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A b stract

We generate expressions for a ll o f the su(2)^ and su(3) in te lligent states. To do so we 
combine well known coupling methods w ith  un ita ry  transformations; the construction 
is simple and efficient, and can be extended to  generate intelligent states for any su(N) 
algebra. We also present a discussion o f some of the properties of the su(2) and su(3) 
intelligent states.

*The properties of the su(2) Lie algebra are analogous to quantum mechanical angular momentum prop­
erties.
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Chapter 1 

Introduction

1.1 The Uncertainty Relation
In  quantum mechanics, there is a lower bound on the uncertainty associated w ith  

the jo in t measurement o f two non-com muting*, self-adjoint operators. This means 
tha t one cannot measure to a rb itra ry  precision, w ith  the same setup, the values o f two 
non-commuting observables. The embodiment of th is idea is Heisenberg’s uncertainty 
re lation [1];

A g A p  >  ^  , (1.1)

where p and q correspond, respectively, to the momentum and position o f the particle, 
and h is P lanck’s constant, h, divided by 27t.

Uncerta inty relations are a central feature o f quantum  physics. Thus, one way to 
better understand quantum  mechanics is to fu rther our understanding o f uncerta inty 
relations. In  th is thesis, an uncertainty relation more general than E q .( l . l )  w ill be 
used [2]:

A n A O > ^ | ( [Ô ,Ô ] ) | ,  (1.2)

where
A H  =  ^ (0 2 )  -  (Q)2 (1.3)

is the standard deviation of the operator Û, w ith  (Û) =  {'tp\Ù\i(;) the expectation value 
of the observable Ô given the system is described by the state \'tp). This inequality, 
obtained by Robertson, is the correct generalization o f the Heisenberg uncerta inty 
re lation to  allow for a rb itra ry  operators, though they must s till be self-adjoint. I t
has been verified experim entally [3, 4, 5] and remains an effective tool, despite some
objections [6] raised about the use of the standard deviation Eq.(1.3) as a good measure

*See Appendix A for selected definitions. No additional terms w ill be indicated in the main text, but 
many terms and items that are not self evident w ill be defined in the appendix. This is done to preserve 
continuity of the main text.

1
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Introduction

of uncertainty in  some specific cases. Eq.(1.2) does in  fact reduce to E q ( l . l )  by setting 
Ù — q and Ô =  p, and noting tha t the so-called commutator for p  and q is

[p,q] =  p q - Q P
=  - i h i .  (1.4)

A  derivation of Eq.(1.2) is included in  Appendix B . l for completeness.
The uncertainty described by A O  in  Eq.(1.2) is not a statement about measure­

ment techniques or equipment, bu t ra ther a feature b u ilt into quantum  theory itself. 
The derivation of Eq.(1.2) is only based on the properties of the states and operators 
themselves. I t  does not account for the disturbance resulting from measurements made 
on the system, or the uncertainty associated w ith  any lim ita tions arising from  the de­
tectors or the experiment. I t  is w orth  noting tha t for th is reason Eq.(1.2), as well as 
E q .( l. l) ,  has been the subject o f debate [6, 7] w ith  a wide range o f suggestions on how 
to  incorporate the measurement process in to  a more general expression for uncertainty. 
This, however, does not affect the results or m otivation of this thesis.

The m otivation for th is thesis is the meaning of the lower bound in  Eq.(1.2). The 
states th a t live at the lower bound o f the uncertainty relation are called inte lligent 
states [8], and they are states tha t satisfy the equation

A n A O  =  ^|([Ô,Ô])|. (1.5)

The questions we are asking are “W hat are the states tha t live at th is lower bound? 
Can they be constructed from  existing technologies? W hat are some o f the ir proper­
ties?” . In  other words, can we pu t together a recipe tha t uses known mathem atical 
tools to generate these states, and i f  so, w hat are these states and how do they behave? 
Some answers to  a ll three o f these questions w ill be discussed in  th is thesis.

1.2 Coherent States

1.2.1 Coherent States as Harmonic Oscillator Minimum  
Uncertainty States

I f  we substitute x  and p  in to  Eq.(1.5), we are le ft w ith ,

A g A p  (1.6)

Some o f the states tha t satisfy th is equation are already well known and well studied [9, 
10]. These are harmonic oscillator coherent states. I t  is of interest, then, to  relate the 
idea of coherent states as solutions to  Eq.(1.6) to  the general case of Eq.(1.5).

Harmonic oscillator coherent states were firs t introduced by Schrodinger [9] in  1926, 
though he d id  not refer to  them by th a t name bu t simply as non-spreading wave
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packets. The label essentially captures the behaviour of coherent states; the shape of 
the p robab ility  d is tribu tion  remains constant as tim e passes {i.e. i t  does not spread 
out like other states). I t  sim ply oscillates back and fo rth  about a central point.

One o f the reasons why coherent states are interesting is the classical-like behaviour
they exhib it. For th is reason we begin w ith  a quick refresher on the classical harmonic 
oscillator.

Classically, simple harmonic m otion is described by the differential equation:

g-hm a;^g =  0, (1.7)

where g =  ^ .  The oscillatory behaviour of the system is encapsulated in  the solution 
to  Eq.(1.7):

g — go cos(wf -I- </)), (1.8)

and
p =  Po sm{ujt +  4>), (1.9)

w ith  p =  mq.
I t  is often convenient, however, to  use the dimensionless variables [11];

which evolve sim ply in  tim e as

C(t) -  - iw ( ( f )  . (1.11)

The tim e dependent C(f) is then given by

( ( ( )  =  (o e -*^  , C ( t )  =  , (1.12)

where the constant

Co =  C(0) =  - i ^ \ f ^ { q { 0 )  +  - ^ P (O ))  ■ (1-13)
Y 6 TTtUJ

Thus a classical harmonic oscillator can be completely described by a vector in  the 
complex plane w ith  components given by the real and im aginary parts o f ( ( f ) .  The 
vector has a length o f jCoj, and revolves through the angle —Lot.

The quantum mechanical analogues to E q .(l.lO ) are the so-called annih ila tion and 
creation operators, à and â*;

which have proven very useful in  the study o f the quantum mechanical harmonic oscil­
la tor, including the defin ition and studying o f the harmonic oscillator coherent states. 
The ir expectation values evolve in  tim e the same way as the ir classical counterparts:

^ (â ( t)>  =  - i u j { à { t ) ) , (1.15)
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g iv in g
(â(f)) =  (â (0 ))e --* , (â*(t)) =  (ô* (0 ))e^ . (1.16)

They have the property tha t, in  the so-called Fock basis;

â|n) =  V n jn  -  1), â*|n) =  V n  - f l |n  +  1 ), (1.17)

w ith  the number operator N ,  which counts the number of elements in  a basis state, 
defined as;

iV |n) =  â*â|n) =  n |n ) . (1.18)

The ir com mutation relations are:

[Û, â*] =  l l ,  [â, â] =  [Ô*, Ô*] =  0 . (1.19)

I t  was the work of Glauber [10], in  1963, th a t popularized the non-spreading wave 
packets, pa rticu la rly  to  model laser output, and introduced the term  harmonic oscil­
la to r coherent states. He showed tha t coherent states are an extremely useful set of 
states to  use as a basis, despite the fact tha t they are non-orthogonal and overcomplete.

G lauber defined the harmonic oscillator coherent states in  several separate, bu t 
equivalent, ways [10]. One of his definitions, and possibly the most well known, is th a t 
the set o f coherent states are the eigenstates o f the annih ila tion operator, â, or more 
exp lic itly

ô ja) =  a ]a ) , ( 1.20)

where a  is an a rb itra ry  complex number. As i t  turns out Eq.(1.20) is a useful property
to  explo it when perform ing calculations, bu t i t  is not so useful as a defin ition th a t can
be generalized. Since coherent states for other systems w ill be employed, we need an
alternate definition.

In  th is thesis, a coherent state w ill be defined as a state obtained by an appropriate 
un ita ry  transform ation of a special state. For the harmonic oscillator the special state is 
the vacuum state, |0), which leads to  the defin ition of the harmonic oscillator coherent 
state as

|a) =  D{a) \0)  =  exp(aâ* -  a *â ) |0 ) , (1.21)

where the operator D {a )  is un ita ry  {i.e. i t  satisfies D {a )D ^ {a )  =  11). Physically D {a )  
is a transla tion operator, meaning tha t i t  causes a displacement,

{a )âD {a )  =  à +  a  , (1.22)

o f the operator ô. Using Eq.(1.21) and Eq.(1.22), we have

â ja ) =  âT>(a)]0)

=  D (a)[D -X a)ôD (a)]|0 )
=  D (a ) [â -t-a ]|0)

=  o;D (a) j o )
=  a\a)  , (1.23)
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where D  ^{a)D{oi)  =  1 and â|0) =  0 have been used. Thus, Eq.(1.21) is equivalent to 
Eq.(1.20).

To see what th is displacement means in terms o f q and p, we firs t need to  determine 
how a  is related to q and p. We do th is using the property Eq.(1.20) and the relations

Q =  +  P =  - à ) .  (1.24)

From these we find tha t 

Die

which gives us

(a:) =  , 3m (a) -  , (1.25)

a  =

P utting  th is back into Eq.(1.22) gives us the new form:

D - ^ ( a ) â D ( 0  =

(1.26)

(1 .27)

I t  is now clear tha t the action o f D { a )  is to displace the states from  the ir in itia l 
position, see F ig 1.1. Since D { a )  acts on the vacuum, and the vacuum satisfies Eq.(1.6),

-  < x > < p >

F igure  1.1: L e f t :  The dashed curve shows the p ro b a b ility  d is tr ib u tio n  in  x  fo r the  g round  
sta te  harm on ic  osc illa to r before the  ac tion  o f D { a )  and the  solid  curve is the  d isplaced 
d is tr ib u tio n  after. R ig h t :  Same as le ft, b u t fo r p.

the displaced vacuum states are also intelligent states. This can be shown by w ritin g

(1.28)
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and

—  (ô'f — â) ,  (1 29)

and using the property Eq.(1.20) to  evaluate A q A p  in  the state |a).
The idea tha t the harmonic oscillator coherent states are related to intelligent states 

is extended to the construction of in te lligent states in  other systems.

1.2.2 Harmonic Oscillator Squeezing
The harmonic oscillator coherent states are a special set of states for a number of 

reasons, not sim ply for having m inim um  uncertainty. In  fact, coherent states are a 
subset o f a more general set of states called squeezed states. W hat makes the coherent 
states special in  the bigger p icture o f squeezed states is tha t the standard deviations 
of the two observables q and p, for the coherent states, are the same;

Aq =  A p  =  ^ .  (1.30)

Here p  and q are expressed in  dimensionless form, as i t  is often more convenient.
The central idea of squeezing is to reshape the p robab ility  d istributions so tha t Aq  ^  

Ap.  There has been a lo t of interest in  squeezed states, from both  the theoretical and 
experimental communities, since they were firs t introduced by Kennard [12] in  1927. 
The reason for the interest is the huge number of possibilities when one can significantly 
reduce the uncerta inty associated w ith  an observable (see [13, 14, 15] for reviews o f the 
subject). Having said this, the squeezed states do not beat the uncertainty principle, 
they sim ply take advantage o f the m u ltip lica tive  property o f the standard deviations 
on the le ft hand side of Eq(1.6). For instance, one can imagine a setup tha t does 
not give much knowledge on the position o f a particle, i.e. Aq  =  ^ e '"  is very large. 
Given the constraints on the uncertainty principle one can then imagine being able to
measure the momentum of tha t particle to  a high precision, i.e. A p  — is very

small. This is s t ill w ith in  the bounds o f the uncerta inty principle, A q A p  =  so in  
effect, one can gain much knowledge of one aspect at the expense o f knowledge o f its 
conjugate.

I t  should be noted tha t harmonic oscillator squeezing only requires the ratio;

^ f l .  (1.31)

I t  w ill be shown later tha t the parameter a  in  the harmonic oscillator intelligent states 
functions to  control the ra tio
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1.2.3 Coherent States for Angular Momentum and Other 
Systems

The idea o f the coherent state as a displacement of a special state has been gener­
alized to  systems other than the harmonic oscillator. The reason th a t emphasis was 
pu t on the defin ition Eq.(1.21) is tha t when dealing w ith  systems like angular momen­
tum  (the terms angular momentum algebra and su(2) algebra are synonymous), which 
has fin ite  dimensional m a trix  representations, a problem is encountered i f  one tries to 
generalize the defin ition Eq.(1.20). Eor instance, when try ing  to find the eigenstates of 
the su(2) lowering operator, L _ , one w ill find  tha t i t  has only one non-zero eigenstate. 
This problem is encountered for a ll o f the su(A^) algebras.

I t  was Perelomov [16] who proposed the firs t useful generalization o f the coherent 
states for a rb itra ry  Lie algebras in  a way th a t preserves/reproduces the properties found 
in  the harmonic oscillator coherent states. These coherent states for other systems are 
essentially generalizations o f Eq.(1.21). As well, Arecchi et al [17] studied the coherent 
states of two level atoms (which are SU(2) systems) and showed exp lic itly  how the 
SU(2) coherent states can be constructed, using the SU(2) equivalent o f the D {a )  
operator, v ia the generalization o f Perelomov:

(1.32)

where

(  -  (1.33)

depends on two real parameters P and 7 . O nly two parameters are necessary, even 
though the most general un ita ry  SU(2) transform ation is dependent on three, as w ill 
be seen later.

We would like to put Eq.(1.32) in to a form  tha t w ill be a b it more useful. The form  
of the transform ation tha t w ill be most helpful is

|7, /)) =  4 ,  (1.34)

w ith  Rj{<p) =  denoting a ro ta tion  about the axis j  through the angle ip. This
form exp lic itly  shows the un ita ry  nature of the transformations. The forms Eq.(1.32) 
and Eq.(1.34) are equivalent (see Section 2.1.3), and describe the most general angular 
momentum coherent state. As is shown in  [16], th is defin ition o f a coherent state can 
be extended to  any su(A ’) algebra. The construction is straightforward: sim ply apply 
a un ita ry  transform ation to an extremal state and you have a coherent state. This w ill 
be useful in  the construction of the su(3) intelligent states.

1.3 Motivation
In  th is thesis, we are studying the angular momentum and su(3) states tha t satisfy 

Eq.(1.5), and answering the questions stated in  Section 1.1: “W hat are the states tha t
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live at th is lower bound? Can they be constructed from existing technologies? W hat 
are some of the ir properties?” . These states were orig ina lly studied by Aragone et 
al [8, 18], who also coined the terms intelligent states and intelligence.

Since Aragone et al, there have been others working to  construct in te lligent states 
for angular momentum systems. For instance H ille ry  and M lodinow [19] devised a 
construction method tha t used a simple un ita ry  transformation. However, not a ll o f 
the angular momentum intelligent states can be produced in  this way, and those which 
can are sim ply the coherent states.

One of the m otivating factors for th is method is tha t any fin ite  un ita ry  transfor­
m ation (the transformations required to  generate coherent states o f SU (A ))  can be 
realized experimentally using beam splitters and phase shifters [20, 21]. In  particu lar 
Campos and Richard [22] have devised a setup to experimentally generate some of 
the su(2) in te lligent states. The branch o f solutions labeled by equation (9b) in  [22] 
corresponds to  the set of states generated using the method in  th is thesis i f  one takes 
i s ,  in Eq.(1.35), to  be zero always. The result o f the ir setup is to  generate and verify 
a small subset o f the angular momentum intelligent states. This subset corresponds to 
the intelligent states tha t can be generated using the method o f [19].

The method o f Rashid [23], on the other hand, solves for every angular momen­
tum  inte lligent state using a non-unitary transform ation. Though every state can be 
constructed in  th is way in  a single shot, the method is not im mediately transparent.

The firs t ha lf of th is thesis is based on published work [24], and is a reform ulation 
of the method proposed by M ilks and de Cuise [25], who constructed inte lligent states 
through the use o f polynom ial methods. W hile  the method of [25] shows great promise, 
as all of the angular momentum inte lligent states are found, the calculations can become 
tedious and do not clearly show the relation to  coherent states. Th is thesis and [24] 
show more exp lic itly  th a t the set of intelligent states is simply composed o f coupled 
coherent states. I t  also serves to  pu t the construction o f these inte lligent states in to  a 
clear ligh t by showing tha t all o f the 2.̂  4-1 intelligent states, for a system w ith  angular 
momentum £, can be constructed in  a simple way using existing and well known tools. 
These tools include coupling technology [26, 27] and un ita ry  transformations.

For angular momentum, the method consists of coupling two separate systems, both  
of which has been subjected to a different un ita ry  transformation,

[R(^)l^x,^x)] (8 [R(-g)Kg,^B)], (1.35)

where R{d)  is a un ita ry  transform ation and \£, m)  is an angular momentum ket. These 
two separate systems are sim ply coherent states constructed in  the manner o f Eq.(1.34). 
Then, extracted from this using a non-unitary projection,

H^ =  ^  ]^ ,m )(^ ,m ], (1.36)
m

are the states which have good angular momentum. This projection can be likened to 
a measurement o f £.
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The second ha lf of th is thesis is a generalization o f the construction of the su(2) 
intelligent states to the su(3) in te lligent states. Up u n til now, emphasis has been 
placed on constructing the intelligent states for the su(2) and s u ( l, l)  algebras. This 
is due, in  part, to  the fact tha t i t  is possible to  experimentally generate bo th  SU(2) 
and SU (1,1) transformations reasonably easily. Also, only 3 generators are needed to 
completely describe each of the su(2) and s u ( l, l)  algebras, while the su(3) algebra 
requires 8 generators. This fact alone compounds the d ifficu lty  of the problem, which 
made i t  im practical to solve, in  general, for the complete set o f intelligent states. I t  was 
felt tha t more insight as to  the proper approach to  use, could be gained by reducing 
the generality and solving the problem for a more restricted set o f operators. As 
a result, the operators tha t were chosen are sufficiently complicated, so as to  avoid 
a repetition  of the su(2) problem, bu t are simple enough to allow a solution th a t 
is manageable. The overall method for the su(3) intelligent states follows the same 
procedure as the angular momentum inte lligent states. The biggest difference is tha t, 
whereas the angular momentum case requires the coupling of two systems, as given 
in Eq.(1.35), the su(3) case requires the coupling of three systems. Note th a t i t  is 
possible to experimentally generate SU(3) transformations, and in  principle SU (N ) 
transformations, although the task is technically very d ifficu lt.

As well as generating the inte lligent states for specific systems, the method pre­
sented herein was developed w ith  interest in  a construction of in te lligent states th a t 
is generalizable to other Lie algebras w ithou t much modification. This was attem pted 
in  [25], bu t the com plexity of the polynom ial states grew quickly w ith  the dimension 
of the problem. The method presented in  th is thesis largely circumvents th a t issue by 
exploiting Lie algebraic methods.

1.4 Intelligent States

1.4.1 Properties
The idea of intelligence and inte lligent states is not a new one, and i t  has been 

studied from  a number o f different viewpoints [8, 18, 23, 22, 25, 28, 29, 30]. The 
defin ition o f intelligence has not changed from  tha t of [8]: i t  is simply any state for 
which the the inequality in  Eq.(1.2) has been replaced by an equality. This defin ition  
comes w ith  two constraints on the state ]i/;). These constraints can be discerned from  
the derivation o f Eq.(1.2), which is found in  Appendix B . l.  W hile the derivation given 
is not unique, see [31] for instance, the constraints themselves are properties o f the 
uncertainty relation, and as such do not depend on the particu lar derivation used. The 
derivation presented in  th is thesis follows th a t o f [32], and is used because i t  is stra ight 
forward and highlights the constraints clearly.

In  order to  get from  Eq.(1.2) to  Eq.(1.5), we begin by noting tha t

(AÙ)^ =  (V |(Ô -(Ô ))" |V ). (1.37)
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Then, from Eq.(B .8)

(AÔ)^(AÔ)^ >  | ( ^ | l { n _  (Ô ) ,Ô -  (Ô)} +  l[n ,Ô ]|V )|" , (1.38)

which can be w ritten  as

(AÔ)"(AÔ)" > |(V|(Ô -  (Ô))(Ô -  (Ô))|V,)|2. (1.39)

Since the operators Ù and Ô  are assumed self-adjoint, one can see th a t Eq.(1.39) is
jus t a statement of the Schwartz inequality;

(y)|<f)(xlx) > (1.40)

w ith
|x) =  (Ô - (Ô ) ) |V ) ,  M  =  (Ô -(Ô ))|i^ ). (1.41)

Requiring the equality in  Eq.(1.40), is equivalent to  requiring the equality in  Eq.(1.38).
The condition for th is is known, and is sim ply tha t the two vectors |%) and \p) be 
collinear, or

\ p ) = i a \ x ) -  (1.42)

Using Eq.(1.41) gives
(Ô -(Ô ))|V ) =  W Ô -(Ô ) ) |V ) .  (1.43)

where a  is an a rb itra ry  complex number. We now have the equality in  Eq.(1.38)

(AÔ)2(AÔ)2 =  -  (Ô), Ô -  (Ô)} +  0]|V)|". (1.44)

A t this point, the solutions to  Eq.(1.43) are called the generalized inte lligent states.
This work, however, deals w ith  states satisfying Eq.(1.5), so we require the anti­
commutator term , { {Ù — (Û ),Ô  — (Ô )}), in  Eq.(1.44) to  be zero. The firs t condition, 
Eq.(1.43), combined w ith  the additional requirement tha t —oo <  a  <  oo is real, is 
sufficient to make th is happen. Looking again at Eq.(1.43), and rearranging, results in 
an equation tha t depends only on the parameter a:

(A -  iaÔ )|V) =  A|V). {  ^ g (1.45)

This is nothing more than an eigenvalue equation, the solutions of which are an in te l­
ligent states.
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1.4.2 Example: x  and p
To illus tra te  the situation, consider the follow ing example. I f  the operators x =  x 

and p =  1 ^ ,  w ith  h =  1, are substituted in to  Eq.(1.45), the result is a differential 
equation of the form

( r  -  =  ((z) -  (1.46)

W hat is interesting is the solution to  th is equation,

V)(i) =  (1.47)

is a harmonic oscillator ground state, w ith  the parameter a  controlling the ra tio  of 
A x / A p .  For a  =  1, we have a coherent state; for o  ^  1 the state is squeezed.
This result is part of the m otivation to  consider coherent states as tools to  construct 
intelligent states in  other systems.

1.4.3 Example: Spin 1/2 Case
For an in troducto ry  example to  the construction o f su(2) intelligent states, we w ill

work through the explic it solution for the sp in -| problem. To do this we consider
the simplest realization of Lx — iaLy,  using the basis states, \ i  — and
1̂  =  m  — —\ ) i  for which

K 0 - 1  ) ^ K 1 0 K f  o ') '

Equation (1.5) then takes the form

A T^A T, =  1 |(Ê ,)|. (1.49)

From Eq.(1.48), we can obta in the 2 x 2  m a trix

The (unnormalized) eigenstates of Eq.(1.50), which are by defin ition intelligent states, 
are just

( l+g  ) , I 1+g I , (1 51)
\  /  \  \ / l— J

w ith  respective eigenvalues

A_|_ =  A == ^\?1 — cP , A— -  - —A. (1.52)
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In  order to  s im plify the notation i t  is convenient to introduce the quantity

1 -j- Û;
(153)

OL

which has the property tha t when |a| <  1, /x is real, while when |a| >  1, /x is purely 
imaginary. We can now w rite  the normalized £ — \  intelligent states in  a cleaner 
manner, as

We can rewrite these, using the identification

^  Q ^  ^  l i ' i ) '  (1 56)

to more exp lic itly  show the composition in  terms of angular momentum £ =  \'-

Recalling th a t i f  |a| <  1, /x is real, we can w rite

(1.59)

w ith
R y (± /))  -  (1.60)

Ly given in  Eq.(1.48), and

=  T R W

We can clearly see now tha t Eq.(1.59) is equivalent to Eq.(1.34) w ith  £ =  \  and 7 =  0, 
thus showing how Eq.(1.59) is related to  SU(2) coherent states.

On the other hand, when |a| >  1, /x is purely imaginary, we have

|V ^ ( /3 ) )  =  R z (± /) ) | | ,  I )  =  1) ,  (1.62)
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where, th is time,

' “ i  = 7 T T ijP '
I t  is less clear th a t th is is a coherent state, but using Eq.(1.34) w ith  ^ =  5 and 7 =  f , 
you w ill recover Eq.(1.62). Thus the two £ — \  angular momentum intelligent states 
are jus t angular momentum coherent states.

1.4.4 Another Example: Spin 1 Case
Consider now an ^ =  1 angular momentum system. The angular momentum opera­

tors are represented by 3 x 3  matrices. We w ill e xp lic itly  work through the solution and 
find  the three £ =  \  in te lligent states, and show how two o f them are simply angular 
momentum coherent states. This w ill allow us to  compare later to  the ones constructed 
from  coupling the £ — \  in te lligent states together. This w ill verify the claim tha t any 
su(2) in te lligent state can be constructed from  coupling sufficiently many copies o f the 

and |'0 _'^^(a)) together.
To begin we w ill e xp lic itly  construct the 3 x 3  operators Lx, Ly  and L ,-  We need 

the relations

Lx  =  2^L+ +  L - )

>̂y — -  T_) ,  (1-64)

along w ith , taking h = l ,

L± \£,m)  =  ^/£{£ +  1) -  m { m  ±  l ) \£ ,m  ±  1), (1.65)

and
m) =  m|£, m ). (1.66)

To construct L^, for example, we need to  construct the m a trix  elements 
( l ,m '|T z | l ,m )  for a ll m '  and m  from  1 to —1. Using the identification;

-1), (1.67)

the three matrices are then

? 1< 0 - 1 0
Ly

" 7 1  (
1 0 

<  0 1
- 1
0

1 0 0 \

0 0 0
0 0 - 1  /

(1.68)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Introduction  14

We can now find the intelligent states by diagonalization, th is tim e, of the 3 x 3  m atrix

1 /  0 1 - a  0
Lx ~  ioiLy — —̂  I 1 +  0 0 1 — 0 I , (1.69)

y  0 1 +  0  0

and rap id ly  determine the three unnormalized intelligent states as:

IV’i - )  =  ^  j  , i V ’i - )  =  ^  ^2 ^  ^  ^  72m j  ! (1-70)

where p  is defined in  Eq.(1.53) and the reason for the notation w ill become clear later.
We can w rite  the normalized inte lligent states as;

I V ' - - )  =  ^  | ^ | 2  ( | f ,  f )  -  72m! 1,0) +  - 1 ) )

IV 7 -) =  ^ ^ ( |1, 1) - m " | 1, - 1)) (1.71)
\ / i  +  iM r

1"^++) =  1 | ^ | 2  ( |1 ,1) +  7 2 /x|1,0) +  7 |1 ,  - 1 ) ) .

In  the case where p is real, we can use Eq.(1.61) and

M ('-^2)

to  fu rthe r rew rite  the £ — I  in te lligent states;

I'ip'L-) =  cos^ 111, 1) -  a/2cos I  sin | | 1 , 0) +  sin^ | | 1 , - 1 )

' A - >  =  (1.73)

|V'++) =  cos^ | | 1, 1) +  \ / 2 cos I  sin | | 1, 0) +  sin^ | | 1, - 1).

A lthough it  is not immediately clear, the states and |V’++) &re £ — 1 coherent
states. This can be shown quite easily by using Ly from E q.(1.68) and

1 / 1 0 - 1
Ty =  -  I 0 2 0 j , diy — Ly, (1.74)

and expanding the ro ta tion  Ry{P)  using a Taylor series in  P:

g ipLy =  21 — i p t y  — ^ L y  +  +  ■ ■■ (1 75)
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I f  we then add zero in  the form  of — Ly we can recompose the series in  terms of 
cosp and sin/3:

g i0Ly ^  il -  +  Ê^ ( l  -  ^  ^  ^
=  il -  Ly +  Ly cos,d -  i î y  sin/3. (1.76)

We can now use th is to exp lic itly  rotate the state, |1 ,1), using the form  of Eq.(1.67):

e~'^i^^y\l,l) =  { 1 - L y  +  L y  cos P -  i t y  sin P ) \ l , l )

 ̂ /  l  +  cos/3 -A /2s in /3  1 - cos/3
=  -  I \/2s in /3  2cos/3 - \ /2 s in /3

\  1 — cosP \ [2  sin/3 1 +  cosP

/  l  +  cos/3 \
=  -  V2sin/3 (1.77)

\  1 - cos/9 /

We can now break up th is state in to  its separate angular momentum components:

1 +  cos p 1 -  cos P

i  +  (1.78)
2 ' ' '  ' V 2

Finally, using the identities

1 +  cos P =  2 cos^ f  ,2

l - c o s / 3  =  2 s i n ^ | ,  (1.79)

sin ,9 =  2 sin |  cos | ,

we have the angular momentum coherent state th a t is of the form  Ry (/3) \£, £) ;

Ay(/3)|1,1> -

=  cos^ | | 1, 1) +  \ / 2 sin I  cos | | 1, 0) +  sin^ | | 1, - 1)

=  l l A D . (1.80)

Also, i f  we pick —/3 instead, we find th a t Fq.(1.80) becomes:

R y (-/9 )|1 ,1 ) =  e '/^ ^« |l,l)

— cos^ 111, 1) — \/2  sin I  cos 111, 0) +  sin^ 111, —1)

= ( ijd )
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which is s im ply the coherent state for the corresponding negative rota tion. I t  is clear 
now tha t there is a relation between coherent states and intelligent states. W hat is 
interesting is tha t there are angular momentum inte lligent states which are not simply 
angular momentum coherent states. The th ird  £ =  1 intelligent state, \'4)\_), does 
not correspond to  an ^ =  1 coherent state, bu t is in  fact, the result o f coupling the 
two £ =  \  coherent states R y {P ) \ ^ , \ )  and i î y ( - /3 ) | | ,  | ) .  This w ill be shown exp lic itly  
when the idea th a t a ll angular momentum inte lligent states can be constructed using 
these two £ — \  coherent states is investigated.
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Chapter 2 

su (2) Intelligent States

2.1 Some Background

2.1.1 The su(2) Algebra
The su(2) algebra is commonly constructed from  the Pauli spin matrices, which are 

the traceless herm itian operators

= (  %  ) ,  = (  0 y (2.1)

The operation tha t is used to  define the su(2) and a ll o f the su(N) algebras is the 
commutator. The m atrix  comm utator is the Lie bracket. The su(2) operators, Eq.(2.1), 
then satisfy the following commutation relations, where L j  =  ^â j i

~  ~  '^Lyj (2.2)

along w ith  the Jacobi identity,

(A, [g, C]] +  [B, [C, A]] +  [C, [A, B]] =  0. (2.3)

The commutator of any two a rb itra ry  linear combinations of generators is another 
linear combination o f generators. Thus the su(2) algebra is said to  be closed under 
commutation. As an example, consider the 2 x 2  representation of Eq.(2.1). Using

17
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su(2) Intelligent Sta tes  18

L j  =  | ( j j  one finds;

[Lx,Ly]    LxLy LyLx

1 / 0  1 A /  0 - i  \  _  1 /  0 - 2  \  /  0 1 
4 \  1 0 j  ^ 2 0 )  4 I 2 o j v i O

_ 1 /  f 0 \  1 /  - 2 0
4 \  0 - 2 j  4 V 0  2

2 / 1  0 
2 ( 0 - 1

=  iLz  (2.4)

The elements o f the su(2) algebra act linearly on composite states; consider the 
operator

L j  =  L j ® I 2 ® . . .  (8) Hat +  111 ® L j  0  . . .  (8) H/v

+  Hi 0  II2 0  . . .  0  L j

=  L iJ  +  L 2.J +  . . .  +  L iV j- (2.5)

The action o f the operator L j on a composite system is

Lj\(f>) =  (L i j  +  Lgj +  ■ • • +  L]yj){\(j)A)i  0  \4>b )2 0  • - • 01 |V>y)iv]

= [Ll,j|0A)l] 0  \<Pb)2 0 . 0  \4 > v ) n  +  \4>a)i 0  [L2 ,j|V>B)2] 0 . 0  \4>v)N  

+  \ P a ) i  0  \4>b)2 0  . . .  0  [L;v,j|0v)iv] (2 .6)

The ab ility  to  combine elements o f the algebra in  a linear manner leads to  the 
defin ition of the very useful su(2) ladder operators:

L ±  =  L x ± i L y ,  (2.7)

which have the follow ing commutation relations:

[L+, L_] -  2L^, [Lz, L±] =  ± L ± . (2.8)

Using the usual nota tion  |/, m ), where |/, m) is an eigenstate o f both  L~ and L^, the 
action of the ladder operators is

L ± |/ ,m )  =  7 ^ ( 7 + T ) 7 /m ( m ± T ) | / ,  m  ±  1). (2.9)

The ladder operators allow one to  move between states th a t have the same angular 
momentum, £.
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2.1.2 The SU(2) Group
The set of 2 x 2 un ita ry  matrices w ith  determ inant 1 form  a group called SU(2) (for 

Special (i.e. determ inant 1) U n ita ry  matrices in  dimension 2), i.e. the 2 x 2  m a trix  T  
is an element of SU(2) i f

=  (2 .10)

and
de t(T ) =  + 1 . (2.11)

The SU(2) group is also a Lie group; for the purpose of this thesis, th is means 
every SU(2) element can be obtained by exponentiation o f an element of the su(2) Lie
algebra i.e. the operators of Eq.(2.1) or any a rb itra ry  real linear combination thereof.
Thus, any group element can be constructed as

T  =  exp(i(axô-x +  Oyây +  a ,â ^ )/2 ) . (2.12)

The expression o f Eq.(2.12) is not unique. In  fact, we also have quite generally

:  :■  ) .  <7

w ith  a and b complex numbers satisfying

aa* +  bb* =  1. (2.14)

In  particu lar, i f  we w rite
a = |a |e ~ *^ “ , b=\b\e-^^»  (2.15)

then we can define
| a | = c o s | ,  |6| =  sin | ,  (2.16)

and one can easily verify tha t the m a trix  T  can be w ritte n  as

T  =
y  e""' sin ^  e"'" cos |  J

a# W  0 
I  j  (  0

=  B ,(T )& (/))^z (2 9 ), (2.17)

where %  =  5(7 +  i3 ), % =  ^ (7  -  i9 ), and

Bz(7) -  , Rv(/)) =  - (2.18)

For an example, consider the element

^ ( ^ )  =  ^  )  . (2.19)
\ 2sm ^  cos ^  I

; cos 1 - e  sin 1

e""' sin 1 e"'" cos 1

.-'7 /2  0 W  cos§

0 y (  s in f
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I t  is unitary;

sin -I(cos I  sin I cos f  sin

y - i(c o s  ^  sin I  -  cos ^  sin cos^ ^  +  sin^ ^

so tha t
=  R x { - ^ )  =  (-R i(W ) \

and has a determ inant of 4-1;

(2.20)

(2.21)

det(.Rz(v))) =
cos

I sin

£
2
£

I Sin

cos

£
2

£

=  cos

=  1.

2 <£ +  sin2 £

(2.22)

The SU(2) group is a group of order oo because the group elements, Eq.(2.17), are 
defined in  terms of continuous real parameters. Therefore, every unique choice o f these 
yields a unique group element.

Every group has an operation tha t specifies how the elements are combined. The 
group operation for the Lie groups is m ultip lica tion . To combine group elements, one 
needs sim ply to  m u ltip ly  them  together. The result of such a m u ltip lica tion  is itse lf an 
element of the SU(2) group. Take the following product for example:

cos§ — sin ̂ 0
. a

smf cos 1 i l  °

cos ^ —<2*̂ /̂  sin 1 1̂
sin 1 e’ cos 1 J1- (2.23)

I t  is not immediately clear th a t Eq.(2.23) is an element o f the SU(2) group. However, 
we can easily show th a t i t  possesses the properties of an SU(2) element. Using the 
fact tha t Ry{(3) and R z { l )  are SU(2) group elements, and thus bo th  have determ inant 
equal to  1, along w ith  the m u ltip lica tive  property o f determinants [33],

det(Â .ê) =  det(Â ) de t(Ê ), 

we can see tha t the product Ry{0)Rz{'y)  also has determ inant 1: 

det{Ry{P)Rz{'y))  =  det(/2y(/3)) det(i?^(7 ))

(2.24)

(2.25)
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Evaluating the product Ry{0)R~{'y)[Ry{P)R~{'y)]^ using equivalent forms o f the relation 
Eq.(2.21) for Ry{0)  and one quickly finds

=  .R ^ (;9 )ll( jZ ^ (^ ))- i

=  11, (2.26)

im plying tha t
[&(,8)^z(7)]t =  % (/3);Z ,(7))-'. (2.27)

The product Ry{0)Rz{ ' i )  is thus an element of the SU(2) group. Determ ining which 
element, however, is not a tr iv ia l endeavour. Since determ ining th is is not central to  
th is thesis, i t  w ill be om itted w ith  a note th a t the details of the calculation can be 
found in  [26].

W hen one has a composite state, \4>) =  \(f>A)i ® \4>b )2 ® ® |<^v)iv, the composite
group element is constructed as the product o f the group elements for each system:

.Rj(0) -  .Rj(g) ® .R^(0) (8 . . .  (g, A^(0). (2.28)

The action o f th is composite group element on the composite system is sim ply for each 
ind iv idua l ro ta tion  to  act on its appropriate system and no others:

Rji.^)\(t>) == [Rj{d)\4>A)i] ® [ R j (9) 1 0 3 )2] ®  • • • <8) [ R f  {9) \0v)n] -  (2.29)

F ina lly  we note tha t i t  is possible to  find matrices which satisfy Eq.(2.2) bu t are of 
dimension larger than 2. For instance, the three-dimensional m a trix  representation o f 
angular momentum operators for states of angular momentum £ =  1:

0 \
(2.30)

The exponentiation o f these matrices produces a 3 x 3 representation of the correspond­
ing group element. One im portan t feature of th is representation is tha t, i f  the 2 x 2
un ita ry  matrices T\  and Tg:

Ti =  exp(2(axdx 4- ayây +  azd-)/2) (2.31)
T2 =  exp(2(/3r&z -I- Pyày +  0zàz)l2),  (2.32)

combine as 

w ith

Ti . 7]; -  7^, (2.33)

7 s  =  e x p ( i ( 7 x C T x  4 -  ' y y à y  +  7 z â ^ ) / 2 )  ( 2 . 3 4 )
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and 7x,7ÿ,7z some complicated function o f ax,0x  etc, then the corresponding 3 x 3  
matrices

7 \ — exp(î(o;a;Lj; 4- (XyLy 4“ e^zLz)) (2.35)

T2 =  exp{i {0xLx  4- PyLy +  P^L^)), (2.36)

combine in  an identical way:

. 7b =  7  ̂ (2.37)

73 =  exp { i { j xL x  +  l y L y  4- i zLz) ) -  (2.38)

2.1.3 Angular Momentum Coherent States
In  section 1.2.3, the idea tha t we can extend the construction of coherent states 

to  systems other than the harmonic oscillator was introduced, and the form  of the 
angular momentum coherent state was given w ithou t much explanation. This section 
is devoted to  showing how the construction of the coherent state can be realized in 
angular momentum systems, using a defin ition analogous to  Eq.(1.21).

I t  is useful to  note th a t the operator Lz is a diagonal operator in  the basis spanned
by {j^ ,m ), m — - I ,  —l + l ,  — 1, £}. We then rewrite the ro ta tion  Eq.(2.17) as

J . - y L z  A 0 L y  - i - i i z  i { - d + ' i ) L z (2.39)

so tha t the transform ation of the special state which is sim ply an extremal state, 
becomes

(2.40)

Due to the fact th a t the rightm ost rotation,  ̂ is about the z-axis, i t  simply
produces a global phase when acting on \£,£). Because this is common to  the entire 
state, i t  does not affect any property o f th is state and therefore d can be chosen so 
tha t the phase is zero. Th is gives us a general form  for the SU(2) coherent states in 
terms of two parameters:

lA ?) =  A ,(7)^(/))7Zz(-T)|^,^). (2.41)

Now tha t we have the general form , we can show tha t i t  is equivalent to  the form of 
Eq.(1.32).
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We begin by using e^'^e"^ =  H to  form  the relation

e ^ e ^e -^  =  (^1 +  B  +  ^  e~^

^  11 +  e^Be~^ +  ^  [ e ^ B e ~ ^ ) {e ^ B e -^ )

+ l( e ^ B e - ^ ) ( e ^ B e - ^ ) ( e '^ B e - ^ )  +  . . .

=  1 +  e^Be~^  +  ^ (e ^B e " '^ )^  +  i( e ^ B e " '^ ) ^  +  . . .

— exp(e"^Be“ "^). (2.42)

This allows us to  w rite

=  exp(ï/?(e'T'^'Êye-'T-^^))|^/). (2.43)

Noting tha t

Ry -  ^ ( - ^ +  “  R - )  (2.44)

and using the identity,

+  n [T z , 2 ±) -  f  [ îz ,  T ± ]] -  T± ]]] +  . . .
- 7^ - 27^ ^

=  L ±  ±  i ' yL±  — — T± T  - ^ L ±  +  . . .

=  ( i l ± n - ^ f  !%- +  . . . )

=  (2.45)

we can write,

exp(e''’''̂ f̂/3Lye“®'’'-̂ "')|̂ ,̂ ) =  exp(0e''^^=^(T+ — T_)e'''^^^)|^, )̂

-  exp(l/)e 'T^=(2 + -  T_)e-'T^=)|^,^>

=  exp(l/)(e'i'Ê +-e-''^Ê _))|^ ,^). (2.46)

A ll we have to  do now is introduce the complex variable C — \Pe^'^ and we have

IA 7 )-e (^ + -('-^ -|4 ^ ), (2.47)

which is exactly what we are looking for, showing the two forms Eq.(1.32) and Eq.(1.34)
are equivalent. I t  is im portan t to  note tha t, since /3 and 7 are arb itrary, every unique
pair (/?, 7 ) yields a unique coherent state.
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We w ill be using the form  of Eq.(1.34) since i t  is more convenient for the purpose 
of th is thesis.

Since the states o f Eq.(2.47) are coherent states they have specific properties like 
non-orthogonality and overcompleteness. See Appendix B.2 for the proof th a t these 
states do possess the required properties.

2.2 The SU(2) Building Blocks
Now th a t i t  is clear tha t angular momentum coherent states can be considered as 

arising from  a un ita ry  transform ation o f an extremal state, we w ill see how they can be 
combined together and b u ilt up to  systems w ith  higher values of angular momentum 
I .  In  Section 1.4.3 i t  was shown how the solution to  the simplest case, the spin-^ case, 
is a pair o f ^ ^ angular momentum coherent states. Section 1.4.4 saw the exp lic it
solution to  the i  — \  problem using the 3 x 3  m a trix  representation. The results are two 
£ =  \  angular momentum coherent states, plus one state tha t is not a coherent state.
As is suggested by these results, the bu ild ing blocks for angular momentum in te lligent 
states are angular momentum coherent states. Let us, then, take a closer look at the 
angular momentum coherent state bu ild ing blocks.

To construct coherent states we need an extremal state, i.e. what is known as a
state of highest weight. States th a t are of highest weight are defined as those th a t
re turn  zero under the action of raising operators. The action o f the raising operator 
for the su(2) algebra is given by

L+\£,m) — -\/£ { £ + ! )  -  m {m  +  l ) \£ ,m  +  l ) .  (2.48)

For the righ t hand side of Eq.(2.48) to  be zero we need

(̂  ̂4-1) -  m(m +  1) -  0, (2.49)

which leads to the condition
m =  .̂ (2.50)

Thus the su(2) state tha t has the highest weight is the state ]£,£), so tha t

2+1^,^) =  0. (2.51)

I f  we consider the composition o f two systems A  and B , we can construct the 
composite operators for the system as

2a,X =  Lx ®  Hg , L b x̂ =  1a ® 2x , (2.52)

2x =  2 a ,I +  2 b , I , (2.53)

where 1a and 1b are un it operators in  the ir respective subspaces. Eq.(2.52) sim ply 
means tha t 2a,x acts on the firs t (or "A" ) subsystem only, leaving the second (or “B ” )
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subsystem alone, and s im ila rly  for L b ,x - The operators

Ly =  ^A.y 4“ 2b,y, (2.54)

Lz =  L a ,z +  L b ,z (2.55)

are defined in  a sim ilar manner, w ith  [2x, 2y] =  i2 - .  The raising operator then becomes

2+ — L a ,+ 4- L b ,+- (2.56)

This allows us to  construct a highest weight state from  two spin-^ states. To show this 
we begin by coupling two spin-4 highest weight states and act on the coupled states 
w ith  2+. Using Eq.(2.51) one quickly finds

2+ [|5 , 5)a ® 1^, 5)5 ] — [2.4,+ | | ,  5)^ ] ® I5 , 5)b  4 - I5 , 5)a  ® [2b.-i-I5, 5)0 ]
=  0, (2.57)

which means tha t the state^ I j )  è ) l5 ) 5) a highest weight state. To find  the value of 
i  we simply need to  use the fact tha t

2-1^, m) =  m|^, m) (2.58)

along w ith  the condition o f Eq.(2.50) for highest weight states:

Lz [ \ l ,  5) ^ 15, 5)5 ] 2 A.zl2 , 2)^  I2 , 2)-B +  I2' 2)'^ 2B,z|g, 2)5
1 I 1 1\ 11 1\ , 1 I 1 1\ 11 1\
2 I2 ' 2Ml2> 2/B 4- 2 I2, 5 /A I2, 2>B

1 1\ I 1 1\
— (I)l2> 2) ^ 12’ 2)-B- (2.59)

Thus, the result o f coupling two highest weight sp in -| states is a state tha t is a highest 
weight state and has angular momentum ^ =  1, or

l i ,  l ) \ h  5) !)• (2.60)

We can continue in  th is way and construct

|1, l ) l 5> 1) — li> §)• (2-61)

To get to  the state \ i ,£), we need to sim ply couple 21 spin-5 states together:

1̂ , \ ) a \ \ ,  \ ) b  • ■ • iè> i ) 2< ^  (2.62)

Once the required state has been generated via Eq.(2.62), the appropriate transforma­
tion  can be applied to  generate the coherent state:

|/?i7) =  L i z { l ) R y { P ) R z { ~ l ) [ \ \ - , \ ) A \ \ ' , \ ) B - - - \ \ y \ ) 2 l \

=  A ,(7 )7 4 (/))7 Z z(-7 )K /). (2.63)

*For the remainder of this thesis the (8> w ill mostly be omitted when coupling states, unless a distinction 
is necessary, so that |£ i)a  ® |<P2)b =  \^ i )aW 2)b-
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Alternatively, using

k

one can start w ith  2£ copies o f the coherent state Rz{ j )R y {P )R z {—̂ ) \^ ,  5), and couple 
these d irectly  together;

=  Rz{7)Ry{P)Rz{ - l )  [I^J 5)5  • • • I5 ;
-  7(X7)74(/))Az(-7)|^,4, (2.65)

where
2̂

Rj{ ( f )  =  e x p { i i f i Y ^ L k j ) ,  j  =  X, y ,  z. (2.66)
k

This is only true for states tha t are generated as a result of the same rotations. I f  you 
couple two states tha t are generated w ith  unlike rotations then th is method cannot be 
applied.

The states Rz{ ' j )Ry {±P)Rz{—y)\^,  5), w ith  7 =  0, , are precisely the solutions
to the spin- 5 intelligent state problem. The a b ility  o f the highest weight states to  be 
easily b u ilt up is what allows us to  stra ightforw ard ly construct the angular momentum
intelligent states of ^ >  5 using the spin- 5 states as a set of build ing blocks.

2.3 A General Construction

2.3.1 Combining Intelligent States
To explore the idea of combining simpler in te lligent states to  construct more com­

plicated ones, we consider once again a composite system made from  two independent
subsystems, denoted by the subscripts A  and B.  Le t |%(a))A and \0{a))B be states of 
subsystems A  and B,  respectively, w ith  the property tha t

(îv4.z-ia ÎA ,i/)|x(a))A  =  AA|x(a))A (2.67)
(,Lb ,x -  iciLB,y)\0{a))B =  i^B\0{a))B,  (2.68)

i.e. Ix (a ))A  and \0{<x ) )b  are inte lligent in  the ir respective subsystems. Then,

IV;(a)) =  Ix (a:))A (8 |<̂  (a))g =  lx (a))^ W>B (2 69)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



su (2) Intelligent States 27

is intelligent since

=  { ^A +i ^B) \x{oi ) )A\0{ot ) )B-  (2.70)

In  other words, the direct product of two inte lligent states is also intelligent, provided 
tha t one th inks o f the resulting state as a composite state constructed from  two separate 
systems. This simple result is quite powerful as i t  indicates tha t in te lligent states can 
be “bu ilt-up ” by pu tting  together other in te lligent states.

Quite clearly, the task now at hand is to find the simplest intelligent states and use 
them as bu ild ing blocks to  construct more complicated ones.

2.3.2 Spin 1 System
R eco n stru ctio n  M e th o d

We can use and Eq.(2.70) to  construct £ =  1 intelligent states as follows.
Consider firs t the composite state

|^__(//)) =  |V'2'^(/i))A ® =  IV;^(Ai))A IV;^^(A!))B - (2 .7 i)

Using Eq.(2.53) and Eq.(2.54), one easily verifies tha t \0__(/r)) is in te lligent, w ith
eigenvalue A =  —2A. Using Eq.(1.57) and d is tribu ting  the product, we obta in

\4>---- (m)) =   ̂ |^|2 [ \ \ ^ \ ) a \ \ , \ ) b  -  Ix { \ \ , \ ) a \ \ , - \ ) b  +  \ \ , - \ ) a \ \ , \ ) b )

+  ^ ^ \ \ , - \ ) a \ \ , - \ ) b ] ■ (2.72)

I f  we sim ply note tha t

\ \ i \ ) a \ \ t\ ) b  — |.̂  =  1,m. =  1) ,

■ ^ [ \ \ , \ ) a \ \ , - \ ) b  +  \ \ , - \ ) a \ \ , \ ) b ] =  |1 ,0 ); (2.73)

\ \ , - \ ) a \ \ , - \ ) b  =

we can rewrite, assuming |a| <  1,

\0  (/L i) )  =  cos^ I |1 ,1) -  \/2cos I sin 1 11,0) - 1-  sin^ 1 11, - 1 ) .  (2.74)

In  a sim ilar manner,

|<j!)++(/r)) =  cos  ̂ I  |1 ,1) 4- \/2cos 5 sin 1 11,0) 4- sin  ̂ |  |1, - 1 ) ,  (2.75)
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is also intelligent, w ith  eigenvalue A++ =  2A. These two states are identical to the states 
I 'i/ 'i- )  and \0++)  o f Eq.(1.73) tha t were found exp lic itly  using the 3 x 3  representation 
for the £ =  1 case.

The state  (/ix)) is also intelligent bu t is a linear combination o f ^ =  1 and £ =  0
states. More specifically, w rite

l<̂ 4— W )  =  Y + J ÿ p  è )s  -  M dè> \ ) a \ \ ,  ~ \ ) b  -  l5 , - | ) x l l5 ,  \ ) b )

~  ■ (2.76)

Recalling tha t (see Appendix B.3.1)

[ \ \ , \ ) a \ \ , - \ ) b  -  \ \ , - \ ) a \ \ , \ ) b ] =  |0,0), (2.77)

has angular momentum ^ =  0, i t  must be projected out i f  we are to  remain in  the £ =  I  
subspace. Thus, the th ird  intelligent state w ith  £ =  1 is proportional to

IV’+ -(m )) oc YSpjjJp 1)a \ ^ , \ ) b  -  I5 , - \ ) a \ \ , - \ ) b ) ■ (2.78)

Having removed the £ =  d state, the correctly normalized state is

|V'+_(m)) =  \ j 3 + cos2/^ 2 ~  2 lb  - 1 ) )  • (2-79)

This is the th ird  £ =  1 intelligent state found in  Sec. 1.4.4. The eigenvalue associated
w ith  th is in te lligent state is A_, =  A+ +  A_ =  A — A =  0 . From th is i t  can be seen tha t
coupling the £ =  \  intelligent states can be used as a means o f constructing angular 
momentum inte lligent states for higher values o f £. The benefit o f th is method is tha t 
i t  bypasses the need to solve for the eigenvectors of a m a trix  tha t has dimension 2^ +  1.

C oupling  M e th o d

The previous paragraphs illustra te  how to  construct in te lligent states from  longer 
and longer strings o f I5 , 5) and I5 , — 5). The lim itin g  factor is the ab ility  to  quickly 
recognize, in  a sum of products o f I5 , 5) and [5 , —5), which linear combinations belong 
to  which £ subspace.

T h e  ca se  |a | <  1

Assuming |a| <  1 for the purpose of discussion, a good deal o f progress can be 
made by coming back to Eq.(1.59) and observing th a t Eq.(2.71) and Eq.(2.72) can be
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rew ritten  as

=  i î y ( - /3 ) [ | | ,  5) ^ 15, 5)5 ] ,

|V'i+(/3)} =  {RyW)\ l ,^)A]^[Ry{P) \^,^)B] ,  
=  R y { P )  [ I ,  1) ,

(2.80)

(2.81)

where the rotations Ry{TP)  o f Eq.(2.80) and Eq.(2.81) are composite rotations gener­
ated by the collective operator

Ly — l lf i +  11a ® Ly

=  L a .v +  L b ,y (2.82)

In  the param etrization of Eq.(1.34), Eq.(2.80) and Eq.(2.81) are SU(2) coherent 
states w ith  7 =  0. They are known to  be inte lligent from Eq.(1.73), and belong to  the 
1 = 1  subspace. Their respective angular momentum expansion is sim ply given by

I V ' ± ± ( / ? ) )  =  ^  | l ,m ) ( l ,m |R y (± /3 ) | l , l ) ,
m  

m

where
=  (^,m |7Zy(^)|^ ,m ')

is the reduced W igner function [26], described in  Appendix B.4.
The s ituation is s ligh tly  more complicated for

(2.83)

(2.84)

\0 -+ {P))  — [7 îy (-/3 )l2 i 2)^ ] ® % ( / ) ) | 5 , 2)5 (2.85)

This state is also a product o f two SU(2) coherent states. However, because each state 
has been subject to  a different ro tation, i t  is not possible to “ factor ou t” a collective 
rota tion. Nevertheless, one can separately expand

IrriA mB

and collect the terms, since the summations are independent,

ms- V2 (^ )
777/1,mg

Then project in to  the i  =  1 subspace by specializing the projector

m

(2.86)

(2.87)

(2.88)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



su(2) Intelligent States 30

to ^ =  1 so as to  obtain

m

where

90)

' ruA ruB is an su(2) Clebsch-Gordan coefficient, defined in  Append ix B.3.1. 

To show tha t the state of Eq.(2.89) is intelligent, we note tha t the operator

1

n ^ = i=  | l ,m ) ( l ,m |  (2.91)
m = —1

acts as the un it operator on any state completely in  the £ =  1 subspace, and annihilates 
any state w ith  no part in  th is subspace. Hence, the collective Ly operator o f Eq.(2.82) 
and its Lx  counterpart

Lx  — Lx  (8 Hj9 T  11a 8  Lx

=  L a ,x +  L b ,x (2.92)

must commute w ith  the pro jection H^^^ of Eq.(2.88) since neither Ly  nor Lx  can change 
£. Thus,

(Ê y -fa Ê ^ )|V i+ (/3 ))  =  n^ = :(Ê y-m Ê ^ )|< ^ _+ (/))), (2.93)

=  (A+ +  A _ ) |V L ( /) ) )  - (2.94)

The projection does not preserve the norm so, as indicated before, |V 'i+(/3)) must be 
normalized after the projection.

Since |V'±^^(/3)) is coherent, we see th a t |x^i+(/3)) is the result o f coupling two SU(2) 
coherent states, i.e. |V>L+(/3)) is a coupled SU(2) coherent state.

The eigenvalue problem in  the £ =  I  subspace has only three linearly independent 
solutions. Hence, those solutions must be the three states o f Eq.(2.81), Eq.(2.80) 
and Eq.(2.89), as they are linearly independent except when /? =  0, 7t, which implies 
a  =  ±1 . For a  =  ±1 , the operator Lx  — i a Ly  collapses to the operators L^z]

/  0 1 0 \  / O O O
L +  =  \/2  0 0 1 , L_  =  V 2 1  0 0 ) ,  (2.95)

\  0 0 0 /  \ 0 1 0

each o f which only have a single eigenstate.
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T h e  case |q | >  1.

In th is case, we have, from Eq.(1.62), a ro ta tion  about the z-axis. This simply 
introduces a phase via

=  ml V 2) 7Zy(/9) 7Z,( V 2) K ,^ ) , (2.96)

(2.97)

so tha t, for instance,

|V l+ ( /) ) )  (2-98)
m

is in te lligent by the same argument given for the ja j <  1 case.

2.3.3 Spin 5 /2  system

As a fina l example, consider how we can use the states of Eq.(1.57) and
Eq.(1.58) to  construct £ =  5/2 inte lligent states. S tart w ith  the product

|ÿ+++__(;8 )) =  [|^ )^ (/3 ))i|V '+ '^ (;8 ))2 lv I^ (/3 ))3 '

®  [lV;]:^"(,8))4 |V'!^(;9))5] . (2.99)

I f  we expand every \'0_/‘̂ {P))i, where the index i  labels one of five spin- 5 subsystems, 
and d istribu te  the product, the firs t term  of the resulting expression is given by

\ £ =  % ,m = 5/2) = coŝ  I  (I5 , 5 )1 1 5 , 5 )2 1 5 , 5 )3 1 5 , 5 )4 1 5 , 5 )5) ■ (2 .1 0 0 )

This term  is fu lly  symmetric under permutation.
Let us use the shorthands

L \  x ~  Lx  8  II2 8 H3 8 H4 8 H5 ,
Ê2,I = Hi 8  Li 8  I 3 8  H4 8  Us (2.101)

etc., so th a t each Lx,i  acts only on the x’th  subspace (of dimension 2). Let

I'A,x ~  L \  x T  L2,x 4“ L 3 I  ,

L b .x =  L 4_x +  L g ^ i, (2.102)

and define
Lx  =  L a ,I  4- L b ,x ■ (2.103)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



su(2) Intelligent States 32

The collective operators Ly  and L ,  are defined sim ilarly, as are L± :

L ±  =  L x ± i L y .  (2.104)

Because the collective operators are fu lly  symmetric under perm utation o f any two 
subspace index i  in  Eq.(2.103), and act on the symmetric state | | , | ) ,  every state of 
angular momentum i  =  %  w ill be symmetric under permutation. Thus, the order in  
which the I5 , ^ ) ’s or I5 , - 5) ’s occur is un im portant.

T h e  case |a| <  1

W ith  |a| <  1, every is obtained by ro ta tion  about the y-axis. Thus, we
can w rite

|,^ + + + -( i9 ))  =  [B ;;( /3 ) |# ,|)A ] [A ^ ( - / 3 ) | l , l ) g ]  , (2.105)

where we have d irectly  coupled

[ R y { P ) \ ^ , ^ ) i ]  8  [i2y(/3)i5, 5)2] 8  [i?y(/3)|5, 5)3]

=  R y { P )  [ In ,  5 )3] ,

=  7Z ;;(/3 )|# ,|)A , (2.106)

and
[R y ( - /3) |5 , 5 )4] 8  [ R y { - P ) \ l , l ) 5 ]  =  R y { - P ) \1 ,1 ) B  ■ (2.107)

Here, the ro ta tion  operator Ry{P)  =  e~'^9LA,y while R y {~ P )  =  _ Note tha t the
states of Eq.(2.106) and Eq.(2.107) are bo th  angular momentum coherent states. 

Eq.(2.105) can now be expanded as

1 5 ,  ‘ " ' A / A  | J . ,  " I ' B / B  e
mA,mB

To project in to the £ =  %  subspace, we specialize the projector Eq.(1.36) to ^

so as to obtain

%

E  I # '" ^ X I '^ I .  (2109)
m = -  %

V".^+__(/3)) OC E  ' (2.110)

where

mA (ms)
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mg is an su(2) Clebsch-Gordan coefficient.

A  better, more compact notation for __ ) is

(2.112)

This emphasizes tha t only the to ta l number o f I5 , 5), states and the to ta l number of 
states are relevant for the construction of an intelligent state of angular mo­

mentum t  =  £a + £ b - The state (/?)), for instance, can differ from  __ (/)))
by at most a phase.

To show tha t the state o f Eq.(2.112) is intelligent, we note once more tha t the 
operator o f Eq.(2.88) acts as the un it operator on any state completely in  the 
I  =  V2 subspace, and annihilates any state w ith  no part in  this subspace. Hence, the 
collective Ly =  L a ,y +  L b ,y operator and its Lx  counterpart must commute w ith  the 
projection H^/^ of Eq.(2.88) since neither Ly nor Lx  can change £. Thus,

(2.113)

=  (3A+ +  2A_)|V3j^^(/3)). (2.114)

The projection does not preserve the norm so ^(/))) must be normalized after the 
projection.

Since (/3 )||, § ) /  and i2y (-/3 )|1 , 1)b  are coherent, we see tha t IV'3̂ ^ ( / ) ) )  is the 

result of coupling two su(2) coherent states.

T h e  case  |a | >  1.

In  th is case, we note tha t

(^ ,m |7Z :,(/))K ^)

=  (^ ,m |7Z z(-V 2)^(/3) A X V 2) K 4  , (2.115)

=  )/2d^y(/9 ), (2.116)

so tha t, for instance,

m

is intelligent by the same argument given for the |a| <  1 case.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



su(2) Intelligent States 34

2.3.4 A General Expression

More generally, i t  is now clear tha t i f  we start w ith  2£a copies of |V>/^(/3)) and 2£b

copies o f we can w rite  for a  <  1

8  . (2.118)

We must treat the two rotations Ry{ P)  and R y { —P) separately. To do th is we take 
advantage of the fact tha t

Ha =  E  \^A,rnA){£A,mA\
m A = - ( - A

t-B
Hb  = E  I^B ,’TXB)(^B,mB| ■ (2.119)

mB=—tB

Since Ha  and Hb  are un it operators we can insert them where appropriate in  Eq.(2.118) 
w ithou t changing it. This yields

> E  [ \ ^ B , ' > T l B ) { £ B , m B \ R y i ~ P ) \ £ B , £ B ) ]  ■ (2.120)

rriA

rriB

Using the defin ition o f the reduced W igner function, Eq.(2.84), and the fact th a t the 
two summations are independent, we arrive at

E  (2 121)
m / 1 , m s

As is shown in  Appendix B.3.1, the coupling |^ a ,^ a )K b ,b x b )  w ill not only result in 
states w ith  £ =  £a  +  £b , bu t in  a number o f different states w ith  to ta l £i <  £a  +  £b - We 
are interested in  only the states w ith  to ta l £ =  £a + £ b  ̂ and thus we need to  th row  away
other angular momenta. To do this we use the projection operator of Eq.(1.36). A fte r
projecting out the unwanted states we have an inte lligent state o f angular momentum 
£ =  £a +  £b  as

(/^)) E  1̂ ' (^ ) ' (2.122)
m

w ith  TUB — m  — rriA, since the Clebsch-Gordan coefficients are zero otherwise, and

» & . ( / ’ ) =  E  (2.123)
rriA.imB)

Eq.(2.118) and Eq.(2.122) show exp lic itly  how su(2) intelligent states w ith  angular 
momentum £ can be constructed by appropriately coupling SU(2) coherent states. The
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state o f Eq.(2.118) is exp lic itly  intelligent and remains inte lligent under pro jection by 
of Eq.(1.36), thus yielding Eq.(2.122).
The expression for the coefficient (/)) can be simplified significantly. To do

this, we begin by noting tha t [26]

TUB,

rriA rriB

(2.124)

(2.125)

where I  =  £a  +  £b  and ( ^A+^B ^  ^  1 have been used. Thus,

E  (-1)
mAirriB)

m s - i s  [
rriA rriB (2.126)

A  litt le  more mileage can be done because Clebsch-Gordan coefficients for which i  =  
£a  +  £b  have known expressions [26]. Using th is and the condition m  =  rriA 4- m g , we 
obtain

~~ ! 21
,n = 0

(2.127)

The coefficient in  the bracket can be identified w ith  the coefficient of in  the
expansion of (1 4- x)^^-"'(l — This is sim ilar to the states tha t were used in  [25].
F ina lly  [26],

2<a

n = 0
I  — m  — n j  \  n  

i.m

(2^ a ) ! (2^A)

Inserting th is in to  (/?) gives

i,m o ^ \ / (2 ^ s ) ! (2 ^ A ) ! ( ^ 4 -m ) !( ^ -m ) !
W a W - " :  (2^)1

Note th a t the appearance of a ro ta tion  by ^2  about the y axis:

is reminiscent o f an expression found in  [23].
Introducing the norm alization factor

(2.130)

(2.131)
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we obtain the fina l expression for our in te lligent state as

l< ,J e ( « >  = < , ( . ( «  (2-132)
771

The construction for the intelligent states w ith  a  >  1 follows the same steps. The 
only differences are

cos P = ------, (2.133)
a

and the rotations are about the x-axis rather than the y-axis:

8  [E f  (-/9)KB,^B)a] . (2.134)

Remembering tha t we can w rite

=  (2,135)

leads to  the expression

E  (2.136)
mA ,mg

w ith  i  =  £a  +  £b , and m  =  rriA +  t u b ■ The fina l expression after pro jecting onto the
£ =  £a +  £b subspace and normalizing is

w ith  K f (/)) and (/3) as defined above.
A lthough we have lim ited ourselves to  expressions where £ — £a  +  £b , the factor 

£b — £a in  Eq.(2.129) suggests tha t, up to  a phase, i t  is only the difference between 
angular momenta tha t is here relevant. More precisely, i f  one considers ^  =  I a + j ,  £'^ =  
iB  +  k, then the tensor product £ \  ®£'q w ill contain a subspace of angular momentum 
£. The coupled states in  this subspace are also intelligent, bu t are simply proportional 
to  the states obtained by coupling £ a ^  £b- In  other words, no new state is found by 
considering cases other than £ =  £a  +  £b -

Finally, we note tha t the eigenvalue problem in  the £ =  £a +  £s subspace has at 
most 2 .^+1  independent eigenvectors. Using Eq.(2.137), i t  is clear th a t (except when 
/3 =  0 or 7t) we can construct exactly the righ t number linearly independent states of 
the form by selecting in  tu rn  {£a , £b ) to  be {£, 0), {£ — 1/ 2 , 1/ 2 ), ■ ■ ■ , {0,£) .

Hence, a ll 2 ^ + 1  intelligent states are coupled su(2) coherent states.
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2.4 Selected R esults

2.4.1 Expectations and standard deviations
The intelligent state o f Eq.(2.137) is an eigenstate o f L x  — i a L y  w ith  eigenvalue

(2.138)

I f  we assume |a| <  1, then A is real. Combining A =  j V l  -  w ith  cos/? =  - a  
yields the result

A f^/g  =  (^ A -^ B )  sin/3. (2.139)

Since a, { Lx) and ( Ly) are real, th is can be compared w ith  A /^ /g  =  ( Lx)  -  i a {  Ly) to  
give

( L i )  =  | ( ^ B - W s m / ? ,  ( 4 >  =  0- (2.140)

If, on the other hand, |a| >  1, we have

{ L x ) — 0,  ( Ly) =  —5 (^B — .^a) sin/3 . (2.141)

Furthermore, using Eq.(1.37) and Eq.(1.43) w ith  the fact tha t

[Lx — { L x ) , L y  — (Ly)] =  [ Lx , Ly ]  =  i Lz ,  (2.142)

one finds tha t the intelligent states generally satisfy

(A Ly)^ =  ——  (L^ )  , { A L x Ÿ  = - - a { L z ) . (2.143)

To show this, simply expand the le ft hand side o f Eq.(2.142) and compute the expec­
ta tion  value;

((L^ -  (L ,))(Ly -  (Ly))) -  ((Ly -  (Ly))(L , -  (L^))) =  i(L ,) . (2.144)

Using, now, the condition o f Eq.(1.43) gives

-m ((L y  -  (Ly))") -  ia((Ly -  (Ly))") =  i(L^), (2.145)

in to  which, inserting the re lation of Eq.(1.37) yields

(A L y )"  = -  — (L^). (2.146)

The relation for AL^, can easily be found from Eq.(2.146) using Eq.(1.43). This allows
com putation of a ll pertinent quantities from  (L - ) ,  which is sim ply given by

{ i . ) =  ( < , , ( « ) "  ■ (2.147)
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2.4.2 Numerical results
I f  we look again at the equation tha t we have solved;

( L x  -  i a L y ) \ 0 ) =  X\0),  (2.148)

it  is possible to  predict some general trends th a t the intelligent states should satisfy.
F irs t of a ll note tha t for fin ite  dimensional representations, i f  the state \0) is an eigen­
state o f either Lx  or Ly  the uncertainty re lation w ill reduce to  0 =  0. To show this, 
assume tha t the state | ^ i)  is an eigenstate of Lx  w ith  eigenvalue A^. P u ttin g  this into 
the uncertainty relation yields

-  (bz): A L y > 2 \ { 0 x \ ( L x L y L y L x ) \ 0 x ) \

A L y > 2  K V 'x K A i L j, — L y X x ) \ 0 x ) \

A L y > ^ \ X x ( { L y )  - ( 4 ) ) l

0 0 . (2.149)

Thus, we would expect tha t the uncertainty for the state \0) w il l be zero i f  \'0) is 
an eigenstate o f either Lx  or Ly. By looking at Eq.(2.148), i t  is easy to  see th a t i f  
a  =  0 then 10) is sim ply an eigenstate of Lx.  A lternative ly, as a  —> oo the Ly term  
dominates and \0) is approaching an eigenstate o f Ly. We expect, then, tha t a p lo t 
of the uncerta inty vs. a  for any inte lligent state w ill reflect this. Looking at Fig. 2.1 
shows tha t these two features are present. The p lo t is clearly zero at a  =  0 and, 
for |a| >  1, the uncertainty decays toward zero for increasing values of |a|. Another 
interesting choice for a  is a  =  ± 1. Choosing a  =  —1 in  Eq.(2.148) is equivalent to 
solving for the eigenstates of the operator L+.  However, i f  one tries to  solve for these 
states, one quickly finds tha t there is only one th a t is non-zero. This implies th a t the 
solutions to  Eq.(2.148) collapse in to  a single solution at th is point. The same is true 
i f  the value a  =  1, which produces L _ , is chosen. As well, i t  is precisely at the values 
a  =  ±1  where the solutions change from  a ro ta tion  about the y-axis, for |a| <  1, to 
a ro ta tion  about the x-axis. I t  is not surprising, then, tha t there is a d iscontinu ity in  
the plots at th is point.

Figure 2.2 compares the uncertainty curves for three o f the £ =  %  inte lligent states. 
They are completely symmetric about a  =  0 so only a  >  0 is shown. As well, i f  the 
values o f £a and £b  are interchanged, the curve remains unchanged. I t  is clear tha t 
they a ll possess the expected features. In  general, for the su(2) in te lligent states o f a 
given £, the difference between £a  and £b  affects the height of the curve for a given 
value of a. The smaller the value o f |^a — ^b|, the higher the uncertainty.

Figures. 2.3 and 2.4 illustra te  typ ica l results. The figures give the ra tio  of the un­
certa inty products (ALx  A L y ) j  of intelligent states to  the coherent state (A Lx  ALy)c,
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ALxALy

1.2

0.8

F igure  2.1: A  p lo t o f the  unce rta in ty , A L ^ A L y  =  fo r the  sta te  T he  uncer­

ta in ty  curve fo r every su (2) in te llig e n t s ta te  has the  same general shape, though  th e y  va ry  
in  he ight, depending on to ta l and sharpness, w h ich  is governed by  the  ra tio

AT ixAÎ iy

1.2

0.8

0.6

0.4

0.2

F igu re  2.2: A  p lo t o f the  u n ce rta in ty  curves fo r th ree o f the  i  =  ^2 in te llig e n t states.
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for which I  a =  I- These ratios are jus t the ratios of (T^). For the coherent state, using 
the relation

e'^Be ^ — B  +  \A,B] +  -  {A, [A, B]] +  — [A, [A, B]]] + (2.150)

one can easily find, for |a| <  1,

( 4 ) ,  -

=  +  i(3[Ly, Lz] -  [Ly, Lz]] — +  ' ' ')l^, 4

=  (^, 1̂ ( I ,  _  f  2 ,  +  ^ 2 ^ + . . . )  1̂ ,

=  (£ ,^ |(2~ cos/3 -  L is in /3 ) l^ ,^ )

=  £cosP.  (2.151)

In  Fig. 2.3, the ratios for in te lligent states of angular momentum £ =  s/z w ith

0 0.1 0.2 0.3 0.4 0.5 0.6 0,7 0,8 0.9 1

(A = 3/2

2.5
* 2

0.6 0.8 10.5 0.7 0.9

P/TC

F igure  2.3; The  ra tio  | ( Lz)  | / / |  ( Lz)  \c as a fu n c tio n  o f or a  fo r £ =  s/z and various values 
o f £a  and £b  so th a t £a  +  S o u r c e :  Reproduced w ith  permission from  B. R. Lavoie
and H. de Guise Su(2) intel l igent states as coupled su(2) coherent states, J. Phys. A: M ath. Theor. 
40 (2007) 2825-2837. ©  lO P  Publishing.

{£a =  2,£b  =  Vz) and {£a — ^/2,£b =  1) are given. The results are unchanged i f  one 
switches £a and £b- The curves a  <  0 are identical to  those for a  >  0. Furthermore, 
the results w ith  |a| >  1 can be obtained from  those w ith  |q| <  1 by the transform ation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



su (2) Intelligent States 41

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

4

3/2
3.5

3

2,5

2

1.5

1
0.60.5 0,7 0.8 0.9

p/n

F igure  2,4: T he  ra tio  | ( L^)  \ i / \  ( L^) |c as a fu n c tio n  o f or a  fo r ^ =  3 and varions values 
o f and I b  so th a t ^a  +  =  3, Source: Reproduced w ith  permission from  B, R, Lavoie and
H, de Guise Su(2) intell igent states as coupled su(2) coherent states, J, Phys, A: M ath, Theor, 40 
(2007) 2825-2837, ©  lO P  Publishing,

a  —> 1/q, so the range 0 <  a  <  1 captures a il qualita tive features of the curves. Figure 
2,4 is s im ilar to  2.3, except tha t £ =  3. The symmetries of Fig.2,3 are also present in  
Fig, 2,4,

One im mediately observes tha t the uncerta inty products for in te lligent states (w ith  
7̂  £) is always greater than the corresponding product for the coherent state (w ith  

£a =  I)-  Insofar as the product A L i  goes, the “worst” in te lligent state is the 
one for which £a  and £b  are as close as possible. We have not been able to  prove 
this analytica lly because Eq,(2,147) for { L~ )  is d ifficu lt to  manipulate. However, we 
have verified tha t th is observation holds over a wide range of values of £. O ther curves 
illus tra ting  th is behavior can be found in  [25],

I t  is not d ifficu lt to show tha t the m axim um of the product A L x A L y  is sim ply ^£. 
Indeed, by Eq,(l,49), i t  is clear tha t the product is maximal when |(Ê .)| is maximal.
This m aximum is reached for the states |^ ,± ^ ), From Eq,(2,118) and Eq,(2,122), i t  
imm ediately follows th a t th is w ill occur when P =  0 or P — n. This implies from

cos
1

x / I  +  l/Ip
sm ? =

\ / i  +  \h‘Y
(2.152)

th a t pL =  Q ox p =  oo which in  tu rn , by E q ,(l,53 ), implies a  =  ±  1,
As a  ± 1, all intelligent states converge to  a single state. W hen a  =  ±1  precisely, 

the operator Lx  -  i a L y  becomes the n ilpo ten t Ê+ or L_  respectively, bo th  of which 
have only one non-zero eigenvector.
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Finally, Fig. 2.5 shows the population o f various m  substates in  the inte lligent state

<h>

F igure  2.5: T he  popu la tions o f m  substates fo r d iffe ren t values o f m  and i  =  5/ 2.

T he values o f /3 were selected so th a t ( L . )  — ±  V 2, ±  Ya- S o u r c e :  Reproduced w ith  permission 
from  B. R. Lavoie and H. de Guise Su(2) intel l igent states as coupled su(2) coherent states, J. Phys. 
A: M ath. Theor. 40 (2007) 2825-2837. ©  lO P  Publishing.

For clarity, we have restricted the calculations to angles /? chosen so tha t 

{Lz)  =  ± 3 /2 )TVs- This figure illustrates a very general symmetry: l«^Vrg(/9)P =

This can be traced back to  symmetries o f the d-functions entering in 

the construction o f the ^  (/3) coefficients.
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Chapter 3 

su(3) Intelligent States

3.1 Som e background

3.1.1 The SU(3) Group and the su(3) Algebra
The SU(3) group, like the SU(2) group, is a Lie group. There is an SU(3) element 

for every 3 x 3  un ita ry  m atrix  w ith  determ inant 1. The group elements are constructed 
by exponentiating a set o f 8 matrices called su(3) generators. In  the ir simplest form,
the generators are the set of 3 x 3 traceless herm itian matrices. A  convenient basis for
the generators is

hi  =  ôgûg -  â jâ i , (3.1)

/i2 =  âgâs -  •

Using the usual commutation re lation for harmonic oscillator creation and destruc­
tio n  operators, we find the abstract com m utation relations

[Cij, Cu ]  =  Ci^Sjk -  CkjSii- (3.2)

As 3 X 3 matrices, the operator Q j  can be obtained using the harmonic oscillator 
basis states |100) , |010) , |001) , where |n i,n .2,ng) is the harmonic oscillator state con­
ta in ing r i i  quanta in  direction 1, U2 quanta in  direction 2 and ng quanta in  direction
3. Thus, for instance,

Ci2 —> , C21 —> I , (3.3)
0 0 0

0 0 0

0 0 0

43
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so tha t

Ci2 +  C21

-  (^Ci2 -  C2l^

1 0 0
0 0 0

(3.4)

(3.5)

are traceless and herm itian. The operators C u  and C21 are ladder operators in  su(3) 
in  the same way th a t L+  and are ladder operators in  angular momentum theory. 
The m ajor difference is tha t, whereas there are only two ladder operators in  angular 
momentum systems, there are, in  addition to  C 12 and C21, four other ladder operators: 
C'i3,C'3i,C'23 and C32.

We are not restricted to a 3 x 3 m a trix  representation. Using the six A =  2 states 
{ |200) , |110) , |101) , 1020) ,  |011) , [002) }  , i t  is clear tha t we can obta in a 6 x 6 m a trix  for 
each Ci j  and h,. Upon exponentiation, th is w ill result in  a group element represented 
by a 6 X 6 m atrix. Such a construction holds for any positive integer A, resulting in  a 
representation of dimension ^ (A  +  1)(A  +  2 ).

The laddering action of each C'y, and the commutation between any two elements, 
is best illustra ted using a weight and a root diagram. The root diagram for su(3) is 
given in  F ig .(3.1).

C1.2

C2.3

[Ci,2,C2,3] — C i,3

C2.3

[Ca.sjCiJ = 0

Figure 3.1: Representation of the su(3) ladder operators as vectors in the su(3) weight space. 
The six ladder operators Q j  are shown explicitly, on the left, and the two operators hi and 
^ 2  lie at the centre. The two vector additions on the right show the commutation relations, 
though the proportionality factors cannot be determined in this way.

The comm utator [C'y, is proportional to  the vector sum of the roots associated 
to  C'y- and Cki- I f  the resulting vector sum is the root associated to  Cab, then [C'y, 
is proportional to Cab-

The vector on the root diagram associated w ith  C'y is proportional to  the raising 
action o f C'y on a basis state |n in 2n 3) . This is illustra ted in  F ig .(3.2), which also
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| 400> | 400>

I202> C:,, | 211> ^

# # # #
| 112>

|004> I 040> I 004> |040>

Figure 3.2: L eft: Graphical representation of the geometry of the su(3) weight space. This 
is the weight diagram for A =  4. It is clear that the extremal weighted states are at the 
vertices of the triangle. R ig h t: Showing how the ladder operators act in the weight space.

illustrates the geometry of the su(3) weights: harmonic oscillator states o f the type 
1̂ 1̂ 2713) form  a fin ite  triangu la r lattice.

3.2 The SU (3) Building Blocks

3.2.1 SU(3) Coherent States
The defin ition of a coherent state in  th is thesis is a state obtained by a un ita ry  

transform ation of a special state [16]. For SU(3), we choose the special state to  be 
the state [00A). This choice is due to  th a t fact tha t we define th is state to be the 
highest weight SU(3) state (the details are covered in  Appendix B.3.2). To construct 
a coherent state one needs, simply, to  apply a un ita ry  transformation:

|ZV) =  #|00A) (3.6)

In  general, the SU(3) element Ù  depends on 8 parameters. I t  can be shown [34] 
th a t i t  is possible to  factor the SU(3) transform ation in to  the product of three block 
SU(2) transformations:

Û =  T 2 ,3 (a i,/3 i,7 i)T ’i,2(a2,/?2,Q;2)T2,3(a;3,/?3,73) (3.7)

where the sub-indices on the s indicate which subspace the operator acts in, and
the T i j  s are:

7 ) =  - (3 8)

Showing th a t the resulting coherent states are overcomplete and non-orthogonal is 
a non -triv ia l exercise. As these properties are not central to  th is work, the proofs w ill 
be om itted.
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3.2.2 The Simplest su(3) Intelligent States
As w ith  the angular momentum inte lligent states, the build ing blocks for the su(3) 

in te lligent states are the solutions to  the simplest problem, which is A =  1. In  th is case 
i t  happens to  be a 3 x 3 problem. Also, like the angular momentum case, the bu ild ing 
blocks w ill be seen to be coherent states.

The su(3) algebra contains eight elements, bu t the uncertainty relation, and thus 
the equation for intelligence, depends only on two herm itian operators plus a th ird  
resulting the commutator of the in it ia l two. A n  attem pt to solve the problem in  
general using two operators tha t are a rb itra ry  linear combinations o f the 8 generators 
proved to  be unmanageable. Since the uncerta inty relation, and thus the equation for 
intelligence, depends only on two operators, we decided instead to  choose:

^  I  ̂ 0 - 1  ) , (3.9)

w ith  the commutation relation,

C' =  =  - . (3.10)

and B'  are sufficiently simple, yet sufficiently general to  capture features of the su(3) 
problem absent from the angular momentum case.

The physical m otivation behind is this choice is an analogy w ith  the 2 x 2  an­
gular momentum operators o f Eq.(1.48). I f  \tpf) and |0 p  denote any 2-dimensional

eigenvector o f and Ly, respectively, then these eigenvectors satisfy the so-called
complementarity condition, which in  two dimensions reads:

=  (3.11)

Our choice o f su(3) observables is such tha t, i f  and \ ^ f )  denote any 3-

dimensional eigenvector o f A!  and B ' , respectively, then these eigenvectors satisfy the 
complementary condition in  three dimensions;

=  l  (3.12)

For sim plicity, and to follow as closely as possible the results on angular momentum,
we go to  a basis where C  — —i[A ' ,B ' \  is diagonal. This w ill make calculations easier
later. To achieve this we use the un ita ry  m a trix

/  0  14-v 3  \

- 1

1

\ / 3 - V s \ /3 + V 3

V s - V s \Z Ï+ v /5

34“ n/3

(3.13)
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to  make the transformations:

A  =  T - ' ^ Â 'T  =

B =  f - ^ B ' T  =  ^

2vr
' Y

2-ïïi

C =  T - ^ C T  =
47F

9\/3

0

1
\ / 3—\/3

Vs+VÎ

V 3 - V ^
0

0

V ? + v ^
0

0

0

-1

V 3 + V 3

1 - 1

\ / 3 - \ / 3
0

0

0

0

/  2 0 0

I °  -
1 - V 3 0

\  0 0 — 1 +  \ / 3

/

(3.14)

This un ita ry  transform ation does not affect the complementary condition used to  define 
our su(3) observables. Note tha t the commutation relation, Eq.(3.10), holds for the 
unprimed operators as well since, using T ~ ^ T  =  11:

c = f- '^ c 't
=  t - \ - i [ Â !  , B ' ] ) f  

=  - i f - \ Â ' B ’ -  B ' Â ' ) f.. /%/S/N - y. ., /N/SA - AAA - A
=  - i T - ^ { T A T ~ ^ T B T - ^  -  T B T - ^ T A T ~ ^ ) TA - A AAA . A A A A , _ A
=  - i T - \ T A B T ~ ^  - T B A T ~ ^ ) T  

=  - i f - ' ^ f { Â B  -  B Â ) f - ^ f  

=  - i ( ^ - B . Â )

C =

The equality tha t defines intelligence, Eq.(l.S ), then reads

A .A A B  =  1 |(C)|.

(3.15)

(3.16)

Eq.(1.45) now becomes a 3 x  3 eigenvalue problem for the operator Â  — l aB ,  w ith  
eigenvalue A =  (Â ) — i a {B) .  Solving yields three intelligent states, which are functions
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of the parameter a. In troducing once more g =  we have

/

=
l - ' / 3 , , 2 1

\ / l  +  (2 -  \/3 )

\ / 3  + V 3 m  ^

^  I \ /2  +  V 3 Y  

1 /
 ̂ — V^3~+~\73/r \

\ / 2  +  IA/'s

A/2 =

AA =

\ 1

y ^ ( l +  l/rp ) ( l  +  (2 +  V 3) lp.p) 

1

y ^ ( l +  l/xp) ( l  +  (2 +  \/3 )  I^P )

(3.17)

Notice, fo r completeness, tha t i f  we had used the primed variables to calculate the 
inte lligent states we would have the equation:

Â! -  iaB' \ i l j ' )  =

where is completely a rb itra ry  for now. W ritin g  i t  in  terms of the unprimed oper­
ators, we get

and left m u ltip ly ing  by gives

(3.18)

Since we already know tha t for A =  1 the eigenstates o f {À  — i aB )  are the states 
i t  follows tha t

(3.19)

or
(3.20)

which makes i t  clear tha t the solutions in  the primed basis would sim ply be related to  
our solutions by the transform ation Eq.(3.13).

We wish now, as we did w ith  the su(2) states, to  construct these simple states using 
only un ita ry  transformations. We begin by noting tha t a ll of the states in  Eq.(3.17) 
have a T ’ in  the th ird  row. We take advantage o f th is by using a common state from  
which we can construct our three intelligent states:

1, 2, 3. (3.21)

The general form  for a un ita ry  3 x 3 m atrix , which depends on 8 separate parameters, 
is not simple. I t  was found tha t the most convenient way to  proceed is to  w rite  the
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required SU (3) transform ation as a product o f three block 2 x 2 un ita ry  transformations 
(see Appendix B.5 for a proof o f th is decomposition):

U, =
d* 0

(3.22)

This particu lar factorization is chosen because the firs t ro ta tion  (rightm ost in  the 
factorization) w ill not affect the state in  Eq.(3.21). However any factorization could 
have been used. To determine the entries in  the transformations, we simply determine 
which values solve

Y ' lV ; ' )  =   ̂̂ y
Let us consider \'ipl) for the purpose o f example. We begin by operating on 

w ith  the inverse of Û2I

V s T V S a  \0 —02
V 2 +  

1

The firs t step is to find 02 and 62 so as to  introduce a zero as follows:

/  a / s  4- \

(3.24)

1 0 0
0 02 —62
0 M o:

( Vs + Vsg \
v/2 +

1 /

\ / 3  +  ' \ / 3 g

 0_

^2 '\/2  +  y/SfjS +  O2 y
(3.25)

From the condition |o2p +  |f»2p =  1 and 02 \ /2  +  — 62 =  0, 02 and 62 can be
completely determined, up to  an overall phase. Now we can apply a fina l ro ta tion  and 
determine Û2:

A/2
C2 0 —C?2
0 1 0
Æ 0 c:

/ y / 3 +  a /3 /x

 0_

&2 2 T + O2

(3.26)

Again, we can completely determine C2 and ^2 in  a sim ilar manner. There is no need to 
apply a th ird  rotation: since vector length is preserved and the state is normalized, the 
1 appears for free. The three un ita ry  transformations are found by taking the inverse 
of U~^ . For instance

1(  1 0 0

û i  - 0 hi
1
V O -b \ ai

Oi =

bi =
(3.27)
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Ü2 and Û3 are closely related;

1 0
U 2 =  0 a*o

0 — bn 0,2

1 0
%  —  I 0  On

0 — bn O2

Cn 0 — 02

dn 0 C2

02 =

C2 =

y i +(2+V3)|f,|4
\ / 2 + \ / 3 f i Z

yJl+{2 + VZ)W  
y i+(2+V3)H ^ (3.28)

\J (l+lMl")(l+(2+\/3)|^ip)

dz -  ,
y(l+|,iP)(l+(24-\/3)|;.|2)

Now th a t we have our three states in  terms of un ita ry  rotations, we w ill introduce 
an identification sim ilar to Eq.(1.56);

1001), 1010), 1100). (3.29)

We are now able to  rewrite Eq.(1.45) in  a more useful manner:

-  f a g )  Û ,(a)|001) =  A Û ,(a)|001),

and our three bu ild ing block solutions as

=  ^ i { a ) \ 0 0 1 ) , 1 =  1, 2 ,  3.

(3.30)

(3.31)

Now tha t we have the simple bu ild ing blocks, we need to  work out how they combine 
together. As w ith  the SU(2) states, the coupling o f two identical extremal states yields 
an extremal state w ith  u n it probability. Thus, for instance.

C3.2 [|001)x|001)g] -  [|001)A|001)B]

=  C ^2|001) / i]  |001)g  +  |001)ŷ  [ c ^ 2|001)B

=  0 =  C3,2|002), 

where the operator € 3^2 is defined by

(3.32)

C3.: C'a,2 ® 1b + Ha <8> C'3,:
a 3,2 ^3,2- (3.33)

The same is true for the other two raising operators C"3,i and Czq (see Appendix B.3.2 
for a discussion o f su(3) raising and lowering operators). Using this we can construct

1001) 1001) =  |002), (3.34)
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and then coupling th is to  another extremal state w ill continue the process:

|0 0 2 > |0 0 1 ) =  |0 0 3 ) .  ( 3 .3 5 )

To get to  the state |00A), we sim ply need to  couple A states together:

|001)^|001)b . . .  |001)a =  100A). (3.36)

From th is extremal state we can obta in  a coherent state v ia  the Ui{a)  operators. As 
well, coupling together A identical coherent states o f the form Ûj(a)|001) w ill produce 
a coherent state:

where

Û,4(a)|001)yi] ® p ^ ^ (a ) |001)B 

=  Û , ( a )  [ |0 0 1 ) , t |0 0 1 ) a  . . .  |0 0 1 )A  

=  Û,(a)|00A)

=  IV;^(a)>,

Û A (a )|001)A

( 3 .3 7 )

(3 .3 8 )

As w ith  the SU(2) states, we take advantage of the ease of bu ild ing up the SU(3) 
coherent states to  construct the su(3) in te lligent states.

Since we have factored the f7,(a)s into block su(2) rotations, Û ,(a) =  A 2,3(0j)i?i_3(</>,), 
we can w rite  the intelligent states as A 2,3(d,)Ai_3(<^,)|00A) and note tha t, for |a| <  1, 
we can define

b, = sm ■ ■ sm •2 ,  ~  2 •

We now have our three basic inte lligent states in  the form

l^ i( a ) )  =  A 2,s(0i)|OO1)

=  i?2,3(02)Ai_3((/)2)|OOl)

IV^(a)) =  7%2,3(^2)Rl,3(-.A2)|00l).

Comparing these w ith  Eq.(3.6) shows th a t they are coherent states.

(3 .3 9 )

( 3 .4 0 )

3.3 A General Construction

3.3.1 An Example: The Six-Dimensional Case
As an illustra tive  example in  a higher dimension, we w ill consider the case where 

the to ta l number of quantum elements in  the system is n , +  nz +  ns =  A =  2. This
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translates in to  a 6 x 6 m a trix  representation. We need to  solve for the eigenvalues and 
eigenstates o f the m atrix

A  — ia B  =

/  0
(1 +  a)r i-  

2-k  0

3 (1 -  a)r]+

0

V 0

(1 -  a)?7_ 

0

(1 +  a)r ]-  
0

(1-0)77+
V2
0

0
(1 -  a)?7_ 

0 

0 

0 

0

(1 +  a)r]+ 
0 

0 

0
(1+0)77- 

(1 -  a)ri+

0
(1+0)77+

0
(1-0)77-

V2
0

0

0

0

0

(1 + 0)77+ 

0 

0

w ith  7?+ — y  3+Â3 ' and 77-, =  ■ Clearly, the complexity o f the problem grows

rapid ly w ith  A, which is where the power of the coupling method can be best seen.
The SU(3) bu ild ing blocks are the solution to  the A  =  1 problem, given by Eq.(3.40). 

By repeating, for A  and B , the steps leading to  Eq.(2.70), we know th a t i f  we couple 
two A =  1 solutions together, we get another solution. There are a to ta l o f nine possible 
products of the three basic bu ild ing blocks:

|V 'K a ) )A lV 'i(a ) )g , |V 'i(a ))^ |V '3 (a ))g ,

| V '2 W ) y i | V '2 ( a ) ) g ,  | V ' 2 W ) y i | V ' 3 W ) g ,  (3 .4 1 )

|V '3 (a ) )A l4 (a :) )B , |V ;3 (a )),4 l^2 (°:))B ' |V '3(«))A l^3(o:)>B-

From this, we can extract six states symmetric under the exchange o f A  and B  :

|V 'X a ))y4 |V 'I(a ))B , |V'2(a ) )x |V '2(a ) )B , |'^3 (a))2 i|V '3 (a ))g

|4 (« ) ) y t  |V'2(a ))B  +  |V;2(a ))A  |4 ( a ) ) B  ,

| V ; I ( a ) ) ^  |V '3 ( a ) ) g  +  |V ; 3 ( « ) ) x  |V ;3 (« ) )B  , (3 .4 2 )

|V'2(a))yt |V '3(a))g +  |V '3(a))^ |V;2(a ))B

and three states antisym m etric under exchange of A  and B  :

|V'2(« ) )g  -  |4 ( « ) ) A  |V 'i(a ))g  , 

|V ;I(a))yi |V;3(a))B -  |iA3(a))A |V ;3(a))B , 

|lA2(a ) ) ^  |V '3(«))g -  |V'3(a!)),^ |V;2(a ) )g  -

(3 .4 3 )

The situation is reminiscent of angular momentum systems, where coupling the two 
spin-1 particles yields sym metric i  =  1 states and an antisym m etric ^ =  0 state. This 
is symbolically w ritte n  as

^  ^  - 7  1 @ 0 . (3 .4 4 )
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The rules for combining su(3) states are sim ilar. Using the notation of Appendix 
B.3.2, the symmetric product of two states in  (0,1) is a state in  (0,2) while the an ti­
symmetric product is a state in  (1, 0), or

( 0 , l ) 8 ( 0 , l ) ^ ( 0 , 2 ) e ( l , 0 ) .  (3 .4 5 )

W hile the rules for combining two general su(3) states are quite complicated, one can 
show quite generally tha t,

(0 ,9i) (8 (0, %) (0,91 +  % )® (3.46)

which confirms the statement th a t the product o f two highest weights is also a highest 
weight.

Much like we did for angular momentum, where we restricted, using a pro jection 
operator, the to ta l angular momentum to  satisfy I  =  I a  +  we w ill, in  th is thesis, 
use a pro jection operator to  restrict the tr ip le  product (0,ç i)  8  (0, çz) 0  (0 , %) to  
states in  (0, qi +  q2 +  © )• In  terms of harmonic oscillator states, th is condition reads 
A =  A i -t- Az - f  A3.

Before pro jection into the (0, qi +  q2 +  qs) subspace, our states w ill be denoted as

[(^A i.A z.A a) =  0  |V '2 ^ (a ) )B  0  IV '3 ^ (a i) )c . (3  4 7 )

We now proceed w ith  the example of the coupling

|<Ai,i,o) =  [ |V ; i ( a ) )A ]  0  [ |V '2 (o :) )g ]

=  [R^3(gi)|001)A] 0  [7Z^3(02)R^3(<^)|OO1)B] . (3.48)

T h e  C a se  |a | <  1

For |a| <  1, the operators A , j( d )  correspond to  rotations about the y-axis, and can 
be w ritte n  as R(^)t j( i) ) -  As we w ill be using th is case to  do most of the calculations, 
we w ill suppress the y subscript unless a d is tinc tion  is necessary.

We can use the A  =  1 u n it operator,

1 n
11 =  ^  ^  |m, n -  m, 1 — n) (m, n  — m, 1 — n | , (3.49)

n =0  m = l

to  deal w ith  the Since each ro ta tion  only happens in an SU(2) subspace, we
can make the identification of the type

\ni ,n2,r i3) ^  14s,mzg) (3.50)

via,

h z  =  2 (^2 +  ras), mzs =  - (n z  -  na). (3.51)
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This particu lar identification would be valid for R 2.z{'à) as this transform ation does 
not affect n i.  This allows us to  employ the same W igner d-function as we d id  for the 
su(2) states. S tarting w ith  the “T ” subspace we quickly get

1

^  \0,UA, 1 -  n 4 )A (0 ,n 4 , l -  nA\R2A^i) \001)A
ua=0

K2nA -l),-

There are two rotations in  the “ 5 ” subspace, and they must be dealt w ith  sepa­
rately. Inserting the un it once gives;

1

^2,zi^2) ^  -  Vb )b Wb ,0,1 -  Ub \Ri ^3{(I)2)\001)b
v b  =0

=  X 1 a |3(6'2)|îzb,0 ,1  -  (3.53)

A  second application o f the u n it yields:

\ ~ V B

I'D riB=0

X B(z/B,72g, 1 -  Z/g -Ug|A^g(g2)|z/g,0, 1 -  Z/g)g

=  ^  ^  WB,nB,  1 -  iZg -  7%g)jB
Z/g Tig

P u tting  these back together gives

101,1,o) = ^  |0,7l/l, 1 -  7t/l)/l|!/g,7%g, 1 -  Z/g -  7lg)g

p-55)

A ll tha t remains to  do is couple the two kets together and we w ill have a ll o f the A =  2 
intelligent states (see Appendix B.3.2 for a discussion on su(3) coupling). W hen we 
are coupling the states, we only want to keep the state w ith  A =  A ^ +  A g =  2. The 
state we w ill keep is

+  Tig, 2 -  71/1 -  z/g -  Tig), (3.56)
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w ith  coupling coefficient [27]

(2 -  ua  -  riB -  i/g)! (n ,4 +  ng )!
2!

We now have our unnormalized A =  2 intelligent state as

I0 i,i,o (“ )) =  WB,nA +  r i B , 2 - n A -  i^B -  Ob )

(3.57)

;(2  -  n.4 - U B  -  v b V- {nA +  ng )!
2!

where the re lation between the angles and a  is given by Eq.(3.39).

T h e  C ase  |a| >  1

To approach the |q| >  1 problem, we note th a t the only change tha t occurs is in  
the value of g. Eor the previous case g  was a real number. In  th is case, however, 
g  becomes purely imaginary. This does not affect the process by which we construct 
the inte lligent states; i t  sim ply changes the form  o f one o f the rotations. Looking at 
Eq.(3.27) and Eq.(3.28), one can see tha t there are sign changes, bu t tha t is a ll for the 
i?2,3 rotations. The Ri^z ro ta tion, on the other hand, changes in  a way tha t we have 
seen before. Two o f its m a trix  elements become imaginary, transform ing the ro ta tion  
in to  one about the x-axis. We then can use the relation

E^(79) -  d Z z ( - V 2 ) ^ (4 ^ X V 2 )  (3.59)

to  evaluate the effect of this change. The only place th a t th is ro ta tion  appears is in  
Eq.(3.53). Using the defin ition o f the W igner D -function  [26] to evaluate the expecta­
tio n  value yields

B {uB, 0, 1 -  3(02) 1001)1

= g  (l/g ,0 ,l -  :/B |R ^)i,3(-V2)^^)i,3 (0 2 ) % ! , 3 ( ^ 2) 1001)B

_ l ( - V 2 , 0 2 ,  V2)

(3.60)
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The unnormalized intelligent state for |a| >  1 is then

101,1,0(0! ) ) =  Y2 WB,nA +  n B , 2 - r i A - i ' B - n B )

ini'B/2 /(2  — n,4 — riB — i^b)! {oa  +  'o b V-
V 2!

3.3.2 The General Expression
To develop the general construction for the su(3) intelligent states, we begin by- 

noting tha t the three solutions to the A  =  1 or 3 x 3 case are coherent states. These 
three simple intelligent states w ill serve as the build ing blocks w ith  which we can 
construct a ll o f the inte lligent states for any given A — A , +  Az +  Ag. We w ill assume 
a <  1 for the purpose of illustra tion . To construct the general expression we begin 
w ith  Eq.(3.37) and couple A , copies of the state \ipl), Az copies of ji/;^), and Ag copies 
of 10^):

|0Ai,A2,A3) =  [Ûi(o;)|OOAi)] 8  [Ûz(a)|OOAz)] 8  [Û3(a )|00Ag)]

=  [A z , g ( 0 i } | O O A i ) ]  8  [A 2 ,3 (6 * 2 )A i,g ( 0 2 } |O O A z ) ]

®  [A2.3(^2)Ai,3(-02)lOOAg)]

=  [A2,3(^ i) |00A i) ] 8 ^ 2,g(^2) [A i,g (02)|OOAz) 8  A i,g ( - 02)|OOA3)] .

We are now le ft to  w rite  Eq.(3.62) in  a way th a t is more transparent. To do th is we 
must pro ject a ll o f the coherent states onto the same basis, using the un it operator:

A j  r i j

% =  Y 2  YY \ m j , n j  — m j , A j  — n j ) ( m j , n j  -  r u j j A j  -  ri j \,  (3.63)
r i j = 0  m j = 0

where j  indicates the subspace in  which the operator acts. Looking at the state 
A 2,3(^ i) |00A i) ,  we note th a t the transform ation R 2,z{di) only mixes the 2nd and 3rd 
slots o f |OOAi) and leaves the firs t as zero. Th is means th a t the projection w ill take 
the form

A i

%,3(^i)|00Ai) =  ^  |0 ,m ,A i -7 i i ) (0 ,m ,A i -m |% ,3 (a i)|00A i). (3.64)
n i= 0

Again, each ro ta tion  only happens in  an SU(2) subspace, and we make, again, the 
identification

1̂ 23, ^ 23) (3 65)
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via,

^23 =  2 (^ 2 +  ri3), ni2z = - {n2  -  m ) ,

so as to employ the SU(2) W igner d-function.
Beginning w ith  the state i?2,3(^ i) |00A i) ,  we w rite

Ai
A 2,3(i9i ) | 00A i)  =  ^  |0,n i ,  A i -  n i ) ( 0, n i,  A i -  n i| i? 2,3( ^ i) i00A i

n i= 0

- A i
=  Y2 A i -  ;^ l)d ^2ni,A i},{0,A i}(^ l),

n i= 0

(3.66)

where the pairs

in  the d-functions. 
Likewise,

{a ,b}  =  - { a - b )

(3.67)

(3.68)

A2
.Ri,3(02)|OOA2) =  ^  1^2,0, A2 -  712) (n2,0,A2 — n2|i2i^3(02)|OOA2)

7 1 2 = 0

=  ^  |T̂ 2, 0 , A2 -  % ) d ^ , A , } , { 0.A2} '
7 1 2 = 0

1(02), (3.69)

and

A 3

A i,s (—02)|OOAs) =  ^  |n3, 0, A3 — n 3)(rz3, 0, A 3 -  n3|i?i,3(-02)|OOA3)
7 1 3 = 0

A 3

=  ^  |7%3, 0, A3 -  M3) d^_A,y{o.A3} ( - 02)-
7 1 3 = 0

P utting  the pieces back together yields

Ai 1
l0Ai,A2.A3((^))- I ]  |0, " l A l - n i ) d ^ ^ , ) , ( o , A i ) ( ^ l )

7 7 1 = 0

J - A 2
Z  |M2, 0, Az -  Mz) (Ẑ24 ,A2},fO,A2}(02)

. 7 7 2 = 0

(3.70)

0722,3(6*2)

A3

(3.71)

X Y ]  l"3 ,0 ,A 3-M 3)d^2 ,^,,
7 7 3 = 0

{ 2773 ,A 3 } , { 0 ,A s } ( 0 ^ )
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Since the d-functions of the form d ^  - j i P )  have a simple expression [26],

-  y  ( j + ( ' “ 0  ( ‘ “ ” 2 )  -

we can use tha t to  combine the two d-functions w ith  argument 4>2 ,

A ^ 2  ( r h n \ d ^ ^ ^  (  —  f h n \ =  (  /  A 2 - ' A 3 ' ( A 2 3 - n 2 3 ) ! n ^

{2ti2.A2},{0,A2}''X2/ {Zna.Asj.fO.As} ' f ' y A23!(A2—7*2)!(A3—n.3)!772!

where we have used

A23! (A2- 772)!(A3-773) 1712 Î713!

x 4 ™ , a ,.).(0.a„ )W 7 ) .  (3-73)

' ^ i j k  —  4 "  " f "  ' k l k  1

rii j =  Hi +  Uj , (3.74)

Ai j  =  A j -|- A j .
This leaves us w ith

U/,A (rvi) — /  A2!A3l(A23-7723)!7723!
*^Ai,A2,A3\ // /  J \ / y 423!(A2—772)!(A3—773)!772Î773!

771,772,773

X |0 , M l , A l M l) d^2^ ^ ,A i} ,{0 ,A i} (^1 )  ( {̂27723 A 23}.{O.Ags} (0 ^ )

xAz,3 (6*2 ) []m 2 ,0 , A 2  -  M2) [Mg, 0 , A 3  -  M s ) ] . (3.75)

Before we can perform  the last rota tion, 722.3 (^ 2 ) ,  we need to couple the two kets so 
th a t we can rotate a single state. We couple su(3) states in  a manner tha t is covered 
in  Appendix B.3.2. Since we are only interested in  states tha t satisfy A23 — A 2 4- A 3, 
we note th a t the only relevant su(3) Clebsch-Gordan coefficient is

(m 23, 0, A 2 3  -  M23 I M2, 0, A 2  -  M2 ; Mg, 0, A g  -  Mg)

I A2!Ag!(A23 — M23)!m 23! (3.76)
y A 2 s!(A 2  — M2 )!(Ag — MgjlMging!

We can now apply the R 2A O 2) rotation:

A23—7723
A2,3(02)|m23,O, A 2 3  -  M2 3 ) =  Y2 i A 2 3  -  M2 3  -  :/)

i / = 0

^^{2l,+7,23,Ai},{7,23,A23}(^2). (3.77)

In  coupling the last two remaining states, we use the Clebsch

(M 23,M i +  v , A -  M123 -  Z / ]0 , M i , A i  -  M l ; M23, z/, A23 -  M23 -  v )

_  I A i!(A 2 3 )!(A  -  M1 2 3  -  i/)!(M i 4- z/)! (3.78)

(A )!(A i -  Mi)!(A23 -  M2 3  -  z/)!Mi!z/!
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The final expression for the unnormalized intelligent states is

l 0 A i , A 2 , A 3 W ) =  +  (3 .7 9 )
n i , 712,773,1/

w ith

/  A i!(A  -  ni23 -  î^)!(n i +  i^)!

A!A23!(Ai -  Mi)!(A23 -  M23 -  v)\ri i \n\
(3 .8 0 )

^^{2ni,Ai},{O,Ai}(^l)(^{2n23,A23},{O,A23}(02)(({l+n23,Ai},{n23,A23}(^2)

This may seem to be a complicated expression. However, consider the case for A =  3. 
That could be the result o f sim ply coupling 1 copy o f each of the three basic intelligent 
states. This would amount to  diagonalizing a 10 x 10 m atrix . I f  you want to  construct 
a A =  4 state you would have a 15 x  15 m a trix  to diagonalize; and in  general, the size 
of the m a trix  scales w ith  A as ^ (A  +  2)(A  +  1). The relative com plexity o f the coupling 
method is clearly less w ith  increasing A.

To construct the expression for |a| >  1 we need to look at the form  of g,

1 +  Q
=  (3 .8 1 )

v T ^ a

W hen |q| <  1 then g  is real, bu t when |o:| >  1 g is completely imaginary. This causes a 
small change in  the forms of the Û j(a)s. In  particu lar, the g(0i)s become rotations 
about the x-axis, R{x)i,3i4>i)- This sim ply implies tha t we must factor i t  further;

^ ( 2)1,3(01) =  R{z) l ,3{ -^)R(y) l ,3{^i )R{z) l ,3 i^)  

(^,m|7Z(^)l_3(0i)|^,7M') =  D ^ _ „ , , ( - § ,0 i ,§ )

=  e ' - / ^ ( C . m ' ( 0 i ) e - ' " ' ' ^ .  (3 .8 2 )

The only difference, then, between the states for |a| <  0 and those for |a| >  0 is the 
inclusion o f a factor of + Ti3)/2 latter:

l0Ai,A2,A3(o:)) ^  ^  1^23,Ml +  %/, A -  M123 -  %/)
771,772,713,1/

(3 .8 3 )

3.3.3 Selected Results
The su(3) in te lligent states are the solutions to the eigenvalue equation

( M - W ) | 0 )  =  A | 0 ) ,  ( 3 .8 4 )
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and they have the eigenvalues

60

A =  —  \ / l  -  a^(A 3 -  A2) .

One can also show th a t the following relations hold:

(A ^ )^  =  - - a ( C ) ,  { A B Ÿ  =  - ^ ( C )  •

(3 .8 5 )

(3 .8 6 )

This is done in  a manner sim ilar to  the su(2) states.
The uncertainty curves for the su(3) in te lligent states display the expected be­

haviour tha t was discussed in  Section 2.4.2, i.e. the uncertainty is zero at a  — 0, ± 00, 
and there are discontinuities at a  =  ±1 . The sim ilarities seem to  stop there, however. 
We have not been able to determine a trend, sim ilar to the one shown in  F ig 2.2, where 
the uncertainty, overall, is higher or lower for states of a given A  w ith  different values 
of A i, A 2, A 3.

Figures 3.3 and 3.4 illustra te  typical uncertainty curves for the su(3) states. The

AAAB AAAB

2.6

2.2

- 0.5

1.4

3.2

- 1.5 - 0.5

2 .4

a

F igure  3.3: T w o  p lo ts  o f A A A B  fo r A  =  3. The inset is an expanded v iew  around a  =  
L e f t :  A i =  3, A 2 =  0, A 3 =  0, R ig h t :  A% =  1, A 2 =  2, A 3 — 0.

section o f these curves for a  >  0 are reminiscent o f the su(2) curves; for a  <  0 however, 
there are clear differences.

The most s trik ing  feature of the su(3) graphs is the difference in  amplitude between 
positive and negative a. The overall uncertainty for negative a  is s ignificantly less than 
tha t for positive a  for every graph produced up to  this point. However, the height of 
the graph at a  =  — 1 can easily be determined. From the defin ition o f n, Eq.(3.81), i t  
can be shown tha t 1 _L rv

0 . (3 .8 7 )

- 1.

lim
v T

1 +  a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



su(3) Intelligent States 61

AAAB AAAB

- 0.5

5.6

5 .4

- 0.5

a

Figure 3.4: Two plots of A A A B  for A =  6 . The inset is an expanded view around a  
Left: Ai =  6 , A2  =  0, A3 =  0, R ight: Ai =  2, A2  =  3, A3  =  1.

=  — 1.

Using this, and looking at the transformations of Eq.(3.27) and Eq.(3.28), i t  becomes 
clear tha t at a  =  — 1 the transformations a ll become u n it transformations and the 
uncertainty is then simply

AytAB =  1 1(C) I

Ai,A2,A3("l)|(^I^Ai,A2,A3 ( - ! ) ) !

|̂(OOA|C|OOA)|

|(0 0 A|(2 Ôiô| -  ( 1  +  V 3 )Û 2 4  +  ( V 3 -  1 ) 0 3 6 3 ) I

1)A

2

27t2

9 \/3  
27r2(y3

9V3
(3.88)

Thus, for any A the uncertainty is easily determined for a  =  — 1.
Due to  the com plexity of the expression for the su(3) intelligent states, Eq.(3.79), i t  

was not feasible to  begin a detailed exploration o f the properties of these states w ith in  
the context o f th is thesis. However, i t  is w orth  noting tha t there are clear differences 
between the su(2) and su(3) intelligent states so they are w orth  investigating in  the ir 
own right.
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Chapter 4 

Conclusions

In  th is thesis, we asked the questions “W hat are the states which always satisfy the 
equality in  the uncertainty relation?” , “ Can we construct them, using known mathe­
matical tools, in  a useful and straight-forward manner?” , and “W ill th is construction 
be easily generalizable to  other systems?” In  particu lar, we studied these states for 
angular momentum and the su(3) algebra.

The answer to the firs t question is simply: These states are the solutions to Eq.(1.45) 
and are called intelligent states. Equation(1.45), however, is an eigenvalue equation. 
This proves to be problematic as the dimension of the problem, even in  the su(2) 
algebra, grows. The challenge, then, was to  find a better way to  get in te lligent states 
than solving a large eigenvalue problem.

“Can we construct them, using known mathematical tools, in  a useful and stra ight­
forward manner?” Yes. The solutions to  the simplest cases, the angular momentum 
spin-^ and the A =  1 su(3) cases, provide the insight as to what is the composition of 
intelligent states. More complex systems however, those w ith  higher values o f i  and 
A, have solutions which are not simple coherent states. W hat these more complex 
intelligent states are composed of was not well understood. I t  has been shown in  th is 
thesis tha t these more complex inte lligent states can be thought of as coupled coherent 
states. As such, they can be broken down into smaller pieces and recombined in  a 
simple way. In  fact, the solution presented in  th is thesis requires only mathem atical 
tools tha t are well studied and often tabulated.

In  th is way, every inte lligent state can be constructed by coupling the appropriate 
coherent states.

The method o f constructing the inte lligent states consists m ain ly o f applying un ita ry  
rotations to appropriate systems, then coupling them together. Once th is is done, one 
simply needs to pro ject onto the appropriate subspace to recover the inte lligent states 
w ith in  th is subspace. The subspace one needs to  project onto, for angular momentum, 
is simply the space in  which I  =  I a ^  (-B- This is because, any state found such tha t 
t  <  iA -V ts  can be reconstructed in  a simpler manner through a better choice o f I  a  and 
I b - I t  is not known i f  th is holds in  general for the su(3) case, bu t i t  is believed tha t i t
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does, because the method presented here always produces a complete set of intelligent 
states w ith in  a subspace o f specified dimension.

A lthough only the su(2) and su(3) in te lligent states were discussed, the method 
for generating the intelligent states is the same for all o f the su(A ’) algebras, which 
answers the th ird  question. Thus in  principle, one could generate an expression for the 
intelligent states as coupled coherent states in  any su{N)  algebra through th is method.

Since the method of coupled coherent states relies nearly entirely, apart from  the 
single projection, on un ita ry  transformations, there is the possib ility th a t these states 
can be experimentally produced. Th is is because methods for experimentally gener­
ating SU(2), and in  principle any SU(A'), transformations are known. Regrettably, 
i t  is not clear how the projection to  the appropriate subspace can be experimentally 
realized.

In  conclusion, we have answered the questions which had been posed. We know 
now tha t intelligent states are simply coupled coherent states. We have been able to 
construct them, for two separate systems, from  mathematical tools tha t are readily 
available. This construction is simpler than exp lic itly  solving the eigenvalue problem, 
especially for large systems, or the recursion method orig ina lly proposed by Aragone. 
As well, i t  provides a clearer window in to  some o f the properties of these states. F inally, 
we have a proof of concept tha t the inte lligent states for any su(A ’) algebra can be 
constructed in  th is manner.
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A ppendix A  

Glossary of Terms

A .l Some Relevant Definitions
B aker-C am pbell-H ausdorff (B C H ) theorem : The BCH theorem is a method of 

unraveling the product o f e'^e^ when A  and B  do not commute. I t  is usually an 
in fin ite  series, of which the firs t few terms are

There is another im portan t result called the Baker-Campbell-Hausdorff lemma;

e"^Be ^ =  È + [Â,Ê]-[- [Â, [A, Ê ]] -t- — [A, [A, [A, B ]]] - f  . . .  (A .2)

This can be shown by expanding the exponentials and regrouping the resulting 
series.

C om m uting: Two operators are said to  commute when the so-called commutator,

=  (A.3)

is zero, otherwise they are non-commuting.

Group: A  group, G, is a set of elements, gi, {i.e. numbers, matrices, even physical 
rotations), along w ith  an operation, * (addition, m ultip lica tion , etc ) called the 
group operation, tha t satisfy four axioms:

1. Closure: The result o f the group operation between two group elements must 
be an element o f the group, or gi, gj e G, g i *  gj =  gk & G .

2. Associativeness: g, *  (gj * g t) =  (g* * g j) * gfe-
3. Unique identi ty:  The group must contain an element, called the identity, 

such tha t the result of the group operation between th is element and any 
element, g,, o f the group, including the iden tity  itself, returns the element 
gi. The iden tity  is sometimes labeled as e.

64
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4. Unique inverse: For every element, gj, o f the group, there must correspond 
a single element gfc, also in  the group, such th a t the operation o f these two 
elements produces the identity ; gi * Qk =  9 i * =  e.

G ro u p , O rd e r  o f: The number o f elements in  a group is called the order o f a group.
Thus, a group w ith  N  <  oo elements is said to be o f fin ite  order, and of order 
N .  I f  the group has an in fin ite  number o f elements, whether they are discrete or 
continuous, i t  is said to  be of in fin ite  order. This means tha t the Lie groups, even
though they have a fin ite  number of generators, are of in fin ite  order because the
elements depend on real continuous parameters.

In n e r  p ro d u c t:  A n  inner product, sometimes called a scalar product, is the general­
ization o f the dot product of Fuclidean spaces to  an a rb itra ry  space. In  particu lar, 
for linear spaces the inner product is defined as

(x|g) =  (A.4)
j = i

w ith  (x| =  | x ) \  and for functions,

{ f \g)  =  [  r { r ) g { r ) d g . r ,  (A.5)
J a

where dg.r is a suitable measure.

Ir re d u c ib le  re p re s e n ta tio n : A  representation is called reducible i f  a s im ila rity  trans­
form ation w ill bring each m a trix  o f the representation in to  the block diagonal 
form:

A ( T i )  0
= ( V' Bffi) j- (A®)

where A{Ti )  and B{T i )  are matrices th a t depend on T). The set o f transformed 
matrices F(T)) must s t ill possess the required properties of a group. The m a tri­
ces th a t compose the blocks are themselves a representation, and as such, may 
or may not be reducible. I f  no transform ation w ill produce Fq .(A .fi), then the 
representation is called an irreducible representation or irrep for short.

L ie  a lg e b ra : A  Lie algebra £  is a set of elements {a, b, c, . . ,  usually represented 
as square matrices, th a t form  an antisymmetric Lie product [a, 6] =  —[6, a]. For 
square matrices, the Lie product is commonly called a commutator and is defined 
in  Fq.(A.S). Furthermore, th is set of elements must possess certain properties i f  
i t  is to  be called a Lie algebra.

1. The Lie product of two elements must be, itself, an element of the Lie algebra: 
[a ,b] e C.

2. Given th a t the elements a and b are in the Lie algebra, then so too is the linear 
combination aa+/3b,  where a  and j3 are a rb itra ry  real numbers: aa+fdb E £  .
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3. The Lie product is linear: [aa +  (3h, c\ =  a[a, c] +  (3[h, c],

4. The previous property, along w ith  [a, 6] =  —[6, u], leads to the following:
[a, i3h +  7c] =  /3[o, b] +  7 (0 , c] and [c, c] =  0 .

5. The Jacobi iden tity  [a, [6, c]] +  [6, [a, c]] +  [c[a, 6]] — 0 must be satisfied.

A ny set of elements satisfying these properties constitutes a Lie algebra.

Lie group: A  Lie group is the set of elements formed from the exponentiation o f the 
elements of the corresponding Lie algebra: where a € £ .  Lie groups are
defined in  terms of real continuous parameters, and thus are of order 00, since 
any unique choice of the parameters yields a unique group element. They are, 
however, representable by fin ite  dimensional matrices.

O rthogonality: Two vectors are orthogonal i f  the ir inner product is equal to  zero, 
otherwise they are non-orthogonal.

O vercom pleteness: A n overcomplete system is one tha t contains more states than 
is necessary to  decompose an a rb itra ry  vector in to its basis components. As a 
simple example, consider using a basis of 3 vectors, each at 120° to the others, to  
span the 2-dimensional plane. The vectors are clearly non-orthogonal, and one 
can completely describe any a rb itra ry  vector using only two o f the three basis 
vectors, making it ,  in  essence, an overcomplete set.

R epresentation: A  representation is an explic it form  of the abstract combination 
rules th a t define a group or algebra. For instance, the representation o f a group 
by square matrices preserves the m u ltip lica tive  properties o f the group, while tha t 
o f a Lie algebra w ill preserve the Lie product as the commutator.

Self-adjoint: For an operator Ô  to  be self-adjoint, i t  must be equal to  its adjo int 0^,  
th a t is [31]:

1. I t  must satisfy the equation

((AIÔIV) =  (A.7)

2. The set o f vectors, on which is well defined, must be the same for

Operators th a t only satisfy the firs t condition, Fq.(A .7), and not the second, 
are called herm itian. I f  an operator acting in  a fin ite  dimensional vector space 
(representable by a m a trix  o f fin ite  dimensions) is herm itian, i t  is autom atically 
self-adjoint. This is the case w ith  a ll operators relevant to th is thesis so there w ill 
be no further discussion on the subject here. For more deta il on the d is tinction  
between herm itian and self-adjoint see [31], for instance.

su(fV) and SU(7V): The su(N)  algebra is a Lie algebra, defined by n x  n herm itian 
traceless matrices. The SU(N)  group is the corresponding Lie group, constructed 
by exponentiating the elements o f the algebra.
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T race : The trace o f a m a trix  i t  the sum of its diagonal elements. I t  is interesting to 
note tha t the trace o f a m atrix  is also preserved under a un ita ry  transformation. 
Consider a diagonal m atrix ; the diagonal elements are simply the eigenvalues, and 
the trace is the sum of the eigenvalues. Since a un ita ry  transform ation preserves 
the eigenvalues o f a m atrix , the trace of a m atrix  is also preserved under a un ita ry  
transformation.

U n ita r y :  A  group element, such as a m atrix , is said to be un ita ry  i f  its  adjo int is also 
its inverse,

U^U =  U~^U =  1. (A .8)
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A ppendix B 

M athem atical and Technical 
D iscussions

B .l  The R obertson U ncertainty Relation
A  derivation of Eq.(1.2) is in  order, since some o f the elements of the derivation w ill 

be modified to  develop the equation for intelligence. The derivation w ill follow th a t 
presented in  [32] since the nota tion  used therein is more contemporary. We begin by 
defining the shifted operators

=  Ô' =  Ô - ( Ô ) ,  (B .l)

where
=  n ,  0 ^  =  0  (B.2)

are self-adjoint. Note tha t the com m utator remains unchanged, [Ù ',Ô '] =  [D, Ô], bu t
we now have {Ù') — {Ô') — 0, which gives us

(AÔ')^ =  (AÔ)^ =  ( (Ô T ) , (AÔ')^ =  (AÔ)^ =  ((Ô')^>. (B.3)

This allows us to  form  the product

(AÔ)2(AÔ)" -  (V '|(n')2|^)(^ |(Ô T|V ), (B.4)

and use the Schwartz inequality

(y'lv'Xxlx) >  (B.5)

i f  we make the identifications =  |y) and Ô'\'ij}) — |%). Using the fact th a t Cl' and 
Ô' are self-adjoint: Cl' — (Ô ')f and Ô' =  {Ô ') l ,  i t  is clear tha t Eq.(B.4) and Eq.(B.S) 
can be combined to  give

(AÔ)XAÔ)^ > |( |̂Ô'Ô'|V')|= .̂ (B.6)

68
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I t  is always possible to  w rite:

=  +  (B.7)

=  \ { Ù !  , Ô ' ]  +  \ [Ù ,Ô ],

which allows us to rewrite E q .(B .6) as

(AÔX(AÔX >  +  (B.8)

Using Eq.(B.2) we can see tha t ([Q, Ô]) is purely imaginary by taking the herm itian 
conjugate

=  (Ô Ô -Ô Ô ) t  

=  Ô W - Ô W

=  - C lô  +  ôCi

=  -[Ô ,Ô ]. (B.9)

I f  we w rite  [D, Ô\ — iG _ , where G_ is herm itian, then

=  - f C l  =  - iC _ , (B.IO)

which leads to
([Ô ,Ô ])= i(G _ > z .ic_ . (B .ll)

The result o f E q .(B . l l)  must be purely imaginary, since the expectation value o f a 
self-adjoint operator is always real. Sim ilarly, i f  we take the herm itian conjugate:

=  Ô 'Ô '-h Ô 'Ô '

-  {Ô'.Ô'}, (B.12)

we find tha t i t  is already a self-adjoint operator. Thus we w rite  {C l ' , 0 ' }  — C+, w ith  
G+ a self-adjoint operator to  get

({0% 0'}) =  ( G + ) -c + , (B.13)

which is again a real number.
Taking the righ t hand side of E q .(B .8) we w rite  i t  as

\ { ' i p \ ^ { C l ' , 0 ' ]  +  \ [ Ù . , Ô ] \ i l ; ) Ÿ ‘ =  | ( ^ | ^ C '4. - I -

> ic!.. (B.14)
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Using

w ith  Eq.(B.14) and Eq.(B .8), one can quickly see tha t

(A Ô )2 (A Ô )" > ||([Ô ,Ô ])|2 . (B.16)

Finally, taking the square root of Eq.(B.16) yields the fam iliar relation

(A n ) (A Ô )> l | ( [Ô ,Ô ] ) | .  (B.17)

B.2 Angular M om entum  Coherent States
We prove th a t the coherent states defined in  Section 2.1.3 span a non-orthogonal 

basis as well as an overcomplete one. I t  is more convenient to show tha t the states in  
Eq.(2.41) possess bo th  of these properties i f  we express them  in  terms o f the basis states 
\£,m). To do this, we exploit the fact tha t the commutation relations in  Eqs.(2.2) and 
(2.8) are independent o f the angular momentum of the system. We w ill use the ^ =  5 , 
or 2 X 2, system to  obtain the result. The operators are given in  Eq.(1.48), w ith  the 
ladder operators as,

^ - = ( 0  i ) ' =  Ü) -
W ith  th is we can write:

0 e '7/2 J  y  sin ^,0 cos 5/? J  \  0

cos 5/? -e ^ 'i's in i/?  A2  /w/ OXJ.J. 2  f-

e " '^  sin cos ^P
(B.19)

We now compare this to the form

1 0 W  e %  0 \  7 1

Ç 1 y  V 0 e -%  y V 0 1

(B.20)

which gives
e^/^ =  cos |/3, (B.21)

—  —̂ *cos^P  

(  =  e-'T tanl/3. (B.22)
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Now we w rite  the coherent state as

I/?,7 ) =

This is helpful since we know tha t

T + K ^ )  =  0,

so the effect of the exponential operator in  L +  is

((
*\2

This simplifies Eq.(B.23) to

|;0,7) =

=  \£, i )

,fc=0

Now, to  find  L^|7 ,7 ),

=  \/(2 ^ )(2 ^ - l)2 |^ ,.g -2 )

' (2^)!2
( 2 7 -2 ) !

|7 ,7 -2 )

J :!. == V (2 ^ )(2 7 - l)(2 7 -2 )(2 )(3 ) |7 ,7  -  3)

' (24)13!
(2 7 -3 )1

I (27)lit! 
(27 -  &)!

P u tting  th is back into Eq.(B.26) gives

|7 ,7 -3 )

|7 ,7 -& ).

I/), 7 ) =  (cos^/3)^^
.k=0 k \ V  ( 2 7 - t)! '

( 1 4- k:P)%<

2/

E « ‘
,fc=o

(27)!
& !(27-k )

|7,7 -  &)

(B.23)

(B.24)

(B.25)

(B.26)

(B.27)

(B.28)
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I f  we now compute the inner product, (/3i, 71 | A ,  7 2 ), we can show tha t two angular 
momentum coherent states are generally non-orthogonal:

( A ,  7 1 1 A , 7 2 >  =  (1 +  16  P )  (1 +  I6 P ) _ _ _ _ _ _
/  (2f)! /  (27)!

fci=0 k2=0

Note tha t the inner product

A !(2 7 -A : i) !  V t z ! ( 2 7 - W '
(7 ,7 -A i|7 ,7 -A :2 ) .

(7 ,7  — /ci 17 ,7  — Ag) — 6 -1,fc2

which produces the condition
k\ =  k2 =  k.

This gives

( A , 7 1 1 A , 72) =  (1 +  I6 I^ )"^ (1  + 1 61 ^ )-^  ^ ( 6 6 ) '

Taking in to  account tha t

k=0

(27)!
& % 2 7 -k ) r

(27) !

&X2f - & ) !  ^
and th a t the b inom ial series takes the form

n

{x +  a)”  =  ^ 2  I • lz "&
k=o

™ l T , f c „ n - f e

k.

we can s im plify  the sum in  Eq.(B.32): 

(A,71 I A, 7 2 ) =
*C \ 2i

(1 +  f f f 2)
( i  +  |6 P )^ (i +  l6 P ) ''

(B.29)

(B.30)

(B.31)

(B.32)

(B.33)

(B.34)

(B.36)

which is clearly non-zero, indicating tha t these states are non-orthogonal unless (*^2 =  
— 1. This special case applies only to coherent states tha t lie antipodal on the sphere 
w ith  points located at angles 7 and /3. For instance, two coherent states, one at the 
north  pole and the other at the south pole are orthogonal, and likewise any two states 
tha t lie opposite on the sphere.

To test for overcompleteness, we need to  m odify Eq.(B.28) s ligh tly  by picking

m  =  i  — k. (B.36)

To rewrite the sum for m, we set A: =  0 and fc =  27 to  get the lim its  o f 7 and —7 
respectively, and Eq.(B.28) becomes

1̂ , 7 ) = E f
t —m (27)!

' -  m )!(7 -t- m)\
|7, m) (B.37)
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We w ill need to rewrite th is in  terms o f /? and 7 ,

I f t i )  =  ( c o 4 /3 7  E (2<)!

-1= -^

E (8  38)

We can see easily tha t the usual basis states |7, m) are complete, but not overcom­
plete, since the operator

^ |7 ,m > (7 ,m | =  ll (B.39)
m

is the u n it operator. This can be seen for any state |7,m '):

^ | 7 ,  m){7, m |7, m') -  |7, -7 ) (7, - 7 17, +  |7, - 7  +  1) (7, - 7  +  1 17,

- f . . .  -f- |7, m ')  (7, m ’ \ 7, m ') 4- 

=  0 4 -0 -|- ...4 -|7 ,? 7 % )4 -...

=  17, m ') , (B.40)

so the operator of Eq.(B.39) sim ply returns th a t state back again. This means th a t 
the decomposition of states in to  the basis |7, m)  is possible for any state of angular 
momentum 7 as well as being unique.

For the angular momentum coherent states th is is not the case. To resolve the u n it 
from the coherent states, we must integrate over the parameters P and 7 . S tarting 
from Eq.(B.38), we integrate over the entire range;

pn pZTT
/  /  s in /3d7d,0 |/?,7 )(/3, 7 | =

Jo Jo
J j-n ySjr

/  s in /) d'^dp 
0 Jo

X (sin

(B.41)

These two integrals can be separated and evaluated individually. I t  is beneficial to  
evaluate the integral in 7 first, since

p2TT

Jo
(B.42)
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when m' and m are both  integers or half-integers, leaving us w ith

/•TT r2ir
/ / sin/)d7d^|/),7)(/),7| =

Vo Vo
/  27

27 4-1

Thus we have

27t j  s i n d / 3 ^  ^  j  (cos (sin m)(7, m| (B.43)

y y  |7, m)(7, m | .

27-h i pTT rZTT
47t Jo Jo ^™^'^4'G!/3|/),7)(/),7| == il . (B.44)

The fact tha t in tegration is required to  resolve the un it from the coherent states is the 
reason tha t we can say they form  an over complete basis. Whereas the operator o f 
Eq.(B.39) acts in  a (274- l)-d im ensional space and contains a sum o f 274- 1 projectors, 
the (continuous) sum of Eq.(B.44) contains an in fin ite  number o f coherent states.

B.3 State Coupling M ethods
The purpose of th is section is to  outline the calculations involved in  the coupling 

of two systems. The application o f the method yields the so-called Clebsch-Gordan 
coefficients. They come about when one looks at the possible outcome of coupling two 
single systems together, or alternatively, when one wishes to  decompose a single state 
in to  two coupled states.

B.3.1 Clebsch-Gordan Technology
We w ill show how to  construct a single state o f given angular momentum, |7, m ) , 

by bringing together two systems o f angular momentum and 7g, such th a t [11]

m  =  m A  +  m B ,  |7 a  -  7^1 <  7 <  7^i 4 -7b • (B.45)

We w rite  the final expression in  the form

14 m ) =
(■A (-B
mA rns

mAims)

is called a Clebsch-Gordan coefficient. The sum is taken for

a ll values of tua and tub , such th a t m  — mA +  mB, and, for any system, m i =  
—7j, —7j 4-1 . . .  7j — 1, 7j.

We define the operators th a t act on the system in  the same way as Eq.(2.52) and 
Eq.(2.53);

=  L i ® 1b  , L i,B  =  lA  0  -b ;, (B.47)
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leading to

Lz =  L .  ,4 +  L z:,B 

T +  =  L + , a  +  L + ^ b  

L -  =  .

(B.48)

The operators L +  and L_  are the angular momentum ladder operators. They change 
the value o f m  when they act on a ket:

(B.49)

The easiest way to  get acquainted w ith  Clebsch-Gordan technology is through an 
example. Consider the construction of the 7 — 1 states from two £ =  \  states. To 
begin, we want to  find an extremal state, one tha t has either the m aximum or m inimum 
allowed value o f m. For this example, we w ill look for the to ta l angular momentum to  
be

7 =  7^ +  7b  =  - - P -  =  1. (B.50)

We know th a t the highest value tha t can be returned by the operator is m  =  7 =  1. 
So i f  we couple the systems A  and B  together, in  a manner tha t the action of 
returns the value m  =  1 we w ill know th a t our state is the state |1 ,1). In  mathematical 
terminology, th is state is said to have the highest weight because the result o f acting 
on i t  returns zero. We start w ith  th is state because there is only one way to  couple the 
two systems together to  give th is state. A lternative ly, one could begin w ith  the lowest 
weight state |7, —7).

S tarting w ith  the state \ ^ , ^ ) a \ ^ , ^ ) b  we find:

L z  [I5 , \ ) a \ \ ,  \ ) b ] -  (Â,A + L z ,b ) [||, \ ) a \ \ ,  \ ) b ]

L z ,a \ \ , \ ) a  \ \ , \ ) b +  \ \ , \ ) a  L z ,b \ \ , \ ) b

4 11 1\ 11 1\ I 111 11 1\
2 I 2’ 2M I2’ 2/B +  2 ' 2 ’ 2M I2> 2/B 

\ ) a \ \ , \ ) b  ■ (B.51)

This means th a t we have found our highest weight state, and can w rite  the equality

(B.52)141) -  lè’ \ ) a \ \ ,  \ ) b

We also have, nearly for free, the firs t Clebsch-Gordan coefficient:

5 5
I  I

=  1 , (B.53)

Now th a t we have our highest weight state, we can work our way down to  the other 
states w ith  7 = 1 .  Had we started at |1, —1) we would simply work our way up. We
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do this through repeated use o f the lowering operator L _ . The reason we cannot jus t 
couple the two systems together to give us the state for m  =  7 — 1 =  0, is th a t there are 
two ways to  do this, namely \ \ , \ )  a \ \ , ~ \ ) b  and [5 , 5)51 bo th  have m  =  0. 
We need to know what fraction o f each to include in  our construction o f the |1,0) 
state. This doesn’t  seem too d ifficu lt for th is simple case, but for larger 7 there can be 
a number o f ways to obtain a given m  from  the various states in  the two systems.

The next state is found by applying L _  to  the state |1, 1) in  the follow ing way:

— L -

T 12> 2M \ ) b  +  I5 , \ ) a  \ ) b

, - \ ) b

1 , 0 ) =  \ I \ { \ \ , - \ ) a \ \ , \ ) b  +  \ \ , \ ) a \ \ , - \ ) b ) ■ (B.54)

Looking at Eq.(B.54), and comparing to  Eq.(B.46), gives us immediately the Clebsch- 
Gordan coefficients:

I (B.55)

Continuing on we apply to  Eq.(B.54) to  get to  the next state:

| 1 ,  - 1 )  =  \ \ , - \ ) a \ \ , - \ ) b , (B.56)

which is the lowest weight state, since both  sides re turn  zero when we try  to  ramp 
down one more time.

We are not finished yet, however. There are four possible ways to  combine the two 
systems A  and B:

lè, è)^lè> è)-B, \ \^ - \ ) a \ \ , \ )b , (B.57)

\ \ i \ )a \ \ , —\ ) b i  \ \ , - \ ) a \ \ , - \ ) b  , (B.58)

b u t we have only generated three states so far, and only three states th a t have 7 = 1  
exist, one for each value of m . W ha t about the fou rth  state? I f  we look again at 
the conditions on 7, Eq.(B.45), i t  becomes clear tha t 7 =  1 is not the only possibility. 
We can’t  choose £ =  \  because our possible values o f m  are integers and therefore so
must be our values of 7. The only value we are le ft w ith  is 7 =  0 . We can use the
requirement

(7% m' 17, m) =

where is the Kronecker 5 and defined as:

(B.59)

(B.60)
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so tha t the state we choose to be an 7 =  0 state must be orthogonal to a ll o f the 7 = 1  
states which we have jus t constructed, i.e.

(0,mo I l , m i )  =  0 , (B.61)

for any values o f mo and m i . A  simple choice is the state

\'L) -  \ [ \  d i '  \ ) b  -  ! | ,  \ ) a \ \ , - \ ) b ) , (B.62)

which is orthogonal to  our three other states. A  quick check w ith  L +  shows tha t i t  
is the highest weight state, since L+|y)) =  0 . I t  also happens to  be the lowest weight 
state since L-|<^) =  0 , which means i t  is the only state for 7 =  0. This means tha t

|0,0) =  \ [ \  { \ \ , - \ ) a \ \ , \ ) b  -  \ \ , \ ) a \ \ , - \ ) b ) , (B.63)

gives us our fou rth  state and the final two coefficients:

W 2 ' \ i  - i  ' " ''S) =  - ) / § ■  (B M )

The construction o f the 7 =  0 state illustrates th a t i t  is possible to  arrive at states w ith  
a range of different values of 7, not sim ply those tha t have £ — £a  +  £b -

We have now constructed a ll o f the Clebsch-Gordan coefficients for the coupling 
of two states w ith  angular momentum £ =  \ -  This same process can be repeated for 
any possible coupling of two systems. The number of states, including the number of 
orthogonal states tha t must be produced, increases w ith  the to ta l angular momentum, 
bu t always the process remains the same; find the highest weight state, determine 
its to ta l angular momentum, and work your way down to  the lowest weight state, 
keeping track of the coefficients as you go. In  th is way you can, in  principle, generate 
the Clebsch-Gordan coefficient for any coupling. Th is is usually unnecessary, as the 
Clebsch-Gordan coefficients are tabulated in  numerous places, see [26] for instance, or 
the program M athem atica® contains a b u ilt- in  function th a t w ill generate the Clebsch- 
Gordan coefficient, given the relevant inform ation.

B.3.2 SU(3) Coupling
The coupling o f SU(3) systems is approached in  the same manner as angular mo­

mentum systems. The m otiva tion  is to  be able to  properly express, via SU(3) Clebsch- 
Gordan coefficients, a state in  terms of two coupled su(3) states, or to predict the 
outcome o f coupling two states together.

We define a basis for the su(3) operators in  terms of the harmonic oscillator creation 
and annih ila tion operators;

2, 3 ,
(B.65) 

(B .66)

- t -= 1 * f  j  — 1, 2

h i — 0-2 U2 -  ô jô i ,
» f » 

— 0.3^3 -  4  A ,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



M athem atica l and Technical Discussions 78

Because the su(3) algebra is more complicated than the su(2) algebra, we need 
more than two numbers to  completely define the state (w ith  angular momentum we 
needed only two numbers: 7 to  determine the to ta l angular momentum and m  to  fu lly  
determine the state). In  general, su(3) states are fu lly  labeled by five numbers. Two of 
them, p  and q, play a role sim ilar to the role o f 7 in  angular momentum. Two others, 
h\ and / i2, are eigenvalues o f diagonal operators and play a role sim ilar to  m  in  angular 
momentum. Unlike angular momentum, where the eigenvalue m  can occur at most 
once in  the set of states labeled by 7, the pa ir ( f i j ,  /12) may occur more than once in  a 
set of states labeled by {p, q). Thus, a f if th  label, sometimes w ritten  as a, is needed to  
distinguish the repeated occurrences of (h i, ^ 2)- A n  su(3) state, then, should be labeled 
as:

\ { p ,q )a ,h i ,h 2 ) ■ (B.67)

However, in  th is thesis, and in  th is example, we w ill be considering su(3) states o f the 
type (0, q) and (p, 0) , where th is extra label a  is not required and w ill be generally 
om itted.

The four numbers p, q, h\, and /12 are a ll found through the action of the two 
operators h i and h2- As w ith  angular momentum coupling, to find a ll of the possible 
couplings we must find orthogonal states to  those we generate as we work our way down 
the ladder. The orthogonal su(3) states, unlike the orthogonal su(2) states, do not only 
exist in  a space w ith  a different dimensionality, bu t also w ith  a different geometry. The 
su(3) states tha t can be labeled by 1711712)^3) have an upright triangu lar geometry like 
th a t shown in  F ig .(3.2) or F ig .(B .I). The orthogonal su(3) states to  those generated 
v ia  the ladder operators, can also have a hexagonal geometry or an inverted triangu la r 
geometry. The states tha t have these other two geometries cannot be fu lly  labeled 
by the 1771772773) notation, which we w ill ca ll the A-notation. In  th is case we use the 
so-called (p, g)-notation of Fq.(B.67). The states in  the (p, g)-notation tha t also have 
a A -nota tion  are those for which p =  0:

1771, 772,773) 8-̂  |(0, A) 772 -  771,773 -  772) • (B.68)

As w ith  the SU(2) case we need an extremal state to  start from. We w ill choose 
the state killed by €•^2 , C 31, and ($21, as the highest weight state. Thus, we declare 
{(732, C 'ai,Û21} to  be raising operators and find  (p, g) as the labels f i i , / i 2 of the state 
th a t is k illed by a ll raising operators. (Note: The choice o f raising operators is not 
unique, bu t must satisfy some technical crite ria  obtained from  the theory of Lie algebra. 
Our choice of raising operators satisfies these criteria .)

To see th a t th is w ill be a highest weight state, compare the action of the operators 
in  F ig .(3.1) acting in  the weight diagram of F ig .(B .l) . The eigenvalues of the two 
operators h\  and (72 acting on the extremal state determine the two values p and q 
respectively. The condition, then, for the state to  be of highest weight is

(%2|(p,g) A ,  A )  ^  C2i \ { p , q ) h i , h 2 ) =  C 2i|(p ,g) A ,f ig )  =  0. (B.69)
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200>
#

•  •  •

0 0 2 >  I 0 2 0 >

2 0 0 >

'3.2

2,3

002> | 020>

F igure  B . l ;  L e f t :  T he  w eight d iag ram  fo r A  =  2. The  highest w e igh t s ta te  is |002) =  
1(0,2) 0 ,2 ) in  the  lower le ft corner. R ig h t :  The  p a th  we take to  generate each sta te  o f the  
fo rm  1(0, 2) r i2 — n i,  ns — u g ) .

To determine the form  of the highest weight states recall tha t the annih ila tion 
operator àj w ill only produce a zero i f  there is a zero present in  the j ’th  position of 
the state; for example, using the A-notation

âslOOA) =  V Â |O O A - 1) 7^0 

Û2|OOA) =  \/Ô|OOA) =  0 
âilOOA) -  VÔ|OOA) =  0.

(B.70)

Thus, we have the fam ily o f states |00A) as extremal states.
As an example, consider the coupling of two A — 1 states. There are 9 possible 

ways to  couple two A =  1 states;

| 0 0 1 ) y t | 0 0 1 ) B ,  | 0 0 1 ) y i | 0 1 0 ) B ,  | 0 0 1 ) x | 1 0 0 ) B ,

| 0 1 0 ) y i | 0 0 1 ) B ,  | 0 1 0 ) y i | 0 1 0 ) B ,  | 0 1 0 ) A | 1 0 0 ) a ,

| 1 0 0 ) y i | 0 0 1 ) B ,  | 1 0 0 ) A | 0 1 0 ) a ,  | 1 0 0 ) , i | 1 0 0 ) B .

The composite operators are defined as before so tha t, for example

11b , iC,i j  )

(B.71)

(B.72)

to  give
=  +  (B.73)

We w ill begin w ith  the state |001)^|001)b  . This is a highest weight state, since i t  
satisfies Eq.(B.69); for example

(c A  +  c ^ ) [ |o o i)A |o o i)B ]

C sllO O l)^ ]  |0 0 1 ) b  +  |0 0 1 ) a  [ c g | 0 0 1 ) g  

0. (B.74)

A i  [|ooi>A |ooi)j

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



M athem atica l and Technical Discussions 80

From the eigenvalues h i,  hg and the fact tha t A =  2, one can determine the resulting 
state:

Â2 [|001)A|001)g] =  [h^lOOl)^] |001>B +  |001)^ [^ |001)B  

=  (CA -  CA)|001)A] |001)B +  1001)^ [(CA -  Cg)|001)B

=  [ ( 1 ) | 0 0 1 ) A ]  | 0 0 1 ) B  +  | 0 0 1 ) ^  [ ( l ) | 0 0 1 ) a ]

=  2|001)x|001)B, (B.75)

giving h2 =  2. In  a sim ilar manner, one finds th a t h i =  0 for th is state. We can now 
w rite  our coupled state as a single state w ith  A =  2; using both notations we find

|001>A|001)B =  |002> -  1(0, 2) 0 , 2) .

Analogously, one can quickly determine tha t

|001) =  1(0, 1) 0, 1) .

We now have the firs t su(3) Clebsch-Gordan coefficient:

(0.1) (0,1)
0,1 0.1

(B.76)

(B.77)

(B.78)

To determine the rest of the Clebsch-Gordan coefficients, we must choose one of 
the three remaining ladder operators and begin “mapping” the weight diagram. We 
w ill begin w ith  Cgg and continue u n til we reach a state th a t is killed by it. Using the 
K  notation for the purpose of calculation, we find

C23IOO2) =  023(|001)A|001)B)
V 2 I O I I )  -  |010) a | 001) b  +  |0 0 1 ) a 1 0 1 0 ) s

1 0 1 1 )  =  ^  ( | 0 1 0 ) ^ | 0 0 1 ) B  +  | 0 0 1 ) x | 0 1 0 ) B )  ,

and in the (p, ç)-notation i t  looks like:

11(0,2) 1,0) -  (1(0,1) 1, - 1 ) ^  1(0,1) 0, l ) g  +  1(0,1) 0 ,1 )^  |(0 ,1) 1, - l ) g )

This gives us two more coefficients:

(0,1) (0,1)
1 ,-1  0,1

(0,2) \  _  /  (0,1) (0,1)
1,0 / \ 0,1 1 ,-1

(0,2) \  _
1.0

(B.79)

(B.80)

(B.81)
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Continuing the process, we act w ith  C23 on our new state, again using the A- 
notation to make the operation explic it;

C 23IO II) =  ^ C 23(|010>^|001)B +  |001)yi|010)g)

V2I020) =  -^(|010)x|010)B +  |010)A|010)B
v 2

|020) =  |010) a |010 ) b

1(0,2) 2 ,-2 )  =  |(0 ,1 )1 ,-1 )A |(0 ,1 )1 ,-1 )B . (B.82)

We have one more Clebsch-Gordan coefficient:

(0 ,1) (0,1) 
1,-1 1.-1

From Eq.(B.82) we can see tha t another application of Ô23 w ill produce a zero, meaning 
we have reached the end o f a string o f weights. Thus, we must change operators so 
as to generate another string. By inspecting Eq.(B.82), i t  is evident th a t C13 w il l also 
produce zero, so we w ill proceed by using Gig:

C12IO2O) =  C i2(|010)x |010)B)

\ /2 |1 1 0 )  =  |1 0 0 ) x |0 1 0 ) g - f  |010 )x |100>B

11 1 0 )  =  ^(|lG 0 )A |01 0 )B  +  i010)^il00)B)

1(0, 2) 0, - 1) =  ^ ( 1(0, 1) — 1, 0)a |(0, 1) 1, - 1)b

+ | ( 0 , l ) l , - l ) y , | ( 0 , l )  - l , 0 ) a ) .  (B.84)

The Clebsch-Gordan coefficients w ill no longer be exp lic itly  w ritten , since they can be 
taken d irectly  from  the states.

Now tha t we have a state not in  the in it ia l string, we w ill begin using Ô32 to  follow 
this new string to the end. As a visual aid, consider again F ig .(B .l) . S tarting from 
the bottom  le ft corner, we can see how the weight space is beginning to  take shape. 
We have the entire bottom  string, and the last state we found is the rightm ost on the 
second string.

Continuing, we act on Eq.(B.84) w ith  Ô32:

C 32IIIO ) =  ^ 032( |100)A |010)B +  |010)yi|100)B)

|1 0 1 )  =  ^ ( | 1 0 0 ) , t | 0 0 1 ) B  +  | 0 0 1 )y i |1 0 0 ) B )

1 (0 ,2 )  - 1 , 1 )  -  ^ ( 1 ( 0 , 1 )  - l , 0 ) y i | ( 0 , l ) 0 , l ) B

+ | ( 0 , 1 ) 0 , 1 ) , , | ( 0 , 1 )  - 1 , 0 ) B ) ,  (B.85)
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and we have the next state in the second string. We cannot go any further with C3 2 , 
since it will produce a zero now, which means that we have already found all of the 
states in the second string. The only direction left to go now is C1 3 , since going back, 
with C21 for example, will bring us to a state that we have found already. We find, 
then, for the next state:

C is llO l)  =

\ / 2 |200) =

1200) = 
1(0,2) - 2,0) -

^ C i 3( |100) ^ |001)B +  |001)A |100)g )

|100)^|1G0)b +  |100)^|100)b )
\ / 2 ^
|1 0 0 ) A | 1 0 0 ) B

1(0, 1) - 1, 0)A |(0, 1) - 1, 0)B (B.86)

This state is killed by all but two of the ladder operators, and those two that do not 
return a zero will bring us back to a state that we have already found. This means 
that we have six out of nine states, but cannot generate any new ones through the use 
of the ladder operators. To continue, we need to pick a state that is normalized and 
orthogonal to the six we already have. One choice is the state

^ ( | 0 1 0 ) A | 0 0 1 ) B  -  | 0 0 1 ) ^ | 0 1 0 ) B ) (B.87)

To verify that it is a highest weight state, we apply the condition of Eq.(B.69), begin­
ning with the operator Cgg:

^ G 3 2 ( | 0 1 0 ) a |001 ) b  — 1001)a |010)b ) — ÿ ^ ( |0 0 1 ) / t |0 0 1 ) B

=  0 .

|001)^|001)j

(B.88)

It is killed by C3 2 , and a quick inspection reveals that it is also killed by C31 and C2 1 , 
meaning that it is a highest weight state. To determine which state it is we use the 
two operators hi and h2 '-

^ Â i ( | 0 1 0 ) ^ | 0 0 1 ) B  -  | 0 0 1 ) ^ | 0 1 0 ) B )

V2( h f |0 1 0 )A  1001) b  +  |010).4 h f |0 0 1 ) B

h f l O O l ) ^ ]  1 0 1 0 ) b  -  | 0 0 1 ) a  [ h f | 0 1 0 ) b ] )

=  ( 1 ) ^ ( | 0 1 0 ) a 1001)b  -  |001)a |010)b ) , (B.89)

giving hi =  1 . In a similar manner we find that h.2 =  0, which means that we have the 
state

1 (1 ,0 )  1 , 0 )  =  ^ ( | 0 1 0 ) A | 0 0 1 ) B -  | 0 0 1 ) A | 0 1 0 ) B ) , (B.90)
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as an extremal one.
Notice tha t this state cannot be represented by a single state in  the A-notation, 

since we have already shown tha t the state [O il)  =  |(0 ,2) 1,1) is produced by a sum of 
the coupled states. We w ill also find tha t the three remaining states form  an inverted 
triangle in  the weight space, as shown in  F ig.(B .2).

1( 1,0) - 1,1>  | ( 1 ,0) 0 ,-1>  l ( l , 0) - l , l >  . | ( 1,0) 0,-1>

C,3

I (1,0) 1 ,0>  I (1,0) 1,0>

F igure  B .2: The  same as F ig (B . l) ,  except th is  shows the set o f states | (1 ,0) h j ,  hg)

To find the next state, we continue using the ladder operators. The only two th a t 
w ill not produce a zero are C is and C \2 - We w ill s tart w ith  C13, only because we have 
to choose one or the other. A cting  on the new state yields

C is K l,0) 1, 0) =  ^ C i 3(|010)A |001)B -  |001)A|010)B)

=  ^ ( | 0 1 0 ) A | 1 0 0 ) B  -  | 1 0 0 ) A | 0 1 0 ) B )

i ( l , 0 ) 0 , - l )  =  ^ (1 (0 ,1 )  1, —1)a |(0, 1) — 1,0)s

- | ( 0 , 1) — 1i 0)a |(0, 1) 1, —1)b ) , (B.91)

and the values of h i  and /12 can be determined from  h j =  hf- +  h?  and the A-notation 
representation of the righ t hand side.

The next state can be found using C32 , which completes the inverted triangle;

0 3 2 1 (1 ,0 )0 ,-1 )  -  ^ 0 3 2 ( |0 1 0 )A |1 0 0 )B - |1 0 0 )A |0 1 0 )B )

=  ^ ( | 0 0 1 ) A | 1 0 0 ) B  -  | 1 0 0 ) A | 0 0 1 ) B )

1(1 ,0 )  — 1 , 1 )  =  - ^ ( 1 ( 0 , 1 )  0 , 1 ) a |(0 ,  1) — 1 , 0 ) b

- 1 ( 0 , 1 )  - 1 , 0 ) A | ( 0 , 1 ) 0 , 1 ) B ) .  ( B . 9 2 )

We have now found a ll of the 9 possible combinations. This process can be repeated 
for any two coupled states. I t  is tedious, however, especially i f  A is large, and there 
are better ways of determ ining the su(3) Clebsch-Gordan coefficients [27].
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Fortunately, the work contained in  th is thesis relies only on those states which can 
be represented in  the A-notation. To avoid overcomplicating the issue, the remainder 
of this discussion w ill be lim ited  to only those aspects of SU(3) coupling which are 
relevant to  th is work. For a fu ll discussion of SU(3) coupling methods, the reader is 
directed to  [35, 27].

I t  can be shown [27] tha t the su(3) Clebsch-Gordan coefficients for the A-states, 
w ith  A =  r i i  +  H2 +  n.3 , M  — m i  +  m 2 +  rri3 , V  =  ui +  1/2 +  1̂3 , and K — M  +  V ,  can 
be factored in to  the form

(nin2n3|m im 2m 3; 1/11/21̂3) =
\{V-uz) 

I  { m 2 - m i )  | ( t ' 2 - ! ^ i )

0,M

\[K-nz)
i(n2-7ii)

o,y
m 3 ,  T M - m z )  ’ iy3 , h { V - i / 3 )

O.A
ns ^(A-ns) (B.93)

The firs t term  on the righ t hand side of Eq.(B.93) is a usual su(2) Clebsch-Gordan 
coefficient, which is covered in  the previous section. The second term  is called an 
isoscalar factor or su(2)-reduced Clebsch-Gordan coefficient. These have the form  [27]

0 , M 0 ,V
m 3 ,  U M - m s )  '  1/3,

0,A 
«3. èfA-na)

(A -  TI3)! M l  VI ns!
A! (M  -  m 3)! i y  -  1/3 )!  m 3 ! 1/3 !

(B.94)

B.4 The W igner (^-function
The general SU(2) transform ation Rz{'y)Ry{P)Rz{'â) acting on the state |^,m ) 

transforms i t  in to  a new state, which depends on the parameters 7 , /?, Th is new 
state can be represented by a superposition of the basis states |^, m ), m  =  —I, —I  -t- 
1 , . . .  , i  — 1,1. The expansion coefficients can be w ritten  as a {21 - f 1) x  {2 i -t- 1) ma­
tr ix . As an example, consider the transform ation in  the second line o f Eq.(1.77). I t  
is nothing more than the m a trix  representation of ,(0,/?,0). Also, the m a trix  T

in  Eq.(2.17) shows different ways of w ritin g  7),^ (7 ,/? ,-i?). The expansion coefficients 
are not constants, bu t functions o f the angles 7 , (3, i9. These coefficients are called the 
W igner D -functions [26] and are computed as:

7 )L ,rn (7 ,/) ,i) )  =  (7 ,m '|7 (X 7 )& ( ;8 )A z W K m ). (B.95)

I f  we evaluate the effect of the z rotations on the righ t hand side o f Eq.(B.95) and
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use the fact tha t

=  (B.96)

We now have the W igner h-function, or reduced W igner function, defined as

=  (B.97)

I t  is th is form  tha t w ill be used throughout th is thesis.
One way o f calculating the d-functions is through a recursion relation [36]:

y /{£  -  m ' ) { i  +  m ' +  I )  d^rn,m'+iif^) +  \ / ( 7  +  m ' ) ( i  -  m ' +  1)

=  2csc/3 (m 'cos/3 -  m ) d ^ „ j / ( / î ) . (B.98)

To start the recursion, recall from  Eq.(B.20) th a t the transform ation Ry{P) can be 
factored as

, (B.99)

where e^A =  cos |  and ^ =  t a n | .  I t  is then stra ight forward to find the value of 
(4n^{P). S imply use the fact tha t

e^^+|7,7)-|^ ,7) (B.lOO)

to  compute the m a trix  element for as a starting point:

(^ ,m |e^^"e^^ 'e^ m|e^'^“  |A 7)

=

_  ( ta n f) ^  " ' ( c o s g r  I l { 2 i ) \ { i - m ) ]
( 7 - m ) !  (7 +  m )!

Now all one needs to do is apply Eq.(B.98) enough times to  recover the appropriate 
d-function.
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B.5 Factorization o f a U nitary SU(3) Transfor­
m ation

An SU (3) m a trix  is defined as a complex 3 x 3  m atrix  of determ inant + 1, such 
th a t the inverse o f the m a trix  is the transpose complex conjugate o f the m a trix  itself.
These SU(3) matrices act on complex 3-dimensional vectors. The follow ing section 
demonstrates tha t any a rb itra ry  u n ita ry  SU(3) transform ation U  can be decomposed 
in to  the product of three un ita ry  block SU(2) transformations R i j .  F irs t, we need to  
define a block SU(2) transform ation. A  block SU(2) transform ation is one th a t acts in  
a subspace in  a way tha t mimics an SU(2) transform ation on tha t subspace. For an 
example, consider the three 3 x 3  block SU(2) transformations;

R i ,2 =
a h 0

- 6* a* 0
0 0 1

1 0 0
0 a b
0 --b* a*

a 0 b
0 1 0

- 6* 0 a*

722,3 =  I 0 a 6 I (B.102)

72i 3 =

w ith  |a|^ -I- |6p =  1. Each o f these R i j  transformations only affect the elements in  the 
i , j  subspace, leaving each o f the other elements unchanged. To fu rther illus tra te  the 
idea, consider a 5 x  5 block SU(2) transform ation acting inside a space of dimension 5.

R 1,3

/ a 0 b 0 0
0 1 0 0 0

-b * 0 a* 0 0
0 0 0 1 0

[ 0 0 0 0 1

(B.103)

This transform ation is simply a generalization of Eq.(B.102) to the corresponding 5 x 5  
transformation. I t  s t ill only acts on the 1,3 subspace, leaving 2,4,5 unchanged.

We w ill show tha t any 3 x 3  SU(3) transform ation can be decomposed in to  a prod­
uct of three block SU(2) transformations of the form Eq.(B.102). The result is then 
generalizable to SU(3) transformations acting in  spaces of a rb itra ry  dimensions, since 
i t  relies solely on operator relations. There are a number of possible combinations o f 
Eq.(B.102) tha t work. However we are interested in  obtaining the specific decompo­
sition U — 7?2,372i,372i^2- This method is an adaptation of a proof given by Rowe et 
cd [34].

To show tha t the decomposition U =  R 2,zRi,3R \,2  is possible, we s ta rt w ith  a 
completely general un ita ry  SU(3) element, assuming only tha t the fina l column is of
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the form;

* * y \ , (B.104)
* * z /

where the *s are a rb itra ry  entries (not necessarily the same) and the three entries x, y, 
and z are complex numbers. Note tha t since Eq.(B.104) is unitary, the three labeled 
entries must satisfy |xp  +  \y\'  ̂ +  |zp =  1.

Noting tha t the product of any two un ita ry  transformations is also a un ita ry  trans­
formation, the firs t step is to  make the follow ing 722,3 m u ltip lica tion  on Eq.(B.104);

1 0 0
0 y -z
0 z* Y *

(B.105)

This gives;

X  — a  (B.106)

y y - Z z  == 0 (B.107)

Z *3/ +  y * z  =  6. (B.108)

We need now to  consider separately the cases z =  0 and z 7̂  0. We w ill begin w ith  the
latter.

For the case z 7̂  0;
Since Y y  =  Z z  and \Y\^ +  |Z p  =  1, we can solve for Y  (note tha t z 7̂  0 implies 
|3:| 7̂  1);

| y M ;/|2 |y |2|z |2

|yMz/|2 =  ( l - |y | : : ) | z |^

ly p

iy p

|2

|yp 4- |z |2 
U |2

y  =  - 7= = = .  (B.109)
V Ï - \x

This implies tha t

Z  =  (B .llO )
v T ^ X

b =  x/1 -  lx|2. ( B . l l l )

A t th is po in t, i f  x  =  0, we already have the factored form  we are looking for and we 
are done. I f  on the other hand x  ^  0, then our next transform ation must be of the
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type i î i ,3 and, acting on the righ t hand side o f Eq.(B.105), must be of the form

(B.112)
B *  0 0 0 1

This gives the equations:

Combining them  we get

A x - B ^ l -  |x|2 =  0 (B.113)

B *x  +  A * y i  -  |x|2 =  1. (B . l  14)

B x*  +  — ( l  -  |xp)  =

B | x p  +  B ( l - | x p )  =  

B  (|x|^ +  1 -  |xp )  =

X

X

B  =  X ,  (B.115)

and

A x  =  Xa/1 — |xp  

A  =  V l  -  k P . (B.116)

Since we have forced the (3,3) entry to be 1 in  Eq.(B.117), and remembering these are 
a ll unitary, the zeros in  the th ird  row follow automatically. Our transformations now 
have the form

(B . l 17)

Using the fact th a t any un ita ry  transform ation C/^C/ =  11, we can invert the equation, 
giving

A  0 - B
0 r
0 z *  y 0 0 1

0 0 1
(B.118)

which is the in  the form  R 2,3R i,3R \,2  th a t we are looking for. 
For the z =  0 case, we have the following;

1 0 0 \ /  *
* X

0 y -z * * y
0 z* Y * 1 \  * * 0

(B.119)
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This im mediately gives T  =  0 and thus we can pick Z  =  ( if  |y| =  0, then we sim ply 
pick Z  =  1).

1 0 0 \  /  *  * X  \  /  *  *  I
0 0 —Z  I I * * 2/ I I * * 0 I . (B .120)
0 Z * 0 J \  * 0 J  \ * * | y |

This produces b =  |y|. The next transformation,

(B.121)
0 A

implies th a t A = \ y \  and B  — x,  giving

\y\ \y\

(B.122)

or

(B.123)

Inverting we get the factorization;

0 \  / \y\ 0 X

0 1 0
0 J  \ - X * 0 \y

you take z  — 0.

(B.124)
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