0y \Vr,n

X( v  r' \  Vx,n + (v3 + en ( t ) )^ ,n 
V Vr,n )

+ CT2xVrx,n
(4.29)

^OyVy.n (t) ~f“ &iy Vv ry,n
9 (

+ <*2iyry,nJ ~ r V y,n ~{<P +  9n (t ))Vx,n  
1 \ r)'̂  / /

where the relative velocity of the n-th wheel, Vrjl = {VrXtn,Vrytn}, is defined as the velocity 

of the contact point of wheel n  with respect to the ground. Since the velocity of the 

ground is zero, the total velocity of the contact point becomes simply the relative 

velocity,

F r * , n  V tr a n la t io n .n  4 "  ^ r o t a t i o n ,n  ( 4 . 3 0 )

where the translational velocity of contact point equals that of the wheel center, or VCWJl, 

as defined by equation (3.11). That is

V tr a n la t i ( m ,n  T'cw .n  (4.31)
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The second term, Vmtatum,n, represents the velocity of the contact point rotating about the 

ycw n -axis of the n-th wheel (see Figure 3.12). If the wheel is spinning atujn ,

Frotation.n (4.32)

where r is the wheel radius which is assumed to be the same for all four wheels. 

Substituting equations (3.11) and (4.32) gives

Vr,n = [i ~ <PVn +[y + n ] J + znk + rujJbWin (4.33)

In the above equation, znk may be neglected just as the component of the bristle

deflection was neglected earlier in equation (4.22). Furthermore, unit vectorsi , j  

and%WJl, jbWt7l are related via equation (3.2). Noting that i =  =  ]CU!iU , one then has,

v r,n = [(f  -  a ) cos en + (y +  <pxn) sin en +  unr] ibw n
(4.34)

+  {{y +  ) cos 0n - { x -  <pyn) sin 9n} j bw,n

4.6 Concluding Remarks.

The dynamic LuGre friction model, when applied to the full-car model, consists of 

equation (4.29) where the relative velocities are determined by equation (4.34). The x- 

and y-components of the frictional force, which are needed for the full-car model 

developed in Chapter 3, are
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^j’x.n n

=  ° 0 x V x , n  ( t )  +  (Tl x

fyy,n =

= VQyVysi, (t) + Ciy

K x , n  ~  - ° ^ r ’y Vx,n + { V >  +  8n ( t ) ) V y j
9  1, *r,n )

&0y | ̂ r,71

+ ^2xK s

V -v r y ,n “I” ryji

Nn

N„

(4.35)

° j }  ^ i rj _  (<p +  0n ( t ) ) r ]
9 { V r , n j  y .

where the relative velocities are again determined by equation (4.34). In determining 

frictional force components, steering angles9n{t){n = 1,..., 4) and their time derivatives 

9n(t) (n=  1,..., 4) are considered inputs to the system rather than state variables. The 

steering angles and their respective derivatives are independent of each other when 

considering independent suspensions. Specifically -  to paraphrase the suggestion by 

[4.10] -  the rear steering angles are fixed at zero steers, the front steering angles are 

constrained according to Figure 4.7, “so that no wheel slip is induced by the steering 

geometry, allowing for the possibility of zero relative velocity solutions at all four 

wheels.”

- %

Figure 4.7 Vehicle steering geometry definition [4.10]
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CH A PTER 5

NUMERICAL STUDIES OF VEHICLE DYNAMICS

In Chapters 3 and 4, all the necessary components for a vehicle dynamic model have been 

developed. Next, the model is to be put through different cases to verify the model’s 

capability in representing various vehicle dynamic situations, the assumptions behind 

different simplifications, and the model’s accuracy. The selected cases are from recent 

publications in the area of vehicle dynamic and control, including issues of ride comfort 

and handling.

The objective is to utilize the present vehicle model to reproduce the results as 

presented by other researchers. Identical conditions and physical parameters are 

identified and implemented where applicable. Because of assumptions made in the 

referenced publications, modifications of the presently developed vehicle model are 

necessary. The chapter emphasizes on comparing the models, and identifying the 

differences or similarities among them, so as to demonstrate the range of applicability of 

the present model.
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5.1 A Planar Model of a Three-Wheeled Vehicle.

5.1.1 AHalf-Car Model by Gawade et.al.

An in-plane seven degrees-of-freedom (DOF) mathematical model of a three-wheel 

vehicle (TWV) was presented in [5.1] to study the effect of road bumps on occupant 

injury. The system equations may be used to calculate the forces and positions of 

interacting components while the TWV was passing over bumps of different profiles, and 

to examine the lift-off phenomenon (which is a measurement of vehicle stability) and the 

ride comfort of the TWV. Wheel lift-off occurs when the normal reactions exerted by the 

road onto a wheel goes to zero, causing the tire to lose contact with the ground. Ride 

comfort, on the other hand, can be measured by the time history of the maximum upward 

acceleration and/or the frequency spectrum of the acceleration.

The planar TWV model
C O ,  V

Z

Figure 5.1 The planar TWV model

shown in Figure 5.1 (where

symbols have been changed from

those of [5.3] for the sake of

consistency) was assumed to

travel over the bump with a

constant longitudinal speed and without steering. The vehicle body, front wheel and a
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lumped rear wheel were considered rigid, and were connected with linear suspensions. 

Though the wheels themselves were considered rigid, tire stiffness was incorporated into 

the model. The seven DOFs considered were the longitudinal motion, bounce and pitch 

for the vehicle body; and the bounce and spin motions for each of the wheels. Vehicle 

body’s lateral motion, roll and yaw were not considered since it was a half-car planar 

model. Furthermore, the no-slip assumption was made, such that cu — —x /  r , and the 

road-tire friction forces were [5.1],

5.1.2 The Present Model.

Introducing some simplification into the general model presented in sections 3.4.6 - 3.48 

by setting y = y — y = <j> = ^ = (j) = (p = ip = ip -  Ffy,n -  0, the equations of motion for the 

bounce and spin motions of the wheels are then given by

r' r
n  =  1,2 (5.1)

k stn( z  XrTI Zn ) +  Cs n ( z  2Vj7 %n) k tn{z n z s n )

(5.2)

Equation of motion for the bounce motion of the vehicle body is given by

M bZ =  - J 2 i k Sn U  ~  x n l  ~ Z n ) +  Cs n { z  -  Xn7  -  Zn )] (5.3)

and for the longitudinal and pitch motions of the vehicle body, one has

Mt0t% ( Ffx.n ) (5.4)
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I y , c g l  y  ' (% ,n% ) ^ ^X^f x -n ^ wj i  ) ^  •UiT z n ) ^ n ]  (5 .5 )

“t” y  1 [Csn(% %n'i A i^n]

In equations (5.2) through (5.5), m} is the mass of the front wheel, and m2 is the 

combined mass of the two rear wheels. Accordingly, Ispanj is the mass moment of inertia 

of the front wheels, and Ispan,2 is the combined mass moment of inertia of the two rear

2
wheels. The wheel index n runs over 1 and 2, o r ^ = ] P  ,andM t0( = Mh +  mx +  m2 . These

n = l

equations of motion are proven identical to those proposed in [5.1]. As to the longitudinal 

frictional force, Ffx,n, the LuGre friction model may be implemented to better capture the 

behavior of the tires when in contact with the road. The parameters of the LuGre friction 

model used for the present study are taken from [4.7] and listed in Table 5.1.

Table 5.1 Parameters for LuGre Friction Model

Parameters Values Units

H-k 0.57 -

t*s 1.41 -

vs 2.66 m/s

8 0.5 -

OOx 267.00 m-1

<?lx 1.33 s/m

$2x 0.0001 s/m
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5.1.3 Results and Discussions.

The differential equations of motion for both models are then solved using MatLab®. For 

comparison, one of the scenarios investigated in [5.1] has been chosen where the vehicle 

travels over a road bump modeled as a half-sine wave with amplitude of 0.1 m and 

transverse distance of 2.0 m (Figure 5.2). The bump is located 0.5m ahead of the center 

of front wheel along the longitudinal axis. The vehicle is set to travel at its wheel lift-off

speed of 5.11 m/s which was determined by 

5.2. Wheel torques Ti and T2 are zero.

1 ~--v 1
' \

\

\
/ \

\

/
\

\
/ \

/ \
\
\

/

/
\  .

/ \  ■
j \

i
\
\

j
\QC----------- 1----------- 1----------- 1-----------

0.5 1 1.5 2 2.5

Traverse distance (m)

Figure 5.2 Half-sine wave road profile

.1]. Other parameters are given in Table

Table 5.2 Parameters for the TWV
Parameter Value Unit

M b 504 kg
mi 8.5 kg
m2 18.0 kg

ksi 32736 N/m

kS2 105414 N/m

kti 238260 N/m

kt2 500980 N/m

Csl 3250 N.s/m

Cs2 6470 N.s/m

X] 1.437 m

X2 -0.563 m

h 0.530 m

r 0.210 m

ly.cg 170.000 kg.m2

Ispin, 1 0.110 kg.m2

/spin, 2 0.220 kg.m2
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The normal reaction forces, vertical acceleration of the vehicle body and its 

frequency spectrum from both models are shown in Figures 5.3 and 5.4. It is clearly seen 

that both models yield identical time and frequency responses. Wheel lift-off is seen 

when the rear wheels are positioned at x  = 3.65 m (Figure 5.3b) and the peak reaction is 

observed at rear wheels at x  = 4.66 m.

4000
-  P resen t Model 
■ TWV Model

3500

3000

S. 2500

£ 2000

°  1500

1000

500

Traverse d istance (m)

Figure 5.3a Normal reaction at front wheel

10000
—  P resen t Model 
  TWV Model9000

8000

7000
2

6000©(_»
£  5000 
2

4000o
z

3000

2000
1000

T raverse distance (m)

Figure 5.3b Normal reaction at rear wheels
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As to ride comfort, results of the time history and the frequency spectrum of the 

vertical acceleration (Figure 5.4) show the same level of vibration with dominant 

frequency at about 2 Hz with an amplitude of 5.25 m/s2.

—  Present Model 
 TWV Model

r\

J)
i
in

'8SI
CJic
cs
c0
153
<D
<_>
u< -10

-15
0.5

Time (sec)

Figure 5.4a Vertical acceleration of the vehicle body -  Time history

5.5
—  Present Model
-  - TWV ModelCN ch

1  4.5
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g 4N
g> 3.5 
o

2  3o

2.5

oca"5<DXD3
Q.a<

0.5

Frequency, (Hz)

Figure 5.4b Vertical acceleration of the vehicle body -  Frequency spectrum

To make sure that the no slip condition is true, longitudinal speed of the vehicle body and

the spinning velocity of the wheels are plotted (Figure 5.5), which verifies that
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the relation cu =  —x / r  is maintained. Frictional forces are shown in Figure 5.6. They are 

constantly zero.

Recalling from Chapter 4 (see Sections 4.2.1 and 4.3.2, in particular) that when the 

vehicle travels at a constant speed with no slip and no steer, the tire friction forces will be 

constant and equal to zero. The wheels will experience the pure rolling motions. In the 

LuGre friction model, the frictional force is given as a function of the bristle deflected 

behavior and is depended on the rate of change in relative speed or slip at the contact 

surface between the tire and the road. Thus, with no-slip at the contact interfaces and the 

expression given by equation (5.1), one may realize that a non-zero tire friction force 

appears only when the vehicle is imposed by external forces or wheel torque for 

acceleration or deceleration. The constant zero friction forces represent the dynamic 

equilibrium and the steady-state motion of vehicle and wheels, which is what the present 

planar TWV model is expected to simulate. Note that the constant longitudinal speed, the 

zero steer and the absence of wheel torques all point to the vehicle moving along a 

straight path, and having zero acceleration. Since there are no applied wheel torques, 

friction forces at the tire-road contact points will have to be zero for Newton’s second law 

to be satisfied. The friction forces may be expressed as in equation (5.1) or by the LuGre 

friction model, with the latter being chosen for the present model.
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Figure 5.5 Comparisons of the present model and Ref. [5.1]
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Figure 5.6 Frictional forces

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.2 A 7-DOF Full-Car Model.

A 7-DOF full-car model was discussed in [5.2], The work focused on ride comfort with 

the implementation of active-suspensions, and a PID controlled passenger seat. The 

controls of the vehicle body’s bounce and pitch motions, and the seat’s bounce motion 

were used alternatively to obtain the optimal comfort. In the suspension systems, a linear 

dry friction model was introduced in studying the vertical response of the vehicle body.

In what follows, only the mathematical structure of the vehicle model is extracted, and 

the present model is simplified to having the same DOFs. The aim is to investigate the 

vehicle’s responses to vertical road disturbances.

5.2.1 A Full-Car Model by Rahmi.

This model was reviewed in Section 3.5.4, see Figure 3.18 in particular. The DOFs 

included the bounces of the vehicle body and the wheels, respectively; and the roll and 

pitch of the vehicle body. The model was considered to be stationary in the sense that the 

horizontal motions, that is, the longitudinal, lateral and yaw motions, were neglected. 

Wheel spinning was also discarded. The resulting state equations were nonlinear because 

of the trigonometric terms involved. In addition, the model consisted of four independent 

suspensions with friction on dampers. The friction was described by, where n  =  1,..., 4
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f n  =  C e n  ( A z n )

C&n

N if |A i„ | < e

^ (2p„ -  s in 2pn ) + ■ cospn otherwise
IT \ L \ Z n j

(5.6)

(5.7)

(5.8)Pn =  Sin ( £/ A %

In the above equations, A zn is the relative velocity between the two ends of the n-th 

suspension, and is determined by equation (3.12). The parameter e is a small constant 

band values implemented to prevent the complete locking of the suspension 

when A zn = 0. The constant R is given as the dry friction force under the condition of 

low A zn . In the range where |A in | > e , the damping friction approaches R. Reference

[5.2] listed the values of e and R (see Table 5.3). They had been verified with 

experimental data, see [5.2]. Figure 5.7 shows the behavior of this friction model.

Table 5.3 Parameters s  and R

Parameters Values Unit

£ 0.0012 m/s

R 22 N

from [5.2]

<i>ooLL
Co

-e

Ll.

-10
-1 5

-20

-0 .0 1  - 0 .0 0 5  0  0 .0 0 5  0 .0 1  0 .0 1 5  0 .0 2

Relative ve loc ity  o f g a m p e r end, A Zn (m /s)

Figure 5.7 Dry friction behavior
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It should be pointed out that the additional DOF representing the seat bounce motion

is excluded, in order to compare with the present model. As a result, passive, instead of 

active, suspension is employed. Time responses of the model are made by simulating the 

vehicle traveling over the bump without steering.

5.2.2 The Present Model.

The present model is reduced to 7 DOFs since,x = x  = x  = y = y  = y  = <fi=ip = ip = ujn = ujn = 0. 

In addition, the external forces components generated from road-tire interactions and 

wheel torque inputs are not considered. As a result, the internal reaction forces Pxcw,n and 

PyCW,n are zero. The new set of state equations becomes, for the bounce motions of the 

wheels,

Ttln  Z n  —  k sn{z  +  V n  x r d  z n )

“f c sn (z  +  yjp X n 7  Zn )  ktn(zn “  zsn) 4- fn (5.9)

for the bounce motion of the vehicle body,

^sn  ( % U n$ %n )

+ c 57l( i  +  yn<j> -  xni  -  zn) £ / „  (5.10)

and for the pitch-roll motions of the vehicle body,

Ix ,cgi  =  “ I ]  {[Kni* -  A , 7  +  y j  -  Zn) ] }

{[c » ( i  -  A .7  +  y„4> -  A  )]< /„}  +  £  ynfn
Iy,CgX = X 3  {lk sn(Z -  A , 7  +  Vn4> ~  Zn ) \ Xn)

+  J 2  { K n ^  -  A .7  +  y j  -  A , ) K }  +  £ * „ / „

For easy comparison, the dry friction model of equations (5.6) through (5.8) is used.
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5.2.3 Simulation Results and Discussions.

To observe the time responses of the models, both models are hypothetically given a

constant vehicle speed of 10 m/s over the bump without steering. The model parameters 

are listed in Table 5.4. A ramp-like bump profile is selected with a height of 0.035 m and 

a span of 0.1 m, as shown in Figure 5.8. The road disturbance is inputted to each wheel 

with a time delay (see Figure 5.9) between the front and rear axles. That is, the time delay 

is A t  = (a + b)jV , where a + b is the wheelbase (see Figure 3.6), and V  the longitudinal

speed of the vehicle.

2 0.02
2  0 015

0 0 4  0.06
Bum p sp a n  (m)

0 .04

0 .0 3 5

0  03

0 .0 2 5

|  0.02 
E
do 0 .0 1 5  

0 01 
0 .0 0 5  

0

• F ron t W h e e l; 
R e a rW h e o ls

- T im e D elay  -

0 .0 5  0.1 0 .1 5  0.2
Tim e (sec )

Figure 5.8 Ramp-like bump profile Figure 5.9 Time-delay at 10 m/s

The simulation results are shown in Figures 5.10 and 5.11. The time responses from 

both models are found to be identical. The time-delay effect of axles traveling over the 

bump is clearly seen in vertical displacement and acceleration, and pitch angle (figure

5.10); it is also seen in the dampers’ friction forces (Figure 5.11).
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Table 5.4 Model Parameters

Vehcile Body
Parameter Description (Unit) Value

Mb Vehicle point mass at CG  (kg) 1100
X j ,  x 2 x-coordinates of front axles to CG (m) 1.2
X j ,  X 4 x-coordinates of rear axles to CG  (m) -1.4

yi, ys y-coordinates of left wheels to CG (m) -0.75

yi, y4 y-coordinates of right wheels to CG (m) 0.75

b,cg Moment of inertia about x-axes (kg m2) 550

bxg Moment of inertia about y-axes (kg m2) 1848
Wheels

m.], m 2 Mass for front Wheels (kg) 25
m 3, m 4 Mass for rear Wheels (kg) 45

Suspension/Tire Stiffness

k s i ,  k s 2 Front suspension spring coefficient (N/m) 15000

k s 3 t  k s 4 Rear suspension spring coefficient (N/m) 17000

Cs All suspension damping coefficient (N.s/m) 2500
k t All tire stiffness coefficient (N/m) 250000
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Figure 5.10a Vertical displacement of vehicle body
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Figure 5.10b Pitch angle of vehicle body
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Figure 5.11 Damper friction forces
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5.3 A Full-Car Model for Maneuver Simulation.

5.3.1 The Full-Car Model by Villella.

In studying ground vehicle handling, a 7-DOF full-car model with the application of the

2-D LuGre friction model has been introduced by [5.3] of Georgia Institute of

Technology. The focus of the study was the effect of the wheels’ input torques on the

lateral-yaw response of the vehicle. The vehicle model included five lumped masses, one

lumped translational mass that was the vehicle body, and four lumped rotational masses

that were the four wheels. The translational mass was to represent the horizontal motion

of the vehicle body while the rotational masses were to represent the spinning motion of

the wheels. Most importantly, the model had no suspensions due to the assumption that

“suspension forces are internal to a vehicle system and have no effect on the motion of

the entire system in the horizontal plane” [5.3]. As a result, the effects of pitch-roll, and

the bounce of the wheels were neglected while the vehicle was cornering. The DOFs

included the longitudinal motion, and the lateral motions and the yaw of the vehicle body;

and the spins of the wheels, for a total of seven.

In addition to the absence of a suspension system, an analytical method for solving

for normal force distribution amongst the four wheel contact points was proposed, where

the solution produced the forces necessary to maintain zero pitch and roll conditions. The
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resulting algebraic equations depended only on the vehicle’s geometric parameters, 

friction forces, and steering angles. As to frictional force, the 2-D LuGre model of 

Reference [4.2] was implemented. In contrast to the static friction model, such as the 

“magic formula”, the large transient friction forces were captured as the steer angle is 

changing, where a rapid increase of contact forces may be achieved.

The inputs to the model 

were composed of four 

independent wheel torques, and 

Cr  four time-varying steering 

signals sent from the driver. 

These four steering signals were

a + b

Reference axis

c + d

:'-5©

Figure 5.12 Steering geometry definition 
(showing right steering) [5.3]

not independent. As demonstrated by the steering geometry definition of Figure 5.12, 

which shows only the geometry of a right steer, the rear steering angles were fixed at zero 

steer, and the front steer angles, d\ and 62 , were constrained by having their respective 

y-axes, Ri and R2, intersect at the same point. The reason of so doing was, according to

[5.3], “so that no wheel slip is induced by the steering geometry, allowing for the 

possibility of zero relative velocity solutions at all four wheels.” In other words, in order 

not to introduce “artificial slip”, the input steer angles are not independent. Instead, the
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angles are given by 0\,d2 = tan 1

steering; and by 0\,02 = tan 1

(a + b)

~ ± P - + l,c + d)tanc^

{a  +  b )

and 0-i — 6a =  0 , for the case of left

(a + 6) _ (c + d)
and #3 =  0A =  0 , for the case of right

tan#!

steering, where (a + b) and (c + d) are the wheelbase length and width of the vehicle, 

respectively.

5.3.2 The present model.

The present model, whose development was dealt with in Chapter 3, has 14 DOFs in total, 

and considers the vehicle body and the wheels as two inter-dependent sub-systems of 

rigid-bodies. The suspensions, or the “spring-damper” units, represent the connections of 

the wheels to the vehicle body, and introduce the required inertial coupling, restraints and 

forces between the two sub-systems. Normal forces are solved from the consideration of 

dynamic equilibrium. It is interesting to note that, although the present model has 14 

DOFs compared with the 7 DOFs used in [5.3], it requires less CPU time than that by the 

approach of [5.3]. A typical run of [5.3] takes 38 seconds of CPU time; while the present 

model requires, on average, 5 to 10 seconds less. In addition, it should be noted that in 

the remainder of this chapter, the results obtained by using the approach of [5.3] will be 

denoted “G-Tech” in the plots for the abbreviation of Georgia Institute of Technology.
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5.3.3 Simulation Results and Discussions.

The state-space equations of motion for both models are solved using MatLab®. A few 

scenarios are considered. Note that for all scenarios, the vehicle is maneuvered under the 

steering input of 9\(t) given in Figure 5.13. The steering transition begins with zero to -10 

degrees (-0.176 radians) and back to zero, which causes the vehicle to turn left. The other

( a  4- b )three steering inputs are therefore, ,02 = tan-1 (a + b) 
tan^ +  ( c  H- d )

-0 02
-0  04

-0 .06

-0 12
-0 .14

-0 .18
0.5 2.5 3.5

time(sec)

Figure 5.13 Driver steering input

The other model parameters are 

listed in Table 5.5. Note that the friction 

parameters are taken from [5.3]; the 

vehicle mass, mass moment of inertia 

and geometry parameters are taken 

from measurements on a 1998 Honda

Civic by the United States National Highway Traffic Safety Administration (NHTSA)

[5.4]; the spring-damping-tire stiffness constants are taken from [5.2], It should be 

pointed out that, though the wheel’s mass moment of inertia is taken from [5.3], the 

wheel mass and geometry are chosen according to Honda’s specification [5.4] owing to 

data availability.
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Several simulation scenarios are examined. First, the vehicle is given steer angles for 

a turn maneuver on pavement road with no wheel torque input to the wheels. Next, the 

vehicle is subjected to the same steer angles and road surface conditions but input torques 

are applied to all four wheels so as to simulate four-wheel drive. Finally, the model is put 

to an icy road surface and simulations are performed for a four-wheel driven, a 

front-wheel driven and a rear-wheel driven vehicle, respectively.

5.3.3.1 Simulation of turn maneuver without input torques to the wheels.

Initially, the model is simulated under turn maneuver on pavement road with no wheel 

torque input to the wheels. The simulation is run with an initial longitudinal speed of 15 

m/s [5.3]. Initial wheel speeds are then determined via no-slip conditions =  rui, leading 

to the values of -75 rad/s. The negative sign is needed due to the use of wheel center 

coordinates, see Section 3.1, and Figure 3.2 in particular. All other states are initially zero. 

The simulated results show the extent to which vehicle dynamics is influenced by the 

friction between the road and wheels.
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Table 5.5 Model Parameters

Parameter Description (Unit) Value

Vehicle Body [5.4]
M b Vehicle point mass at CG (kg) 1140

X i ,  x2 x-coordinates of front axles to CG (m) 1.1

X 3,  X 4 x-coordinates of rear axles to CG (m) -1.5

yi> yj y-coordinates of left wheels to CG (m) -0.7

y2,y4 y-coordinates of right wheels to CG (m) 0.7

H+r Height from ground surface to CG (m) 0.5

h.cg Moment of inertia about x-axis (kg m2) 365

ly.cg Moment of inertia about y-axis (kg m2) 1617

Iz.cg Moment of inertia about z-axis (kg m2) 1785

Wheels [5.4]
mn Mass of one wheel (kg) 25

r Wheel radius (m) 0.2

I  spin Moment of inertia about ycw (kg m2) 0.1361

Suspension and Tire Stiffness [5.2]

ks Suspension spring constant (N/m) 17000

cs Suspension damper coefficient (N.s/m) 2500

k, Tire stiffness constant (N/m) 250000

LuGre Friction [5.3]

GOx Longitudinal rubber stiffness (m"1) 178

Olx Longitudinal rubber damping (s/m) 1

Olx Longitudinal viscous relative damping (s/m) 0

OQy Lateral rubber stiffness (m '1) 500

<J\y Lateral rubber damping (s/m) 2

&2y Lateral viscous relative damping (s/m) 0

s Stribeck exponent 0.5

Vs Stribeck velocity (m/s) 5.5

Coefficient of Friction [5.3]

Mk Kinetic, rubber-asphalt contact 0.8

Ms Static, rubber-asphalt contact 1.2

Mk Kinetic, rubber-ice contact 0.1

Ms Static, rubber-ice contact 0.2
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Figure 5.14a Longitudinal friction forces
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Figure 5.14b Lateral friction forces
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Figure 5.15 Vehicle body speeds for pavement road with no torque input

1) Vehicle body velocities in the horizontal plane are shown in Figure 5.15. From

Figure 5.14a, it is clearly seen that the speed change as shown in Figure 5.15 is

due to the emergence of friction forces. The longitudinal speed decreases slightly

after the turn begins (0.5 s versus 0.35 s, see Figure 5.15), where the presence of

longitudinal frictional forces dissipates the forward kinetic energy, resulting in a

lower speed slightly ahead of the completion of the turn (t = 2.75 s versus 3.0 s,

see Figure5.13). On the other hand, the appearance of lateral frictional forces

accelerates the vehicle in the lateral direction, and the moment created by these

friction forces about the mass center of the vehicle body causes the yaw motion of
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the vehicle. In other words, the lateral speed and yaw rate increases and returns to 

zero at the completion of the turn without visible time-lag or advance (Figure 

5.15).

2) The motions of the wheels are also influenced by friction. See Figure 5.16 for 

each wheel’s rotational speed, where, due to the use of wheel center coordinates, a 

negative rotational speed represents a forward rolling motion. The wheel’s 

rotational speeds on the left and right sides of the vehicle diverge as the left 

wheels slow down and the right wheels speed up to traverse turns of differing 

radii. One may also refer to Figure 5.12. As the vehicle turns about the center of 

rotation, CR, each wheel center will rotate at some constant angular speed with 

respect to CR', as a result, the linear speeds of the wheel centers satisfy, for a left 

turn in particular, | Vcw2 \ > \ Vcwi \ > \ VcwX \ > \ Vcw3 \ , since it is seen that

V  % /
R2 ^  ^  ^  . Thus, given the relation ofw^ — , the wheels

rotational speeds satisfy | cu21 >  | cu4 1 >  | ̂  | >  | cj3 | , which is clearly exhibited in

Figure 5.16.

3) As shown in Chapter 4, the bristle deflections are a result of the relative motions. 

The computed relative velocities and bristle deflections are given in Figures 5.17 

and 5.18. The bristles deflect longitudinally and laterally when steering begins,
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reach steady-state values as the steer angle is held fixed, and return to zero 

deflection when cornering is complete. The dynamic coefficients of friction 

are proportional to bristle deflection, which is verified by Figure 5.19 where 

the dynamic frictional coefficients are seen to have identical traits to bristle 

deflections shown in Figure 5.18, albeit different magnitudes.

-69

-70

-71

>  -74

-76

-77

-78
0.5 2.5 3.5

tim e  (sec)

Figure 5.16 Wheels’ rotational speeds with no torque input
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Figure 5.17a Longitudinal relative velocity of each wheel with no torque input
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Figure 5.17b Lateral relative velocity of each wheel with no torque input
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Figure 5.18a Longitudinal bristle deflection at each wheel
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Figure 5.18b Lateral bristle deflection at each wheel
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Figure 5.19a Longitudinal dynamic friction coefficients
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Figure 5.19b Lateral dynamic friction coefficients
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4) Normal forces exerted on the wheels are shown in Figure 5.20. Higher normal 

forces at the front wheels are the result of a center of gravity which is closer to the 

front wheels. As the vehicle turns, the normal forces increase on the right side and 

decrease on the left side by the same amount. This means that the springs and tires 

on the left side of the vehicle are compressed more than those on the right side. 

Since the road surface is assumed even, the differences in tires’ normal 

compressions or forces could result in the different lateral friction forces among 

the tires and further introduce a greater or a less turning moment to facilitate the 

tuning of the vehicle.
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Figure 5.20 Normal forces during turn maneuver
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Finally, by plotting the vehicle’s position with respect to the global frame one is able 

to show the path of the vehicle, see Figure 5.21, where the dots represent successive 

positions of the vehicle’s center of gravity, CG, and the arrows show successive traveling 

directions of the vehicle. The result is as expected, since the vehicle moves along a 

straight path, then turns left, and moves straight forward once the steering input ceases. 

Figure 5.21 also presents the path of the vehicle by the approach of [5.3] which is 

denoted as “G-Tech” as opposed to the “Present Model”. The very close match seen in 

Figure 5.21 will be seen again in Figures 5.25b and 5.26b, for example.

45

Present Model

35

30

G-Tech
I  25 *
Q .

-45 -40 -35 -30 -25 -20 -15 -10
Y-abs. position (m)

Figure 5.21 Vehicle position with no torque input
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5.3.3.2 Simulation of turn maneuver with input torques to the wheels.

Next, an all-wheel drive vehicle is assumed. The present model is simulated by applying 

a 50 N-m input torque to each of the four wheels. Note that a positive torque will cause a 

wheel to roll forward (see Figure 3.12). The vehicle will accelerate on a paved road and 

under the same steering input as given in the previous scenario. The results of vehicle 

velocities are shown in Figure 5.22. The vehicle is indeed accelerating since the 

longitudinal speed has increased over the time period. However, the lateral velocity and 

yaw rate are lower than in the case of no applied torque. The lower lateral and yaw rates 

give rise to less turning motion. Such an effect is seen from the different paths that the 

vehicle will follow (see Figure 5.22). With torques applied to the wheels, the vehicle 

makes a wider turn. This is the result of a lower lateral frictional force “pushing the 

vehicle to turn.”

The longitudinal frictional forces increase by an almost equal amount among the 

four wheels (Figure 5.23a). These forces are negative because of the sign convention 

defined in Chapter 3, see Figure 3.12. Magnitude-wise, they are close to T Jrn = 250 N, 

which is the tangential force at the wheel base and produced by the torque. On the other 

hand, the lateral frictional forces see slight increase or reduction, compared with the
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pervious no-input-torque case. Overall, lower total lateral frictional force and turning

moment lead to reduced lateral and angular accelerations of the vehicle body.

In addition, relative velocities Vrx and V,y are plotted in Figure 5.24. According to

the LuGre friction model, frictional forces are directly affected by Vr. It is seen in Figure

5.24 that Vrx and Vty of the front wheels are much higher than the no-input-torque case.

Since g(Vr) becomes closer to ut when Vr increases, see equation (4.5), it is concluded

that the increase in Vr causes a lower bristle deflection which in turn reduces the force

produced by the bristle deflection. This means that the wheel may be unable to produce

sufficient lateral frictional force to steer the vehicle as it did previously.
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Figure 5.22a Comparison of vehicle body speeds

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



45

50N-m Torque 
Each wheel

No Torque Input

10 -

0 ----------------1----------------'----------------1----------------1--------------- i-
-50 -40 -30 -20 -10 0

Y-abs. position (m)

Figure 5.22b Comparison of vehicle position

Left Front Wheel Right Front Wheel
100

  0 N-m

-200

-300
time(sec)

1UU
  0 N-m

2
^  -100 
X  

LL

-200

-300
time(sec)

Right Rear Wheel100
  0 N-m
— 50 N-m

f  -100
X

LL

-200

-300

tim e(sec)

Left Rear Wheel100
0 N-m 
50 N-m

-100

-200

-300

time(sec)
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Figure 5.24b Comparison of lateral relative velocities

Therefore, in simulating the two scenarios, the present model seems to be able to 

capture the physical behavior of the vehicle. However, it is interesting to find that, though 

the vehicle speeds predicted by the present model and that by Villella [5.3] are 

indistinguishable, the vehicle paths are visibly different, except for the case of no input 

torques (Figure 5.25b). It seems that the difference increases as the input torque increases 

(Figure 5.26b). The present model has predicted a greater turning radius. Further 

examination of results suggests that the cause may lie in the difference in modeling. 

Recalling that in [5.3], an algebraic method for solving for normal force distribution 

amongst the four wheel contact points was proposed, where the solution produced the 

forces necessary to maintain zero pitch and roll conditions. The method was governed by
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the conditions of static force and moment balance for the vehicle and a hypothetical 

suspension whose spring constant was allowed to approach infinity. The present model, 

on the other hand, models the wheels’ bounce motion in addition to that of the vehicle 

body and considers the dynamic equilibrium of the wheels as well as the vehicle body. 

The differences in suspension modeling results in different normal forces distribution 

between the two models (Figure 5.27), which in turn give rise to different lateral friction 

forces (Figures 5.28 and 5.29), and lead to different turning radii and driven paths. Note 

again that in the figures “G-Tech” refers to the approach of [5.3].
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Figure 5.25a Vehicle body speeds, no torque input
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Finally, the present model is applied to an icy road surface simulation. The same 

steering input and parameters are used. The frictional parameters are however taken as /us 

= 0.2 and [ik = 0.1. The resulting vehicle path on a slippery road surface with zero torque 

input is shown in Figure 5.30. The slippery road condition has significantly reduced the 

lateral and yaw motion of the vehicle body resulting in a much greater turning radius.
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Figure 5.30 Comparison of vehicle positions, no torque input

If a front-wheel drive vehicle is considered on the same slippery road with a 

100 N-m input torque applied to each of the front wheels so that the total input torque 

remains at 200 N-m, Figure 5.31 shows that an even greater turning radius results. As 

shown in Figure 5.32 when the same torques are inputted to the rear wheels, the vehicle 

spins out of control, as much higher lateral friction forces are exerted onto the front 

wheels (see Figure 5.33), producing a very high yaw moment and causing the vehicle to 

rotate and spin out of control.
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5.4 Conclusions.

In this chapter, the mathematical models developed and presented in Chapters 3 and 4 

were applied and tested against three previous studies. Three cases were studied, 1) a 

seven degrees-of-freedom half-car model of a three-wheeled vehicle, with friction forces 

modeled by dry friction (with no-slip only) [5.1] or by the LuGre model as was the case 

of the model presented here, 2) a seven degrees-of-freedom full-car model [5.2], with 

passive suspension and dry friction (with no slip or with slip), and 3) another seven 

degrees-of-freedom full-car model in which the suspension were absent [5.3], but were 

presented in the model developed here.
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1) The model proposed here was able to reproduce published work [5.1, 5.2]. See 

Figure 5.3 through 5.5 for the three-wheeled vehicle with friction [5.1], and 

Figures 5.10 and 5.11 for the full-car model of [5.2], Note that for these two 

cases, the proposed model adopts either the LuGre friction model or the dry 

friction model.

2) The author’s model was able to capture the essence of the vehicle’s dynamic 

behavior, see Figures 5.25 through 5.29. Specifically, vehicle speeds, vehicle 

positions (when there is no input torque) and longitudinal frictional forces were 

found to be identical to or extremely close to those of [5.3]. However, 

differences were observed in vehicle positions (with input torques present) and 

in lateral friction forces. Note that the proposed model and the model of [5.3] 

both employed the LuGre friction model. They differed in the treatment of 

suspensions, to include them in the proposed model and to neglect them in 

[5.3],

3) Therefore, it is suggested that the proposed model is as accurate as the 

publications referenced and compared. Discussions in sub-sections 5.3.3.1 and

5.3.3.2 also suggest that the rigorous modeling and mathematical development
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presented in Chapter 3 yields a model that captures the physical essence o f the 

vehicle.

4) The model presented here is versatile in that it can be simplified to quarter- and 

half-car models, and that it can easily adopt other friction and damper models. 

Now that the vehicle model has been developed and verified, a control algorithm 

needs to be implemented.
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CH A PTER 6 

SLIDING MODE CONTROL

In recent decades, automobiles have continuously been improved with the 

implementation of various control techniques. Such techniques serve to optimize the 

functionality and safety of the vehicles. Meeting the demand for better handling and ride 

comfort has been one of the most intensified research areas in vehicle control.

A great deal of attention has been given to the vehicle suspension system which in 

turn influences the ride, handling and maneuverability of a vehicle. The induced 

vibrations from the road surface pass through the suspension system before affecting the 

body. In the meantime, through the suspension system, the vibration of the vehicle body 

influences the tires' dynamic loading and consequently the handling of the vehicle. The 

main functions of the suspension system are therefore to provide effective isolation from 

road surface unevenness and to improve ride comfort while maintaining a desired level of 

road holding (the ability of a car to grip the pavement, as measured by lateral acceleration 

in terms of gravitational acceleration g) so as to provide stability and directional control 

during handling maneuvers. The control design of active suspension system has 

undergone a major development. Many control laws have been employed for the linear
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and nonlinear models of quarter-, half- and full-vehicle systems [6.1-6.9]. A detailed 

comparison of performances of various active and passive suspension systems on quarter-, 

half- and full-car models using full-state feedback control can be found in [6.10].

This chapter presents the active suspension control of a half-car (bounce-pitch) 

model using the non-switch sliding mode control technique of [6.9]. As a case study, an 

half-car model with 4 DOFs will be subjected to excitation from a ramp-step road profile. 

The performance of the active suspension will be evaluated, and compared with that of 

the passive suspension. The effectiveness of the controller for active suspension systems 

will be demonstrated. The vehicle body’s bounce and pitch motions will also be 

examined in the frequency domains. The robustness of the controller will then be tested 

by varying the vehicle’s physical parameters within their possible operating range.

This chapter is a logical extension of the vehicle model developed previously in 

Chapters 3 and 4, and verified in Chapter 5. After all, a mathematical model is more 

useful if it can be used as a tool towards improvement of the physical system that it 

represents.

6.1 Background.

Suspension is required for ride comfort and road holding. Excitation of vehicle vibration

is primarily due to road irregularities. With suspension, the vehicle body becomes less

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



sensitive to the disturbances generated by the road surface acting on the wheels. In the 

early days, suspension system of most vehicles was purely passive, schematically 

represented by dampers and springs (see, for examples, Figure 6.1a). The quality of a 

passive suspension depends on suspension parameters. For example, good ride comfort 

requires soft springs but this yields poor road holding. An optimal passive suspension 

system possesses properly tuned spring and damping coefficients, providing satisfactory 

ride comfort and road holding simultaneously. In addition, the resonance frequencies 

associated with the sprung (Mb) and unsprung (m) masses remain permanent when 

passive suspensions are employed [6.5, 6.9].

Active suspensions, on the other hand, regulate the interaction between the vehicle 

body and the wheel by an actuator (see Figure 6.1b). The actuator may be electronically 

or hydraulically controlled and applies a force between the vehicle body and the wheel. 

This force represents the control action. The advantage of the active suspension over the 

conventional suspension is the capability to control the attitude of the vehicle, to reduce 

the effects of braking and to reduce the vehicle roll during cornering maneuvers in 

addition to increase the ride comfort and vehicle road handling. Thus, it becomes a much 

focused research area in vehicle control.
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Control design of the active suspension system has also witnessed a major 

development. Many control laws have been applied to linear and nonlinear models of 

quarter-, half- and full-vehicle systems. The most common type of controller studied has 

been the linear quadratic regulators (LQR) with optimal state feedback control [6.1]. 

Other techniques have also been investigated, including PID controller [6.2], state and 

output feedback scheduled controller [6.3], stabilizing controllers [6.4] and fuzzy logic 

controllers [6.5]. In the area of robust control, techniques such as the HM output feedback 

control [6.6], the mixed Ht/Ho, controller [6.7], the modular adaptive robust control 

technique [6.8], and the sliding mode controller [6.9] have been investigated to increase 

the robustness of suspensions designed for automobiles.

In particular, a non-switch sliding mode control (SMC) method with chattering-free

characteristic was discussed in [6.9], “Chattering” refers to the high frequency switching

of sliding mode controller, and the audible noise associated with it. Reference [6.11]
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presented a survey of chattering problems in SMC systems, and provided several possible 

methods for chattering suppression. Reference [6.12] showed the application of higher 

order sliding mode control for eliminating chattering. The theory of SMC has been 

developed to provide a systematic approach to the problem of maintaining stability and 

consistent performance in the face of modeling uncertainties, in which the control 

strategies based on SMC schemes are robust against disturbances and parameter 

uncertainties [6.14]. Because of the insensitivity features, the SMC theory has been 

applied to a wide class of systems, such as applications of the robot manipulators, 

spacecraft, and power systems. Most of the early work in the area had been proposed by 

Utkin [6.13].

6.2 Vehicle Model (A Pitch-Bounce Half-Car).

The equations of motion of a pitch-bounce vehicle model with active suspension are 

given below in equations (6.1) through (6.3). The control forces generated by the front 

and rear actuators are represented by un (where n -  1,2). Note that such a vehicle model 

with passive suspension has been presented in Section 3.5.2.

nin̂ 'ra ks n (z  Zn ) T  Cs n {z  'En'i Zn) ktn(,Zn — Rn) ~  Un (6.1)

Mb'z 'y  ̂[ ksn ( Z %n'l Zn ) T  Csn(̂ Z Zn ) Un ] (6.2)
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^y,cg'7 y  ' [ksn(,Z -UiT Zn')Xn 4" Csn(z %ni ^"n)^n '^n^n ] (6.3)

These equations can be expressed in the state-space form,

£  =  f ( x )  + [B]u  (6.4)

where, x  =  [x1,x2,x 3,x i ,x 5,x 6,x 7,x s f  =  {zl ,z2, z ^ , z l ,z2, z ^ f  . And f ( x )  is a vector 

of functions. Matrix [5] is the controller coefficient matrix having the dimension of 8x2, 

and w ii2]r  is the control input vector. The system parameters are given in Table 

6 . 1 .

Table 6.1 System Parameters

Parameter Value Unit
M b 1500 kg
mi 100 kg
m2 200 kg
k.si 28000 N/m

k S2 34000 N/m
k ti 400000 N/m

k t2 400000 N/m
csi 2000 N.s/m

CS2 2000 N.s/m
Xl 1.0 m

X2 -1.2 m

ly.cg 1600 kg.m2
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6.3 Sliding Mode Controller Design.

The theory of SMC can be found mostly in the nonlinear control literature, see, for 

example, reference [6.14], The procedure of developing an SMC algorithm includes two 

stages [6.15, Section 4.3], the first is to define apre-specified sliding surfaced, and the 

second to develop a control law that will guarantee the attractiveness of the system 

trajectory to the surface. Once the system trajectory is confined to the pre-specified 

surface, the so-called sliding mode occurs. While in sliding mode, the system is 

insensitive to parameter variations and disturbances.

In implementing sliding mode control onto the system given by equation (6.4), the 

sliding surface S is chosen to be the error of the system and expressed in terms of the error 

state vector e =  ( xrej: ( t ) — x ) such that,

S ( x , t )  = [G]e (6.5)

Here x rej  ( t ) represents the state vector of the reference, and the constant matrix [G] 

represents the slope of the sliding surface.

Under SMC, the system trajectories must stay on the sliding surface (that is S =  0) 

for solutions to be stable. To design a control laws u  for the close-loop system,

Lyapunov’s second theorem is employed to ensure the system is asymptotically stable. In
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other words, the state trajectories of the controlled system satisfy S  = 0 only if the 

existence condition of the sliding surface is met. The existence condition is typically 

identified as [6.15]

lim S S  < 0
5 —>0-----  _

To satisfy the condition above, it is required that

Note that the derivative of the sliding surface is chosen according to the constant reaching 

law [6.12], With D > 0, the solution of equation (6.7) will ensure the sliding surface to 

converge to zero.

Typically, the control input vector u  consists of a reaching phase, in which the 

system moves from its initial position in the state space to the sliding surface, and a 

sliding phase, in which it moves along the sliding surface to the desired origin. That is,

S  =  - D S (6.7)

W = ueqv + E (6 .8)

According to the conditions given in equations (6.6) and (6.7)

S S  =  - S D S t < 0

5 =  - D S
(6.9)

Employing the derivative of equation (6.5)

(6.10)
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The SMC input u is found to be

M = - ( [G ] [5 ] r1{ [ G ] ( / - i , , / )} + ([G][j5])-1Z)5 (6.11)

where ([G KB])-1 must exist. The first term is referred to as the equivalent control u cqv, 

which is formulated by setting S = 0, and dictates the motion of the state trajectory along 

the sliding surface.

Ueqv = - ( [ G ] [ 5 ] ) - 1 { [ G ] ( / - i , , / ) }  (6.12)

Since when S  ̂  0, equation (6.11) is in effect, forcing the system states move from their

initial position in the state space to the sliding surface; and whenG = 0 ,u = ue9„is true, or

the system moves along the sliding surface to the desired position. Thus, the two stages 

of SMC are realized.

The uncertainties in system parameters may result in a poor knowledge in / a n d [B] , 

which in turn may cause the calculated equivalent control « to be far off from the actual 

equivalent control. Thus, an estimation u eqv was suggested by [6.9] to replace u e q o . That is,

(6,13)

where i  is the cutoff frequency. The purpose of using a low pass filter is to bypass the 

high frequencies coming from undesirable system oscillations with finite frequency 

caused by system imperfections, and to retain the characteristics of the signal. Finally, the 

non-switch SMC is given by
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U =  + ( [ G ] [ B ] T l D S (6.14)

with ueqv given by equation (6.13).

6.4 Simulations and Discussions.

Simulations have been carried out to demonstrate the effectiveness of SMC for active 

suspension systems in comparison to the passive suspension. Road disturbance has been 

taken as a single ramp-step bump having a height of 0.02 m between t = 1.0 s and t = 

1.20 s (see Figure 6.2). Two such road inputs are applied to the system, with a time delay 

St between them. The vehicle is assumed to travel at a constant speed of 10 m/s. The 

comparison between passive and active suspensions is made in both the time and 

frequency domains.
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Figure 6.2 A single ramp-step bump
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The control inputu is determined by a l lo w in g ^  = {0}for all reference states. 

Parameter r is  set to 0.05 ~ 0.1s since the two resonance frequencies pertaining to body 

motion and wheel hop (the violent up and down motion of a wheel) are found to be less 

than 10 Hz.

[G] and D  are non-unique. From the practical point of view, these values are 

determined from the design limitations of the suspension system and actuator, such as 

maximum working space and actuator saturation. Two sets of control parameters ([G] 

and D ) are used in the present study. These parameters are identified through 

trial-and-error. The first set is used to demonstrate the effectiveness of SMC regardless of 

the physical limitation on the actuator; whereas, the second set takes into account the 

physical limitation.

6.4.1 First Set of Control Parameters.

TO 0 10 0 0 0 5 -2~|
[G] = Z) = 50

0 0 0 0 0 0.01 0 0.3

The controlled and uncontrolled (as in the case of passive suspension) vehicle body

bounce and pitch displacements and their accelerations are presented in Figure 6.3. The

vehicle body follows a smooth trajectory against the road irregularities being sensed by

the front and rear wheels as seen in Figures 6.3a and 6.3b (the doted lines). The vehicle

body’s controlled bounce and pitch reach the zero reference value much faster and with
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much less oscillation. The decrease in vehicle body bounce and pitch accelerations give 

rise to a more comfortable ride, see Figures 6.3c and 6.3d. The maximum value of the 

control forces is around 900 N as seen in Figures 6.4a and 6.4b. This relatively high value, 

together with the fact that the control forces, w; and a2, are varying with a frequency of 

7 - 8  Ftz, makes it impossible to actually implement the actuator. Otherwise, the forces 

are found to be changed reasonably smooth and without any rapid changes known as 

chattering which can harm vehicle components.
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■ - Control

0.01
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C
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Figure 6.3a Vehicle body bounce
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Figure 6.3b Vehicle body pitch
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Figure 6.3c Acceleration of vehicle body bounce
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Figure 6.3d Acceleration of vehicle body pitch
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Figure 6.4a Control input force at front suspension
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Figure 6.4b Control input force at rear suspension
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Figure 6.5a Frequency spectrum of body bounce acceleration
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Figure 6.5b Frequency spectrum of body pitch acceleration

The frequency responses of the vehicle with passive suspension (i.e., no control) are

also examined. There are practically two effective resonance frequencies belonging to 

body motion and wheel hop. Such frequencies are observed to be 1.1 and 7.5 Hz, 

respectively, in the frequency spectra of vehicle body bounce and pitch accelerations 

(Figures 6.5a and 6.5b). From both figures, it is seen that, when the controllers are active, 

the resonance of pertaining to vehicle body’s bounce motion vanishes, albeit not entirely. 

The spectral intensity at wheel hop frequency is significantly reduced, much more so for 

the vehicle body’s pitch motion. One can therefore conclude that, by employing the SMC 

strategy, only one mode is controlled. In the present study, this mode is the vehicle body 

bounce mode.
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The robustness character of SMC is illustrated in Figure 6.6 where physical 

parameters of the model, such as the sprung mass Mb, and the spring and damping 

coefficients, ksi, ks2, csi and cs2, are varied. A controller is said to be robust if it operates 

effectively over all possible operating conditions. The results in Figure 6.6 clearly 

demonstrate that the SMC is effective over a wide range of conditions, hence it is robust.

0.06
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Mb = 2000kg

0.05

E 0.04
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|  0.030 
<_)CO
s
1  0.02oJD

0.01

frequency (Hz)

Figure 6.6a Vehicle bounce acceleration -  Change in sprung mass
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Figure 6.6c Vehicle bounce acceleration -  Change in damping coefficients
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6.4.2 Second Set of Control Parameters.

rO 0 100 0 0 0 2 0]
[G] = , D - 2

0 0 0 0 0 0 -1  4

This set of parameters is chosen to lower the jerk effect of the control inputs to a feasible 

range; As a result, the controller is less effective in isolating vibrations induced from the 

road surface. As with first case, this set of parameters was also determined by trial- 

and-error.

As seen in Figures 6.7a and 6.7b, the control input forces now experience lower jerk

effect; they are decreased in their peak values’ magnitudes and are slower acting in the

time domain. For such control inputs, the vehicle body takes longer time to reach the zero 

reference for its bounce and pitch motions (Figures 6.8a and 6.8b). The frequency spectra 

of the vehicle body’s bounce and pitch accelerations show the reduction of spectral 

intensity only at the vehicle body’s bounce frequency.

Therefore, one can conclude that SMC provides an effective means for reducing the 

displacement and acceleration of the vehicle body. On the other hand, the ability of using 

such control technique in practical vehicles would depend on the development of 

actuators that can withstand the large and fast momentum change required of the control 

inputs.

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



200

150

100

-50

-100

time (sec)

Figure 6.7a Control input force at front suspension
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Figure 6.7b Control input force at rear suspension
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Figure 6.9a Frequency spectrum of body bounce acceleration
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6.5 Conclusions.

In this chapter, a sliding mode controller for the bounce-pitch model of a vehicle has been 

designed and simulation results presented. The results clearly show improvements in ride 

comfort. The controller is effective in isolating vibration between the vehicle body and 

the irregularities in road surface. The controller is also capable of suppressing one mode 

(the resonance at a frequency associated with the vehicle body’s bounce motion). Most 

importantly, it is proven robust. Moreover, one should realize that such control 

methodology is possible only when the developed technology can overcome the 

limitations on the physical components such as actuators.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

The aim of this thesis was to develop a dynamic model of a ground vehicle and to apply 

control techniques to the model to optimize the functionality and safety of the vehicle.

The theoretical development of the model is detailed in Chapter 3. The model presented 

provides a means to simulate vehicle motions which can lead to appropriate control and 

design of vehicles. Main conclusions and some recommendations for future work are 

given below.

7.1 Conclusions.

Main conclusions resulting from the study presented are listed below.

7.1.1 Vehicle Dynamic Modeling.

A vehicle model with 14-DOF and with independent suspensions and wheels was 

developed. Features of this 14-DOF full-car model were,

1. The vehicle was treated as an assembly of rigid bodies, the sprung and un-sprung 

masses, with the following DOFs,

•  The sprung mass, or the vehicle body, was allowed three translational and 

three rotational motions.
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•  The un-sprung masses, or the wheels, were each allowed to have both 

bounce and spin motions.

2. The suspensions were modeled such that the wheel bounces were considered to 

be independent of the bounce of the vehicle body. Moreover, all bounces o f the 

wheels were also considered independent of each other, as were the spins o f the 

wheels.

3. Each wheel center was connected to the vehicle body through a “spring-damper” 

combination.

4. The tires were considered linear springs with spring constants.

5. The steering of the wheels was not treated as a DOF. However, steering was 

incorporated into the model through tire-road interaction, hence becoming “a 

state” . The model provided wheel torque at each wheel as inputs and vehicle and 

wheel velocities as outputs.

6. The fourteen equations of motion were contained in equations (3.35). Equations 

(3.38)-(3.42) founded a set of five simultaneous equations that were decoupled 

to allow the solution to proceed.

7. The full-car model developed could be simplified into various car models with 

different DOFs.
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7.1.2 Road-Tire Friction Modeling.

The LuGre friction model was selected to describe the road-tire contact forces due to its 

simplicity in model derivation, ease of model parameter identification, and high accuracy 

in predicting the frictional behaviors. The dynamic friction model interprets friction as 

the interaction of microscopic surface asperities. Existing two-dimensional, single-point- 

contact LuGre model was examined, and modification of the model was discussed. The 

modification took into account the coupling between the longitudinal and lateral traction 

forces, which required consideration of the combined translational and rotational motion 

of the wheel. This frictional model was then incorporated into the vehicle dynamic model 

to form a complete set of equations of motions for the vehicle system.

7.1.3 Numerical Simulation.

The vehicle model was numerically integrated by using the built-in integration solvers in 

Matlab. Three vehicle models were studied, (1) a 7-DOF half-car model of a 

three-wheeled vehicle, in which the tire frictional force was modeled either by dry 

friction (no-slip only) or by the LuGre model; (2) a 7-DOF full-car model, with passive 

suspension and dry damping friction; and (3) a 7-DOF full-car model in which the 

suspensions were either absent or present. Some of the findings were,
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1. The model presented was able to reproduce published work for the first two 

cases and could adopt either the LuGre friction model or the dry friction model.

2. For the third case, the present model was able to capture the essence of the 

vehicle’s dynamic and contact frictional behaviors under the variations of 

applied wheel torque for normal or slick road conditions. However, discrepancy 

between the models was found in vehicle positions and in lateral frictional forces 

when wheel torques were applied. This may be attributed to how the suspensions 

were modeled.

3. Simulation results suggested that the vehicle model presented was as accurate as 

the models available in the literature. In addition, it had the versatility in that it 

could be simplified to quarter- and half-car models, and could easily be adopted 

to other friction and damper models.

4. In general, the rigorous mathematical development of this vehicle dynamics 

model provided a model that captured the essence of the vehicle’s behavior.
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7.1.4 Control Application to the Vehicle Model.

The non-switching sliding mode control technique was implemented in designing the 

active suspension control system of a half-car model (a bounce-pitch model). Sliding 

mode control was selected based on its character of maintaining stability and consistent 

performance in spite of the lack of modeling certainty in a close-loop system. In 

particular, a non-switching sliding mode control method with chattering-free 

characteristic was considered for this study. The implemented controller was effective in 

isolating vibration between the vehicle body and the irregularities in road surface, 

capable of suppressing one mode (the resonance at a frequency associated with the 

vehicle body’s bounce motion) while reducing significantly the spectral intensity at the 

other mode, the wheel bounce motion. Most importantly, it was proven robust.

7.2 Recommendations.

The results in this thesis lay the groundwork for a better understanding of automobile 

dynamic behavior. There are some natural extensions to this work that can be attempted 

in the future. They are outlined in the following, in no particular order.

Additional higher-order dynamic effects may be incorporated by adding or 

modifying certain detail at the component level. For instance, the wheel chamber angle
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and the effect of wheel inertia about the z-axis may be included. The center rolling axis 

suggested by [3.3] may be introduced to the current model so that the model would be 

able to handle a wider range of suspension systems.

The average lumped LuGre friction model as presented in [4.2 - 4.4, 4.6] may be 

incorporated into the current model. This version of LuGre model has been proven to 

predict friction behaviors that are closer to reality.

In terms of applying the dynamic vehicle model, more numerical simulation may be 

conducted to demonstrate the capability and accuracy of the current model. It is 

suggested to gain access to commercial software such as ADAMS/CAR, CARSim, etc., 

to further validate the model.

Other modeling approaches, for example, the Lagrange’s formulation, may also be 

employed to verify the model itself.

The area of control allows for the greatest opportunities for expansion. Owing to the 

non-unique nature of the control parameters, they may be fine-tuned by taking into 

consideration the spatial limitation of the suspension and the actuator’s dynamic 

limitations (available control action) for which active suspension output and control are 

constrained [3.12]. Extension of the sliding mode control from a half-car to a full-car 

model may be considered. Further, the horizontal, longitudinal, lateral, and yaw motions
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may be controlled by the means of wheel torques. Reference [4.11] has discussed this 

using a simpler vehicle model and provided good insights to such control application. It 

serves as a good starting point of control by means of wheel torques.

In conclusion, this thesis has presented a number of unique developments that enable 

the study of vehicle dynamic behaviors in both modeling and control design. The 

continued development and refinement of the work are expected to lead to techniques 

that could potentially improve the vehicle design process.
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APPENDIX A

DERIVATION OF VELOCITIES AND ACCELERATIONS

1. Velocity and Acceleration at Center of Gravity of the Vehicle Body CG

Vcg and A cg are measured with respect to the fixed global coordinates X ,Y ,Z  . 

However, it is convenient to express the velocity and acceleration in terms of vehicle 

body coordinates x, y, z such that

Vcg =  xi +  yj +  zk , A cg = xi + yj +  zk +  xi + yj + zk (A. 1)

where, given f I = cpk , one has

i =  f I x  i = (pj, j  =  f i x j  =  —(pi, k = fl x  k =  0 (A.2)

so that A cg becomes

A cg =  (x  -  y<p)i +  (y  + x p ) j  +  ( z ) k  (A.3)

2. Velocity and Acceleration at a Wheel Center CWn.

In determining the velocity and acceleration at a wheel center CWn, the kinematics is 

that of a point in a moving frame of reference, with the vehicle body being the moving 

frame of reference. The wheel center is assumed to only have motion relative to the 

moving frame in the vertical direction. The velocity of the wheel center CWn, measured
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with respect to the fixed global frame of reference but expressed in terms of vehicle body 

coordinates x, y, z is

Vcw,n ^eg "f" ^  X Tcw,n 4” ^re/,n (A.4)

where Vrei:fl is the velocity of the wheel center relative to the moving frame, and rCWJl the 

position vector of the wheel center in the moving frame. Defining H =  h - r , the 

absolute vertical distance from vehicle body center of gravity CG to centers of the wheels 

in the initial configuration (Figure 3.10), and zw,n =  zn +  H -  z ,  then

^cw,n Vnj %w<nk (A.5)

where xn and yn are the x- and y-coordinates of the wheel center with respect to the 

vehicle body frame. They can be determined by the wheelbase and track width of the 

vehicle. Since,

V  =  xi +  yj +  zk , Vre[ n =  ( in -  z)k
(A.6)

ft X rcw,n =  ["Wn ]* +  [ fa n  ] j

one obtains, for Vcw,n

y cw,n = [ x - ( p y n ]% + [y + <pXn]j + [(zn — z) + z]k  (A.7)

and for A CWi/l

Aw,n = I* ~  VVn ]? +  [X ~  (fVn ] ? +  [ij +  ] 3 +  [V +  f a n  } 3
. (A.8)

+  [ (4  -  z) +  z]k  +  [(zn -  i )  +  z]k  

By virtue of (A.2) and zwn =  i n -  z  , zw.n =  zn -  z , one further writes,
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A w .n  = { x - t p y  -  <p2xn -  LpyJJ +  [y +  fix +  (pxn -  y?yn ] j
(A.9)

+  [ ( ^ n  —  ^ 0  +

Note that equation (A.9) is identical to equation (3.11), hence proving that the approaches 

used in Chapter 3 and used above, albeit different points of view in treating the 

kinematics, are identical. It is also interesting to note that the small roll and small pitch 

assumption has not been invoked in the above derivation. For the derivation in Chapter 3, 

though the second half of equation (3.7) assumes small roll and small pitch, equations

(3.8) -  (3.11) are valid with and without the small roll small pitch assumption.
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