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Abstract

Beaver ponds are a characteristic component o f northern Ontario stream 
ecosystem s and display a great deal o f variation through their natural cycle of 
establishment and abandonment. Ponds also provide habitat for brook trout {Salvelinus 
fontinalis) within small-stream systems. However, the habitat characteristics o f ponds 
used by brook trout, and the characteristics o f brook trout in the ponds is poorly 
understood. I evaluated the local and landscape scale habitat characteristics o f beaver 
ponds that are associated with the presence, relative abundance and physical 
characteristics o f brook trout. Brook trout were captured in 40% of 50 beaver ponds 
sampled. Angling proved to be the most reliable method to sample brook trout in ponds, 
however, catchability appeared to be strongly influenced by temperature. Catch per unit 
effort (CUE) was significantly higher in ponds with water temperatures within the 
approximate preferred thermal range o f brook trout (11 ° C to 18 ° C) (ANO VA, F 2.48 = 
5.259, p = 0.026). Peak CUE occurred between approximately 14 °C  to 18 °C . Beaver 
ponds with brook trout present were generally characterized by greater upstream  
catchment area (UCA), lower water temperature, higher dissolved oxygen, higher 
conductivity, higher alkalinity, and greater depth. Brook trout were never captured in 
ponds with an upstream catchment area (UCA) less than 2.9 sq. km. In a logistic 
regression model, U C A correctly predicted brook trout presence and absence in beaver 
ponds (82.4%). In beaver ponds with a mean water temperature greater than 11 ° C, 
predicted group membership using UCA was greater (92.9%). Model parsimony and 
predictive ability increased when beaver ponds with an overall mean water temperature 
greater than 11 °C  were used in the analysis. Brook trout captured in beaver ponds were, 
on average, 105 mm and 72 g larger than those in adjacent streams (Pi,i32i =  1658.2, P < 
.001). Brook trout average size in ponds was larger in smaller UCAs, whereas, brook 
trout in streams were larger in larger UCAs. M y research illustrates that beaver ponds 
provide complimentary and/or supplementary habitat for brook trout living in stream 
systems. It is clear that pond characteristics at both a landscape and local scale are 
associated with brook trout presence or absence, likely through the ability o f  brook trout 
to colonize the pond and the suitability and stability o f habitat within the pond. Further 
research is required to better understand the linkage between local and landscape scale 
characteristics influencing brook trout habitat and abundance in small headwater streams 
and insure the protection of these linkages from disturbance.
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“One is inclined to use the past tense in writing o f the wild brook trout. Constitutionally 
incompatible with the advance of civilization, this exquisite fish is dying. Where man 
has dried up his springs by deforestation, polluted his waterways, straightened streams 
into ditches and denuded them of their natural cover, the wild brook trout has vanished.”

Henry D avid Thoreau

LO Introduction

Stream dwelling brook trout (Salvelinus fontinalis) populations are common  

throughout boreal forest stream networks in northwestern Ontario and are often the only 

fish species present in small headwater streams. The brook trout is an endemic and 

widely distributed species (Scott and Crossman 1973, Power 1980, Hartviksen and 

M omot 1989) exhibiting a variety o f life history strategies, as w ell as considerable 

variation in reproduction, age o f maturity, life span, and habitat preferences (Carlson and 

Hale 1973, Scott and Crossman 1973, Power 1980, Hutchings 1993, Hutchings 1996). 

They occupy habitats ranging from small intermittent streams and temporally variable 

ponds to large rivers and deep cold lakes (Scott and Crossman 1973, Benke 2002).

Brook trout along the Atlantic coast and Hudson Bay exhibit migratory behavior, m oving 

between fresh and salt water (Power 1980, Benke 2002). Typically, these anadromous 

brook trout, often referred to as ‘Salters’, are mature adults that migrate into coastal 

streams to spawn and then return to saltwater. Juvenile brook trout emerge and rear in 

streams for a period o f time dependent on river specific conditions (approximately 1 to 3 

years) before eventually returning to the ocean follow ing smolting (Scott and Crossman 

1973, Power 1980, Benke 2002). Temporary movements into or out o f  these streams by 

both juveniles and adults presumably occur while foraging or in search o f réfugia in 

response to changing environmental conditions (Curry et al. 2002). In both lakes 

Nipigon and Superior, brook trout migrate to and from tributary streams to spawn and 

possibly forage, although little is known about the mechanisms that drive these 

movements (Mucha 2003).

Brook trout are a member of the Charr (Salvelinus) Genus. The endemic 

distribution o f brook trout overlaps both Lake trout (Salvelinus namaycush) and Arctic 

charr (Salvelinus alpinus). However, brook trout are smaller and shorter lived than both
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these charr species and exploit a more diverse range o f habitats (Scott and Crossman 

1973, Power 1980, Benke 2002). Although considered a generalist among the chairs, 

brook trout distribution, habitat utilization, and movements are constrained by specific 

bio-physiological and environmental requirements (Power 1980).

Brook trout exhibit considerable variation in body shape, size, and coloration 

depending on habitat, season, and state o f maturity (Scott and Crossman 1973, Power 

1980). In general, brook trout can be distinguished by their elongate and trout-like body, 

relatively large head with terminal mouth, square or flat edged tail, and unique coloration 

and markings (Power 1980, Benke 2002). Brook trout exhibit some degree o f variation 

in colouration; though generally they have a dark, olive-green, brown, to almost black 

back with lighter, iridescent silvery sides fading into a whitish belly. The back is covered  

with distinct vermiculations fading into spots in addition to the characteristic red spots 

surrounded by blue halos (Power 1980). The anal, pelvic, and pectoral fins are generally 

an orange to red colour that has a distinct white leading edge bordered by a black line. 

Like many salmonids, brook trout colouration intensifies prior to spawning, especially in 

males (W ilder 1952, Scott and Crossman 1973). Brook trout consume a w ide varietv o f  

organisms. Brook trout size and habitat determines diet J  uwer 1980). Scott and 

Crossman (1973) state that brook trout will eat “anything their mouth can accommc :ute” 

which com m only consists o f invertebrates, crustaceans, small reptiles and mammaL, 

baitfish and even other brook trout. Generally, brook trout life spans rarely exceed 5 to 8 

years with age o f maturity at 2 or 3 years o f age (Carlson and Hale 1973, Scott and 

Crossman 1973). However, brook trout in the M ackenzie River watershed study area are 

small bodied, can mature at 1 to 2 years o f age, and rarely if  ever survive beyond 3 years 

o f age (Armstrong 2005, pers. comm.).

The natural range o f the brook trout occurs entirely within eastern North America 

(MacCrimmon and Campbell 1969, Scott and Crossman 1973, Power 1980). The 

distribution o f brook trout is delimited by, and contiguous with, the Atlantic seaboard to 

the east and the M ississippi and Great lakes drainage to the west. The northern range of 

brook trout is contiguous with Hudson’s and James Bay along Ontario and M anitoba as 

well as northern Quebec and Ungava Bay. The range extends into the higher elevations 

of the Appalachian Mountains as far south as the headwaters o f the Chattahoochee River
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in Georgia (Ryder et al. 1964, MacCrimmon and Campbell 1969, Scott and Crossman 

1973, Power 1980).

The Laurentian great lakes basin has been colonized by fish species over the past 

14 000 years (Bailey and Smith 1981). Extensive fluctuations in glacial advances and 

retreats allowed fish populations to persist in slow ly shifting environments and glacial 

réfugia (Bailey and Smith 1981, Holt 1997, Power 2002, W ilson and Mandrak 2004). 

Brook trout likely persisted in both the Atlantic and M ississippian periglacial réfugia and 

re-colonized what is now their endemic range following the most recent W isconsinan 

glacial retreat (Bailey and Smith 1981). In temporally variable proglacial lakes, 

extensive stochastic extinction and re-colonization events were likely common as 

dispersal corridors and drainage connections shifted with the ebb and flow  of glacial 

expansion and retreat (Bailey and Smith 1981, Rempel and Smith 1998, W ilson and 

Mandrak 2004). The temporal nature, scope, and environmental conditions o f proglacial 

lakes and glacial réfugiai connections were likely significant in shaping modem  

distributions o f freshwater fish fauna (Bailey and Smith 1981, W ilson and Hebert 1996, 

Rempel and Smith 1998, W ilson and Mandrak 2004). Brook trout likely colonized the 

M ackenzie River watershed approximately 11 200 - 1 1  600 years ago from Lake Duluth. 

Lake Duluth, which filled what is currently the western portion of the Lake Superior 

basin, had an elevation higher than has existed in the Superior basin subsequently 

(currently up to approximately 331 m above sea level). It was during this relatively brief 

time period that fish were able to colonize Lake Superior tributaries above their current 

dispersal barrier falls (Bailey and Smith 1981).

Historical circumstances and ecological characteristics are critical components 

determining the contemporary distribution o f brook trout (Bailey and Smith 1981, Power 

2002). Generally, where brook trout are present their distribution is continuous within a 

stream catchment. Although, at certain times o f the year their distribution may become 

discontinuous or patchy as they may be restricted physically and spatially by unstable 

stream habitat conditions. Brook trout have specific habitat requirements that ultimately 

influence distribution, abundance, and fitness (Power 1980). Local scale environmental 

habitat variables as well as landscape scale characteristics o f stream ecosystem s and in
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particular, beaver ponds, may be associated with brook trout presence and relative 

abundance and may be useful for predicting brook trout distribution patterns.

Temperature has been identified as an important determinant o f brook trout 

distribution and may be useful for discriminating between potential brook trout streams 

and non-brook trout streams (Picard et al. 2003). A  broad range o f both preferred and 

lethal temperatures has been reported for brook trout. These values were dependent on 

both environmental and experimental laboratory conditions, as w ell as the age and 

physical condition o f the trout. Brook trout distribution is constrained by maximum  

water temperature tolerances that are between approximately 19 °C  (Greaser 1930) and 

24 °C  (Ricker 1934). The preferred temperature range for brook trout is between 14 °C  

and 19 °C  (Fry et al. 1946). However, reported brook trout preferred thermal optimum  

also varies from 14 -  16 °C  (Cherry et al. 1975), to 15.5 -  16.8 °C  (Cherry et al. 1977), 

and 16.0 °C  (Peterson 1973). Brook trout are also expected to be absent from waters 

where their maximum lethal temperature is reached or surpassed. Published lethal 

maxima for brook trout are 23.4 -  25.3 ° C (Fry et al. 1946), 24.0 ° C (Cherry et al. 1975),

26.2 -  27.8 °C  (Grande and Andersen 1991) and 27.7 -  29.8 °C  +/- 0.1 °C  (Benfey et al.

1997). M cRae and Edwards (1994) defined brook trout habitat suitability by four thermal 

ranges after Raleigh (1982): lower range (< 1 1  °C ), an optimal range (11 -1 6  °C ), an 

upper range (17 -  23 ° C), and a lethal range (greater than 24 ° C). Salmonids w ill occupy  

areas within their preferred thermal range or move to habitat where waters in that 

temperature range exist (Reynolds and Casterlin 1979, Garret and Bennett 1995, Biro

1998). Temperature also influences timing o f brook trout spawning, which occurs from  

early September to early December. However, W itzel and MacCrimmon (1983) indicate 

that peak spawning occurs at water temperatures between 6 -  8 °C . Hokanson et al. 

(1973) reported ovulation and spawning occurred in temperatures as high as 16° C. 

However, the upper median limit for egg viability was 11°C and the upper median 

tolerance limit for a normal hatch was 12.7° C with the optimum temperature at 

approximately 6°C . Temperature has also been demonstrated to influence foraging and 

feeding rates in brook trout (Baldwin 1956, Hokanson et al. 1973, Cunjak et al. 1987, 

Drake and Taylor 1996).
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Many characteristics o f stream ecosystem s, which may influence brook trout 

distribution and abundance, are a function of the landscapes or watersheds the stream 

drains. For example, groundwater is an important characteristic in stream ecosystem s 

and brook trout habitat (Freeze and Cherry 1979, Curry and Noakes 1995, Curry et al. 

1995, Curry et al. 1997, Baxter and Hauer 2000). Groundwater discharge sites have been 

related to landscape scale hydrogeological characteristics in a watershed (Curry and 

Devito 1996) such as surficial geology and catchment topography (Quinn et al. 1991, 

Buttle et al. 2000, Buttle et al. 2001). Groundwater discharge may significantly 

influence the physiochemical characteristics o f stream ecosystem s and beaver ponds and 

thus influence the abundance and distribution o f fish (Curry and Noakes 1995, Curry et 

al. 1995, Curry et al. 1997, Baxter and Hauer 2000).

Groundwater is thought to be an important factor limiting salmonid spawning 

areas and survival (Curry and Noakes 1995, Blanchfield and Ridgway 1997, Curry et al. 

1997, Biro 1998, Power et al. 1999, Baxter and Hauer 2000). The presence o f  

groundwater inputs, along with the ability o f brook trout to exploit them, may enable 

populations to persist in otherwise marginal habitats (Gibson 1966, Bow lby and R off  

1986, Biro 1998). Upw elling groundwater often differs physio-chem ically from surface 

water (White 1990); however, the most important difference may be temperature regime 

(Baxter and Hauer 2000). For instance, where stream temperatures exceed thermal 

tolerances o f brook trout, discrete areas o f localized groundwater may act as thermal 

réfugia (Gibson 1966, B ow lby and R off 1986). Spawning sites o f brook trout in lakes are 

generally influenced by upwelling interstitial pore water and groundwater (W itzel and 

MacCrimmon 1983, Curry and Noakes 1995, Blanchfield and Ridgway 1997). Brook 

trout redds are generally constructed on clean gravel, however, spawning areas appear to 

be less influenced by substrate than the presence o f  upwelling groundwater (Fraser 1982, 

Witzel and MacCrimmon 1983, Curry and Noakes 1995, Blanchfield and Ridgway  

1997). Groundwater likely improves the survival and development o f eggs by creating a 

stable environment through regulation of instream temperature and limiting ice formation 

(Cunjak and Power 1986, Cunjak 1988, Cunjak 1996, Curry et al. 1997, Lindstrom and 

Hubert 2004).
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In northern boreal forest stream systems brook trout physiology and life history 

strategies are adapted to m axim ize survival in harsh, highly variable environments.

Brook trout are very efficient at assimilating nutrients and have one o f the lowest energy 

requirements o f any fish (Tucker and Rasmussen 1999). This may enable brook trout to 

persist in a wide variety o f habitats such as low productivity headwater streams. Brook 

trout evolved in cold, nutrient poor, periglacial réfugia which have allowed them to thrive 

in environments that experience extreme variation in temperature and seasonal ice  

conditions (Bailey and Smith 1981, Power 2002). Historically, brook trout were thought 

to be relatively sedentary (Gerking 1959, Power 1980, Gowan et al. 1994, Gowan and 

Fausch 1996a), however, recent studies suggest they can be extremely motile (Gowan et 

al. 1994, Gowan and Fausch 1996a, Curry et al. 2002, Gowan and Fausch 2002). The 

benefit o f the evolution o f migratory behavior in brook trout, particularly anadromous 

and potadromous movements may be that it facilitated temporary range extensions during 

glacial expansion and retreat ultimately enabling brook trout to colonize its current range 

following the last glaciation (Power 2002). However, the contemporary benefit o f  

migration may be the ability to m ove between variable or intermittent habitats and exploit 

and persist in marginal environmental conditions.

The association between habitat characteristics and brook trout presence and 

abundance is complicated by the natural fragmentation o f stream ecosystem s by beaver 

ponds. Beaver dams are potential barriers to fish movement within a stream and may 

disrupt fish dispersal and distribution depending on the dams’ physical characteristics and 

season (Rupp 1955, Gard 1961, Naiman et al. 1986, Naiman et al. 1988, Schlosser 

1995b, Snodgrass and M effe 1998, Collen and Gibson 2001). If movement is a critical 

characteristic o f brook trout life history, the potential isolation from necessary habitat by 

beaver dams may prove disastrous for stream populations (Dunning et al. 1992, Gow an 

and Fausch 1996a, Gowan and Fausch 1996b, Warren a n d  Pardew 1998, Labbe a 

Fausch 2000, Fausch et al. 2002). Beaver ponds m .y .cuuce the connectivity bet\ et 

spatially sub-divided populations within a watershed and may also restrict access to 

complementary and supplementary' upstream and downstream habitats (Dunning et al. 

1992, Schlosser and Kallemeyn 2000). However, fish exploit beaver ponds amidst the 

extensive strea; .. nvironment in which they are embedded (Schlosser 1995b, Schlosser
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and Kallemeyn 2000). The unique environmental characteristics created by beaver 

ponds, relative to the adjacent stream, may influence the distribution and relative 

abundance o f various fish species (Naiman et al. 1986, Winkle et al. 1990, Johnson et al. 

1992, McRae and Edwards 1994, Schlosser 1995a, Schlosser 1995b, Schlosser 1998, 

Snodgrass and M effe 1998, Snodgrass and M effe 1999, Schlosser and Kallemeyn 2000, 

Collen and Gibson 2001). Despite disrupting the stream channel, beaver ponds may 

provide additional foraging opportunities, pool habitat, and over-wintering areas (Naiman 

et al. 1986, Naiman et al. 1988, Naiman et al. 1994, Chisholm et al. 1987, Schlosser 

1995a, Schlosser 1995b, Cunjak 1996, Snodgrass 1997, Schlosser and Kallemeyn 2000). 

Beaver ponds may also provide temporary thermal, spatial, and predatory réfugia dunng 

adverse conditions (Hanson and Campbell 1963, Chisholm et al. 1987, W inkle et al.

1990, Johnson et al. 1992, Cunjak 1996, Hagglund and Sjoberg 1999).

The beaver (Castor canadensis) is a large, ubiquitous rodent that is endemic 

Northwestern Ontario and can be found in most stream drainages in the region (Bam  

1997). Beaver affect stream and riparian ecosystem  composition and dynamics and have 

the ability to severely alter stream habitat and the sumounding riparian area (Naiman et 

al. 1986, Naiman ci al. 1988, Naiman et al. 1994, Johnston and Naiman 1990, Schlosser  

1995b, Barnes 1997, Barnes and Dibble 1998, Hagglund and Sjoberg 1999, Schlosser and 

Kallemeyn 2000, Collen and Gibson 2001). Beaver ponds are often restricted to small 

headwater streams due to seasonal variations in discharge that would be potentially 

destructive on larger streams (Naiman et al. 1986, Naiman et al. 1988). Beaver dam  

construction and the impoundment o f water creates extensive pond habitat in small 

stream drainages (Bam es and M allik 1996, Barnes 1997). Small headwater streams are 

typically narrow and heavily shaded; however, when beaver ponds are present, the 

drainage is characterized by areas o f open canopy, increased wetland areas, and increased 

bio-geochem ical interactions with riparian areas (Naiman et al. 1986). Beaver ponds are 

generally characterized by large edge-to-surface-area ratios incorporating extensive near­

shore habitat not found in un-impounded streams (Pollock et al. 2004). The successional 

nature o f beaver ponds has the potential to alter bio-geochem ical cycles at large spatial 

and temporal landscape scales (Johnston and Naiman 1990, Naiman et al. 1994,

Schlosser and Kallemeyn 2000).
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Naiman et al. (1986, 1988) suggest that beaver ponds confer stability within 

stream drainage networks improving the overall ecological value o f the system. Beaver 

ponds within stream drainage networks may stabilize stream flow s buffering both flood  

and base flow  conditions (Baxter 1977, Naiman et al. 1986, Naiman et al. 1988, W oo and 

Waddington 1990, Collen and Gibson 2001). For example, streams with beaver dams in 

series may exhibit a decrease in flood potential by retaining water leading to increased 

duration o f flow  above base flow , and produce sustainable flow s in otherwise intermittent 

streams (Rutherford 1955, Naiman et al. 1986, Snodgrass 1997, Collen and Gibson 

2001). Beaver impoundments in stream drainages may also influence habitat 

heterogeneity by creating patches o f temporally variable lentic habitat within the 

extensive lotie drainage network (Naiman et al. 1986, Naiman et al. 1988, Naiman et al. 

1994, Schlosser 1995a, Schlosser 1995b, Snodgrass 1997, Schlosser and Kallemeyn  

2000, Pollock et al. 2004).

Beaver activity alters nutrient availability and movement, carbon cycles, sediment 

transport (Baxter 1977, Naiman et al. 1986, Naiman et al. 1988, Smith et al. 1991), 

riparian vegetation (Bam es and Dibble 1988, Johnston and Naiman 1990), and water 

quality characteristics (Devito and D illon 1993, Klotz 1998, Margolis et al. 2001) in 

stream drainage networks. The beaver pond may act as a reservoir trapping nutrients that 

would otherwise be distributed downstream (Naiman et al. 1986, Naiman et al. 1988). 

This may produce patches o f nutrient-rich habitat nested within nutrient-poor stream 

drainages. Water quality parameters such as pH, dissolved oxygen, conductivity, total 

dissolved solids and temperature can be affected by riparian disturbance and alteration to 

lotie habitat by beaver dam construction (Johnston and Naiman 1990, W oo and 

Waddington 1990, D evito and Dillon 1993, Naiman et al. 1994). Beaver ponds may alter 

water chemistry downstream of the impoundments through physical, chemical, and 

biological processes within the ponds (Johnston and Naiman 1990, M argolis et al. 2001). 

The contribution o f organic material by beaver, in addition to the initial input of 

inundated forest vegetation, timber, and soil, represents the long term source o f nutrients 

and ions in both the pond and stream outflow (Francis et al. 1985, Johnston and Naiman 

1990, Devito and Dillon 1993).
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Beaver ponds decrease peak discharge during runoff events similarly decreasing 

the potential for the transport o f sediment and nutrients downstream (Naiman et al. 1986, 

Naiman et al. 1988, Johnston and Naiman 1987). A reduction in stream velocity results 

in a corresponding decrease in the carrying capacity o f suspended solids and an increase 

in deposition (Baxter 1977, Naiman et al. 1986, Naiman et al. 1988, Naiman et al. 1994, 

Johnston and Naiman 1990). The quantity and quality o f organic material contributed to 

the pond by beaver activity has important implications for decomposition dynamics and 

nutrient chemistry in the impoundment and the area downstream (Hodkinson 1975a, 

Naiman et al. 1986, Naiman et al. 1994). The impoundment o f stream water by beavers 

generally increases the input and storage o f organic material and sediment (Baxter 1977, 

Francis et al. 1985, Naiman et al. 1986) inHuencing the composition o f the invertebrate 

community (Sprules 1940, Baxter 1977, Francis ei n' 1985, M cD ow ell and Naimai 

1986, Smith et al. 1991, Clifford et al. 1993). Small headwater streams that are dei ad 

primarily from groundwater are naturally low in productivity, which is reflected l,,w  

species diversity and richness in the macroinvertebrate community (Finder and Far. 1977, 

Plafkin et al. 1989, Challen 2001). W hen a stream is dammed and a beaver pond is 

formed, lotie benthos will eventually be replaced by lentic organisms (Hodkinson 1975b, 

Baxter 1977, M cDowell and Naiman 1986, Naiman et al. 1988, Clifford et al. 1993). 

Also, the impoundment will generally produce an increase in species richness and 

abundance as well as the size distribution of aquatic invertebrates relative to the stream 

(Hodkinson 1975b, Baxter 1977, M cD ow ell and Naiman 1986, Sm ock et al. 1989). 

Vegetation and timber that is contributed directly or indirectly to ponds by beaver activity 

has important implications for the colonization and composition o f macroinvertebrate 

communities (Smock et al. 1989, Clifford et al. 1993) and may potentially influence the 

overall invertebrate biomass available to brook trout.

Beaver ponds will influence water temperature within stream drainages depending 

on the region and specific site characteristics (Rupp 1955, Gard 1961, Naiman et al.

1988, Naiman et al. 1994, McRae and Edwards 1994, Collen and Gibson 2001). Water 

temperature may be the single most important environmental characteristic limiting the 

distribution o f salmonids (MacCrimmon and Campbell 1969, McRae and Edwards 1994, 

Picard et al. 2003). Salmonid species, such as brook trout, are often restricted to
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headwater streams where cool groundwater maintains suitable summer water 

temperatures (McRae and Edwards 1994, Power et al. 1999). Elevated summer water 

temperatures can detrimentally affect fish condition by reducing their aerobic capacity 

and increasing their metabolic oxygen demand (Benfey et al. 1997). In addition to their 

potential to restrict movement within a stream, beaver ponds may also be detrimental to 

salmonids due to the potential increase in summer water temperature in downstream  

reaches (Knudsen 1962, Avery 1992, McRae and Edwards 1994). Beaver ponds expose a 

greater surface area to sunlight, increasing thermal radiation and pond surface 

temperatures, relative to non-beaver impacted streams (McRae and Edwards 1994). This 

may be o f particular concern at the southern periphery o f the brook trout’s endemic range 

where even a small increase in water temperature may restrict or extirpate brook trout 

from marginal thermal habitat (Meisner 1990, McRae and Edwards 1994). However, the 

increased volume, depth, temperature stratification, and interaction with groundwater 

may not only stabilize pond temperatures, but also create areas o f cooler water within, 

and immediately, downstream o f the pond relative to the stream during summer months. 

For instance, Leidholt-Brunner et al. (1992) found that Oregon streams with beaver 

ponds had lower peak water temperatures than streams without beaver ponds. Similarly, 

discrete localized areas influenced by groundwater discharge are often used as thermal 

réfugia when in-stream temperatures are inadequate (Gibson 1966, Bow lby and R off 

1986, M cRae and Edwards 1994). Anecdotal evidence suggests that beaver construct 

their lodge, food cache, and pond in areas o f groundwater upwelling, however, there has 

been little research done to quantify beaver pond-groundwater association. Thus, beaver 

ponds may create patches o f temperature réfugia that allow brook trout to colonize  

marginal habitat within stream drainages.

Northern Ontario winters include extended periods o f extreme cold resulting in 

thick ice accumulations on streams and beaver ponds often persisting for five or six  

months. Extended periods o f ice cover may increase the potential for winter fish 

mortality. As winter progresses, dissolved oxygen levels in ponds can be depleted to 

lethal levels culminating in extensive fish kills (Tonn and Magnuson 1982, Hall and 

Ehlinger 1989, Fox and Keast 1990). Thick ice on ponds eliminates the absorption of 

atmospheric oxygen (Klotz 1998) and greatly reduces the available space in pond
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habitats. The anaerobic condition in beaver ponds is exacerbated by the decomposition  

o f accumulated organic matter and sediment (Baxter 1977, Naiman 1983, Naiman et al. 

1986, Naiman et al. 1988). The same discrete localized areas influenced by groundwater 

discharge during summer may also serve as thermal or spatial réfugia where temperatures 

and space are inadequate or limited by ice conditions during winter (Cunjak 1996).

The creation o f beaver ponds produces a m osaic o f temporally variable habitat 

patches within stream drainage networks (Naiman et al. 1994, Snodgrass 1997, Schlosser 

and Kallemeyn 2000). The limited availability o f an accessible food supply as w ell as 

construction material to maintain the dam and lodge restricts beaver residency time at 

individual pond sites. Beaver ponds are abandoned when resources within the ponds 

influence have been exhausted (Lawrence 1952, Bam es 1997, Snodgrass 1997,

Snodgrass and M effe 1998). However, the successional nature of the pond environment 

enables future re-colonization o f the site, once the necessary resources have regenerated 

(Lawrence 1952, Snodgrass 1997, Snodgrass and M effe 1998, Schlosser and Kallemeyn  

2000). The successional nature o f beaver ponds may also influence the abundance and 

distribution o f brook trout within both beaver pond and stream habitats by acting as a 

semi-permeable barrier to fish movement temporally sub-dividing fish populations and 

necessary habitats (Schlosser and Kallemeyn 2000).

Streams are influenced by the landscape they flow  through (Vannotte et al. 1980, 

Hynes 1983, Fausch et al. 2002) and characteristics at the landscape scale may have a 

significant effect on stream ecosystem s, influencing brook trout presence and abundance. 

This includes not only the physiochemical characteristics of the immediate stream and 

surrounding riparian area, but also catchment topography, geomorphology, surficial 

geology, as w ell as perturbations within the catchment (Baxter et al. 1999, Baxter and 

Hauer 2000, Buttle and M etcalfe 2000, Fausch et al. 2002, Berwick et al. 2006). The 

alteration o f headwater streams by beaver will ultimately influence the ecological 

processes downstream (Vannotte et al. 1980, Naiman et al. 1986, Naiman et al. 1988). 

Local and landscape scale characteristics influencing stream ecosystem s are 

hydrologically interconnected both temporally and spatially within the watershed 

(Vannotte et al. 1980, Sedell et al. 1990, Fausch et al. 2002, Berwick et al. 2006). For 

instance, the increased area associated with beaver ponds may encompass a greater
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number of groundwater sites, thus intensifying its effect relative to the adjacent stream.

If groundwater is an important factor influencing brook trout distribution (Curry and 

Noakes 1995, Curry et al. 1997, Biro 1998, Power et al. 1999) then beaver ponds may 

provide critical habitat within a stream drainage with highly variable environmental 

conditions.

Variation in landform and surface topography may have a strong influence on 

stream ecosystem s and pond morphology. In the Precambrian shield, sandy till 

comm only forms local aquifers (Freeze and Cherry 1979), which influences groundwater 

retention and discharge. The impoundment o f water behind beaver dams alters the 

hydrologie patterns within streams (Baxter 1977, Naiman et al. 1986, White 1990). 

Beaver ponds, especially deep ponds in narrow constrained valley segments, have the 

potential to recharge and store groundwater by elevating the water table (Naiman et al. 

1986, Johnston and Naiman 1987, White 1990, Baxter et al. 1999). The elevated water 

table and cool groundwater output may influence the thermal and physiochemical 

characteristics o f both the immediate pond and the downstream environment (Baxter 

1977, Hynes 1983, \ \  hi te 1990, Brunke and Gosner 1997, Baxter et al. 1999, Baxter and 

Hauer 2000, Fausch et al. 2002).

The hyporheic zone is functionally linked to groundwater and surface water 

processes in streams (Grimm and Fisher 1984, Brunke and Gosner 1997, Vallett e i .

1997, Baxter and Hauer 2000, Franken et al. 2001) and is similarly influenced by 

landscape scale geomorphic characteristics. Hyporheic exchange is known to vary with 

discharge, stream gradient, surficial geology and streambed permeability (Thibodeux and 

Boyle 1987, W hite 1990, Hendricks and W hite 1991, Baxter and Hauer 2000).

Hyporheic exchange influences stream physical properties and the ecology o f fish and 

invertebrates over various spatial and temporal scales (Brunke and Gosner 1997, Vallett 

et al. 1997, Baxter and Hauer 2000, Franken et al. 2001). White (1990) found that the 

pressure o f impounded water behind beaver dams displaced substrate pore-water, while  

underflow transported convected streamwater beneath the dam. The decrease in pressure 

downstream o f the beaver dam resulted in sudden upwelling o f under-flowing stream­

water and cooler pore-water from deeper in the substrate. The potential benefits o f  this 

process may be m agnified in streams with multiple beaver ponds in succession.
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Land-use practices, particularly forestry activities, may influence or alter 

localized groundwater exfiltration into potential brook trout habitat. Locations o f brook 

trout spawning areas, rearing habitat, and thermal réfugia are potentially linked to 

hydrological processes within the landscape (Curry and Devito 1996). Linkages between 

aquatic and terrestrial processes may operate at landscape spatial scales and determine 

brook trout distribution and abundance (Berwick et al. 2006). Management and 

protection o f  brook trout is dependent upon identifying and protecting critical habitat. 

Recognizing broad-scale habitat requirements and developing an understanding of  

ecological processes and environmental linkages form the necessary foundation for forest 

management recommendations to protect these values. The protection o f brook trout 

habitat from deleterious forestry practices and land use disturbance necessitates an 

understanding o f the processes that link aquatic and terrestrial environments and 

potentially govern dispersal and distribution o f the species.

The overall goal o f my research was to examine brook trout inhabiting beaver 

ponds and evaluate their physical characteristics and habitat associations. The first 

objective was to evaluate the association between the presence and relative abundance of 

brook trout and the characteristics o f beaver ponds measured at both a local and 

landscape scale. If beaver ponds vary in their ability to support brook trout then I 

expected that these ponds would also vary in their habitat characteristics. If so, then my 

second objective was to evaluate differences between brook trout inhabiting beaver ponds 

and those in adjacent streams. If brook trout are able to adapt to the conditions in beaver 

ponds then differences may exist between stream and beaver pond dw elling brook trout 

that are consistent with the variability between the two habitat types. The final objective 

was to determine which characteristics o f beaver ponds were most important for 

predicting brook trout presence and absence. An evaluation o f brook trout use o f beaver 

ponds and the important characteristics o f ponds that distinguish them as g i brook 

trout habitat w ill improve our understanding o f brook trout ecology in streai tems 

and our ability to protect and manage these habitat features.
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2.0 Methods

2.1 Study Area

The study area was the M ackenzie River watershed, northeast o f Thunder Bay, 

Ontario, Canada. The north-south extents (UTM  zone 16, W G S84 datum) o f the 

M ackenzie River watershed are 5,403,650 and 5,376,640, respectively and the east-west 

extents are 371,740 and 346,090, respectively and is approximately 369.6 sq. km in area 

(Figure 2.1.1). The M ackenzie River drains into Thunder Bay on Lake Superior; 

however, fish populations in the river are isolated from the lake by an impassable 

waterfall located approximately 3 km upstream from its mouth. The study area has 

relatively high summer temperatures as w ell as extremely low winter temperatures, when 

mean daily temperatures below freezing may persist for up to six months. The 

M ackenzie River is a cold-water drainage containing approximately 15 fish species 

(Ontario Ministry o f Natural Resources (OM NR), Comparative Aquatic Effects Program 

(CAEP) data). Brook trout is a widely distributed fish in the drainage and may be the 

only fish species present in small headwater and tributary streams.

The watershed is predominated by northern boreal forest with forestry being the 

primary land-use impact. Forests in the watershed exhibit considerable variation in soil 

type and stand composition (Sims et al. 1997). In addition, wetlands make up . large 

portion of the study area (Harris et al. 1996). The landscape o f the watershed c libits a 

highly disrupted drainage pattern characterized by numerous small streams and w etlands 

but with few  major rivers and relatively few  lakes (Pye 1969 Mollard and ilard 

1981a, Mollard and Mollard 1981b, Harris et al. 1996). N’ :udow-tr nTsh anu i f 1-riffle 

com plexes characterize streams in the watershed beaver ponds are present throughout 

the study area with some drainage system s nighly impacted by beaver activity.
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Figure 2.1.1 The M ackenzie River watershed, Northeast o f  Thunder Bay, Ontario, 
Canada.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The Mackenzie River watershed is within the Thunder Bay plains Eco-region 

(Wickware and Rubec 1989). The Thunder Bay plains Eco-region, situated along Lake 

Superior’s north shore, is com posed primarily o f diabase, greywacke, and shale bedrock 

formations (Wickware and Rubec 1989). The study area is characterized by rolling, 

undulating terrain with frequent steep to vertical slopes and rocky outcroppings. Surficial 

geology, landform patterns and depositional material are distinct due to events, that 

occurred during glacial and early post-glacial periods (Zoltai 1961, Zoltai 1963, Zoltai 

1965, Zoltai 1967, Wickware and Rubec 1989).

Generally, northern Ontario surficial geology exhibits poor water retention and 

soil drainage characteristics (Zoltai 1963, Zoltai 1965). Surficial deposits formed during 

the retreat o f continental glaciers are o f particular hydrogeologic importance (Freeze and 

Cherry 1979) in northwestern Ontario. Common surficial deposits include shallow  

undulating ablation and basal till o f variable thickness, morainal features and large 

expanses o f predominantly thin glacial sediments over rugged Precambrian bedrock 

formations (Zoltai 1963, Pye 1969, W ickware and Rubec 1989). Glacial till, 

glaciofluvial deposits and glaciolacustrine deposits are also very comm on but tend to be 

more localized in morainal or esker-like ridges, kames, valleys, and outwash plains of 

which glacial till is the most common material deposited (Zoltai 1963, Zoltai 1965, Sims 

et al. 1997). The M ackenzie interlobate moraine follow s the valley o f the M ackenzie 

River, paralleling the shore o f  Lake Superior. The moraine consists o f various 

glaciofluvial deposits such as esker-like ridges and kames. The slopes o f the ridges and 

the kames are usually steep, many exceeding 45 degrees. The material is stratified, 

unconsolidated sand and gravel with scattered large boulders, connected by outwash sand 

deposits (Zoltai 1965). Small outwash sandy plains are found in m ost valleys within this 

interlobate area (Zoltai 1963). Glacial and post-glacial events shaped not onlv the 

regional landscape and surficial geology but also the modem distribution o, . emic fish 

fauna (Bailey and Smith 1981).
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2.2 Sampling Methods

The sampling methods used during the 2002-2003 field seasons characterized 

beaver ponds based on fish community, landscape scale catchment characteristics, local 

scale physical characteristics o f the pond, and associated wetland area. The selection of 

study sites (beaver ponds) was based on several criteria: first, only beaver ponds with an 

approximate upstream catchment area (UCA) of 30 sq. km or less were sampled.

Second, beaver ponds had to have a maximum depth o f at least 1 m. Generally, this 

required a beaver actively maintaining the pond; however, inactive ponds were not 

excluded. Also, the relative accessibility o f each pond was assessed prior to sampling 

using provincial series topographic maps and maps o f the M ackenzie watershed created 

in Arc View 3.2 as well as aerial photos and Ikonos satellite images. The accessibility of 

each pond was not measured or used in analyses; however, beaver ponds more than 1 to 2 

km from a forestry access road or skidder trail were generally excluded due to the rugged 

terrain, amount o f sampling equipment required, and time limitations o f the study.

During the 2002 sampling period a variety o f sample methods were employed to 

capture a representative sample o f the fish assemblage from beaver ponds in the study 

area. Of particular interest was the capture o f brook trout. The presence o f brook trout in 

7 o f 20 beaver ponds surveyed was established using angling. Beaver ponds that 

contained brook trout were sampled multiple times. Sampling methods included small 

(30 mm opening) and large (50 mm opening) diameter standard size minnow traps, large 

minnow traps (100 mm diameter opening), fine m esh, short set gill net, beach seine net, 

and continuous set fyke net. A lso, two-way weirs were installed at the inlet and outlet of 

two beaver ponds between September 10 and Novem ber 12, 2002, to capture brook trout 

moving into or out o f ponds. Despite repeated sampling using a variety o f gear, a total o f  

only 4 brook trout were captured using passive traps in ponds and 8 in the two-way weirs 

during the year (Table 2.2.1). However, angling proved to be an effective method for 

sampling brook trout presence and relative size distribution in beaver ponds.
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Table 2.2.1 Sampling methods used and species captured in beaver ponds during 2002.

* Sampling methods included passive sampling gear: standard minnow trap -  MT, large opening standard 
minnow trap = LOMT, large opening-large diameter minnow trap = LMT, short set gill net = GN, beach 
seine net -  SN, fyke net = FN, and angling = A. ** Fish captured (excluding brook trout): Phoxinus spp. = 
P, brook stickleback (Culaea inconstans) = BSB, pearl dace (M argariscus m argaritd)- PD, blacknose 
shiner {Notropis heterolepis) = BNS, blacknose dace (Rhinichthys atratulus) = BND, longnose dace 
{Rhinichthys cataractae) = LND, creek chub (Semotilus atromaculatus) -  CC, mottled sculpin {Cottus 
bairdii) = SC.

Beaver Pond Sampling
Method*

Dates Sampled 
(2002)

Fish Captured** 
(excluding BT)

Brook Trout Captured in 
Passive Traps

Brook Trout Captured 
Angling

W alk? MT, LOMT, 
LMT, GN, A

Jun26/Jun27/Jun28/
Aug28

P, BSB, PD. LND, 
BNS, CC

0 7

Walk 7.1 MT. LOMT, 
LMT, A

Jun26/Jul 12/Aug28/ P, BSB, PD, BD 0 4

Walk 7.2 MT, LOMT, 
LMT, A

Jun27/Jull6/Aug28 P, BSB, LND 0 0

Walk 7.3 MT, LOMT, 
LMT, A

JullO/Jull1/lu ll 6 P, BSB, SC 0 0

Walk 7.4 MT, LOMT, 
LMT, GN, A

Jull0/Jull7/Jull8 P, BSB, PD 0 0

Walk 5.1 MT, LOMT, 
LMT, A

Jun03/Jun04/Aug09 P, BSB, PD, LND 0 4

Walk 5.15 MT, LOMT, 
LMT. GN, A

Jun03/Jun05/Aug08 P, BSB, PD, LND 1 6

Walk 5.2 MT, LOMT, A, 
LMT, GN, SN,

Jun05/Junl 1/Junl4 P, BSB, PD 2 22

Walk 5.3 MT, LOMT, A Aug07 P, BSB 0 0

Ecochallenge MT, LOMT. 
LMT, A

Aug06 P, BSB 0 0

DSS MT, LOMT, 
LMT, A

Jun20 P, BSB, PD, LND 0 0

Walk 6 MT, LOMT, 
LMT, A

Jun21 P, BSB 0 0

Mrackic-1 MT, LOMT, A, 
LMT, GN, FN,

Sep05/Sep06 
Sep 17 -  O ctl8

P, BSB 1 1

Mack2 MT, LOMT, 
LMT, GN, SN

Junl7/Junl8 P, BSB, LND 0 0

EWN-lOK MT, LOMT, A, 
I.MT, GN, SN

Augl 3/Aug20/Aug21/ 
Aug22/Aug23

P. BSB 0 9

Mack5 MT, LOMT, A Jul05 P 0 0

Mack2-hl MT, LOMT, A Sep 13 0 0 0

EWNW MT, LOMT, 
LMT, A

Jui;?'Iul24/Jul25/
ju:2A

P, BSB 0 0

EW-IK MT, LOMT, A Aug 15 0 0 0

MRP-1 MT, LOMT, 
LMT, A

Aug 16 P, BSB 0 0

MRK-1 WEIRS Sep 10 -  Nov 12 P, BSB 5 n/a

MRK-2 WEIRS Sep 10 -  Nov 12 P, BSB 3 n/a
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During the 2002 and 2003 field seasons electrofishing surveys, using a Smith- 

Root model 15-B backpack electrofisher, were conducted in streams adjacent to beaver 

pond sites to determine brook trout presence or absence, relative abundance, and size 

distribution. During electrofishing surveys, fish were shocked and then captured by one 

or two netters using long handled (1.5 m) soft-mesh dip nets. Captured fish were kept in 

a bucket containing stream water and an aerator, until sampled. Brook trout were 

separated and individually weighed to the nearest gram and total and fork lengths were 

measured, whereas, other fish species were counted and weighed in batches. W eight was 

measured using a Sartorius electronic balance and Pesola lOOg, 500g, and 1kg, spring 

scales. Spring scales were calibrated using known masses at intervals during the 

sampling period. Stream reaches were approximately 50-100 m in length and generally 

required less than one hour to survey. Seines were placed at the beginning and end of 

stream reaches to isolate the sampling area. The seine at the end o f each sampling reach 

was left in to form the beginning o f the next sampling reach, with another seine placed  

upstream. In addition to the brook trout data collected during m y study, I included brook 

trout data collected as part o f the Ontario Ministry o f Natural Resources Comparative 

Aquatic Effects Program. The Comparative Aquatic Effects Program (CAEP) utilized  

identical sampling methods in the study streams between 1995 and 2003. CAEP data 

was used only in analyses o f brook trout size distribution in the study area.

Electrofishing was not possible in beaver ponds due to their depth and size. 

Angling was used exclusively in 2003. Beaver ponds were classified by the presence or 

absence o f  brook trout as determined by the 2003 angling survey. Catch per unit effort 

(CUE) was defined as the number of fish caught per angling hour in each beaver pond 

surveyed. Angling equipment consisted o f a light-action spinning rod, spinning reel, four 

pound test line, size 12 wide-bend hooks, non-toxic split-shot, and worms as bait. Brook 

trout were netted using soft mesh polyester catch-and-release trout nets and kept in the 

water until sampled. The fork and total lengths and weight o f each brook trout was 

measured using the same method and equipment as described above for stream surveys.

The 2002 sampling season began on June 06 and ended on Novem ber 12. The 

2003 sampling season began on M ay 06 and ended on October 23. The 2003 sampling
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season was divided into categories o f spring (May, June), summer (July, August), and fall 

(September, October).

Landscape scale variables were measured using a geographic information system  

(GIS), Arc V iew version 3.2 (a), and included surficial geology (material and landform), 

upstream catchment area (UCA), pond area, associated wetland area contiguous with 

each pond, pond position (channel length), and topographic index (TI) values. Despite a 

long history o f forest harvesting in the M ackenzie River watershed, reliable quantitative 

information on past harvesting was not available for the majority o f sites and thus, was 

not included as a variable. However, no sites occurred in recent (< 5 years) harvest areas.

Upstream catchment area is the land area contributing surface water runoff to 

each beaver pond as defined by the topography in a digital elevation model (DEM)

(Figure 2.2.1). U C A for each site (beaver pond) was delineated using a 25 m raster-based 

DEM  from the digital Ontario base map (OEM ) series. In some analyses, the 

contributing U C A for each beaver pond was treated as a categorical variable. Beaver 

ponds were classified by upstream catchment area (UCA); I sq. km (0 -  2.9 sq. km), 5 sq. 

km (3.0 -  7.9 sq. km), 10 sq. km (8.0 -  19.9 sq. km), and 30 sq. km (20.0 -  38.0 sq. km). 

Beaver ponds were limited to 30 sq. km U C A or less because too few  beaver ponds 

existed within the M ackenzie River watershed with UCAs greater than this size due to 

catchment shape and tributary length. Only four tributaries in the watershed were greater 

than 30 sq. km UC A and only one tributary, Walkinshaw Creek (only named tributary in 

watershed), was longer than approximately 50 sq. km UCA.

Pond position is a measure o f the channel length between each beaver pond and a 

downstream channel position where the U C A equals 100 sq. km. 1 assumed that a stream 

position o f 100 sq. km UCA or greater (M ackenzie River) was appropriate to support a 

source population of brook trout for the watershed. The surficial material and landform  

type comprising the greatest percentage area within the UCA for each beaver pond v 

delineated in Arc V iew by clipping the surficial geology layer from OEM  with thu 

contributing UCA. The surficial material and landform type was treated as a categorical 

variable in analyses. Pond size and \\ etland area were delineated and digitized using both 

geo-referenced IKONOS Satellite imagery and aerial photographs. The beaver pond was 

buffered by 25, 50, and 100 m areas beyond the perimeter o f the wetland area to explore
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the relationship between greater contributing upslope area and TI value in the pond and 

associated wetland. Buffered areas were clipped to the delineated watershed area so that 

buffered areas did not fall outside o f the pond catchment area.
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Figure 2.2.1 Upstream catchment area (UCA) for four beaver ponds in a sub-catchment 
o f  the M ackenzie River watershed.
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The topographic index (TI) is a metric that is used to predict hydrological 

processes affecting the relative potential for groundwater discharge along the stream- 

terrestrial interface (Seven  and Kirkby 1979, Buttle et al. 2001, Buttle 2002).

The topographic index (TI):

TI =  ln [a /tan è]

where a = upslope area draining to a given location and tan b = the slope gradient at that 

point. The movement o f subsurface flow in a catchment is a function of upslope recharge 

area (a) and the hydraulic gradient at that location (tan b). The TI value was used to 

represent the relative likelihood of overburden saturation at a discrete site by subsurface 

flow from contributing upslope area and the potential exfiltration of subsurface water at 

that discrete site (Buttle et al. 2001, Buttle 2002).

Local scale variables were sampled during field surveys conducted between May 

and October 2003. Variables included, mean pond depth, maximum pond depth, and 

beaver activity (the presence or absence o f beaver actively maintaining the pond). To 

express the heterogeneity o f  individual beaver pond depths, measurements were taken at 

approximately 1 - 2 m intervals along multiple transects. Three transects were arranged 

with one along the longitudinal (longest) axis and two along the lateral (shorter) axis of 

each pond. Local scale physical variables sampled in the beaver ponds included water 

temperature, pH, conductivity, total dissolved solids (TDS), and dissolved oxygen.

Water temperature, pH, conductivity, TDS, and dissolved oxygen were measured with a 

Y S l 650 Multi-parameter Display System  handheld meter interfaced to a 6 -series sonde. 

To express the heterogeneity o f individual beaver ponds, physical variable measurements 

were taken at multiple locations and depths. Measurements were taken at 0.5 m 

increments in the water column at each sampling location. A  surface measurement was 

taken at approximately 1 0  cm below the surface and a measurement was taken 

approximately 10 cm  above the pond bottom at each sampling location. One sampling 

location was situated approximately at the point of maximum pond depth. A  minimum, 

maximum, and mean value for each variable was calculated for each sampling location
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within the pond. In addition, an overall average parameter value (i.e. mean temperature) 

was calculated for each sampling event. Lastly, the morpho-edaphic index (MEI) for 

each beaver pond was calculated using MEI = TDS/mean pond depth (Ryder 1965).

2.3 Analyses

Analyses were performed in SPSS version 9.0 or 11.5. Data were transformed 

where necessary to satisfy the assumption of normality.

Preliminary analyses suggested that seasonal water temperature differences might 

influence capture efficiency o f brook trout in beaver ponds. 1 explored the association of 

water temperature in beaver ponds with variation in CUE. A broad range o f preferred 

thermal ranges have been reported for brook trout as w ell as various upper tolerance 

limits below which they may be present (Ricker 1934, Fry et al. 1946, Cherry et al. 1975, 

Cherry et al. 1977, Grande and Andersen 1991, Benfey et al. 1997, and Picard et al. 

2003). Beaver ponds were initially categorized as having a mean temperature above or 

below 11 ° C because CUE decreased when mean water temperature in beaver ponds was 

below 11 °C . However, upon further analysis this simplistic classification was expanded 

to include the pond mean-minimum value that expressed the approximate preferred 

temperature range o f brook trout within ponds across the sampling period. The mean- 

minimum value categorizes each beaver pond based on whether the minimum or mean 

pond temperature falls within the approximate ‘preferred’ thermal range o f brook trout 

(11 °C  to 18 °C ). Raleigh (1982) and McRae and Edwards (1994) defined brook trout 

habitat suitability by thermal ranges and studies suggest brook trout w ill occupy areas 

within their preferred thermal range or move to habitat where waters in that temperature 

range exist (Reynolds and Casterlin 1979, Garret and Bennett 1995, Biro 1998).

To evaluate differences in local and landscape scale habitat variable. : long  

ponds 1 used M ANO VA. Beaver ponds were grouped based on brook trout presence and 

absence. To identify habitat variables important for differentiuLing between groups that 

exhibited an overall significant effect in the M AN O V A, I used Discriminant function 

analysis (DFA). The analyses were repeated for beaver ponds with a mean water 

temperature greater than 11 ° C to evaluate differences among ponds within the preferred 

thermal range for brook trout.
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To determine the relative effectiveness o f local and landscape scale variables for 

predicting brook trout presence and absence I developed logistic regression m odels using 

both local scale physical variables and landscape scale variables. O f particular interest 

was the relative effectiveness of landscape scale variables for accurately predicting 

potential brook trout habitat, avoiding the need to collect local scale information. 

Predictive model development using stepwise logistic regression and automatic selection 

procedures was applied following variable reduction combined with averaging techniques 

and cross-validation (Menard 1995, Sim onoff 2000, Wang 2000, Shtatland et al. 2001, 

2003, 2004, Burnham and Anderson 2002).

A  series o f steps were performed to reduce the number o f variables and remove 

multicollinearity among independent predictors. The number of variables used for model 

development was reduced using the variance inflation factor (VIF) in linear regression 

analysis, average linkage in a hierarchical cluster analysis, and condition number in 

principal components analysis (PCA). The VIF was obtained from a linear regression 

model developed using the same dependent and independent variables used in the 

development o f the logistic regression models (Menard 1995, A llison 1999, Shtatland et 

al. 2001, 2003, 2004). The functional form o f the model for the dependent variable, 

brook trout presence or absence, is unimportant as the VIF calculation is interested only 

in the relationship among independent variables (Menard 1995). The VIF is useful for 

detecting multicollinearity among predictor variables. Colinearity among variables 

generally inflates the variance o f the coefficient, the standard error, and parameter 

estimates resulting in an injudicious model with mutually dependent and redundant 

predictors. The VIF expresses the amount that the variance o f the coefficient estimate is 

being inflated through multicollinearity o f independent variables (Menard 1995, Allison  

1999).

Dendograms (Pearson L\ ^relations) in a hierarchal cluster analysis were used to 

compare the association o f independent variables from the linear regression ; idel. The 

linked variables, identified in the cluster analyses, were compared and the variable with 

the greater VIF was removed. Individual variables, with V lF ’s greater than 10, were 

removed from each subsequent linear regression model until no variables with V lF ’s 

greater than 10 remained in the model (Allison 1999, Menard 1995).
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The condition number (k) was calculated using PCA to validate the non- 

multicollinearity assumption using the VEF approach. The condition number is a 

measurement o f the magnitude o f colinearity among variables represented by the degree 

of separation between the largest and smallest eigenvalue. When no colinearity exists 

among independent variables, both eigenvalues and condition number equal one. As 

colinearity among variables increases, eigenvalues begin to depart from one (values close  

to zero indicate multicollinearity) and the condition number will increase. The condition 

number is equal to the square root o f the largest eigenvalue (A^ax) divided by the smallest 

eigenvalue (Amin):

(^m m  =  V (^ m a x  ^ )

As a general rule, if the condition number is less than 15 then multicollinearity among 

variables is not a concern (Allison 1999). Thus, only subsets o f variables with condition 

numbers less than 15 were used for the analyses.

Binary Logistic Regression was used to develop models to predict the presence or 

absence o f  brook trout in beaver ponds using both local and landscape scale  

characteristics (Menard 1995, Allison 1999, Hosmer and Lemeshow 2000, Bumha n and 

Anderson 2002). The logistic equation:

P — 1/
_j_ )

where P  is the probability o f the event occurring, a  is the constant o f the equation and, P 

is the coefficient o f the predictor variables.

The data set was randomly divided into a model construction subset and a m odel 

testing subset. I used the two subsets o f independent cases and variables to construct and 

test individual logistic regression m odels (Menard 1995, Hosmer and Lem eshow 2000, 

Burnham and Anderson 2002, Shtatland et al. 2004). The first randomly selected subset 

included 34 o f the initial 50 cases with the remaining 16 cases used to test the m odels

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



validity. The models were developed utilizing a combination of variables identified  

using the procedure outlined previously (Moore 2000, Shtatland et al. 2001, 2003, 2004).

To further explore the hypothesis that seasonal differences in water temperature 

might influence capture efficiency (CUE) of brook trout and their presence in beaver 

ponds additional logistic regression models were constructed using only sites with a mean 

pond temperature greater than 11 ° C. The set of models constructed and tested included 

all local and landscape scale variables from ponds with a mean temperature greater than 

11 ° C. These models were developed to evaluate variable selection and predictive 

capacity relative to the previously developed models.

Akaike’s information criterion (AIC) is an automatic model selection procedure 

described by the equation;

AIC  = - 2  log L{m) + c x K

where \ogL(m)  is the maximum log-likelihood, K is the number o f covariates and c is the 

penalty parameter (Shtatland et al. 2003, 2004, M azerolle 2004). M odel selection using 

A I C  essentially penalizes the likelihood for model complexity (number of predictor 

variables). Hurvich and Tsai (1989), Burnham and Anderson (2002) and Shtatland et al. 

(2003) recommend using a corrected A I C  ( A I C c )  for small sample sizes when N /K  < 40,

A /C  + 2 x A :x (jir -H )
AlC^  -------------------------------

( N - K - V )

where N  is the sample size and K is the number o f predictors in the model. Thus, I 

utilized Akaike’s information criteria for small sample size ( A I C c )  to select the best and 

most parsimonious model from a subset o f models with different combinations o f  

predictor variables (Anderson et al. 1994, Burnham and Anderson 2002). Forward 

stepwise selection produces a sequence o f models beginning with the null model and 

culminating with a model that includes all predictor variables and m axim izes the 

likelihood at each step (Shtatland et al. 2003, M azerolle 2004). AICc produces an 

evidence ratio identifying the most parsimonious o f the logistic m odels. M odel
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parsimony improves as the AICc evidence ratio number approaches 1. However, models 

with A I C c  evidence ratio numbers < 10 cannot be discounted as being potentially 

effective (Burnham and Anderson 2002, Wang 2000, Shtatland et  al. 2001, 2003, 2004, 

M azerolle 2004). In the results section, only models with A I C c  evidence ratio numbers < 

1 0  are presented for interpretation.

I used receiver operating characteristic (ROC) curves as a graphical approach to 

evaluate the discriminatory ability o f predicted probabilities produced in each logistic 

regression model. ROC curves are useful for evaluating the discriminatory power o f  

habitat models as they are independent o f a Pent threshold value and present a single 

parameter, the area under the curve or AUC value; whereas predictive accuracy o f  

models based on cross-tabulation matrices depend on a chosen Pent (Fielding and Bell 

1997, Bonn and Schroder 2001). Before calculating the ROC curve, the discriminatory 

ability o f each model was evaluated graphically by comparing the distributions of 

predicted probabilities o f occupied to unoccupied sites (Swets 1986, 1988, Murtaugh 

1996, Pearce and Farrier 2000). A  model with no discriminatory ability w ill produce a 

curve that follows a 45 ° line whereas perfect discrimination is indicated by curve that 

follow s the left hand (y axis) and top axes (Swets 1986, 1988, Pearce and Ferrier 2000, 

Bonn and Schroder 2001). A  smooth curve is drawn through the true positive proportion 

of probabilities (sensitivity) plotted against the false positive proportion (specificity) for a 

range o f threshold probabilities to derive the ROC curve (Pearce and Ferrier 200( ■ Bonn 

and Schroder 2001). The 45 ° line represents the sensitivity and false positive vai , 

expected by chance for each decision threshold (Pearce and Ferrier 2000). The R 

curve analysis is independent o f species occurrence and decision threshold effect 

expressed as a proportlun of all beaver ponds (sites) with a given observed state (Sw - ' 

1988, Pearce and Ferrier 2000). The area the ROR' p'”-",- cxpressco a. a ; 

of the total area is regarded as the m ost appropriate discrimination index that rangea from 

0.5 (no discrimination abili' ; m 1 (perfect discrimination)(Bonn and Schroder 2001). 

Areas under the curve oi index values between 0.5 and 0." ndicate poor discrimination 

ability. Index values between 0.7 and 0.9 indicate relatively acceptable discrimination 

ability and values greater than 0.9 indicate good discrimination ability (Swets 1986,

1988, Hosmer and Lem eshow 2000, Pearce and Ferrier 2000). The ROC curve and
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associated discrimination index value are presented with the results o f the logistic 

regression model.

Physical characteristics and size distribution o f brook trout captured from streams 

and beaver ponds were compared to evaluate differences between the two habitats.

Brook trout size distribution in both streams and beaver ponds were also expected to 

differ among UCA category due to differences in fish density and environmental physical 

characteristics. Analysis o f variance (ANO VA) was used to evaluate differences in 

brook trout size between beaver ponds and adjacent streams. ANO VA was also used to 

evaluate differences in brook trout size among beaver ponds o f differing U C A  classes. If 

differences existed among UCA classes, Tukey’s Honestly Significant Difference (HSD) 

test was performed to test where group differences occurred. Multiple aging structures 

(otoliths, scales, and left pectoral fin rays) were collected from nine brook trout follow ing  

incidental hooking mortality. Scales and left pectoral fin rays were collected from six 

brook trout due to their large size on two sampling occasions and were released. These 

structures were aged by Northshore Environmental Services Limited.
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3.0 Results

Brook trout were captured in 20 o f the 50 beaver ponds sampled in 2003 (Table 

3.0.1). The total number of brook trout captured from all beaver pond sites was 369  

(including 2002 data). Brook trout relative abundance (CUE) was highly variable within 

and among beaver ponds where brook trout were known to be present. The number of 

brook trout captured in individual beaver ponds ranged from 0 to 60 and CUE ranged 

from 0 to 7.3 fish/hour. Brook trout were never captured in beaver ponds with an UCA  

less than 2.9 sq. km. Brook trout re 1.2 w e abundance (CUE) was lower in ponds with 

smaller UCA (Figure 3.0.1). Mean relative CUE o f brook trout was 2.75, 0.88, and ' 

fish per hour in 30, 10 and 5 sq. km UCA categc  .  respecuveiy. Brook troui were 

not captured in beaver ponds where they had been previously caught. Relatively low o : ' 

catch rates in these ponds often corresponded to low  water temperatures. Brook trou 

abundance was relatively consistent among beaver ponds of 5 and 10 sq. km U C A and 

variable in 30 sq. km U C A relative to variation in temperature and seasons (Figure 3.0.2).

Brook trout captured in beaver ponds had a mean total length o f 196 mm (range:

110 to 354 mm) (Figure 3.0.3 a) and had a mean weight of 85 g (range: 5 to 412 g) 

(Figure 3.0.3 b). The attributes o f brook trout captured for each beaver pond sampled 

during 2003 are summarized in Table 3.0.1. Brook trout captured in streams adjacent 

beaver ponds had a mean length o f 91 mm and ranged in length from 6  mm to 245 mm  

(Figure 3.0.4 a). Brook trout in streams had a mean weight o f 13 g and ranged in weight 

from 1 g to 141 g in beaver ponds (Figure 3.0.4 b). Length and weight relationships of 

brook trout caught in ponds and streams respectively are presented in Figures ? y b 

and 3.0.6 a, b.
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Table 3.0.1 Sampling locations and features of brook trout captured in beaver ponds.

Beaver Pond Dates Sampled Brook Trout Brook Trout CUE Brook Trout 
Mean Length

Brook Trout 
Total Biomass

Brook Trout 
Mean Biomass(2003) Captured (low-mean-tiigh) (mm) (K) (g)

Mackh-IK 21-Jun 0 0 0 0 0
Macks 19-Sep 0 0 0 0 0
Ewmid 18-Jun 0 0 0 0 0

Mooseland 03-Jun 0 0 0 0 0
M acklhl 15-Jul 0 0 0 0 0
Macks. 1 20-Sep 0 0 0 0 0
Mack2h2 15-Jul 0 0 0 0 0
TMH-low 28-Sep 0 0 0 0 0

EWIN 17-Sep 0 0 0 0 0
SHW2 25-Jun 0 0 0 0 0

Ewmid2 23-Jun 0 0 0 0 0
EcochaUenge 19-Iun 0 0 0 0 0

EWIK 16-Jul 0 0 0 0 0

SHWl
25-Jun/14-Jul/

0 0 0 0 014-Aug/30-Sep
Mack3.2 20-Sep 0 0 0 0 0
Magone2 18-Sep 0 0 0 0 0
TMHIK 04-Oct 0 0 0 0 0
Wak7.4 16-Sep 0 0 0 0 0

Magonel 18-Sep 0 0 0 0 0
Tartan 19-Aug 0 0 0 0 0
Mack5 09-Jun 0 0 0 0 0

04-Juii/22-Jul/
MRK2 8 0.0, 0.14,0.33 284.78 1921 249.7828-Aug/22-Sep
EZEE 12-Jun 0 0 0 0 0
SHW3 26-Jun 0 0 0 0 0
MRKl 02-Jun 1 0.15 175 55 55
EW5K 23-Jul 0 0 0 0 0

EWNW 17-Jun 2 0.24 228 225 117.50
Moosebones 04-Jul 0 0 0 0 0

Walk5.3 29 Aug 4 1.46 220.25 512 128
Mack2 16-May/27-May 2 0.0,0.12, 0.24 198.5 172 86

TMIOK Ol-Oct/ll-Oct 4 0.0,0.62, 1.23 208 325 81.25
Walk7.3 26-Sep 1 0.22 221 108 108
Walk7.2 26-Sep 0 0 0 0 0
Walk7 14-May/29-May 7 1.22 174.57 411 58.71

Mack2.1 25-Sep 5 0.95 214 751 150.20
Mack2.2 02-Oct 0 0 0 0 0

MackhlOK 23-Aug 8 1.88 209.88 1076 134.5

EWNIOK 13-May/26-May/10-Jul 
/13 - Aug/24-Sep/23-Oct 28 0.0, 0.59, 1.26 223.79 3855 140.19

Walk5.2
08-May/16-Jun/ 

lO-Oct 12 0.0, 0.44, 1.33 217.92 1413 117.75

Walks. 15 22-Aug/lO-Oct 11 1.71-1.80-1.88 253.19 1093 103.94
Walk6 06-May 0 0 0 0 0

Walk5.1 15-May/25-Aug 7 0-1.17-2.33 213 809 115.57
DSSlOK 12-May 0 0 0 0 0

EWN210K 07-Jul 12 1.55 219.08 1319 109.92
TM20K 29-Sep 0 0 0 0 0

WW130K 07-Aug 8 .97 200.13 883 110.38
WW230K 12-Aug 14 1.65 210.86 1786 127.57
SHW30K 30-Jun/08-Oct 19 1.16-1.28-1.39 243.07 3341 177.25

EW30K 07-May/28May/24Jun/
05-Aug/05-Sep/03-Oct 146 0-3.32-7.30 166.63 9266 54.81

MackSOK 03-Jul/09-Oct 21 .18-1.43-2.67 262.10 2583 228.93
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Figure 3.0.1 CUE of brook trout in beaver ponds in the study area.
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Figure 3.0.2. Mean number of brook trout captured in each UCA class in beaver ponds in 
the study area.
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Figure 3.0.3 Total length (a) and weight (b) distributions o f brook trout captured in 
beaver ponds in the M ackenzie River Watershed.
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Figure 3.0.4 Total length (a) and weight (b) distributions of brook trout captured in 
streams in the M ackenzie River watershed.
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Figure 3.0.5 (a) Length - weight relationship for brook trout in beaver ponds and (b) 
length-weight relationship for brook trout in streams adjacent beaver ponds.
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3.1 Brook Trout Size Distribution

Brook trout were never captured in beaver ponds with UCAs less than 2.9 sq. km 

(1 sq. km U C A category). Brook trout were captured in several 1 sq. km category 

streams when associated with a larger stream confluence. Brook trout captured in beaver 

ponds were significantly larger on average than brook trout captured in the adjacent 

stream among each UCA category (Fi, 1321 = 1658.2, F < .001) (Figure 3.1.1). Brook 

trout captured in beaver ponds were, on average, 105 mm and 72 g larger in beaver ponds 

than in their adjacent streams. The difference was greatest in beaver ponds with 5 sq. km 

UCA where brook trout were on average 181 mm and 192 g larger than in the adjacent 

streams. The size difference was less in the larger UCA categories with brook trout 

being on average 119 mm and 97 g and 71 mm and 63 g larger in 10 sq. km and 30 sq. 

km beaver ponds than adjacent streams respectively (Figure 3.1.2 and 3.1.3). The largest 

brook trout captured in a stream was 245 mm in total length and 141 g in weight, 

whereas, the largest brook trout caught from a beaver pond was 354 mm and 412 g. 

Approximately 20% of the 369 brook trout caught in beaver ponds were larger than the 

largest brook trout captured in the stream survey.

Brook trout in beaver ponds were smaller as contributing UCA increased. Beaver 

ponds in the 5 sq. km UCA category had brook trout that were significantly larger on 

average than brook trout in 10 sq. km and 30 sq. km UCA size category ponds (F2 . 366 = 

32.808, P < .001) (Figure 3.1.2). Brook trout in 5 sq. km UCA beaver ponds were on 

average 53 mm and 91 g and 76 mm and 115 g larger than in 10 sq. km and 30 sq. km  

UCA ponds respectively. Similarly, brook trout in 10 sq. km UCA beaver ponds were on 

average 22 mm and 25 g larger than in 30 sq. km U C A ponds.

Brook trout in streams were larger as the contributing UCA increased. Brook 

trout in streams were significantly larger in the 30 sq. km UCA size category than brook 

trout in 5 sq. km and 10 sq. km UCA classes (F2, 9,0  =39.625, P < .001) (Figure 3.1.3). 

The difference was greatest between 5 sq. km and 30 sq. km UCA streams where brook 

trout were on average 34 mm and 14 g larger in 30 sq. km UCA streams. The size  

difference was less between 10 sq. km and 30 sq. km UCA streams with brook trout 

being on average 25 mm and 9 g larger in 30 sq. km UCA streams.
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Aging structures (otoliths, scales, and fin rays) were taken from nine brook trout 

following incidental mortality and scales and fin rays were taken from six additional fish 

that were released (Table 3.1.1). A ges o f brook trout ranged from three to six years.
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Figure 3.1.1 Mean total length (a) and weigltt (b) o f brook trout captured in beaver ponds 
and their adjacent streams in the study area.
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Figure 3.1.2 Mean total length (a) and weight (b) o f brook trout captured in beaver ponds 
in the study area.
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Figure 3.1.3 Mean total length (a) and weight (b) of brook trout captured in streams in the 
study area.
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Table 3.1.1 Brook trout estimated age in beaver ponds from otoliths (oto), scales (sc), 
and left pectoral fin rays (fr).

Pond
Date

(2003)

Total
Length
(mm)

Weight (g) Structure
Estimated 

Age (years)

EWNIOK May 26 214 108 oto, sc 3

EWNIOK May 26 241 165 oto, sc 3

EW 30K May 28 191 61 oto, sc 3

MRK2 Jun 04 331 355 oto, sc 3

SHW 30K Jun 30 207 108 oto, sc 3

SHW 30K Jun 30 217 1 2 0 oto, sc 3

EW N210K Jul07 2 1 1 1 2 0 oto, sc 4

EWNIOK Aug 13 249 230 oto, sc 4

MRK2 Sept 27 293 325 oto, sc, fr 3

SHW 30K Oct 08 279 311 sc,fi­ 4

SHW 30K Oct 08 354 412 sc,fr 6

SHW 30K Oct 08 254 160 sc,fr 3

SHW 30K Oct 08 271 189 sc,fr 4

Mack30K Oct 09 306 304 sc,fr 5

Mack30K Oct 09 322 346 sc,fr >3-4
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3.2 Local and Landscape Scale Characteristics o f Beaver Ponds

Local scale water quality parameters and landscape scale variables were relatively 

consistent among beaver ponds (Table 3.2.1 and 3.2.2). However, water temperature and 

dissolved oxygen levels were highly variable between seasons within ponds. Local scale 

habitat variables from beaver ponds with both brook trout present and absent are 

summarized in Table 3.2.1. Landscape scale characteristics, including upstream 

catchment area (UCA), pond area, wetland area, pond position, surficial geology  

(material and landform), and topographic index (TI) values were highly variable among 

beaver ponds and between beaver ponds with brook trout present and absent (Table 

3.2.2). Beaver ponds with brook trout present had significantly larger UC As than ponds 

without brook trout (Fi, 49 = 2.7, P < .001) (Table 3.2.4). UCA for beaver ponds with 

brook trout present was, on average, 10.3 sq. km greater than ponds without brook trout. 

This is due to the fact that brook trout were never captured in beaver ponds with UCAs 

less than approximately 2.9 sq. km. Beaver ponds with brook trout also had, on average, 

smaller surface areas and larger contiguous wetland areas.

UC As of approximately 2.9 sq. km and smaller appear to be a threshold to brook 

trout presence in beaver ponds. Even after excluding ponds with UC A less than 2.9 sq. 

km, UCA for beaver ponds with brook trout present was still, on average, 5.3 sq. km 

greater than ponds without brook trout. Mean temperature o f ponds with brook trout 

present was, on average, 3.8 °C  higher than ponds without brook trout. The maximum  

depth o f ponds with brook trout was, on average, approximately 2 0  cm deeper than ponds 

without brook trout. Beaver ponds with brook trout also had, on average, smaller surface 

areas and larger contiguous wetland areas. Local and landscape scale habitat variables 

from beaver ponds with both brook trout present and absent and with UCAs greater than 

approximately 2.9 sq. km are summarized in Table 3.2.5 and Table 3.2.6, respectively.
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Table 3.2.1 Summary of local scale attributes o f beaver ponds. Table denotes mean and 
(range) o f values calculated from multiple sampling locations within each pond unless 
otherwise indicated.

Beaver Pond
Dates

Sampled
(2003)

Dissolved 
Oxygen (mg/1)

Conductivity
(uS/cm)

Total Dissolved 
Solids 
(ppm) pH Temperature (" C) MEI

Mackh-IK 21-Jun 7.8 (7.8) 59(58-59) 0.03 (0.03) 6.95 (6.84-7.17) 19.53 (18.39- 20.21) 0.05
MackS 19-Sep 10.2(9.2-11.1) 35(35) 0.04 (0.04) 7.08 (6.95-7.19) 17.44 ((15.90-18.32) 0.04
Ewmid 18-Jun 8.2 (8.2) 52 (46-77) 0.03 (0.03-0.04) 6.73 (6.49-7.16) 19.45 (18.17-20.68) 0.03

Mooseland 03-Jun 4.1 (0.3-8.0) 54 (48-86) 0.04 (0.03-0.06) 6.4 (6.03-6.59) 16.68 (13.46-18.8) 0.05
Mack2hl IS-Jul S.4 (S.4) 42 (42) 0.04 (0.04) 6.94 (6.94) 20.85 (19.5-22.5) 0.04
Macks. 1 20-Sep 9.9 (9.1-10.6) 31 (31-32) 0.03 (0.03) 7.12(7.05-7.21) 16.68 (13.31-17.62) 0.04
Mack2h2 IS-Jul 6.1 (6.1) 42 (42) 0.04 (0.04) 6.94 (6.94) 20.00 (19-21) 0.05
TMH-tow 28-Sep 9.8 (3.81-11.6) 37 (36-45) 0.04 (0.03-0.04) 7.17 (7.0-7.22) 8.12(7.9-8.52) 0.07

EWIN 17-Sep 57(0.2-7.9) 71 (69-83) 0.06 (0.05-0.07) 7.48 (6.9-8.29) 16.98(14.9-17.91) 0.03
SHW2 2S-Jun 7.3 (S.8-8.0) 38 (37-39) 0.04 (0.04) 6.80(6.51-6.92) 20.47(18.97-21.92) 0.06

Ewmid2 23-Jun 6.9 (6.4-7.4) 49 (47-52) 0.04 (0.04) 6.90 (6.51-7.05) 19.94 (19.5-20.39) 0.06
Ecochallenge 19-Jun 7.3 (6.1) 50 (47-60) 0.03 (0.03-0.04) 6.90 (6.49-7.50) 19.19 (16.42-20.51) 0.04

EWIK 16-Jul 6.8 (6.1) 42 (42) 0.04 (0.04) 6.94 (6.94) 19.50(15-22.5) 0.04
SHWl 2S-Jun 7.4 (6.1) 37(37) 0.03 (0.03) 6.61 (6.61) 20.40(18.29-21.31) 0.04

MackS.2 20-Sep 9.1 (8.S-9.4) 32(32) 0.03 (0.03) 7.10 (6.93-7.24) 17.12(14.44-18.11) 0.04
Magone2 18-Sep 8.7(7.1-10.1) 31(31-32) 0.04 (0.04) 7.15(7.01-7.21) 16.96(15.32-18.11) 0.03
TMHIK 04-Oct 10.1 (3.1-12.3) 31(29-40) 0.03 (0.03-0.04) 7.09 (6.89-7.22) 5.40(5.03-5.68) 006
Wak7.4 16-Sep 8.6 (7.9-9 2) 56 (56-59) 0.05 (0.05) 7.08 (6.95-7.21) 16.59(13.99-17 95) 0.05

Magonel 18-Sep 8.3 (S.2-10.0) 33 (3W 2) 0.04 (0.04-0.09) 7.00 (6 66-7.13) 16.34(9.22-18.03) 0.02
Tartan 19-Aug 4.3 (O.S-6.6) 30 (29-51) 0.02 (0.02-0.04) 6.79 (6.61-7.25) 21.84(20.03-23.29) 0.04
Mack5 09-Jun 6.9(1.8-88) 36 (35-43) 0.02 (0.02-0.03) 6.49 (6.2-6.92) 16.31(13.44-16.93) 0.04
MRK2 04-Jun 9.6 (2.1-12.2) 50 (46-59) 0.03 (0.03-0.04) 6.89 (6.48-7.14) 14.30(9.86-17.77) 0.04
EZEE 12-Jun 7.5 (6.8-7.1) 51 (49-54) 0.03 (0.03-0.04) 7.04 (6.44-7.8) 14.57(10.83-16.3) 0.05
SHW3 26-Jun 6.5 (5.3-7 2) 40 (35-55) 0.03 (0.03) 6 69 (6.35-6.98) 18.32(9.96-20.69) 0.03
MRKl 02-Jun 10.1 (8.1-10.7) 48 (46-5) 0.03 (0.03) 6.94 (6.67-7.1) 13.03(11.43-14.22) 0.07
EW5K 23-Jul 3.7(1.3-6.2) 48 (39-94) 0.03 (0.03) 5.97 (5.51-6.37) 20.29(17.99-22.1) 0.03

EWNW 17-Jun 7.3 (7.3) 59 (58-63) 0.03 (0.03-0.04) 7.04(6.85-7.18) 19.65(16.86-20.57) 0.04
Moosebones 04-Jul 6.9 (5.2-8 3) 39 (34-51) 0.03 (0.03-0.04) 6.63 (6.41-6.99) 21.58(16.4-24.5) 0.03

Walks.3 29-Aug 6.8 (6.0-7.6) 53 (49-57) 0.03 (0.03-0.04) 7.18(6.99-7.66) 19.96(16.01-21.05) 0.04
Mack2 27-May 9.1 (6.9-99) 38 (38-39) 0.03 (0.03) 6.47 (6.36-6.8) 14.93(14.34-15.65) 0.03

TMIOK 11-Oct 11.4 (9.9-12.5) 30 (30) 0.05 (0.05) 7.16(7.01-7.33) 11.08(9.99-12.23) 0.05
Walk7.3 26-Sep 8.5 (8.1-8.9) 57 (57-59) 0.05 (0.05) 7,24(7.19-7.29) 9.44(9.4-9.5) 0.08
Walk7.2 26-Sep 9.0 (8.8-9.6) 57(57) 0.05 (0.05) 7.16(7.09-7.21) 9.62(9.54-9.85) 0.10
Walk7 29-May 10.1 (9.3-110) 65(64-66) 0.04 (0.04) 6.94 (6.83-7.02) 13.68(10.88-15.19) 006

Mack2.1 2S-Sep 9.2 (8.8-95) 28 (28-29) 0.03 (0.03) 6 89 (6.81-7.16) 9.59(9.23-10.14) 0.02
Mack2.2 02-Oct 11.1 (8.1-11.7) 22 (22-26) 0.02 (0.02-0.03) 6.85 (6.72-7.06) 3.93(3.19-4.71) 0.02

MackhlOK 23-Aug 6.9 (6.3-7 6) 66 (60-82) 0.07 (0.06-0.08) 7.19(6.97-7.31) 18.19(11.22-21.51) 0.08
EWNIOK 10-Jul 9.2 (6.1-9.6) 49 (29-30) 0.02 (0.02) 7.04 (7.04) 15.55(12.52-16.14) 0.03
Walk5.2 16Jun 9.1 (7.5-10.2) 61 (56-72) 0.04 (0.04-0.07) 7.08 (6.88-7.41) 18.11(15 11-19.79) 0.03

Walks. 15 22-Aug 6.9 (6.2-7 2) 62 (60-64) 0.04 (0.04-0.05) 7 12(6.95-7.26) 19.65(16 85-21.2) 0.05
Walk6 06-May 10.8 (10.0-11.9) 50 (50) 0.03 (0.03) -  fi2 (6.88-7.22) 01-7.55) 0.03

Walks. 1 2S-Aug 7.2 (6.2-7 9) 63 (61-64) 0.04 (0.04-0.05) ' Ih (7.09-7.41 35-22.12) 0.06
DSSlOK 12-May 9.6 (8.8-10.2) 61 (61) 0.04 (0.04) -1(6.97-7:1, '2-10.12) 0.05

EWN210K 07-Jul 7.2(7.0-81) 41 (40-42) 0.03 (0.03) 0.94 (6.7V-7.66) T5-19.8) 0.02
TM20K 29-Sep 11.2(11.0-11.4) 29 (24-31) 0.04 16  04 n .,; 7.23 (7.1-7.45) 6.^ 75-7.14) 0.06

WW130K 07-Aug 5.7 (0.1-7.8) 71 (59-145) 00< .,-4-0.09) 7.08 (6.64-7.32) 20.24(15 88-21.27) 0.05
WW230K 12-Aug 6.7 (6.2-7.7) 63 (54-74) '! j  (0 05-0.06) 7.15 (6.76-7.94) 17.47(6.77-21.23) 0.04
SHW30K 30-Jun 8.3 (7.4-9 4) 45 (42-48) 0.04 (0.04) 7.55 (7.18-8.08) 14.61(8.9-16.8) 0.03
EW30K 28-May 9.7 (9.3-10.0) 42 (42-43) 0.03 (0.03) 7.01 (6.98-7.40) 13.91(13.81-13.95) 0.02

Mack30K 03-Jul 6.6 (5.3-7 5) 39 (30-50'! 0.03 (0.03-0.04) 7.13 (6.88-7.43) 20.01(13 8-25.4) 0.03
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Table 3.2.2 Summary of landscape scale attributes of beaver ponds.

Beaver Pond
UCA
(sq.

km.)

UCA
Class

Pond
Position

(m)

Mean
Pond
Depth

(m)

Maximum
Pond
Depth

(m)

Pond
surface

Area
(ha)

Wetland
Area
(ha)

Maximum 
TI Value 

(Pond)

Maximum 
TI Value 
(Wetland)

Mackh-IK .146 1 14707 .74 1.6 .767 3.591 11.895 11.895
Mack3 .321 1 1887 .81 1.4 .368 .68 8.517 8.517
Ewmid .494 1 3217 .99 2.0 1.758 2.289 11.658 11.658

Mooseland .502 1 10137 .70 1.8 2.738 3.439 13.598 13.598
Mack2hl .502 1 8346 .78 13 .431 1.814 11.384 11.384
Mack3 1 .516 1 2558 .92 1.6 1.175 1.738 11.849 11.849
Mack2h2 .563 1 8073 .76 1.4 .276 .509 9.568 9.568
TMH-low .579 1 10322 .49 1.2 .562 .992 11.45 12.694

EWIN .595 1 8724 1.75 3.1 1.721 3 927 11.934 11.934
SHW2 .751 1 10741 .62 1.6 .363 1.092 8.542 10.295

Ewmid2 .828 1 3822 .54 1.4 .198 .202 8.929 8.929
Ecochallenge .848 1 10939 .86 2.2 1.422 1.588 11.261 11.261

EWIK 1.084 1 3255 .91 1.9 1.839 2.846 11.785 11.785
SHWl 1.202 1 10222 .78 1.7 .525 1.790 9.719 11.913

Mack3.2 1.220 1 2344 .80 1.4 .093 1.286 5.608 10.063
Magone2 1.418 1 11983 1.22 1.8 3.848 7.221 13.326 13.326
TMHIK 1.904 1 11073 .52 1.6 .827 1.169 12.992 12.992
Wak7.4 2.171 1 1808 1.02 2.3 .779 3.347 11.400 11.468

Magonel 2.227 1 10731 1.75 3.2 5.194 10.233 12.185 12.185
Tartan 2.377 1 5275 .52 1.3 .256 .367 11.307 11.307
Mack5 2.478 1 3982 .67 1.5 1.034 1.071 10.430 10.430
MRK2 2.924 5 10697 .78 2.2 689 .879 10.605 10.605
EZEE 2.935 5 9933 .62 1.3 .808 1.588 9.644 9.694
SHW3 3.252 5 8029 1.05 2.3 3.115 3.816 12.386 12.386
MRKl 3.507 5 9689 .42 1.2 .905 1.281 10.573 10.573
EW5K 3.768 5 12480 1.25 2.0 1.696 9.106 12.951 15.671
EWNW 4.532 5 10163 .80 1.9 .462 1.209 10.569 10.569

Moosebones 6.023 5 4921 .88 1.8 .117 474 12.389 12.389
Walks.3 6.592 5 9085 .80 1.8 I 231 2 898 10.962 1  ̂ ^2
Mack2 7.065 10 3741 .81 2.1 132 <1288 9.091 .85

TMIOK 7.117 10 7490 .99 2 ' .210 .241 10.940 40
Walk7.3 7.240 10 590 .69 1.3 .221 2.360 9.936 1 <84
Walk7.2 7.333 10 449 .56 1.3 .493 1.167 10.851 12.210
Walk7 7.355 10 50 7a 1.8 .184 .269 9.526 9.526

Mack2.1 7.356 10 2844 1 36 2.4 .142 .268 7.455 10.190
Mack2.2 7.367 10 3025 1.24 2.6 .136 .214 8 23 8.23

MackhlOK 8.260 10 10SU9 .92 2.1 1.997 5.505 13.474 13.474
EWNIOK 8.532 10 9716 1.22 2.5 .262 1.549 10.750 12.776
Walks .2 9.884 10 1.22 2.6 4.902 7.202 12.883 13.266

W a l k s , 15 10.240 10 7055 .92 1.7 .272 1.359 10.454 11.840
W j !C- 11.076 10 9727 1.00 1.8 .224 .431 9.286 9.286

WalkS : 11285 10 6720 .71 1.6 .124 .48 11.933 11.933
DSSlOK 369 10 6676 .82 1.6 .360 3.729 10.978 11.806

EWN210K : 099 10 8850 1.24 2.1 .170 1.363 9.474 12.428
TM20K 18 413 10 6850 .76 1.9 .047 .50 7.915 7.915

WW130K 25.468 30 5679 1.08 1.8 .198 1.426 11.828 12.857
WW230K 25.655 30 5327 1.19 2.1 .462 1.202 12.485 13.605
SHW30K 29.397 30 1372 1.26 3.1 .468 .590 8.169 8.952
EW30K 35.932 30 2352 1.15 1.8 .154 .483 0 10.603

MackSOK 37.824 30 1228 1.07 1.9 .337 769 9561 9.561
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Table 3.2.3 Mean and range for local scale habitat variables o f beaver ponds with brook 
trout present and absent. The probability o f means being equal (p) was calculated with 
univariate ANO VA for comparative purposes only.

Brook Trout Present
n = 20

Brook Trout Absent
n = 30

Variable Mean Range Mean Range P

Temperature (° C) 
(Mean)

16.13 9.4 to 20.4 15jW T93to2T84 0.866

Temperature (°C) 
(Minimum)

12.84 6.77 to 17.50 13.62 3.19 to 20.03 0.581

DO (mg/L) &28 5.7 to 11.4 8.01 3.7 to 11.2 0.265

pH 7.07 6.47 to 7.55 6.91 5.97 to 7.55 0.244

TDS (ppm) 0.039 0.025 to 0.072 0.035 0.020 to 0.072 0.482

Conductivity
(us/cm)

52 28 to 71 43 22 to 71 0.055

Mean Depth (m) 0.97 0.4  to 1.4 0.88 0.5 to 1.8 0.281

Maximum Depth 
(m)

2.02 1.2 to 3.1 1.80 1.2 to 3.2 0 . 1 2 1
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Table 3.2.4 Mean and range for landscape scale habitat variables of beaver ponds with 
brook trout present and absent. The probability o f means being equal (p) was calculated 
with univariate AN O V A for comparative purposes only.

Brook Trout Present Brook Trout Absent
n = 20 n = 30

V ariable Mean Range Mean Range P

UCA 
(sq. km)

13.50 2^Wto3T82 3.21 0.15 to 37.82 0 . 0 0 0

Pond Area (ha) 0.716 0.12 to 4.90 2.40 0.05 to 10.23 0333

Wetland Area (ha) 1.78 0.24 to 7.20 1 . 1 1 0.05 to 5.19 0.357

Maximum TI 
(pond)

10.56 7.46 to 13.47 10.70 5.61 to 13.47 0 643

Maximum TI 
(wetland)

11.44 8.95 to 13.61 11.35 7.92 to 13.61 (1223
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Table 3.2.5 Mean and range for local scale habitat variables o f beaver ponds with an 
UCA greater than approximately 2.9 sq. km with brook trout present and absent. The 
probability o f means being equal (p) was calculated with univariate AN O V A for 
comparative purposes only.

Brook Trout Present
n = 20

Brook Trout Absent
n = 9

Variable Mean Range Mean Range P

Temperature (° C) 
(Mean)

16.1 9.4 to 20.4 12.3 3.9 to 21.6 0 . 0 2 2

Temperature (° C) 
(Minimum)

12.9 6 . 8  to 17.5 9.8 3.2 to 18.0 0.054

DO (mg/L) 8.3 5.7 to 11.4 8.5 3.7 to 11.2 0.528

pH 7.07 6.47 to 7.55 6.85 5.97 to 7.23 0,191

TDS (ppm) 0.039 0.025 to 0.072 0.036 0.024 to 0.053 0.794

Conductivity
(us/cm)

52 28 to 71 44 2 2  to 61 0.226

Mean Depth (m) 0.97 0.4 to 1.4 0.91 0.56 to 1.25 0.548

Maximum Depth 
(m)

202 1.2 to 3.1 1.84 1.3 to 2.6 0.340
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Table 3.2.6 Mean and range for landscape scale habitat variables o f beaver ponds with 
an UCA greater than approximately 2.9 sq. km with brook trout present and absent. The 
probability o f means being equal (p) was calculated with univariate AN O V A  for 
comparative purposes only.

Brook Trout Present
n = 20

Brook Trout Absent
n = 9

Variable Mean Range Mean Range P

UCA  
(sq. km)

13.50 2.92 to 37.82 8 T 6 2.94 to 18.41 0.175

Pond Area (ha) 0.72 0.12 to 4.90 2.29 0.05 to 3.82 Œ828

Wetland Area (ha) 1.78 0.24 to 7.20 0.78 0.05 to 1.70 0.578

Maximum TI 
(pond)

10.56 7.46 to 13.47 10.52 7.92 to 12.95 0 539

Maximum TI 
(wetland)

11.44 8.95 to 13.61 11.07 7 92 to 15.97 0.305

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.3 Season and Temperature

When CUE was analyzed for all beaver ponds it appeared that brook trout 

catchability (abundance) was strongly influenced by water temperature. When mean 

water temperature in the beaver ponds was below 11 ° C, CUE was much lower than at 

higher temperatures (Figure 3.3.1). Reference ponds sampled multiple times during 

different seasons demonstrated a similar pattern (Figure 3.3.2). However, there was no 

significant difference in mean water temperature between beaver ponds with brook trout 

present and absent (ANO VA , F 173 = 0.001, p = 0.974). Mean water temperature was 

significantly higher in ponds with brook trout present (ANOVA, F 1.49 = 5.569, p = 0.022), 

when only ponds with UCAs greater than 2.9 sq. km were included in the analysis. 

However, similar to previous observations, local scale water quality parameters were 

consistent among ponds whereas landscape scale characteristics were highly variable 

among ponds with an UCA greater than approximately 2.9 sq. km and mean pond 

temperature greater than 11 °C . Both local scale water quality parameters (Table 3.3.1) 

and landscape scale characteristics (Table 3.3.2) were relatively consistent between  

beaver ponds with brook trout present and absent, with the exception o f UCA.

Brook trout abundance was significantly greater in beaver ponds with greater 

mean water temperature (ANO VA, F2.48 = 4.350, p = 0.018) when only beaver ponds 

with UCAs greater than 2.9 sq. km were included in the analysis. The number o f brook 

trout caught when mean pond temperature was below 11 ° C was 23 (n = 24) and when 

the temperature was above 11 °C  was 297 (n = 51). When CUE and biomass curves 

were plotted based on mean water temperature across all seasons a threshold response 

appeared to exist. Brook trout relative abundance (CUE) was significantly higher in 

beaver ponds with a temperature that fell within the preferred thermal range o f brook 

trout than in ponds where the water temperature fell outside o f that range (ANO VA , F2,48 

= 5.259, p = 0.026). Peak CUE occurred at approximately 14 to 18 ° C.
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Figure 3.3.1 CUE and relative mean water temperature in beaver ponds during the 200: 
sampling season.
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Figure 3.3.2 CUE o f brook trout and mean water temperature in 4 beaver ponds sampled 
multiple times during the 2003 season.
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Table 3.3.1 Mean and range for local scale habitat variables o f beaver ponds with mean 
overall water temperatures greater than 11 °C  and greater than 2.9 sq. Ion in UCA with 
brook trout present and absent. The probability o f means being equal (p) was calculated 
with univariate AN O V A for comparative purposes only.

Brook Trout Present
n =  18

Brook Trout Absent
n = 4

Variable Mean Range Mean Range P

Temperature (° C) 
(Mean)

16.9 11.1 to 20.4 18.7 14.6 to 21.6 0.271

Temperature (° C) 
(Minimum)

13.3 6.8 to 17.5 13.8 9.9 to 18.0 0.785

DO (mg/L) 8.2 5.7 to 11.4 6.2 3.7 to 6.9 0.509

pH 7.07 6.47 to 7.55 6.58 5.97 to 7.04 0.022

TDS (ppm) 0.039 0.025 to 0.072 0.032 0.030 to 0.033 0.477

Conductivity
(us/cm)

53 30 to 71 45 39 to 51 0.303

Mean Depth (m) 0.96 0.42 to 1.26 0.95 0.62 to 1.25 0.926

Maximum Depth 
(m)

2.0 1.2 to 3.1 1.85 1.3 to 2.3 0.442
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Table 3.3.2 Mean and range for landscape scale habitat variables of beaver ponds with 
mean overall water temperatures greater than 11 ° C and greater than 2.9 sq. km in UCA  
with brook trout present and absent. The probability o f means being equal (p) was 
calculated with univariate AN O V A  for comparative purposes only.

Brook Trout Present
n = 18

Brook Trout Absent
n = 4

Variable Mean Range Mean Range P

UCA  
(sq. km)

14.20 2.92 to 37.82 4.00 2.94 to 6.02 0.092

Pond Area (ha) 1.83 0.24 to 7.20 3.75 0.47 to 3.82 0.749

Wetland Area (ha) 0.73 0.12 to 4.91 1.43 0.12 to 3.12 0.151

Maximum TI 
(pond)

10.18 8.17 to 13.47 11.84 9.64 to 12.95 0.426

Maximum TI 
(wetland)

11.49 8.95 to 13.61 12.54 9,69 to 15.67 0.705
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3.4 Differentiating Brook Trout Habitat

Local and landscape scale habitat variables differed between brook trout class (the 

presence or absence o f brook trout) (M ANO VA, F 15, 34 = 4.112, p < 0.001). Habitat 

variables important in differentiating between brook trout class were identified using 

DFA (Table 3.4.1). Beaver ponds with and without brook trout were separated along 

discriminant function 1 with group centroids o f -1.078 for absent and 1.616 for present 

(Figure 3.4.1). The significant function generated by the analysis explained  

approximately 64.5% of the variance among group centroids (canonical correlation =

.803, W ilks’ lambda = 0.355, Chi-square 41.906, df = 15, p < 0.001). Beaver ponds with 

brook trout present had positive function scores and were characterized by lower MEI, 

larger UC A, lower mean water temperature, higher DO, greater maximum depth, and 

higher conductivity. Beaver ponds with brook trout absent had negative function scores 

and were characterized by lower TDS, and larger wetland area.

The previous analysis was repeated using only beaver ponds with mean 

temperatures greater than 11 ° C to ensure the results were not influenced by sampling 

efficiency differences. Local and landscape scale habitat variables in beaver ponds with 

mean temperatures greater than 11 ° C differed significantly between brook trout classes 

(M ANOVA, F = 8.909)6,24, p < .001). Habitat variables important in differentiating 

between brook trout class were identified using a DFA (Table 3.4.2). Beaver ponds with 

and without brook trout were separated along discriminant function 1 with group 

centroids o f -2.103 for absent and 2.687 for present (Figure 3.4.2). The significant 

function generated by the analysis explained approximately 85.5% o f  the variance among 

group centroids (canonical correlation = .925, W ilks’ lambda = 0.144, Chi-square 60.052, 

df = 16, p < 0.001). Beaver ponds with brook trout present were characterized by greater 

UCA, higher DO , higher conductivity, lower maximum T ' value in the contigt 

wetland area, lower minimum water temperature pH, greater maximum c.

and higher MEI. Beaver ponds with brook i .out absent were characterized by higher 

mean water temperatures, lower TT V,, and shallower mean depths.
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Table 3.4.1 Standardized CDF coefficients generated for function 1 by the DFA.

Variable Scale
Standardized CDF 

Coefficient

MEI Local 0.994

UCA Landscape 0.919

Water Temperature Local 0.813

DO Local 0.765

M aximum Depth Local 0.728

Conductivity Local 0.609

TDS Local -1.078

Wetland Area landscape -1.053
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Figure 3.4.1 Box plot o f DFA function 1 scores for beaver ponds characterized by local 
and landscape scale habitat variables. Bar indicates median, box indicates 25-75%  
quartile range, and whiskers indicate standard deviation. Outliers are greater than 2 
quartiles from the median.
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Table 3.4.2 Standardized CDF coefficients generated for function 1 by the DFA.

Variable Scale
Standardized CDF 

Coefficient

UCA Landscape 0.919

DO Local 0.793

Conductivity Local 0.763

Maximum Wetland TI Value 

Minimum Water

Landscape 0.700

Temperature
Local 0.664

pH Local 0.486

M aximum Depth Local 0.422

MEI Local 0.421

Mean Depth Local -0.343

TDS Local -0.634

Water Temperature Local -0.668
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Figure 3.4.2 Box plot o f D FA  function 1 scores for beaver ponds with mean water 
temperatures greater than 11 ° C characterized by local and landscape scale habitat 
variables. Bar indicates median, box indicates 25-75% quartile range, and whiskers 
indicate standard deviation. Outliers are greater than 2 quartiles from the median.
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3.5 Predicting Brook Trout Presence

The relative effectiveness o f local and landscape scale variables for developing  

models to predict brook trout presence and absence in beaver ponds within a drainage 

system was tested using stepwise logistic regression follow ing variable reduction. The 

logistic models were developed using a random subset o f 34 sites. Model statistics are 

summarized in Table 3.5.1. The remaining 16 beaver ponds were used to test the efficacy  

of the most parsimonious m odel at correctly predicting brook trout presence and absence. 

Two models in the stepwise procedure have evidence ratio numbers less than 10, thus the 

relationship o f variables in each model must be evaluated. M odel AV-1 (Z = 

4.204ln(UCA) -  3.30), which included only UCA, correctly predicted beaver pond group 

membership 82.4% of the time, and 81.8% for the test cases. M odel AV -2, which 

included mean water temperature and UCA, correctly predicted beaver pond group 

membership 85.3%, however, predicted group membership fell to 73.0 % for the test 

cases.

Logistic regression m odels were developed using both local and landscape scale 

variables from only beaver ponds with mean temperatures greater than 11 ° C to control 

for the potential influence o f temperature on catch rate. M odels were developed using a 

random subset o f 28 sites with mean temperatures greater than 11 °C . To validate the 

models predictive capacity, the remaining 13 beaver ponds with mean temperatures 

greater than 11 ° C were used to test the model efficacy. The attributes o f each m odel are 

summarized in Table 3.5.2. Only 1 model in the stepwise procedure had an evidence 

ratio number less than 10. M odel A V I 1-1 (Z = 217.218ln(UCA) -  89.796ln(meandepth) 

-  135.518), which included U C A and mean pond depth, correctly predicted beaver pond 

group membership 100 % for the construction cases and 83.8% for the test cases.

The single landscape scale variable, UCA, was included in each of the preceding 

logistic models and accounted for the majority o f the variability in each model 

individually. Alone, U C A accounts for 77.6 % o f the variability in model UCA (Z = 

4.204ln(UCA) -  3.30), which is analogous to model AV -1, and correctly classified ponds
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by brook trout presence and absence 82.4%. In beaver ponds with a mean water 

temperature greater than 11 °C , UCA accounts for 97.3% of the variability in the model 

and correctly predicted group membership 92.9%. The discriminatory ability o f model 

UCA-11(Z = 26 .464 ln (U C A ll)  -  14.876) was 83.8 % compared to model UCA 82.4 % 

when tested against the remaining 16 beaver ponds.

The probability o f brook trout presence in beaver ponds based on model U C A is 

shown in Figure 3.5.1. When only beaver ponds with an overall mean water temperature 

greater than 11 ° C are used in the analysis the probability of brook trout presence based 

on UCA increases (model U C A l 1) (Figure 3.6.2).
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Table 3.5.1 Logistic regression models developed using stepwise logistic regression with 
AICc evidence ratio numbers < 10. Smaller AICc evidence ratio numbers indicate model 
parsimony. Higher AUC number indicates better model fit. Shaded bottom portion of 
table indicates models created using subset o f 28 sites with mean water temperature 
greater than 11 o C.

Model Variables in 
model

-2Log
Likelihood

Nagelkerke 
RSquare

%
Correct AICc

AICc
Evidence

Ratio
AUC

AV-1 UCA, 25 362 0.602 824 57.52 1.00 0.894

AV-2 UCA, Mean 
Temperature

18.552 0.739 853 46.48 4.411 0.912

UCA UCA 25.362 0.602 824 n/a n/a 0.894

A V ll-1
UCA, mean 
pond depth

8.03E-07 1,000 100 932 1.00 1

UCA-11 UCA 4.047 0 948 92.9 n/a n/a 0.983
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Table 3.5.2 The number o f beaver ponds, from a subset of sites, correctly and incorrectly 
predicted as having brook trout present and absent using logistic regression m odels 
developed using stepwise logistic regression with AICc evidence ratio numbers < 10. 
Shaded bottom portion of table indicates models tested using subset o f 28 sites with mean 
water temperature greater than 11 o C.

Model Variables in 
model

Number True False True False
of test predicted predicted predicted predicted
ponds present present absent absent

Predicted
correctly

AV-1 UCA, 16 81.8

AV-2
UCA, Mean 
Temperature 16 73 .0 '

UCA UCA 16 818

A V ll-1 UCA, mean 
pond deptti 13 7 1 4 1 828%

UCA-
11

UCA 13 7 1 4 1 828%

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CL
T30)
ü

Q_

Brook Trout
0 . 0 - à

Present

Absent

■2 1 0 1 2 3 4

Upstream Catchment Area

Figure 3.5.1 The predicted probability o f brook trout presence in beaver ponds based on 
model UCA.
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Figure 3.5.2 The predicted probability o f brook trout presence in beaver ponds based on 
model U C A ll using only beaver ponds with an overall mean water temperature greater 
than 11 °C .
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Using a ROC curve, the discriminatory ability o f each logistic regression model 

was graphically evaluated using a critical threshold value (Pcrit) o f 0.5 (Table 3.5.1).

The Area under the curve (AUC) significantly exceeded the AUCcrit (0.7), p<0.01 

(Hosmer and Lemeshow 2000, Bonn and Schroder 2001, Schroder 2004). The 

confidence limits from the bootstrap percentile method were 81.986-1.055 using the ROC 

plotting and AUC calculation and transferability test, version 1.3 (Schroder 2004). Thus, 

a Pcrit value o f 0.5 is acceptable to test the results o f  the logistic model using the ROC 

curve. The ROC curve generated for each model indicates that the discriminatory ability 

of each m odel is acceptable (Hosmer and Lem eshow 2000, Schroder 2004). The 

predictive ability o f the model increases when only beaver ponds with an overall mean 

water temperature greater than 11 ° C were used in the analysis.

In each o f the preceding analyses, model predictive ability improves when only 

sites with a mean water temperature greater than 11 ° C are included. Each analysis 

indicates that UCA exerts the greatest influence over the distribution o f brook trout 

within the watershed study area. Pond depth improved the classification o f the test cases 

marginally when temperature is controlled for in model A V C ll-1 .
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4.0 Discussion

Beaver ponds in small boreal stream drainages provide habitat for brook trout and 

may allow them to persist in marginal conditions at the periphery o f their distribution. 

Beaver ponds are also subject to natural variation and disturbance and are abandoned and 

re-established over variable time periods in response to environmental variability at local 

and landscape scales (Lawrence 1952, Gard 1961, McComb et al. 1990, Barnes 1997, 

Snodgrass 1997, Snodgrass and M effe 1998, Schlosser and Kallemeyn 2000). The 

protection o f brook trout habitat requires a greater understanding o f local and landscape 

scale characteristics linking aquatic and terrestrial environments associated with the 

distribution o f the species. M y research demonstrates that beaver ponds possess 

characteristics that provide important brook trout habitat. Brook trout use beaver ponds 

within small stream drainage networks; however, brook trout do not use all ponds within 

the stream drainage. Similarly, brook trout relative abundance is variable among beaver 

ponds. M y study also illustrates an association between landscape and local scale pond 

characteristics which in turn are associated with the pattern of distribution and relative 

abundance o f brook trout in beaver ponds. Despite this association, it remains unclear 

how the linkage between these two habitat scales may influence the presence and 

abundance o f  brook trout. Complex interactions between local and landscape scale 

characteristics may not only influence brook trout presence and relative abundance, but 

also specific behavioural and functional characteristics, such as local adaptations in 

growth and maturity rates, maximum lifespan and size distribution. Size distribution 

differed among beaver ponds and between ponds and their adjacent streams. Brook trout 

in ponds were larger relative to those in the adjacent stream. Brook trout size distribution 

in ponds also differed among UCA categories with brook trout average size decreasing 

with increasing UCA.

Distribution and abundance o f fish species has often been related to local scale or 

site specific characteristics that must be observed through field surveys. However, 

variability in these characteristics due to variation in environmental conditions and 

seasonality appears to affect brook trout catchability. Local scale habitat characteristics 

were relatively consistent among beaver ponds and between ponds with brook trout
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present and absent. Brook trout presence and relative abundance in beaver ponds did not 

appear to be related to variability associated with local scale characteristics with the 

exception o f temperature and depth. Temperature was highly variable seasonally both 

within and among ponds, as was brook trout relative abundance (CUE). Brook trout were 

often not captured in beaver ponds where they had previously been captured. Relatively  

low or 0 catch rates in these ponds often corresponded to low water temperatures. 

Seasonal variation in beaver pond water temperature may significantly influence catch 

rate o f brook trout at various times o f the year.

Temperature appeared to be an important characteristic influencing brook trout 

catchability. When water temperatures in beaver ponds fell below approximately 11 ° C 

(mean pond temperature), the catchability o f brook trout was lower than at warmer 

temperatures. Mean water temperature, calculated for each beaver pond from multiple 

locations within each pond, was significantly higher in beaver ponds that had brook trout 

present when only beaver ponds with UCAs greater than 2.9 sq. km were included in the 

analysis. Similarly, mean water temperature was significantly higher in beaver ponds 

with greater brook trout abundance when only beaver ponds with U C A s greater than 2.9 

sq. km were included in the analysis. The number o f brook trout caught when mean pond 

temperature was below 11 °C  was 23 (n = 24) whereas 297 (n = 51) were caught when 

the temperature was above 11 °C . Characteristic o f a threshold response, low  water 

temperatures may reduce the metabolic efficiency o f brook trout and thus lead to a 

corresponding reduction in both foraging movem ents and feeding. Studies indicate that 

temperature influences both feeding and activity in brook trout (Baldwin 1956, Marod 

1995, Drake and Taylor 1996). For instance, Baldwin (1956) demonstrated that brook 

trout consume half as much food at approximately 9 °C  and 18 °C  as they do at 13 °C . 

The results suggest that the sampling method may not yield reliable estimates when mean 

pond water temperature is less than approximately 11 °C  or greater than 18 °C .

Beaver ponds with temperatures in excess o f approximately 18 °C  (mean pond 

temperature) also had a lower catch rate, though to a substantially lesser degree than 

ponds with mean water temperatures less than 11 °C . As water temperatures approach 

the critical thermal maxima o f brook trout, activity decreases in response to metabolic 

stress and there may be a reluctance to leave thermal réfugia. Marod (1995) found
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sustained temperatures greater than 20 ° C reduced the duration o f movement of brook 

trout during foraging. The influence o f warmer mean water temperature on brook trout 

catchability was not as pronounced as with cooler water temperature. Cool groundwater 

inputs in the drainage system  likely mediate higher temperature but have little effect on 

low water temperature. Even as surface temperature in the beaver ponds reached brook 

trout critical thermal maxima, large areas o f thermal réfugia likely existed within some 

ponds allowing brook trout to maintain activity levels near optimal levels. Groundwater 

discharge can be 5.0-7.5 °C  cooler than the ambient stream temperature (Gibson 1966, 

McCrae and Edwards 1994, Picard et al. 2003). Several beaver ponds in this study had 

mean ambient and minimum temperature disparities as high as 10.7 °C . Cool water 

réfugia may be an important determinant o f brook trout activity rate and feeding  

efficiency regardless o f the pond maximum temperature or overall mean temperature. In 

contrast, areas o f cool-water discharge during the summer are areas o f relatively warm- 

water during winter months. Groundwater discharge likely improves brook trout over­

winter survival by regulating in-stream temperature and limiting ice formation creating 

patches o f thermally stable réfugiai areas (Cunjak and Power 1986, Cunjak 1988, Cunjak 

1996, Curry et al. 1997, Lindstrom and Hubert 2004). Where thermal réfugia exist, 

brook trout may be able to persist regardless o f mean ambient or maximum water 

temperatures.

In waterbodies where temperatures become unfavourable, brook trout may move 

to areas o f groundwater inputs or into tributaries to exploit thermal réfugiai areas (Gibson 

1966, Lackey 1970, Power 1980, W itzel and MacCrimmon 1983, Bow lby and R off 1986, 

Curry and Noakes 1995, Cunjak 1996, Biro 1998). In the absence o f cool groundwater 

réfugia, deep water areas in lakes are often used by brook trout during warm summer 

months to avoid temperatures outside o f their preferred range (Baldwin 1948, Lackey 

1970, Olsen et al. 1988, M ucha 2003). Similarly, movements into deep beaver ponds 

may allow brook trout to avoid stream temperatures outside o f their preferred range and 

persist in stream systems otherwise lacking deep water habitat. Thermal réfugia in deep 

ponds may potentially explain higher relative abundance in deeper ponds compared to 

shallow ponds (Chisholm et al. 1987, Lindstrom and Hubert 2004).
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Beaver ponds with brook trout were on average 0.22 m (maximum depth) deeper 

than ponds without brook trout. Lindstrom and Hubert (2004) reported similar results 

with brook trout and cutthroat trout (Oncorhynchus clarkii) utilizing beaver ponds and 

pools with significantly greater mean residual depths than those not used. Deeper beaver 

ponds had lower mean and minimum temperatures than shallower ponds. Deeper beaver 

ponds were on average 0.37 °C  (mean temperature) and 1.75 °C  (minimum temperature) 

colder than shallower ponds. The disparity in mean and minimum temperature between 

ponds with and without brook trout is greater when only ponds with a mean overall water 

temperature greater than 11 °C  were compared. These ponds were on average 1.56 °C  

(mean temperature) and 2.81 °C  (minimum temperature) colder than shallower ponds. 

Deeper ponds had larger brook trout than shallower ponds. Brook trout from ponds with 

a maximum depth greater than 2 m were on average 17 mm and 33 g larger than 

shallower ponds. The difference was greatest in ponds with an UCA o f 5 sq. km, where 

brook trout were 75 mm and 134 g larger in deeper ponds (> 2 m) than in shallower 

ponds (< 2 m). Relatively large brook trout were also captured from the deeper ponds 

regardless o f UCA. The largest brook trout was caught from a 3.1 m deep (maximum) 

pond with a UCA of 30 sq. km. Johnson et al. (1992) similarly found deep beaver ponds 

contained large but relatively few  brook trout, whereas shallow ponds were dominated by 

numerous, small brook trout. Johnson et al. (1992) also observed that small brook trout 

had a greater survival potential than larger brook trout in W yom ing mountain streams 

likely due to the lack of deep pools and suggested deep beaver ponds may provide over­

wintering habitat. Deep beaver ponds may have higher rates o f hyporheic exchange due 

to the dynamic exchange with groundwater stored in the surrounding wetland area. As a 

result, even during severe winters, deep beaver ponds likely resist the formation o f deep 

anchor ice or complete freezing, providing some form of over-wintering habitat. 

Chisholm (1985) observed brook trout in streams o f the Snowy Mountain range migrated 

into deep areas o f beaver ponds to over-winter. Deep ponds with groundwater discharge 

may possess discrete réfugiai areas where brook trout can remain relatively active 

throughout both summer and winter. The intensity o f groundwater and hyporheic 

exchange processes are functionally linked to landscape scale geomorphic characteristics 

such as stream gradient, topography, and surficial geology (Grimm and Fisher 1984,
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Hynes 1983, Brunke and Gosner 1997, Vallett et al. 1997, Baxter et al. 1999, Power et 

al. 1999, Baxter and Hauer 2000, Franken et al. 2001, Borwick et al. 2006).

The importance o f  landscape scale processes within the entire stream catchment 

has become an important concept o f lotie ecology (Vannotte et al. 1980, Richards et al. 

1996, Allan and Johnson 1997, Allan et al. 1997, Baxter et al. 1999, Baxter and Hauer 

2000, Fausch et al. 2002, Stanford et al. 2005, K ocovsky and Carline 2006). The view  of  

stream ecosystem s as a longitudinal continuum of habitats (Vannote et al. 1980) has 

evolved into a dynamic o f habitat m osaics linking aquatic and terrestrial characteristics at 

local and broad landscape scales (Pringle et al. 1988, Schlosser 1991, Schlosser 1995a, 

Baxter and Hauer 2000, Schlosser and Kallemeyn 2000, Gomi et al. 2002, Fausch et al. 

2002, Smith and Kraft 2005, Stanford et al. 2005). Local scale patterns and processes in 

streams are often functionally linked to landscape scale influences. Similarly, the 

successional nature and spatio-temporal distribution o f beaver dams greatly influences 

fundamental geologic, hydro-morphological, and ecological processes on the landscape 

(Rudemann and Schoonmaker 1938, M cD ow ell and Naiman 1986, Johnston and Naiman 

1987, Johnston and Naiman 1990, Schlosser and Kallemeyn 2000, Pollock et al. 2004).

Landscape scale characteristics were highly variable among beaver ponds and 

between ponds with brook trout present and absent. M y findings demonstrate that brook 

trout presence is strongly associated with UCA. U C A  is a latent variable that represents 

the complex relationship among local and landscape scale characteristics and relative 

catchment position. Brook trout presence and relative abundance was higher in ponds 

with larger UCA. However, no other clear associations existed between brook trout 

distribution and landscape scale characteristics o f ponds. Brook trout presence in ponds 

became patchy in ponds with smaller UCA and a threshold to upstream distribution 

appeared to exist at approximately 2.9 sq. km. Brook trout relative abundance was lower 

in ponds with smaller UCA. Mean UCA for ponds with brook trout present was on 

average 10.29 sq. km greater than ponds without brook trout. Brook trout were never 

captured in beaver ponds with UCAs less than approximately 2.9 square kilometers.

The relationship between UCA and brook trout distribution is consistent with 

previous studies that demonstrate stream drainage position (UCA) is an important 

characteristic influencing distribution and abundance o f various lotie species (Vannote et
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al. 1980, Schlosser 1991, Matthews and Robinson 1998, Peterson and Rabeni 2001,

Smith and Kraft 2005). As stream and riparian habitat characteristics change from small 

headwaters to larger downstream areas, so too do the characteristics o f the stream fish 

populations (Vannote et al. 1980, Fausch et al. 2002, Smith and Kraft 2005). The 

composition o f stream fish assemblages is also associated to some degree with UCA  

characteristics (Osborne and W iley 1992, Matthews and Robinson 1998, Smith and Kraft

2005) with downstream areas generally having greater species richness (Schlosser 1987, 

Osborne and W iley 1992, Schlosser and Kallemeyn 2000). The number of fish species 

captured in minnow traps was greater in ponds with larger UCA. Similarly, brook trout 

relative abundance was higher in beaver ponds and streams with larger UCAs. Typically, 

longitudinal patterns o f distribution and abundance o f fish species were thought to be 

influenced by local or site-specific habitat differences that occur independent of 

landscape scale characteristics (Creque et al. 2005). However, distribution and 

abundance are likely influenced by a com plex interaction of local scale physical habitat 

variables and landscape scale characteristics such as geomorphology, drainage position, 

and groundwater potential (Bowlby and R off 1986, Schlosser 1995a, Schlosser 1998, 

Baxter et al. 1999, Torgersen et al. 1999, Baxter and Hauer 2000, Schlosser and 

Kallemeyn 2000, Fausch et al. 2002, Smith and Kraft 2005).

The successional nature o f beaver pond establishment and abandonment over 

millennia has created a terraced landscape (Rudemann and Schoonmaker 1938, Johnston 

and Naiman 1987, Johnston and Naiman 1990, Pollock et al. 2004) with ponds and 

wetland areas o f various sizes throughout stream drainage networks. Variation in stream 

gradient and valley topography has a strong influence on beaver pond morphology  

(Johnston and Naiman 1987, Schlosser and Kallemeyn 2000). Beaver ponds constructed 

in areas o f low  relief generally had large contiguous wetland areas conducive to 

groundwater accumulation and exfiltration. Ponds constructed in areas o f steep relief, 

such as narrow valley segments o f uplifted bedrock, generally had small contiguous 

wetland areas. These ponds were also deeper and more heavily shaded. In ponds where 

bedrock dominates the surficial geology, water generally cannot penetrate to form  

groundwater aquifers and instead enters the stream directly as surface runoff (Freeze and 

Cherry 1979). The extent o f groundwater storage and exfiltration in these successional
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ponds and beaver meadow wetlands is likely limited by individual pond topography and 

accumulated sediment.

The ability to identify groundwater habitat along the stream-terrestrial interface 

using a Topographic Index (TI) may link different habitat scales relevant for conserving 

brook trout habitat (Borwick et al. 2006). Groundwater discharge in lake basins is related 

to various physical habitat characteristics, including topography (Beven and Kirkby 

1979), basin geom orphology (Devito et al. 1996, Borwick et al. 2006), and surficial 

geology (Quinn et al. 1991, D evito et al. 1996). Similar processes influencing 

groundwater infiltration, storage, and discharge likely exist within stream systems and 

affect local scale characteristics such as temperature (Baxter et al. 1999, Baxter and 

Hauer 2000, Borwick et al. 2006). Groundwater has been identified as an important 

factor structuring salmonid populations (Curry and Noakes 1995, Curry et al. 1997, Biro 

1998, Power et al. 1999, Baxter and Hauer 2000) and the presence o f cold groundwater 

inputs, indicated in this study by mean ambient and minimum temperature disparities in 

ponds, may enable brook trout populations to persist in otherwise thermally marginal 

habitats o f stream drainage networks.

If groundwater discharge is related to landscape scale hydrogeological 

characteristics such as surficial geology and catchment topography, then brook trout were 

expected to be present more often in ponds with a greater potential for groundwater 

discharge expressed as a higher relative T l value (Buttle et al. 2001, Borwick et al.

2006). W hile no association appeared to exist between brook trout presence and higher 

relative T l value in m y study, the association of T l value with groundwater discharge and 

temperature appears useful under appropriate conditions. For example, Borwick et al. 

(2006) found T l value was positively related to lake surface and substrate temperature 

differences, indicating higher T l values were associated with greater groundwater input. 

Borwick et al. (2006) also found brook trout young-of-the-year (YOY) preferred to use 

areas with higher T l values. Unlike Borwick et al. (2006) where the lake perimeter was 

divided into sampling units with a specific T l value for each unit, each individual beaver 

pond represented a sampling unit with an average T l value representative o f the whole 

pond. A lso, the small size o f most ponds and the scale at which T l was assessed  

prevented differentiation of specific areas with higher or lower T l values. In Borwick et
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al. (2006), lake dwelling brook trout were able to actively move to areas with higher TI 

values and correspondingly lower temperatures, whereas brook trout were potentially 

temporally isolated in beaver ponds and were unable to move to adjacent ponds where 

more preferable thermal conditions may have existed. The temporal isolation o f beaver 

ponds and their adjacent streams may complicate any association between relative TI 

value and presence or absence o f brook trout.

The use o f statistical m odels to predict the presence or distribution o f species is an 

increasingly important tool for fisheries and wildlife conservation and forest management 

(Pearce and Perrier 2000). In the absence o f field survey data, statistical m odels and GIS 

tools may offer a method to predict the presence and absence o f brook trout in beaver 

ponds within stream drainage system s as well as improve the ability to m inim ize 

potential perturbations to habitat from forest management activities. Using local and 

landscape characteristics o f beaver ponds I developed a series o f models to predict brook 

trout presence and absence. The probability o f brook trout presence in a beaver pond 

within a stream drainage network appears to be associated with the size o f the 

contributing UCA. In headwater streams, brook trout were predicted to be present in 

beaver ponds 82.4 to 100 % o f the time, where they are present within the down sueam  

drainage and are unimpeded by natural barriers to upstream movement. UCA alone 

correctly classified beaver ponds having brook trout present or absent 82.4 to 92.9 % of 

the time. Variables that accounted for the greatest amount of residual variability in the 

m odels were water temperature, depth, pond area as w ell as TI values in the pond and 

surrounding wetland area. However, only mean pond depth improved the predictive 

power and classification efficiency o f the models relative to UCA alone.

The relative abundance o f brook trout in beaver ponds was not used in the 

development o f models in favour o f presence and absence data. Relative abundance may 

be mistakenly construed as an indicator o f habitat quality (van H om e 1983, Bonn and 

Schroder 2001). Relatively higher or lower abundances of brook trout may be the result 

o f  factors other than habitat preference (van H om e 1983, Pulliam 1988), such as 

observational difficulties (e.g. catch rate), weather conditions (e.g. temperature) or 

seasonal variability in discharge (Schroder 2001). Furthermore, presence and absence
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data provides the necessary information for the prediction of brook trout distribution 

within the watershed.

Mean water temperature in beaver ponds with brook trout present were higher 

than in ponds where brook trout were absent. Inclusion of mean water temperature in the 

logistic model decreased predictive capacity to 73.0 % from 82.4 % using UCA alone. 

When beaver ponds with a mean temperature less than 11 ° C were removed from the 

analyses to control for possible bias in capture efficiency of brook trout at low water 

temperature, temperature did not contribute in any of the subsequent models developed. I 

predicted that temperature would be associated with brook trout distribution since it 

appeared to be strongly associated with catch rate. Previous studies identified 

temperature as an important determinant o f brook trout distribution (MacCrimmon and 

Campbell 1969, W itzel and MacCrimmon 1983, Power et al. 1999) which may also be 

useful for discriminating between potential brook trout streams and non-brook trout 

streams (Picard et al. 2003). However, if temperature influences brook trout catchability, 

m odels may erroneously predict brook trout presence or absence if this influence is 

ignored, leading to spurious conclusions. Areas o f discrete thermal réfugia, where brook 

trout could occupy water temperatures at or near their preferred thermal range, were 

observed in several ponds where the mean pond temperature was outside of their 

preferred thermal limits or above their critical thermal maxima. Since brook trout 

foraging may be suppressed or increased under certain environmental conditions, an 

alternative method o f capture which does not rely on foraging is required to more 

accurately associate individual pond temperature and brook trout relative abundance.

Only looking at maximum or mean temperatures in aquatic system s ignores the spatial 

heterogeneity in a stream environment and the influence of thermal réfugia in distributing 

and structuring fish populations.

The variability o f brook trout distribution relative to environmental conditions, 

seasonal movements, and annual fluctuations in abundance makes management decisions 

based on presence or abundance over short time periods derisory (Platts and Nelson  

1988). The variability o f local scale characteristics o f beaver ponds indicates that they 

may not be useful for accurately predicting brook trout presence or abundance.

Landscape scale characteristics, such as UCA, remain relatively constant over time.
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whereas local scale habitat characteristics, such as temperature, may vary greatly over 

short time periods (Smith and Kraft 2005). The inclusion of additional variables did not 

significantly improve the predictive capacity o f logistic models and in some instances 

{i.e. temperature) may have led to spurious conclusions regarding brook trout 

distribution. The utility o f landscape scale characteristics, in particular UCA, as 

predictors of brook trout presence and absence appears obvious; however, the linkage 

between local and landscape scale habitat characteristics and how they affect brook trout 

distribution remains unclear.

Brook trout in beaver ponds were significantly larger than those in the adjacent 

streams throughout the drainage system. Brook trout size also differed among streams 

and beaver ponds with different UCAs. Although sampling methods are not directly 

comparable, it is clear that larger brook trout were absent in streams in the study.

Angling is likely biased towards sampling larger fish in beaver ponds. However, 

electrofishing was assumed to provide a representative sample o f the size distribution o f  

stream dwelling brook trout. Brook trout captured in beaver ponds were, on average, 105 

mm and 72 g larger in beaver ponds than in their adjacent streams. Approximately 20% 

of the 369 brook trout caught in beaver ponds were larger than the largest brook trout 

captured in the stream survey.

Brook trout were larger in beaver ponds with smaller UCAs than those captured 

in beaver ponds with greater UCA downstream. Brook trout were, on average, 16 mm  

and 25 g and 21 mm and 20 g larger in 5 sq. km UCA than those captured in 10 and 30 

sq. km U C A ponds respectively. Conversely, brook trout in the adjacent stream were 

smaller upstream than those captured in larger downstream areas. Brook trout in 30 sq. 

km UCA streams were 27 mm and 10 g and 27 mm and 12 g larger than in 10 and 5 sq. 

km UCA streams respectively. The number of brook trout captured in downstream ponds 

was greater than those captured in upstream ponds with smaller contributing UCA. The 

average number o f brook trout caught per pond was 3.25 in 5 sq. km UCA ponds, 6.73 in 

10 sq. km UCA ponds and 18.8 in 30 sq. km U C A ponds. Hughes and Reynolds (1994) 

and Hughes (1999) observed a similar relationship with Arctic grayling (Thymallus 

arcticus) size distribution in Alaskan streams. The authors hypothesized that Arctic 

grayling progressively increased in size upstream due to competitive interactions with
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longitudinal replacement and exclusion of relatively smaller fish. Larger grayling prefer 

headwater areas relative to downstream areas and actively move upstream in search of 

optimal habitat with the largest and most robust individuals occupying the most upstream 

areas.

In variable habitats, brook trout that are spatially isolated can produce locally  

adapted populations with habitat specific behavioural and functional characteristics 

(Stanford et al. 2005). For instance, Armstrong (unpublished data, pers. comm ., 2005) 

found brook trout in small streams in the same area are small bodied, matured as early as 

1 year o f age, and lived no longer than 3 years. The restricted growth, lifespan, and early 

maturation is likely a life history strategy to exploit the low productivity and limited 

nutrients characteristic o f northern Ontario headwater streams. Several studies indicate 

that growth rate is a critical life history characteristic influencing over-winter survival 

(Bustard and Narver 1975, Cunjak 1988, Cunjak 1996, Cunjak and Power 1987, Quinn 

and Peterson 1996, Schlosser 1998, Pollock et al. 2004) and there is potentially a lack of 

over-winter or over-summer habitat in addition to limited resource availability in small 

headwater streams in the study area. Drake and Taylor (1996) observed a negative 

relationship with increasing summer water temperature and brook trout growth beyond  

age 2. Hunt (1969) observed a positive relationship between size and over-winter 

survival in brook trout and attributed it to energetic efficiency at low temperatures. 

Juvenile coho salmon (Oncorhynchus kistuch) in beaver ponds were consistently larger 

and had a greater over-winter survival rate than juveniles in non-impounded streams 

(Bustard and Narver 1975, Swales et al. 1986, Swales and Levings 1989). Bustard and 

Narver (1975) reported over-wintering survival rates o f juvenile coho salmon in beaver 

ponds were approximately double the average o f the adjacent stream system. Thus, the 

limiting environmental conditions experienced in these streams may restrict brook trout 

growth-rate and survival to older age in the absence o f beaver ponds.

M y observation that fewer but larger brook trout captured in ponds with smaller 

UCAs than in ponds with larger UCAs may indicate that ponds function as an ecological 

release. The highly variable stream environment may constrain the upper limit for both 

growth and abundance due to temporal limitations in space, nutrients and basic 

physiochemical requirements such as temperature, oxygen, discharge, and depth. The
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creation o f the pond may allow fish access to more abundant resources and space leading 

to increased survival and higher growth-rate. In general, fish abundance and diversity 

decreases with decreasing UCA. Correspondingly, there were far fewer brook trout 

captured from beaver ponds with small UCAs. In the absence o f competition in ponds 

with smaller UCA and relatively fewer fish, brook trout are able to utilize the pond 

habitat to a greater degree, attaining significantly greater size relative to the brook trout in 

ponds with larger UCAs.

The relatively stable habitat conditions in the pond may allow brook trout to live 

to older ages and larger sizes. Aging structures collected from several brook trout 

captured suggest that brook trout in beaver ponds live longer than those in the adjacent 

stream. Brook trout sampled from ponds were estimated to range in age from 3 to 6 

years. Stream dwelling brook trout sampled in the same area never exceeded 3 years of 

age (Armstrong, unpublished data). Stream dwelling brook trout rarely exceeded 200  

mm and none exceeded 246 mm, whereas the smallest fish aged from the beaver ponds 

was 254 mm. The difference in brook trout size was not as great between ponds and 

streams with greater UCAs as it was between ponds and streams with smaller UCAs. 

Allen (1956) hypothesized that large beaver ponds in W yoming generally yielded large 

brook trout due to the increased longevity o f the fish as opposed to increased growth. 

These results may demonstrate a density-dependent effect in response to the ecological 

release when the pond was constructed possibly reflecting an association between brook 

trout density and size (Marchand and Boisclair 1998).

S ize differences between pond and stream dwelling brook trout may also be 

related to foraging differences within the two habitats. For example, small bodied, 

stream dwelling brook trout generally feed on small invertebrates (Scott and Crossman 

1973, Power 1980) whereas brook trout in beaver ponds may switch to piscivory, which 

could account for the larger fish observed in ponds. Rapid growth and larger size o f fish  

in lakes and ponds relative to streams may also be a result of a switch to piscivory at 

smaller sizes (Mittlebach and Pearsson 1998, K eeley and Grant 2001). Rupp (1955) 

observed the stomach contents o f brook trout in beaver ponds to have a high percentage ■ 

of fish and that fish abundance was greater in beaver ponds than in the adjacent stream. 

Numerous brook trout captured in beaver ponds regurgitated small fish upon capture
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(Pers. obs.) and the stomach contents o f brook trout that died accidentally contained fish, 

mollusks and large invertebrates. In contrast, the stomach contents o f brook trout 

captured in stream surveys that died contained primarily small, unidentifiable 

invertebrate larvae (Pers. obs).

Beaver ponds in small boreal forest stream drainages exist as a m osaic of 

temporally variable habitat patches (Schlosser and Kallemeyn 2000) that are prone to 

both abandonment and re-colonization. The characteristics o f beaver pond influenced  

stream drainages demonstrate key assumptions o f metapopulation and source-sink 

dynamics (Hanski 1982, Hanski 1991, Hanski 1997, Pulliam 1988). Metapopulations 

exist at relatively large spatial scales where individuals occasionally disperse amongst 

isolated subpopulations (Hanski 1982, Hanski 1991, Hanski 1997, Holt 1997). Beaver 

ponds may not only provide a source population to re-establish stream ‘sink’ populations, 

but also provide the re-colonization potential for unoccupied pond habitat patches within 

the drainage. Habitat heterogeneity at the landscape scale, as result o f beaver pond 

establishment and abandonment may provide habitat patches permitting species 

persistence and enhanced local species richness and abundance (Hanski 1997, Holt 

1997). Survival in relatively few , but varied, habitat patches, such as beaver ponds, 

allows a species to persist over a broader area and range of habitats making the 

population at a landscape scale more resilient to stochastic environmental perturbations 

(Holt 1997).

It appears that brook trout may not occupy all ponds within a drainage system.

For example, brook trout were not captured in relatively shallow, inactive beaver ponds 

which may be indicative of fish abandoning ponds as the pond ages. W inkle et al. (1990) 

state the value o f beaver ponds as habitat for brook trout likely decreases as the pond ages 

and are eventually abandoned by beavers. In older ponds, increased sedimentation and 

reduced space likely have a cumulative effect by decreasing the forage density and 

diversity (Hodkinson 1975b), decreasing the DO levels (Baxter 1977, Fox and Keast 

1990, Devito and Dillon 1993), and increasing summer temperatures (M cRae and 

Edwards 1994). Similarly, older or shallower ponds may increase brook trout 

susceptibility to extirpation caused by depth and space limitations due to relatively deeper 

ice formation in winter (Chisholm et al. 1987, Hall and Ehlinger 1989, Fox and Keast
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1990, Cunjak 1996). During winter 2002-2003, Thunder Bay and the surrounding area, 

which includes the M ackenzie River watershed, experienced the longest period o f  

continuous sub-zero temperatures without an appreciable accumulation of snowfall on 

record (Environment Canada Data). Sampling conducted during 2002-2003 winter 

season found that many shallow, headwater streams and ponds, froze completely; 

potentially extirpating brook trout from many areas within the drainage system. The 

impact o f these relatively extreme environmental conditions may explain the absence of 

brook trout in several ponds where they were expected to be present.

Small boreal forest streams are continually subject to natural variation and 

stochastic environmental disturbance that alter instream and riparian habitat conditions 

(Roghair et al. 2002, Hakala 2003) and ultimately influence the distribution and 

abundance of brook trout. Brook trout distribution may be continuous throughout a 

stream drainage system; however, at certain times during the year, distribution may 

become patchy due to seasonal and spatial variation in habitat conditions. Stochastic 

environmental perturbation such as severe storms and flooding (Roghair et al. 2002, 

Hakala 2003, Hakala and Hartman 2004, Roghair and D olloff 2005), drought, or 

particularly harsh winter temperatures (Cunjak 1988, Cunjak 1996) may even temporally 

extirpate brook trout from areas within the drainage. However, recent studies suggest 

brook trout movement is common and can be extensive within stream drainages (R iley et 

al. 1992, Go wan et al. 1994, Go wan and Fausch 1996a, Gowan and Fausch 2002, Curry 

et al. 2002) and that re-population of defaunated stream areas can be rapid (Phinney 

1975, Adams 1999, Roghair et al. 2002, Hakala 2003). Adams (1999) stated that 

invasion o f unoccupied upstream areas by brook trout in Colorado streams likely 

occurred in pulses during optimal conditions. In a study by Phinney (1975) brook trout 

from the unaffected upstream area o f an experimental extirpation repopulated the 

defaunated area after one year. Furthermore, Reice et al. (1990) suggest brook trout may 

essentially be in a constant state o f recovery from disturbance due to the highly variable 

nature o f small stream conditions. Therefore, spatial variability, observed as patchy 

distribution and abundance, and temporally variable extirpation and reinvasion o f habitat 

by brook trout may be ubiquitous in boreal streams.
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Small boreal forest streams are also subject to highly variable flow  conditions 

associated with seasonal precipitation patterns. It is possible that low or zero catch rates 

of brook trout in beaver ponds where they were known to be present may be indicative of 

movements in response to higher relative discharge. Coincidently, periods o f higher 

relative discharge generally coincide with lower water temperatures in the spring and fall. 

This may allow brook trout to temporarily move into complementary or supplementary 

stream habitat areas which are generally inaccessible. W hite (1940) observed a positive 

relationship with increased stream flow  and upstream movement o f brook trout. Gowan 

and Fausch (1996a, 1996b, 2002) observed increased movement o f small stream brook 

trout in Colorado associated with increased precipitation and discharge. Lawrie 

(unpublished data) and Armstrong (unpublished data) observed upstream and 

downstream movement o f  brook trout in the study area that occurred in pulses 

concomitant with significant precipitation and increased stream discharge. Similarly, 

Macintosh (2001) and Mucha (2003) observed upstream and downstream movement of 

brook trout in Lake Superior tributaries in response to increased stream flow  associated 

with high rainfall events. In this study, brook trout migrated out o f beaver ponds, 

presumably to spawn, during brief periods o f increased stream discharge during the fall 

of 2002. Even though only 8 brook trout were observed, their movement out o f the ponds 

and subsequent capture in two-w ay weirs coincided with high rainfall events and a 

corresponding increase in stream discharge. Beaver dams may be semi-permeable 

barriers to brook trout m ovem ent that varies with stream flow conditions. Similarly, lack 

of habitat in streams during low flow  conditions may spatially exclude brook trout, thus 

isolating them in adjacent beaver ponds.

N o environment is constant over time; however, some are more stable or resilient 

to change than others. The unique conditions created by beaver ponds likely increases 

the available habitat for brook trout by providing additional foraging opportunities, 

(Hodkinson 1975b, Smith et al. 1991, Clifford et al. 1993), pool habitat (Chisholm et al. 

1987, Johnson et al. 1992) and over-wintering areas (W inkle et al. 1990, Johnson et al. 

1992), temporary réfugia during adverse conditions (Hanson and Campbell 1963, 

Chisholm et al. 1987, W inkle et al. 1990, Johnson et al. 1992), as well as dampen the 

effects o f stochastic environmental perturbation (Baxter 1977, Naiman et al. 1986,
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Naiman et al. 1988, Naiman et al. 1994, W oo and Waddington 1990) in the stream 

drainage. In addition, beaver ponds may also act as resilient source populations from 

which re-colonization of periodically defaunated streams areas can occur (Schlosser 

1995a, Schlosser and Kallemeyn 2000).

It is clear that beaver ponds provide habitat for brook trout that is supplementary 

or complementary to the adjacent stream and that ponds likely provide year-round habitat 

for at least some portion o f the population. Beaver ponds may possess the necessary 

habitat attributes allowing brook trout to persist at the periphery o f their natural 

distribution in small boreal forest stream drainages. However, further research is 

required to better understand the linkage between local and landscape scale 

characteristics influencing brook trout habitat and the influence o f beaver ponds on brook 

trout abundance and distribution. A  watershed scale approach to brook trout 

management could be used to tie landscape scale processes identified in a geographic 

information system to the protection o f brook trout habitat from potentially harmful land 

use practices. This research may contribute to a better understanding of the importance 

o f beaver ponds and whether they possess attributes that distinguish them as good brook 

trout habitat within stream ecosystem s, enabling resource managers to protect these areas 

from possible land use impacts.
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