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Abstract

The Sibley Group is an essentially unmetamorphosed, Mesoproterozoic 

sedimentary succession consisting o f a mixture o f siliciclastic and chemical sedimentary 

rocks. This study examined the sedimentology and geochemistry o f  the Pass Lake and 

Rossport Formations, the lowermost lithostratigraphic units o f  the Sibley Group.

Lithofacies analysis subdivided the sections studied into sixteen lithofacies 

associations corresponding to distinct depositional environments. These were divided 

into four informally defined allostratigraphic units, roughly equivalent to previous 

lithostratigraphic subdivisions. A  lower clastic unit is comprised o f  the following 

lithofacies associations; boulder conglomerate-sandstone-dolocrete (proximal ephemeral 

braided stream), pebble to cobble conglomerate (ephemeral braided stream), massive 

cobble conglomerate (transgressive lag, reworking o f braided stream deposits during 

transgression), trough cross-stratified sandstone (braided stream), green sandstone- 

siltstone (wave and storm influenced fiuvial dominated delta), planar cross-stratified 

sandstone (nearshore migration o f large sandwaves), and thinning-upward sandstone 

(beach and storm remobilized nearshore sandstone sheets). The lower clastic unit is 

disconformably to confomably, depending on geographic location, overlain by a mixed 

siliciclastic-carbonate unit. The mixed siliciclastic-carbonate unit is comprised o f  the red 

siltstone (non-saline lake), red siltstone-dolostone (perennial saline lake, distal from 

clastic source) and red siltstone-dolomitic sandstone (perennial saline lake, proximal to 

clastic source) lithofacies associations and is sharply overlain by an upper clastic unit. 

The upper clastic unit consists o f  the sheet sandstone (ephemeral playa lake (?) or 

perennial lake with increased sand supply with respect to underlying units) and black 

chert-carbonate (microbial mats forming at restricted, shallow, subaqeuous shoreline) 

lithofacies associations. Subaerial exposure features are present at the top o f  the black- 

chert-carbonate lithofacies association and include the intraformational conglomerate 

lithofacies association (subaerial debris flows, intrusive and/or extrusive sedimentary 

breccias, terra rossa style soils, dissolution collapse breccias). Subaerial exposure 

features at the top o f  the upper clastic unit are overlain by the massive dolostone (saline 

lake), red siltstone-sulfate (wet evaporite-rich mudflats around lake margins) and fine­
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grained sandstone (dry, evaporite-poor mud and sand flats around lake margins) 

lithofacies associations o f the mixed siliciclastic-carbonate-evaporite unit.

During deposition o f  the lower clastic unit paleocurrents and detrital zircon 

geochronology suggest a south- to southeast-down paleoslope. A lack o f  major thickness 

changes in stratigraphie units or laterally extensive coarse-grained clastic deposits is 

consistent with a broad intracratonic sag architecture during initial basin subsidence. 

Paleocurrents from the upper clastic unit suggest a change to northward oriented 

paleoslope during its deposition. This corresponds with an apparent thickening o f the 

upper two units towards the north and Black Sturgeon Fault, consistent with the 

development o f a half-graben structure and increased evidence o f  tectonic activity (e.g. 

intrusive sedimentary breccias, synsedimentary faulting and debris flows).

Carbon, oxygen and sulfur stable isotope analyses, Sr isotope analyses and trace 

element analyses (in some cases analyses include rare earth elements) were preformed on 

a variety o f distinct carbonate and sulfate lithologies. Sulfur isotope compositions, 

strontium isotope compositions and rare earth element/yttrium ratios support a non­

marine depositional setting. Low 6^*0 values appear to be a good indicator o f  

diagenetically altered samples. values have typical marine values consistent with 

lacustrine carbonate precipitated in equilibrium with atmospheric CO2. Stratigraphie 

changes in C and O isotope compositions in the red siltstone-dolostone lithofacies 

association were likely driven by evaporation and residence time effects. Stratigraphie 

variations in sulfur isotope compositions may reflect changes in the composition o f  

sulfides weathering to supply sulfate to the basin. Overall, both the interpretation o f  

physical sedimentologic and various types o f  geochemical data strongly support a non­

marine lacustrine setting for the deposition o f  the Pass Lake and Rossport Formations.
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Chapter 1. Introduction.

1.1 General Introduction

The Sibley Group is a relatively thin (maximum observed thickness 950 m; Rogala, 

2003), flat lying succession o f Mesoproterozoic mixed chemical and siliciclastic 

sedimentary rocks exposed to the northwest o f  Lake Superior in the area immediately to 

the south and west o f Lake Nipigon. These rocks are very well preserved, being 

generally unmetamorphosed, with the exception o f local contact metamorphic effects. 

This excellent preservation o f depositional and early diagenetic features, combined with 

the diversity o f  genetically distinct chemical sedimentary rocks present, allows them to 

be studied from both physical and chemical sedimentological standpoints. Using a 

multidisciplinary approach allows for a more powerful characterization o f the 

paleoenvironmental evolution o f the Sibley Group than has previously been invoked by 

traditional stratigraphie studies (Franklin et al. 1980; Cheadle, 1986 a and b; Rogala 

2003). The purpose o f  this thesis was to conduct a detailed lithofacies analysis o f  the 

Pass Lake and Rossport Formations o f the Sibley Group and to combine this with 

information gained from a variety o f  geochemical methods, in order to understand the 

depositional setting o f the Sibley Group, the nature o f paleohydrologic systems operating 

during Sibley Group deposition and to place the Sibley Group into a context o f  global 

Mesoproterozoic atmospheric and oceanic evolution.

1.2 Study Area

The Sibley Group crops out over an area o f approximately 15 000 km^ (Figs. 1.1,

1.2). To the east, outcrops o f Sibley Group strata are found as far as Copper Island near
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Figure 1.1. Generalized geology of the study region. The majority of sections examined in this study 
are located in the area outlined by the rectangle. The Sibley Group is present underlying the area 
covered by diabase and probably also underlies a portion of the area covered by the Osier Group. 
The original spatial extent of the Sibley Basin is not known and it is difficult to recognize where 
original basin margins may have been. The possible trace o f the Black Sturgeon Fault, an important 
structure controlling the outcrop pattern o f the Sibley Group is shown by a thick red line (Modified 
from Cheadle, 1986a; MacDonald, 2004).

the town o f Rossport. The Pass Lake area marks the westernmost extent o f Sibley Group 

outcrops. North to south the Sibley Group stretches from northern Lake Nipigon to 

Silver Islet at the tip o f  the Sibley Peninsula. This study focuses on drill core and outcrop 

data in the area south o f Lake Nipigon. To the north o f this, outcrops are scarce and the
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intrusion o f  thick diabase complexes has metamophosed Sibley Group strata to a larger 

extent than in the south making it difficult to recognize and correlate lithologies.

1.3 Regional Geological Setting

The geology o f northwestern Ontario is dominated by Meso to Neoarchean aged 

rocks and these underlie the majority o f  the Sibley Basin. Exceptions to the dominantly 

Archean basement occur in the area rimming Lake Superior where Paleoproterozoic 

rocks o f the Gunflint (about 1878 Ma; Fralick et al., 2002) and Rove (1835-1780 Ma; 

Addison et al., 2005; Heaman and Easton, 2005) Formations underlie the Sibley Group. 

Mesoproterozoic igneous rocks o f  the English Bay Complex (1546.5 + / -  3.9 Ma, Heaman 

and Easton, 2006) and Badwater Intrusion (Syenite phase 1590 + / -  0.8 Ma; Gabbro phase 

1598 +/- l.I  Ma; Heaman and Easton, 2006) also appear to underlie a portion o f  the 

Sibley Basin near the northwestern shore o f  Lake Nipigon. Hollings et al. (2004) 

reported that sandstones lithologically correlative with the Sibley Group overlie the 

English Bay complex. Similarly, Davis and Sutcliffe (1985) suggested that the same 

sandstone units are intercalated with rhyolites associated with the English Bay Complex.

Archean rocks underlying the Sibley Group belong to the Quetico,Wabigoon and 

Wawa subprovinces o f the Superior Province. The Superior Province, in a simplified 

sense, consists o f roughly east-west trending sub-parallel, lithologically and structurally 

defined subprovinces that contain rocks ranging in age from Mesoarchean (roughly 3.0 

Ga) to Neoarchean (roughly 2.6 Ga) (e.g.. Card, 1990). To the northwest, rocks o f  the 

Superior Province are truncated by rocks o f the Paleoproterozoic Trans-Hudson Orogen 

and to the south and east they are truncated by rocks associated with the Penokean, N ew  

Quebec and Grenville orogens (Card, 1990). The Wabigoon Subprovince underlies the
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Figure 1.2. Location map showing positions of important drill core and outcrop locations.

northern portions o f the Sibley Group and consists primarily o f  felsic plutonic rocks and 

supracrustal volcanic dominated greenstone belts (e.g., Blackburn et al., 1991). Minor 

sedimentary rocks are present and consist o f  siliciclastic metasedimentary rocks and iron 

formation. The Quetico Subprovince underlies the central portions o f the Sibley Group
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and consists primarily o f  homogeneous, turbiditic metasedimentary lithologies, felsic 

intrusive rocks, rare metavolcanic rocks and mafic and ultramafic intrusive rocks (e.g., 

Williams, 1991).

The southern portions o f  the Sibley Basin lie on Paleoproterozoic rocks o f  the 

Animikie Group, both the Gunflint and overlying Rove Formations. The Animikie Basin 

developed on the southern margin o f the Superior Province and forms a southward 

thickening wedge deposited on a shelf during trangressive-regressive-transgressive cycles 

(Fralick and Barrett, 1995; Pufahl, 1996; Pufahl and Fralick, 2004). Lithologically, the 

Gunflint Formation consists o f conglomerate, black shales/slates, iron-rich carbonate, 

chert, jasper and hematite-magnetite grainstones (e.g., Pufahl, 1996). The Rove 

Formation is a thick clastic dominated succession composed o f black shale, sandstone 

and siltstone (Marie, 2006). The Animikie Basin likely developed in a back-arc setting 

associated with northward oriented subduction beneath the Superior Province prior to the 

collision that caused the Penokean Orogeny (e.g., Fralick et al., 2002). Alternatively, it 

has been interpreted to represent a northward migrating foreland basin (e.g., Ojakangas et 

al., 2001).

The Sibley Group is intruded by mafic sills that range in age from 1119 -t/- 2.4 Ma 

(Inspiration diabase sills, Heaman and Easton, 2006) to 1110-1114 Ma (Nipigon diabase 

sills, Heaman and Easton, 2005) and is overlain by mafic volcanic rocks and associated 

coarse-grained clastic sedimentary rocks o f  the circa 1107 Ma Osier Group (Davis and 

Sutcliffe, 1985). N ewly recognized volcanic rocks and intercalated sandstones at Pillar 

Lake, near Armstrong, the Pillar Lake Volcanics (MacDonald, 2004), appear to be 

younger than the Sibley Group based on paleomagnetic data o f Borradaile and Middleton
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(2006) which yielded an apparent polar wander path age o f 1000-1040 Ma. However, 

this age is problematic as the Pillar Lake Volcanics are overlain (intruded) by the 

Inspiration diabase sills (ca. 1120 Ma, Heaman and Easton, 2006). Detrital zircons from 

a sandstone unit in the Pillar Lake Volcanics suggest an age o f less than 1514 Ma 

(Heaman and Easton, 2005). The age o f the Pillar Lake Volcanics and associated clastic 

sedimentary rocks, as well as their relationship to the Badwater Intrusion, Sibley Group 

and the Mid-continent rift is poorly understood and should be the focus o f further study.

1.4 Previous work

Historical accounts o f  the previous geologic work on the Sibley Group are given in 

Franklin et al. (1980) and Cheadle (1986a and b). These outline the various contributions 

to Sibley Group geology from the middle to late 1800’s onwards. Relatively modem  

work on the Sibley Group began in the late 1960’s and 1970’s with the work o f  Hofmann 

(1969) and regional mapping by Mcllwaine (1971a, 1971b and 1975), Coates (1972) and 

Giguere (1975). The most relevant studies o f  the Sibley Group are the works o f  Franklin 

et al. (1980), Cheadle (1986a and 1986b) and Rogala (2003). Lakehead University 

bachelors theses concerning the Sibley Group were written by Campling (1973), Battrum 

(1975), Cheadle (1981), Mailman (1999) and Rogala (2000). Campling (1973) examined 

the petrography and geochemistry o f possible weathering profiles developed on Sibley 

Group basement. Battrum (1975) investigated the mineralogy and sedimentology o f  the 

Kama Hill Formation. Cheadle (1981) described the type-section o f the Rossport 

Formation on Channel Island and suggested possible depositional environments.

Mailman (1999) examined controls on the development o f red siltstone-dolostone cycles 

in the Channel Island Member o f the Rossport Formation. Rogala (2001) examined
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contact metamorphic effects o f  diabase intrusion on lithologies in the Channel Island 

Member. Franklin and Mitchell (1977) provided an account o f  lead-zinc barite 

mineralization within the Sibley Group. Recently Hanly (2005) completed a Ph.D. thesis 

concerning the potential for uranium mineralization in the Sibley Group. Data from 

Hanly’s work showed that the Sibley Group experienced only low temperature diagentic 

alteration (max ca. 150 °C) in the presence o f  only meteoric fluids. Robertson (1973) 

conducted paleomagentic work on Sibley Group rocks. Recent geophysical surveys, 

geologic mapping, geochemical and stratigraphie studies were carried out during the 

Lake Nipigon Region Geoscience Initiative 2003-2005 (for a summary see Hart, 2005).

1.5 Lithostratigraphy

The basic lithostratigraphic subdivisions o f  the Sibley Group were outlined by 

Franklin et al. (1980); the original subdivisions were subsequently improved by Cheadle 

(1986a) and recent additions o f two Formations were proposed by Rogala (2003) and 

Rogala et al. (2005). Figure 1.3 shows the generalized lithostratigraphy o f  the Sibley 

Group from Rogala (2003). According to Rogala (2003) the Sibley Group contains five 

Formations with a total observed thickness o f up to 950m. From base to top these are the 

Pass Lake, Rossport, Kama Hill, Outan Island and Nipigon Bay Formations.

The Pass Lake Formation is subdivided into the Loon Member and the Fork Bay 

Member (Cheadle, 1986a). The Loon Member, at its formal type section, is 

approximately 12 m thick and comprised o f polymicitic conglomerates with minor 

sandstone and siltstone lenses (Cheadle, 1986a). The Fork Bay Member is comprised 

dominantly o f  sandstones that vary from well-sorted quartz arenites to grey feldspathic 

wackes, with minor red carbonate-rich siltstones and very rarely dark green to black
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shales (Cheadle, 1986b). At the stratotype, defined by Cheadle (1986a), the thickness o f  

the Pass Lake Formation is 37 m, although Rogala (2003) noted that the thickness is 

typically 5-25 m and occasionally up to 100 m.
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The Rossport Formation disconformably overlies the Pass Lake Formation and is 

subdivided into Channel Island, Middlebrun Bay and Fire Hill Members (Cheadle,
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1986a). The Channel Island Member consists o f a mixture o f clastic and carbonate 

lithologies including: red siltstones, buff and red dolomicritic mudstones, dolomitic 

sandstones and discrete arenitic sandstone beds (Cheadle 1986a; Rogala 2003). On 

Channel Island, at its stratotype, the Channel Island Member is about 50m thick 

(Cheadle, 1986a). The Channel Island Member is conformably overlain by the 

Middlebrun Bay Member, a thin (generally 1 m or less), distinctive stromatolitic chert- 

carbonate unit comprised o f finely laminated to thinnly bedded chert and fine-grained 

carbonate with penecontemponareous breccias and hemispherical stromatololitic domes 

(Cheadle, 1986a). The Fire Hill Member disconformably overlies the Middlebrun Bay 

Member. According to Cheadle (1986a) and Franklin et al. (1980), the Fire Hill Member 

is comprised o f  a basal intraformational conglomerate, red-orange to buff dolomicritic 

mudstone and purple mudstone with chert nodules. The type section, at Fire Hill, is just 

under 9m in thickness. Based on new drill core data, Rogala (2003) showed that the Fire 

Hill Member is in places much thicker, up to 80 m, and more lithologically complex than 

earlier workers believed.

The Kama Hill Formation disconformably overlies the Fire Hill Member (Cheadle, 

1986a and b). It is comprised primarily o f fine-grained sandstones and purple mudstones 

with fine horizontal and ripple cross-laminae. Stromatolitic carbonate layers are present 

near its base (Franklin et al., 1980; Cheadle, 1986a and b; Hofmann, 1969). Rogala 

(2003) found the Kama Hill Formation to range from 10 to 50 m in thickness.

Rogala (2003) modified the threefold stratigraphie subdivision o f Franklin et al. 

(1980) and Cheadle (1986a) by the addition o f the Outan Island Formation and the 

Nipigon Bay Formation. The Outan Island Formation consists o f up to 250 m o f
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predominantly clastic sedimentary rocks. Rogala (2003) identified five distinct 

lithofacies associations in this Formation. These were termed: mudstone, laminated 

sandstone/mudstone, siltstone, sandstone and conglomerate lithofacies associations 

respectively. A general coarsening upwards o f lithofacies was noted with finer-grained 

lithofacies associations, with coarsening upwards sandstone packages, forming the base 

o f the Formation and associations with fining upward sandstone packages forming the 

top. The finer-grained lower portion is termed the Lyon Member and the coarser-grained 

upper portion the Hele Member. During the course o f this study (e.g., Metsaranta and 

Fralick, 2004), widespread intraformational conglomerates comprised o f  lithofacies 

similar to those described by Rogala (2003) were observed in outcrops in various areas o f  

the southern portion o f the Sibley Basin, particularly south o f the town o f Red Rock 

along the eastern coast o f the Black Bay Peninsula.

The Nipigon Bay Formation is approximately 450-500 m thick and disconformably 

overlies the Outan Island Formation (Rogala, 2003). It is lithologically very 

homogeneous and consists primarily o f  medium-grained sandstones with large-scale 

planar cross-stratification. It is present in a few drill cores from Nipigon Bay and on the 

northern shores o f  Simpson Island in Nipigon Bay. It is unconformably overlain by 

conglomerates o f the basal Osier Group (Hollings et al., in press).

1.7 Depositional Environments

As the purpose o f this study is to understand the depositional environments o f  the 

Sibley Group a brief review o f previous interpretations o f  depositional environments is 

given below.
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Franklin et al. (1980) interpreted sandstones o f  the Pass Lake Formation to represent 

deposition in a quiet, shallow lacustrine environment with the basal conglomeratic unit 

representing minor fluvial fillings o f  local depressions in the basement surface and 

overlying sandstones representing first beach then shallow offshore environments during 

a transgression. The Rossport Formation was interpreted to represent deposition in a 

saline lacustrine setting with major fluctuations in lake size. Finally the Kama Hill 

Formation was interpreted to represent a periodically dry mudflat based on the presence 

o f mudcracks, possible evaporite casts and mud-chip conglomerates.

Cheadle (1986a and 1986b) refined the interpretations o f  the depositional 

environments o f the Sibley Group based on a much more thorough examination o f  Sibley 

Group exposures and drill core. Cheadle (1986a) interpreted the Pass Lake Formation to 

represent small-scale alluvial fans (basal conglomerate) and sandy alluvial outwash flats 

(sandstones). Similar to Franklin et al. (1980), Cheadle interpreted the Rossport 

Formation to represent a playa lake with largely climatic controls on the variations in 

carbonate and clastic deposition. Cheadle (1986a) suggested that Kama Hill Formation 

was deposited through sheet flow processes on a distal alluvial floodplain.

Rogala (2003) again interpreted the Pass Lake Formation as a fluvial-lacustrine 

system. The Rossport Formation was interpreted as representing playa lake, sahbka and 

mudflat environments. The sahhka interpretation was added with the recognition o f  

extensive nodular sulfate deposits in the Fire Hill Member. Similar to the interpretation 

o f Cheadle (1986a) the Kama Hill Formation was interpreted by Rogala (2003) to 

represent a subaerial mudflat environment. The Outan Island Formation was interpreted 

to represent deltaic deposits (Lyon Member) and meandering fiuvial deposits (Hele
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Member). The deposition o f  the Nipigon Bay Formation was ascribed to largely aeolian 

processes.

1.8 Age

The age o f  the Sibley Group is somewhat poorly constrained. A minimum age o f  

1339 +/- 33 Ma has often been cited as the depositional age o f  the Sibley Group (e.g. 

Franklin et al., 1980; Cheadle, 1986a and b). This age was based on a Rb-Sr isochron 

derived from fine-grained Sibley Group samples from both the Rossport and Kama Hill 

Formations (Franklin, 1978). Rb-Sr isochron age determinations in sedimentary rocks 

have numerous sources o f  potential error, especially where whole-rock samples are used 

(e.g. Clauer, 1981). However, this age does provide a reasonable bracket for the 

youngest depositional age o f  the lower units in the Sibley Group. The maximum age o f  

the Sibley Group is constrained by possible stratigraphie relationships with the English 

Bay Complex and by detrital zircon geochronology. If the sandstone units overlying the 

English Bay complex are correlative with the lowermost Sibley Group, then the 

maximum age o f the Sibley Group is bracketed between 1547 +/- 4 Ma, the U-Pb zircon 

age o f  the English Bay intrusion (Heaman and Easton, 2005) and 1339 Ma. As it is 

difficult to correlate this sandstone unit with certainty, it may be more prudent to use the 

detrital zircon data (Heaman and Easton, 2005; Rogala et al, submitted). Figure 1.4 

shows detrital zircons age distributions for sandstone samples from the Pass Lake, Outan 

Island and Nipigon Bay Formations (Rogala et al, submitted). The youngest zircon found 

in a sample o f Pass Lake Formation sandstones from near the town o f Pass Lake is about 

1634 Ma. The youngest zircon from a sample o f  sandstone from the Outan Island
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Formation (Heaman and Easton, 2005) has a much younger age o f  about 1450 Ma though 

it is much higher in the stratigraphy.

Nipigon Bay Formation

u
1400 1600 1X00 2000 2200 2400 2600 2800 3000 3200 3400

Pb< Pb Age (Ma)

Outan Island Formation
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®’ P b/-'*Pb  Age (Ma)

Pass Lake Formation

1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400
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Figure 1.4. Detrital zircon age distributions for Sibley Group sandstone samples from
the Nipigon Bay (top), Outan Island (middle) and Pass Lake (bottom) Formations (from Rogala et ai. 
submitted)
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Based on the above data, the basal portions o f the Sibley Group are constrained 

between about 1634 and 1339 Ma, though the maximum age is likely younger, around the 

age o f the English Bay intrusion. The Sibley Group from the Outan Island Formation and 

above can be constrained between 1450 Ma and about 1100 Ma (approximate age o f  

Nipigon Diabase intrusions). A paleopole determined for the Kama Hill and Outan 

Island Formations by Rogala (2003) suggests an age o f 1450 to 1500 Ma and supports a 

post English Bay intrusion maximum age for at least the middle Sibley Group. Hanly 

(2005) suggested that the mininimum age o f  the Sibley Group is constrained at about 

1700 Ma based on Pb-Pb geochronology o f  galena veins that cross-cut the Pass Lake 

Formation and Ar-Ar ages for diagenetic illites in the Pass Lake Formation. This age 

constraint is invalid based on the detrital zircon results discussed above.

1.9 Tectonic and Paieogeographic setting of the Sibley Basin

The tectonic setting in which the Sibley Basin developed in has received relatively 

little attention. Franklin et al. (1980) noted that the Sibley Group occupies an elongate 

area extending away from the region o f major flexure in the late Mesoproterozoic Mid­

continent rift system and associated the Sibley Group with a failed arm o f the rift system. 

They also proposed that filling o f  the Sibley Basin was controlled by a southerly fault 

scarp based on an observation o f increased clastic material in the southern portions o f  the 

basin. However, subsequent studies (Cheadle, 1986 a and b; Rogala, 2003) have not 

noted a thickening o f  siliciclastic material in southern parts o f  the basin. Franklin et al. 

(1980) linked the timing o f Sibley Group deposition either to pre-Grenvillian spreading 

proposed by Baer (1974) or to the first stages o f  rifting associated with the Mid-continent 

rift system. Linkage to the rift event was made based on correlation with a Sibley-like
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paleomagnetic age for the South Range volcanic rocks near Ironwood Michigan (Books, 

1969, 1972). Cheadle (1986a, b) proposed that the Sibley group was deposited in a 

broadly subsiding intracratonic basin with little evidence for fault control and graben 

formation. This interpretation was based on a lack o f major changes in Formation 

thicknesses towards possible bounding faults and the lack o f development o f coarse­

grained clastic material near basin margins. Cheadle (1986a) cited that the age o f  the 

onset o f igneous activity associated with the Mid-continent rift o f 1200-1225 Ma, 

reported by Van Schmus et al. (1982), was too much younger than the 1339 Ma age o f  

the Sibley Group for the two events to be related. Cheadle (1986a), however, did not 

totally discount a possible relation to the rift system and noted that broad subsidence was 

often found to precede major rift related igneous activity (Mohr, 1982, McKenzie, 1978). 

Cheadle (1986b) and Davis and Sutcliffe (1985) first noted a possible link between the 

English Bay Complex and the development o f the Sibley Group. Cheadle (1986b) 

suggested a possible relationship between widespread Mesoproterozoic anorogenic 

granite suites across North America and the English Bay Complex/Sibley Group. Rogala 

(2003), Hollings et al. (2004) and Rogala et al. (2005) have supported a genetic link 

between the English Bay Complex and the Sibley Group. Rogala et al. (2005) proposed 

that the basin-fill pattern o f the Sibley Group began with an intial broad sag during the 

deposition o f  the Pass Lake Formation and lower Rossport Formation, followed by a 

change to a half-graben architecture during the deposition o f the upper Rossport 

Formation. Rivers and Corrigan (2002) have proposed that the now eastern portions o f  

North America from roughly Labrador to Texas were the site o f a major convergent 

margin from about 1500 to 1230 Ma, prior to collision and development o f the Grenville
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Orogen. Intraplate stresses associated with this convergent margin may have played a 

role in Sibley Basin initiation and development.

Robertson’s (1973) paleomagnetic work has suggested that the Sibley Group was 

deposited within 10 degrees south o f the paleo-equator. Rogala (2003) supported this 

finding with a paleo-latitude o f  20 degrees south for the Kama Hill Formation. These 

suggest that the Sibley Group was deposited in a warm low latitude setting. Oxidative 

weathering o f  pre-Sibley Basement (Campling, 1973; Franklin et al., 1980; Cheadle, 

1986b) indicates that the area was subaerially exposed prior to the onset o f  deposition. 

The presence o f  the older Archean craton to the north, west and east and rocks o f  the 

Penokean Orogen and Baraboo interval quartzites (Medaris et al., 2003) to the south 

places the Sibley Group in the continental interior, at least a few hundred kilometres 

away from continental margins, during its deposition.

1.10 Methods

Data collection for this thesis began with detailed logging o f diamond drill core and 

outcrop sections. In some cases data was compiled from logs found in Cheadle (1986b) 

and Rogala (2003). In most cases outcrops and diamond drill core sections compiled 

from other authors were examined in order to maintain continuity with the logging style 

used during the course o f  this study. Sedimentologic data was plotted as 1:100 scale 

stratigraphie sections and subdivison into lithofacies association was made by inspection. 

During logging representative samples o f various carbonate and sulfate lithofacies were 

collected. Trace elemental compositions, including rare earth elements (REE’s); sulfur 

stable isotopic compositions; carbon and oxygen stable isotopic compositions and Sr 

isotopic compositions were determined for selected carbonate and sulfate lithologies.
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Trace element analyses for a variety o f  whole rock and partially leached sulfate and 

carbonate lithologies were carried out by ICP-AES (Inductively coupled plasma atomic 

emission spectrometry) and ICP-MS (inductively coupled plasma mass spectrometry) at 

Lakehead University (ICP-AES) and Ontario Geoscience Laboratories in Sudbury ON 

(ICP-MS). Stable isotopic compositions o f sulfur (for sulfate samples) and carbon and 

oxygen (for carbonate samples) were measured at Queens University. Sr isotopic 

compositions for some carbonate and sulfate samples were determined at Carleton 

University. Detailed geochemical methodologies are described in chapter 5.

1.11 Scope of thesis

This thesis is organized into two broad sections. The first section develops a 

depositional model for the lower Sibley Group based on lithofacies analysis and 

stratigraphie data. The second section uses the stratigraphie framework and 

understanding o f  depositional environments from the first section to identify samples and 

interprets geochemical data in a sedimentologic context. The second section serves to 

elaborate the physical and chemical environments o f deposition and examines in greater 

detail the paleohydrology o f  the basin.
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Chapter 2. Lithofacies Associations.

2.1 Introduction

This chapter outlines the lithofacies associations that have been identified in the 

lower portions o f  the Sibley Group. Subdivision into lithofacies associations was done 

after examination o f  detailed sedimentologic data collected from outcrop and drillcore 

sections during this study as well as published data from Cheadle (1986a and b) and 

Rogala (2003). Descriptions o f  lithofacies associations are given below. Section 2.2 

describes the lithofacies associations present in the Pass Lake Formation and section 2.3 

describes the Rossport Formation.

2.2 Pass Lake Formation

The lowest portion o f the Sibley Group is dominated by clastic sedimentary rocks 

termed the Pass Lake Formation (Franklin et al., 1980). The Pass Lake Formation is 

subdivided into the Loon Lake and Fork Bay Members (Cheadle, 1986a). The Loon 

Lake Member is comprised o f  conglomerates, coarse sandstones, occasional thin 

carbonate-rich siltstones, and sporadically developed dolocretes. The Fork Bay Member 

consists primarily o f  sandstone. The thickness o f  the Pass Lake Formation ranges from 0 

to about 100m.

The distribution o f the Loon Lake Member is sporadic, and probably controlled 

by proximity to areas o f  high local relief in basement topography, or the development o f  

local fault scarps (Cheadle, 1986a; Franklin et al., 1980). Accumulations o f this member 

range from 0 to about 15 m in thickness. Scattered exposures o f this Member are present 

in the southern portions o f  the basin. Drillcore occurences o f this Member are generally
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absent or very thin and sandstones o f  the Fork Bay Member usually lie in contact with 

basement. Three lithofacies associations have been identified in the basal conglomerate. 

These are termed: the boulder conglomerate/sandstone/dolocrete, the massive cobble 

conglomerate, and the pebble-cobble conglomerate sandstone lithofacies associations 

respectively.

The Fork Bay Member is a clastic dominated unit that is present over most o f  the 

Sibley Basin. In the south, notable absences o f  the Pass Lake Formation include the 

section at Kama Flill and these may relate to features in the basin floor topography 

(Cheadle, 1986a and b). In this study, the Fork Bay Member is divided into four 

lithofacies associations. These are termed: the green sandstone/siltstone association, the 

planar cross-stratified sandstone association, the thinning upwards sandstone association, 

and the trough cross-stratified sandstone association.

2.2.1 Boulder conglomerate/sandstone/dolocrete lithofacies association

The Boulder conglomerate/sandstone/dolocrete lithofacies association is rarely 

exposed but crops out in a few localities in the southern portion o f  the Sibley Basin. A  

number o f lithofacies comprise the Boulder conglomerate/sandstone/dolocrete lithofacies 

association. The most volumetrically significant are massive, clast-supported, polymictic 

cobble to boulder conglomerates. The conglomerates show little evidence for internal 

stratification and tend to be massive, although vague 40-50 cm scale cross-stratification is 

present in places. The average size o f  clasts in the conglomerate facies is about 15-20 cm  

though very large 60-70 cm clasts are present. Clast compositions in the conglomerate 

are variable and appear to be controlled by the nature o f local basement (Cheadle, 1986 a
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and b), with various Archean lithologies dominating some conglomerate units and 

Animikie Group clasts dominating others. The conglomerates typically have matrix 

compositions dominated by poorly sorted sandstone, with abundant hematite. Carbonate 

cement is also present in places. Occasional massive coarse-sandstone lenses on the 

order o f  30-50 cm thick are present in the conglomerates. The conglomerates fill large 

scours that cross-cut coarse-grained sandstones, polymictic pebble conglomerates, 

dolocretes and rare thin carbonate-rich pink siltstone lithofacies which together comprise 

the remainder o f the association. The coarse-grained sandstones are sometimes laterally 

continuous at outcrop scale, but more commonly form lensoid bodies that cross-cut one 

another. Sandstone beds are generally less than 1 m thick and are usually massive 

textured, though upper flow regime parallel laminations are present in some cases. Thin, 

polymictic pebbly conglomerates are interbedded with the coarse-grained sandstones and 

have massive matrix-supported fabrics. Siltstones found within sandstone beds form 

decimetre-scale lenses that are traceable only for about 10m. The dolocrete lithofacies is 

present as relatively thick (30-50cm) massive or vaguely laminated silicified carbonate 

and as cements in the conglomerate lithofacies.

Petrographically, the dolocrete layers consist primarily o f finely crystalline 

carbonate. However, more coarsely crystalline areas are present and these form thin 

irregular pods and veins. Oxidized clasts o f various basement lithologies are common. 

Coatings o f  carbonate are present around clasts. Sporadic rhombs o f dolomite are 

distributed within the dominantly microcrystalline matrix as are occasional seams o f  

hematitic clay.
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The best example o f the boulder conglomerate/sandstone/dolocrete lithofacies 

association is present near Loon Lake. Figure 2.1 shows photographs o f  some o f the 

lithofacies present at this exposure.

Figure 2.1. Typical lithofacies o f the boulder conglomerate/sandstone/dolocrete lithofacies association. A) A 
thick channel filled with clast-supported coarse conglomerates cutting across horizontal beds of coarse-grained 
sandstone and siltstone. Hammer handle is 30cm long. B) An exposure of the coarse-grained sandstone and 
siltstone lithofacies illustrating the tabular geometry o f the sandstone beds as well as the thin lensoid nature of 
the interbedded siltstones (Locations of siltstone units are indicated by arrows). Hammer handle is 30cm long. 
C) A well developed, approximately 50cm thick dolocrete horizon developed over top of a conglomerate bed 
showing a lower portion where the carbonate contains matrix- supported cobble-sized clasts, a middle portion 
that is massive textured and an upper portion with poorly developed irregular laminations.
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Figure 2.2. Pétrographie characteristics of dolocrete lithofacies (ail in cross-polarized light). A) 
Finely crystalline dolomite matrix with “floating” grains of quartz and what appears to be a clast of 
oolitic hematite-rich chert, probably from the Gunflint Formation. B) A hematite-rich etched clast in 
very tine dolomite. C) A thin vein of slightly coarser dolomite and examples of euhedral dolomite 
rhombs. D) A reworked carbonate grain in quartz sandstone.

2.2.2 Massive cobble conglomerate lithofacies association

The massive cobble conglomerate lithofacies association is present underlying the 

Fork Bay Member near the town o f Pass Lake. It is generally very thin forming tabular 

exposures less than two metres in thickness that overlie red oxidized shales o f the Rove 

Formation (Fig 2.2). A horizon o f clast-supported polymictic cobble conglomerate with 

sandy hematite-rich matrix typically comprises this association. Weak imbrication may 

be present, but it is poorly developed at best. Clast compositions are variable. However, 

clasts from the Gunflint Formation and Rove Formation predominate. The conglomerate 

is sharply overlain by Fork Bay Member sandstones, though occasional pebble-sized
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clasts are present in some o f the sandstone beds. Laterally, the single conglomerate 

horizon is in places interbedded with a sandstone bed. Figure 2.3 shows an example o f  

this association at the Pass Lake exposure and illustrates the massive or weakly 

imbricated texture as well as the sharp contact with overlying sandstones.

Figure 2.3. An exposure of the massive cobble conglomerate lithofacies near the town of Pass Lake 
(hammer handle is 40cm long)

2.2.3 Pebble-cobble conglomerate/sandstone lithofacies association

The pebble-cobble conglomerate/sandstone lithofacies association forms thin 

lenses o f a few metres thickness and crops out sporadically throughout the southern 

portion o f the Sibley Basin. It is comprised o f  matrix and clast supported polymictic 

pebble to cobble conglomerate with a hematite-rich, poorly sorted sandstone matrix and 

medium- to very coarse-grained, massive, or vaguely cross-stratified sandstone (Fig 2.4).
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Clasts within the conglomerate are generally less than 10 cm in diameter and often show  

an oxidized weathering rind up to 0.5 cm in thickness. Though exposure is not complete, 

the conglomerates appear to fill small-scale topographic features in the underlying 

basement (Cheadle, 1986a and b). In some outcrops a crude stratigraphy is present with 

lower portions dominated by matrix and clast supported conglomerates and an upper 

portion dominated by sandstone with lenses o f  clast supported conglomerate. A good 

example o f this lithofacies association is present near the town o f Silver Islet (Fig 2.4).

Figure 2.4. Lithofacies present at the Silver Islet exposure of the Loon Lake Member. A) An 
example of the pebble/cobble conglomerate lithofacies with massive, clast supported texture. 
Gradations on scale card are in centimetres. B) Oxidized Rove Formation shales overlain by matrix 
supported conglomerate. Scale card with cm divisions is situated on the unconformity. C) The edge 
of a conglomerate lense that fills a scour cut into poorly sorted, thin-bedded, cross-stratified medium- 
grained sandstone. Clipboard shown for scale is 25cm wide.
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2.2.4 Green sandstone/siltstone association

The green sandstone/siltstone association appears to occur in a geographically 

restricted area along the southeastern margin o f  the exposed Sibley Basin. The only 

exposures have been noted on Copper and Channel Islands o ff Rossport. Where present 

it appears to form the base o f the Sibley Group. It is distinct from other portions o f the 

Sibley Group in that rather than having a red oxidized appearance, sandstones and 

siltstones in this association are pale-green coloured and unoxidized. Coarsening- and 

thickening-upwards cycles occur within this association at Copper Island (Fig. 2.6). 

Siltstone lithofacies generally occur as thin, wavy, green coloured layers between 

sandstone beds and can occasionally contain lenticular bedded sandstone (Fig. 2.5a). 

They also occur as thicker massive or thinly laminated units o f  a few metres thickness.

In many examples thin siltstone partings between sandstone beds display striking 

synerisis crack features (Fig. 2.51). The sandstone lithofacies is generally a pale-green 

colour with individual beds commonly graded and containing a variety o f  sedimentary 

stmctures including: parallel lamination, wave ripples, lenticular bedding, and medium- 

scale trough cross-stratification (Fig. 2.5). Parallel laminations are in places transitional 

to hummocky cross-stratification. Irregular loading features are common at the bases o f  

most sandstone beds as are thin siltstone chip conglomerates (Fig. 2.5 e and f).

Sandstone bed geometries vary from lenses that scour one another to tabular laterally 

continuous units. The thickness o f  sandstone beds varies from about 5cm to 3m with an 

average o f about 50-60cm. The coarsening and thickening upwards cycle on Copper 

Island begins with lensoid, decimetre-scale thickness, medium-grained sandstone beds
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Figure 2.5. Lithofacies present in the green sandstone/siltstone association. Pencil used for scale is 
approximately 15cm long. A) Thinnly laminated/bedded green silstones near the base of a coarsening 
and thickening-upwards cycle on Copper Island. B) Lenticular bedding in a siltstone/sandstone unit 
between two sandstone lenses near the base of the section at Copper Island. C) Lensoid sandstone 
beds with wave rippled silt-rich tops that occur near the base to middle of the thickening-upwards 
cycle on Copper Island. D) Trough cross-stratified sandstone typical o f sandstone beds near the top 
of the Copper Island section. E) green siltstone chip conglomerate at the base of a sandstone bed 
typical o f sandstone beds throughout the Copper Island section. F) Irregular load features on the 
base of a sandstone boulder from Copper Island. The load features occur along synerisis cracks 
developed in the thin siltstones that commonly cap sandstone beds.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



27

with intervals o f  thinly laminated siltstone which are succeeded upwards by progressively 

thicker and more tabular, coarser-grained, sandstone beds. Higher in the cycle trough- 

cross-stratification becomes more common. Bed thicknesses at the top o f the coarsening 

upwards cycle are commonly on the order o f 1-2 m.

Figure 2.6. A view of the Copper Island section that shows the trend of increasing bed thickness in 
the Pass Lake Formation and a slight discontinuity in bedding orientation with overlying strata of 
the Rossport Formation. The arrow represents approximately 20m of section.

2.2.5 Planar cross-stratified lithofacies association

The planar cross-stratified lithofacies association occurs in spatial and 

stratigraphie proximity to the green sandstone/siltstone association. Outcrops o f  this 

association have been noted only on Quarry Island near Rossport. A single large-scale 

planar cross-stratified, medium-grained sandstone lithofacies comprises the majority o f  

this association (Fig. 2.7). However, the basal portions o f the section on Quarry Island 

are comprised o f massive, poorly bedded, possibly wave rippled, greenish sandstones 

similar to some sandstone units in the green sandstone-siltstone lithofacies association.
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These sandstones are interpreted to be a part o f the green sandstone-siltstone lithofacies 

association and lie in contact with shales o f  the Rove Formation. Within the planar cross- 

stratified lithofacies, individual co-set packages are typically 1 -3 m in thickness, though 

Cheadle (1986b) described individual co-set packages o f  up to 10m in thickness. 

Chemically, the sandstones are very mature and homogeneous. Pebble and cobble sized 

clasts are present but exceedingly rare.

Figure 2.7. Large-scale cross-stratification in medium grained sandstone at Quarry Island near 
Rossport. Hammer shown for scale is 25 cm long.

2.2.6 Thinning upwards sandstone lithofacies association

The thirming upwards sandstone lithofacies association consists primarily o f  

mature medium-grained sandstones (Fig. 2.8). The best example o f  this association 

occurs at Pass Lake and the spatial distribution o f  this association appears to be restricted 

to the area between Pass Lake and Nipigon. Grading, low-angle planar to wavy cross- 

stratification, parallel lamination and wave ripples are present throughout the association
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but appear to decrease in frequency upwards replaced by more massive beds. The top o f  

the association becomes dominated by red siltstones interbedded with occasional massive 

or parallel laminated sandstone beds, with wave rippled tops. The bases o f sandstone 

beds often have downward oriented sandstone dikes intruding into underlying siltstones.

Figure 2.8. Thinning upwards cycle in sandstone beds at Pass Lake. Photgraph shows 
approxiamtely 15 metres of section.

2.2.7 Trough cross-stratified sandstone/red siltstone association

This lithofacies association is comprised o f a relatively diverse range o f  

lithologies that are somewhat broadly categorized as belonging to a single lithofacies 

association. The most common lithofacies is a medium- to coarse-grained sandstone that
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is either massive or trough cross-stratified (Fig. 2.9). Bed thickness varies considerably 

from decimetre-scale to metre-scale. In places, thin layers o f red or purple mudstone cap 

sandstone beds and in places the mudstone fragments form thin intraformational mudchip 

conglomerates at various positions within the sandstones. In many cases sandstone beds

Figure 2.9. Examples of the trough cross-stratified sandstone lithofacies association. A) 
Discontinuous lenses filled with trough cross-stratified sandstone near Silver Islet. Gradations on 
scale card are in centimetres. B) Medium-scale trough cross-stratified sandstone near the Enterprise 
mine. Green pocket knife shown for scale is 10cm long. C) Pedogenically (?) modified top of a 
massive sandstone bed near the Sibley-Archean contact in drill core NB-97-2. (d) Massive sandstone 
beds from drill core NI-92-7, occasional vague cross-stratification is present.

have graded matrix compositions with a higher silt eoncentration towards the top o f  

individual beds. Some sandstone bed tops display distrupted textures consisting o f  

irregular balls o f sandstone surrounded by “skins” o f  clay- or silt-rich material (Fig. 

2.9c). Sulfate veins or nodules are present in some sections, but are relatively rare. 

Intervals up to several metres thick that consist o f centimeter-scale interbedded red
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siltstone and sandstone are present within this association. In some drill-holes (e.g. the 

DO-82 series) this association contains decimetre-scale layers o f clast-supported 

conglomerates and pebbly sandstones, particularly near the basal contact. At the Silver 

Islet locality zones o f  metre-scale thiekness, composed o f stacked, decimetre thick lenses 

o f trough cross-stratified, medium-grained, sandstone are interbedded with zones 

composed o f tabular, thinnly-bedded medium-grained, silty sandstone that eontain 

laterally diseontinuous lenses o f  better sorted medium-grained sandstone (Fig. 2.10).
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Figure 2.10. The trough cross-stratifed sandstone lithofacies association west o f Silver Islet, showing 
a lower zone o f thinnly interbedded red, silty sandstone and lensoid buff-coloured better sorted 
sandstone and an upper zone of buff-coloured stacked lenses of trough cross-stratified sandstone. 
Trough cross-stratification is not visible in the photo. Packsack shown for scale is about 30cm wide.
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2.3 Rossport Formation

The Rossport Formation consists o f  the Channel Island, Middlebrun Bay and Fire 

Hill Members (Franklin et al., 1980; Cheadle, 1986a and b). In a general sense, the 

Channel Island Member is comprised o f a mixture o f  fine-grained red siliciclastic rocks, 

muddy dolostones, dolomitic sandstones and occasional sheet-like sandstone beds. The 

Middlebrun Bay Member is a thin spatially discontinuous layer o f  laminated black chert 

and carbonate. The Fire Hill Member consists o f red mudstones and siltstones with 

variable dolomite content, occasional sandstone beds, nodular carbonates and evaporite 

minerals (gypsum/anhydrite).

The Rossport Formation overlies the Pass Lake Formation through a number o f  

different contact styles. At the sections on Copper Island and Charmel Island, the 

Rossport and Pass Lake Formations are separated by a thin (less than 1 m thick) 

conglomerate unit with both extra and intraformational clast types (Fig. 2.11). At Copper 

Island elongate, angular, up to cobble-sized clasts o f  Pass Lake Formation sandstone 

form a thin (10-20 cm) matrix-supported layer. On Channel Island the conglomerate at 

the lithostratigraphic contact is a thicker (up to 1 m) matrix-supported, polymictic 

horizon. Green shale clasts are abundant in the conglomerate on Channel Island and 

these may be derived either from underlying Pass Lake Formation shales or the Rove 

Formation. On Copper Island the contact is also a slight angular disconfomity (Fig. 2.6). 

However, a gradational contact is the most common style with the transition marked by a 

decrease in the frequency o f sandstone beds and an increase in the frequency o f  red 

siltstone beds.
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Nine distinct lithofacies associations have been identified in the Rossport 

Formation. These are termed: the red siltstone lithofacies association, the red siltstone- 

dolostone lithofacies association, the red siltstone-dolomitic sandstone lithofacies 

association, the sheet sandstone lithofacies association, the black chert-carbonate 

lithofacies association, the intraformational conglomerate/breccia lithofacies association, 

the massive dolostone lithofacies association, the red siltstone-sulfate lithofacies 

association, and the red siltstone-fine-grained sandstone lithofacies association.

Figure 2.11. A) Angular clasts of Pass Lake Formation sandstone at the contact between sandstones 
of the green sandstone/siltstone lithofacies association (Pass Lake Formation) and contact 
metamorphosed pale green dolomitic siltstone o f the red siltstone lithofacies association (Rossport 
Formation), Copper Island. Pencil shown for scale is about 15cm long. B) Conglomerate at the Pass 
Lake Formation-Rossport Formation contact with a variety of intra- and extrabasinal clasts,
Channel Island. Tape measure is shown for scale is about 10cm wide.

2.3.1 Red siltstone lithofacies association

This generally ten to twenty metres thick lithofacies association is dominated by 

massive red siltstones (Fig. 2.12) and commonly occurs at the base o f  the Rossport 

Formation. The siltstones range from pale red to brick red probably reflecting differences 

in dolomite versus siliciclastic content (Mailman, 1999). Medium- to coarse-grained 

sandstones are also present and form thin beds a few centimetres to 40 centimetres in 

thickness (Fig. 2.12b). In outcrops on Channel Island sandstone beds are generally
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laterally continuous but in a few cases the beds, especially thicker sandstone beds, are 

lensoid and have lateral continuities o f 5-10 m (Fig. 2.12b). The sandstones are generally 

massive, and are normally graded in many cases. In a number o f sections individual 

horizons that coarsen-upward, from red siltstone to coarse sandstone over a few  

decimetres to metres, are present (Fig. 2.12c). Matrix supported grains o f  sand are 

commonly found throughout siltstone beds (Fig. 2.12d).

Figure 2.12. Lithofacies that are common in the red siltstone lithofacies association. A) A coarsening 
upwards unit approximately 40 cm thick that illustrates a change from massive red siltstones at the 
base (marked by yellow pen) to a coarse-grained sandstone top marked by pen knife blade. B) The 
red siltstone facies at Channel Island showing a sandstone lense about 40 cm thick near the base of 
the photo and thin beds of red siltstone interbedded thin graded sandstone beds above it. C) Red to 
pale red siltstones from DDH NB-97-2 that are the dominant lithofacies in this association. D) An 
irregular zone of coarse-grained sandstone. Similar sandstone layers are common throughout thick 
zones dominated by siltstone.
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The red siltstone-dolomite or red siltstone-dolomitic sandstone lithofacies 

associations overlie this unit. A gradational contact is common, with a change to a more 

distinct periodic/cyclic bedding style characteristic o f  the red siltstone-dolomite or red 

siltstone-dolomitic sandstone lithofacies associations occurring over a few metres.

2.3.2 Red siltstone dolostone lithofacies association (cyclic facies)

The red siltstone-dolomite association consists o f  two basic facies; pale pink to 

grey dolomitic mudstone (dolostone) and pale red to red dolomitic mudstone-siltstone 

(red siltstone) (Figs. 2.13, 2.14, 2.15). Both lithofacies are present as pure “end 

members” but also as variable mixtures that are interbedded complexly at various scales 

with individual layer thickness ranging from millimetre-scale to decimetre-scale. On 

occasion, metre-scale intervals that are dominated by the red siltstone lithofacies are 

present. Thin (<10cm) massive clast or matrix supported coarse to very coarse-grained 

sandstone beds are found sporadically throughout the association. Thin layers o f fine­

grained sandstone are also found within some dolostone beds. Petrographically, both the 

red siltstone lithofacies and the dolostone lithofacies are comprised mostly o f very finely- 

crystalline dolomite (Fig. 2.14). The primary difference between the two lithofacies is 

the presence o f  abundant very fine-grained hematite in the red siltstone lithofacies along 

with slightly coarser grain-size and slightly lower dolomite content (Mailman, 1999).

Ca-sulfate minerals occur in three primary forms within this lithofacies 

association. The most common form is as nodules within dolostone or, less commonly, 

red siltstone beds. Nodules range from millimetre-scale to 2 cm in diameter. Irregular 

rosette-like forms are the most common. Inclusions o f  dolomite are present in many

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



37

Figure 2.13. Examples of lithofacies and contact styles in the the red siltstone-dolostone association. A) A mudcrack on the 
surface of a dolostone bed, the younging direction is towards the left of the photograph. B) An irregular brecciated top of a 
dolostone bed, the younging direction is to the right. C) Sulfate nodule near the centre of a relatively thick dolostone bed from 
DDH NB-97-4. D) A thin dolostone bed with fine-grained bladed sulfate nodules E) Two distinct contact styles between plae 
dolomite beds and red siltstone. The middle section of core labeled NB97-4 11 shows a symmetrical dolomite bed with 
gradational contacts at both the base and the top. The lower section of core, labeled NB97-4 10, shows an asymmetrical 
dolomite bed with gradational basal contact and a sharp upper contact. F) A symmetrical dolomite bed with sharp upper and 
lower contacts.

examples. Another mode o f occurrence o f  Ca-sulfate minerals is as thin infills o f  

mudcracks at the tops o f  some dolomite beds. The cracks are wedge shaped and typically 

less than 2 cm long (max 5cm) and are 1-5 mm wide at their tops. Bladed sulfate
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crystals are also present as sand sized particles within some dolomite beds. Small 

anhedral barite nodules are also present, and one example o f a subhedral (10 um) celestite 

crystal was noted.

Figure 2.14. Pétrographie comparison between typical red siltstone and dolostone lithofacies. Scale bars in A and B are 500 
um in length. A) dolostone displaying uniform micritic crystal size. B) red siltstone composed of similar micriitc dolomite with 
abundant hematite and higher abundance of coarser silt-sized material. C) Variable scales of interbedding between red 
siltstone and dolostone lithofacies.

Contact styles between red siltstone and dolostone beds are variable. Dolostone 

beds can be classified into 3 basic types (Figs. 2.13 e and f): symmetrical beds with 

relatively sharp upper and lower contacts, symmetrical beds with gradational upper and 

lower contacts, and asymmetrical beds with a gradational lower contact and a sharp upper 

contact. A typical bedding cycle consists o f  a sharp lower contact, a basal portion 

consisting o f red siltstone, an upwards gradual change to paler coloured dolomitic 

mudstone followed by another sharp contact with red siltstone. In some examples, the 

tops o f  dolomitic mudstones display mudcracks that are filled with sulfate minerals or
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Figure 2.15. Photomicrographs showing pétrographie characteristics of the red siltstone-dolomite 
lithofacies association. Scale bars are all 2mm except B which is 500 um. A) A dolomite layer top 
marked by fine sulfate-filled mudcrack. B) An irregular sulfate nodule with inclusions of dolomite 
and some replacement by coarser dolomite crystals. C) discrete subhedral gypsum/anhydrite nodule 
in dolomite. D) Fine-grained siliciclastic-rich layer within a dolomite bed. E) dolostone layer with 
rounded sulfate grains.

coarser dolomite replacement o f  sulfate minerals. Sulfate-filled mud cracks are present 

within some individual dolostone horizons. In other cases the tops o f dolostone beds are
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very irregular and in places a few matrix-supported clasts o f dolostone mark remnants o f  

originally tabular beds.

2.3.3 Red siltstone-doiomitic sandstone association

Superficially this association resembles the red siltstone dolomite association with 

the dolomite lithofacies replaced by medium- to coarse-grained dolomitic sandstone. 

Sandstones in this association have both siliciclastic and carbonate grains but are 

cemented by dolomite. The best exposure o f this association occurs on Channel Island. 

The sandstone lithofacies is medium to coarse-grained and massive and in some 

examples graded. Trough cross-stratification is preserved in some sandstone beds, but 

this is rare. Sandstone bed thickness is variable and ranges from l-40cm  with an average 

thickness o f about 10-15cm (Fig. 2.15). Red siltstone interbeds have similar thicknesses. 

The red siltstone facies is red to pale red and massive to crudely layered. Thin 

discontinuous sandstone lenses are present and individual matrix-supported sand grains 

are common within red siltstone layers. Load features are common along the basal 

contacts o f sandstone beds (Fig. 2.15a). On Channel Island coarse- to very coarse­

grained sand-sized black siltstone clasts are common at the bases o f graded sandstone 

beds. The grain-size o f  the sandstone beds varies stratigraphically and there appear to be 

zones with much coarser- grained sandstone intercalated with zones o f much finer- 

grained dolomitic sandstone or even the red silstone-dolomite lithofacies association. 

Where present the thickness o f this unit ranges from 10 to 20 m. The lower contact o f  

this unit with the red siltstone lithofacies association appears to occur over a few metres 

and is marked by a change to a distinct periodic/cyclic bedding style. The upper contact
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o f this unit is abrupt and is marked by the appearance o f  thick medium- to coarse-grained 

sandstone beds o f  the sheet sandstone association.

Figure 2.15. Red siltstone-doiomitic sandstone association. A) distinct load features at the base of a 
coarse-grained dolomitic sandstone, Channel Island. Pen knife shown for scale is 12cm long. B) 
“Cyclic facies” at Channel Island with pale red beds of siltstone and pale white resistant layers of 
dolomitic sandstone, note the similarity to the appearance o f the red siltstone-dolostone association. 
Photograph shows approximately 5m of vertical section. C) “Cyclic facies” in red siltstone-dolostone 
lithofacies association at Kama Hill, pale beds are micritic dolostone rather than the dolomite 
cemented sandstones in A and B.

2.3.4 Sheet sandstone lithofacies association

This association occurs in nearly all o f  the sections studied. It usually separates 

the cyclic red siltstone/dolomite association from the black chert/carbonate association or 

other associations higher in the stratigraphy when the black chert-carbonate lithofacies
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association is absent. The thickness o f  this unit varies from 5 to 30 m. The sheet 

sandstone lithofacies association consists o f  two basic lithofacies. The first is a red 

siltstone lithofacies common to most o f  the associations in the Rossport Formation (Fig. 

2 .16b). The red siltstone lithofacies in predominantly massive but fine horizontal

Figure 2.16. A) Synsedimentary listric faults with southward (basinward) dipping fault planes in a 
well sorted medium-grained sandstone bed at the Kama Hill locality. Hammer shown for scale is 
about 30cm long. B) A typical example of the red siltstone lithofacies in the sheet sandstone 
lithofacies association from drill core NB-97-4. C) A typical thick sandstone bed with medium to 
large scale trough cross-stratification, Channel Island. Photograph shows about Im of section. D) 
Rippled, siltier, top of a sheet sandstone bed DDH NB-97-4.

laminations and current or wave ripple laminations occur at some horizons. At Channel 

Island the top o f this association contains rippled fine-grained sandstone immediately 

underlying the black-chert carbonate lithofacies association. Sulfate nodules are rare but 

present within the siltstone lithofacies. The second, more distinctive, lithofacies consists 

o f tabular to lensoid, medium- to coarse-grained, well-sorted quartz-rich sandstone (Fig.
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2.16). The sandstone lithofacies is generally massive, although parallel lamination and 

trough cross-stratification (Fig. 2.16c) are present in some cases. Sandstone beds range 

from 5 to 250cm in thickness, red siltstone beds are commonly a similar thickness but 

may also be much thicker, on the scale o f  several metres. Sandstone intrusions are 

common, and they are present as wedge shaped cracks (Fig. 2.17) that cut downwards 

from sandstone beds, tabular dikes that average about 10 cm in thickness and diapirs with 

diameters o f  several metres that disrupt overlying beds. Synsedimentary listric faults are 

present in some exposures (Fig. 2.16a), particularly in sections with thinner sandstone 

beds and a higher proportion o f red siltstone. The tops o f  many sheet sandstone beds are 

siltier and show ripple lamination (Fig. 2.16d).

Figure 2.17. Clastic dike emanating from the base of a massive sandstone bed intruding downward 
into a mottled red siltstone. Author’s hand for scale. Lake Superior shoreline northeast of the town 
of Silver Islet.
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2.3.5 Black chert-carbonate association

The black chert-carbonate association is equivalent to the Middlebrun Bay 

Member in the lithostratigraphic subdivision o f the Sibley Group. This association 

consists o f layers o f massive micritic carbonate (mainly dolomite) interbedded with 

layers o f  chert. Layering varies from thin millimetre- to centimetre-scale laminations o f  

chert and carbonate to several centimetre thick layers o f micritic carbonate. Contacts 

between chert and carbonate laminae are sharp. Individual beds or laminae are 

commonly laterally continuous at outcrop scale, though chert sometimes occurs as 

irregular pod-like features. Laterally linked hemispherical structures (stromatolites) are 

present in most outcrops o f this facies and have amplitudes o f  up to 10 cm. Cone-shaped 

structures are also present and these are generally 5 to 10cm in height with basal 

diameters o f 8-10 cm. Gypsum nodules are commonly present but are in many cases 

replaced by carbonate or silicified. Cheadle (1986a and b) and Rogala (2003) both noted 

the presence o f  halite in this association. A  number o f carbonate-replaced cubes were 

noted in thin section but could not be firmly identified as halite. Very rarely small 

clusters o f framboidal or cubic pyrite grains were noted in thin sections o f finely 

laminated black chert and carbonate. Organic carbon is also present, often as micron- 

scale spheres that form nuclei for round chert nodules. Synsedimentary breccias cross­

cut layering in a number o f exposures o f  this association.

A fairly consistent vertical organization o f lithological elements is present in 

exposures o f  this lithofacies association. The base is commonly comprised o f 20-30 cm 

o f “crinkly”, mm-scale laminations o f  grey to black chert and carbonate. The laminations 

are generally very flat features with the amplitude o f “crinkles” typically being 0-2 cm.
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Occasional asymmetrical domes with basal diameters o f  about 5 cm and heights o f  3-4cm  

are developed. Inheritance o f  laminae shape is common from one layer to the next. 

Thicker layers o f  white carbonate, however, do not usually conform to the shape o f  the 

previous depositional layers. The basal portion is overlain by 10-20 cm o f massive white 

micritic dolomite. This portion often contains brecciated zones as well as irregular pods 

o f chert. Chert pods vary from white/pale grey in colour to deep black. The second unit 

is overlain by 20-30 cm o f flat mm-scale laminated chert and carbonate and distinct 

stromatolitic domes comprised o f similar laminated chert and carbonate. In the third unit, 

Cheadle (1986b) recognized two stromatolite form types, mainly from the outcrops o f  

this lithofacies association at Kama Hill. The relatively flat laminated chert and 

carbonate Cheadle (1986b) termed crypt-algal laminites consistent with the form genus 

and species stratifera metula in the stromatolite classification o f Komar (1966). Cheadle 

(1986b) classified laterally linked hemispherical domes as columnar stromatolites 

belonging to the form genus and species conophvton metula (Komar et al., 1965). The 

third unit is in turn overlain by more flat finely laminated carbonate and chert lacking 

distinct domal features. Cheadle (1986a and b) reported dolomite pseudomorphs after 

skeletal halite just above the horizon containing abundant stromatolitic domes. This four­

fold stratigraphie organization is generalized and all four units are not always present at 

all exposures.

The top o f  this association commonly has a chalky, poorly consolidated, 

weathered appearance (Fig. 2.20). The altered zone is approximately 10-20 cm thick and 

contains distrupted original carbonate layering, abundant purple and red oxide-rich 

clay/silt sized material and silica 1mm to 2 cm in diameter. Purple and red oxide rich

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



46

mudstone and siltstone often form thin coatings around fragments o f original carbonate 

layers and also around silica nodules. In thin section irregular laminae o f  hematite-rich

Figure 2.18. Stromatolitic domes in the black chert-carbonate association. A) (left) asymmetrical 
domes comprised of thin carbonate and chert laminae. Note that domes are skewed to the right of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



47

the photograph. 5 cent coin shows scale. B) (right) Symmetrical low relief domes comprised of 
carbonate and chert laminae. 5 cent coin shows scale.

Figure 2.19. Photographs and photomicrographs showing important features of the black chert- 
carbonate lithofacies association. A) outcrop photograph showing a lower section of massive white 
micritic carbonate with diagenetic chert nodules overlain by a zone of flat crinkly chert-carbonate 
laminae, Channel Island. Pen knife shown for scale is 12cm long. B) Photomicrograph showing 
typical chert (light) and carbonate (dark) laminae. Scale bar is 2mm. C) irregular zone of pyrite in 
a carbonate rich layer. Scale bar is 200um. D) altered top of the black-chert carbonate lithofacies 
association at Kama Hill outcrop showing round chert nodules and irregular wisps of hematite rich 
mudstone. Scale bar is 2mm. E) Possible halite cubes along lower margin of a chert layer (shown 
with arrows). Scale bar is 2mm. F) irregular pod of black chert in massive white micrite, near Red 
Rock. Scale card near top right of photo is 10cm wide.
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Figure 2.20. Typical stratigraphy of the transition between sheet sandstone, black chert-carbonate and 
intraformational conglomerate lithofacies associations, Channel Island. A) The lower portion of the top photo consists 
of red siltstones and rippled fine-grained sandstones. The middle section of the photo, comprised of the black chert- 
carbonate lithofacies association, sharply overlies the lower section. The top portion consists of intraformational 
conglomerate which sharply overlies the weathered top of black chert carbonate association. Hammer shown for scale 
is about 30cm long. B) Detail of internal stratigraphy within the black chert-carbonate lithofacies association showing 
a lower portion of massive muddy to silty carbonate with chert nodules, and an upper portion of krinkly laminated 
stromatolite. Field of view is about 60 cm high.

siltstone/mudstone are found in variably oriented thin seams within micritic carbonate 

fragments (Fig. 2.19d). Red hematitic mudstone is also found in cm-scale fractures on 

the tops o f bedding plane exposures. The top o f this altered zone, and the top o f  this 

lithofacies association, is in sharp contact with overlying intraformational conglomerate 

(Fig. 2.20).
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2.3.6 Intraformational conglomerate/breccia lithofacies association

Several types o f intraformational conglomerate/breccia have been identified in the 

Rossport Formation. One type occurs as clearly secondary cross-cutting zones usually 

involving the red siltstone-dolomite association (Fig. 2.22). These cross-cutting breccias 

form diapir shaped bodies several metres high and wide and consist o f local lithologie 

types. A second type, already mentioned in the description o f the sheet sandstone 

association, occurs in association with clastic dikes and intrusions associated with sheet 

sandstone beds. Two further types o f  intraformational conglomerate have also been 

identified and are described in detail below. One type occurs above the black chert- 

carbonate association, another type occurs in one example near the town o f Pass Lake at a 

similar stratigraphie position.

Figure 2.22. Cross-cutting intraformational breccia in the red siltstone/dolomitic sandstone 
lithofacies association, Channel Island. Hammers shown for scale are both about 30cm long.
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The black chert-carbonate association is commonly sharply overlain by 0.5-2 

metres o f intraformational conglomerate. The conglomerate is generally clast supported 

and consists o f angular to slightly rounded intrabasinal clasts. Clast types are dominated 

by red siltstone and dolostone, but black chert and sandstone clasts are also present. The 

matrix composition o f  the conglomerate is hematitic and carbonate-rich. Occurrences o f  

this association appear to be restricted to sections where it directly overlies the black 

chert-carbonate lithofacies association, but the black chert-carbonate association is not 

always overlain by intraformational conglomerate. In one instance on the southwest side 

o f  Channel Island two units o f intraformational conglomerate are present with a lower 

layer dominated by chert and carbonate clasts (i.e., comprised entirely o f clasts from the 

black chert carbonate association) and an upper layer comprised o f primarily red siltstone 

and medium-grained sandstone clasts. The geometry o f the intraformational 

conglomerate layers is generally tabular although lateral changes in clast types, grainsize 

and matrix compositions are common. The contact with the overlying massive dolostone 

lithofacies association is sharp.

A second style o f intraformational conglomerate is present in one exposure in a 

road cut south o f  the town o f Pass Lake. The stratigraphie position o f  this exposure is 

unknown though it is interpreted to be roughly equivalent lithologies overlying the black 

chert-carbonate lithofacies association. A crude vertical organization o f  lithofacies is 

present within the exposure. The base consists o f an irregular contact with a sandy 

dolostone bed. The contact is very sharp and varies from horizontal to nearly vertical in 

orientation. A concentration o f red to purple mudstone to siltstone is present draping the 

lower contact. The sandy dolostone at the contact also contains concentric nodules o f

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



51

dolomite in some places. Tapered cracks up to 10 cm wide at the top and 30-40cm long 

filled with hematite rich siltstone and mudstone are present at the tops o f the dolomitic 

sandstone. Above the sharp basal contact there is 1-2 m o f intraformational conglomerate. 

The intraformational conglomerate is comprised o f angular to somewhat rounded clasts 

o f dolomite, red siltstone and, more rarely, purple mudstone and medium-grained red or 

buff coloured sandstone. Clast sizes range from a few centimetres to 75 cm in diameter.

Figure 2.23. Intraformational conglomerates overlying the black-chert carbonate lithofacies 
association. A) Matrix supported angular clasts of fine-grained dolomitic sandstone and red siltstone 
overlying a sharp contact with the black-chert carbonate association, Channel Island. Tape measure 
shown for scale is 10cm wide. B) Two distinct horizons of intraformational conglomerate on the 
northeast side of Channel Island, a lower horizon consisting o f cherty carbonate lithologies and and 
upper horizon consisting o f red siltstone, dolomite and fine-grained sandstone clasts. Hammer 
shown for scale is 30cm long. C) Clasts of black chert in a carbonate-rich matrix. Pencil shown for 
scale is about 12cm long.
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Figure 2.24. Features of intraformational conglomerate near the contact between red siltstone- 
dolomite/red siltstone dolomitic sandstone lithofacies associations and the sheet sandstone lithofacies 
association, south of Pass Lake. A) Large crack filled with hematite-rich rubble in the top of 
dolomitic fine-grained sandstone bed. Canadian penny shown for scale. B) Large rounded block, or 
possibly relief in fine-grained dolomitic sandstone bed draped with red to purple oxide rich clay and 
siltstone overlain by intraformational conglomerate. Portion of hammer handle shown for scale is 
about 20cm long. C) round nodular carbonates at the contact between dolomitic sandstone and 
overlying conglomerate. Canadian penny shown for scale. D) intraformational conglomerate with 
purple oxide-rich matrix. Canadian penny shown for scale.

Matrix composition in the conglomerate is typically a red dolomitic siltstone, though in 

places it is sand rich. The intraformational conglomerate is overlain by lenses o f  

medium-grained sandstone. Sandstone lenses are laterally continuous for a few metres 

and range from 20-50 cm in thickness.
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Figure 2.25. Crude stratigraphy in intraformation conglomerate lithofacies association south of Pass 
Lake showing, intraformational conglomerate horizon and overlying lenses of medium-grained 
massive sandstone. The basal contact with dolomitic sandstone is obscured by grass. Hammer 
shown for scale is 30cm long.

2.3.7 Massive dolostone lithofacies association

Dolostones similar in appearance to dolostones in the red-siltstone/dolostone 

association are present overlying the black chert-carbonate and intraformational 

conglomerate lithofacies associations in the southern portions o f the basin. The thickness
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o f this association is approximately 10-20 m. Lithofacies present in this association are 

mottled dolostones that vary from a pale brown to red colour and thin lenses o f  red to 

purple more siliciclastic-rich siltstone to mudstone. Bedding is difficult to distinguish in 

the dolomitic mudstone, but it has a crudely banded appearance defined by colour 

variations. Interbeds o f siltstone/mudstone are generally less than 20 cm thick and pinch 

out laterally at outcrop scales. Horizons rich in small (< lcm  diameter) chert nodules are 

common in outcrop. Rosettes o f  calcite pseudomorphs after sulfate nodules are also 

present. Wave rippled and possibly hummocky cross-stratified fine sandstones and 

massive dark purple to green siltstones/mudstones o f  the Kama Hill Formation appear to 

abruptly overlie this association in the sections where it is present.

Figure 2.26. The massive dolostone lithofacies association. A) Massive mottled dolostone with two 
purple mudstone/siltstone horizons, Channel Island. Tape measure shown for scale is 10cm wide. B) 
Massive mottled dolomite mudstone at Kama Hill exposure. Field of view is about 4m high.

2.3.8 Red siltstone-sulfate lithofacies association

The red siltstone-sulfate lithofacies association is dominated by red siltstone or 

very fine-grained sandstone with occasional massive medium grained sandstone beds as 

well as rare, thin dolostone beds similar to the cyclic facies and dolomitic mudstone 

association. A thick (2-3 m) carbonate horizon with stromatolitic domes or teepee
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structures also occur in this association. The most striking feature in this association is 

the abundance o f  diagenetic sulfate and carbonate minerals. Sulfate minerals occur as 

discrete or coalesced round shaped nodules a few centimetres in diameter, fine-grained 

angular nodules similar to those in the red siltstone-dolomite association, veins a few  

centimeters in thickness, detrital grains, pervasive fine-grained zones and cements in thin 

intraformational breccias. In diamond drill core Nl-92-7 this association is 

approximately 75 metres thick.

Figure 2.27. Red siltstone sulfate association in drill core NI-92-7. Up is towards the right and top of 
the photograph. White coloured zones represent sulfate-rich horizons.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



56

Figure 2.28. The red silstone-sulfate association. A) White carbonate horizon with abundant 
nodular gypsum. B) Coalesced gypsum nodules in red siltstone. C) An occurrence of detrital gypsum. 
D) Fine-grained gypsum nodule in a dolomite bed surrounded by red siltstone that contains 
pervasive fine-grained carbonate minerals (replacements after sulfates?) £ )  thin intrafromational 
breccia with sulfate cement. F) Massive red siltstone cut be remobilzed gypsum vein and green 
reduced patches.

2.3.9 Red siltstone-fine-grained sandstone lithofacies association

This association occupies a similar stratigraphie position to the red silstone-sulfate 

association. Lithologically it is similar to the red siltstone-sulfate association but it lacks
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the extensive diagenetic sulfate mineralization. Fine-grained red sandstone is the most 

common lithofacies in this association. The sandstone lithofacies is typically massive 

with very indistinct bed contacts. It contains disseminated fine-grained (less than 1cm 

diametre) nodules o f  sulfate minerals (usually carbonate replaced). A complex variety o f  

alteration/diagenetic features are present within the fine-sandstone lithofacies. These 

include: irregular horizons, 1-5 cm thick, o f  purple mudstone and associated thin irregular 

zones o f silicified carbonate, isolated irregular nodules o f  carbonate less than 1cm to 3 

cm in diameter, zones o f  up to Im in thickness characterised by irregularly oriented wisps 

o f red and purple mudstone (clay rich cutans), small nodular fine-grained sandstone (soil 

peds) and silicified carbonate layers/nodules. Isolated thicker layers (50 to 150 cm in 

thickness) o f more intense alteration are also present. These layers consist primarily o f  

very friable, blocky textured red to purple mudstone or siltstone with layers o f massive 

(sometimes laminated) white, carbonate-rich mudstone, intraformational breccia, and 

round carbonate nodules. Silicification is present in portions these thicker altered 

horizons.
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Figure 2.29. Contact between sheet sandstone lithofacies association (sections o f core overlain by 
downward black arrow) and red siltstone-fine-grained sandstone lithofacies association (sections of 
core overlain upward black arrow). White arrow shows intraformational conglomerate consisting of 
clasts of black chert-carbonate lithofacies association. The black chert-carbonate lithofacies 
association is not present in this drill core. Up is towards the top of the photograph and to the left. 
Drill core NB-97-4.
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Figure 2.30. Red siltstone-fine-grained sandstone lithofacies association. A) Contact between sheet 
sandstone lithofacies association (Lower 3 core boxes) and red siltstone-fine-grained sandstone 
lithofacies association (top 4 core boxes) in drill core NB-97-2. The friable section at the center of the 
photograph (arrow) likely represents subaerial exposure with soil profile development and is 
correlative with subaerial exposure features at the top of the black-chert carbonate lithofacies 
association. Contact at left tip of ruler. B) Pedogenic? carbonate nodule from NB-97-4. C) Fine­
grained unaltered sandstone that comprises the majority of this lithofacies association.
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Figure 2.31. Pedogenic (?) features in the red siltstone-fine-grained sandstone lithofacies association. 
A) and B) nodular fine grained sandstone (soil peds?) in red hematite rich-matrix (hematitic 
cutans?). C) Pedogenic (?) carbonate nodule-rich horizon. Photos from drill core NB-97-4, younging 
direction is to the left.
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Chapter 3. Stratigraphy

3.1 Introduction

The purpose o f  this chapter is to outline the stratigraphie organization o f  

lithofacies associations across the Sibley Basin. Previous stratigraphie work in the Sibley 

Group has focused on developing a model for its lithostratigraphic organization (Franklin 

et al., 1980; Cheadle, 1986a and b; Rogala, 2003). The approach taken here is to 

correlate based on the units bounded by unconformable surfaces (allostratigraphy). As 

much as possible the correlation in this section attempts to be non-genetic. However, 

there is some degree o f interpretation involved in the recognition o f unconformities and 

features o f subaerial exposure. Detailed stratigraphie correlation o f lithofacies 

associations serves as an important framework for the interpretation o f geochemical data 

in later chapters.

3.2 Allostratigraphic Correlations

Basin-wide correlations in the Sibley Group are hampered by a lack o f distinct 

chronostratigraphic marker horizons. This poses a problem for understanding the 

temporal relationships between lithofacies associations. In some instances 

disconformable surfaces or distinct lithological changes can be identified and used for 

correlation. One example, the top o f the Pass Lake Formation, appears to be 

unconformable on the islands south o f Rossport. However, this datum is problematic, as 

the lithostratigrahic contact elsewhere is gradational and difficult to define. Another 

possible datum for correlation is the intraformational conglomerate/black chert carbonate 

lithofacies association pair that is present near the central portion o f the Rossport
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Formation. The top o f  the black chert/carbonate appears to represent subaerial exposure 

and as such could be a distinctive surface on which to base stratigraphie correlations.

The occurrence o f  the black chert-carbonate association is relatively restricted, however, 

and it appears to be present only in the more southerly sections in the study area. A third 

possible horizon is the first appearance o f a sandstone bed in the sheet sandstone 

association. The sheet sandstone beds are laterally widespread, distinctive and their 

interpreted depositional setting and process suggests that they may have been deposited 

quite rapidly. Basal contacts between the Sibley Group and basement are inappropriate 

as a datum for correlation as topographic relief o f the basement surface appears to have 

been extensive, on the order o f 200m (Cheadle, 1986a), which is a greater thickness than 

the portion o f the Sibley Group being studied. Inferences about the topographic relief o f  

pre-Sibley basement is based on modem observations o f  the vertical distances between 

the tops o f hills o f  Archean granites and outcrops o f  the Sibley Group-basement contact, 

onlap o f  Pass Lake Formation sandstones onto basement, and the lack o f  a basal clastic 

unit in some sections.

The correlation o f lithofacies associations across a few transects (Fig 3.1) o f  the 

Sibley Basin is shown in Figures 3.2, 3.3 and 3.4. The figures use the first appearance o f  

a sandstone bed in the sheet sandstone association as a datum for correlation. Figure 3.2 

shows a roughly east to west section line that extends from diamond drill core NI-92-7 in 

the northwest to Copper Island in the east (Fig. 3.1). Figure 3.3 shows a north to south 

line across Nipigon Bay from Kama Hill to diamond drill core NB-97-2 (Fig. 3.1).

Figure 3.4 shows an idealized, roughly north to south section line that extends from near
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Disreali Lake in the north to Silver Islet in the south (Fig. 3.1). Vertical exaggeration and 

scale varies as the diagrams are fitted for display on a single page.

Basal unconformity 
Highway 11 
South of Beardmore

DDK
NI-92-7

FireMoseau
Mountain Kama Hill 

/  DDH 
CYP96-1

Quarry
Island
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DDH’sX  ,
DO-82-lVo 7 ^  /

Channel
Island
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Enterprise 
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West Lo( 
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Lake:
DDI

North 20 km
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Tam
Lake,

Silver Islet

Figure 3.1. Location map for sections shown in Figures 3.2 (green line), 3.3 (blue line) and 3.4 (red 
line).
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N Kama Hill Formation

Massive dolostone

Red slltstone-fine sandstone
Block-chert-carbonate

Subaerial exposure

3  Sheet sandstone

; Red siltstone-dolomlte30m

Kama Hill
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Figure 3.3. North to south cross-section across Nipigon Bay from the section at Kama Hill to 
diamond drill core NB-97-2 showing allostratigraphic units (divided by red lines) and correlation of 
lithofacies associations. Note inferred topographic relief of the basement surface which is composed 
of Archean granite and metasedimentary lithologies (Data for CYP96-1 is from Rogala, 2003).

From Figures 3.2 to 3.4 the Sibley Group can be divided into 4 informal 

allostratigraphic units based on lithology and also possible disconformable surfaces. The 

first unit consists primarily o f  siliciclastic rocks and is comprised o f the various 

lithofacies associations o f the Pass Lake Formation. The base o f this unit is defined as 

the unconformable contact between underlying Archean and Paleoproterozoic rocks and 

the conglomerates and sandstones that are present at the base o f the Sibley Group. The 

top o f the basal siliciclastic unit is defined as either the unconformable contact between 

the basal siliciclastic unit and the mixed carbonate-siliciclastic unit as present on the
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Figure 3.4. Idealized north to south section from DDH NI-92-7 to Silver Islet section showing allostratigraphic units and 
correlation of lithofacies associations. Sections for SB-IOI and Silver Islet are modified from Cheadle (1986a) and Rogala 
(2003)
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siltstone-dolomitic sandstone lithofacies association. At its base the mixed siliciclastic 

carbonate unit is in gradational contact with the basal siliciclastic portion or sharply 

overlies a disconformity in the Rossport area. The second unit consists o f  equivalent 

lithologies to the cyclic facies o f the Channel Island Member in the lithostratigraphic 

nomenclature o f  Cheadle (1986a). The third unit consists o f the sheet sandstone 

lithofacies association and the black chert-carbonate lithofacies association. The basal 

contact o f this unit is abrupt and the top o f  the unit is marked by interpreted subaerial 

exposure o f  the black-chert carbonate lithofacies association. The upper unit is 

comprised o f  a mixture o f clastic, carbonate and evaporite rocks including the 

intraformational conglomerate lithofacies association, the massive dolostone lithofacies 

association, the red siltstone-sulfate lithofacies association and the red siltstone-fme- 

grained sandstone lithfacies association. The basal contact o f  this unit is sharp and the 

upper contact is gradational with the Kama Hill Formation. The characteristics o f each o f  

the four stratigraphie units, including (where possible) paleocurrent patterns for 

individual lithofacies associations are discussed individually in the next section.

3.2.1 Basal siliciclastic unit

Examining the lithofacies associations in Figure 3.2, shows that the thickest 

accumulations o f  clastic material at the base o f  the Sibley Group occur in the east in the 

islands offshore from Rossport. The area o f  thick accumulation is filled by up to 100 m 

o f the green sandstone-siltstone lithofacies association and the planar cross-stratified 

lithofacies association. Towards the west the thickness o f  the Pass Lake Formation 

decreases and in the area o f the Kama Hill section the red siltstone and red siltstone- 

dolomite lithofacies associations rest on Archean basement. Further west approximately
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30 metres o f  the trough cross-stratified and fining thinning upwards sandstone lithofacies 

associations form the basal portions o f  the Sibley Group. In Figure 3.3 the Pass Lake 

Formation is again dominated by about 20-40 m o f the trough cross-stratified lithofacies 

association but it rapidly thins and onlaps an Archean granite at the Kama Hill section.

The distribution o f paleocurrents in the basal clastic unit is shown in Figure 3.5. 

Taken together the majority o f  paleocurrent indicators suggest a trend towards the 

southeast for the basal clastic unit. The southeastward trend is present in the trough 

cross-stratified and fining thinning upwards associations and also in the planar cross­

stratified association. The green sandstone-siltstone association shows a southwesterly 

trend about perpendicular to the general trend shown by the other lithofacies associations. 

The paleocurrent patterns in the basal clastic unit suggests a southward paleoslope during 

its deposition. Detrital zircon ages for samples from the fining- and thinning-upwards 

sandstone lithofacies association at Pass Lake are shown in Figure 1.4. The Pass Lake 

Formation has a zircon population extending in age from the Mesoarchean to 

approximately 1600 Ma with the greatest concentration in the age bracket between 1840 

Ma and 1900 Ma (Fig 1.4). This corresponds to the age o f  igneous rocks associated with 

the Trans-Hudson Orogenic zone to the northwest and the Penokean Orogenic zone to the 

south. There is also a grouping o f zircons at approximately 2.4 Ga, the age o f  Huronian 

volcanism. The grouping o f  zircons at 2.7 Ga corresponds to the main igneous phase o f  

the Kenoran Orogeny. Igneous, zircon-bearing rocks in the age bracket 1.6 to 1.8 Ga are 

not present in Superior Province directly north o f the Sibley Group. The closest 

occurrences o f  source rocks o f  this age are to the south and northwest adjacent to 

Superior Province.
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20km

Figure 3.5. Paleocurrent data for the basal siliciclastic unit. The three current roses on the eastern 
margin o f the diagram show data for the green sandstone-siltstone lithofacies association (d, f) and 
the planar cross-stratified sandstone lithofacies association (e). The current roses in the western 
portion show data for the trough cross-stratified sandstone lithofacies association (b, c) and the fining 
thinning upwards sandstone lithofacies association (a). Paleocurrent data are from this study as well 
as Cheadle (1986b).

3.2.2 Mixed slliclclastlc-carbonate unit

Figures 3.2 to 3.4 show that the mixed siliciclastic-carbonate unit is 20-70 m thick 

and laterally continuous across most o f the basin. The thickest noted accumulation o f  

this unit is in the north where diamond drill core NI-92-7 was drilled. Basal portions o f  

this unit are almost always comprised o f  about 10 to 20 m o f the red siltstone lithofacies 

association. The red siltstone lithofacies association is succeeded upwards by 20-50 m o f  

either the red siltstone-dolomite association or the red siltstone-dolomitic sandstone 

association. Laterally, the red siltstone-dolomite and the red siltstone-dolomitic
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sandstone associations appear to interfinger. The red siltstone-dolomitic sandstone 

association occurs primarily in the Red Rock and Rossport areas.

3.2.3 Upper siliciclastic unit

The upper siliciclastic unit sharply overlies the mixed siliciclastic unit. The 

majority o f the unit is comprised o f  the sheet sandstone association. The black chert- 

carbonate association, where present, forms the top. The thickness o f  this unit ranges 

from 0-45m. In general, the thickness is rather uniform basin wide. However, in rare 

instances it is absent. An example o f a section where it is absent is at Tam Lake, north­

west o f Silver Islet. At Tam Lake the black chert-carbonate lithofacies association lies 

directly above the dolostone-red siltstone lithofacies association. The definition o f the 

upper boundary o f this association is somewhat arbitrary especially with regard to the 

inclusion o f  the intraformational conglomerate association in the upper unit as it may also 

be related to subaerial exposure at the top o f the black-chert carbonate association. 

Paleocurrents for the sheet sandstone association are shown in Figure 3.6. Where a 

significant number o f  measurements were made the paleocurrent roses for the sheet 

sandstone association show considerable scatter. The three unidirectional roses contain 

only a few data points and are from single beds or stratigraphically restricted areas.

3.2.4 Mixed siliciclastic-carbonate-evaporite unit

The upper mixed siliciclastic-carbonate-evaporite unit ranges from about 20 to 75 

m in thickness. The thickest accumulations o f  this unit are again in the north around 

DDH NI-92-7 (Fig. 3.2), but a similar thickness is also present in drill holes from 

Nipigon Bay in the southeastem comer o f  the basin (Fig. 3.3). In Sibley Group 

lithostratigraphy this unit is the equivalent o f  the Fire Hill Member. In sections where the
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black-chert carbonate association is present this unit is usually comprised o f the 

intraformational conglomerate

• o

O

20km

Figure 3.6. Paleocurrent data for the sheet sandstone lithofacies association. Data are from this 
study and Cheadle (1986b). Localities are as follows; (a) Moseau Mtn, (b) Red Rock, (c) Kama Hill, 
(d) Channel Island, (e) Copper Island. Although data at individual locations appears to be 
unidirectional, there is a scarcity of good paleocurrent inicators at these locations and consequently 
few data points.

lithofacies association overlain hy the massive dolostone lithofacies association. Other 

sections are comprised o f a mixture o f the red siltstone-sulfate association and the red 

siltstone-fine sandstone association. More northemly sections, such as NI-92-7, contain 

the red siltstone-sulfate association whereas the southemly sections, such as NB-97-2 and 

NB-97—4 are characterized by the red siltstone-fine sandstone association. Laterally, the
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massive dolostone association appears to intercalate with the other associations. No 

paleocurrent data was collected from the associations in this unit as no suitable 

sedimentary structures were found in outcrop. The upper contact o f this unit with the 

Kama Hill Formation is variable. In sections containing the massive dolostone 

lithofacies association the contact is rather abrupt. In other sections the contact is 

gradational. During the course o f  this study, logging o f  sections was stopped where 

sections became dominated by lithologies ascribed to the Kama Hill Formation by other 

authors. However, in many cases it is difficult to define the boundary between red 

siltstones associated with the Fire Hill Member (i.e. the upper mixed siliciclastic- 

carbonate evaporite unit) and red to purple siltstones o f the Kama Hill Formation.

3.3 Summary

The stratigraphie units described above differ slightly from the formal 

lithostratigraphic subdivisions o f  the Sibley Group (e.g. Cheadle, 1986a). The main 

difference is the grouping o f the sheet sandstone lithofacies association, which is 

equivalent to the mudstone facies in the Channel Island Member, and the black chert- 

carbonate association, which is the equivalent o f  the Middlebrun Bay Member, into the 

upper clastic unit, whereas previously these were portions o f  two different 

lithostratigraphic members.

Lateral changes in thickness o f  both lithofacies associations and allostratigraphic 

units are minimal, important exceptions are apparent, however, in the two lowest units. 

In the basal clastic unit, a thickening to the southeast and southeastward oriented 

paleocurrent pattern suggest a southerly depocenter. Conversely, the mixed carbonate- 

siliciclastic unit thickens towards the northwest suggesting that subsidence increased in
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the area o f DDH NI-92-7 during the deposition o f this unit. An overall change in 

paleoslope cannot be supported by paleocurrent data as few paleocurrent indicators are 

present in the mixed carbonate-clastic unit. The upper clastic unit shows relatively 

homogeneous thickness across the basin and a scattered paleocurrent pattern. The 

presence o f  some northward oriented paleocurrent measurements may be significant in 

suggesting a change in regional paleodrainage pattern. The upper mixed carbonate- 

siliciclastic-evaporite unit is thickest in the northwest in drill core NI-92-7.

Rogala et al. (2005) have suggested that the Fire Hill Member, which is basically 

equivalent to the upper mixed siliclastic-carbonate-evaporite unit, thickens as the result o f  

half-graben formation that resulted from movement along the Black Sturgeon fault during 

deposition o f  this unit. However, the timing o f half-graben formation is unclear and 

thickening o f Sibley Group units towards the Black Sturgeon Fault (general location 

shown in Figure 1.1) may have also resulted from subsidence along the fault during the 

later Mesoproterozoic Mid-continent rift event with subsequent erosive removal o f  more 

Sibley Group material from areas further removed from the fault.
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Chapter 4 Depositional Environments

4.1 Depositional environments of individuai lithofacies associations

The purpose o f  this chapter is to discuss the depositional environments 

represented by the lithofacies associations introduced in chapter 2. Although the 

depositional environments o f  the Sibley Group have been defined by other authors 

(Franklin et al., 1980; Cheadle, 1986a and b and Rogala, 2003) finer details concerning 

depositional subenvironments and processes, particularly in the Fire Flill Member, can be 

added. Below, the depositional environment o f  each lithofacies association is discussed 

in turn, followed by a summary o f  the depositional history o f the study sections in light o f  

stratigraphie and paleocurrent data from chapter 3.

4.1.1 Boulder conglomerate-sandstone-dolocrete lithofacies association

Cheadle (1986a and b) interpreted lithofacies equivalent to the boulder 

conglomerate/sandstone/dolocrete lithofacies association to represent the development o f  

small-scale alluvial fans deposited primarily through debris-flow processes. The limited 

lateral and vertical extent o f this association suggests that if  this association represents an 

alluvial fan environment, the scale at which alluvial fans developed was quite small. The 

lack o f well developed bedding and cross-stratification, and the poorly sorted mud-rich 

matrix o f many conglomerates supports a debris flow origin for the boulder conglomerate 

lithofacies (e.g.. Rust, 1978; Miall, 1996; Blair, 1999a). Stream-flow deposited 

conglomerates generally have better sorted matrix compositions and cross-strata that 

represent the development o f  in channel bar complexes, dunes, or standing wave 

produced antidunes (Steel and Thompson, 1983; Miall, 1996; Blair, 1999b). However,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



75

debris flow deposits are generally considered to be matrix supported, an observation that 

Cheadle (1986a) used to suggest that the conglomerates may have been water-lain.

Lenses o f massive sandstone interbedded with the conglomerate lithofacies may represent 

deposition from intermittent lower energy stream-flows (Nemec and Steel, 1984). The 

incising nature o f  the boulder conglomerate lithofacies is similar to channel deposits in 

modem arid alluvial fan systems (Blair, 1999a). In modem arid fan systems, incised 

channels may be filled with either stream deposited stratified conglomerates or poorly 

sorted, massive, dehris-flow conglomerates similar to those observed in channel fills in 

this lithofacies association. Coarse-grained sandstone and pebbly sandstone lithofacies 

probably represent sheet-flow deposits. They may have formed in overbank areas 

adjacent to major fan channels or represent variation in depositional style between a 

sheet-flow or channel dominated fan through time. Parallel lamination in coarse-grained 

sandstone units suggests deposition from high-energy upper flow regime conditions (e.g., 

Stear, 1985). Rapid deposition is also supported by the presence o f  dewatering features. 

Thin lenses o f  flne-grained, pink, carbonate-rich siltstone may represent ephemeral pond 

deposits left after major rainfall/flood events.

The dolocrete lithofacies may be o f  either pedogenic or groundwater origin (e.g., 

Wright and Tucker, 1991; Spotl and Wright, 1992; Alonzo-Zarza, 2003). Pedogenic 

calcretes/dolocretes form ahove the local groudwater table, whereas groundwater 

calcretes/dolocretes form near the groundwater table in the vadose or phreatic zones 

(Esteban and Clappa, 1983). Both pedogenic and groundwater calcretes/dolocretes 

provide important paleoenvironmental information, as both pedogenic and groundwater 

calcretes/dolocretes form primarily in semi-arid to arid climates (Alonzo-Zarza, 2003),

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



76

with pedogenic carbonate horizons in modem settings forming where annual precipitation 

is less than 760 mm (Royer, 1999). A distinction between the groundwater and 

pedogenic calcretes/dolocretes is important as pedogenic calcretes/dolocretes form 

mainly from waters that infiltrate down from surface whereas the groundwater variety 

forms from groundwater. Sources o f  carbonate in pedogenic calcretes/dolocretes are 

varied and include rainfall, seaspray, surface runoff, groundwater, dust, bioclasts, 

vegetation litter, and rock, whereas groundwater calcretes/dolocretes are sourced 

primarily by groundwater (Wright and Tucker, 1991).

Wright (1990) proposed two broad micromorphological classes o f  

calcrete/dolocrete termed beta fabrics and alpha fabrics. Beta microfabrics are o f  

biologic origin, whereas alpha microfahrics are abiotic. Beta microfabrics, including 

alveolar septal structures and rhizoliths, commonly cited as evidence o f  pedogenic origin, 

are primarily caused by plants and fungi and would not be expected in a Mesoproterozoic 

calcrete/dolocrete. Grains coated by micritic envelopes are possible beta microfabrics in 

a Mesoproterozoic calcrete/dolocrete as they are formed through fungal or cyanobacterial 

processes (Alonzo-Zarza, 2003). Alpha microfahrics common in calcretes/dolocretes 

include: crystalline carbonate groundmass, crystic plasmic fabric (Brewer, 1964), voids 

or fractures filled with carbonate cement, carbonate rhombs, nodules, and floating etched 

clastic grains (Alonzo-Zarza, 2003).

Petrographically, the massive dolocrete layers in this lithofacies association are 

composed o f  primarily micritic dolomite with occasional coarser-grained euhedral 

dolomite rhomhs, voids/cracks filled with coarser-grained cement, and oxidized silicate 

and carbonate clasts and, as such, conform more to typical characteristics o f  alpha-type
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calcretes. Groundwater calcretes/dolocretes are typically dominated by alpha type 

microfahrics (Wright and Tucker, 1991; Spotl and Wright, 1992). In the absence o f  plant 

roots and fungi, it is reasonable to assume that a pedogenic calcrete/dolocrete o f  

Mesoproterozoic age would also be dominated by alpha type microfahric making a 

distinction between pedogenic and groundwater calcretes/dolocretes based on 

micromorphology inappropriate for the dolocrete lithofacies. The origins o f carbonate 

cements in conglomerate units were not studied in any pétrographie detail, however, they 

are interpreted to be an early feature, nearly contemporaneous with deposition, based on 

the presence o f carbonate cemented sandstone intraclasts in some conglomerate beds. 

Thick pedogenic carbonate horizons require long periods o f  time to form (Gile et ah,

1966; Machette, 1985; Alonzo-Zarza 2003) and their presence suggests that 

sedimentation was episodic or that the position o f major channel features was fairly 

stable.

Overall, it appears that the boulder conglomerate/sandstone/dolocrete lithofacies 

association was deposited in a coarse-sediment dominated braided fluvial system. Both 

sediment-gravity processes and fluvial processes appear to be have been active during 

deposition. The sporadic distribution o f this lithofacies association suggests that, rather 

than forming along distinct linear features such as basin bounding faults, coarse 

conglomeratic material was likely concentrated around isolated basement topographic 

features. Evidence o f rapid deposition, dolocrete horizons, carbonate filled “ponds” and 

the presence o f pervaisive carbonate cements suggest a semi-arid climatic setting (e.g. 

Miall, 1996).
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4.1.2 Pebble-cobble conglomerate-sandstone lithofacies association

Cheadle (1986a) considered thicker deposits o f  the boulder 

conglomerate/sandstone/dolocrete lithofacies association to represent proximal alluvial 

fan deposits which thinned basinward into finer-grained distal alluvial fan deposits 

represented by lithofacies equivalent to the pebhle-cobble conglomerate/sandstone 

lithofacies association. The mixture o f matrix- and clast-supported conglomerates in this 

association suggest that both debris-flow and stream-flow processes were active during 

its deposition. Similar distal alluvial fan facies are described in the late Precambrian Van 

Home sandstone (McGowen and Groat, 1971). Overall, this interpretation is difficult to 

support as, perhaps due to lack o f  exposure, intermediate fan facies are not present and 

correlation o f  an individual laterally thinning alluvial fan complex is not possible. 

Interpretation o f  both the boulder conglomerate/sandstone/calcrete lithofacies association 

and the pehble-cobble conglomerate/sandstone lithofacies association as the products o f  

ephemeral braided streams on an alluvial plain rather than a distinct laterally thinning 

alluvial fan is more appropriate. Lithofacies in this association are comparable to the 

shallow gravel-bed braided and gravel-bed braided with sediment gravity flow fluvial 

styles proposed by Miall (1996). A  gradual fining upwards transition into overlying 

sandstones o f  the trough cross-stratified sandstone association may represent gradual 

fluvial filling o f  confining charmels or valleys in the pre-Sibley Group surface.

4.1.3 Massive cobble conglomerate lithofacies association

The massive cobble conglomerate lithofacies association is lithologically similar 

to the other two basal conglomerate lithofacies associations. However, it lacks any well- 

defined lateral channel forms and has few interbedded sandstone and no associated finer-
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grained lithofacies. Franklin et al. (1980) and Rogala (2003) interpreted these 

conglomerates to be the result o f  wave reworking o f  previously deposited conglomeratic 

units (i.e. the fluvial/alluvial fan conglomerates) by transgressive lake waters that 

deposited overlying well-sorted quartz sandstones sheets. Franklin et al. (1980) 

interpreted the lower portions o f the fining-thinning upward sandstone association to 

represent a beach system. The tabular nature o f  the conglomerate in this association, 

along with weak imbrication, supports a possible beach origin for the conglomerate. 

However, the poorly sorted matrix composition o f  the conglomerate is problematic for 

this interpretation as beach deposits are commonly well sorted as compared to fluvial 

conglomerates (Reading and Collinson, 1996). This association may indeed simply 

represent coarse-grained lag that was spread over a local ravinement surface during 

transgression, similar to coarse-grained conglomeratic deposits ascribed to a comparable 

process o f reworking o f  fluvial and deltaic gravels described by Ulicny (2001) from the 

Cretaceous Bohemian basin o f  the Czech Republic.

4.1.4 Green sandstone/siltstone association

The significance o f  green sandstones and siltstones comprising this lithofacies 

association seems to have been over-looked by previous authors (Franklin et al., 1980 

and Rogala, 2003). Cheadle (1986b) termed lithologies equivalent to this association the 

heterolithic facies and considered them to be a locally developed anoxic lacustrine facies. 

Cheadle (1986b) interpreted sandstones o f  this association to represent turbidity currents 

that originated from the entry points o f  flows from adjacent alluvial fans. Siltstone and 

shale lithofacies were interpreted as the result o f  settling o f  both flow-related and ambient
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lacustrine suspended load. Cheadle (1986b) also postulated that the heterolithic facies 

was deposited in a stratified lake with an anoxic hypolimnion.

New stratigraphie data from Copper Island shows a clear coarsening and 

thickening upward trend in this association. The progradation o f deltaic facies is often 

cited as producing coarsening and thickening upwards sandstone-siltstone units (e.g., 

Elliot, 1974; Pulham, 1989; Reading and Collinson, 1996). The coarsening- and 

thickening-upwards unit on Copper Island has characteristics o f a vertical succession 

produced hy the progradation o f  a distributary mouth bar in a wave influenced fluvial 

dominated delta (Pulham, 1989). Thin interbedded siltstones and fine-grained sandstones 

near the base o f  the coarsening- and thickening-upwards unit likely represent a prodelta. 

The upward increase in sandstone bed thickness, lateral continuity and occurrence o f  

current generated structures likely represent progradation o f delta front to distributary 

mouth bar or braided distributary channel lithofacies. Wave influence is suggested by the 

ubiquitous presence o f  wave rippled sandstone bed tops. The sharp disconformable top 

contact o f this unit may record delta lobe abandonment, although the occurrence o f  a thin 

conglomeratic horizon and slight angular nature o f  this contact may suggest a more 

significant unconformable boundary. The section on Channel Island does not show a 

clear coarsening- and thickening-upward trend. On Channel Island, trough cross- 

stratified sandstones directly overlie green shales. This may represent partial erosion o f  

distal bar and prodelta facies by prograding proximal delta lithofacies.

4.1.5 Planar cross-stratified lithofacies association

Interpretation o f the depositional environment o f  the planar cross-stratified 

sandstones in this association depends to some degree on whether the stratigraphie
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position o f this unit is interpreted to underlie the green sandstone-siltstone association or 

if  it is interpreted to be positioned lateral to it. Cheadle (1986b) interpreted these 

sandstones to be positioned lateral to his heterolithic facies, and suggested that they 

represent either the migration o f continuous crested subaqueous or aeolian dunes.

Cheadle (1986b) favoured an aeolian origin for the large-scale planar cross-strata on 

Quarry Island. However, given the deeper, offshore/deltaic interpretation o f  the green 

sandstone-siltstone association and the stratigraphie interpretation in chapter 3, a different 

origin for this lithofacies association is probable.

Amaud (2004) described giant planar cross-strata from the Neoproterozoic Port 

Askaig Formation and provided a review o f possible depositional environments o f similar 

successions. Typically, large-scale planar cross-stratification is interpreted as aeolian, 

however, they may also be formed in deep fluvial systems with large scale bedforms, 

tidally influenced coastal embayments and on shelves with strong tidal or geostrophic 

currents (Amaud, 2004). A  fluvial origin is unlikely as formation o f such large bedforms 

would require deep stable channels, whereas Precambrian fluvial systems are typically 

braided and characterised by broad, unstable, shallow channels (Eriksson et al., 1998). A  

tide influenced setting is unlikely, as there is scant evidence for tidal influence such as 

bidirectional paleocurrent pattern, herringbone cross-stratification or tidal bundles. As 

aforementioned, an aeolian origin is unlikely because o f  stratigraphie association and also 

because o f the presence o f  sporadic pebble to cobble sized clasts. Stratigraphie 

association with green shales, deltaic deposits and the presence o f  underlying wave 

rippled sandstone and shale suggests a subaqeuous orgin for the planar cross-stratified 

sandstones. Migration o f  large continuous crested dunes in a shallow subaqeuous setting
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is a possible depositional process for this unit. However, interpretation o f  this unit is 

problematic.

4.1.6 Cross-stratified sandstone/red siltstone association

The cross-stratified sandstone/red siltstone association was probably deposited in 

a fluvial environment. In Precambrian successions, distinction between fluvial, shallow  

marine and aeolian deposits is difficult mainly because o f  a lack o f fossil evidence (e.g. 

Rainbird, 1992; McCormick and Grotzinger, 1993; Eriksson et ah, 1998). However, the 

association o f  clast supported conglomerates/pebbly sandstones, with trough cross­

stratified sandstones, illuviation features (clay skins and sand peds) and mudchip 

conglomerates strongly suggests a fluvial setting rather than a shallow marine or aeolian 

setting. An aeolian origin is difficult to support because o f  the presence o f relatively 

coarse-grained units. A roughly unimodal paleocurrent pattern in individual sections 

favours a fluvial rather than marine origin as does the presence o f  subaerial exposure 

features such as mudcracks and soil structures. Many o f  the sedimentologic features o f  

this lithofacies association are consistent with ephemeral bradied fluvial systems 

described in the literature. Possible recent or ancient analogs include fluvial strata o f  the 

Carboniferous Karoo Supergroup (Bordy and Catuneau, 2001), Quaternary ephemeral 

rivers o f the largely vegetation-free Skeleton Coast o f  Namibia (Svendsen et ah, 2003), 

the Triassic Bunter sandstone (Olsen, 1987) or Quartemary braided rivers o f  the Lake 

Eyre basin o f Australia (Croke et ah, 1998). In the classification o f fluvial styles outlined 

by Miall (1996) lithofacies in this association best match either the Bijou-creek or South 

Saskatchewan types.
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4.1.7 Thining-upwards sandstone lithofacies association

An overall upwards decrease in bedding thickness suggests that this lithofacies 

association records a transgressive event. Franklin et al. (1980) interpreted the lower 

portions o f this association to represent a beach environment based on the very mature 

nature o f  these sandstones and the association o f wave ripples, low angle planar cross- 

stratification and parallel laminations and intrepreted beds higher in the succession to be 

the result o f  subaqueous deposition in a shallow lacustrine or marine environment during 

northward migration o f a strand-line. The association o f wave generated structures, and 

thinning-upwards in bed thickness definitely supports deposition in a transgressive, 

wave-dominated near shore environment. Low angle, possibly hummocky, cross­

stratification suggests that storm waves may have been important depositional processes. 

Sand stored in beach systems may have been remobilized during storm events and 

deposited as offshore sheets in a progressively expanding system.

4.1.8 Red slltstone lithofacies association

The red siltstone lithofacies association probably represents a continuation o f  the 

transgressive succession represented by the fining- and thinning-upwards sandstone 

association. The red siltstone lithofacies likely represents deposition from suspension in 

a quiet offshore setting. Thin, tabular, graded sandstone units and massive sandstone 

units were probably deposited by storm processes like those depositing sandstone beds in 

the underlying fining- and thinning-upwards lithofacies association. Alternatively, they 

may represent waning o f alluvial sheet-like or channelized flows as they entered the 

expanding lacustrine system. Sporadic sand grains found within siltstone units may 

represent wind blown materials supplied relatively continuously to the basin. The
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gradual upward change to the distinct periodic bedding style o f the overlying red 

siltstone-dolostone lithofacies association or red siltstone-dolomitic sandstone association 

may represent a gradual change in climatic conditions towards a dryer climate 

characterized by evaporitic carbonate deposition.

4.1.9 Red siltstone-dolostone lithofacies association and the red siltstone- 

dolomitic sandstone lithofacies association

The red siltstone dolostone lithofacies association and the red siltstone-dolomitic 

sandstone lithofacies association are best discussed together. Cheadle (1986a) 

collectively termed these associations the cyclic facies and they have been interpreted to 

represent lacustrine deposition in a semi-arid setting (Cheadle, 1986a; Mailman, 1999; 

Rogala, 2003). Cheadle (1986a) considered the cyclic facies to represent marginal 

lacustrine deposits that precipitated dolomite and accumulated clay and silt from 

suspension. Both autocyclic and allocyclic controls likely played a role in the deposition 

o f these two lithofacies associations.

In Cheadle’s (1986a) model, proximity to the mouths o f incised alluvial channels 

or the toes o f  alluvial fans was suggested as a primary control on lithofacies distribution. 

At areas far from sources o f  clastic input relatively pure dolostone beds would have been 

deposited, whereas proximal to sources o f  clastic input dolomitic sandstone lithofacies 

would have developed. Intermediate areas would have accumulated red dolomitic 

siltstone. Cheadle (1986a) noted that both the red siltstone-dolomite and red-siltstone- 

dolomitic sandstone cycles could have been produced contemporaneously through this 

model. This simple autocyclic model provides a reasonable explanation for the 

distribution o f the dolomitic sandstone-siltstone association in relating them to points o f
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major clastic input, it does not, however, provide adequate explanation for the observed 

contact styles and diagenetic sulfate minerals present.

Climatic controls were also critical in controlling the deposition o f  these 

lithofacies associations. Cheadle (1986a) suggested that clastic supply was probably 

sporadic leading to their cyclic nature. Cheadle (1986a) felt that carbonate production 

was probably constant while clastic input fluctuated with variations in rainfall, thus 

during periods o f  increased rainfall, clastic deposition, represented hy red dolomitic 

siltstones, would have dominated, while during periods o f  drier climate dolomite 

deposition would have continued on its own. The presence o f dolomite clasts in 

dolomitic sandstone beds lead Cheadle (1986a) to suggest that at least portions o f the lake 

dried up during low lake levels and were subsequently reworked.

Differences in dolomite bedding styles reflect variations in clastic input (wet-dry 

cycles), shoreline proximity and redox conditions (likely a function o f water depth and 

organic carbon loading). Symmetrical dolomite beds with gradational upper and lower 

contacts probably represent periods o f perennial subaqueous conditions in a relatively 

deep setting far from the water bodies margins. The gradational lower contact o f  such a 

bed may represent a gradual decrease in clastic input reflecting a change to more arid 

conditions. The gradual upper contact may reflect gradual réintroduction o f clastic 

material from a suspended sediment plume introduced with a return to wetter climatic 

conditions or gradual increase in clastic input because o f  a change in river mouth 

positioning and subsequent progradation. Alternatively, the gradational contacts may 

represent redox boundaries reflecting changes between oxidizing, red dolostone, and 

slightly reducing, pale beige dolostone, conditions. This interpretation is not supported
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by the work o f Mailman (1999) who found redder colouration also tends to indicate a 

higher proportion o f siliciclastic material relative to dolomite content. Symmetrical, 

sharp-sided dolostone beds may have had sharp lower contacts produced by changes in 

river mouth position (abrupt decrease in clastic supply and change to carbonate 

dominated sedimentation) and sharp upper contacts produced through subaerial exposure. 

Asymmetrical beds, characterised hy gradational lower contacts and sharp, mud-cracked 

or brecciated top contacts reflect conditions near lake margins. The return o f a wet 

climatic period would have brought fine-grained clastic material in suspension creating 

the gradual basal contact. As clastic sedimentation waned dolomite precipitation would 

have become dominant producing a dolostone bed that continued to develop during the 

evaporitive drying o f the lake. The sharp upper contact represents subareal exposure 

during low water, more arid, intervals as is indicated by the presence o f mudcracks and 

brecciation on the tops o f this style o f  dolostone bed.

Evaporation was an important control on the deposition o f  the red siltstone- 

dolostone association. Ca-sulfate nodules and dessication cracks on dolomite beds tops 

attest to the periodic drying o f  the depositional system along with evaporitic 

concentration o f  lake or shallow ground waters. Ca-sulfate minerals formed 

syndepostionally as is indicated by their preservation in mudcracks on bed tops.

Exposure features may not represent complete drying o f the entire lake system and could 

be equally well explained through fluctuation o f shoreline positions resulting from partial 

drying during evaporative intervals. This style o f sulfate occurrence may be analogous to 

efflorescent crusts formed on playa or sahbka surfaces in modem arid environments. 

Nodular Ca-sulfates are also interpreted to have formed in the very shallow subsurface
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during periods o f  subaerial exposure and evaporitic concentration o f  shallow subsurface 

waters.

The occurrence o f coarse-grained sandstone horizons could have been produced 

by a number o f processes. One possibility is an exceptional rainfall/storm event. These 

may have delivered coarser than normal clastic material to more distal portions o f  the 

lake system. A second possibilty could be debris flows triggered by minor shoreline 

slope failures. Evidence o f  slope instability is also present in the form o f syndepositional 

folding o f red siltstone-dolomite couplets at the Kama Hill exposure.

Numerous analogs to these lithofacies associations are present in the literature on 

saline lake and arid shallow marine systems. Reinhardt and Ricken (2000) described a 

very similar succession from the Middle Upper Triassic Steinmergel Keuper in Southern 

Germany. These deposits contain micritic dolomite horizons interbedded with mudstone 

in patterns almost identical to those found in the red siltstone-dolomite lithofacies 

association. These were interpreted to have formed in a playa lake environment that was 

influenced by climatic changes controlled by variations in monsoon cycles. The primary 

difference between the red siltstone-dolomite association and the deposits described by 

Reinhardt and Ricken (2000) is the almost complete lack o f  carbonate in their clastic 

dominated horizons and the presence o f  unoxidized clastic horizons. Quaternary 

occurences o f  lacustrine dolomite have been summarized by Last (1990) and many o f  

these are likely analogs for the climatic and hydrologie conditions that led to the 

deposition o f the dolostone-red siltstone occurrences in the Sibley Group. Rogala (2003) 

noted similarities between the cyclic facies and playa lakes o f the Ebro Basin o f Spain 

(Salvany et al., 1994) and the Office Basin o f Australia (White and Youngs, 1980).
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4.1.10 Sheet sandstone lithofacies association

The development o f  the sheet sandstone association records a major change in 

depositional conditions from the underlying cyclic facies. Cheadle (1986a) termed 

lithologies equivalent to this association the mudstone facies o f the Rossport Formation’s 

Channel Island Member. The two basic lithofacies present are red mudstone to siltstone 

and relatively thick, sheet-like sandstone beds. Cheadle (1986a) noted that the red 

siltstone lithofacies was nearly identical to the red siltstone and dolomicritic beds o f  the 

cyclic facies. In outcrop exposures this is apparent, however, in better preserved drill 

core examples it is evident that the red siltstone lithofacies in this association lacks the 

purer dolostone beds found in the underlying association. Cheadle (1986a) interpreted 

this association to represent an ephemeral playa system. Red fine-grained lithologies 

were thought to represent settling o f  fine clastic material after flash flooding o f the basin, 

while sandstone beds were interpreted to be the result o f  infrequent, major sheet-flow  

events.

The red siltstone lithofacies lacks diagnostic features making it difficult to draw 

conclusions about its origin. Load features at the bases o f sandstone beds suggest that the 

deposition o f  the sand-sheets may have been subaqeuous or at least the underlying 

surface o f the red siltstones they were deposited on was water saturated. Current ripple 

and wave ripple laminae in fine sandstones and siltstones in this association immediately 

underlying the black chert-carbonate lithofacies on Channel Island definitely represent 

subaqeuous conditions, however, their occurrence is isolated to one observed example. 

Cheadle (1986a) noted the presence o f  adhesion structures (e.g., Kocurek and Fielder,

1982) and dessication cracks which, although not noted during this study, suggest that
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aeolian adhesion to a wet mud-rich surface may have been an accumulation mechanism 

for the red siltstones.

Similar featureless red mudstones have been described from the Late Triassic 

Mercia Mudstone Group in England (Talbot et al., 1994). Red mudstones and siltstones 

from this group may have been deposited in a variety o f  environments including: entirely 

subaqueous accumulation in lakes, subaerial aeolian accumulation on playa-like flats or 

in low angle alluvial fans (Talbot et al., 1994 and references therein). A lack o f  

carbonate beds in this association may argue against a lacustrine origin given the 

abundance o f  dolomite beds in the underlying lacustrine unit. The lack o f lamination or 

primary sedimentary structures also argues against a lacustrine environment where fine 

lamination, organic rich layers or carbonate laminae would be expected (e.g. Hardie et 

al., 1978). Secondary processes such as pedogenesis or diagenesis, however, may have 

destroyed these primary features. Further, increased siliciclastic influx may have 

overwhelmed carbonate sedimentation leading to the dearth o f  the pure dolostone beds 

that characterize the underlying unit. A non-saline lacustrine setting similar to the red 

siltstone lithofacies association is possible for this association.

An aeolian origin for the red siltstone lithofacies is also possible. Thick blankets 

o f silty clay o f  aeolian origin (Butler, 1956; McTanish, 1989) cover large areas near the 

arid interior o f Australia. McTanish (1989) noted that in the presence o f  a sufficient 

source o f material, accumulation rates o f  up to 10 cm/yr are possible for these fine­

grained aeolian deposits. A low angle alluvial fan environment seems unlikely, although 

deposition in mud dominated floodplains o f  braided fluvial channels is possible. Marriott 

and Wright (2004) described similar deposits from the lowermost Old Red sandstone in
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Wales and attributed them as the products o f  deposition on braidplains dominated by low  

sinuosity, mud dominated, ephemeral braided channels with occasional infrequent high- 

magnitude flood events that produced sheet-like sandstone beds or intraformational 

conglomerates. However, the lack o f stratification in mudstone and siltstone units in this 

lithofacies association and also the lack o f associated channel deposits argues against a 

fluvial origin.

Although a subaerial aeolian origin is possible for the massive siltstone 

lithofacies, well-laminated fine-grained sandstones and siltstones near the top o f  this 

association on Channel Island have clearly subaqeuous origins. Wave-ripple lamination 

suggests depositional conditions above wave base. The occurrence o f the stromatolitic 

black-chert carbonate association, probably a shoreline (Rogala, 2003), overlying the 

well-laminated lithofacies suggests that subaqeuous lacustrine conditions were present 

during the deposition o f  at least the top o f  the sheet sandstone lithofacies association.

Sandstone beds were deposited very rapidly through broad unconfined, sheetflow  

processes. Evidence o f  rapid deposition comes from the presence o f  clastic dykes and 

synsedimentary breccias that probably resulted from penecontemporaneous liquefaction. 

Parallel lamination and rare primary current lineation also attest to high-energy rapid 

deposition. Wave rippled tops o f  some sandstone beds indicate the uppermost portions o f  

sandstone beds were reworked subaqeuously. This may represent reworking in a shallow  

lacustrine environment, or may represent reworking in ephemeral flood lakes (e.g..

Hardie et al., 1978).
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4.1.11 Black chert-carbonate lithofacies association

Cheadle (1986a) interpreted this lithofacies association to represent development 

o f a broad, shallow, spring fed and alkaline lacustrine system characterised by 

precipitated components. Modem spring fed playa lakes in California (e.g.. Hardie,

1968) were offered as a possible analog. Extreme aridity was suggested as a climatic 

control that led to a cessation o f surface run off and hence clastic supply to the basin 

(Cheadle, 1986a). Fluctuations in alkalinity were offered as an explanation for variations 

between carbonate and chert laminae. Rogala (2003) noted that the occurrence o f  this 

stromatolitic carbonate horizon was not as widespread as suggested by Cheadle (1986a 

and b) and felt that the stromatolites were deposited in shallow restricted bays and near 

shorelines rather than in a widespread closed lake system.

Mudcracked surfaces and pseudomorphed gypsum nodules indicate periodic 

wetting and drying and support a shoreline interpretation. Halite and gypsum 

pseudomorphs indicate strongly evaporitic conditions. Limited amplitudes o f  

stromatolitic domes may suggest that wave action and shallow water restricted the height 

o f growth forms. Conical stromatolites described in this unit by Cheadle (1986b) also 

have an apparent association with hypersaline evaporitic conditions (e.g. Grotzinger and 

Knoll, 1999). Silicification that produced the chert laminae occurred early as is 

suggested by the presence o f  angular black chert clasts in overlying intraformational 

conglomerates and fine-grained dolomite filled mudcracks on the upper surfaces o f  some 

chert laminae.

Grotzinger and Knoll (1999) and Riding (2000) have provided reviews o f  

stromatolites and other microbial carbonate deposits. Stromatolites are “attached.
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lithified sedimentary growth structures, accretionary away from a point or limited surface 

o f initiation” (Grotzinger and Knoll, 1999). Lamination in the black-chert carbonate 

association fits this non-genetic definition. Commonly, microbial mats are considered to 

be involved in the trapping and binding o f sediment or precipitation o f  sediments forming 

the accretionary layers. However, strong evidence for this is commonly absent from the 

preserved rock record (Grotzinger and Knoll, 1999). Cursory examination o f thin- 

sections o f black chert cut for the purpose o f finding microfossils revealed the presence 

o f sporadic spheres o f  organic carbon that may be microfossil remains. However, these 

could not be texturally linked with mat building or sediment accretion. The organic-rich 

nature o f  this unit, coupled with stromatolitic lamination suggest that microbial activity 

was involved in carbonate precipitation. The presence o f  pyrite grains likely reflects the 

occurrence o f  post-depositional sulfate reduction. Both photosynthetic removal o f  CO2 

by cyanobacteria and sulfate reduction by other bacteria can increase alkalinity and may 

have promoted carbonate precipitation (Riding, 2000).

Microbially laminated carbonate deposits in general can occur in a variety o f  

depositional settings. These include shallow marine and lacustrine environments, but 

also fluvial, spring, cave and soil environments (Riding, 2000). In modem marine 

environments stromatolites are generally restricted to intertidal and supratidal zones, 

though they are also present in subtidal areas (Hofmann, 1973; Browne et al., 2000). Flat 

stromatolite lamination is cited as having origins in shallow intertidal or supratidal zones, 

whereas, leirge amplitude domes are typically considered to have formed in deeper, 

subtidal environments (e.g. Sumner and Grotzinger, 2004). The flat nature o f  the 

laminations in this lithofacies association along with dessication features both support a
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shallow depositional setting. In many ways, the black chert-carbonate lithofacies 

association resembles modem supratidal algal mat deposits from arid carbonate 

environments such as the Arabian Gulf (Alsharhan and Kendall, 2003). The main 

similarities are the flat lamination style, the presence o f  evaporite pseudomorphs and 

evidence for desiccation. The flat lamination in this lithofacies association is also very 

similar to travertines and stromatolites forming in some modem lake marginal settings 

(Valero-Garcés et al., 2001).

4.1.12 Intraformational conglomerate lithofacies association

Cheadle (1986a) invoked two possible origins for intraformational conglomerates 

in the Fire Hill Member. He proposed, based an offshore lacustrine interpretation o f  the 

massive dolostone lithofacies association (equivalent to the chalcedonic mudstone facies; 

Cheadle 1986a), that the conglomerates represented resedimentation o f  dolostones and 

red siltstones on a lacustrine slope. Altematively, Cheadle (1986a) suggested that the 

intraformational conglomerate might represent extmsive equivalents o f cross-cutting 

intraformational breccias that intrude underlying units. Rogala (2003) proposed that 

intraformational conglomerates were the result o f  debris flows and intmsive sedimentary 

breccias that formed in response to increased tectonic activity related to subsidence in the 

northem portions o f the basin. Given evidence for subaerial exposure o f the top o f  the 

black chert-carbonate lithofacies association, which intraformational conglomerates 

directly overlie, a subaerial origin is likely. At localities where the intraformational 

conglomerate is dominated by bright red, oxide-rich matrix material, such as is found 

overlying the black chert-carbonate lithofacies association east o f Red Rock, the 

intraformational conglomerate may represent the development o f a terra rosa-style soil
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horizon (for example, Bronger and Bruhn-Lobin, 1997). A detailed pétrographie study 

would be required to fully support such a classification. At the locality south o f  Pass 

Lake, nodular carbonate concretions, clay and silt filled v-shaped cracks and 

concentrations o f clay and silt draping underlying carbonate-rich sandstones probably 

formed in a setting where karstic processes were acting (e.g., Esteban and Klappa, 1983).

4.1.13 Massive dolostone lithofacies association

The massive dolostone lithofacies association, red siltstone sulfate and fine 

grained sandstone lithofacies associations appear to intercalate laterally and are 

interpreted to have formed contemporaneously based on this stratigraphie relationship 

(Figs. 3.2 and 3.3). The massive dolostone lithofacies association corresponds to the Fire 

Hill Member as described by Cheadle (1986a) and Franklin et al. (1980). Cheadle 

(1986a) proposed an offshore relatively deep lacustrine setting for these rocks based on a 

lack o f  both coarse clastic material and evidence for subaerial exposure. Franklin et al. 

(1980) proposed a similar origin. The massive dolostones in this association are very 

similar to the fine-grained dolomite beds in the red-silstone-dolomite lithofacies 

association but they lack distinct interbedded clastic-rich units. A lacustrine 

interpretation suggests reflooding o f  portions o f the basin after subaerial exposure o f the 

black chert-carbonate unit. Similar thick beds o f  massive fine-grained lacustrine 

dolomite have been deseribed from Pliocene deposits from Spain and were interpreted to 

have formed in a shallow, hydrologically closed, perennial lake system (Angeles Garcia 

Del Cura et al. 2001). The presence o f  chert pseudomorphs after sulfate nodules may 

reflect periodic drying and exposure o f  the lake system.
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4.1.14 Red siltstone-sulfate lithofacies association

The red siltstone-sulfate lithofacies association appears to represent a elastic- 

dominated, sabkha-like environment. Fine-grained clastic sediments that dominate this 

lithofacies association were probably deposited by alluvial and/or aeolian and/or 

lacustrine processes similar to proposed depositional mechanisms for the red siltstone 

lithofacies in the sheet sandstone lithofacies association. Sulfates were deposited within 

the fine-clastic host rocks thourgh evaporitic processes. The source o f  water for the 

precipitation o f these evaporites may be represented by the lacustrine massive dolostone 

lithofacies association. Evaporation at the subaerially exposed sabkha surface likely set 

up a gradient by which lake waters were pumped through lake marginal sediments 

towards the sabkha surface. Carbonate horizons with teepee structures and abundant 

nodular sulfates may represent areas o f  seepage inflow similar to carbonate horizons 

described by Hanford et al. (1984). Altematively, they may represent lagoonal or minor 

lake/pond environments where microbial mats flourished and induced carbonate 

production. Modem analogues to this lithofacies association include siliciclastic 

dominated sabkha environments such as Salina Ometepec in Baja Califomia. Possible 

ancient analogs include the Permian Shattuck Sandstone o f  Texas and N ew  Mexico 

(Mazzulo et al., 1991) or the Permian Yates Formation o f  Texas (Andreason, 1992).

4.1.15 Red siltstone-fine-grained sandstone lithofacies association

Like the red siltstone-sulfate association and the sheet sandstone association, the 

fine-grained siliciclastic material that composes the majority o f this lithofacies 

association was probably deposited by alluvial and aeolian processes. Though the 

environment o f  deposition o f the clastic sedimentary rocks o f  this association was likely
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similar to the red siltstone-sulfate lithofacies association, there is little evidence o f early 

diagenetic sulfate mineralization. This suggests that saline shallow groundwaters were 

not present to provide a source for the precipitation o f  evaporites. The distinction 

between these two very similar lithofacies associations, therefore, is likely the result o f  a 

local difference in hydrology. The red siltstone-fine-grained sandstone lithofacies 

association may represent an area o f  active water recharge and consequently did not 

accumulate major intrasediment evaporite minerals (e.g., Rosen, 1994). Conversely, the 

red siltstone-sulfate lithofacies association may represent an area o f  local evaporitic, 

groundwater discharge and as such accumulated extensive sulfate minerals. Iron-rich 

clay cutans and blocky peds, along with nodular carbonate horizons sporadically present 

in this association attest to subaerial conditions and soil formation. Homogeneous fine­

grained sandstones may be o f aeolian origin.

4.2 Depositional History

The above discussion provided details concerning the depositional settings o f  

individual lithofacies associations. The following sections examine the stratigraphie 

relationships between depositional environments in the informally defined 

allostratigraphic units outlined in chapter 3. Cheadle (1986a and b) considered the 

deposition o f the Sibley Group to be the product o f three distinct phases: an early alluvial 

phase (the Pass Lake Formation), a middle lacustrine phase (the Rossport Formation), 

and a final alluvial phase (the Kama Hill Formation). The first two phases correspond to 

the section o f  the Sibley Group that were examined during this study.

Cheadle (1986 a and b) suggested that the early alluvial phase consisted o f  the 

development o f small alluvial fans and extensive alluvial outwash flats. Interpretation o f
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the green sandstone-siltstone, planar cross-stratified sandstones and thinning upward 

sandstone units as fluvial dominated deltas, products o f  subaqueous sandwave migration 

in a nearshore clastic dominated environment, and beach/storm remobilized near shore 

sandstone sheets respectively, requires modification o f the alluvial fan/ alluvial outwash 

flat model. Cheadle (1986 a and b) subdivided the middle lacustrine phase into four 

separate depositional episodes: an early high stand represented by his cyclic facies (red 

siltstone-dolostone, red siltstone-dolomitic sandstone lithofacies associations), a low  

stand that deposited his mudstone lithofacies (sheet sandstone lithofacies association), a 

period dominated by groundwater influx when the Middlebrun Bay Member (black chert- 

carbonate lithofacies association) was deposited and a subsequent transgression where the 

dolomitic muds o f  the Fire Hill Member (massive dolostone lithofacies association) were 

deposited. This model also requires modification based on the interpretation o f non­

saline lacustrine deposits at the base o f the mixed siliciclastic carbonate unit, 

interpretation o f  the sheet sandstone lithofacies association as largely subaqeuous rather 

than as a dry playa system and interpretation o f  the black-chert carbonate lithofacies 

association as a shoreline environment rather than a spring-fed, restricted, shallow  

lacustrine system. Further, the recognition o f  wet and dry mudflat (sabkha) deposits 

requires a more complex depositional model.

Idealized block diagrams illustrating the changes in depositional environments 

through the deposition o f  the four stratigraphie units are shown in Figures 4.4 to 4.9. The 

diagrams are generalized to show broad changes in climate and deposition environment 

through the deposition o f  the portion o f the Sibley Group studied. The diagrams do not 

show exact changes in geographic positions o f lithofacies association and their
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thicknesses, but are meant to serve as conceptual models for the broad spatial distribution 

o f  environments in space and time.

4.2.1 Basal siliciclastic unit

The basal siliciclastic dominated portion o f the Sibley Group can be modeled as 

the product o f  two distinct depositional episodes and two conceptual models can be 

invoked to explain the distribution o f  lithofacies association in this unit. In the first 

proposed model (Fig. 4.1), alluvial sediments deposited by small debris flow dominated 

alluvial fan systems and braided fluvial systems, initially filled paleotopographic lows, 

valleys, in the pre-Sibley Group surface. A major transgression followed the deposition 

o f  fluvial units partially reworking them in the process. Two styles o f vertical clastic 

dominated successions may have developed in response to the transgressive episode. The 

green sandstone-siltstone lithofacies association may represent areas that were near the 

primary source o f sediment delivery to the basin where high sediment delivery produced 

progradational, wave-dominated deltaic deposits. The thinning upwards sandstone 

lithofacies association represents areas away from major sources o f  sediment delivery 

(greater accomodation space) where progressively drowning strand-line deposits formed. 

In the second proposed model (Fig. 4.2), braided fluvial systems feeding from the 

northwest again filled paleotopographic valleys in the pre-Sibley surface but may have 

debouched into a waterbody located in the southeastern portion o f the basin where deltaic 

sediments accumulated. Following the fluvial/deltaic deposits, trangressive shoreline 

deposits o f the fining thinning upwards lithofacies association were deposited in a similar 

fashion to the first model. With the available stratigraphie data, it is difficult to discern 

which o f  these two models best fits the observed stratigraphie data. Figure 4.3 shows a
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schematic representation o f the distribution o f depositional environments in the basal 

clastic unit with braided streams feeding delta outbuilding in the south. Figure 4.4 

depicts the transgressive episode that deposited the upper portions o f the basal 

siliciclastic unit and lower portions o f the mixed siliciclastic carbonate unit.

W E

Fluvial phase

Figure 4.1. A conceptual model for the deposition o f the basal clastic unit (Only very general spatial 
relationships are implied by the diagram). The upper box depicts initial fluvial infilling of topographic lows in 
the pre-Sibley Group surface. The lower box depicts trangression o f waters over the basin with fining-thinning 
upwards sandstone successions developing in some areas, and progradation o f deltaic deposits where high 
sediment supply created forced regressions.

NW
Subaerial Subaqueous

Fining and thinning upw ards sandstone

Figure 4.2. A second conceptual model for the deposition of the lower clastic unit. The upper box depicts initial 
fluvial deposits in the northern portion of the study area feeding deltaic deposits in the southeast. The lower box 
depicts the trangressive event that may have followed depositing the thinning-upward sandstone association.
The primary difference between the two models is the relative age of the deltaic deposits. The first model has 
deltaic deposits forming during the transgressive episode responsible for the deposition of the thinning upward 
sandstone lithofacies association. In the second model, deltaic deposits are forming prior to the transgressive 
episode, and are related temporally to the braided fluvial deposits.
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Figure 4.3. Schematic representation of a depositional model for the fluvial and deltaic portions of the basal 
clastic unit. The northern portion of the area is interpreted to have been filled by topographically controlled 
braided fluvial depositional systems which fed delta deposition in a water body to the south and south-east.
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Figure 4.4. Schematic block model showing the development o f a non-saline lacustrine system  
following trangression and deposition of fining- and thinning-upward sandstone units, and during 
the deposition o f the red siltstone lithofacies association. The legend for this diagram is the same as 
Figure 4.4.

4.2.2 Mixed slliciciastlc-carbonate unit

The mixed siliciclastic-carbonate unit records lacustrine deposition that appears to 

have changed from non-saline to saline through time. The non-saline lacustrine deposits 

o f the red siltstone lithofacies association are gradational from the underlying thinning- 

upwards sandstone lithofacies association and are likely related to the same transgressive
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event, with red siltstones representing progressively further offshore deposits. The 

stratigraphie distribution o f cyclic deposits o f  the red siltstone-dolostone and red 

siltstone-dolomitic sandstone lithofacies associations attest to the presence o f  a 

widespread, shallow, perennial, saline lake system. Lateral variations in the distribution 

o f red siltstone-dolostone versus red silstone-dolomitic sandstone reflect relative 

proximity to sources o f  clastic input. Relatively short-term variation between wet (clastic 

rich layers) and dry (dolomite/sulfate rich layers) climates is recorded in the red siltstone- 

dolostone lithofacies association (Fig. 4.5). Periodic subaerial exposure, indicated by 

mudcracked or brecciated dolostone layers, displacive sulfate nodules, and sulfate filled 

mudcracks, relate to periods o f exceptionally dry climate and subaerial exposure in more 

shore proximal regions. Distal lake deposits are represented by successions with little 

evidence for exposure. Further constraints o f  the paleoenvironmental and chemical 

evolution o f  lithologies in this unit is provided by geochemical data discussed in chapter 

5. Overall, this unit appears to record a fairly stable period where a large lacustrine 

system covered the majority o f  the study area (Fig. 4.6). The climate was probably quite 

dry as shown by the presence o f evaporitic dolomite and sulfate, however, a significant 

source o f inflow must have been present to maintain perennial lake conditions.
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Relatively arid phase- precipitation of dolostone 
layer +/- nodular sulfate and mudoraoks

Receeding shoreline

Dolomite precipitation dominates accumulation

Sulfate precipitation 
during subaerial 
exposure

+  + +

Red sittstone-doiomHIc 
sandstone  (perennial lake 
shoreline regions)

Period of increased clastic influx 
because of wetter ollmate- 
oocumulatlon of nnixed dolonnlte and 
fine elastic material, i.e. red siltstone

Dolomite precipitation with contribution of fine clastic material

Expanding lake

Red siltstone-dolomitic 
san d s to n e  (perennial 
shoreline regions)

Figure 4.5. Simple climate controlled model for the perennial lake system that deposited the red 
siltstone-dolostone lithofacies association. The top diagram illustrates a relatively dry climatic phase 
with little siliciclastic sediment supply when relatively pure dolostone accumulated along with sulfate 
formation under subaerially exposed lake marginal areas. The bottom diagram illustrates a 
relatively wet climatic phase where increased siliciclastic supply lead to deposition o f sediment more 
rich in siliciclastic material.

Rogala (2003) provided an estimate o f  the depositional rates in this unit based on 

a paleomagnetic secular variation curve for a 90 cm long section o f dolomitic red 

siltstone from this unit. Peaks in the secular variation curve derived for a section o f the 

Channel Island Member and estimated sedimentation rates o f 0.15 mm/a and 0.5 mm/a
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suggested a periodicity between 1700-5700 years (Rogala, 2003). Individual peaks were 

separated by decimeter scale intervals and this suggests that climatic variations preserved 

in decimeter scale oscillations between siltstone (wet) and dolostone (dry) climates 

occurred over similar time-scales.

Figure 4.6. Schematic model showing the development of perennial saline lake conditions during the 
deposition of the mixed siliciclastic carbonate nnit. Red siltstones and micritic dolostones were 
deposited in areas removed from clastic influx while red siltstones and dolomitic sandstones 
(dolomite cement and some dolomite intraclasts) were deposited at zones of clastic influx. The legend 
for this diagram is the same as Figure 4.4.
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4.2.3 Upper clastic unit

The transition from the mixed siliciclastic carbonate unit to the upper clastic unit 

marks the réintroduction o f coarser clastic material to the basin and the end o f  deposition 

o f pure dolostone beds. Paleocurrent data is scattered (Fig. 3.6), however, they suggest a 

change as compared to the lower clastic unit from a southward to a northward paleoslope. 

Thus, the change in depositional environments may have been the result o f  tectonic 

reorganization o f the basin and increase in siliciclastic sediment supply. Altematively, 

the change in depositional style may be the result o f  a major climatic change from the 

relatively wet interval, represented by the underlying perennial lacustrine phase, to a 

dryer interval represented by ephemeral playas o f  the sheet sandstone lithofacies 

association. However, the dry playa interpretation is problematic because o f the 

preservation o f  finely laminated units in a few localities and as such accumulation o f  

most o f  the fine-grained clastic sediment probably occurred under water. Because o f  this 

it is difficult to support a change to more arid conditions as the main control on the 

change in depositional setting from the lower unit. Increased siliciclastic and water input 

from the south may have inhibited carbonate deposition in a lacustrine setting leading to 

the end o f pure carbonate sedimentation intervals represented by dolostone beds. In the 

upper portions o f  this stratigraphie interval a transition from subaqeuous conditions to 

subaerial exposure is recorded by the change from the sheet sandstone to the black chert- 

carbonate lithofacies association further supporting a subaqueous origin for the sheet 

sandstone association. Figure 4.7 presents a generalized view o f the distribution o f  

lithofacies associations in the upper clastic unit.
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Figure 4.7. Schematic representation o f lake system during the deposition of the upper clastic unit. 
Stromatolitic carbonates probably developed in restricted shoreline environments during the latter 
stages o f the deposition of this unit as the lake system was shrinking prior to subaerial exposure. The 
legend for this diagram is the same as Figure 4.4.

4.2.4 Mixed sillciclastic-carbonate-evaporite unit

The presence o f interpreted subaerial exposure features at the top o f the black 

chert-carboante lithofacies association and the inclusion o f  partially lithified clasts o f  

lithologies present in the underlying stratigraphie unit into intraformational 

conglomerates at the base o f  this unit suggests that there may have been a significant
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hiatus between the deposition o f the upper clastic unit and the upper mixed unit. This 

may have been the result o f continued uplift in the southern portions o f the region or a 

change to a drier climate. A tectonically induced period o f  exposure is supported by the 

development o f debris-flow intraformational conglomerates and cannibalism o f  

underlying units forming intrabasinal clasts. The timeframe for this apparent tectonic 

reorganization or its causes are unknown. However, it probably began with the 

introduction o f sheet sandstone beds from the south. Increased tectonic activity 

suggested by intrusive sedimentary breccias and debris flow intraformational 

conglomerates may coincide with the proposed development o f a half graben structure 

(Rogala et al. 2005). Figure 4.8 depicts the distribution o f lithofacies associations related 

to the period o f subaerial exposure that followed the deposition o f  the upper clastic unit.

Subaerial exposure appears to have been followed by reflooding o f  portions o f  the 

basin which caused resumed saline lacustrine deposition (massive dolostone lithofacies 

association) and associated wet (red siltstone-sulfate lithofacies association) and dry (red 

siltstone-fine-grained sandstone lithofacies association) mudflat deposition around the 

lake’s margins (Fig. 4.9). Massive dolostones are interbedded with intraformational 

conglomerate horizons which supports continued tectonic activity during this period. The 

change to siliciclastic, siltstone dominated deposition that marks the lithostratigraphic 

contact with the Kama Hill Formation may have been the result o f a climatic change to a 

more humid conditions with increased clastic input, which lead to an end o f deposition o f  

dolostone and sulfate lithologies.
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Figure 4.8. Schematic represantation of the period o f subaerial exposure following the deposition o f  
the upper clastic unit. Increased tectonic activity likely caused the intrusion of intraformational 
breccias, synsedimentary faulting and induced subaerial debris flows. Pedogenic processes likely 
created karst-like features in places (possibly evaporite dissolution breccias), terra rossa style soils 
and soil carbonate horizons. The legend for this diagram is the same as Figure 4.4.
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Figure 4.9. Schematic representation o f the distribution o f saline lake and mudflat deposits during 
the deposition o f the upper mixed siliciclastic-carbonate evaporite unit. The legend for this diagram  
is the same as F igu re  4.4.
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Chapter 5. Geochemistry

5.1 1ntroduction

Stable isotope (C, O and S), radiogenic isotope (Sr), and trace element 

compositions, including REE’s, were determined for various carbonate and sulfate 

lithofacies at a variety o f  stratigraphie levels within the Sibley Group. This chapter 

outlines sampling and analytical methods used, provides a brief overview o f  geochemical 

systematics, reviews relevant literature on the evolution o f the Mesoproterozic oceans 

and atmosphere, presents raw geochemical data organized according to stratigraphie units 

and discusses the results. The discussion section examines indicators o f diagenetic 

alteration and discusses the implications o f geochemical data on the depositional 

environments and paleohydrologic conditions present during the deposition o f  the lower 

portions o f the Sibley Group.

5.2 Methodology

Section 5.2 describes sampling methods and detailed analytical methods for 

carbon, oxygen and sulfur stable isotope analyses as well as trace element analyses. 

Appendices 1 -6 contain complete tables o f all geochemical data collected.

5.2.1 Sampling

Samples were collected from both measured drill core sections during logging and 

from outcrops. Polished thin sections were cut for most samples and examined via an 

optical microscope and/or a scanning electron microscope for pétrographie 

characterization and to assess alteration. Powders for geochemical analysis were made
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using a hand-held ceramic mortar and pestle after hand samples were crushed into mm- 

scale pieces and visibly unaltered and siliciclastic-free chips were picked out under a 

binocular microscope. Splits from these small whole rock samples were divided for 

analyses by the various methods detailed below.

5.2.2 Determination of carbon, oxygen and sulfur isotopic composition

Carbon, oxygen and sulfur isotopic compositions were determined at the Queens 

University stable isotope laboratory in Kingston Ontario. For carbonate (dolomite) 

samples, carbon dioxide was extracted with phosphoric acid (McCrea, 1950) and 

and *^0/^*0 were measured using a Gas Bench coupled to a Thermo Finnigan Delta plus 

XP mass spectrometer utilizing continuous flow technology. Results for both carbon and 

oxygen are reported in standard delta (5 ) notation in per mil (%o) relative to the standard 

Peedee Belemnite (PDB). Sulfur was extracted and analysed using continous flow  

technology with a Carlo Erba NCS 2500 Elemental Analyser coupled to a Finnigan MAT 

252 Mass spectrometer. Sulfur results are reported in %o notation relative to the Canon 

Diablo Troilite standard (CDT). Replicate analyses suggest a precision o f  0.1 per mil for 

all stable isotopic analyses.

5.2.3 Determination of Sr isotopic composition

^^Sr/^Sr ratio determinations were preformed at Carleton University in Ottawa 

Ontario. Carbonate was separated from samples using a weak (5%) acetic acid leach 

method similar to that described by Bailey et al. (2000). Weak hydrochloric acid was 

originally used for leaching, but high Rb contents and corresponding high Sr isotopic
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ratios in samples analysed by this separation method suggested significant clastic 

contamination.

Prior to Sr separation, 50-100 mg carbonate samples were preleached in 5% acetic 

acid for Ihr to remove Sr adsorbed onto clastic impurities. Samples were then leached in 

5% acetic acid for 24 hrs to dissolve the carbonate fraction o f the sample. Leachates 

were pipetted from samples and placed into clean teflon beakers and dried. Sr was then 

separated from this acetic acid soluble portion. Sulfate samples were leached for 1-2 

days in distilled deionized water, separated by pipette into clean teflon beakers and dried. 

Sr was then separated from this water-soluble portion.

Sr separations were done using cation exchange chromatography. The samples 

were dissolved in 2.5N HCl and pipetted into a 10-ml borosilicate glass chromatography 

column containing 3.0 ml o f Dowex AG50-X8 cation resin that was pre-cleaned in 6N 

HCl. Sr was eluted using 15 ml o f  2.5 N  HCl. Samples were loaded onto a single Ta 

filament with H 3PO 4 and isotopic ratios were determined using a Finnigan MAT 261 

thermal ionization mass spectrometer at filament temperatures o f 1480-1520°C. Isotope 

ratios were normalized to *^Sr/**Sr = 0.11940 to correct for fractionation. The standard 

NIST SRM987 was run along with the samples. From Sept. 1992 - May 2003 the value

o f this standard as analysed at Carleton has been *’Sr/*^Sr = 0.710251 -  18, n=50.

5.2.4 Trace element geochemistry

Trace element compositions were determined by either ICP-AES at Lakehead 

University or ICP-MS at Ontario Geoscience Laboratories. For carbonate samples an 

acetic acid leach method, again similar to Bailey et al. (2000), was applied in order to
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avoid contamination o f carbonate geochemical signatures by clastic material. The 

method for the acetic acid leach was as follows:

1) 50-200 mg aliquots o f powder were weighed in acid cleaned teflon beakers

2) 10ml o f  5% acetic acid was added as a pre-leach and allowed to react for 1 hr 

to remove materials loosely bound on clastic particles

3) Pre-leach solutions were removed by pipette and discarded

4) 10ml o f 5% acetic acid was again added and allowed to react for 24 hr in a 

covered teflon beaker

5) After 24 hr acetic acid was pipetted from the sample beakers, filtered and 

placed into new teflon beakers for drying

6) Dried acetic acid soluable material and teflon beakers were weighed

7) Samples were then dissolved in 5% HCl solutions for analysis by ICP-AES or 

ICP-MS

8) Dried teflon beakers were reweighed after sample dissolution to determine 

sample weights.

Several procedural blanks were run during the course o f  the analyses to evaluate the 

degree o f contamination associated with acids used and impurities from the sample 

preparation lab and labware. In addition, several duplicate analyses were run to evaluate 

the reproducibility o f  analyses by this method. For ICP MS analyses, the river water 

standard SLRS-4 was also analyzed along with samples to evaluate instrumental 

accuracy.

Trace element geochemistry for sulfate samples was carried out by ICP-AES at 

Lakehead University. Sample powders were allowed to dissolved in 20-30 ml o f  distilled
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deionized water for several days. After several days about 20-30ml o f  water were 

removed by pipette and placed into a clean teflon beaker and dried. The water soluable 

portions o f the sample powder and teflon beaker were then weighed. After weighing, 

water soluble portions o f the sample were dissolved in a 5% HCl solution for analysis. 

Empty beakers were then weighed to determine sample weights.

Replicate ICP AES analyses o f  two carbonate samples. C l-la, dolomicrite from 

the black chert-carbonate lithofacies association and CIF-15, an Archean ankeritic 

dolomite from the Steep Rock Group are shown in Table 5.1. Values for Ca, Fe, Mg,

Mn, Sr and Y are quite stable for each carbonate analysis and tend to deviate less than 

10% from the average value in each case. Two replicate analyses o f a gypsum sample, 

Tbg, show poor reproducibility, though this may have improved with more analyses. An 

ICP MS analyses o f C l-la  typically showed trace element concentrations slightly lower 

than those determined by ICP AES. However, replicate analyses o f other samples by ICP 

MS show good reproducibility (appendix 2).

Table 5.1. Replicate ICP-AES analyses of two carbonate samples (C l-la  and CIF-15) using the acetic 
acid dissolution method and a replicate analysis o f one gypsum sample (Tbg) using the water 
dissolution method.

sam ple AI ppm Ba ppm C a ppm Fe ppm Mg ppm Mn ppm Na ppm  P ppm S ppm Si ppm S r ppm  Y ppm

C M a 41.97 431.00 137171.39 930 42 71607.18 588.58 71.48 nd 140.84 22.65 56.50 3 84
C l-la 39.58 716.92 138808.86 940 57 77079.59 580 84 175.59 53.62 159.74 18.91 51.25 4.00
C M a 49.95 240.74 139093.32 834 78 82278.02 570.51 84.70 nd 58.21 16 72 47.39 4.48
C l-la 52.92 167.04 133827.42 837.14 74771.84 538.97 70.58 0.09 53.53 22.62 47.62 3.97
C M a 52.27 546.24 133526.64 813.71 77830.70 556.39 171.58 22 68 161.65 7.12 43.61 4.30
C M a 48.74 466.16 127925.07 806.51 78923.62 551.98 180.61 6.53 185.14 8.08 41.29 4.42

CIF-15 16.39 10.12 130936.04 2294.38 78951.07 2059.11 252.13 1 0 5 9 53.49 17.57 27.63 nd
CIF-15 0.21 8.09 127461.02 2126.62 76401.22 1947.98 39.67 0.53 nd nd 25.61 2.66
CIF-15 1.64 7.92 126899.73 2116.48 75583.56 1943.21 121.13 39.85 2.96 1.78 26.68 2.64
CIF-15 nd 6.97 130735.79 2258.97 78737.52 1958.34 44.62 nd nd 1.86 25.38 2.69
CIF-15 15.41 9.69 128357.08 2059.32 79338.84 1918.66 45.85 nd 25.30 11.54 26.95 2.76
CIF-15 10.65 10.34 127359 69 2146.35 76763.24 1938 36 119.01 10.44 44.03 nd 27.10 2.73

Tbg1 nd 4.52 217837 nd 291.54 6.92 53.75 nd 178210 249.42 885.87 nd
Tbg2 2.90 6.13 260573 nd 342.63 3.50 170.44 nd 213359 198.92 1062.83 nd
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5.3 Geochemical systematica

A  synopsis o f  the factors controlling carbon, oxygen, sulfur and strontium 

isotopic systematics and rare earth element systematics is required prior to discussion o f  

Sibley Group data. A brief discussion o f  each isotope system is given in the following 

paragraphs. In each case, a brief overview o f the factors controlling the marine evolution 

o f the respective isotopic systems and also factors controlling the compositions o f  each 

isotopic system in a non-marine depositional environment is discussed. Factors 

controlling the composition o f REE’s in chemical sedimentary rocks are also discussed. 

Exhaustive reviews are not possible in this thesis, however, a general overview provides 

a reference for interpretive discussion o f the geochemistry o f the Sibley Group that 

follows.

5.3.1 Carbon and oxygen

Fractionation between water and carbonate varies considerably with temperature 

for oxygen, but negligibly for carbon (e.g. Faure, 1986; Veizer, 2003). The o f  

dissolved carbon in seawater is about 1 +/- 0.5 %o and atmospheric C O 2 in equilibrium 

with dissolved carbon in the oceans has a isotopic composition o f  about -7  %o (Veizer 

and Mackenzie, 2005). In the rock record carbon resides in two primary reservoirs, 

carbonate sediments and organic material. These reservoirs are related to the carbon 

cycle through atmospheric CO2 and dissolved carbon in the oceans (hydrosphere). In a 

simplified sense, long term variations in the carbon isotopic composition o f  the oceans 

through time, and hence marine carbonates through time, occur because o f  differences in 

the rates o f burial o f organic carbon versus inorganic (carbonate) carbon (e.g. Holland, 

1984; Rump and Arthur, 1999; Frank et al., 2003). As organic carbon is enriched in '^C,
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global increases in rates o f organic matter production and burial drive the oceans toward 

more ’^C enriched compositions. Figure 5.1 shows variations in marine carbonate 

through geologic time.

Phanerazoic

575

Neopratorazoic

1000

Approximate
Age
of Sibley 
Group1600

2500

Figure 5.1. Isotopic composition o f marine carbonates from the late Archean to present (modified 
from Brasier and Lindsay, 1998; Bartley and Kah, 2004)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



117

The carbon isotopic composition o f carbonates precipitated from lakes depends 

primarily on the composition o f  dissolved carbon in the lake water as there is little carbon 

isotopic fractionation during the precipitation o f carbonates and little temperature affect 

(Emrich et al., 1970; Romanek et al., 1992; Talbot, 1990). The main controls on the ô'^C 

in most lake waters are: CO2 added through decomposition and respiration o f organic 

matter, dissolution o f  existing carbonate rocks, exchange with the atmosphere, and 

sequestration o f  '^C by organisms (Valero-Garces et al., 1999). However, in saline lake 

settings, processes such as evaporation and residence time are often dominant in 

controlling the composition (e.g., Valero-Garces et al., 1999; Last, 2002). Talbot 

(1990) reviewed paleohydrological classification o f  lake systems and suggested that open 

lake systems show relatively invariant and 5**0 and no significant covariance 

between the two isotopic systems whereas closed lake systems often show statistically 

significant covariance. This covariance is the result o f  evaporitic and residence time 

effects that lead to coupled increases in and (Talbot, 1990). Primary 

carbonates from freshwater lakes typically have compositions that are relatively 

light and range between -6  and -1 2  %o while saline lakes can attain heavier isotopic 

compositions o f  up to +5 %o (Valero-Garces et al. 1999). In some instances very high 

carbonate ô ’^C enrichments (+13 %o; Valero-Garces et al., 1999; ~+17 %o Melezhik et 

al., 1999) have been reported from evaporitic lacustrine systems. Lake carbonate can 

also form in equilibrium with atmospheric CO2 and for these precipitates can have 

typical marine values o f  around 0 %o(e.g. Valero-Garces et al., 1999).

The oxygen isotopic composition o f  primary lacustrine carbonates depends on the 

temperature and the composition o f  the water from which they precipitate (e.g. Chivas,
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1993). ô'*0 o f  lake-water is controlled by the composition o f  input (rainfall/runoff and 

groundwater) and physical processes such as evaporation within the basin (e.g. Valero- 

Garces et al., 2000). o f precipitation depends on the temperature o f  condensation 

and on the amount o f  water removed from the air mass from which precipitation is 

occurring relative to the original amount it contained (e.g., Kendall and Doctor, 2005). 

§'*0 o f  groundwater reflects the average composition o f precipitation, but may be 

modified by various processes, such as evaporation or reaction with bedrock.

General reviews o f the stable isotopic compositions o f  calcretes are found in 

Wright and Tucker (1991) and Alonzo-Zarza (2003). Compilations o f  calcrete carbon 

and oxygen stable isotopic compositions show that calcrete values range between 

-1 2  and 4 %o and ô'*0 values range between - 9  and +3 %o (Alonzo-Zarza, 2003 and 

references therein). Multiple factors are important in controlling the stable isotopic 

composition o f  pedogenic carbonates and these include but are not limited to: 

atmospheric composition, elevation, latitude, temperature, degree o f freezing, vegetation 

cover (type and amount), rainfall/runoff composition (also seasonal variations in rainfall 

composition), degree o f evaporation, proximity to the ocean and contamination by 

existing soil and other carbonates (Wright and Tucker, 1991). ô'^C in pedogenic 

calcretes is primarily controlled by the composition o f  soil CO2 (Cerling, 1991). In 

relatively young calcretes the composition o f soil CO2 is controlled by the relative 

proportions o f  C3, C4 or CAM plants that produce CO2 through root respiration, 

microbial oxidation o f organic matter and atmospheric CO2 penetration into the soil 

(Cerling, 1984; Amundsen et al., 1988; Mack et al., 2000; Alonzo-Zarza, 2003). Clearly 

in a Mesoproterozoic setting the effects o f  higher plants are not factors, and as such soil

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



119

COi would have been controlled by atmospheric CO2 penetration, microbial respiration 

and oxidation o f organic matter. 5^*0 in calcretes is controlled primarily by 

rainfall/runoff composition, selective infiltration, evaporation and temperature (Talma 

and Netterberg, 1983; Cerling, 1984; Wright and Tucker, 1991). In a groundwater 

calcrete, Ô^C and ô ’*0 will depend primarily on the composition o f dissolved carbon and 

oxygen in groundwater.

Calcrete stable isotopic compositions have been used in various capacities in 

paleoenvironmental and paleoatmospheric studies. In addition to their importance as 

indicators o f  semi-arid to arid climatic conditions, stable carbon isotopic compositions o f  

pedogenic carbonates have been successfully used to quantitatively assess the partial 

pressure o f  CO2 in the atmosphere through the Phanerozoic (e.g., Cerling, 1991, 1992). 

Cerling (1991, 1992) developed a quantitative model o f the controls on pedogenic 

carbonate compositions and a paleobarometer for the partial pressure o f  CO2 o f the 

paleoatmosphere based on the ô*^C o f purely pedogenic carbonates and various 

assumptions. In a general sense, at high atmospheric CO2 levels relatively heavy 

atmospheric CO2 can enter soil pores and pedogenic carbonates precipitated will record 

relatively heavy ô'^C. Conversely, at low atmospheric CO2 levels, relatively light CO2 

derived from plant respiration or organic matter decay dominates soil CO2 leading to 

lighter carbon isotopic compositions in precipitated pedogenic carbonates. Through parts 

o f  the Phanerozoic, atmospheric CO2 levels estimated by pedogenic carbonate ô̂ ^C 

correlate well with those proposed through other methods, such as the stomatal index o f  

fossil leaves (e.g., Retallack, 2001, 2002). However, applying the principles o f  Cerling's 

(1991, 1992) method is difficult with respect to Sibley Group pedogenic carbonates as
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neither the ô*^C o f atmospheric CO2 or the ô'^C o f soil organic matter is known. More 

importantly, assumptions about the proportion o f CO2 contributed by respiration and 

decay o f  organic matter that are required for the model are impossible to estimate. In 

relatively young well-drained soils organic related CO2 contribution is assumed to fall 

within restricted limits (e.g. Cerling, 1991,1992; Ekart et al. 1999); however, these 

assumptions are probably not valid in a Precambrian setting. Overestimating the 

proportion o f CO2 contributed by soil respiration and rotting o f organic matter will lead 

to an underestimation o f pC02 in the atmosphere. As the rates o f soil CO2 respiration 

and organic matter content may have been significantly lower in the Mesoproterozoic 

than in most Phanerozoic soils, the composition o f a Mesoproterozoic pedogenic 

carbonate should have higher ô'^C compositions reflecting an increased influence o f  

atmospheric CO2 .

5.3.2 Sulfur

The sulfur cycle at the surface o f the Earth contains three major reservoirs: 

dissolved sulfate in the ocean; sulfide minerals, primarily pyrite in shales; and sulfate 

minerals, primarily gypsum in evaporite deposits (e.g., Bottrell and Newton, 2006). The 

mantle is the primary source o f sulfur to the earth’s surface reservoir and it is delivered to 

the earth’s surface through volcanic degassing, hydrothermal circulation and weathering 

o f ocean crust (Canfield, 2004). In an oxidizing atmosphere sulfur is weathered from 

continents as sulfate (S0 4  ̂) and delivered to the oceans. In the oceans, sulfur-reducing 

bacteria can reduce sulfate to sulfide and pyrite can precipitate. If sulfate is delivered to a 

restricted evaporitive basin, sulfate minerals may be precipitated. Uplift eventually re­
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exposes sedimentary sulfur deposits to weathering and delivery back to the oceans and 

this sulfur may be returned to the mantle through subduction.

The isotopic compositions o f  sulfate minerals precipitated from water reflect the 

composition o f the water with very little fractionation (0  to + 2 .4  %o) (e.g., Ault and Kulp, 

1959; Thode et al., 1961; Thode and Monster, 1965; Nielsen, 1978). Fractionation 

between the sulfide and sulfate reservoirs occurs largely through the action o f  sulfate 

reducing bacteria. Sulfate reducing bacteria preferentially use and the reduced sulfur 

species generated from the process is depleted in "̂*8. A number o f factors including the 

type o f bacteria, the type o f organic substrate and the reduction rate control the actual net 

fractionation from this process (Harrison and Thode, 1958; Kaplan and Rittenberg, 1964;  

Chambers and Trudinger, 1979; Strauss 1 9 99). Environmental effects, such as sulfate 

availability, are also very important and may overshadow the effects o f bacterial sulfate 

reduction particularly in cases o f low sulfate concentration (Ohmoto, 1992; Habicht and 

Canfield, 1 9 9 6 ). Low sulfate availability was apparently a major factor in controlling the 

sulfur isotopic composition o f the Archean and Proterozoic oceans (e.g., Canfield, 2 0 0 4 ) .

The compositions o f both sulfide and sulfate sulfur in the oceans has varied 

through time. Numerous publications report curves showing the secular variation in both 

sulfide and sulfate sulfur isotopic compositions from the early Archean to present (e.g. 

Strauss, 1999; Canfield and Raiswell 1999; Veizer, 2003; Canfield, 2004). The 

Precambrian record o f  sulfate sulfur is incomplete because o f  poor preservation o f  sulfate 

lithologies. However, analyses o f  sedimentary sulfides are common and show a distinct 

decrease in ô̂ "*S at about 2.4 Ga that is interpreted to represent a major rise in 

atmospheric oxygen that allowed the action o f sulfur reducing bacteria to procédé in a
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non-sulfate limited system (Cameron, 1982; Canfield, 2 0 0 4 ) . Increased burial o f  

depleted sulfides from this point in the late Archean or early Proterozoic, led to 

increasing o f the oceans. In general, the sulfur isotopic composition o f the oceans 

through time is controlled by the mass balance effects created by differing rates o f  pyrite 

burial (i.e., increased pyrite burial leads to enrichement o f the ocean through removal 

o f depleted sulfides) and the balance between the composition o f  terrestrial sulfur 

input to the oceans and rate o f pyrite burial (e.g., Claypool et al., 1 9 80). However, other 

factors, such as formation o f large sulfate evaporite deposits, sulfate removal as carbonate 

associated sulfate (CAS), burial o f  organic sulfur compounds, and mantle sulfur inputs 

have effects on the composition o f  seawater 6̂ '*S at any given time (Bottrell and Newton, 

2006).

Sulfur in lacustrine systems is generally depleted in "̂*S relative to marine settings 

as most terrestrial sources o f sulfur are ‘̂'S depleted relative to seawater (Shanley et al., 

1998; Bottrell and Newton, 2 0 0 6 ) . Thus, non-marine evaporite deposits are commonly 

characterised by relatively low 0^"S values (e.g.. Lu and Meyers, 2 0 0 3 ). Dissolved 

sulfate in non-marine water is primarily derived from weathering o f older sulfate and/or 

sulfide deposits and from precipitation. Thus, the composition o f dissolved sulfate in a 

lake reflects the composition and proportions o f weathered sulfur-bearing minerals in the 

catchment area, atmospheric input (precipitation) and any sources o f fractionation that 

may occur along the way (e.g., sulfate reduction, evaporation, precipitation o f  sulfate 

minerals, sulfur uptake by organisms, adsorbtion/desorbtion) (Nriagu et al., 1 9 9 1 ). The 

ô '̂^S o f average rivers today has a composition o f + 7  %o (Nriagu et al., 1 9 9 1 ). In areas 

draining older evaporite deposits river chemistries should mimic the compositions o f
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seawater sulfate during deposition o f the preexisting evaporite deposits and as such 

should display relatively high In areas draining black shales with abundant 

biogenic pyrite, the composition o f river water sulfate will be relatively light because o f  

derived from weathering o f  the depleted pyrite. According to Krouse and Mayer 

(2 0 0 0 )  atmospheric sulfur compositions typically range between - 5  % o and + 2 5  %o. 

Heavier values reflect marine sources whereas lighter values reflect contributions from 

biogenic gases (e.g., HiS) or volcanic emissions (Kendall and Doctor, 2 0 0 5 ).

The most important process creating fractionation o f sulfur isotopes in lake 

systems is bacterial sulfate reduction which, if  occurring in a lake system where 

depleted sulfur generated by this process can be removed from the system prior to 

reoxidation, would create shifts to higher 0 ‘̂*S values in the water mass. Fractionation 

can also occur through closed system evaporitic precipitation o f gypsum, which (though 

only to a small degree, 0 -2 .4  %o) will preferentially include during crystallization, 

leaving residual waters depleted in (e.g.. Lu and Meyers, 2 0 0 3 ).

In the shallow, largely oxidizing, lacustrine depositional system represented by 

the Sibley Group, the primary controls on the isotopic composition o f  sulfate minerals 

precipitated were probably the isotopic composition o f sulfur-bearing minerals 

weathering in the catchment area, the composition o f  precipitation, and the effects o f  

sulfur reducing bacteria. Physical fractionation effects caused by closed system sulfate 

precipitation were probably insignificant as closed system precipitation o f sulfates (e.g., 

evaporitic drying o f a single closed water body) did not occur. The lack o f preservation 

o f chemically reduced lithologies in the Sibley Group, with the exception o f the black 

chert-carbonate lithofacies association, which preserves some pyrite and organic carbon.
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may exclude bacterial sulfate reduction as a major control on the sulfur isotope 

geochemistry o f  Sibley Group sulfates. However, as Faure and Mensing (2005) noted, 

reduced sulfur formed through bacterial sulfate reduction can be lost to the atmosphere 

through degassing even in oxidizing settings. Mixing o f water sources o f  differing 

chemistry (i.e., lake and seawater) may also have been a control on stratigraphie 

variations in Sibley Group sulfate compositions.

5.3.3 Strontium

The strontium isotopic composition o f the oceans has varied through time because 

o f variations in the input balance between Sr derived from weathering o f  the continents 

and Sr derived from the mantle through hydrothermal and seawater interaction with the 

ocean crust (e.g., Veizer, 2003). Variations between these two fluxes are most likely 

strongly linked to tectonics with mantle fluxes dominating during periods o f  time with 

fast ridge spreading rates and high mid-ocean-ridge volumes. Sr delivered to the ocean 

through modem ocean floor hydrothermal alteration has a ^̂ Sr/̂ Ŝr ratio o f  about 0.703 

(e.g., Veizer, 2003) while Sr derived from continental weathering is enriched in * Ŝr and 

has an average value approximated by the modem average river water *^Sr/*^Sr ratio o f  

about 0.7110 (Wadleigh et al., 1985).

In a lacustrine system ^̂ Sr/̂ Ŝr will depend primarily on the composition o f  

surface and groundwater input into the basin, which is influenced by the age and Rb/Sr 

ratio o f  rocks in the catchment area and the amount o f water rock interaction. Thus, lakes 

in areas underlain by young volcanic terranes should be characterised by low *̂ Sr/*®Sr 

ratios and areas underlain by old cratonic rocks will be characterised by high, radiogenic 

®̂ Sr/*̂ Sr ratios.
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5.3.4 Rare earth elements

Shale normalized REE patterns for a variety o f primary chemical sediment types 

have been used as a proxy for the chemistry o f waters from which they have precipitated 

(e.g. German and Elderfield, 1990; Webb and Kamber, 1999; Picard et al., 2002).

Various studies have shown the utility o f  REE element patterns for chemical sedimentary 

rocks as indicators o f past geochemical conditions including: the paleoredox chemistry o f  

seawater, the identification o f distinct water mass, the identification o f  detrital input to 

coastal REE budgets, continental erosion, secular variations in ocean chemistry and 

diagenesis (e.g. Wright et al., 1984, 1987; Elderfield and Pagett, 1986; Grandjean et al., 

1987, 1988; Schieber, 1988; Grand)ean-Lecuyer et al., 1993; Felitsyn et al., 1998;

Kamber and Webb, 2001; Picard et al., 2002).

La, Ce, Eu and Gd contents o f marine and estuarine waters vary depending on 

various factors (e.g., Kamber and Webb, 2004; Shields and Webb, 2004). Ce and Eu 

abundance are important paleoredox indicators because, unlike other REE’s, Ce and Eu 

can exist in both +3 and +4 oxidation states. La positive anomalies, Gd and Y anomalies, 

and LREE depleted or HREE enriched PAAS normalized REE patterns are characteristic 

o f the oceans (Nothdurft et al., 2004; Shields and Webb, 2004). Superchondritic (i.e. 

> -28) Y/Ho ratios, between about 44 and 74, are considered to be a characteristic o f  

seawater (Bau, 1996; Nozaki et al., 1997; Webb and Kamber, 2000) and result from 

differences in the rates at which the two elements complex on surfaces such as iron 

oxyhydroxides (e.g., Bau and Dulski, 1999) in seawater. Low Y/Ho ratios in analyses o f  

hydrogenous marine sediments are often used as evidence for contamination by clastic 

impurities in samples particularly i f  correlated with elements more commonly associated
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with clastic sediments such as Zr (e.g., Webb and Kamber, 2000). However, low Y/Ho 

ratios are also characteristic o f  non-marine waters and as such could be used as an 

indicator o f depositional environment. Non-marine waters can have shale normalized 

compositions indistinguishable from seawater but, also commonly show different 

fractionation o f REE’s, particularly middle REE enrichment, which may be related to 

weathering o f  phosphate minerals that are typically enriched in MREE’s relative to shale 

(Hannigan and Sholkovitz, 2001). In general, the REE composition o f lake-water should 

reflect the composition o f  materials that are released during weathering in the catchment.

Relatively few studies were found that documented distribution coefficients 

between water and precipitating carbonate phases. Studies by Sholkovitz and Shen 

(1995) and Webb and Kamber (2000) found that the distribution coefficients across the 

range o f REE’s were constant between seawater-coral and seawater-microbialite, 

respectively. Although the distribution coefficient between various different water-types 

and various carbonate phases likely varies, the important point is that the distribution 

coefficients o f  all REE’s for a particular carbonate phase are relatively constant and as 

such the normalized REE pattern should retain a characteristic signature o f  the water 

from which it precipitated.

5.3.5 The Mesoproterozoic marine Isotopic record of carbon, oxygen, sulfur 

and strontium

Discriminating between a lacustrine or a marine depositional environment for 

Sibley Group carbonate and sulfate lithofacies requires an understanding o f the 

constraints on Mesoproterozoic marine chemistry. The history and importance o f  the 

Mesoproterozoic evolution o f  the Earth has received considerable attention in recent
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years (e.g., Kah et al., 2001; Anbar and Knoll, 2002; Frank et al., 2003; Arnold et al., 

2004). Previously this time interval was little studied relative to the Paleoproterozoic, 

(e.g. Karhu, 1996) and the Neoproterozoic (e.g., Kaufmann and Knoll, 1995; Kaufmarm 

et al., 1997; Jacobsen and Kaufmann, 1999) and various studies considered the 

Mesoproterozoic to represent an extended period o f  very stable chemical and biological 

conditions (Buick et al., 1995; Brasier and Lindsay, 1998). However, as outlined by 

Frank et al. (2003), the Mesoproterozoic was important with respect to the changing 

redox state o f the ocean (Des Marais et al., 1992; Canfield and Teske, 1996; Canfield,

1998), the changing carbonate saturation state o f  the oceans (e.g., Bartley et al. 2000), the 

diversification eukaryotes, and the evolution o f multicellualar organisms (e.g.. Knoll, 

1992; Butterfield, 2000).

The carbonate ô'^C record o f  the Mesoproterozoic appears to be separable into 

two distinct phases (Bartley and Kah, 2004; Frank et al., 2003). From the beginning o f  

the Mesoproterozoic at 1.6 Ga to about 1.3 Ga, ô ’^C appears to have remained close to 0 

%o. After 1.3 Ga, ô̂ ^C increased to about +5 %o in the early Neoproterozoic (Fig 5.1) 

(Bartley and Kah, 2004). Early Mesoproterozoic stability in the marine ô'^C record has 

been interpreted to represent relatively constant rates o f  organic carbon burial throughout 

this period (Buick et al., 1995) possibly due to phosphorous limitation o f primary 

productivity in the oceans (Brasier and Lindsay, 1999). Alternatively, Bartley and Kah 

(2004) proposed that stability in the marine ô^^C record resulted from high levels o f  

dissolved inorganic carbon in the ocean, which effectively buffered against large shifts in 

the isotope record. The positive shift in marine at about 1.3 Ga has been interpreted 

to represent an increase in the crustal reservoir o f organic carbon related to the
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diversification o f eukaryotes and increased preservation o f organic rich shales in anoxic 

deep marine deposits (Frank et al., 2003).

Recent insights into the Mesoproterozoic marine sulfur record have been gained 

through analysis o f carbonate associated sulfate (CAS) (e.g., Kah et al., 2001; Gellaty and 

Lyons, 2005; Bottrell and Newton, 2006). Gellaty and Lyons (2005) analysed CAS from 

the 1.2 Ga Mescal Limestone, Apache Group, Arizona, USA; the 1.45-1.47 Ga Helena 

and Newland Formations, Belt Supergroup, Montana, USA; and the 1.65 Ga Paradise 

Creek Formation, McNamara Group, NW  Queensland, Australia. Sulfur isotopic 

compositions (Ô^^S) in these units were reported to range from +9.1 %o to +18.9 %o, -1 .1  

%o to +27.3 %o, and +14.1 %o to +37.3 %o, respectively. Wide ranges in 6 '̂*S over 

relatively small stratigraphie intervals were interpreted to reflect low sulfate 

concentrations in the Mesoproterozoic ocean. In addition to apparent low sulfate 

concentrations, it has been proposed that while surface waters were likely oxidized, the 

remainder o f  the Mesoproterozoic ocean was largely anoxic and sulfide-rich (e.g. 

Canfield, 1998; Anbar and Knoll, 2002; Shen et al., 2003; Arnold et al., 2004; Poulton et 

al., 2004). Ô̂ Ŝ values in pyrites from a number o f Mesoproterozoic basins (Shen, et al., 

2003; Lyons et al., 2000) are quite high, and similar to inferred compositions o f  coeval 

seawater sulfate. This is consistent with low sulfate concentrations in Proterozoic 

seawater, and pyrite burial as the dominant sulfur removal pathway from the ocean 

(Canfield, 2004).

For comparison with ô̂ '̂ S values for Sibley Group sulfate, the most 

chronostratigraphically equivalent data are probably the CAS analyses o f  the 1.45-1.47 

Ga Helena and Newland Formation carbonates reported by Gellaty and Lyons (2005). As
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mentioned above, these stratigraphie units show a range o f sulfate values o f -1 .1  %o 

to + 2 7 .3  %o (Fig. 5 .2 ). However, CAS’s associated with this section are probably not the 

best indicators o f  changes in marine sulfate compositions as the depositional 

environments represent a restricted, possibly non-marine setting (Winston, 1 9 90). Data 

from the Paradise Creek Formation, the Mescal Limestone, the Dismal Lakes Group 

( - 1 .3  Ga) (Kah et al., 2 0 0 4 )  the Bylot Supergroup ( - 1 .2  Ga) (Kah et al., 2 0 0 1 )  are better 

overall indicators o f  the composition o f  marine sulfate during the middle to late 

Mesoproterozoic. Sulfate ô̂ '̂ S in these units, in general, ranges between +15%o and 

+40%o and Mesoproterozoic seawater sulfate probably varied within this range. 

Stratigraphie trends in CAS for the Bylot Supergroup and Dismal Lakes Group are shown 

in Figure 5 .3 . A  generalized sulfur isotopic composition versus age curve (Fig. 5 .4 )  

adapted from Canfield (2 0 0 4 )  shows how 6^^S may have varied through geologic time 

and suggests an average ô̂ '̂ S composition o f about + 1 5  to + 2 0  %o during most o f the 

Mesoproterozoic.
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Figure 5.2. Stratigraphie variation in CAS 5 ‘̂*S through a section of the about 1.45-1.47 Helena 
Formation, Belt Supergroup, Montana (Modified from Gellaty and Lyons, 2005). Maximum 0̂ '*S 
values likely reflect the composition of seawater, whereas lower values may be reflecting the 
influence of non-marine water.
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about 1.2 Ga Society Cliffs Formation and 1.3 Ga Dismal Lakes Group (Modified from Kah et al., 
2004). Most marine 8 ‘̂*S values lie between 15 and 40 %o.
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Figure 5.4. A reconstruction of marine sulfate composition through geologic time (Modified from 
Canfield, 2004). According to this reconstruction marine sulfate compositions during Sibley Group 
deposition should have ranged between about 15 and 20 %o.

Mesoproterozoic marine strontium isotopic compositions appear to have ranged 

between about 0.704 and 0.705 (Fig 5.5; Shields and Veizer, 2002). Using a simple 

model o f fluvial versus mantle fluxes controlling the marine Sr record, the relatively low  

*^Sr/*^Sr ratio during the Mesoproterozoic suggests a dominance o f  mantle flux 

controlling the Sr isotopic composition o f  the ocean. For the purposes o f this study the 

primary importance o f  Figure 5.5 is to provide a value o f marine *^Sr/*^Sr for comparison 

with Sibley Group data.
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Figure 5.5. Sr isotopic composition of marine carbonates through the Precambrian. The dots 
represent values from various sedimentary units o f the same age. The lower bounding line connects 
the lowest values for each unit and is interpreted to represent the best estimation of the strontium 
isotopic composition of the ocean at that particular time. The straight line represents the strontium  
isotopic evolution of the mantle (modified from Shields and Veizer, 2002 and Ray et al., 2003).

5.3.6. Geochemical indicators of diagenesis

A variety o f  general geochemical indicators o f  diagenetic alteration have been 

proposed to help identify unaltered carbonate compositions. These include elemental 

ratios such as Mn/Sr, oxygen isotopic composition and strontium isotopic composition. 

The use o f these as diagenetic indicators in carbonate rocks is discussed below.

Low Mn/Sr ratios are often quoted as reflecting a low degree o f  diagenetic 

alteration in carbonates (e.g. Derry et al., 1992; Kaufman and Knoll, 1995; Kah et al.,

1999). During diagenesis Mn and Fe are incorporated into the carbonate lattice while Sr 

is commonly removed causing an increase in the Mn/Sr ratio (e.g., Veizer, 1983; Derry et
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al., 1992). A variety o f  empirically determined limits for Mn/Sr ratios in “unaltered” 

carbonates have been proposed and vary from Mn/Sr <10 (Kaufman and Knoll, 1995) to 

as low as Mn/Sr < 0.2 (Semikhatov et al., 1998). Use o f  such ratios for assessing 

diagenetic alteration is problematic as Melezhik et al. (2001) have pointed out, because 

Mn/Sr ratios depend not only on diagenetic alteration, but also the original carbonate 

composition. This is particularly important with regard to this study as the depositional 

environment o f Sibley Group carbonates was most likely non-marine and as such the 

primary concentrations o f Mn and Sr in carbonate mineralizing waters may have differed 

considerably from marine values. In particular, carbonates interpreted to be pedogenic 

and stromatolitic carbonates from highly saline depositional settings may have 

precipitated from waters that differed from typical marine chemistries (e.g. Calvo et al. 

1995). Further, a single set o f criteria cannot be applied in all cases as the composition o f  

diagenetic phases depends not only on the original composition o f primary carbonate 

phases but also the composition o f  diagenetic waters and the difference between them 

(e.g. Bartley et al., 2001). Mineralogy is also a factor in controlling Mn/Sr as the Sr 

content o f dolomite is lower than that o f calcite because o f inherent differences in the 

structure o f  dolomite that excludes Sr from its lattice during crystallization. This 

exclusion o f Sr from dolomite leads to higher Mn/Sr ratios in dolomite relative to calcite.

Oxygen isotopic compositions are also commonly used as an indicator o f  

diagenetic alteration as they are much more susceptible to alteration than carbon isotopic 

compositions because o f the relatively higher proportions o f  oxygen relative to carbon in 

diagenetic fluids. Carbonates effected by meteoric diagenesis usually have lower 

relative to primary carbonate compositions as oxygen in meteoric waters is depleted in
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*^0 relative to seawater (e.g., Veizer, 2003; Frank and Lyons, 2000; Jacobsen and 

Kaufmann, 1999). Carbonates effected by burial diagenesis show a similar '*0 depleted 

nature because o f equilibration o f carbonate minerals at high temperatures (e.g.,

Lohmann, 1988; Kah et al., 1999). Knoll et al. (1995) proposed an empirical guideline o f  

- 1 0  % o or lower as indicating diagenetic alteration in Proterozoic carbonates.

Strontium is a trace element in carbonates and as such, carbonate Sr isotopic 

compositions are easily altered during meteoric and burial diagenesis. In situ addition o f  

radiogeneic Sr by decay o f Rb in clays or other siliclastic impurities may also alter the 

*^Sr/*^Sr ratio in carbonates. In general, Sr isotopic compositions o f meteoric waters will 

be radiogenic (i.e., *^Sr enriched) relative to seawater as most meteoric waters are derived 

from weathering o f old, Rb-rich (*^Sr rich) continental rocks. Hence diagenetic phases 

are often enriched in *̂ Sr. However, primary carbonates precipitated from non-marine 

waters may also have high *^Sr/*^Sr ratios.

For sulfate minerals comparatively little information about diagenetic effects on 

gypsum/anhydrite chemistry was found in the literature. During burial most sulfate in the 

Sibley Group was likely anhydrite, however, subsequent rehydration to gypsum probably 

occurred in many cases. Dissolution/reprecipitation, partial bacterial sulfate reduction or 

exchange with basinal waters can alter sulfur isotopic compositions (e.g. Claypool,

1980). During sampling areas with obvious vein-like features were avoided and for the 

most part, discrete nodules were sampled. These samples were considered to have acted 

as a closed system with respect to sulfur during burial and diagenesis.
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5.4 Results

5.4.1 Samples of the Lower Clastic Unit

Five samples o f carbonate, three from the calcrete lithofacies in the boulder 

conglomerate/sandstone/calcrete lithofacies association and two from carbonate 

associated with the basal Sibley Group-Archean contact south o f Beardmore (Fig. 1.2) 

were analyzed from this stratigraphie interval. Appendix 1 contains all geochemical and 

isotopic data for these samples.

Carbon isotopic compositions for dolocretes in the lower clastic unit vary from -

1.1 to -1 .5  %o- Oxygen isotopic compositions for samples from the West Loon locality 

(Fig 1.2) range from -2 .4  to -3 .6  %o whereas samples from south o f Beardmore (Fig.

1.2) are considerably lower at -15 .7  and -16 .4  %o- ^^Sr/*^Sr values for 2 dolocrete 

samples from West Loon are 0.70478 and 0.70428. Mn/Sr ratios for this unit are 

relatively high and range from about 25-50. Post Archean Australian Shale (PAAS,

Table 5.2, values from Taylor and McLennan, 1985) normalized rare earth element 

patterns for acetic acid soluable portions o f  two dolocrete samples from the West Loon 

locality are characterized by distinct negative Ce anomalies and slight middle rare earth 

element enrichment (MREE) (Figs. 5.6, 5.14). Y/Ho ratios have an average value 36.6.
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Table 5.2. REE composition of the standard Post Archean Australian Shale (PAAS), values are in 
ppm (from Taylor and McLennan, 1985).

PAAS
La 38
Ce 80
Pr 8.9
Nd 32
Sm 5.6
Eu 1.1
Tb 0.77
Gd 4.7
Dy 4.4
Ho 1.0
Er 2.9
Tm 0.4
Yb 2.8
Lu 0.43

0.1
d:

O  0.01 
CO

0.001
L a C e P r N d S m E u T b G d D y H o E r T m Y b L u

Figure 5.6. Post Archean Australian Shale normalized rare earth element compositions o f two 
dolocrete samples from the West Loon Lake locality.
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5.4.2 Samples of the mixed siliciclastic-carbonate unit

Fifty carbonate samples comprised o f  a mixture o f  dolostone and red dolomitic 

siltstone from the red siltstone-dolostone lithofacies association were collected from this 

stratigraphie unit. In addition, 10 fine-grained nodular sulfate samples from the red 

siltstone-dolomite lithofacies association were collected. All geochemical data for 

carbonate samples from this interval are shown in Appendix 2. Sulfate data is found in 

Appendix 6.

Ô '^C values from this stratigraphie interval range from -3.1 °/oo to 0.8 %o and 5*^0 

values range from -8 .4  to -4 .4  %o. *’Sr/*^Sr ratios for three dolostone samples from the 

red siltstone-dolostone lithofacies association are 0.70646, 0.70704 and 0.70829, 

respectively. Mn/Sr ratios for this unit are lower than elsewhere in the Sibley Group and 

are generally less than 10.

Dolostone ô ’^C, and to some extent ô '*0, appears to vary with stratigraphie 

height in the red siltstone-dolostone lithofacies association. Figures 5.7 and 5.8 show  

plots o f  6 and ô ^*0 versus height for sections o f  the red siltstone-dolostone 

lithofacies association in cored drill holes NB-97-4 and NI-92-7 respectively. Figures 5.7 

and 5.8 show a strong relationship between increasing stratigraphie height within the 

sections and increasing ô'^C. Although more scattered, there is a similar increase in 

0*^0. ô*^C values increase uniformly upward through the sections from values as low as 

-3.1 %o at the base to as high as 0.8 %o at the top o f the association in NI-92-7. Similarly, 

Ô ^*0 is isotopically light in the basal portions o f the section and becomes heavier 

upwards from minimum values o f about -8  %o at the base to maximum values o f about 

—4 %o at the top. This approximately 4 %o shift in both carbon and oxygen isotopic
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Figure 5.7. Stratigraphie variations in carbon and oxygen isotopic composition for dolostone samples 
from the red siltstone-dolostone iithofacies association in cored drill hole NI-92-7. Stratigraphie 
height is in metres above the Sibley Group-basement contact. The stratigraphie column on the left 
has a horizontal scale which represents grainsize and varies from mudstone to coarse-grained 
sandstone. Colours on the stratigraphie column represent compositional variations. White indicates 
siliciclastic dominated sandstone. Red indicates siliciclastic dominated siltstone. Yellow indicates 
dolostone. Pink indicates a more carbonate-rich siliciclastic dominated composition.
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Figure 5.8. Stratigraphie variation in carbon and oxygen isotopic composition for dolostone samples 
from the red siltstone-dolostone Iithofacies association in cored drill hole NB-97-4. Stratigraphie 
height is in metres above the Sibley Group-basement contact. The stratigraphie column on the left 
has a horizontal scale which represents grainsize and varies from mudstone to coarse-grained 
sandstone. Colours on the stratigraphie column represent compositional variations. White indicates 
siliciclastic dominated sandstone. Red indicates siliciclastic dominated siltstone. Yellow indicates 
dolostone. Pink indicates a more carbonate-rich siliciclastic dominated composition.
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composition occurs over a stratigraphie interval o f  about 40-50 m. The shorter section in 

NB-97-4 does not reach as heavy isotope enriched compositions as the longer NI-92-7 

section. If the upward shifts in isotopic composition are used as a chronostratigraphic 

correlation tool, this suggests that clastic influx represented by the sheet sandstone 

Iithofacies association reached the more southerly portions o f the study area prior to the 

more northerly NI-92-7 drill core. This is consistent with the shift in paleocurrent 

patterns discussed in chapter 3.

Sulfates from this stratigraphie interval have Ŝ Ŝ values that range from 4 .5  %o to

11 .9  %o (Fig 5 .9 ). Most values are between 4  % o and 6  %o, but there is a shift to heavier 

isotopic compositions (to ca .l2  % o) upward (Fig. 5 .9 ). *^Sr/*^Sr ratios for sulfate 

samples are typically higher than values from carbonates and range from 0 .7 0 8 5 2  to 

0 .7 1 0 9 0  and the lowest sulfate ^^Sr/^Sr (0 .7 0 8 5 2 )  is higher than the highest value 

determined for carbonates from this stratigraphie interval (0 .7 0 8 2 9 )  (Fig. 5 .1 0 ) . *^Sr/*^Sr 

for sulfates appears to increase upward through the red siltstone-dolostone Iithofacies 

association (Fig. 5 .9 ).

PAAS normalized REE compositions o f acetic acid soluble portions o f selected 

carbonate samples from this unit are shown in Figure 5.11. Buff coloured, unoxidized 

dolostone and red oxidized dolostone/red siltstone are both characterised by MREE 

enrichment and a lack o f distinct elemental anomalies. Contrary to other carbonate 

Iithofacies, positive La or negative Ce anomalies are generally absent (Fig. 5.14). Y/Ho 

ratios are similar to chondrite and range from about 22 to 29.
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Figure 5.9. Stratigraphie variation in sulfur and strontium isotopic composition for sulfate samples 
from cored drill hole NI-92-7. Stratigraphie height is in metres above the Sibley Group-basement 
contact. The stratigraphie column on the left shows a section from Archean basement to the Sheet 
sandstone Iithofacies association The stratigraphie column has a horizontal scale which represents 
grainsize and varies from mudstone to coarse-grained sandstone. Colours on the stratigraphie 
column represent compositional variations. White indicates siliciclastic dominated sandstone. Red 
indicates siliciclastic dominated siltstone. Yellow indicates dolostone. Pink indicates a more 
carbonate-rich siliciclastic dominated composition.
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Figure 5.10. Comparison of *^Sr/**Sr ratios between dolostones and sulfate nodules from the red 
siltstone-dolostone Iithofacies association (DDH NI-97-2). Sulfate nodules, represented by square 
symbols, have higher ratios than dolostones at similar stratigraphie levels.
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Figure 5.11. Post Archean Australian Shale normalized rare earth element diagrams for dolostone 
samples from the mixed carbonate siliclastic unit. The upper diagram shows buff coloured, 
unoxidized dolostone samples from the red siltstone-dolostone Iithofacies association, the lower 
diagram shows red dolostone/ siltstone samples from the red siltstone-dolostone Iithofacies 
association.
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5.4.3 Samples of the upper siliciclastic unit

Six samples o f  micritic carbonate from the black chert-carbonate Iithofacies 

association, three whole rock samples o f pedogenic (?) carbonate from the altered top o f  

the black-chert carbonate Iithofacies association and four samples o f carbonate from 

overlying intraformational conglomerate were analyzed from the upper siliciclastic unit. 

Appendix 3 contains geochemical data for this unit.

Carbonate carbon isotopic compositions from this stratigraphie unit vary from 

-1 .5  % o  to 1.3 % o  and oxygen isotopic compositions range from -14 .7  % o  to -2 .8  % o . Four 

analyses o f stromatolitic carbonate from the black chert carbonate Iithofacies association 

yielded *^Sr/^Sr ratios o f 0.71231, 0.71160, 0.70939 and 0.70815, respectively. Mn/Sr 

ratios in this unit are typically slightly higher than in the red siltstone-dolostone 

Iithofacies association and range from 9 to 37. REE compositions were determined for 

acetic acid soluable portions o f  three stromatolitic carbonates from the black chert- 

carbonate Iithofacies association and three samples from the intraformational 

conglomerate Iithofacies association. PAAS normalized rare earth element patterns for 

these samples are shovm in Figures 5.12 and 5.13. REE patterns for stromatolitic 

samples (Fig. 5.12) show a distinct negative Ce anomaly, a relatively flat light rare earth 

element (FREE) slope and a negative heavy rare earth element (HREE) slope. Two o f  

the samples also show a slight positive Gd anomaly. Y/Ho ratios for these samples lie 

between 33 and 36. Intraformational conglomerate samples (Fig. 5.13) are similar but 

show a flatter HREE slope. Y/Ho for the intraformational conglomerate samples range 

between 28 and 37.
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Figure 5.12. PAAS normalized rare earth element diagrams for three stromatolitic carbonate 
samples from the black chert-carbonate Iithofacies association
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Figure 5.13. PAAS normalized rare earth element diagrams for three samples from the 
intraformational conglomerate Iithofacies association.
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5.4.4 Samples of the upper mixed carbonate-siliciclastlc-sulfate unit

Two samples from the massive dolostone Iithofacies association, one sample o f  

fine-grained pervasive carbonate alteration from the red siltstone-sulfate association, one 

sample o f a green dolocrete nodule from the red siltstone-fme grained sandstone 

association and seven samples o f  stromatolitic carbonate were collected from the upper 

mixed carbonate-siliciclastic-sulfate unit. In addition, 14 nodular gypsum/anhydrite 

samples were analysed to determine their sulphur and strontium isotopic compositions 

and also trace element geochemistries. Geochemical data for these samples are presented 

in appendix 4.

Stromatolitic carbonates from this interval have quite uniform carbon isotopic 

compositions and 6^C varies from 1.3 to 1.5 %o. ô '* 0  for the stromatolitic samples 

ranges between -6 .0  and -3 .5  %o. The sample o f a green dolocrete nodule has a 

value o f 0.1 %o and a ô '* 0  o f -7 .9  %o. A  whole rock sample o f red shale with pervasive 

carbonate alteration from the red siltstone-sulfate Iithofacies assoiciation has a value 

o f -0 .7  %o and ô ’* 0  of-15 .1  %o. Two massive dolostone samples have values o f

1.2 and -1 .4  %o and 5**0  values o f -5.3 and -4.5 %o respectively. Two analyses, one 

stromatolite and one massive dolostone have * Ŝr/*®Sr values that are relatively low at 

0.70703, the dolocrete nodule, however, shows a much more radiogenic value o f  

0.71252. REE geochemistries o f  two samples from this unit are shown in Figure 5.15. 

The sample o f a dolocrete nodule is characterised by MREE enrichment with no La or Ce 

anomaly. The stromatolite sample has a negative Ce anomaly, a positive La anomaly 

(Fig 5.14), slight MREE enrichment and a negative HREE slope. Y/Ho is about 35 for 

the stromatolite sample and 17 for the dolocrete sample.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



147

1.2

73 0.8
I
CO

O 0.6

0 2

♦  ♦

♦ ♦

Positive  
C e  anom aly

N egative  La an o m aly

Positive  
La anom aly

N egative  
C e  anom aly

X A
■■

.8 0.9 1 1.1 1.2 1.3 1A 1.5

Pr/Pr*
PAAS normalized

Figure 5.14. A plot of shale normalized Ce/Ce* vs Pr/Pr* designed to descriminate between Ce and 
La anomalies in PAAS shale normalized samples (Ban and Dulski, 1996). Samples with Ce/Ce* 
greater than 1 have a negative La anomaly and samples with Ce/Ce* less than 1 have a positive La 
anomaly. Similarly, samples with Pr/Pr* greater than 1 have a negative Ce anomaly and samples 
with Pr/Pr* less than 1 have a positive Ce anomaly. Triangles represent dolocrete samples from the 
boulder conglomerate-sandstone-dolocrete Iithofacies association. Diamonds represent samples of 
dolostone from the red siltstone-dolostone Iithofacies association. Squares are stromatolitic 
carbonates from the black chert-carbonate Iithofacies association, “x” ‘s represent samples from the 
intraformational conglomerate unit. The single star symbol represents a sample from the weathered 
top of the black chert-carbonate Iithofacies association. The single “+” symbol is a stromatolitic 
carbonate sample from the upper stratigraphie unit. The single circle symbol is pedogenic 
carbonate from the upper stratigraphie unit.
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Figure 5.15. REE compositions of two samples from the upper mixed siliclastic-carbonate-evaporite 
unit. The upper line represents a dolocrete nodule contained within red siltstone. The lower line 
represents a stromatolitic carbonate sample.

Sulfates from this unit have values that range from about 9 to 12 %o. Sr 

isotopic compositions range from 0.70647 to 0.70884. Stratigraphie variation in both 

ô̂ '̂S and *^Sr/*^Sr for samples from NI-92-7 are shown in Figure 5.16. ô̂ ‘*S near the base 

o f the unit in NI-92-7 is about 12 %o, near the middle Ô^^S is about 9 %o and near the top 

ô̂ '*S is about 11 %o. Thus, there is some small-scale variation in ô̂ '̂ S through the section. 

Insufficient Sr data exists to delineate stratigraphie variations in ^^Sr/^Sr. However, 

plotting o f *^Sr/*^Sr versus Ŝ '*S for all sulfate nodules for this unit shows a fairly good

correlation between high *̂ Sr/*®Sr and high ô'*‘‘S (Fig. 5.17).34r
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Figure 5.16. Sulfur and strontium isotopic compositions of nodular Ca-sulfates from the red siltstone 
sulfate Iithofacies association in DDH Nl-92-7. Stratigraphie height is in metres above the Sibley 
Group-basement contact. The stratigraphie column on the left shows a section from the Sheet 
sandstone Iithofacies association to the base of the Kama Hill Formation. The stratigraphie column 
has a horizontal scale which represents grainsize and varies from mudstone to coarse-grained 
sandstone. Colours on the stratigraphie column represent compositional variations. White indicates 
siliciclastic dominated sandstone. Red and purple indicates siliciclastic dominated siltstone and 
mudstone. Yellow and brown units contain detrital sulfate grains. The grey unit just above 160 m is 
a stromatolitic carbonate with abundant sulfate nodules.
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Figure 5.17. Plot of 5 “̂S versus *’Sr/**Sr for all sulfate samples from the red siltstone-sulfate 
Iithofacies association

5.4.5 Summary of stratigraphie geochemical and isotopic variation

The following series o f diagrams summarizes the geochemical data collected for 

this study. Figures 5.18 to 5.23 summarize stratigraphie variations in ô^^C, 6**0, PAAS 

shale normalized REE composition, Y/EIo ratios, *^Sr/*^Sr and 6^^S, respectively. For the 

purposes o f the interpretive discussion these are the main pieces o f evidence used to 

discern a lake vs shallow marine depositional environment for the portions o f  the Sibley 

Group studied.

Figure 5.18 shows stratigraphie variations in ô'^C. Dolocretes in the basal 

siliciclastic unit have ô'^C values that range from -1 .0  to -1 .5  %o. ô'^C falls to about 

-3 %o in the lower portions o f the mixed siliciclastic carbonate unit and then increases to 

about 1 %o at its top. In the upper siliciclastic unit and mixed siliciclastic-carbonate-
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Figure 5.18. Summary of stratigraphie variations in carbonate 8"C. The stratigraphie column on 
the left shows idealized thicknesses of stratigraphie units as well as the relative positions and 
thicknesses of various Iithofacies associations. The ranges in observed values for each sampled 
stratigraphie unit or Iithofacies association are shown. For the red siltstone-dolostone Iithofacies 
association the stratigraphie trends for the two sampled drill holes are shown (the blue colour is NI- 
92-7 and the pink is NB-97-4).

evaporite unit varies with carbonate Iithofacies and stromatolitic carbonates have 

high while pedogenic carbonates have slightly lower Ô̂ Ĉ. Figure 5.19 shows 

stratigraphie variations in ô'*0. For the most part, variations in 0^*0 are similar to those 

in ô ’^C. However, numerous 5**0 values are quite negative. These likely reflect 

alteration.
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Figure 5.19. Summary of stratigraphie variations in 5**0. Values falling to the left o f the vertical 
line set at -1 0  ®/oo are likely reflecting diagenetic alteration. The stratigraphie column on the left 
shows idealized thicknesses o f stratigraphie units as well as the relative positions and thicknesses of  
various Iithofacies associations. The ranges in observed values for each sampled stratigraphie unit or 
Iithofacies association are shown. For the red siltstone-dolostone Iithofacies association the 
stratigraphie trends for the two sampled drill holes are shown (the blue colour is NI-92-7 and the 
pink is NB-97-4).

Figure 5.20 illustrates PAAS normalized REE patterns for each stratigraphie unit. 

Samples from both the upper and lower siliciclastic units are characterised by negative 

Ce anomalies. Negative Ce anomalies are distinctly absent from the majority o f  samples 

from the mixed siliciclastic-carbonate and mixed siliciclastic-carbonate-sulfate units. 

Also, the mixed siliciclastic-carbonate and mixed siliciclastic-carbonate-sulfate units 

appear to have more distinct MREE enrichments. Figure 2.1 shows variations in Y/Ho 

ratio between stratigraphie units. Values for all units are lower than those expected for 

seawater. Average Y/Ho ratios are lowest in the mixed siliciclastic carbonate unit as 

compared to the lower and upper clastic units.
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Figure 5.20 Stratigraphie and Iithofacies dependent variations in REE geochemistry through the 
Sibley Group.
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Figure 5.21. Variations in carbonate Y/Ho ratios for each stratigraphie unit. Seawater typically has 
Y/Ho ratios greater than about 44 (e.g. Nozaki et al. 1997; Kamber and Webb 2001) and all samples 
here show low Y/Ho relative to seawater.
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Figure 5.22. Comparison of ranges in sulfate Sr isotope ratio between red siltstone-dolostone and red 
siltstone-sulfate Iithofacies associations. Carbonate analyses are represented by diamond shapes and 
sulfate analyses are represented by squares. Data for the mixed siliciclastic-carbonate-evaporite unit 
are from a few different drill holes so stratigraphie variation is not shown.
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Figure 5.23. Stratigraphie variations in sulfate 8 ‘̂'S values. Sulfate 5̂ "S values are the lowest in the 
lowest sampled portions of the mixed siliciclastic carbonate unit (4-6 %o). Values at the top o f the 
mixed siliciclastic carbonate unit and the mixed siliciclastic-carbonate-evaporite unit are higher (9-12
%o)

Variations in Sr isotopic composition for both carbonates and sulfates is shown in 

Figure 5.22. Overall, there is no major difference in Sr composition between mixed 

siliciclastic-carbonate unit and the mixed siliciclastic-carbonate-evaporite unit as data for 

both units fall into the same range. However, sulfates in the mixed siliciclastic- 

carbonate-evaporite unit typically have lower *’Sr/*^Sr ratios than the mixed siliciclastic- 

carbonate unit. Figure 5.23 shows stratigraphie variations in sulfur isotopic composition 

between stratigraphie units. A  major shift towards more "̂*S enriched compositions 

occurs over a short stratigraphie interval near the top o f the mixed siliciclastic carbonate 

unit.
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5.5 Discussion

5.5.1 Diagenesis and carbonate mineralogy

Previous work (Franklin et al., 1980; Cheadle, 1986b; Mailman, 1999) showed 

that dolomite was the dominant mineral in Sibley Group carbonates. This is supported by 

trace elemental data (Fig 5.24) and SEM EDS work carried out during the course o f  this 

study. Figure 5.24 plots Ca/Mg weight ratios versus carbon and oxygen isotopic 

compositions and shows that the majority o f carbonate samples plot at Ca/Mg ratios o f  

ahout 1.6 consistent with a dolomite dominated mineralogy. A few samples are calcite 

rich as is indicated by high Ca/Mg ratios. These samples show light ô'^O values relative 

to the rest o f the samples. ô̂ ^C values for the calcite-rich, low 6**0, samples fall within 

the range o f  values displayed by the majority o f samples. Low 5**0 in calcitic samples 

supports a diagenetic origin for the O in these samples.

Pétrographie examination was employed as an early step in evaluating potential 

post-depositional alteration o f primary geochemical compositions. Figures 5.25 to 5.33 

illustrate some pertrographic characteristics o f typical materials sampled for analysis.

For the most part pétrographie features characteristic o f diagenetic alteration are absent 

and sparry, void-filling cements and stylolites are exceedingly rare within examined 

samples. Samples selected for geochemical analysis are dominantly finely crystalline 

(Figs 5.25, 5.26, 5.27). Depositional components (or possibly early microspar cements), 

primarily micritic dolomite, were the primary materials sampled and there is little 

pétrographie evidence for post-depositional alteration. However, in some cases, 

particularly in stromatolitic samples from the black chert-carbonate Iithofacies
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association and the red siltstone-sulfate Iithofacies association there is some indication o f  

post-depositional alteration.
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Figure 5.24. Ca/Mg weight ratios for all carbonate samples with trace element analyses versus 5**0 
and 5**C. The upper diagram shows a clear relationship between high Ca/Mg ratio and light oxygen 
isotopic composition, whereas there is no difference in the range of carbon isotopic composition 
between dolomitic and calcitic samples.

At hand sample-scale materials from the black-chert carbonate Iithofacies 

association contain veins filled with fairly coarse-grained carbonate spar. In thin section,
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carbonate dominated laminae are typically micritic, but thin veins or carbonate spar and 

replacements o f  earlier sulfate nodules are common (Fig. 5.28). In addition to early 

silicification o f  organic rich laminae, there appears to have been a later pervasive 

silicification event. Stromatolite samples from the red siltstone-sulfate Iithofacies 

association appear to be recrystallized based on their increased crystal-size (Fig 5.29).

Figure 5.25. Photomicrograph (cross-polarized light) of a dolocrete sample (WL3a) showing floating 
clastic grains in a primarily micirtic matrix of dolomite. A minor vein of coarser dolomite spar cuts 
across the left side o f the image. Micritic grain size, and low Sr isotope ratios for WL labelled 
samples suggest little post depositional alteration.
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Figure 5.26. A photomicrograph showing the typical homgeneous, fine-grained dolostone Iithofacies 
that was sampled from the red siltstone-dolostone Iithofacies association (Sample 03RM31). Scale 
bar is 500 um. Plane-polarized light.

Figure 5.27. Fine-grained carbonate from a sample o f the altered top of the black chert-carbonate 
Iithofacies association with hematite-rich illuviation features and round chert nodules. Sample 
03RM28. Scale bar is 2mm. Cross-polarized light.
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I

Figure 5.28. Photomicrograph showing typical lamination in stromatolites from the black chert- 
carbonate Iithofacies assoication (cross-polarized light). The upper and lower portions of darker 
colour are fine-grained dolomite, they contain some zones of coarser-grained carbonate spar (e.g. top 
left of photomicrograph). The central portion of the photo is an organic-rich chert layer. Sample 
CI-IA. Scale bar is 2 mm.

Figure 5.29. Drillcore photograph of recrystallized stromatolitic dolostone from the red siltstone- 
sulfate Iithofacies association. Photograph shows a field of view 10cm wide.
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Samples from other Iithofacies associations show little evidence for post 

depositional alteration. Dolocrete samples from the lower clastic unit, dolostone samples 

from the mixed carbonate-siliciclastic horizon and some samples o f carbonate from the 

intraformational conglomerate Iithofacies association are dominated by micritic material 

with no evidence for diagenesis and neomorphism (Figs. 5.25, 5.26, 5.27). An exception 

to this are the samples o f carbonate associated with the basal contact with Archean rocks 

south o f Beardmore which appear to be recrystallized (Fig. 5.30). Thin sections were not 

prepared for some samples o f the intraformational conglomerate Iithofacies association 

and dolocrete from the fine-grained sandstone Iithofacies association because they were 

too poorly indurated and for these samples only geochemical criteria were applied to 

evaluate diagenesis.

Figure 5.30. Photmicrograph of a recrystallized carbonate clast in sample BM90 (Cross-polarized 
light). Recrystallization and low 5**0 values for BM90 and 91 (section 5.3.1) suggest diagenetic 
alteration. Scale bar is  2 mm long.
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Siliciclastic grains are common in many o f the carbonate samples analysed. In 

most cases they are physically inseparable from carbonate; this is particularly evident in 

dolostone samples from the red siltstone-dolostone lithofacies association and dolocrete 

samples. For this reason an acetic acid leach was used for trace element analyses and Sr 

isotopic analyses. In addition to contamination during sample digestion, a high content 

o f siliciclastic grains could potentially increase permeability and therefore create a 

preferential flow path for diagenetic fluids. Because many siliciclastic grains, 

particularly in the dolostones o f the red siltstone-dolostone lithofacies association, occur 

sporadically and in matrix support, they probably would not have influence permeability 

o f diagenetic fluids to a great degree.

Sulfate nodules within the red siltstone-dolostone lithofacies association appear to 

have been replaced to varying degrees by carbonate (Fig. 5.31). In some instances sulfate 

nodules have been replaced entirely by mosaics o f  coarsely-crystalline dolomite (Fig. 

5.31c), while in others very little replacement has taken place (Fig. 5.3 la). Sulfate 

nodules from the red siltstone-sulfate lithofacies association have coarse-fibrous textures 

suggesting dissolution and reprecipitation (Fig. 5.32). Cross-cutting veins o f sulfate 

suggest that early forming diagenetic sulfate nodules have been remobilzed (Fig. 5.33). 

Samples collected for analysis are from isolated, discrete nodules, not associated with 

vein structures.
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Figure 5.31. A) Early diagenetic sulfate nodule in dolostone with no carbonate replacement. B) Early 
diagenetic sulfate nodule in dolostone with minor carbonate replacement (red outlines some zones of 
carbonate) C) Early diagenetic sulfate nodules in dolostone with complete replacement by carbonate. 
AU photomicrographs are in cross-polarized light.
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Figure 5.32. Typical gypsum nodules sampled from the red siltstone sulfate lithofacies association. 
Dissolution and reprecipitation may have occurred, however, attempts were made to sample only 
discrete nodules not associated with veins.

Figure 5.33. A cross-cutting gypsum vein from the red siltstone-sulfate lithofacies association.

In addition to pétrographie characterization o f samples, variations in Mn/Sr, ô'^O 

and *^Sr/^Sr were used to screen samples for post depositional alteration using the 

general criteria outlined in section 5.3.6. Figure 5.34 is a plot o f Mn/Sr ratio versus
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Figure 5.34. A plot of Mn/Sr versus 5 O divided into the four stratigraphie units.

for carbonates from the four stratigraphie units outlined in chapter 3. Dolostone samples 

from the mixed siliciclastic-carbonate unit generally plot at Mn/Sr ratios o f less than 10 

and have 5*^0 values that, in general, range between 4 and 8%o- Samples from other 

units display variably higher Mn/Sr ratios and for the most part slightly heavier ô'*0. 

Some samples plot at significantly lighter ô'^O values and in some cases higher than 

average Mn/Sr ratios relative to dolomite dominated samples from the same unit. These 

samples appear to reflect diagenesis, and are also characterised by a calcite dominated 

mineralogy (Fig 5.24). High Mn/Sr ratios in dolomite dominated samples do not show a 

relationship with decreasing 5**0 as might be expected during diagenesis (Fig. 5.34).
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ô'*0 for pedogenic samples should reflect the composition o f meteoric waters 

(e.g., Alonzo-Zarza, 2003). Because the pedogenic carbonates do not display low ô'*0  

values, low 0**0 carbonates probably do not reflect meteoric diagenesis. Therefore, 

another diagenetic process must have been involved in resetting some carbonate samples 

to low S*^0. Requilibration o f carbonates at higher temperatures during burial diagenesis 

is possible, but not supported by the lack o f  features such as stylolites and the fact that 

resetting is not present in all samples. Another possibility is that the alteration is 

associated with diabase intrusions.

In the lower clastic unit, dolocrete samples WL3a, b and c do not show 

geochemical or pétrographie evidence for extensive diagenetic alteration. Although they 

have relatively high Mn/Sr ratios, oxygen isotopic compositions have not been reset to 

low values and Sr isotopic compositions are not radiogenic. Samples BM90 and 91 are 

recrystallized and have light 5**0 values indicating alteration. In the mixed siliciclastic 

carbonate unit, low Mn/Sr and relatively high suggest little diagenetic alteration o f 

carbon and oxygen isotopic compositions. Samples from the black chert-carbonate 

lithofacies association (upper siliciclastic unit) display some evidence o f  diagenetic 

alteration both petrographically and geochemically. Petrographically, diagenetic 

alteration is suggested by pervasive silicification, and the presence o f  cross-cutting calcite 

veins filled with fairly coarsely-crystalline spar. Geochemically, obviously altered 

samples show light oxygen isotopic compositions, Mn/Sr ratios greater than 10 and high 

*^Sr/*^Sr ratios. Figure 5.35 plots 0**0 vs *^Sr/*^Sr and shows that samples with light 

5**0 are also characterized by radiogenic *’Sr/*^Sr suggesting that high *^Sr/*^Sr samples 

reflect diagenesis. Carbon isotopic compositions for apparently apparently unaltered

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



168

Stromatolite samples (Fig 5.36) fall between about 0 and 1 per mil, whereas obviously 

altered samples display trends to either light carbon isotopic composition (represented by 

pedogenic carbonates) or both lighter carbon and lighter oxygen compositions 

(interpreted to reflect later diagenesis). The observed shift towards lighter carbon isotopic 

composition in pedogenically altered samples may be reflecting the composition o f a 

mixture o f stromatolite material and isotopically light carbonate precipitated in 

equilibrium with soil CO2 . If so, the relatively low supports a pedogenic origin for 

the alteration o f the top o f the black chert-carbonate unit. Samples showing shifts to both 

lighter carbon and oxygen isotopic composition probably reflect more extensive 

diagenetic alteration.

®̂ Sr/®®Sr
0.711 0.712 0.7130.707

- 10.0

- 12.0

-14.0

Figure 5.35. Possible diagenetic alteration towards low 6**0 and high *̂ Sr/*®Sr in samples of the 
black chert-carbonate lithofacies association.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



169

0.0
Pedogenic carbonate

- 2.0

•4.0

-6 .0

p
-8.0

eC

• 10.0
Later diagenesis

- 12.0

- 14.0

- 16.0
- 2.0 - 1.5 - 1.0 -0.5 0.0 0.5 1.0 1.5

S’X

Figure 5.36. Plot of carbon vs oxygen stable isotopic compositions for samples of stromatolitic 
carbonate from tbe black cbert-carbonate lithofacies association and pedogenically (?) altered 
samples from its top. Squares are pedogenic carbonates, diamonds are stromatolitic carbonates. 
Diagenetically (late) altered samples trend towards compositions enriched in lighter isotopes. Earlier 
diagenesis, (i.e., pedogenesis of the top of the stromatolite unit) seems to have shifted only carbon 
isotopic compositions to lower values.

In general, for carbonate samples, there are no apparent relationhips between high 

Mn/Sr and ô’*0 or *̂ Sr/^^Sr. Altered samples appear to be characterised by light 6**0 

values and calcite-rich mineralogies. For the most part altered samples are restricted to 

the black-chert carbonate lithofacies association, red siltstone sulfate lithofacies 

association, and the samples from the lower siliciclastic unit from the exposure south o f  

Beardmore.

5.5.2 Geochemical constraints on the depositional environments of the 

Lower clastic unit

The most interesting aspect o f geochemical data from dolocrete samples in the 

lower clastic unit is the low, marine-like ^^Sr/^Sr ratio. Sr isotopic compositions are a
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useful tracer o f  the sources o f Ca in calcretes/dolocretes as Sr is geochemically similar to 

Ca and is found as a trace element in both carbonate and silicate Ca-bearing minerals 

(e.g. Stewart et al., 1998; Van der Hoven and Quade, 2002). Given the distinctly non­

marine, braided fluvial/alluvial fan depositional environment o f the boulder 

conglomerate-sandstone-dolocrete association and the Archean and Paleoproterozoic 

basement rocks in the region, the ^^Sr/^Sr composition o f dolocrete precipitating 

solutions should have been characterised by a more radiogenic ^^Sr/^Sr ratio. This 

indicates that the main source o f  carbonate in the dolocrete lithofacies was not local 

silicate parent materials, but an alternative lower *’Sr/*^Sr source. Various studies (e.g.. 

Machette, 1985; Quade et al., 1995; Chiquet et al., 1999; Capo and Chadwick, 1999; 

Naiman et al., 2000) have shown that atmospheric inputs (precipitation and easily soluble 

surface dusts) and seaspray (in areas within about 100 km o f oceans), with varying 

contributions from weathering reactions in local substrates, are a dominant source o f  Ca 

in carbonate soil formation. The low, marine-like Sr isotopic composition is consistent 

with largely marine derived atmospheric input as the major source o f Ca cations in 

dolocrete units. Sr introduced from weathering o f Archean basement lithologies should 

have added a significant radiogenic Sr contribution to soil carbonates. As such 

weathering o f  old, radiogenic bedrock sources could not have been a major source o f  

cations in dolocretes in this stratigraphie unit. Outcrops o f  Gunflint Formation 

stromatolitic carbonates form Sibley Group basement near the sampled occurrences o f  

dolocrete in the boulder conglomerate-sandstone-dolocrete lithofacies association and 

represent a possible source o f non-radiogenic carbonate. The composition o f  Sr in 

carbonates from the Gunflint Formation was not determined during this study and no data
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appears to be present in the literature. It is likely that unaltered carbonates from the 

Gunflint Formation had low ^^Sr/^Sr ratios (Fig. 5.5) as they are marine in origin (e.g., 

Pufahl, 1996), however, subsequent diagenesis may have driven most Gunflint Formation 

carbonates to higher *’Sr/*^Sr ratios prior to Sibley Group deposition. Analysis o f  Sr 

isotopic ratios for Gunflint Formation carbonates would need to be done in order to test 

the possibility o f  this hypothesis. The presence o f  weathered Archean and 

Paleoproterozoic clasts in the basal conglomerate units shows that there should have been 

a significant contribution o f radiogenic Sr to groundwaters making it difficult to support a 

groundwater origin for the sampled dolocrete units. As such, low Sr isotopic ratios are 

more consistent with a pedogenic origin for the dolocretes with surface dissolution o f  

marine deposited Gunflint Formation carbonates and marine derived atmospheric input as 

carbonate sources.

Preservation o f unradiogenic Sr isotopic ratios suggests that samples from the 

West Loon dolocrete occurrence reflect unaltered values even at relatively high Mn/Sr 

ratios. Further, low in altered samples south o f  Beardmore suggests that diagenetic 

alteration should have driven § ’*0 to low values in West Loon samples had it occurred in 

them as well. These two lines o f  evidence suggest that both 0*^C and 5**0 reflect near 

primary dolocrete compositions. Carbon and oxygen stable isotopic compositions o f  

dolocrete samples do not differ significantly from approximately coeval marine carbonate 

compositions, however, ô'^C and 6^*0 also fall within the range o f reported ô ’^C and 

0**0 values for calcretes compiled by Alonzo-Zarza (2003) (see section 5.3.1).

Assuming a purely pedogenic orgin for carbonate, large contributions o f CO2 from 

oxidation o f organic matter and respiration o f soil microbes should have driven
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dolocretes toward relatively light isotopic compositions (e.g., Quade et al., 1989a;

Cerling, 1991; Wright and Tucker, 1991). Thus, the relatively heavy observed 0*^C (ca. - 

1.5 %o) suggest that either there was little organic related CO2 contribution to soil CO2 or 

that soil pores were dominated by intrusion o f  atmosphere derived, relatively heavy 

isotope enriched CO2 . This may imply either high atmospheric CO2 levels, or low  

contributions o f CO2 to the soil via organic processes.

Rare earth element patterns determined for two samples from the West Loon 

dolocrete show characteristics o f oxygenated seawater as well as terrestrially derived 

water. A well-defined positive La anomaly and a well defined negative Ce anomaly 

supports a seawater origin, however, the lack o f a positive HREE slope and relatively low  

Y/Ho does not support a seawater origin (e.g. Shields and Webb, 2004) (Figs. 5.6, 5.20, 

5.21). Y/Ho ratios are among the highest o f  any o f the Sibley Group samples analysed 

(about 34) but are still considerably lower than anticipated values for seawater (>44; e.g., 

Bau and Dulski, 1996; Nozaki et al., 1997; Kamber and Webb, 2002). Low 

concentrations o f elements such as Zr and H f in carbonate analyses suggests that this low  

value is not the result o f contamination by clastic material. Negative Ce anomalies and 

low Y/Ho ratios, therefore, support precipitation from oxygenated, non-marine waters.

Overall, geochemical data from dolocretes in the lower clastic unit are useful 

tracers o f hydrologie processes that precipitated dolocrete units and also as potential 

indicators o f  atmospheric composition. If the dolocretes are purely pedogenic (sensu 

Wright and Tucker, 1991; Alonzo-Zarza, 2003) Sr data suggests atmospheric, marine 

derived and/or surface dissolved Gunflint Formation carbonate were the major source o f  

Ca as opposed to local silicate parent material. Also, carbon isotopic compositions would
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support either low organic productivity in soils, high atmospheric CO2 levels or both 

(e.g., Cerling, 1991). If the dolocretes represent groundwater dolocrete (sensu Wright 

and Tucker, 1991; Alonzo-Zarza, 2003) then it appears that carbonate compositions could 

be indicating similarities to Gunflint Formation carbonates and that the composition o f  

shallow groundwater was controlled by dissolution o f Gunflint Formation carbonate 

material. However, a groundwater dolocrete classification is unlikely, as there is 

evidence for significant weathering o f  silicate bedrock that would have released 

radiogenic Sr into the groundwater system. REE geochemistry is consistent with 

oxidizing non-marine water precipitating soil carbonates.

5.5.3 Mixed carbonate-siliciclastic unit

Geochemical data from the red siltstone-dolostone lithofacies association supports 

the non-marine depositional setting for this unit inferred from lithofacies analysis. In 

particular low Ô̂ Ŝ values and high *^Sr/*^Sr in sulfates from this unit are more consistent 

with a non-marine rather than a marine depositional environment. values between 

~ 4  to 6 %o in the lower portions o f  the red siltstone-dolostone lithofacies association (Fig. 

5 .2 3 )  are lower than predicted values o f  coeval seawater (about 2 0  %o, e.g., Canfield, 

2 0 0 4 ) . A seawater source for sulfate is therefore unlikely. Radiogenic strontium isotope 

ratios also support a non-marine source for sulfates in the lower portions o f this unit. 

Towards the top o f this unit both ô*'*S and *^Sr/*^Sr increase (Figs. 5 .4 , 5 .2 3 ). Increasing 

may reflect an increasing contribution o f isotopically heavier marine derived sulfate 

or it may represent a variation in the overall composition o f sulfide minerals that were 

weathering to supply sulfate to the basin. An increased seawater contribution is not 

supported by the upward increase in *^Sr/*^Sr. As such, sulfur for the precipitation o f
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sulfates in this unit may have been derived largely from weathering o f Archean and 

Paleoproterozoic sulfides in the catchment. The majority o f  Archean sulfides in the 

region likely had an average value o f around 0 % o  (e.g. Strauss, 1999). Seventy- 

four Paleoproterozoic sulfide ô^ Ŝ analyses from the Gunflint and Rove Formations 

(Poulton et al., 2004) have an average value o f about 10 % o. It is possible that variations 

in the amount o f sulfate derived from Archean versus Paleoproterozoic bedrock sources 

created the upward shift to heavier 6^^S. Speculatively, this could be related to the 

observed change in paleocurrent direction from southward (northern area dominated by 

Archean basement with low ô^^S) in the underlying clastic unit to northward (southern 

area dominated by Paleoproterozoic basement with higher 5 ‘̂*S) in the overlying sheet 

sandstone lithofacies association.

The observed upward change in could also be related to sulfur reducing 

bacteria. Periods o f  oxygen deficiency may have been occurred in the lake system  

allowing for sulfate reduction to occur. Although no sedimentary pyrite is present in the 

mixed siliciclastic-carbonate unit, sulfate reducing bacteria may have been important in 

bringing about changes in sulfur isotopic composition through loss o f H2S gas produced 

during sulfate reduction. If sulfate reduction was a control on the observed stratigraphie 

trend in sulfur isotope data then H2S gas created during bacterial sulfate reduction would 

have needed to escape the lake system prior to reoxidation to sulfate. This may have 

preferentially occurred in shallower water conditions inferred for the upper portions o f  

this unit leading to the observed stratigraphie trend.

Further support for a non-marine depositional setting for this unit comes from the 

REE geochemistry o f dolostone samples. The distinct, “hat-like”, MREE enriched
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pattern o f dolostone samples on PAAS normalised REE diagrams (Figs. 5.11, 5.20) is not 

consistent with carbonates precipitating from seawater. Analogy with MREE enriched 

patterns o f some major modem river systems supports a non-marine chemistry for waters 

precipitating the dolostones (Harmigan and Sholkovitz, 2001). In addition to a non­

marine PAAS normalized shale normalized REE patterns, low Y/Ho ratios (Fig. 5.21), 

around that o f chondrite meteorites, also supports a non-marine origin (e.g., Nozaki et al. 

1997).

Phosphates commonly show a MREE enrichment relative to shale (Harmigan and 

Sholkovitz, 2001; Sheilds and Webb, 2004). However, MREE enrichment does not 

appear to be a function o f partial dissolution o f detrital apatite grains in samples during 

acetic acid leaching as there is no correlation between P content and total REE (R^=

0.04). MREE enrichment may also be a function o f  partial dissolution o f Fe 

oxyhydroxides present in samples. Studies using HCl dissolution methods (e.g., Negrel 

et al., 2006) suggest that MREE enriched shale normalized REE patterns are a function o f  

the presence o f MREE adsorbed on the surfaces o f Fe oxyhydroxides. Again, however, 

there is no correlation between MREE or total REE contents and Fe or Mn contents in 

Sibley Group samples. Further, if  REE’s associated with Fe or Mn oxyhydroxides was 

an important control on the shale normalized REE patterns then there should be a 

significant difference between red dolostone samples (containing hematite) and buff 

coloured dolostone samples (not containing hematite). Thus, it appears that the MREE 

enrichment is reflecting carbonate chemistry and as such, the chemistry o f  the lake water 

mass, rather than a product o f sample dissolution. Harmigan and Sholkovitz (2001) 

suggested that MREE enrichments in many major modern river systems results from the
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weathering o f  phosphate minerals as a major source o f  REE. Gruau et al. (2004) reported 

similar MREE enriched patterns in shallow groundwaters under wetland domains in a 

small catchment study conducted in western France; more upland portions o f this 

catchment had PAAS normalized water REE patterns similar to the patterns from 

dolocretes and stromatolites from this study. They suggested that the difference was a 

function o f  redox chemistry, with upland areas characterised by more oxidizing 

conditions, negative Ce anomalies and relatively flat REE patterns and wetland areas 

characterised by no Ce anomalies, slightly reducing conditions and MREE enrichment.

Sr isotopic composition varies between dolostone samples and sulfate samples 

from this unit (Fig. 5.10). Sulfate samples are characterized by higher *^Sr/*^Sr ratios 

than dolostone samples. This suggests that either sulfate nodules were more susceptible 

to diagenetic alteration than dolostone samples, or that they were precipitated from 

chemically distinct water sources. There is pétrographie evidence for the replacement o f  

some sulfate nodules by relatively coarse-grained carbonate spar. This supports possible 

alteration o f primary sulfate chemistries. However, the use o f water dissolution methods 

should have preferentially taken sulfates into solution rather than any carbonate material 

that may have been included in sample powders. Further, indicators o f  inclusion o f  

diagenetic carbonate phases should be indicated by increased contents o f elements such 

as Fe or Mn but there is no correlation between increasing Mn or Fe and Sr isotopic 

composition. Thus, it is possible that dolostones and sulfate nodules within dolostones 

precipitated from geochemically distinct waters. Sulfates probably precipitated in the 

shallow subsurface during periods o f  subaerial exposure and they could either reflect 

lake-water chemistry or groundwater chemistry. Thus, sulfate nodules are probably
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reflecting the chemistry o f ground water. The water budget o f the lake system, therefore, 

was likely dominated by river and precipitation inputs rather than by groundwater 

recharge. Capillary rise from more radiogenic shallow groundwaters likely occurred 

during periods o f exposure leading to precipitation o f sulfate nodules with geochemistries 

that differed from lake-water precipitates. This observation suggests that lake-water and 

groundwater did not mix over time periods shorter than the time periods between lake 

recharge events otherwise both dolostones and early intrasediment Ca-sulfate nodules 

would have been characterised by the same Sr isotopic ratios. The validity o f  this 

hypothesis is questionable as it is based on very few Sr isotope analyses.

Carbon and oxygen stable isotopic compositions for the most part do not differ 

significantly from proposed values for Mesoproterozoic seawater (Fig 5.1); (Bartley and 

Kah, 2004). Relatively light 0*^C values (-3 %o) in the basal portions o f the red siltstone- 

dolostone lithofacies association, however, could be taken as evidence for a lacustrine 

origin as they are somewhat lower than would be expected for seawater. The observed 

upward trend towards heavier isotopic composition (Figs. 5.7. 5.8) could be explained by 

a number o f different models. If the red siltstone-dolostone lithofacies association was 

connected to the open Mesoproterozoic ocean, then the upwards shift could be 

attributable to processes that create changes in marine carbon isotopic compositions, i.e. 

increased organic productivity and burial o f light organic carbon (e.g., Frank et al., 2003). 

A marine model is unlikely, as it is incompatible with other geochemical and 

sedimentologic data already discussed. A  perennial saline lake model, as inferred from 

sedimentologic data, can also be used to explain observed changes in C and O isotope 

geochemistry. In a perennial saline lake model, the upward shift in isotopic composition
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could be attributable to residence time and/or evaporation effects. The composition o f  

lake water could have evolved over long residence times to heavy isotope enriched C and 

O values through evaporative loss o f CO2 from the system. CO2 lost from the lake 

system would be depleted in and '*0 leading to enrichment o f  and **0 in the 

residual water. Through repeated evaporative/recharge intervals the composition o f the 

perennial lake water mass could have gradually become isotopically heavier. Lithofacies 

analysis supports increasingly evaporitic, shallower, depositional conditions upward. As 

such, upward changes in isotopic compositions may also be lithofacies controlled rather 

than recording longer term lake water evolution. Evidence for this comes from the 

observed changes in depositional environment from perennial saline deposits (red 

siltstone-dolostone lithofacies association) to ephmeral playa lake deposits (sheet 

sandstone lithofacies association) to restricted shoreline deposits (black chert-carbonate 

lithofacies association) and finally subaerial exposure though time representing a drying 

o f the lake system. In such a model, evaporative loss o f  isotopically light CO2 would 

have occurred more easily in hotter, shallower water settings leading to **C enrichments 

in more shore proximal settings. Camoin et al. (1997), Casanova and Marcell (1993) and 

Paz and Rosetti (in press) have all noted lithofacies dependant variations in C and O 

isotopic composition, particularly heavier isotopic compositions in shoreline settings or 

tops o f shallowing upward cycles. Though evaporation is the primary physical control in 

both models, they are subtly different as the first model requires long residence times o f  

carbon and oxygen in the lake to produce heavier isotopic compositions, while the second 

model only requires locally stronger evaporation in shallower, hotter depositional 

subenvironments. Large enrichments in found in some evaporitic lacustrine
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carbonates (e.g., Valero-Garces et al., 1999) are not present, suggesting that extremely 

evaporitic conditions did not develop.

Increasing biologic sequestration o f may have also controlled the stratigraphie 

trend towards more enriched ô'^C composition in a lacustrine model. However, as there 

is little evidence for burial o f organic carbon in the red siltstone-dolostone lithofacies 

association, reoxidation o f  organic matter probably would have negated the fractionating 

effect o f  increased organic activity.

Overall, low values for sulfates, generally high *^Sr/*^Sr for both dolomite 

and sulfate, MREE enriched REE patterns and low Y/Ho ratios argue for a non-marine 

depositional environment for the red siltstone-dolostone lithofacies association.

Observed upward increases in both 8*^C and 8**0 can also be explained using a 

lacustrine depositional model. Sedimentologic data, as well as isotope data, particularly 

8*^C and 8**0, supports increasingly evaporitic conditions upward through the red 

siltstone to red siltstone-dolostone lithofacies associations. This is reflected by upward 

increases in 8*^C, 8**0 and possibly 8̂ "*S (Figs. 5.7 to 5.10). Sulfur isotope geochemistry 

may be reflecting increasing marine input through this stratigraphie interval or varying 

effects o f sulfur reducing bacteria. However, a marine model is inconsistent with the 

majority o f data and primarily oxidizing conditions probably limited sulfate reduction.

As such, the upward trend towards heavier sulfur isotopic compositions is best explained 

by differences in the composition o f sulfides that were weathering to supply sulfate to the 

basin.
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5.5.4 Upper clastic unit

ô'^C values for apparently unaltered stromatolite samples from this unit are 

slightly more enriched than samples from the underlying units (Fig. 5.18). Again 

there is no major difference between observed ô*^C and seawater values (Fig. 5.1; Bartley 

and Kah, 2004). ô'^C values around 0-1 per mil are consistent with carbonate forming in 

equilibrium with atmospheric €0%. Higher organic productivity and better preservation 

o f organic carbon in the black chert lithofacies, may have been responsible for the 

slightly more *^C-rich carbonate isotopic compositions relative to the majority samples in 

the underlying red siltstone-dolostone lithofacies association. Or, similar to the 

lithofacies dependant model for the isotopic variation in the underlying red siltstone- 

dolostone lithofacies association, heavier isotopic compositions could be reflecting more 

evaporitic conditions than those present in the underlying unit which lead to relatively 

greater loss o f  isotopically depleted CO2 leaving residual waters,and hence precipitated 

carbonates, '^C-enriched. The least altered *^Sr/*^Sr analysis, based on the highest 5**0 

value, is 0.70815 which is still considerably more radiogenic than proposed 

Mesoproterozoic seawater (Fig. 5.5; e.g., Sheilds and Veizer, 2002). These high *^Sr/*^Sr 

ratios suggest a non-marine origin, or may reflect diagenesis. Again, like dolocretes from 

the lower siliciclastic unit, REE compositions for this unit have PAAS normalized 

patterns with some characteristics o f seawater such as positive La and negative cerium 

anomalies. However, the seawater REE characteristics o f  HREE enrichment and high 

Y/Ho ratio are absent suggesting a non-marine depositional setting (Shields and Webb, 

2004). The presence o f  a negative cerium anomaly is indicative o f  oxidizing conditions. 

Weathering related carbonate appear to be reflecting some contribution o f isotopically
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light, organic related carbon to soil CO2, based on a slight shift towards isotopically light 

carbonate in pedogenic carbonate samples (Fig. 5.36; c.f., Cerling, 1991). This shift does 

not appear to relate to later diagenesis, as 8**0 is not shifted to lower values. Overall, 

geochemical data for stromatolitic and pedogenic carbonate from this unit support their 

restricted shoreline and subaerial weathering origins inferred from sedimentologic data.

5.5.5 Upper mixed siliciclastic-carbonate-evaporite unit

Sulfur isotope data for sulfates from this interval are *̂ *S enriched relative to the 

majority o f  samples from lower in the stratigraphy (Fig. 5.23) although samples from the 

upper red siltstone-dolostone lithofacies association have similar compositions. As the 

upward shift to heavier suftur isotope composition in the upper red siltstone-dolostone 

lithofacies association was interpreted to reflect a change in the composition o f sulfides 

weathering to supply sulfate to the basin, a continued source o f sulfate from weathering 

o f similar sulfides derived from Paleoproterozoic rocks to the south may explain the "̂*S 

compositions in this unit as well. Other possible explainations for the heavier sulfur 

isotope compositions are increased removal o f  depleted sulfur created during bacterial 

sulfate reduction or increased influence o f  seawater. Isotopically light H2S produced 

during bacterial sulfate reduction may have been more easily lost from a largely subaerial 

mudfiat environment compared to the perennial saline lake setting lower in the 

stratigraphy, however sulfate reduction itself is unlikely given the strongly oxidizing 

inferred depositional environment. Mixing o f seawater with meteoric water is supported 

by a shift to less radiogenic Sr isotope ratios (Fig. 5.22) but not by other sedimentologic 

or geochemical data.
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Carbon isotopic compositions for stromatolites and massive dolostones from this 

stratigraphie unit are the most enriched in the Sibley Group. This could be the result 

o f increased organic activity and organic carbon preservation in this stratigraphie unit 

w^hich would have removed depleted carbon from the water mass leaving it relatively 

'^C enriched. However, there is no evidence for increased organic carbon burial in this 

unit and increased organic influence may have also created increased dissolved organic 

carbon in the water mass making it *^C-rich instead. Alternatively, enriched 

compositions might again be reflecting the restricted, evaporitic depositional conditions 

represented by these lithofacies.

The single dolocrete analysis is depleted relative to stromatolite samples 

suggesting precipitation in the presence o f isotopically lighter, organic related CO2 in soil 

pores. The massive dolostone sample with a ô'^C o f -1 .4  % o, is a clast from an 

intraformational conglomerate unit and probably represents a reworked clast o f dolostone 

from the red siltstone-dolostone lithofacies association. This supports incorporation o f  

clasts from lower stratigraphie units into intraformational conglomerates at higher 

stratigraphie levels. This also suggests a lack o f  large-scale alteration o f isotopic 

compositions.

The PAAS normalized REE pattern for the stromatolite sample is similar to 

stromatolites from lower stratigraphie levels. Again the pattern has a positive La 

anomaly and a negative Ce anomaly but lacks the seawater characteristics o f  heavy REE 

enrichment and has a low Y/Ho ratio. The dolocrete nodule is enriched in MREE’s and 

has a similar pattern to dolostones precipitating in the perennial lake system below it.

The dolocrete may represent a groundwater-type dolocrete and groundwaters during the
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deposition o f  the upper units may have had chemistries controlled by the composition o f  

carbonates from lower units. However it is difficult to make inferences based on a single 

analysis. Further analyses o f  pedogenic carbonate from this unit are required.

5.6 Synopsis

The geochemical data presented in this chapter partially supports the depositional 

environments proposed in chapter 4. For the most part isotope data is consistent with a 

non-marine depositional setting for the portions o f the Sibley Group that were studied. In 

particular, sulfur isotopic compositions and REE and Y geochemistry are distinctly 

different than would be expected for a Mesoproterozoic marine depositional setting. Sr 

isotopic compositions are also not consistent with seawater, though these may have been 

more easily shifted towards more radiogenic, non-marine compositions through meteoric 

diagenesis. Carbon and oxygen isotope data fall within the range o f  expected seawater 

values consistent with carbonate precipitiated in equilibrium with atmospheric carbon 

dioxide. Stratigraphie variations in ô*^C and 8**0 can be explained using either a marine 

or a non-marine depositional model. However, given evidence from other isotopic and 

REE data a non-marine depositional setting best fits the available data, particularly for 

the mixed siliciclastic-carbonate unit. In the upper mixed siliciclastic-carbonate- 

evaporite unit sulfur isotopic data and Sr isotopic data may reflect a mix o f non-marine 

and marine waters. Though it is more likely that sulfur isotope data is reflecting the 

chemistry o f  sulfides that were weathering in the catchment.
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Chapter 6. Conclusions

The aim o f this thesis was to better understand the depositional environments o f  

the Pass Lake and Rossport Formations o f the Sibley Group, using lithofacies analysis 

and geochemical data. The primary conclusions o f  this study with respect to this 

objective are outlined below. First, conclusions from the lithofacies analysis are outlined, 

followed by those from geochemical data.

Based on the analysis o f  lithofacies associations and stratigraphy presented in 

chapters two, three and four, the following conclusions can be made:

1. The portions o f  the Sibley Group studied (lithostratigraphic Pass Lake and 

Rossport Formations) contain a variety o f distinct lithofacies associations. 

These lithofacies associations can be divided into 4 informally defined 

allostratigraphic units which roughly correspond to existing lithostratigraphic 

subdivisions.

2. The lower clastic unit forms the base o f  the Sibley Group and contains the 

following lithofacies associations representing distinct depositional settings: 

boulder conglomerate-sandstone-dolocrete (proximal ephemeral braided 

streams), pebble to cobble conglomerate (ephemeral braided streams), trough 

cross-stratified sandstone (epemeral braided streams), massive cobble 

conglomerate (transgressive lag, reworking o f braided stream deposits during 

lacustrine transgression), green sandstone-siltstone (wave and storm 

influenced fluvial dominated deltas) planar cross-stratified sandstone
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(nearshore migration o f  large sand waves), and thinning upward sandstone 

(beach and storm remobilized nearshore sandstone sheets).

3. The mixed siliciclastic-carbonate unit disconformably to conformably overlies 

the lower clastic unit and consists o f  the following lithofacies associations: red 

siltstone (non-saline lake), red siltstone-dolostone (perennial saline lake, distal 

from clastic sources) and red siltstone-dolomitic sandstone (perennial saline 

lake, proximal to clastic sources)

4. The upper clastic unit sharply overlies the mixed siliciclastic carbonate unit 

and consists o f the sheet sandstone lithofacies association (ephemeral playa 

lake (?) or perennial lake with increased clastic supply with respect to 

underlying units), and the black chert-carbonate lithofacies association 

(shoreline). Interpreted subaerial exposure features are present at the top o f the 

black-chert-carbonate lithofacies association and include the intraformational 

conglomerate lithofacies association (subaerial debris flows, intrusive and/or 

extrusive sedimentary breccias, terra rossa style soils, dissolution collapse 

breccias).

5. The mixed siliciclastic-carbonate-evaporite unit overlies the subaerial 

exposure surface at the top o f  the upper clastic unit. It consists o f  the massive 

dolostone (saline lake), the red siltstone-sulfate (wet evaporite-rich mudflats 

around lake margins) and the fine-grained sandstone (dry, evaporite poor mud 

and sand fiats around lake margins) lithofacies associations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



186

Based on the stable isotope, Sr isotope and trace element data presented in chapter 

5, the following conclusions can be made:

1. Overall, the geochemical data supports a non-marine origin for the Pass Lake 

and Rossport Formations.

2. Low Sr isotope ratios from dolocrete in the lower clastic unit indicates that 

weathering o f  old, radiogenic bedrock was not a major source o f cations for 

these carbonates. It is possible that atmospheric deposition and weathering o f  

Gunflint Formation carbonate bedrock was a major source o f cations for 

pedogenic carbonate. Relatively *^C-rich dolocrete carbon isotopic 

composition suggests little organic contribution to soil CO2. REE 

geochemistry suggests dolocretes precipitated from oxidizing non-marine 

water.

3. S, Sr, REE and Y data for the mixed siliciclastic carbonate unit support a 

lacustrine origin for these rocks. Variations in S isotopic composition may be 

related to changes in the composition o f  sulfides weathering to supply sulfate 

to the system. MREE enriched PAAS normalized REE patterns for dolostone 

samples differ from those found in other carbonate lithofacies and this 

probably relates to more reducing conditions in lake waters relative to surface 

waters supplying the lake. Stratigraphie variations in C and O for this unit 

were created by evaporation and/or residence time effects.

4. Slightly enriched 5*^C and 8**0 values in the least altered samples from the 

upper siliciclastic unit and mixed siliciclastic-carbonate-evaporite unit reflect 

a generally shallower more evaporitic environment as compared to the mixed-
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siliciclastic unit. Shifts toward lighter ô ’^C in pedogenic carbonates from 

these units could reflect a contribution o f dissolved organic carbon. Samples 

with relatively light ô ’^C and 8**0 indicate diagenetic alteration. REE data 

for these units is consistent with a non-marine, oxidizing depositional setting.
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A ppendix 1. Geochemical d a ta  for lower clastic unit c a rbonate  samples

Sam ple M ethod D«t«ctioii Limit W L3a W L3b W L3c BM 90 BM91

S tratig raph ie  unit Lower Clastic Lower Clastic Lower Clastic Lower Clastic Lower Clastic

Lithofacies association Boulder
conglomerate-

sandstone-
dolocrete

Boulder 
conglomérat e- 

sandsto^e- 
dolocrete

Boulder
conglomerate-

sandstone-
dolocrete

Boulder
conglomerate-

sandstone-
dolocrete

Boulder
conglomerate-

sandstone-
dolocrete

Drill Hole n/a n/a n/a n/a n/a

O utcrop  Locality W est Loon W est Loon West Loon South o f 
Beardmore

South o f 
Beardmore

E asting (m) 368006 368006 368006 ? ?

N orthing (m) 5387586 5387586 5387586 ? ?
Description dolocrete horizon, 

pink carbonate 
matrix material, 

silicified?

silicified dolocrete massive pink 
silicified dolocrete

carb nodule, soil
(?)

discontinuous soil 
(?) carbonate layer

5 " C  (PDB) -1.1 -1 2 -1.3 -1.2 -1.5

5 '* 0  (SM OW ) 28.4 27.5 27.2 14.8 14.0

S '* 0  (PDB) -2.4 -3.3 -3.6 -15.7 -16.4

‘’S r /^ S r 0 .7 04782 0.704284

2 o 0 .00 0 0 2 0,000012

AI (ppm ) ICP-AES O.Oti 47.98 756.77 313.96
Ba ICP-AES 0.006 27457 25.521 10.239
Ca ICP-AES 0.01 122265.33 454804.17 200854.26
Fe ICP-AES 0.02 461.51 1553 12 784.31
K ICP-AES 0.23 17.5 N D N D .

Mg ICP-AES 77384.05 15539 06 8688.70
Mn ICP-AES 0.003 1680.606 917 708 411.968
Na ICP-AES 0.0! 85.78 3445.31 2437.10
P ICP-AES 0.1 28.4 1118,7 872 3
S ICP-AES 0.1 74,1 4393.1 1256.7
Si ICP-AES 0.029 21 76 891.67 378.72
Sr ICP-AES 0.009 33.864 N .D , 11.170
Y ICP-AES 0.03 4.41 10.42 4,26

Al (ppm) ICP-MS 0.5 38.0 79.3
C a ICP-MS 1000 47,600 82,800
Fe ICP-MS 0.3 141 301
Mn ICP-MS 0.4 579 750
M g ICP-MS 250 >20000 >20000
Cs ICP-MS 0.001 0.00990 0.0193
H r ICP-MS 0.05 N D N D .

Rb ICP-MS 0.02 N D N .D

S r ICP-MS 0.00 15.3 29.5
Ta ICP-MS 0.10% N D N D .

N b ICP-MS 0.01 N D N .D .

Th ICP-MS 0.02 00332 0.0574
U ICP-MS 0.0599 0 130
V ICP-MS 0.025 1.37 2.84
Z r ICP-MS 0.2 0.0609 00881

La ICP-MS 0.02 0.772 1.61
Ce ICP-MS 0.01 0.756 1 88
P r ICP-MS 0.0035 0.306 0.614
Nd ICP-MS 0.002 1.27 2.57
Sm ICP-MS 0.005 0.290 0 558
Eu ICP-MS 0.005 00604 0,126
Gd ICP-MS 0.005 0.295 0.622
Tb ICP-MS 0.015 0.0401 0.0817
Dy ICP-MS 0.0015 0.202 0 420
Ho ICP-MS 0.004 0.0376 0.0772
E r ICP-MS 0.0015 0 104 0,188
Tm ICP-MS 0.005 0 0104 0.0262
Vb ICP-MS 0.002 00644 0.154
Lu ICP-MS 0.0035 0.0114 0 0223

Li (ppm) ICP-MS 0.1 0.355 0.716
Be ICP-MS 0.04 0.103 0 116
Sc ICP-MS 0.3 N D . 0.436
V ICP-MS 0.4 N D . N .D .

Mo ICP-MS 0.02 0,256 00485
Ba ICP-MS 0.0015 6.37 3 42
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Appendix I. G eochem ical d a ta  for lower clastic unit ca rbonate  samples

Sample M ethod Detection Limit W L3a W L3b W L3c BM 90 BM91

Tl ICP-MS 0.0035 N.D. 0.00297

Pb ICP-MS 0.15 1 18 1.18

Ti ICP-MS 0.005 0.693 111
C r ICP-MS 0.03 0.391 0.340

Co ICP-MS 0.5 1.09 1.97

Ni ICP-MS 0.005 4.18 5.24

Cii ICP-MS 0.35 3.68 10.7

Zn ICP-MS 10 36.4 40.8

Ag ICP-MS 0.015 N.D N D

Cd ICP-MS 0.0015 0.142 0.221

Sn ICP-MS 0.15 0.0401 0.0574

Sb ICP-MS 0.005 0.0233 0.0208
W ICP-MS 0.01 N.D. 0.0119

Au ICP-MS 0.005 N.D N D

Ga ICP-MS 0.015 0.0629 0.121

* blank cells = not analyzed; N.D. = not detected
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Appendix 2. Geochemical da ta  for the mixed sihciclastic-carbanate un it

RCS 03R M 7M •3RM7S-2 •3RM 7S-3
stratigraphie

siltciclaslic
carbonate

siliciclastic
carbonate

siliciclastic
carbonate

mixed siliciclastic 
carbonate

mixed siliciclastic 
carbonate

mixed siliciclastic 
carbonate

mixed siliciclastic 
carbonate siliciclastic

carbonate
siliciclastic
carbonate

siliciclastie
carbonate

siliciclastic
carbonate

Klhofacies
association

Stratigraphie 

(above basement)

Eaatinc (m>
5443000 5443000 5443000

Description red dolomitic 
mudstone

red dolomiitc 
mudstone

red dolomitic 
mudstone

red dolomitic 
mudstone

red dolomitic 
mudstone

red dolomilic 
mudstone

red dolomitic 
mudstone

micritic
dolostone

micritic
dolostone

micritic
dolostone

5 '*CfPDB)
8 " 0 (S M 0 W )

5’*0(PD B )

" S r /^ S r

Method DMecltM LheH

K
M f

A lfpnm)

Tb
Dy

Total REE

32 17

2.0

• blank cells •  not analyzed: N.D. •  not detected
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Appendix 2. Geoch*

•3RM 78-4 «3RM78-S «3RM78-8 «R M 78-7 03RM J»-! IURMM-2 03RMW-3 03RM3»-4 W RW itM 93RM30-4 W RM55
sirattgrapiik

siliciclastic
carbonate

siliciclastic
carbonate

siliciclasiic
carbonate

siliciclasiic
carbonate

siliciclastic
carbonate

siliciclastic
carbonate

siliciclastic
carbonate

siliciclastic
carbonate

siliciclastic
carbonate

siliciclastic
carbonate

siliciclastic
carbonate

siliciclastic
carbonate

siliciclastK
carbonate

siliciclastic
carbonate

auodation

S tralifrapH c 

(above baaemenl)

5443000 5443000 5443000 5443000
OeacriptiMi inicntic

dolostone
micritic

dolostone
micritic

dolostone
micritic

dolostone
micritic

dolostone
micritic

dolostone
micritic

dolostone
micritic

dolostone
micritic

dolostone
micritic

dolostone
micritic

dolostone dolostone
micritic

dolostone
mtcntK

dolostone

8” C(PD B )
6“ 0(SM 03V )

S " o  (PDB)

"S r/“ Sr

Fe

M b

Fe

M f >20000 >20000

C» 0 0301
0 00700

0.351
31.6

0.00766 0.00800 0.00800

Tb
Dv
Ho

Total REE

0 00191 0.00146

* blank cells = not am
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Appendix 2. Croche 1
•3RM 3»-5 U R M 3 M 03RM3«-T

stra ti ErapWc
siliciclasiic
carbonate

siliciclastic
carbonate

siliciclastic
carbonate

siliciclastic
carbonate

siliciclastic
carbonate

siliciclastic
carbonate carbonate

siliciclistic
carbonate

siliciclastic
carbonate

siliciclastic
carborate

siliciclastic
carbonate

siliciclastic
carbonate

siliciclastic
carbonate

siliciclastic
carbonate

hthofaciea
association

Stratigraphie
Height
(above baaetnent)

Eaatbif (m)
Northinc(m) 5443000 5443000 5443000 5443000 5443000 5410540 5410540 5410540
Description micntic

dolostone dolostone
micritic

dolostone dolostone
micritic

dolostone
micritic

dolostone
micritic

dolostone
micritic

doloslone
micritic

doloslone
micritic

doloslone dolostone
mien tic 

doloslone
micntic

dolostone
micritic

dolostone

5 '^CfPDB)

8“ o  (SMOW)

8‘*0(PD B)

"S r/“ Sr 0.708288

0.000016 0.000021 0.000014

K 1383
M i 81370

79.770
Na

Fe

M l
Ca

0.00404

Tb
Dv
Ho

Total REE

Li (ppm)

821

Zn
A r
Cd

* blank cells -  not an
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Appendix 2. Oeoche -----------------

N B -97 -i-lt NB-97-4-11 NB-97-1-13 N B -97-H 4 NB-97-».lî
itTStigraphie

siliciclastic
caibotMie

siliciclastic
carbonate

siliciclastic
caiboMle

siliciclastic
carbonate

siliciclastic
carbonate

siliciclastic
carbonate

siliciclastic
caiborate

siliciclastic
carbonate

siliciclastic
carbonate

siliciclastic
carbonate

siliciclastic
carbonate

siliciclastic
carbonate

siliciclastic
carbonate

siliciclastic
carbonate

tithoficie*
association

Stratigraphie 

(above bsaement}

N ortlw tf (tn) 54IOS40 5410540 5410540 5410540 5410540 5410540 5410540 5410540 5410540 5410540 5410540
Description micrilie

dolostone dolostone doloslone
micntic

doloslone
micritic

dolostone
micritic

dolostone
micritic

dolostone dolostone
micritic

dolostone
micritic

dolostone
micritic

doloslone
micritic

doloslone
micritic

doloslone
micritic

doloslone

8 " C  (PDB)
8 " 0  (SMOW)

8**0 (PDB)

•’Sr/^Sr

2o

34.280 218647 148.586
133377 132899 135463
208.15 225.46 206.70

82.4
M l

59.33
43.4

44.07 14.24 28.06
28.256 44.812 39.162

4.51

Al (pDtn)

T b
Dy
Ho

T otal REE

U (pptn)

* blank cells = not an
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A o D e n d ix  3 . G e o c h e m i c a l  d a t a  f o r  c a r b o n a t e  s a m o l e s  f r o m  t h e  u p o e r  s i l i c i c la s t ic  u n i t

B 0 2 -ta B 0 2 -ta B 0 2 -lb B 0 2 - k C llb C IU 04RM77

S tratig raphie  unit U pp er

siliciclastic

U pper
silictclastic siliciclastic

U pper siliciclastic U pper
siliciclastic

u p p e r
siliciclastic

U p p er siliciclastic

liHhofacies
association

Drill H ok n/a n/a n/a n/a

O utcrop Locality Channel Channel Channel

Island

Channel Channel Channel Red R ock  Railway

Easting (m) 462992 462992 462992 462992 462992 407703
N orthing (in) 5406020 5406020 5406020 5406020 5406020 5423237
Description strom atolite, 

m assive  w hite 
la y »

strom atolite, 
m assive  w hite 

layer

fine dark  krinkly 
lam inae

strom atolite strom atolite strw nato litic
chert/lim stone

5 " C  (PDB) -O.l •0.1 0.4 0.71 0.22 0.2

5‘*0  (SM OW ) 15.7 18.5 16.4 23.37 23.47 23.9

5‘*0  (PDB) •14.7 -12.1 •14.1 -7.3 -7.2 -6.8

' ’S r /^ S r 0.709386 0.711604 0.712309 0.708152

0.000016 0.000025 0.000023 0.000013

Method D«ict<»a LinaU

A l(ppm ) IC P -A E S 105.76
Ba IC P-A E S 185.312
Ca IC P-A E S 124741.32
Fe IC P -A E S 309.00
K IC P -A E S ND.
Mg IC P -A E S 77503.13
Mn IC P-A E S 336.800
Na IC P -A E S 247.32
P IC P -A E S 61.7

IC P-A E S 203.4
Si IC P -A E S 46.15
Sr IC P -A E S 26.541
Y IC P -A E S 4.76

AI (ppm) IC P -M S 24.0 21 1 51.7 455
IC P -M S 83.0 84. i 160 427
IC P -M S 499 475 420 386

Mg IC P -M S >20000 >20000 >20000 >20000
Ca IC P -M S 96,400 72.600 113,000 77.600
Cs IC P -M S 0.00198 0.00396 0.00300 000297
Hf IC P -M S N.D. N.D. N.D. N.D
Rb IC P -M S N.D. N D . N.D. N.D.
Sr IC P -M S 37.2 3 6 8 27.5 32.6
Ta IC P -M S N.D. N.D. N.D. ND.
Nb IC P -M S N.D. N.D. 0.00550 N.D.
Th IC P -M S 0.0144 0.0134 0.0230 0.0144
U IC P -M S 0.0802 0.0807 0.169 0.273
Y IC P -M S 2.33 2 36 2.17 2.63
Zr IC P -M S 0.15 N.D. N.D. 0.0230 N.D.

La IC P -M S 0.02 4.35 4.52 1.85 2.01
Ce IC P -M S 0.01 2.70 2.82 2.36 2.93
Pr IC P -M S 0 0035 099 2 0.99! 0.564 0692

IC P -M S 0.002 3.84 3.85 2.29 2.90
Sm IC P -M S 0.005 0.651 0 619 0.471 0.602
Eu IC P -M S 0.005 0.112 0.111 0.112 0.125
Gd IC P -M S 0.005 0.623 0.657 0.440 0.620
Tb IC P -M S 0.015 0.0703 0.0708 0.0610 0.0782
Dy IC P -M S 0.0015 0.383 0.365 0.370 0.505
Ho IC P -M S 0.004 0.0624 0 0 6 N 0.0660 0.0837
Er IC P -M S 0.0015 0.150 0.148 0.167 0208
Tm IC P -M S 0.005 0.0168 00158 0.0210 0.0272
Yb IC P -M S 0.002 0.0807 0.0822 0.108 0.138
Lu IC P -M S 0 0035 0.0114 0.00990 0.0145 00168

Li (ppm) IC P -M S 0.192 0.122 0.227 0.122
Be IC P -M S 0.0634 0.0525 N.D N D
Sc IC P -M S 0.433 N.D. 0.482 0.564
V IC P -M S 2.00 1.73 6 55 4.91
Mo IC P -M S 0.0465 0.0332 0.0790 O .l l l

Ba IC P -M S 290 295 523 433
Tl IC P -M S N.D. N.D. 0.00150 0.00149
Pb IC P -M S 0.837 0.938 0.925 0.825
Tl IC P -M S 2.52 4.18 0.925 0.549
C r IC P -M S 0.266 0.276 0.315 0.623
Co IC P -M S 0.450 0 447 0.555 0.503
Ni IC P -M S 1.09 1.68 I 73 1.55
Cu IC P -M S 1.18 1.32 4.71 4.83
Zn IC P -M S 5.84 4.83 11.3 2.99

Ag IC P -M S N.D N.D. N.D. N.D.
Cd IC P -M S 0.0312 0.0267 0.0225 0.0223
Sn IC P -M S 0.0861 O.IOI 0.0530 00327
Sb IC P -M S 0.0213 0.0203 N D N.D.
W IC P -M S 0.0183 0.0104 0.0175 0.0144
Au IC P -M S N.D. N.D N.D. N.D
Ga IC P -M S 0.0812 0.0673 0.0605 0.0733

* b lank  ce lls  -  no t analyzed; N.D. = n o t detected
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Appendix 3. Geochei
(MRM26 carb 04R M 28acarb 04RM 2ta 04RM 28b carb 03RM28

stromatolite
*4-59 carb 04-60

siikiffed
04-61 carb

S tra tig raph ie  unit U pper

siliciclastic

U p p er siliciclastic

siliciclastic

U pper siliciclastic U p p er siliciclastic
siliciclastic

U pper
siliciclastic

U pper
siliciclastic

lilthofacies
association

Drill H ok n/a n/a n/a n/a n/a n/a

O utcrop Locality Pass Lake Pass Lake Pass Lake Pass Lake K am a Hill Channel
Island

Channel
Island

Channel
Island

Easting (m) 372820 372820 372820 425488 462992 462992 462992
N orth ing  (m) 5377714 5377714 5377714 5428453 5406020 5406020 5406020
Description carb  nodule 

overlying carb 
breccia  P ass  Lake 

Rd

clast in carb  
breccia . P ass  Lake 
Rd. light green 
c loudy carb  at edge

clast in carb 
breccia . Pass 

Lake Rd. m assive 
dark green  carb  in

w eathered hrxizcm 
developed  on 

strom atolilic  un it at 
K am a Hill

altered light

carbonate from

w eathered 
carbonate  unit

silicified carb  
nodule  in 

w eathered top 

o f  carb  unit

m ass flow 
carb  rich

5"C (PDB> 0.9 1.2 1.3 -1.5 -0.7 I 2 -1.0
5 '* 0  (SM OW ) 28.1 27.9 28.0 24.6 26.6 25.6 26 5

8 '* 0  (PDB) •2 8 -3.0 -2 8 -6.2 -4.2 -5.2 -4.3

" S r /^ S r
2 a

AI (ppm) 160.69
Ba 167.835
Ca 129422.18
Fe 264.70
K 187.4

Mg 78083.07
Mn 383.001
Na 265.29
P 123.3
S 128.4
Si 142 68
Sr 39.725
Y 10.90

A l (ppm) 105 114 36.0 78.0
Fe 37.500 45.000 57.900 48.800
Mn 87 5 63.0 !49 100
Mg 176 184 664 213

>20000 >20000 >20000 >20000
0.0995 0.00829 0.00900

H r 0.00746 0.00950 N.D. 0.0100
Rb N D N .D . N.D. N .D .
Sr 12.4 14.4 17.8 21.5
T a N .D . N .D . N.D. N .D .
Nb 0.00498 N .D . N.D. 0.00600
Th 0.202 0.231 0.0341 0.0995
U 0.0502 0.0400 0.0370
V 2.09 4 11 452
Z r 0.109 0.0765 0.0488 0.0350

La 2.23 3.24 0.885 1 81
Ce 2.52 3 99 0882 4.50
P r 0 583 0.911 0.349 0.691
Nd 2.27 3.65 1.49 2.86
Sffl 0.495 0.859 0.323 0.834
Eu 0.0915 0.137 0.0668 0.136
Gd 0.436 0.863 0.38/ 0.854
Tb 0.0736 0.134 0.0434 0.151
Dy 0.422 0.832 0.232 0  909
Ho 0.0791 0.157 0.0449 0 174
E r 0.229 0.481 0119 0.479
Tm 0.0303 0.0680 0.0151 0.0665
Vb 0.185 0452 0 0824 0.467
Lu 0.0264 0.0695 0.0/12 0.0695

Li (ppm ) 0 587 0.576 0.453 0.235
Be 0.0527 0.0695 0.0766 N D .
Sc 0 801 1.16 0 361 1.17
V 0.623 0.349 N.D. 0.471
M o 0.0418 0.0405 0120 0.0395
Ba 63.8 65.1 6  92 210
n 0.00149 0.00150 N D . N .D .
Pb 0.890 0.845 1.14 1.30
Ti 1.20 1.17 0.62/ 0.385
C r 0.509 0.446 0.410 0.474
Co 0.373 0.444 1.26 0.294
Ni 0.755 0.972 1.54 2.75
Cu 1.68 3.49 3.09 4.69
Zn 5.81 7.37 25.0 20.7
Ag N .D . N .D . N.D. N .D .
Cd 0.0159 0.0265 0.160 0.0290
Sn N .D . N .D . 0.0395 0.0255
Sb N .D . N .D . 00180 0.0225
W 0.0144 0.0140 00112 0.0300
Au N .D . N .D . ND. N .D .
G a 0.0567 00650 00659 0.0645

* b la n k  ce lls  =  no t analyzec
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A ppm dli 4 Gcwiieinlcal data fo m rb en a teu m p le*  r ra n  the mixed sUtcidasMc-<mrbonalc-«vBparil( unM | 1

04RM40 BROl-J 03RM37 dola GR7-L c n - w 04RMI0 WR.M15. IMRMISb

StraHgrapMc unK mixed siliciclastic- 
catbonate-evaporiic

mixed siliciclasik- 
catlxmate-eviporite

mixed siliciclastic- 
earbooaie-evapcnle

mixed silkictaslic- 
carbonate-evaporite

mi.ved siliciclastic- 
carbonale-evaponie

mixed siliciclastic- 
carbonate-evaponie

mixed siliciclastic- 
carbofiate-evaporile

mixed siliciclastic- 
carbonate-evaponie

mixed siliciciastic' 
carbonate-evaponie

mixed silkklastic- 
carbonate-evaporite

massive doknionc' 
Inlrafbrmational 
congkuneraie

redsiitstone-suirare massive dolostone red silistone-suiraie red siltstone-Milfaie red siltstone-sulüte red siltstone-sulfale red sillstone-nillale red siltsKne-sulfate red siltstone-sulfate

S tn d g n p h k  hdÿ ri n/a iv'a rt̂ a rva 165.5 78 (above base of hole) 78 (above base of hole

Owierep LacaMy red rock railway Kama Hill boulder. NW of boulder. NW of Hwv 11-17. near tva n/a

Dcacrlpthm dolo sitlstone'mudstone 
clast a few m above 

Middlebrun Bay

dissenuniniled 
caibonaie associated 

with sulphates

massive finc-gninted 
dok). overlies 

stromatolite unit at 
Kama Hill

recrystallized 
stromatolite boulder

recry slallized 
sirofnatolite boulder

finely laminated pink 
carbonate

weathered top of 
linety laminated pink

recryslallized. 
stronutolitic wifli 

abundant diagenetic 
gypsum

finely laminated pink 
carbonate trom 

stmiaiotitic horizon in

clast o f  massive 'vhite 
carb in breccia above

4"0 (S M 0 \V )
8” 0(PDB>

0.707028 0.707031

0.000013 0.000023

Method DHecttMiUaM

135189.02 130742.62 131026.40

70719.29
Mit

M l

Dy
He

ICPMS ' 0-0013

LI (ppm)

Cm

A |
Cd

* blank cells "  not inalvzed'. N.D -  not detected
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A p p e n d ix  S. G e o c h e m ic a l  d a t a  f o r  a ll 

s u lfa te  s a m p le s .

S a m p le  1 03R M 27 03RM 28 03RM 29 BR0136 BR0138 BR0144 B R 0146 04RM S 04R M 8

s t r a t i g r a p h ie  u n it mixed
siliciclastic-
carbonate-
evaporite

m ix ed
siliciclastic-
carbonate-
evaporite

siliciclastic-
carbonate-
evaporite

siliciclastic-
carbonate-
evaporite

siliciclastic-
carbonate-
evaporite

m ix ed
siliciclastic-
carbonate-
evaporite

m ix ed

siliciclastic-
carbonate-
evaporite

mixed
siliciclastic-
carbonate-
evaporite

m ixed
siliciclastic-
carbonate-
evaporite

i i th o fa c ie s  a s so c ia tio n red siltstone- 
sulfate

red siltstone- 
sulfate

red siltstone- 
sulfate

red siltstone- 
sulfate

red siltstone- 
sulfate

red siltstone- 
sulfate

red siltstone- 
sulfate

red siltstone- 
sulfate

red  siltstone- 
sulfate

D rill Hole NI-92-7 NI-92-7 NI-92-7 NI-92-7 NI-92-7 NI-92-7 NI-92-7 N l-92-7 NI-92-7

S tr a t i g r a p h ie  H e ig h t  
(a b o v e  b a s e m e n t)  (m )

157.45 158.6 145.2 107.6 125 136.48 140 107.27 113.32

E a s t in g  (m ) 353850 353850 353850 353850 353850 353850 353850 353850 353850

N o r th in g  (m ) 5443000 5443000 5443000 5443000 5443000 5443000 5443000 5443000 5443000

D e s c r ip tio n gyp/anh
nodule

gyp/anh
nodule

gyp/anh
nodule

gyp/anh
nodule

gyp/anh
nodule

gyp/anh
nodule

gyp/anh
nodule

sulphate
cement

gyp/anh
nodule

" S r / “ S r 0.70647 0.707047 0.707383

2a 0.000037 0.000012 0.000013

A p p r o x im a te  % S 18 18 22 15 20 16 25 33

g " S  (CD T ) 10.6 11.2 I I . 4 9.0 8.9 9.0 12.4 12.2

M ethod Detection Limit

A ! (p p m ) ICP-A ES 0.06 N.D. N.D. 28.77 N.D. 11.84 N.D. N.D. N.D.
B a ICP-A ES 0.006 20.301 7.451 5.802 4.366 3.596 N.D. 2326.429 N.D.
C a IC P-A ES 0.01 273239.01 80151.71 289816.05 226325.35 256974.56 229057.53 2474302.86 230382.51
Fe IC P-A ES 0.02 7.18 N.D. 67.28 N.D. 37.63 17.42 N D . N .D
K ICP-A ES 0.25 N.D. 71.8 175.1 N.D. N.D. N .D. N.D. N.D.
M g IC P-A ES 0.01 107.37 55.25 263.95 49.86 426.67 3153.88 3725.00 124.79
M n IC P-A E S 0.003 0.712 0.033 21.975 0.563 8.947 33.596 10.000 N D .
N a IC P-A E S 0.01 83.70 98.93 295.68 360.99 229.91 194.33 3487.86 337.63
P IC P-A E S 0.1 44.6 23.6 N.D. N.D. N.D. 73.5 477.1 39.8
S IC P-A E S 0.1 232934.8 67271.7 220985.7 184110.4 209507.4 187287.6 2070656.2 192842.7

Si IC P-A ES 0.025 23.67 12.63 43.46 113.80 53.33 42,47 491.43 10.79
S r IC P-A E S 0.005 1253.699 429.605 712.222 641.549 1459.912 1295.281 19242.857 2093.023
Y IC P-A E S 0.03 N.D. N.D. N.D. N.D. N.D. N.D, N D N.D.
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A ppendix  5. G eochem ical d a ta  for all 
su lfa te  sam ples.

Sam ple M -14 03RM 61 03RM 62 03RM 63 03R M 64 C F G 3 C F G 4 C F G 5 C F G 6

s tra tig ra p h ie  unit
sihciclastic-
carbonate-
evaporite

siliciciastic-
carbonate-
evaporite

siliciclastic-
carbonate-
evaporite

siliciclastic-
carbonate-
evaporite

siliciclastic-
carbonate-
evaporite

m ixed
siliciclastic-

carbonate

m ixed
siliciclastic-

carbonate
siliciclastic-

carbonate

m ixed
siliciclastic-

carbonate

Iithofacies association red siltstone- 
sulfate

red siltstone- 
sulfate

red siltstone- 
sulfate

red siltstone- 
sulfate

red siltstone- 
sulfate

red siltstone- 
doiostone

red siltstone- 
dolostone

red  siltstone- 
dolostone

red  siltstone- 
dolostone

D rill Hole NI-92-7 DOO-02 DOO-02 DOO-02 DOO-02 N I-92-7 NI-92-7 N I-92-7 NI-92-7

S tra t ig ra p h ie  H eight 
(above basem ent) (m )

165 n/a n/a n/a n/a 62.32 56.53 58.18 65.86

E a s tin g  (m) 353850 357206 357206 357206 357206 353850 353850 353850 353850

N o rth in g  (m) 5443000 5440995 5440995 5440995 5440995 5443000 5443000 5443000 5443000

D escrip tion gyp/anh
nodule

gyp/anh
nodule

gyp/anh
nodule

gyp/anh
nodule

gyp/anh
nodule

gyp/anh
nodule

gyp/anh
nodule

gyp/anh
nodule

gyp/anh
nodule

" S r / “ S r 0.708836 0.708186 0.707788 0.708799 0.708999

2o 0.000015 0.000013 0.000018 0.000015 0.000005

A p p ro x im ate  % S 24 19 20 19 16 18 26 15 24

S ^ S  (CD T) 10.3 12.0 12.0 11.2 11.9 5.3 5.7 4.5 4.9

M ethod Detection L im it

AI (ppm ) ICP-AES 0.06 11.38 N.D. N.D. N.D. N.D. N.D. 14.09 61.64 24.67

Ba ICP-A ES 0.006 0.331 8.357 2.440 3.348 5.413 11.818 353.960 38.630 6.000
C a ICP-A ES 0.01 250774.59 263201.71 234329.08 230140.17 236367.71 262793.51 265706.04 252687.67 245454.67

Fe ICP-A ES 0.02 46.30 1.00 N.D. N.D. 20.12 16.49 111.28 9.04 4.13
K IC P-A E S 0.25 N.D. N.D. 91.6908213 N.D. N.D. 213.0 811.5 N.D. N D .
M g ICP-AES 0.01 1348.95 320.79 28.48 45.17 12.20 1481.56 2094.77 2951.23 1582.13
M n ICP-A ES 0.003 14.586 8.429 N.D. N.D. N.D. 3.896 8.591 4.384 6.667

Na ICP-AES 0.01 49.83 256.21 179.78 165.35 9.14 221.95 584.30 44.66 344.40
P ICP-AES 0.1 N.D. 123.4 41.1 71.0 70.8 N.D. N.D. N.D. N.D.
S ICP-A ES 0.1 200771.7 219722.8 199181.6 195222.6 199208.5 212309.6 209393.8 194132.6 198904.5
Si ICP-AES 0.025 32.04 70.00 16.62 36.00 13.70 39.48 63.89 203.29 97.07

S r ICP-A ES 0.005 799.448 926.286 278.164 185.565 574.067 220.909 439.060 381.096 1094.267
Y ICP-AES 0.03 N.D. N D . N.D. N D . N.D. N.D. N.D. N.D. N D .
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A ppendix 5. G eochem ical d a ta  for all 
su lfa te  sam ples.

Sam ple 03RM 35g 03R M 26 04RM 32 C F G l C F G 2 03R M 44g

s tra tig rap h ie  unit m ixed
siliciclastic-

carbonate

m ixed
siliciclastic-

carbonate

m ixed
siiiciclastic-

carbonate

m ixed
siliciclastic-

carbonate

m ixed
siliciclastic-

carbonate

m ixed
siliciclastic-

carbonate

Iithofacies association red siltstone- 
dolostone

red siltstone- 
dolostone

red siltstone- 
dolostone

red siltstone- 
dolostone

red siltstone- 
dolostone

red siltstone- 
dolostone

D rill Hole NI-92-7 NI-92-7 NI-92-7 NI-92-7 N l-92-7 NI-92-7

S tra tig ra p h ie  H eight 
(above basem ent) (m)

86.93 74.04 55 53.36 60.72 64

E asting  (m ) 353850 353850 353850 353850 353850 353850

N orth in g  (m ) 5443000 5443000 5443000 5443000 5443000 5443000

D escrip tion gyp/anh
nodule

gyp/anh
nodule

gyp/anh
nodule

gyp/anh
nodule

gyp/anh
nodule

cyclic
gypsum

" 'S r /^ S r 0,710492 0.708522 0.709063 0.710899

2 a 0.000008 0.000011 0.000008 0.000018

A pprox im ate  % S 13 46 21 22 23

8“ S (C D T ) 11.9 10.7 5.5 6.0 6.0

M ethod Detectioo Limit

AI (ppm ) ICP-A ES 0.06 25.18 7.36 3.88 16.58 N.D.

Ba ICP-A ES 0.006 788.684 27.917 45.426 14.188 58 387

Ca ICP-AES 0.01 442764.04 376876.39 280637.21 253386.32 204878.97

Fe ICP-AES 0.02 82.37 158.47 N.D. 15.21 19.23

K ICP-A ES 0.25 N D . N.D. N.D. 454.7 N.D.

M g ICP-AES 0.01 2106.14 4770.83 1849.61 1740.17 3116.06

Mn ICP-AES 0.003 49.298 31.944 4.651 6.496 40.903

Na ICP-AES 0.01 325.00 318.19 127.91 814.19 217.23

P ICP-A ES 0.1 14.0 N.D. N.D. N.D. 46.2

S ICP-A ES 0.1 320560.0 271608.9 226013.0 203313.5 168059,3

Si ICP-AES 0.025 108.77 45.00 65.74 107.69 102.45

S r ICP-A ES 0.005 1091.316 1322.917 623.411 541.026 363.613

Y ICP-AES 0.03 N D . N.D. N.D. N.D. N.D.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


