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A b s t r a c t

Parallel robots have attracted more and more attention in recent years due to their 

kinematical and mechanical advantages. However the complicated high nonlinear model 

with unknown parameters and singularities make the control o f a parallel robot much 

more difficult than a serial robot. Nonlinear control has been made great progress since 

backstepping technique was developed. Backstepping technique is a recursive design 

procedure and feasible for lower triangular nonlinear systems. Moreover, the adaptive 

backstepping is able to handle nonlinear systems with unknown parameters, which turns 

out to be a suitable control design methodology for parallel robots.

The adaptive backstepping technique is applied to set point and tracking control o f a 

planar parallel robot in this thesis. The dynamic model o f the robot is characterized by a 

set o f differential algebraic equations (DAEs) and further reduced to a set o f ordinary 

differential equations (ODEs). The inverse kinematics is also under investigation. For set 

point control, a model-based adaptive controller is designed based on backstepping 

technique, and an adaptive PD controller is also constructed for comparison. For tracking 

control, adaptive backstepping controller is designed based on the model with unknown 

parameters. The adaptive PD controller is also implemented for comparison. The 

performances o f the controllers are tested by experiments. Desired trajectories such as 

circle, line, and square are tracked in experiments for two cases: with no load and with 

load at the end effector.

It is shown that adaptive controllers can achieve less steady state errors in set point 

control, and smaller tracking errors in tracking control than non-adaptive controllers, 

especially when there is a load attached to the end effector.

Key Words: parallel robot, adaptive backstepping, nonlinear control, differential 
algebraic equation (DAE) systems
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Chapter 1

Introduction

1.1 Background

Generally there are two m ain types of robot m anipulators, which are serial m anipulators and 

parallel m anipulators. Typically, links of serial robots are connected in series, thus form ing 

open-chain mechanisms and all their joints are actuated . The hum an arm  is a good exam ple of 

a serial m anipulator. O n the o ther hand, links of parallel robots are connected in a com bination 

of b o th  serial and parallel fashions, thus forming closed-chain m echanism s and no t all their 

jo in ts are actuated . The actuators of parallel robots are placed on the base or close to  th e  base, 

which results in lighter moving parts. Consequently a parallel robot generally has th e  following 

properties, such as high capacity of load for the same num ber of actuators, high accelerations at 

the  end-effector and  high mechanical stiffness to  weight ratio. C om pared w ith  the serial robots, 

the inconveniences of parallel robots are complex dynam ic model and  presence of singularities 

which lead to  loosing control, even to  a deterioration of mechanics. T hus the m odeling and 

controller design are appealed for a parallel robot control system.

In general, the model governing a parallel robot is highly nonlinear and  a precise knowledge 

of its param eters is not readily available. A daptive backstepping is able to  handle nonlinear 

system s with unknown param eters, which appears to  be a suitable control design m ethodology 

for parallel robots. However, it should be noted th a t there has been no report on application  

of the adaptive backstepping technique to  control of parallel robots.

There is great progress in nonlinear control since backstepping technique is proposed by

1
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[15]. Backstepping is a recursive procedure th a t combines the  choice of a  Lyapunov function 

w ith the design of feedback control and  it can be applied to  a class of nonlinear system  called 

’’lower triangular” nonlinear system . M oreover adaptive backstepping can  handle such a  class 

of nonlinear system  w ith unknown param eters.

In th is thesis, an adaptive backstepping-based control scheme is applied to  set po in t and 

tracking control for a p lanar 2-DOF (degree-of-freedom) parallel robot. By assum ing th a t  inertia  

param eters and some geom etric dim ensions of the  robot are not known precisely, an  adaptive 

backstepping controller is designed. For the purpose of comparison, an adaptive proportional 

and derivative (PD) controller is designed as well. T he perform ance of each controller is tested  

by experiments.

1.2 Literature R eview

In the past decades, m any researchers have studied  parallel mechanisms [26], [14], [7], [11], [3], 

[30], and showed th a t parallel m echanism s have the  po ten tial advantages of high stiffness, high 

speeds, low inertia and large payload capacities. Therefore, more and m ore researchers have 

applied such mechanisms in different kinds of practical uses, such as aircraft sim ulator, robotic 

machining, mining machines, po inting devices, and micro-positioning devices.

In general, modeling of parallel robots is more challenging th an  th a t of serial robots. In 

[9], the modeling m ethods for parallel robots are classified into three categories. In  th e  first 

category, the dynamic model is derived for a special closed-chain or a closed-chain w ith  a 

particular structure. The dynam ics of a 3-DO F spatial parallel m anipulator w ith flexible links 

is studied in [6]. [12] introduces a novel approach for th e  com putation of th e  inverse dynam ics 

of a parallel m anipulator. For those specific closed-chains, closed-form equations of m otion are 

possible to  be derived explicitly in term s of the  actuated  joint variables. Thus the  resulting  

dynam ic equations are similar to  m otion equations of open-chain structu re . In  th is case, all 

the control laws for open-chain m echanisms are applicable to  closed-chain m echanisms w ith  the 

difference th a t the guaranteed (Lyapunov) stability  conclusions will a t best be local.

Using the m ethod of the second category, the equations of m otion are derived for general 

closed-chain structures. The m ethod is to first virtually  cut open the closed-chains a t passive

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



joints and then derive the  equations of m otion of th e  resulting open-chains, which can be 

expressed by n' dependent differential equations. If the  closed-chain m echanism has n  DOF, 

there will be n' — n  algebraic holonomic constraints corresponding to  th e  virtually cu t joints, 

which, together w ith the  n' differential equations, compose the  full equations of m otion of th e  n  

D O F closed-chain expressed as a set of differential algebraic equations. A set of n! differential 

equations results from elim inating th e  Lagrange m ultipliers in troduced from the constra in ts in 

the full equations, the num ber of which is larger th an  degrees of freedom, thus it is difficult to  

extend the existing control laws of open-chains to  closed-chains m odeled based on the  m ethod  of 

the second category. T he obtained equations are m ostly suited for sim ulation and com putation  

bu t not best suited for a m odel-based control design, thus only th e  num erical results and 

illustrative examples are given in [20], [25], and [22].

In  [9] it is concluded th a t the m ethod  of the th ird  category [5], [28] is preferable if a  model- 

based control design is employed, which has been proved in [10] based on tracking control. This 

m ethod sta rts  w ith formulating the  equations of m otion in term s of n' dependent generalized 

coordinates and th en  elim inating n' — n  holonomic constrain ts to  obtain  n  independent differen

tia l equations w ith n  independent generalized coordinates corresponding to  the num ber of D OF 

of the parallel robot. Unfortunately, th e  resulting dynam ic equations are not in  an  explicit form 

of the independent generalized coordinates or ac tua ted  joints. C alculation of these im plicit re

lations in real tim e imposes a severe constrain t on application of m any well-established control 

m ethods for serial robots to  parallel robots. Therefore, some early a ttem p ts  in  control of para l

lel robots focused on the use of non-m odel based control m ethods, such as proportional integral 

derivative (PID) control [1], [16] and artificial intelligence-based algorithm s [2], [8]. However, as 

pointed out in [9], these m ethods have no guarantee of stability  and perform ance. Some efforts 

have been made to  extend m odel-based control algorithm s for serial robots to  parallel robots. 

T he study  reported  in [13] proposed a parallel com putational algorithm  to speed up on-line 

com putation. In  [4], the  mass and inertia  of the  links were neglected in  the  dynam ic model 

in order to  im plement the com puted-torque control. A PD  plus simple gravity com pensation 

control law is proposed in [9] for set po int control for a p lanar 2-DOF parallel robot. W ith  the 

proved skew sym m etry property, this controller guarantees a local asym ptotical stability. For 

set point control the simple gravity com pensation is a constant term  which can be com puted

3
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off-line to  any degree of accuracy. In [18], the control problems are considered in the  design stage 

of a  parallel robot to  find an  appropriate mechanical s tructu re  w ith  a simple dynam ic m odel, 

which results in a simple control algorithm  to  achieve a  satisfactory  control perform ance. In  

[29], a  predictive functional control stra tegy  is im plem ented for tracking  control of a H4 parallel 

robot. T he dynam ic model is simplified by neglecting the effect of arm  mass, which greatly  

facilitates the im plem entation of the controller.

Backstepping refers to  a recent powerful approach for a design of stabilizing controllers for 

nonlinear systems b o th  for tracking and regulation purposes [17] since a Lyapunov function 

for the  closed loop system  can be constructed  system atically based on backstepping technique. 

T he adaptive version of those designs, w ith  the tuning functions design, offers the possibility to  

synthetize controllers for a wide class of nonlinear system  w ith known strict-feedback s tru c tu re  

and unknown param eters in a recursive way.

In  [15] a system atic procedure is developed for the  design of new adaptive regulation and 

tracking schemes for linearly param eterized system  in stric t feedback form, for which global 

stabilization can be achieved w ith any type of sm ooth nonlinearities. A daptive backstepping 

technique has been applied to  various fields. In [31] a nonlinear adaptive controller is designed 

step  by step for the  field weakening area of a  separately excited DC m otor w ith  unknow n 

param eters such as th e  inertia and load torque, and the sim ulation results show th a t  the  pro

posed controller is robust to  the param eter uncertainties. An adaptive backstepping controller 

is proposed to  control the mover position of a linear induction m otor drive to  periodic refer

ence inputs in [19], and  the controller possesses the  nice transien t control perform ance an d  is 

robust for param eter variations and external force disturbances confirmed by b o th  sim ulation 

and experim ental results.

Backstepping design technique has been applied to  control serial robots and wheeled mobile 

robots. In tegrator backstepping technique is applied to  tra jec to ry  tracking control for serial 

robot m anipulator in presence of param eters uncertainty and d isturbance in [21] and [27] in

corporating actuator dynamics. A backstepping approach for the  design of discontinuous s ta te  

feedback controller is used for the design of th e  controller to  stabilize a wheeled m obile robot 

in [24] and an  adaptive controller based on backstepping technique is proposed and applied to  

a two-wheeled welding mobile robot to  track  a sm ooth curved welding p a th  in [23].

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.3 Thesis O verview

The thesis consists of six chapters. A general background on adaptive controller application  

based on backstepping technique is discussed in the  first chapter: In troduction . C hap ter 2 

gives the  dynamic m odel and inverse kinem atics of the  p lanar 2-DOF parallel robot b u ilt for 

experim ents. C hapter 3 presents adaptive controller design procedures and sim ulation resu lts 

for set point control. Design of adaptive backstepping controller and adaptive PD  controller 

with com pensation term s for tracking control is given in  C hapter 4. Sim ulations are perform ed 

to  illustrate control perform ances of the  adaptive backstepping controller and adaptive PD  

controllers. C hapter 5 provides th e  experim ental results for set point and tracking control. 

B oth adaptive and non-adaptive controller perform ances are discussed in bo th  set po int and 

tracking control. In  order to  tes t the  adaptability, the  experim ents are perform ed in  b o th  

w ithout load and w ith  load attached  to  the end effector. C hapter 6 concludes the thesis by 

com paring the experim ental results based on different controllers for set point and tracking  

control and presents some proposals for future work.

5
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Chapter 2

Dynam ic M odel and Inverse 

Kinem atics

2.1 D ynam ic M odel

A schematic of a p lanar 2-DOF parallel robot is shown in Fig. 2-1 where m*, a;, and Zj are 

the mass, length of link i and the  d istance to  the  center of mass from the lower jo in t of link 

i, respectively, R  denotes the mass m om ent of inertia  of link i w ith respect to  a frame parallel 

to  the body-attached frame with the  origin located a t the  center of mass. Jo ints qi and <72 are

actuated  while joints <73 and <74 are passive. In  this thesis, the  following factors are not taken

into account: friction between joints, m otor dynam ics, gear tra in  backlash, and link elasticity. 

The dynam ical m odel of the robot, presented in [26], is described as follows:

D'{q')q' +  C'(q', q')q' + g'{q') = u' (2 .1)

4>{q') =  0 (2 .2 )

where q' <7 1 <72 <73 Qi
1 T

«1 U2 0 0

is th e  vector of dependent generalized coordinates, u' —

w ith  u\  and U2 torque applied on jo in ts q\ and <72, respectively, D'(q') 6  _R4x4 

is the inertia m atrix, C'ijq', tf)q' G R 4 represents the  centrifugal and Coriolis term s, and 

g'(q') € R 4 is the gravity vector, 4>(q') represents th e  constraints of two independent alge-

6
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Figure 2-1: Schem atic of a  2-DOF parallel robot.

braic equations which are at least twice continuously differentiable. Assume th a t the p a ra 

m eters TO,, li, and li are not known precisely. For simplicity, let 9\ =  m i l 2 + m 3a\ + I \ ,  

92 — m 2l2 +  m 4a^ +  I2, 03 — m 3/ |  +  I 3, 04 =  m 4Z| +  J4, 95 = m 3a \h ,  06 = m 4a2li, 

07 =  (miZi +  m 3ai)g, 9$ =  (m 2l2 +  m 4a2)g, 9g = m 3l3g , and 0io — m 4l4g (g =  9.81 m / s 2) 

denote the  unknown param eters. T hen , D'(q '),  C '(q/,q '),  g'(q') and constraints <fi{q') can be 

expressed as follows:

D V )  =

C \ q ' , q ' )  =

d n 0 d l 3 0

0 d 22 0 d 2 4

d 3 1 0 d 3 3 0

0 d 4 2 0 d 44

C l l 0 C13 0

0 C22 0 C24

C31 0 0 0

0 C42 0 0

(2.3)

(2.4)

7
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</(<?'

07 cos(gi) +  09 cos(gi +  q3)

08 cos(gi) +  0io cos(gi +  q3)

09 cos(gx +  q3)

010 cos(q2 +  q4)

(2.5)

m  =
M g ' ) =  o (2 .6 )

where

dn  = 01 +  03 +  205 cos(g3)

d u  = 03 +  05 cos(g3)

022 =  02 +  04 +  206 COs((?4)

024 =  04 +  06 COs(g3)

031 =  013,033 =  03

042 =  024

044 =  04

c n  =  - 0 5  sm(q3)q3

C13 =  —05 sin(q,3)((j1 +  q3)

C22 =  -0 6  sin (q4)q4

C 24 =  —06 sin(q4 ) (q2 +  94)

c3i =  05 sin(g3)gi

c42 =  06 sin (q4) q2

<j>i{q') =  a iCOs(q i)  +  a 3 cos(qi  +  q3) -  c - a 2 cos(q2) -  a 4 cos (q2 +  q4)

<t>2(q') =  a i s i n ( g i ) + a 3 s in (g i+ © )  -  a 2 sin(g2) -  a4sin(g2 +  94)

It can be found th a t c^j —J2 \  ~  where A;, j  are from  1 to  4, thus t )  (qr) —
i= 1 '  * 3

2C  {q',q') is skew sym m etric.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Equations (2.1) and (2.2) are a set of differential algebraic equations (DAEs) in the  depen

dent generalized coordinates q’. The independent generalized coordinates q or active jo in ts  are 

related to  q' by:

Q =
91 1 0 0 0

92 0 1 0 0
(2.7)

In order to  obtain  a form ulation th a t is suitable for m odel-based control, a  reduced m odel in 

the independent generalized coordinates is derived following the  procedure given in [9] an d  is 

given below:

where:

D(q')

C W A ’)

<?(?')

D(q') q +C (q’,q,)q + g{q’) = u

q' =  p{q)q  

q' = a(q)

D u  D\2 

D 21 D 22

p(q' )  =

tpq'iq’) =

C n  C 12 

C 21 C 22

91

92

i ’ q' 11 

^ q ’21 

1 

0

=  p{q')T D' (q')p(q')

= P (q ')T C ' {q ', q ')p {q ')  +  p (q ')T D ' (q )p (q ')

p{q')T g \q ')

0 0 1 0

0 0 0 1

1 0 P 31 P 32

0 1 P 41 P 42

^ q 12 13 14

'tpq 22 ^ q '2 3  i ’q 24

0 0 0

1 0 0

(2 .8 )

(2.9)

(2 .10)

(2 .11)

(2 .12)

(2.13)

(2.14)

(2.15)

9
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M )  =

o o

0 0

P31 P32 

P41 P42

(2.16)

with

i>q’ 11 = - 0 1  sin(gi) -  a3 sin(gi +  q3)

Vym = a 2 sin(?2) +  a-4 sin(g2 +  94)

Vvi3 = - a 3 sin(<?i +  q3)

i ’q'li = a4 s in (52 +  94)

^q'21 ~ a i cos(gi) +  a3 cos(gi +  q3)

'i/’9,22 — —a 2 cos(g2) -  a4 cos(g2 +  q i)

^g'23 = 03 cos(gi +  q3)

V'g'24 — —a 4 cos (52 +  ^4)

It should be noted th a t D{q') — 2C (q ',q ')  is also skew sym m etric [9].

The elements D jk , Cjk and gj w ith  j ,  k =  1,2 in D (q ’), C(q',q')  and g{q') can be expressed 

as T>0jfc@, C0jk&  and gajQ  w ith

D 0jk  — 

Cojk 

9oj =  

0 =

D ojkl D ajk2 ■ ■ ■ D 0jkw

Cojkl C0jk2 ' ' ' CojkW 

Ooj 1 9oj2 ' " ‘ 9oj 10 

6\ 02 ■ ■ ■ 010 (2.17)

where

D o in  =  1

A>113 =  (1 +  p3i )2

10
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D 01U — fill

A>115 = 2 ( 1  +  P3 1 ) cos(g3)

D 0123 D 0 213 =  (1 +  P3l)P32

A>124 = D 0 214 =  (1 +  P42)P41

D q125 = -Do215 =  P32 C0 S(©)

D 0126 = -Do 216 — P41 cos(?4)

D q222 = 1

D 0223 = P32

D 0224 = ( 1  +  P42)2

D 0226 2 ( 1  +  P4 2 ) COs(q4)

Coll3 = (1 +  P3l)P31

Colli = P41P41

CollZ = h i  cos(q3) -  ( 1  +  p3i)qz sin (q3)

C0123 (1 +  P3l)P32

Col24 = P4lP42

Col25 P32 cos(g3) -  (gi +  q3)p32 s in (©)

Col2& = P4 i ? 2  sin(<?4)

Co213 = P3 2 P31

C0214 — ( 1  +  P42)P41

Co215 p32gi sin(g3)

Co216 = p41 cos(g4) -  (g2 +  ?4)p4i sin(g4)

C0223 = P3 2 P32

C0224 = (1 +  P42)P42

C*o226 = p42 cos(g4) -  (1 +  p42)<?4 sin(g4)

9oll cos(gi)

9ol9 = (1 + P 3 l ) cos(9l +  <73)

11
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9oiio =  P n  cos(q2 + qi) 

gQ 28 =  cos (q2)

So29 =  P32 cos(31 +  qz)

9o2W =  (1 +  P42) cos(g2 +  Qi)

and all th e  other elements are zero.

The dependent coordinates <73 and  q4 can be determ ined from the  geometric relationship 

which is not linear in term s of q\ and q2. T hus cr(q) in Eq. (2.10) is given by

4  =  cr(q) =

where

<7i =  Qi

0"2 =  92

<73 =  tan_1((/r + a 4 sin(g2 +  (?4))/(A +  a4Cos((?2 +  54)) —

<74 =  ± t a n - 1(\A 42 +  B 2 — C 2/C )  +  ta n _ 1(.B/A) — q2

with

.A — 2o4A

B  =  2a4/x

2 2 \  2 2C  — CI3 — ci  ̂ — A — fx

\  — a2 cos(g2) — a\ cos(gi) +  c 

9 , =  02 sin(g2) -  a i sin(gi)

It should be noted th a t the reduced m odel is an implicit model since the  param eterization 

q' = a(q)  is implicit, and it is only valid locally due to  the  presence of singularity.

T he param eter values for the parallel robot bu ilt for the experim ents are shown in Table

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2-1.The distance between the  two m otor shafts is c =  0.4240 m.

Table 2-1. Link P aram eters

Link i m  (kg) di (m) k  (m) l i  (kg-m2)

1 0.1950 0.4600 0.3367 4.567 x 10~ 3

2 0.1950 0.4600 0.3367 4.567 x 10“ 3

3 0.2538 0.4600 0.2400 8.626 x 10“ 3

4 0.2538 0.4600 0.2400 8.626 x 10“ 3

T he nominal values of the  unknown param eters, On , can be calculated based on Table 2-1 

as follows:

O n  = 0.0804 0.0804 0.0232 0.0232 0.0280 0.0280 1.7894 1.7894 0.5975 0.5975

(2.18)

2.2 Inverse K inem atics

The inverse kinem atics is needed to  ensure th a t the end effector can track different tra jecto ries 

in non-singular region. Let (x , y ) represent coordinates of the  end effector defined in Fig. 2- 

2 where the range of qi is defined from — ix to  -rr. Then, the link angles q\ , q i , qz, <74 can be 

determ ined by using the  inverse kinem atics. From  Fig. 2-2, the following equations can be 

obtained:

x  =
Q

a i  cos (q i)  +  a 3 cos (q i +  q3) -  - (2.19)

V = 01 sin (q i)  +  a 3 sin (q i +  q3) (2 .2 0 )

x  = a2 cos (q2) +  a 4 cos (q2 +  q4) +  ~ (2 .2 1 )

y  = a2 sin (q2) +  a4 sin (q2 +  q4) (2 .2 2 )

13
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►
cl 2 c l  2

Figure 2-2: T he coordinates defined for the  inverse kinem atics investigation.

Then the region of the possible positions of the end effector is shown in Fig. 2-3 and the  singular 

points are also shown in th is figure, which satisfy det \ ^ q, (q')j =  sin {q\ +  q% — — qn) =  0 .

Those trajectories in the  reachable region w ithout crossing or approaching the singular poin ts 

are possible to  be tracked, which m eans th a t qi + qs — — q± ^  nix w ith  an  integer n. T he

reachable region is shown in the shaded area A in Fig. 2-3.

W ith  the position of the  end effector known, the link angles qi can be determ ined by using

inverse kinem atics. As a  m atte r of fact, sum m ing the  squares of Eq. (2.19) and Eq. (2.20)

yields

( x  + 0  +  y 2 =  a? +  ajj +  2 a ia 3 cos (<73) (2.23)

Solving Eq. (2.23) for q% gives

, 3  =  ± c o s - l ( f e ± f ) l ± d v .4 .̂ l l  (2.24)

14
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(iu) 
A

Figure 2-3: The reachable region of the  end effector and the singular points. D otted  area  — 
reachable region, solid area —  singular region, shaded area A —  the region of interest.

15
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W ith the similar procedure, from Eq. (2.21) and Eq. (2.22), q4 can be obtained as

1 f  (x  — § ) 2 +  y 2 — an — a | \(  Sai l  ---)  <2'25)
Since qi and q2 are in [0 , 7r], sin (91) and sin (92) should be positive and determ ined by

sin (<7i) =  y j  1 -  cos2 (51) (2.26)

sin (q2) =  y / l -  cos2 (<72) (2.27)

Substitu te Eq. (2.26), Eq. (2.27) into Eq. (2.19), Eq. (2.21) separately and take square of b o th  

sides of th e  equations to  get

A 13 cos2 (qi) +  B 13 cos (<71) + Ciz — 0 (2.28)

A 24 cos2 (q2) +  B 24 cos (<72) +  C24 =  0 (2.29)

where

^ 1 3  =  a 2 +  a 3 +  2 a ia 3 cos (g3)

B iz  =  - 2  ( x +  0  (a i +  a 3 cos(<73))

C 13 =  ( x +  0  — &3 sin2 (173)

A 24 — a \  +  a 2 +  2a 2a4 cos (<74)

-B24 =  —2 — 0  (a2 +  a 4 cos (<74))

C 24 =  - a 4 sin2 (94)

Finally solving Eq. (2.28) and  (2.29) for q\ and q2 produces

, ( - B i z  ±  \JB iz  -  4-Ai3C i3\
51 = cos"  ^   (2-30)

, / - B 24 ±  y j f ? 24 ~  4 A 2 4 C 2 4  \

52 =  2^ ------------  (2'31)

16
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Chapter 3

Adaptive Set Point Control

3.1 Controller D esign

3.1.1 A d ap tive  B ackstepp ing C ontroller D esig n

In order to  form ulate Eq. (2.8) into a form suitable for set point control using the  adaptive 

backstepping technique, assign x\ = q\ — qf, X2 = qi — q$, x 3 =  <Zl> x i  — Q2 w ith  q f  and qf  being 

the desired angles for q\ and q2, respectively. Let 0  be th e  estim ation of 0 .  A lower triangu lar 

form is obtained as:

Xi

x 2

x 3

X4

D{q')
X 3

X\
u - C q -  g{q')

(3.1)

(3.2)

(3.3)

Following the  backstepping design procedure, first, choose th e  Lyapunov function candidate:

^ 1 =  + o * 2 (3.4)

By introducing virtual controllers: a \  =  —c \x \ ,  a.2 =  —C2X2 , where ci and C2 are positive

17
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numbers, V\ can be rew ritten  into:

Vi=  - C i x \  -  c2x \  +  X i ( x 5 -  cci) +  x 2(x4 -  a 2) 

Now, choose th e  Lyapunov function candidate:

V2 = Vx +
1

- - T - -
£3 -  a \

D
X3 -  a x

X4 — n 2 x 4 — OL2
+  I ( © _ 0 ) T r ( 0 _ 0 (3.5)

where F =diag 7 i 72 7io is a positive definite m atrix. Note th a t D  is positive

definite. D ifferentiating V2 w ith  respect to  tim e yields:

V2 — - c i x l  -  c2x \  +  x i(x 3 -  a i )  +  x 2 (x4 -  a 2)
- - T - - - - T ■ -

+
X3 -  a x

D
X3 -  h i 1

+  n
X3 -  a i

D
X3 -  ax

X4 — Oi2 x 4 — a 2 Z X4 — a 2 x 4 — a 2
. T

-©  r (© -e ) (3.6)

As pointed out in [9], the m atrix  D  — 2C  is skew sym m etric. As a result, we can have:

x3 -  a i
T

(^ (< 2 0 -2 6 7 (^ ,9 0 )
X3 -  ax

x 4 -  a 2 x4 — a 2
=  0 (3.7)

Substituting (3.3), (2.17) and (3.7) into (3.6) yields:

V2 =  - c xx \  -  c2x \  +

- - T / -
\

+  A
X3 -  a i

u  +
Xi

x4 — a 2 ( x -1 /

. T
0 r  (0 -  e) (3.

where A =  Ao0  w ith

A„ =  -
Ai D 0n +  d 2 D 012 +  ctiCoii +  a 2Coi2 +  9oi 

Ai -Do2i+  q2 Do22 +  a\Co2\ + a2Co22 + g02
(3.9)

18
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Apparently, if the  controller is chosen to be:

Ui C3 (£3 -  Oil) +  £1

U2 c4 (£4  -  a 2) +  £2
A o - 0 (3.10)

and the  unknown param eters’ updating law is chosen to  be:

0 = r _1A, x 3 -  a i  

£4 — a 2
(3.11)

where C3 and C4 are positive numbers, the derivative of V2 is negative semi-definite, th a t is,

V2 = - c i x f  -  c2£ 2 -  C3(£3 -  a i ) 2 -  c4 (£ 4 -  a 2)2 (3-12)

which means th a t the  corresponding closed-loop system  is stable.

T he corresponding non-adaptive controller based on backstepping technique, nam ely BS, 

can be obtained by letting  0  =  0 , thus the control effort u  satisfy

u ■
Ul c3 (£3  -  a i )  +  £1

u 2 c4 (£4  -  a 2) +  £ 2
- A

3.1 .2  A d ap tive  P D  C ontroller D esign

I t is worthwhile comparing the  controller of Eq. (3.10) w ith  an  adaptive PD  controller. Choose 

the Lyapunov function candidate:

V  = \ ( q ~  K p (q -  qd) +  \ q T Dq + ± (& pd -  Opd) T r pd (© pd -  Qpd) (3.13)

w ith positive definite m atrices K p = d iag hp\ kp2 and Tpd =d iag ^fpdl 'Ypd2

and Qpd 03 ?io . D ifferentiating V  w ith  respect to  tim e yields:

. T

v  =  ( q -  qd)  K P<i +  T Pd ( ® Pd -  <=w ) (3.14)

19
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According to  [9] D  — 2C is skew sym m etric, and  D  is sym m etric. So we can get:

(3.15)

Substitu te (3.3), (2.17) and (3.15) into (3.14) to  get:

. T

v  =  [q -  qd) k pQ +  qT [u +  Apd] -  Qpd Tpd (Qpd -  Qpd

<?2 (Co21  — C 0 I2 ) — gQ 1

Ql(Col2 ~  C021) — 9 o 2 

Apparently, if the controller is chosen to  be:

where Apd = ApdoQpd w ith A pdo =  \

u —
m

U2
— Ai,, • c[ K p iq (id) Apdo ' Qpd

and the unknown param eters’ updating  law is chosen to  be:

(3.16)

(3.17)

Qpd ^pd ~̂pdo9

where K v =  diag 

semi-definite, i.e.,

kyl

(3.18)

is a positive definite m atrix , the derivative of V  is negative

V  = - q  K vq (3.19)

which m eans th a t the corresponding closed-loop system  is stable.

The corresponding non-adaptive P D  controller w ith  com pensation term s, nam ely PD , can 

also be gained by letting Qpd — Qpd, thus the  control effort u  satisfy

u =
u 1 

U2
K v ' Q Ap (^ qd) Apd

It is worthwhile to note th a t  the dim ension of Qpd is two less th an  th a t of 0 ,  so the adaptive 

PD  controller needs two less unknown param eter estim ators th an  the adaptive backstepping 

controller. As a result, the adaptive P D  controller is less complex and needs less com putation

20
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77  7 7 7 7  7~T7~7 77 7“7"7 / 77 ' 7 / 7  7 / 7 / 7  7 /  7

Configuration 1: Configuration 2:
ql=90° q2=90° ql=150° q2=160P
q3=-27° q4=27° q3=-96° q4-55°

Figure 3-1: Configurations 1 and  2

tim e th an  the adaptive backstepping controller.

3.2 Sim ulation R esu lts

Fig. 3-1 shows two configurations of the robot. I t is not difficult to  check when the robot moves 

from configuration one to  configuration two and back to  configuration, the robot does not enter 

singularity region. Sim ulation on controlling the robot from configuration one to configuration 

two and back to  configuration one is carried out.

The initial values of the  unknown param eters 0  for set point control based on adaptive 

backstepping are set to

0 (0 )  = 0.1 0.1 0.1 0.1 0.1 0.1 1 1 1 1

instead of its nom inal value 0 n while Qpd (0 ) is given by

Qpd (0) 0.1 0.1 0.1 0.1 1 1 1 1

21
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instead of its nom inal value

0.0232 0.0232 0.0280 0.0280 1.7894 1.7894 0.5975 0.5975

Fig. 3-2 to  Fig. 3-4 show the sim ulation results for the  adaptive backstepping controller 

w ith 7 j =  30, i — 1 to  7, j 8 — 60, j 9 — 150, and  7 10 =  150. T he gains ci, C2 , C3, C4 are ad justed  

by tria l and error in order to  ob tain  b e tte r control perform ances.

Case 1: Fig. 3-2 shows the  results w ith gains of ci, C2 =  3 and 03,04  =  10.

Case 2 : Fig. 3-3 shows the  results w ith  gains of ci, 02 =  30 and 03, 04 =  1.

Case 3: Fig. 3-4 shows th e  results w ith  gains of ci, 02 =  2.1 and 03, 04 =  7.2.

The adaptive PD  controller is sim ulated w ith  7 pdi =  10, i =  1 to  8 . The gains kPi, kVi, i =  1, 2

are selected according to  a standard  second order system  characteristics, th a t is, kpi =  and 

kvi =  2(u)n where (  is the  dam ping ra tio  and ton is the  na tu ra l frequency.

Case 1: Fig. 3-5 shows th e  results w ith gains of kpi =  31 kvi =  10, i =  1 , 2 .

Case 2: Fig. 3-6 shows th e  results w ith  gains of kpi — 31 kvi = l , i  — 1,2.

Case 3: Fig. 3-7 shows th e  results w ith  gains of kpi =  16 kvi — 7.2, i =  1,2.

I t is not difficult to  see th a t for b o th  adaptive controllers Case 2 is much more underdam ping 

th an  Case 1, which results in obvious oscillations during the transien t process even though the  

response is much quicker th a n  other two cases. For each case the  steady sta te  errors are 

listed in Table 3-1 corresponding to  the  movements from Configuration 1 to  2 (downward), and 

Configuration 2 to  1 (upward), respectively, in which ABS stands for adaptive backstepping 

controller, and APD represents adaptive PD  controller. I t can be seen th a t there exist larger 

steady sta te  errors in Case 3 for bo th  controllers due to  sm aller proportional gains. In sum m ary, 

the controller gains provided in Case 1 produce the  best control performances.

22
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Table 3-1 Steady S ta te  E rror For Downward (D) and Upward (U) Movement

9i 92

Movement Case Num ber ABS APD ABS APD

D 1 -1.400 -1 .5 0 9 -1.128 -1 .2 9 0

D 2 -1 .0 0 2 -1 .509 -1 .0 0 4 -1 .2 9 0

D 3 -2.697 -2.528 -2.169 -2.528

U 1 0 .386 0 .389 -0 .3 8 6 -0 .3 8 8

u 2 0.393 0.389 -0.394 -0 .3 8 8

u 3 0.746 0.758 -0.746 -0.757
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Chapter 4

Adaptive Tracking Control

4.1 Controller D esign

In this section, two adaptive controllers are designed: adaptive backstepping controller and 

adaptive PD controller, to  achieve the  tracking control. Each controller consists of a control 

law and an update  law for the param eter estim ation.

4 .1 .1  A dap tive B ack step p in g  C ontroller D esign

In order to  change Eq. (2.8) into a form suitable for tracking control using the non-adaptive 

backstepping technique, set x \  — qi — qf, = Q2 — qf, x3 — Qi ~ Qi, x i  = 92 ~ qf w ith  qf,  

qf  being the desired angles of q\, 92, qf, qf  being the desired angular velocities of q\, 52 , qf,  

qf  being the desired angular accelerations of qi, q2 , respectively. A lower triangular form  is 

obtained as:

Xi

x 2

x 3

£4

± 3
=  D  1 (q) ( u - C  (q1, q ' ) q - g  (</)) ~

1
:

1

±4 Q2

(4.1)

(4.2)

(4.3)

Based on the  lower triangular form shown by Eqs. (4.1), (4.2), and (4.3), and following the
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backstepping design procedure, first, choose the Lyapunov function candidate:

( 4 .4 )

By introducing virtual controllers: a>i =  —c i£ i,  02  =  —C2X2 , where ci and C2 are positive 

num bers,V\ can be rew ritten into:

V i= —c \x \  -  c2X2 +  x \  (x 3 -  a i )  +  X2 (x4 -  0 2 ) (4.5)

Let 0  be the estim ation of 0 ,  and choose the  second Lyapunov function candidate:

- T -

1 x 3 -  ai
D W )

x 3 -  « i
V2 =  Vx +  -

X4 — Q2 x 4 — a  2
+ i ( 0 - 0 ) T r ( 0 - 0 )  (4.6)

where T  =diag 7 i  7 2 7 io is a positive definite m atrix  w ith design param eters 7 ,, 

i =  1, ..., 10. Note th a t D  (q') is positive definite. D ifferentiating V2 w ith  respect to  tim e 

yields:

V 2 =  — C \ x \  -  C 2x \  +  X \  (X3  -  a i )  +  X2 (x4 — CX2)
- T - - T -

£ 3  -  a i
D ( V  ')

£3 -  OL1 1 £ 3  -  a  1 £ 3  -  Oil
+ +  2 d  W ,q ' )

£ 4  — 0 2 £ 4  ~  &2 £4 — 0:2 £4 -  «2
. T

- 0  r ( © - e )

According to [9] the m atrix  D  — 2C  is skew sym m etric, we have:

(4.7)

£3 -  a i
T

( D ( q' , q ' ) - 2 C ( q l,q1))
£3 -  « l

=  0
£4 — 012 £4  -  C*2

(4.8)

S ubstitu ting (2.17), (4.3) and (4.8) into (4.7) yields:

- T ( -
\

-TV 9 9 £3 -  Oil [ £1
V 2= - C XXX -  c2£ 2 + u  + +  A

£4 — OL2 V X2 /

. T

0  r  (©  -  ©) (4.9)
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where A — Ao0  w ith

A„ =  —
°h + 9 i)  -Doll +  ^ 2  + 92) -D012 +  (ou 4- q f j  Coll +  {®-2 +  q£) C0i2 +  9 o i  

h i  + g ’i )  -Do21 +  (<T2 + O 2 )  D o22  +  ( » 1  +  q f j  C o 21 +  ^ 0 2  +  9 2 )  C o 2 2  +  9 o 2

(4.10)

Apparently, if th e  controller is chosen to  be:

u  =
Ul c3 (x3 -  m )  +  XI

U2 c4 (x4 -  a 2) +  x 2
— A0 • 0 (4.11)

and the unknown param eters’ updating  law is chosen to  be:

0= r _1A1  A  T x 3 -  a i  

£4 — a.2
(4.12)

where C3 and C4 are positive num bers, the derivative of V2 is negative semi-definite, th a t  is,

V 2= - c i x l  -  c2x 2 -  c3 (x3 -  on)2 -  C4 (x4 -  a 2y (4.13)

which means th a t the corresponding closed-loop system  is stable.

The corresponding non-adaptive controller based on backstepping technique can be obtained 

by letting 0  =  0 , thus the control effort u  satisfy

-Ui c3 (x3 -  a i )  +  x \

u 2 c4 (x4 -  a 2) +  x 2
- A

4.1 .2  A daptive P D  C ontroller D esign

It is worthwhile com paring the  controller of (4.11) w ith  an  adaptive PD  controller. Choose the 

Lyapunov function candidate:

V  = K p (<* -  3d)  +  \  (9 -  9 d f  D  (<i ) (q -  qd) +  i  (©  -  © )T Tpd (© -  ©) (4.14)
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w ith  positive definite m atrices K p = d iag  

ferentiating V  w ith  respect to  tim e yields:

kp\ kp2 and Tpd =d iag Tpdl " ’ ' TpdlO Dif-

V  =  K p { q - q d) + ^ ( q - q d)T b { q ' , q ' ) { q - q d) + { q - q d)T D ( q ' ) { q - - q d)

. T

- 0  rpd ( e  -  e )

According to [9] D  — 2C is skew sym m etric. T hus we can get:

\ { < l -  <id)T (£> (q ,  q') -  2 C  (q', q ') j  (q -  qd) =  0 

Substitu te (2.17), (4.3) and (4.16) into (4.15) to  get:

. T

(q -  qd) T K p (q -  qd) +  (q -  qd)T  (u +  Apd) -  0  Tpd (©  -  0

where Apd = A pdo@, w ith =  -pdo
q f D oll +  q^Dou  +  q fC 0n  +  q^CoU +  Pol

q f D 02l +  Q2-Do22 +  qfCo 21 +  q2,Co22 +  9o2 
Apparently, if the controller is chosen to  be:

u =
u  i 

U2
=  ~ K V • (q Kp  (q qd) Apdo ■ 0

and the  unknown param eters’ updating  law is chosen to  be:

© =  r Pd Apdo (q ~  Qd)

where K v =  diag 

semi-definite, i.e.,

kv\ ky2

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

is a positive definite m atrix , the  derivative of V  is negative

V = - ( q - q d)T K v ( q - q d) (4.20)

which means th a t the corresponding closed-loop system  is stable.

The corresponding non-adaptive PD  controller, can also be gained by letting 0  =  0 ,  thus
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the  control effort u  satisfy

Ui

U2
=  - K v ■ (q -  qd) -  K p (q -  qd) -  Apd

4.2 Sim ulation R esu lts

T he two controllers ABS and A PD were com pared for tracking control by sim ulations. The 

desired trajectories to  be tracked are circle, line, and square. T he initial values of the  unknown 

param eters 0  are set to  0  (0 )

0 (0 ) 0.1 0.1 0.1 0.1 0.1 0.1 1 1 1 1

which are determ ined by introducing some deviations around th e  nom inal values 0 „ in (2.18). 

Those non-adaptive controllers, BS and PD , perform  similarly to  ABS and APD, which are not 

shown in the thesis any more.

4.2 .1  C ircle Tracking

For the circular trajectory , the tracking speed is specified by the  angular velocity 2 n f  w ith  which 

the  end effector is ro ta ting  about the  center of the  circle, where /  is the  tracking frequency of 

the  end effector. T he desired circle is centered a t (0, 0.85 — r) based on the coordinates defined 

in Fig. 2-2, where r  is the radius of the  circle. I t  can be checked th a t  this circle does not contain 

any singular points and the area encompassed by the  circle is a t least 5 centim eters away from 

th e  singular region.

Fig. 4-1 to  Fig. 4-6 show the results of tracking  a circle w ith  r  =  0.2 m  and /  =  0.2 H z  

based on the ABS controller w ith different gains c*, i — 1 to  4.

Case 1: Fig. 4-1 and Fig. 4-4 show the  results w ith  gains of ci, C2 =  20 and C3 , C4 =  80.

Case 2: Fig. 4-2 and Fig. 4-5 show th e  results w ith  gains of 0 1 , 0 2  =  50 and 03 ,  04 =  32.

Case 3: Fig. 4-3 and Fig. 4-6 show th e  results w ith  gains of ci, 02 =  10 and 03 ,  04 =  40.

Similar to  set po int control, the gains for the  adaptive PD  controller are also selected based

on the  standard  second order system  characteristics, th a t  is, kpi =  and kvi =  2 ( u n .
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Case 1: Fig. 4-7 and Fig. 4-10 show the results w ith  gains of k ^  — 1600, kvi =  80, i  =  1, 2.

Case 2: Fig. 4-8 and Fig. 4-11 show the  results w ith  gains of kpi =  1600, kVi =  32, i  =  1,2.

Case 3: Fig. 4-9 and Fig. 4-12 show the results w ith  gains of kpi =  400, kvi =  40, i =  1,2.

By comparing Fig. 4-1, Fig. 4-2, and Fig. 4-3, it can be seen th a t  the errors at the b o tto m  

of the circles in Case 2 are smaller th an  the o ther two cases, b u t the  errors at the top  of the 

circle are larger th a n  Case 1 when the ABS controller is applied. Moreover, it follows from 

Fig. 4-7, Fig. 4-8, and Fig. 4-9 th a t for the adaptive PD  controller, there are no noticeable 

differences between Case 1 and Case 2, b u t th e  errors in Case 3 is bigger th an  other cases.

T he average 2-norm values of th e  tracking errors based on different controllers are listed  in 

Table 4-1. It is seen th a t there exist larger errors in Case 3 for b o th  controllers due to  sm aller 

gains. The best scenario is given by Case 1.

Table 4-1 Average 2-Norm of Tracking E rro r Based O n ABS and APD

qi (degree) q2 (degree)

ABS APD ABS APD

Case 1 0 .8 6 4 x l0 -3 0 .6 2 3 x  10-3 1 .3 0 4 x  10-3 0 .6 1 8 x l0 ~ 3

Case 2 1 .6 0 8 x l0 -3 1.072 x K T 3 2.352x 10-3 1.066 x l0 “ 3

Case 3 2 .9 9 1 x l0 “ 3 3.149x 10-3 5 .1 0 4 x K T 3 3 .101xK T 3
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Figure 4-1: The end effector tra jec to ry  of tracking a circular tra jec to ry  in  Case 1 based on the 
ABS in simulation. Dashed line —  the desired, solid line — the actual.
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Figure 4-2: The end effector tra jecto ry  of tracking a circular tra jecto ry  in Case 2 based on the 
ABS in simulation. D ashed line — the desired, solid line —  the actual.
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Figure 4-3: The end effector tra jec to ry  of tracking a circular tra jecto ry  in Case 3 based on the 
ABS in simulation. Dashed line — the desired, solid line —  the actual.
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Figure 4-7: The end effector tra jec to ry  of tracking a circular tra jecto ry  in Case 1 based on the  
APD in simulation. D ashed line —  the desired, solid line —  the actual.
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Figure 4-8: The end effector trajectory  of tracking a circular tra jecto ry  in Case 2 based on the  
APD in simulation. Dashed line — th e  desired, solid line —  the actual.
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Figure 4-9: The end effector tra jec to ry  of tracking a circular tra jec to ry  in Case 3 based on the  
APD in simulation. Dashed line —  th e  desired, solid line —  the actual.
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4.2 .2  Line Tracking

For line tracking, the desired linear tra jec to ry  is from (—0.312,0.7) to  (0.288,0.7) based on the 

coordinates defined in Fig. 2-2 and the  desired tracking speed is 0.1 m /s .  It can be checked 

th a t this line does not contain any singular points and is a t least 35 centim eters away from the 

singular region. Fig. 4-13 shows line tracking by the  adaptive backstepping controller while 

Fig. 4-14 is for the  adaptive PD  controller. T he sim ulation results show th a t  ABS perform s as 

well as APD.
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Figure 4-13: T he sim ulation results for tracking a line based on the  ABS. (a) q\, (b) q2 , (c) 
dqi/d t,  (d) dqi/d t,  (e) V ai, and (f) Va.2 -
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4 .2 .3  Square Tracking

For square tracking, the  four apexes are a t (—0.1,0.6), (0.1,0.6), (0.1, 0.8) and (—0.1,0.8) based 

on the coordinates defined in Fig. 2-2, and the desired tracking speed is 0.1 m / s .  I t can be 

checked th a t  this square does not contain any singular points and the area encircled by this 

square is at least 25 centim eters away from the singular region. Fig. 4-15 to  Fig. 4-16 show 

the  results based on the  ABS while Fig. 4-17 to  Fig. 4-18 show the results based on the  A PD. 

T he sim ulation results show th a t ABS perform s as well as APD.

0 .9 -------------1-------------1-------------1-------------1-------------1-------------1-------------1------------ -

0.85 -

0.8  -

0.75 -

0.65 -

0.6  -
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q  5 ________________ i________________ i________________ i________________ i________________ i________________ i________________ i________________

-0 .2  -0 .15 -0.1 -0 .05 0 0.05 0.1 0.15 0.2
x (m)

Figure 4-15: T he end effector tra jec to ry  of tracking a square tra jec to ry  based on the ABS in 
simulation. Dashed line — the desired, solid line —  the actual.
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Chapter 5

Controller Im plem entation and 

Experim ental R esults

5.1 Experim ental Setup

Fig. 5-1 shows a photo of a p lanar 2-DOF parallel robot bu ilt for th e  purpose of this study. 

Links 1 and 2 are driven by two direct current (DC) gear head m otors, respectively, and  links 

3 and 4 are not actuated . T he parallel robot is controlled by a com puter-based control system.

The com puter control system  is composed of four m ain parts: the  com puter, two d a ta  

requisition (DAQ) boards, two m otor drivers, and two DC m otors. T he Pentium  III personal 

com puter is used for reading the pulses from the encoder th rough  two analog low pass filters and 

DAQ boards, com puting control signals, and sending control signals th rough  DAQ boards to 

m otor drivers to  control the two DC m otors. The DAQ boards (PCI-6024E and PCI-M IO-16E, 

NI) act as interface between the com puter and the m otor drivers and  encoders. T he m otor 

driver is built w ith the  H-Bridge circuit for converting PW M  signals from the DAQ boards 

to  arm ature voltages. The two gear head DC m otors are driven by two H-Bridge circuits 

on the m otor drivers and the  optical encoders built in DC m otors provide angular position 

m easurem ents of links 1 and 2. T he m otors are m ade by Kollm orgen M otion Technologies 

Group. The gear ra tio  is 99 : 1 and the  peak torque is 17.1 N-m. T he optical encoders of the 

m otors has the  resolution of 1000 pulses per revolution. The values of the link param eters are 

given in Table 2-1. The distance between the  shafts of the m otors is c =  0.4240 m.
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Figure 5-1: P ho to  of the 2-DOF robot.
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Angular velocities of links 1 and 2 are calculated digitally based on the position m easure

ments. A digital low pass filter is used for the  velocity calculation, which is given by:

Vk+1 =  (Pk+1 -  Pk +  TVk)/{T  +  T ) (5.1)

where vk and vk+i are the  angular velocities a t the  sam pling instan ts k  and k + 1, p k and  Pk+i 

are the angle m easurem ents of the links a t th e  sam pling instan ts k and k  +  1, respectively, T  is 

the sampling period, and r  is the tim e constan t set to  0.1.

As for experim ents, the  control inpu ts are not to rque applied to  th e  joints. T he direct 

control inputs are the arm ature voltages of the  DC m otors. Therefore, in order to  im plem ent 

the  designed controllers in term s of m otor torque, th e  com puted torque is converted in to  the 

arm ature voltages of the DC motors. T he conversion formula is given as follows:

C1 K
Ui = - ^ { V a i - K eG u i ) , i  = l , 2  (5.2)

where rq is the torque applied by the m otor, Vai is the  arm atu re  voltage, G — 99 is th e  gear 

ra tio  of the m otor, K t =  0.02282 N  ■ m / A m p  is the torque constant, K e =  0.02282 V /  (rad /s)  

is the back electromotive force (EM F) constan t, R  =  0.640 O h m s  is the  arm ature resistance, 

and u>i is the angular velocity of the gear shaft. T he m axim um  voltage of the driver b o ard  is 

15 volts.

In  the experim ent, a  sampling period of 0.8 millisecond was used. In  each sam pling period, 

the com puter obtains the  current positions and velocities of links 1 and 2, calculates th e  arm a

tu re  voltages in term s of duty  cycles of th e  PW M  signals, and sends the PW M  signals to  the 

driver boards to  control the DC motors.

To com pensate the effect of backlash between gears in the two m otors, a voltage com pen

sation is applied in the experiments. W hen the  com puted arm ature voltage is larger th a n  0.01 

volts, the arm ature voltage used in experim ent is increased by 0.05 for m otor 1 and  0.35 for 

m otor 2; when the com puted arm ature voltage is less th a n  —0.01 volts, the arm atu re  voltage 

used in experim ent is increased by —0.65 for b o th  motors.
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5.2 Experim ental R esu lts for Set P oin t Control

Recall Fig. 3-1 which shows two configurations of the robot. T he robo t moves from configura

tion  one to  configuration two (downward) and back to  configuration one (upw ard).

In the set point control experim ents, for the  ABS controller, the  in itial values of the unknown 

param eters 0  are set to

0 ( 0 ) =  0.08 0.08 0.02 0.02 0.03 0.03 1.8 1.8 0.6 0.6

and for the A PD  control, the  initial values of the  unknown param eters Qpd are set to

0 Pd ( O ) =  0.02 0.02 0.03 0.03 1.8 1.8 0.6 0.6

To tes t the adaptab ility  of bo th  adaptive controllers, a 100 gram  load was attached  to  the 

end effector of the  parallel robot.

Fig. 5-2 to  Fig. 5-5 show the experim ental results of the  ABS controller w ith c\ =  3, C2 =  3, 

C3 =  10, C4 =  10, 7 j =  30, i =  1 to  7, y 8 =  60, j 9 =  150, and 7 10 =  150 and  the APD controller 

w ith  the  controller param eters kpi =  35, kp 2 — 35, kvi =  11, kv2 =  11, and 7pdi =  10, i =  1 

to  8, respectively. The set point control is also im plem ented based on non-adaptive controller 

based on backstepping technique and PD  plus gravity, and the Coriolis and centrifugal term s 

com pensation. T he same Ci (i — 1 to  4) , kpj,  and kvj,  (j  =  1 to  2) are used for non-adaptive 

controllers.

Fig. 5-2 to  Fig. 5-3 and Fig. 5-4 to  Fig. 5-5 are the  results w ithout and w ith load based 

on adaptive controllers, respectively. It can be seen th a t  w hen there is a  change in the system  

param eters caused by the  load change, b o th  adaptive controllers can  achieve no more th an  

1.5° steady s ta te  errors. The steady s ta te  errors and the  average steady  sta te  error for each 

movement and each controller, ABS BS A PD  and PD , are listed in Table 5.1 and Table 5.2 

separately.. W hen there is an  additional load attached  to  the  end effector, adaptive controllers 

can achieve less steady sta te  errors th an  those non-adaptive controllers.
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Table 5-1 Steady S ta te  E rro r For Set Point Control

q\ (degree) q2 (degree)

M ovement /  load (g) ABS BS A PD PD ABS BS A PD PD

D ow nw ard/ 0 0.7924 0.8360 0.2215 0.6767 0.9269 0.8360 0.6860 0.9014

Upward /  0 0.4111 0.1598 0.3771 0.1420 0.1420 0.1893 0.1125 0.2934

D ow nw ard/ 100 0.1858 1.0804 1.4840 1.9676 0.0913 0.8614 0.0695 0.0978

U pw ard / 100 0.6402 3.2184 0.7675 0.9929 0.1161 0.1925 0.5416 0.4725

Table 5-2 Average Steady S ta te  E rro r For Set Point Control

Average E rrors (degree)

Movement /  load (g) ABS BS APD PD

Downward/ 0 0.8597 0.8360 0.4538 0.7891

Upward /  0 0.2766 0.1746 0.2398 0.2182

Downward/ 100 0.1386 0.9709 0.7768 1.0327

U pw ard/ 100 0.3782 1.7055 0.6546 0.7327
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5.3 E xperim ental R esu lts for Tracking Control

The four controllers were im plem ented for tracking control, the ABS, the  BS, the  A PD , and 

the PD. The desired trajectories to  be tracked are circle, line, and square. T he controller 

param eters are chosen as follows. For th e  ABS and the BS, ci =  20, C2 =  20, C3 =  80, and  

C4 =  80. For th e  A PD  and th e  PD , kp 1 =  1600, kp2 =  1600, kv\ — 80, and kv2 =  80. For the  

adaptive controllers (ABS and A PD ), j i — 30, i =  1 to  7, j 8 =  60, 79 =  150, and 7 10 =  150. 

In the tracking control experim ents, the  in itial values of the unknown param eters 0  are set to

© ( 0 ) =  0.08 0.08 0.02 0.02 0.03 0.03 1.8 1.8 0.6 0.6

To test the adaptab ility  of th e  adaptive controllers, some loads were attached  to  the  end effector. 

5.3.1 C ircle Tracking

For circle tracking, the desired circle placem ent and desired tracking speed used here are the 

same as in Section 4.2. Four radii were used: r  =  0.05, 0.1, 0.15, and 0.2 m ,  and th ree tracking 

frequencies were tested: /  =  0.05, 0.1, and 0.2 H z .  It can be checked th a t  these circles do not 

contain any singular points and the areas encompassed by the  circles are a t least 5 centim eters 

away from the  singular region. T he following four sets of experim ental results are shown in 

figures, in which the load attached  to  the  end effector is 100 g.

Case 1: Fig. 5-6 to  Fig. 5-9 show th e  tracking results for the circle w ith r =  0.05 and 

/  — 0.05.

Case 2: Fig. 5-10 to  Fig. 5-13 give the  results for tracking a circle w ith  r  =  0.2 and /  =  0.05.

Case 3, Fig. 5-14 to  Fig. 5-17 dem onstrate circle tracking w ith r — 0.05 and /  =  0.2.

Case 4: Fig. 5-18 to  Fig. 5-21 exhibit th e  tracking perform ance w ith  the  circle of r — 0.2 

and /  =  0 .2 .

From these figures, it is not difficult to  see th a t the tracking errors increase w ith  larger 

radius or higher tracking frequency.

The norms of the  tracking circle errors and the  average of the tracking errors’ norm s w ith  

various radii, frequencies and loads are given in Table 5-3 to  Table 5-8. For each radius and 

frequency the errors are given in the following order, no load, 100 g load, 161 g load and 261
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g load. From Tables 5-3 to  5-8, it is hard  to  see which controller gives b e tte r  perform ance and  

there is not significant difference between no load test and w ith  load tes t when tracking circles 

w ith small radii or a t low tracking frequency However the advantages of adaptive controllers 

are obvious in tracking a large circle and at high tracking speed, especially when there is a  load 

attached to the end effector. C om paring the  results of the adaptive controllers w ith those of 

non-adaptive controllers, the  sm aller tracking errors are shown in bold format.

Adaptive controllers need much m ore tim e to  calculate the  control effort, which will resu lt 

in negative influence in the  experim ental results, especially for small circles and low track ing  

speeds in no load test. W hen the radii of the desired circle and the tracking speed increase, the  

advantages of adaptive controllers are obvious in the load test. T he sm aller tracking errors can 

be achieved by adaptive controllers when there is a heavier additional load a ttached  to th e  end  

effector, especially when th e  parallel robot intends to  track a circle w ith  large radius and high 

frequency. Comparing the  results from load tes t w ith  the  results from no load test, the  norm s 

of tracking errors of adaptive controllers increase less th an  those of non-adaptive controllers.
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Figure 5-13: The tracking error of q\ and q<i for the circular tra jec to ry  in Case 2 w ith load: 
(a) q id  — q i based on the  ABS, (b) q id  — q i based on the BS, (c) qid  — q i based on the  APD , 
(d) qid ~  qi based on the  PD , (e) q<id — <72 based on the  ABS, (f) q<id ~  <72 based on th e  BS, (g) 
Q2d “  <72 based on the  APD, and (h) q2d — <?2 based on the PD.
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Table 5-3. The Norms of Tracking Circle E rrors

a t /  =  0.05 H z  w ith  Different Controllers and  Circle Radii

f—0.05 Hz qi (degree) q2 (degree)

r(m ) /  load(g) ABS BS APD PD ABS BS APD PD

0.05 /  0 9 .6 7 7 3 10.1668 8 .9 8 2 6 9.5528 12.817 12 .3 4 2 0 12.5900 12 .4275

0.05 /  100 11.4879 1 0 .6450 11.1612 10 .7253 16.9555 16 .0715 16.2636 17.0593

0.05 /  161 12.5090 1 1 .9298 12 .4440 12.6267 17.6126 16 .8336 18.8909 17 .7 4 3 8

0.05 /  261 13 .4038 14.0760 14.5037 14 .1142 20.9580 19 .7260 22.4735 19 .6430

0.1 /  0 14 .2549 14.9761 1 3 .8 0 9 7 14.3092 17.4950 17 .3841 17.7268 17 .3 2 0 0

0.1 /  100 16.7974 16 .4818 16 .6078 16.6197 23.7062 22 .5 9 6 8 22.6431 23.7274

0.1 /  161 17.9706 1 7 .3125 17.9917 17 .8787 24.3977 2 4 .3 0 3 6 26.3363 2 5 .3 8 5 5

0.1 /  261 20.3599 1 9 .9698 20.7737 20 .7043 29.8095 28 .4 1 5 5 31.7409 2 8 .2 7 0 3

0.15 /  0 19.3585 19 .1693 18 .6362 19.9475 21.5342 2 1 .3 6 0 4 21.9035 2 1 .7 6 6 5

0.15 /  100 21.7893 2 1 .4 4 2 4 21.2988 21 .1773 29.9689 2 8 .4 1 8 4 28.5961 29.1667

0.15 /  161 23.4758 2 2 .8 1 4 0 23.3992 2 3 .2 5 1 7 31.8915 3 1 .0 5 7 7 34.3338 3 2 .7 3 4 4

0.15 /  261 26.0329 2 5 .5 3 7 9 2 5 .8343 25.9281 39.5663 3 7 .4 6 4 3 42.4979 3 7 .5 1 7 4

0.2 /  0 25.3285 25 .2606 24 .2149 26.1350 24.7362 2 3 .2 5 3 7 24.4715 2 4 .2 3 7 8

0.2 /  100 27 .1548 27.5782 27 .4 4 4 6 28.0907 33.6891 3 3 .3 1 0 9 33 .3480 33.4573

0.2 /  161 29.5642 29 .0 6 7 0 29.1630 29 .0 9 5 7 39.9839 3 6 .2 2 5 4 37 .0543 37.5631

0.2 /  261 31.7791 32.1678 32 .5090 33.2724 44.6722 4 1 .8 6 2 4 45.2928 4 3 .7 6 6 5
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Table 5-4. The Average Norm s of Tracking Circle Errors

a t /  =  0.05 H z  w ith  Different C ontrollers and Circle Radii

f—0.05 Hz Average E rrors (degree)

r(m ) /  load(g) ABS BS APD PD

0.05 /  0 11 .2472 11.2544 1 0 .7863 10.9902

0.05 /  100 14.2217 13 .3 5 8 3 1 3 .7 1 2 4 13.8923

0.05 /  161 15.0608 1 4 .3 8 1 7 15.6675 15 .1853

0.05 /  261 17.1809 16 .9 0 1 0 18.4886 16 .8786

0.1 /  0 15 .8750 16.1801 15 .7683 15.8146

0.1 /  100 20.2518 1 9 .5 3 9 3 19 .6255 20.1736

0.1 /  161 21.1842 2 0 .8 0 8 1 22.1640 21 .6321

0.1 /  261 25.0847 2 4 .1 9 2 7 26.2573 24 .4 8 7 3

0.15 /  0 20.4463 2 0 .2 6 4 9 20 .2 6 9 9 20.8570

0.15/100 25.8791 2 4 .9 3 0 4 24 .9475 25.1720

0.15 /  161 27.6837 2 6 .9 3 5 9 28.8665 27 .9931

0.15 /  261 32.7996 31 .5 0 1 1 34.1661 31 .7228

0.2 /  0 25.0324 2 4 .2 5 7 2 2 4 .3432 25.1864

0.2 /  100 3 0 .4 2 2 0 30.4446 3 0 .3 9 6 3 30.7740

0.2 /  161 34.7741 32 .6 4 6 2 30 .3 9 6 3 33.3294

0.2 /  261 38.2257 37 .0 1 5 1 38.9009 3 8 .5195
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Figure 5-14: T he results of tracking a circular tra jecto ry  in Case 3 w ithout load, (a) the ABS,
(b) the BS, (c) the  APD, and (d) the PD . Dashed line —  the desired, solid line —  the actual.
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Figure 5-15: T he tracking error of q\ and <72 for the  circular tra jec to ry  in Case 3 w ithout load: 
(a ) Qid ~  Qi based on the ABS, (b) q u  — q\ based on the BS, (c) qid — qi based on the APD, 
(d) qid — qi based on the PD , (e) q2d — <72 based on the ABS, (f) qid ~  <72 based on the  BS, (g) 
<72d — <72 based on th e  A PD, and (h) qid — <72 based on the PD.
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Figure 5-16: T he results of tracking a circular tra jec to ry  in Case 3 w ith  load, (a) the ABS, (b) 
the BS, (c) the APD, and (d) the  PD . Dashed line — the desired, solid line — th e  actual.
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Figure 5-17: T he tracking error of q\ and qi for the circular tra jec to ry  in Case 3 w ith  load: 
(a) qid. ~  Ql based on the ABS, (b) qid  — q i based on the  BS, (c) qid  — q i based on th e  APD, 
(d) qid ~  q i based on the PD , (e) qid  — q i based on th e  ABS, (f) qid  — q i based on the  BS, (g) 
q2d ~  92 based on the A PD, and (h) qid  — q i based on the PD.
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Figure 5-18: The results of tracking a circular tra jecto ry  in Case 4 w ithout load, (a) the ABS,
(b) the  BS, (c) the  APD, and (d) the PD. Dashed line —  the desired, solid line —  th e  actual.
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Figure 5-19: T he tracking error of qi and 52 for the  circular trajecto ry  in Case 4 w ithout load: 
(a ) Qid ~  Qi based on the ABS, (b) q\d — q\ based on th e  BS, (c) qid — q\ based on th e  A PD , 
(d) Qid ~  q i based on the PD, (e) q2d — Q2 based on the  ABS, (f) q2d — Q2 based on th e  BS, (g) 
Q2d ~  Q2 based on the APD, and (h) q2d ~  Q2 based on the  PD.
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Figure 5-20: T he results of tracking a circular tra jec to ry  in Case 4 w ith load, (a) the  ABS, (b) 
the BS, (c) the APD, and (d) the PD. D ashed line —  the desired, solid line — the actual.
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Figure 5-21: T he tracking error of qi and qi for th e  circular tra jecto ry  in Case 4 w ith  load: 
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(d) qid — q i based on the PD, (e) q^d ~  <72 based on the ABS, (f) qid — <72 based on the  BS, (g) 
<72d — <72 based on the  APD, and (h) qid — <72 based on the PD.
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Table 5-5. T he Norm s of Tracking Circle E rrors

a t /  =  0.1 H z  w ith  Different Controllers and Circle Radii

f=0.1 Hz qi (degree) q2 (degree)

r(m) /  load(g) ABS BS APD PD ABS BS APD PD

0.05 /  0 13.3303 13.9583 13.5526 13.8856 15.9025 15.5717 15.8563 15.6828

0.05 /  100 14.1092 14.2841 14.5868 13.9304 19.1460 18.4733 19.4476 19.2779

0.05 /  161 15.8536 15.7814 15.9229 15.8975 21.4469 20.4738 22.4738 21.1455

0.05 /  261 17.0320 17.0984 17.2991 16.9053 23.9651 23.3258 23.5461 23.4933

0.1 /  0 21.0923 21.7993 21.1088 21.6077 22.9516 22.8734 23.8435 23.9962

0.1 /  100 22.3061 22.0770 22.8010 22.7638 27.5086 27.5753 27.9461 27.8490

0.1 /  161 24.4998 24.3750 24.3679 24.4337 30.4539 31.5143 31.4998 30.1806

0.1 /  261 26.0395 26.6331 25.0687 26.7818 34.6253 33.9757 36.0918 34.2551

0.15 /  0 28.5865 29.0920 28.5584 29.1245 30.0482 29.7383 30.4563 30.2596

0.15 /  100 29.8701 29.4884 29.7317 30.2696 37.4490 37.4578 36.7600 36.2170

0.15 /  161 31.5307 33.2696 30.9478 32.6916 40.1011 40.4486 39.7049 41.2521

0.15 /  261 34.0374 35.0476 34.8055 36.2841 47.5395 47.5604 48.2512 48.6393

0.2 /  0 37.4209 38.0717 36.8181 39.9114 34.5624 34.3471 36.7947 37.0917

0.2 /  100 37.0743 38.1955 37.2032 38.7533 44.0338 42.5040 43.2365 43.8519

0.2 /  161 42.4050 41.8295 40.4493 41.0791 47.8825 46.8907 49.2206 48.9343

0.2 /  261 42.6786 43.6144 44.0015 44.6222 52.0922 53.9586 57.8091 52.9764
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Table 5-6. T he Average Norm s of Tracking Circle Errors

at /  =  0.1 H z  w ith  Different Controllers and Circle R adii

f=0.1 Hz Average E rro rs  (degree)

r (m) /  load(g) ABS BS A P D PD

0.05 /  0 1 4 .6 1 6 4 14.7650 14.7045 14.7842

0.05 /  100 16.6276 1 6 .3 78 7 17.0172 1 6 .6 04 2

0.05 /  161 18.6503 18 .1 27 6 19.1984 1 8 .5 21 5

0.05 /  261 20.4986 20 .2 12 1 20.4226 2 0 .1 9 9 3

0.1 /  0 2 2 .0 2 2 0 22.3364 22 .4762 22.8020

0.1 /  100 24.9074 24 .8 26 2 25.3736 2 5 .3 0 6 4

0.1 /  161 2 7 .4 7 6 9 27.9447 27.9339 2 7 .3 0 7 2

0.1 /  261 30.3324 3 0 .3 0 4 4 30.5803 3 0 .5 1 8 5

0.15 /  0 2 9 .3 1 7 4 29.4152 29 .5074 29.6921

0.15 /  100 33.6596 3 3 .4 73 1 33.2459 3 3 .2 4 3 3

0.15 /  161 3 5 .8 1 5 9 36.8591 35 .3264 36.9719

0.15 /  261 4 0 .7 8 8 5 41.3040 41 .5 28 4 42.4617

0.2 /  0 3 5 .9 9 1 7 36.2094 36 .8 06 4 38.5016

0.2 /  100 40.5541 4 0 .3 4 9 8 40 .2199 41.3026

0.2 /  161 45.1438 4 4 .3 60 1 44 .8350 45.0067

0.2 /  261 4 7 .3 8 5 4 48.7865 50.9053 4 8 .7 9 9 3
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Table 5-7. The Norm s of Tracking Circle E rrors

a t /  =  0.2 H z  w ith  Different Controllers and Circle R adii

f=0.2 Hz qi (degree) <72 (degree)

r (m ) /  load (g) ABS BS A P D PD ABS BS A P D P D

0.05 /  0 2 0 .5 73 8 21.0759 2 0 .1 32 6 21.9709 22.0201 2 1 .7 11 9 2 1 .0 0 6 2 21.6628

0.05 /  100 2 1 .5 72 3 22.6521 22.0990 22.3875 23 .9511 24.0999 25.3657 24 .8289

0.05 /  161 23.4274 2 3 .2 1 4 6 23.4818 23.6710 27.1643 2 6 .1 23 3 26.7804 26 .2 53 4

0.05 /  261 2 3 .3 71 2 24.8063 24.4320 26.3249 29.2008 2 8 .7 7 0 4 29.3043 28 .8645

0.1 /  0 3 4 .8 71 9 35.6543 3 3 .7 29 3 36.6083 3 5 .3 43 0 35.3901 3 4 .3 9 2 4 36.3389

0.1 /  100 3 5 .3 58 0 36.7548 34 .8 63 2 36.2909 3 9 .0 72 3 39.9743 3 8 .3 8 1 8 38.6734

0.1 /  161 38 .4 45 1 39.4483 36 .3 93 3 38.6871 4 3 .3 81 8 43.6099 43.3520 4 2 .3 06 0

0.1 /  261 4 0 .0 85 2 41.2499 3 9 .3 80 6 40.3366 4 6 .2 5 7 9 46.8492 47.5575 4 5 .6 4 4 7

0.15 /  0 46.7107 4 6 .0 1 8 8 47.1770 48.7560 46.5369 4 5 .6 8 0 3 4 7 .2 6 5 7 47.8796

0.15 /  100 51 .0 80 5 52.4516 4 9 .5 65 9 54.0793 56.4757 5 5 .5 80 8 5 3 .7 3 7 7 57.0942

0.15 /  161 5 2 .5 64 8 54.0737 50 .9 70 8 51.6276 58 .6531 60.6645 56.2147 56 .0 20 0

0.15 /  261 56.7268 5 4 .6 75 0 55.3109 59.1308 63.3346 63 .2 04 8 6 4 .7 7 1 6 65.0673

0.2 /  0 6 5 .1 86 6 67.6567 63 .9 66 6 67.1130 66.6977 6 2 .6 5 5 7 6 0 .7 5 9 4 62.5053

0.2 /  100 6 1 .2 31 5 66.6963 67.1193 68.6362 6 3 .3 72 9 68.2227 7 0 .6 5 8 9 70.7680
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Table 5-8. The Average Norms of Tracking Circle E rrors

at /  =  0.2 H z  w ith  Different Controllers and Circle Radii

f= 0 .2  Hz Average E rro r  (degree)

r(m ) /  load(g) ABS BS A P D PD

0.05 /  0 2 1 .2 9 7 0 21.3939 2 0 .5 69 4 21.8169

0.05 /  100 2 2 .7 6 1 7 23.3760 23.7324 2 3 .6 0 8 2

0.05 /  161 25.2959 2 4 .6 69 0 25.1311 2 4 .9 6 2 2

0.05 /  261 2 6 .2 8 6 0 26.7884 2 6 .8 68 2 27.5947

0.1 /  0 3 5 .1 07 5 35.5222 3 4 .0 60 9 36.4736

0.1 /  100 37 .2 15 2 38.3646 3 6 .6 22 5 37.4822

0.1 /  161 4 0 .9 1 3 5 41.5291 3 9 .8 7 2 7 40.4966

0.1 /  261 4 3 .1 7 1 6 44.0496 43.4691 4 2 .9 9 0 7

0.15 /  0 46.6238 4 5 .8 49 6 4 7 .2 2 1 4 48.3178

0.15 /  100 5 3 .7 78 1 54.0162 51 .6 51 8 55.5868

0.15 /  161 5 5 .6 09 0 57.3691 53 .5 92 8 53.8238

0.15 /  261 60.0307 5 8 .9 39 9 6 0 .0 41 3 62.0991

0.2 /  0 65.9422 6 5 .1 56 2 6 2 .3 63 0 64.8092

0.2 /  100 6 2 .3 02 2 67.4595 68 .8891 69.7021
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5.3.2 L ine Tracking

For line tracking, the  desired line used here is the  same as in Section 4.2. I t  can be checked 

th a t this line does not contain any singular poin ts and is a t least 35 centim eters away from th e  

singular region. Fig. 5-22 to  Fig. 5-23 are for the  case w ithout load while Fig. 5-24 to  Fig. 

5-25 are for the case w ith 100 gram  load. Com paring the  results from load te s t w ith  the resu lts 

from no load test, the norms of tracking errors of adaptive controllers increase less th an  those  

of non-adaptive controllers.
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Figure 5-22: The results of tracking a linear tra jecto ry  w ithout load, (a) th e  ABS, (b) th e  BS, 
(c) the  APD, and (d) the PD. D ashed line —  the  desired, solid line —  the  actual.
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Figure 5-23: The tracking error of q\ and q2 for the linear tra jec to ry  w ith o u t load: (a) qid — q\ 
based on the ABS, (b) qid  — q i based on the BS, (c) qid — q i based on th e  APD, (d) qid — q i 
based on the PD , (e) q2d — Q2 based on the  ABS, (f) q2d — <?2 based on the  BS, (g) q2d — <72 based 
on the APD, and (h) q2d — Q2 based on the PD.
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Figure 5-24: The results of tracking a linear tra jec to ry  w ith  load, (a) the  ABS, (b) the BS, (c) 
the APD, and (d) the PD . Dashed line — the desired, solid line —  the actual.
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Figure 5-25: The tracking error of qi and  q2 for the linear tra jec to ry  w ith load: (a) q\d — q\ 
based on the  ABS, (b) qid — qi based on the  BS, (c) qid — qi based on the  APD, (d) qid — qi 
based on the PD, (e) q^d — Q2 based on the  ABS, (f) q2d — q2 based on the BS, (g) Q2d ~  Q2 based 
on the APD, and (h) q2d — q2 based on the  PD.
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5.3 .3  Square Tracking

For square tracking, the desired square used here is the  same as in Section 4.2. It can be checked 

th a t th is square does not contain  any singular points and the  area encircled by this square is 

a t least 25 centim eters away from the singular region. Fig. 5-26 to  Fig. 5-27 show the results 

w ithout load while Fig. 5-28 to  Fig. 5-29 show the  results w ith  100 gram  load. Com paring 

the results from load te s t w ith the  results from no load test, th e  norm s of tracking errors of 

adaptive controllers increase less th an  those of non-adaptive controllers.
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Figure 5-26: The results of tracking a square tra jec to ry  w ithout load, (a) the  ABS, (b) the BS,
(c) the  A PD , and (d) the  PD . Dashed line —  the  desired, solid line —  the actual.
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The norms of the errors for the tracking line and square and the average of th e  tracking 

errors’ norm w ithout and w ith  load are shown in Table 5-9 and 5-10 separately, w here TVaj. 

stands for Trajectory. I t can be seen th a t when there  is a change in the system  param eters, the  

adaptive backstepping controller can achieve tracking errors w ith sm aller norm  values in m ost 

cases.

Table5-9. The Norms of Tracking Line and Square E rror Based On Different C ontrollers

qi (degree) q2 (degree)

T ra j./load  (g) ABS BS APD PD ABS BS APD PD

Line /  0 60.4127 60.7254 6 0 .2 20 2 62.2550 50.7545 50.5922 5 0 .4 51 1 50.6989

Line /  100 6 6 .7 66 3 68.4194 72.2895 72.4075 53.1071 53.5801 52.1231 5 2 .1 1 9 7

Square /  0 8 4 .7 47 6 86.0015 86.9251 88.1923 81.5424 82.0528 8 2 .3 4 4 8 83.5541

Square /  100 93 .3 80 3 95.4894 98.9047 103.0862 86.0076 87.6588 89 .1 88 1 90.3474

Table 5-10. T he Average Norms of Tracking Line and Square E rror Based On Different C ontrollers

Average Error (degree)

T ra jecto ry /load  (g) ABS BS APD PD

Line /  0 55.5791 55.6588 5 5 .3 35 7 56.4770

Line /  100 5 9 .9 3 6 7 60.9998 62.2063 62.2636

Square /  0 8 3 .1 45 0 84.0272 84.6350 85.8732

Square /  100 89 .6 94 0 91.5741 94.0464 96.7168
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

An adaptive controller based on backstepping technique and an adaptive PD  controller are 

applied to  set point control of the  p lanar 2-DOF parallel robot. T he designed controllers 

guarantee the stability  of the closed-loop system  and are able to  handle param eter uncertainties. 

The experim ents have been conducted to  com pare four controllers: adaptive backstepping, non- 

adaptive backstepping, adaptive PD  and PD  plus com pensation term s. T he results have shown 

th a t all the  controllers perform  sim ilarly in no load test, b u t adaptive controllers can achieve 

less average steady state  error in w ith load test. T he steady s ta te  errors are no more 1.5°, 

which is satisfactory since the backlash exists in the  DC m otors and the friction has not been 

taken into account in the controller design process.

Two backstepping based controllers: non-adaptive backstepping controller and  adaptive 

backstepping controller, have been presented for tracking control of the  same parallel robot. 

Both controllers guarantee the stability  of the closed-loop system. T he adaptive controller 

based on backstepping technique is able to  handle param eter uncertainties even though the  

param eters’ estim ations don not converge to  their real values. The PD  controller and  adaptive 

PD controller have been also applied to  the parallel robot for com parison w ith the  backstepping 

design m ethod. The backstepping controller is a nonlinear controller while the P D  controller 

is a linear controller with Coriolis and centrifugal term s, and gravity com pensation. The ABS 

and A PD  dem and more com putation tim e th an  those non-adaptive controllers, which leads to
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the difficulty in real tim e control of a parallel robo t w ith high degree of freedom in practice.

The experim ents for tracking control have been conducted to  compare four controllers: 

adaptive backstepping, non-adaptive backstepping, adaptive PD, and non-adaptive PD . Desired 

trajectories, such as circle, line and square, are tracked in  the experim ents. D ifferent radii 

and tracking frequencies are used in circle track ing  and the experim ental results reveal th a t  

higher tracking speed results in larger tracking errors. Moreover the results have shown th a t 

all the controllers perform  sim ilarly w hen th ere  was no additional payload. However, when 

an additional payload was added to  th e  robo t, th e  adaptive controller were able to  achieve the 

smaller tracking errors th an  non-adaptive controllers especially in those cases w ith high tracking 

speed. ABS perform s a little bit b e tte r th an  A PD  when the  tracking frequency is high.

The experim ents have also revealed a need to  consider friction and backlash existing in the  

m otors in order to  further reduce the  steady  s ta te  errors for set point control and th e  tracking 

errors for tracking control.

6.2 Future Work

The experim ental results are satisfactory based on th e  lim itation  of the  mechanical system  and 

the  d a ta  acquisition system. However, more accurate results can be achieved w ith  a b e tte r 

mechanical system . The experim ental results shown by the figures in the thesis are th e  best 

readings after m any trials. R epeating the  experim ents w ith the same param eters m ay no t give 

the exactly same results. In order to  fu rther reduce the  steady s ta te  errors for set po int control 

and the tracking errors for tracking control, th e  following work should be done in future:

1. U pdate the mechanical system  to  reduce th e  flaws such as backlash.

2. Build more sophisticated model including backlash, friction and the dynam ics of DC 

motors.

3. For tracking control, reduce th e  sam pling period to  improve the tracking perform ance by 

choosing DSP to  accomplish d a ta  com m unication instead of DAQ.
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