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Abstract

Simple on-line process identification methods that can be used in tuning PID con­
trollers or any other controllers have been studied in this work. The underlying 
continuous-time first order plus dead time FOPDT process model parameters (k , 
r , Td) have been estimated effectively at every sampling period from the frequency 
response of an under or over-parameterized model assigned for the process and 
enhanced with recursive least squares. It is shown that for any under or over­
parameterized model structure and with any SNR as low as OdB, the parameters 
of the FOPDT model are estimated reliably. This has been accomplished by using 
either the Nelder-Mead optimization approach or the line fitting approach. Line fit­
ting approach provides better estimation results and faster parameter convergence 
than the Nelder-Mead optimization approach especially when small sampling pe­
riods are used. Line fitting approach is applied experimentally to a distillation 
column and evaluated successfully in this thesis.

x
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Chapter 1

PID Controllers and Model 
Estimation

1.1 In troduction

Proportional-Integrative-Derivative or PID controllers are without doubt the 
major control schemes that are being widely used in industry [1,2]. More than 90 % 
of the controllers in industry are of PID type. Although big steps have been taken 
in advancing control theory and implementation technology, PID controllers and 
their variations (P, PI or PD) remain the dominant controllers in industry. The 
reason for PID controllers being so popular is that PID controllers have consider­
able robustness to process parameter changes and incorrect process model order 
assumption as well as provide strong robust tracking of set-point. In addition, it 
provides good disturbance rejection [1,10]. Besides the reasonable performance of 
PID controllers for usual processes, Smith predictors and cascade controllers using 
PID controllers have improved the control performance for large time-delay pro­
cesses [11]. The PID controller parameters depend on the characteristics of the 
process under control. Therefore, for good tuning, the process characteristics must 
be known. Ziegler and Nichols [9] developed a very simple heuristical method tha t 
requires the critical gain and critical period to regulate the PID controller param­
eters. A closed-loop with low damping is often achieved by these PID controller 
parameters. Better damping can be attained by slight modifications of the Ziegler- 
Nichols rules used in calculating the controller parameters [3]. A modified method 
of this type was first proposed by Astrom and Hagglund in 1984 where the process 
is activated by a relay [1,8] discussed next.

1.2 R elay Feedback

For the relay feedback arrangement shown in Fig. 1.1, it is possible to quickly
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CHAPTER 1. PID CONTROLLERS AND MODEL ESTIMATION

Process

Relay

Figure 1.1: The Relay Feedback System

obtain the critical point viz. the frequency response of the process at the phase lag 
of —180°. The basic idea is the observation that the describing function of a relay 
is the negative real axis, where the system oscillates at the ultimate frequency or 
at a value very close to it [7]. The process ultimate gain is calculated by Astrom 
and Hagglund [7] as

—  ( 1 .1 ) 
nym

Where um and ym are the amplitudes of the relay and the process output, respec­
tively.

Because of the simplicity of the relay feedback identification method as well as re­
quiring no prior information on the process under estimation except the sign of the 
static gain, it has been applied widely in industry [11], and numerous developments 
and applications have been published based on it or methods derived from it. How­
ever, the basic relay auto-tuning method is considered insufficient to represent more 
general kind of processes such as processes with different time constants, in spite of 
its apparent use and success in industrial applications [12], This is because of the 
approximations that are being used in the development of the estimation procedure. 
In particular, the describing function method is the basis of critical point estimation 
procedure of most existing relay feedback systems [49-51]. These relay based proce­
dures could under some circumstances produce significantly different results as the 
describing function is approximate in nature. This could occur particularly in pro­
cesses with significant dead-time and those with under-damped dynamics. There 
have been some theoretical attempts to investigate the accuracy and the validity 
of the limit cycles determined by the describing function DF method. However, 
unfortunately, these attempts haven’t provided any practical results when applied 
on real systems [51,52],
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CHAPTER 1. PID CONTROLLERS AND MODEL ESTIMATION 3

Recently, much effort to extract more information from the relay feedback experi­
ment has been geared towards the extension of the basic technique in order to obtain 
accurate ultimate data that can be used to attain good control performance. How­
ever, the design of high performance industrial control systems significantly depend 
on the accurate modeling and identification of the relevant process dynamics over 
its entire frequency range rather than at its critical point alone. The need for in­
dustrial processes to function in a predictable manner, in order to meet demands 
and flexibility constraints, demands robust controller design. Such design requires 
a full knowledge of the relevant dynamics [45].

1.3 P rocess M od el E stim ation
Estimating the mathematical model of a real system will be always useful for pre­
dicting the performance of that system under different operating conditions, as well 
as for designing a controller that will make the system perform in a desired man­
ner [46]. This can also be helpful to predict the closed loop (or open loop) process 
behavior due to set-point change, disturbance and noise. Most of the methods that 
are used for system identification involve changing input and measuring the out­
put response of the system. In practice, disturbance and noise are always present; 
therefore, the process of changing the input and measuring the output has to be 
repetitive in order to separate the process response from the disturbance and noise 
effects. From the point of view of process regulation at an operating point, the 
process is identified assuming linear time invariance. However in such cases, small 
and symmetric repetitive changes of the input are needed to separate the effect of 
disturbances and noise and to average the process response on the up and down 
bumps of the manipulated variable. For instance, in a temperature control system, 
active heating performance is different from passive cooling behavior even in a small 
signal models [22].

There are two classes of system identification methods; parametric or non-parametric 
The non-parametric models means that the plant frequency response function or 
impulse response is estimated directly; while parametric identification uses a model 
with parameters which are estimated by either minimizing the difference between 
the model frequency response and the actual frequency response or directly from 
time-domain data [4,5]. For non-parametric forms, identification without significant 
prior knowledge of the plant can be performed [30]. Obtaining Bode plots from ap­
plying sinusoids of different known frequencies at the input, and then measuring the 
output sinusoid amplitude and phase shift is a popular technique for this category. 
This approach can be sped up by using Fourier analysis (fast Fourier transforms 
FFT) [18,19]. However, in a practical set-up, the data used for frequency response 
estimation, notably the output of tl ■ system under test, are invariably corrupted 
by noise. Hence, for better frequent y response estimation, these data have to be 
filtered first in order to reduce the noise. Another method that can be used as
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CHAPTER 1. PID CONTROLLERS AND MODEL ESTIMATION 4

an alternative to the FFT-based approach is the quadrature correlation-based ap­
proach. It can be applied to obtain the amplitude and phase shift of the frequency 
response [44]. On the other hand, the parametric form often requires knowledge of 
at least the order of the process and is usually faster than non-parametric system 
identification.

Process identification, in the parametric form, can be carried out in the true open 
loop form, open loop form or closed loop form. In case of closed loop system 
identification, the changes from the set-point to the closed loop process output are 
used to identify the closed loop system. From this closed loop system identification, 
the process information can be obtained by factoring out the known controller 
dynamics. When using the true open loop identification configuration, the control 
system is configured in the manual mode. Changes in the manipulated variable and 
process response are used to identify the dynamics of the process. In the case of 
open loop identification, the system is still configured in a closed loop form, however, 
the controller output and process output are used to identify the system [22].

For a true open loop identification, the input has to be changed to perturb the 
process while operating the process in manual mode. The corresponding process 
output is used to calculate the process model parameters. Generally, a true open 
loop test is undesirable because this identification method is not robust against 
disturbances, since no control action can be relied on to reduce the effect of dis­
turbances. In addition, true open loop identifications as well as non-parametric 
approaches such as frequency response schemes are often batch type identification 
schemes rather than on-line recursive schemes. Batch schemes often have the disad­
vantage of not revealing the information sought until the experiment is finished. If, 
while the experiment is in progress, the lack of information is detected, corrective 
efforts cannot be applied immediately [22], In many practical situations, particu­
larly when some type of adaptive control is needed for the system, it is necessary to 
obtain the model on-line. Hence, with efficient and cheap computers, on-line iden­
tification has become attractive [46]. Closed and open loop system identification 
tests can be either accomplished by relay tests or with the system under control 
of a PI(D) controller with suitable excitation. The second method is particularly 
appropriate for existing industrial plants, where tests may only be permitted during 
normal process operation in closed loop [20].

For closed and open loop tests with the system under PI(D) control, normally, a 
set-point change is utilized. One of the first approaches using set-point change 
in identification and controller tuning was developed by Yuwana and Seborg [36]. 
Since then, there has been much effort proposed to deal with shortcomings, such as 
the use of Pade approximation for dead-time modeling [20]. It is known that the 
Yuwana and Seborg (YS) method doesn’t perform properly when processes have 
large time delays. This is because the time delay in the closed loop transfer function
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CHAPTER 1. PID CONTROLLERS AND MODEL ESTIMATION 5

is replaced by a first order Pade approximation [37]. This has been modified in [38] 
by increasing the order of the approximation of the delay in the closed loop transfer 
function. The YS method was also improved in [39] by matching the poles of an 
apparent second-order process response with the dominant poles of the closed-loop 
system in order to determine the model parameters. The YS method was extended 
in [40] in another different way by proposing to obtain the process critical frequency 
response data directly from the closed loop step response. A comparative study 
in [37] on the previous four methods showed that the refinements on the original 
work originated by Yuwana and Seborg have led to a very practical identification 
procedure. It has also been shown that good estimates of the damped oscillatory 
closed-loop system parameters can be obtained if a suitably high feedback gain is 
applied during test such tha t the experimental data are higher than the normal 
noise level in the process [37].

An alternative closed loop approach is where the identification method is conducted 
with a relay replacing the controller [20]. Lately, much effort has been made to 
modify the basic relay feedback technique to extract the process model beyond 
just the ultimate gain and frequency. The parameters of a FOPDT or a higher 
order were found in [42] by using two points on the Nyquist curve obtained by 
using two relay feedback tests. Because it was assumed that the time delay could 
be calculated from the relay feedback test initial response, this method might not 
work properly in practice [41,43]. Another modified relay feedback method to 
identify a FOPDT model was proposed in [34], The A-Locus method, an exact 
method for limit cycle identification, to estimate the FOPDT and SOPDT (second 
order plus dead time) parameters using only one relay test was developed in [41,43]. 
The authors of the A-Locus method stated that the obtained parameters are exact 
if there are no measurement errors or disturbances. An identification technique 
that approximates long time-delay process via FOPDT or SOPDT models, whose 
parameters are obtained through a modified relay feedback identification method, 
was suggested in [32], Based on the estimated model, a PI/PID  controller is then 
designed according to the specified amplitude and phase margins. The authors 
of [32] indicated that this technique is very suitable for controlling long dead-time 
processes that require fast response but at the same time permit the presence of 
overshoot. A relay in parallel with P controller to induce limit cycle output that 
can be used to identify FOPDT processes was introduced in [33]. In this method, 
two parameters of the FOPDT process are estimated based on the information 
obtained from the limit cycle output, with the steady state gain assumed known 
(apriori). A proportional-integral-proportional-derivative (PI-PD) controller is then 
designed based on these estimated parameters according to gain and phase margin 
specifications. The authors of [33] indicated that quite satisfactory performances 
can be obtained if the gain and phase margins used are suitably chosen.

In general, in these methods a special configuration such as the PI(D) controller or
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CHAPTER 1. PID CONTROLLERS AND MODEL ESTIMATION 6

the relay is used to generate the process input. Also, the identified frequency region 
by these methods is usually narrow compared with the wide operating frequency 
region of the controller. As a result of this, a satisfactory robust control performance 
might not be guaranteed. In addition, measurement noise might affect the identified 
models in the previous methods. In this thesis, a frequency response based process 
identification method is proposed. This proposed method is capable of utilizing any 
type of process input signal generator provided they contain sufficient frequency 
information and have enough signal amplitude because only the process input and 
the measured process output are required to identify the process.

In this work, a discrete-time under or over-parameterized model is assigned for the 
process. This discrete-time model is used to estimate the frequency response of the 
process. Nelder-Mead optimization approach has been used to fit this frequency 
response of the process to a FOPDT model to estimate its parameters. It has been 
shown that there are some parameters that need to be set properly when Nelder- 
Mead approach is used in such system identification task. Another technique, the 
line fitting approach, that does not require any parameter setting and can perform 
the process estimation efficiently is then proposed. This technique is capable of 
being used in industry as it shows good performance in online estimation.
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Chapter 2

Process Frequency Response 
Estimation

2.1 In trodu ction

Frequency response of systems is of vital importance and can profitably be used in 
many engineering fields [17,26,27,44]. In practice, the frequency response of any 
system can be estimated using different techniques. Each of these techniques has 
an excitation signal which might be different from method to method. In addition, 
advantages and disadvantages associated with each technique are different. The 
procedure of the frequency response estimation contains two stages: a testing stage 
and a processing stage [17]. The testing stage is the stage when the system under 
test (SUT) is excited by a suitable test signal. This SUT’s output is then recorded 
in its steady state to be processed with the SUT’s input in the second stage. On 
the other hand, the processing stage of the frequency response estimation method 
is the signal processing one where the gain G{u) and phase <j>(u>) responses of the 
SUT at all test frequencies of interest are extracted by processing the SUT’s output 
and input. The test signals used in the testing stage could be narrowband (sine) or 
broadband (noise-like). When using the narrowband signal (sine) test, the excita­
tion signal of the SUT has to be repetitive and separate until the frequency range 
of interest is covered. On the other hand, one test of long enough duration could 
be sufficient when using the broadband signal (noise-like) test. The excitation sig­
nals often used for the system frequency response estimation, for instance, are the 
single frequency (SF) signal, the multi-frequency (MF) signal, the swept frequency 
signal, the impulse signal and a variety of random noise-based signals such as pe­
riodic noise, maximum length binary sequences (MLBS), discrete binary sequence 
(DIBS), random burst and random noise of some specific distribution [17,35].

The amplitude spectra at the individual frequency can be completely and directly 
controlled in case of using the SF and MF excitation signals; while they cannot 
be individually controlled in case of using any other excitation signal. Beside this

7
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CHAPTER 2. PROCESS FREQUENCY RESPONSE ESTIMATION 8

benefit, periodicity and simple generation are the other two advantages of these two 
excitation signals (SF and MF). The periodicity either allows complete rejection of 
the effect of all disturbances (including harmonics that are uncorrelated with these 
signals) on the frequency response accuracy in case of using correlation analysis 
based processing method, or gives no leakage in case of using fast Fourier transform 
(FFT) based processing method [17].

In case of using SF in the frequency response estimation method, the test signal, 
with user-defined amplitude and phase, is applied to the SUT, and then the SUT’s 
output is recorded in its steady state mode. This procedure has to be repeated 
for the whole frequency range of interest in order to obtain the SUT’s steady state 
output at each frequency of interest. However, this repetitive procedure might 
require large time to perform which might be considered as a disadvantage for the 
testing method if the dynamics of the SUT are slow. On the other hand, in case of 
using the MF testing method, a single multi-frequency test signal is generated. This 
single multi-frequency test signal consists of many single-frequency test signals, such 
as those created in the SF test method. Similar to SF test method, the individual 
frequencies, amplitudes and phases are defined by the user for all of the single­
frequency components in the MF test method. The output of the SUT is also a MF 
signal, and it’s recorded in the steady state mode. The gain and phase peculiar to 
every component frequency in the MF input are extracted from this steady state 
output and input as they contain all the frequency response information. The time 
used by the MF test method is considered low compared with the time needed 
by the SF test method which is a benefit in case of slow SUT. However, if the 
phases of the component signals in the MF test signal are not suitably selected, 
this feature could become worthless because of the detrimental loss in estimation 
accuracy [17]. The MF test method sometimes suffers from this issue which is 
known as the problem o f’’crest (or peak) factor” minimization. The MF test signal 
is called ’’peaky” if the energy of the signal is only concentrated at specific test 
frequencies, i.e. the crest factor is high. This could cause a shock to the SUT, and 
most likely damage it or drive its output into the nonlinear region of operation or 
both. In addition, some MF test signal component frequencies could have lower 
signal-to-noise (SNR) ratios than others if the crest factor is high. This would in 
turn lower the gain and phase estimation accuracy at these frequencies [17].

2.2 U nder or O ver-P aram eterized  M od els-B ased  
Frequency R esp on se  E stim ation

Another approach which is completely different from the previous approaches can 
also be used to estimate the frequency response of a system. The first stage of this 
approach depends on assigning an under or over-parameterized model for the pro­
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CHAPTER 2. PROCESS FREQUENCY RESPONSE ESTIMATION 9

cess to be subsequently identified by RLS algorithm. Over-parameterized models 
are the models which contain redundant parameters more than those needed by the 
discrete-time model of the real system; whereas under-parameterized models are the

of the real system. Under or over-parameterization is fundamentally an interesting

or over-parameterized z-domain transfer function can be described as follows:

be under or over-parameterized based on the selection of Nu. On the other hand, 
the denominator will be structured based on the selection of Ny. By using the 
recursive least squares technique (RLS), the numerator and denominator param­
eters can be easily estimated. Estimating the frequency response from the under

ery z  for a set of frequencies u>i (i = 1 ,2 ,.... , n). It has been observed that the
open loop frequency response of the identified plant exhibits convergence for a 
given process condition even though the coefficients of under or over-parameterized 
model identified by RLS vary and are not converging [6,21]. This under or over­
parameterized model based frequency response is practical and capable of being 
used in industrial control since any test signal can be used to excite the system. 
This is because only the process input and output are required to obtain the under 
or over-parameterized model that will be used to estimate the system frequency 
response. To show that the frequency response of the under or over-parameterized 
model for a process at different sampling instants matches properly the frequency 
response of the process, examples of different processes will be given in the next 
section. These processes will be controlled with Pl-controllers in the closed loop, 
and an under or over-parameterized estimation mechanism will be associated with 
each process as in Fig. 2.1. The set-point is excited with a square-wave signal with 
amplitude equal to ±0.5 and with a period T  of 1200s for Process 1 and Process 2 
while for Process 3 it is 900s.

models whose parameters are less than those required by the discrete-time model

approach because model order does not have to be precisely selected. The under

C( -U  =  7 (z_1) =  z ' Nd̂  P h z - 1 + .... + bNuz~N-) 
U(z~1) 1 +  ai z -1 +  .... +  aNyz~Ny

(2 .1)

Where Ndu is the delay, and U(z x) and Y( z  *) are the process input and out­
put respectively as a function of the back-shift operator z _1. The numerator can

or over-parameterized models then can be achieved by substituting eJUJ'-Ts for ev-

2.3 S im ulation

2.3.1 Process 1
Suppose a process described as follows

(2 .2 )
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Figure 2.1: A block diagram of a closed loop system with under or over­
parameterized estimation mechanism

is operating with a Pl-controller in a closed loop form as in Fig. 2.1. The real 
discrete-time model of this process when a sampling period of 15s is used can be 
described like this:

G(s) =
0.04938z-3 +  0.095132 

1 -  0.92772-1

- 4

(2.3)

Since the delay is unknown quantity, the numerator of the discrete-time transfer 
function cannot be given in exact form. Because of this reason, the numerator is 
usually written as a series and consequently under or over-parameterization occurs 
in the result. Therefore, the discrete-time transfer function that is going to be used 
to represent this process in the discrete-time domain is assumed over-parameterized 
like this:

_1. b \Z  1 +  £>22 2 +  .. +  £>52 5
G (2-1) =

1 +  ai2_1
(2.4)

It is evident by comparing the numerators of (2.3) and (2.4) that the numerator of 
(2.4) has more extra roots than those the numerator of (2.3) has. The estimated 
parameters of this discrete-time over-parameterized model are given in Fig. 2.2. 
The frequency response of the process and the frequency responses of the over­
parameterized model at different sampling instants are given in Fig. 2.3.

It can be seen from Fig. 2.2 that the discrete-time over-parameterized transfer 
function parameters are converging with time. The frequency responses of the 
discrete-time over-parameterized model at different sampling instants are almost 
identical with the frequency response of the continuous-time process, particularly 
at the low frequencies up to the bandwidth of the closed loop system. This can be 
seen clearly in Fig. 2.3, where the over-parameterized model frequency responses 
are computed at the sampling instants 100, 300, 600, 1500, 2000, and 3500. The 
differences in the frequency responses at much higher frequencies are due to aliasing
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Figure 2.2: The estimated parameters of (2.4)
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Figure 2.3: The frequency responses of continuous time process of (2.2) and discrete­
time over-parameterized model of (2.4) at different sampling instants.
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occurring due to sampling as well as noise corrupting the identification as the 
simulation is carried out with measurement noise of lOdB.

2.3.2 Process 2
Suppose a process is described as follows

Op - 25s

G(s) = -----------  (2-5)
v J 300s +  1 y J

and is operated in closed loop as in Fig. 2.1. The real discrete-time model of this 
process when a sampling period of 15s is used can be described like this:

^  . 0.03306^“2 +  0.06448z-3
G<S> “ ------f-0 .95 l2^ ------ <2'6>

However, the discrete-time transfer function that is going to present Process 2 in 
the discrete-time domain is structured as an over-parameterized model as follows:

=  + m - 2 + - . + (2 7)
1 +  a\z~x +  a2Z~2

The estimated discrete-time over-parameterized model parameters are given in Fig. 
2.4; while the frequency response of the continuous time process and the frequency 
responses of the over-parameterized model at different sampling instants are given 
in Fig. 2.5.

It is obvious from Fig. 2.4 that the discrete-time over-parameterized transfer func­
tion parameters are not converging with time. Different parameterized structures 
may give different results. The frequency responses of the discrete-time over­
parameterized model at different instants, however, are almost the same with the 
frequency response of the real process, particularly at the low frequencies up to the 
bandwidth of the closed loop system. Fig. 2.5 shows the frequency response of the 
process along with the frequency responses of the discrete-time over-parameterized 
models calculated at the sampling instants 20, 290, 310, 400, 500, and 650.

Like Process 1, the differences in the frequency responses at much higher frequencies 
are because of noise corrupting the identification as well as aliasing effects. It is 
important to note that even though the discrete-time over-parameterized model 
coefficients (oi and a2) change considerably between the sampling instant 290 and 
the sampling instant 310, the frequency responses at those sampling instants remain 
unchanged in Fig 2.5.
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Figure 2.4: The estimated parameters of (2.7)
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Figure 2.5: The frequency responses of continuous time process of (2.5) and discrete­
time over-parameterized model of (2.7) at different sampling instants.
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2.3.3 Process 3
Suppose a process described as follows

r } p - 2 5 s

G(s) = ---- - (2.8)
w  60s +  1 v ;

is used to replace Process 2 in Fig. 2.1. The real discrete-time model of this process 
when a sampling period of 5s is used can be described like this:

, 0.1599Z"6
G «  -  1 ^ X 9 2 ^  <2-9>

Unlike the last two processes, the discrete-time transfer function that is going to rep­
resent Process 3 in the discrete-time domain is structured in an under-parameterized 
form as follows:

G ( z . 1} = M - ‘ +  M - 2 +  M - 3 (2 10)
v l  +  a-xz- 1 v '

It is apparent from (2.10) that its numerator is under-parameterized when it is com­
pared with the numerator of (2.9). Similar to the last two processes, the discrete­
time model parameters are estimated using the RLS algorithm and plotted in Fig. 
2.6; whereas the frequency response of Process 3 and the frequency responses of 
the under-parameterized model at different sampling instants are given in Fig. 2.7. 
Similar to Process 1 and 2, the frequency responses for the continuous-time pro­
cess and discrete-time under-parameterized model at different sampling instants 
are almost the same even though the discrete-time under-parameterized model pa­
rameters are not converging over time.

In general, the change in coefficients is caused due to the nature of RLS scheme. 
Such variations in coefficients might cause variations in controller coefficients, if de­
signed directly based on estimated process coefficients. These variations, however, 
are irrelevant as the process frequency response is invariant to these coefficient 
values. Advantages of using frequency response in control system design can be 
summarized as:

• The frequency response of a system is unique for the process condition, even 
if the coefficients of the identified process model through RLS change. The 
controller designed based on the frequency response will also be unique, irre­
spective of changes in coefficients of the identified process model.

• RLS is said to have converged when coefficients attain steady values for given 
process condition [31]. Figs. 2.2, 2.4 and 2.6 show that RLS convergence is
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Figure 2.6: The estimated parameters of (2.10)
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Figure 2.7: The frequency responses of continuous time process of (2.8) and discrete­
time under-parameterized model of (2.10) at different sampling instants.
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not guaranteed and might be worse, depending on the chosen structure of 
the under or over-parameterized model. However, RLS convergence is not a 
condition to identify reasonably the frequency response of the process. The 
faster convergence of RLS in terms of frequency response will be of a great 
benefit when the process dynamics change which will guarantee a prompt up­
date of the controller parameters to meet required performance of the control 
system.

• The closed loop desired performance model can easily be formulated in accor­
dance as a first order model with time delay, or as a second order model with 
time delay. For both first order and second order systems, the correlation is 
well established between the transient response and frequency response. This 
knowledge can be incorporated easily in specifying the closed loop perfor­
mance model in frequency domain.

• The system can be designed such that the effects of the noise are minimal by 
controlling the bandwidth of the system.

While the frequency response of the process can be computed in terms of under or 
over-parameterized models and desired model frequency response can be computed 
and used for controller design in the frequency domain, engineers are more used to 
seeing a parsimonious description of such models using the gain k, time constant r  
and time delay and design controllers with these parameters. The extraction of 
these parameters from such under or over-parameterized model frequency response 
is the main objective of subsequent chapters.
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Chapter 3

Frequency Response-Based 
Process Model Identification

3.1 In trod u ction
Identification of a transfer function of a process from the available experimental or 
calculated process frequency response data is one of the fundamental issues in the 
design of practical control systems [5,29,45]. In case of noisy frequency response 
data, the objective of this identification is always to recover the model of the process 
with an acceptable error bound. There are several techniques developed in practice 
to deal with such situations to estimate frequency response-based nonparametric 
and parametric models [4,5]. In case of nonparametric models, not only a prior 
knowledge may not be required to perform the identification, but also the identifi­
cation might be performed even in presence of process noise and/or measurement 
noise. In such situations, the identification can be executed by optimizing the SNR 
at each measurement frequency by regulating the excitation amplitude to the limit 
of the process linearity. Also, frequency responses of a process from different exper­
iments can be combined and used for the identification [29,30]. On the other hand, 
developing an accurate parametric model from frequency response data has become 
an attractive research area for many researchers because of its vital importance in 
control design. Numerous methods have been developed to estimate the frequency 
response-based parametric models [4,5,28,29,45]. Some of these techniques depend 
on minimizing the difference between the process frequency response and the model 
frequency response using different optimization techniques such as in [28,29,45]. 
Further, the models to be estimated in some of these techniques are structured as 
ratios of polynomials in continuous or discrete-time domain, where the frequency 
response of the assumed models can be easily calculated by substituting s =  ju> 
and z  =  eiuT [4,5].

Seidel [28] has developed a technique to fit the model frequency response to the 
process frequency response. His approach minimizes the sum of the squared error

17
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between the model frequency response and the process frequency response using 
conjugate gradient search. This method has been modified by Sidman et al [29] by 
using a logarithmic conjugate gradient search to minimize the squared error, where 
the cost function used is described as follows:

1 i
J (p ) =  o E  I P)} -  ln [M (^)e^ ) ] | 2 x [ln(u;i+1) -  l n ^ ) ]  (3.1)

i= 1

Where,
H ( j u , P ) is the complex frequency response of the desired model with parame­
ters P. and Q(ui) are the magnitude and phase, respectively, of frequency
response data, rid is the number of data, and cu, are the frequency values corre­
sponding to the data. [ln(u;i+1) — ln(cu,_i)] is the logarithmic frequency separation 
weighting term which may be eliminated if frequency response data points are 
evenly distributed on a logarithmic basis with a constant number of data points 
per decade.

It is important to state that the logarithm of a complex frequency response is itself 
a complex function and can be separated into real and imaginary components [29].

In[H(ju>,P)) = In P)\ + jA H { j u ,P )  (3.2)

Both techniques developed by Seidel and Sidman et al, however, might not work 
appropriately in practice because they have some weaknesses. One of their draw­
backs is that the frequency range required for identification by these techniques 
is quite large. This is because they are assuming an ideal frequency response is 
available and they are fitting the desired model to it. However, this ideal frequency 
response, in reality, doesn’t exist. Measurement noise falls into the high frequency 
range of the signal spectrum, while the underlying process signal usually lies to­
wards the low frequency end. Therefore, the identification could be affected by this 
noise if it is performed based on the high frequency components. In addition to 
being corrupted by noise, identification could be influenced by aliasing occurred at 
high frequencies as well. This means that these approaches will always perform 
poorly in case of high measurement noise, which is the case in most real systems. 
Another frequency response-based identification approach, therefore, that can deal 
with these issues and ensures capturing of suitable process parameters is needed. 
This sought technique is preferred to work in the low frequency region to avoid 
identification corruption caused by both measurement noise and aliasing at high 
frequency region, which is no doubt one of the biggest issues system identifiers al­
ways face. In this thesis, two different techniques have been used to estimate the 
process parameters. Process model identification based on frequency response of 
under or over-parameterized models using Nelder-Mead optimization approach will
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be discussed in the next section; whereas process model identification based on fre­
quency response of under or over-parameterized models using line fitting approach 
will be considered in the next chapter.

3.2 N eld er-M ead  O ptim ization  A pproach

The Nelder-Mead optimization method or the simplex method was first proposed by 
J. A. Nelder and R. Mead [15]. It is a straightforward iterative algorithm for finding 
a local minimum of a function of several but not too many variables. Nelder-Mead 
algorithm doesn’t  need the derivatives of the function being minimized, but only 
requires the function evaluations at the simplex vertices. The method works with 
a number of rules and uses the concept of a simplex which is the geometrical figure 
in m  dimensions consisting of (m  +  1) vertices. The starting point is to construct 
a simplex of (m + 1 ) points, where m  is the number of parameters of the function 
being minimized. Starting from the initial simplex, the algorithm evaluates at 
vertices the objective function being minimized and constructs a new simplex using 
operations of reflection, expansion or contraction, so that the final simplex is small 
enough to contain the optimal solution with the desired accuracy [15,16].

In this work, the algorithm is used to minimize the error between the complex fre­
quency response of the model being estimated and the complex frequency response 
of the process which is computed from the under or over-parameterized model as 
described in the last chapter. The cost function to be minimized is given as follows:

n

m  =  E  IGp(e~jUiT) -  0) | 2 (3.3)
i= 1

Where Gv(e~iUiT) is the complex frequency response of the discrete-time under 
or over-parameterized model at the frequencies Wj, and Ge(ju>i,9) is the complex 
frequency response of the model, to be estimated in s-domain, at the frequencies cjj. 
Ge(ju>i, 9) is assumed to be a first order plus dead time process, since the dynamics 
of the processes are often simplified to this [6 ]. However, in the future work, this 
can be developed to work with any order of Ge(jui , 9).

3.3 S im ulation
The Nelder-Mead optimization approach has been applied on two different processes 
in order to see how good the estimated process parameters are compared to the real 
ones. In practice, filters are always required due to the presence of measurement 
noise. In this work, the noise filtration is performed before the RLS identification in 
order to ensure that the Nelder-Mead algorithm is fed by filtered frequency response
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data. There are different types of filters that might be used in this case. However, 
the filters used in this work to reduce the measurement noise and eliminate any 
bias in the process input and the process output are low pass FIR (finite impulse 
response) filters. FIR filters are one of the two primary types of digital filters 
that are often used because they are simple and easy to understand. The function 
describing the z-transform of an iV-tap FIR filter with filter coefficients bn is given 
as:

N - l

H(z) = Y ,b n Z ~ n (3.4)
n = 0

The filter coefficients bn can be calculated by using standard MATLAB function. 
The number of taps N  can be specified as 32 or 64, whereas the normalized cut-off 
frequency a;n must lie between 0  and 1 .0 , with 1 .0  corresponding to half the sample 
rate. Specifying the cut-off frequency depends on the number of the persistent 
excitation signal harmonics that are significant in the waveform spectrum. Since 
one harmonic can be used to estimate two unknown parameters, if the number of 
the unknown parameters of the under or over-parameterized model for example 
are five, then at least three harmonics would be required to estimate these five 
parameters. These three harmonics would be the (1st, 3rd and 5th) if a square wave 
is used as an input. Fig. 3.1 shows a block diagram of a closed loop system with 
under or over-parameterized estimation mechanism with FIR filters.

RLS

JU L Process outputProcess input
ProcessPI- Controller

Figure 3.1: A block diagram of a closed loop system with under or over­
parameterized estimation mechanism with FIR filters

3.3.1 Process 1
Let a process be described as follows:

Op-25 s

-  s e n  <3'5>
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Assume that the discrete-time transfer function for the process is under or over­
parameterized with sampling period Ts — 5s as follows:

_ i  z  Ndu( b i z  l +  . . . . Jr b Nuz  N u )

G(z-Q =  v 1 , ...............  » (3-6)
1 +  a \z ~ x +  .... +  aNyz~ Ny

An under-parameterized model is used in this case to represent the discrete-time 
model with the structure (1-3-0), where Ny =  1, Nu = 3 and Ndu =  0. This 
structure is selected in order to observe how close the estimated process parameters 
( k ,  r, Td) would be to the real ones. The process input and output are filtered by 
the FIR filters before being fed to the RLS algorithm. Since there are four unknown 
parameters to be estimated, three harmonics are preserved to identify them. The 
normalized cut off frequency of each FIR filter is therefore computed based on the 
fifth harmonic of the persistent excitation spectrum. With a sampling period of 5s 
and excitation period of 900s, the normalized cut off frequency of each FIR filter 
is therefore equal to (5 x =  0.0556). The frequency response of the discrete­
time under-parameterized model is calculated at each sampling period for a certain 
range of frequency points. It is important to state that the maximum frequency 
point of this frequency range must not exceed the un-normalized cut off frequency 
specified for each of the two FIR filters used in this work. This un-normalized cut 
off frequency of each FIR filter is equal to the filter’s normalized cut off frequency 
divided by the sampling period ( ° ° | 56 =0.0111 rad/sec). Therefore, the maximum 
frequency point of the frequency range is selected to be less than 0 .0 1 1 1  rad/sec. 
Figs. 3.2 to 3.8 show the estimated process parameters ( k ,  r , r<j) using the Nelder- 
Mead approach versus sampling instants with different measurement noise. The 
SNRs used in these simulations are 14dB, lOdB, 6 dB, 4dB, 3dB, 1.5dB and OdB. 
The SNR used here is calculated as follows:

S N R \dB = 20 log10 Ŝ nalRMS = 1Q logiQ ^  (3.7)
NmseRMs a

Where:
SignalRMS and NoiseRMS are the root mean square of the signal amplitude and 
noise variance, respectively; P  and a are the signal amplitude and the noise stan­
dard deviation, respectively.

It is apparent from all figures that the estimated process parameters with the dif­
ferent SNRs, up to OdB, are satisfactory and reliable. This means that the discrete­
time under-parameterized models can be a good source for the frequency response 
of the process irrespective of the measurement noise. This under-parameterized 
discrete-time model frequency response will be, therefore, the driving force to esti­
mate profitably the process parameters (k , r ,  r^) using Nelder-Mead optimization 
algorithm.
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Figure 3.2: The estimated model parameters (k , r, Td) with under-parameterized 
model structure of (1-3-0) and S N R  =  14dB
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Figure 3.3: The estimated model parameters (k , r ,  r^) with under-parameterized 
model structure of (1-3-0) and S N R  — lOdB
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Figure 3.4: The estimated model parameters (k , r , Td)  with under-parameterized 
model structure of (1-3-0) and S N R  — 6 dB
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Figure 3.5: The estimated model parameters (k, r, rd) with under-parameterized 
model structure of (1-3-0) and S N R  = 4dB
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Figure 3.6: The estimated model parameters (k , r , rd) with under-parameterized 
model structure of (1-3-0) and S N R  =  3dB
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Figure 3.7: The estimated model parameters (k , r ,  rd) with under-parameterized 
model structure of (1-3-0) and S N R  =  1.5dB
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Figure 3.8: The estimated model parameters (k, r , tj)  with under-parameterized 
model structure of (1-3-0) and S N R  =  OdB

3.3.2 Process 2
Let a process be described as follows:

o„-25s

G 's> =  aooJT T  (3'8)

Assume that the discrete-time transfer function is parameterized with sampling 
period of Ts = 15s as follows:

r ( ^  z~Ndu(h z~l +  .... +  bNvz~N»)
° {Z ] = ! +  „ , * -  + .... +  as , z r " .  (3'9)

Like Process 1, the estimated process parameters (k, r ,  t<j) using different SNRs are 
plotted versus sampling instants in Figs. 3.9 to 3.15. Although under-parameterized 
structures can be used as illustrated in case of Process 1, over-parameterized struc­
tures have been applied here in order to study the corresponding effect of using dif­
ferent SNRs on the estimated process parameters (k, r , tj). The over-parameterized 
structure selected here is (1-5-0), with Ny = 1, Nu = 5 and NdU = 0. Similar to 
Process 1, the process input and output are filtered by the FIR filters before being
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Figure 3.9: The estimated model parameters (k , r,  r^) with over-parameterized 
model structure of (1-5-0) and S N R  =  14dB
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Figure 3.10: The estimated model parameters (k , r , tj)  with over-parameterized 
model structure of (1-5-0) and S N R  =  lOdB
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Figure 3.11: The estimated model parameters (k , r , rCj with over-parameterized 
model structure of (1-5-0) and S N R  =  6 dB
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Figure 3.12: The estimated model parameters (k, r, r^) with over-parameterized 
model structure of (1-5-0) and S N R  =  4dB
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Figure 3.13: The estimated model parameters (k , r , t^) with over-parameterized 
model structure of (1-5-0) and S N R  — 3dB
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Figure 3.15: The estimated model parameters (A:, r , r^) with over-parameterized 
model structure of (1-5-0) and S N R  =  OdB

fed to the RLS algorithm. Because there are six unknown parameters to be esti­
mated by the RLS, the normalized cut off frequency of each FIR filter is calculated 
based on the seventh harmonic of the persistent excitation spectrum. W ith a sam­
pling period of 15s and excitation period of 1200s, the normalized cut off frequency 
of each FIR filter is therefore equal to (7 x ^71575 =  0.175). As in Process 1, the 
maximum frequency point of the frequency range used to calculate the frequency 
response of the discrete-time model is chosen to be less than the un-normalized cut 
off frequency of the FIR filters. The SNRs used here in these simulations are 14dB, 
lOdB, 6 dB, 4dB, 3dB, 1.5dB and OdB.

The estimated parameters (k , r , r^) of Process 2 as seen in all figures are very 
close to those real parameters of Process 2. These estimated parameters remain 
acceptable and reasonable even with low SNR (high noise) up to OdB. In addition, 
Nelder-Mead optimization algorithm shows a good ability to fit the discrete-time 
over-parameterized model based frequency response to the frequency response of 
the desired FOPDT model of the process. However, there are some drawbacks 
associated with Nelder-Mead optimization algorithm that might lead to system 
identification failure in some cases. These drawbacks might be sometimes difficult 
to handle if the identification is carried out on-line. They may occasionally require 
a prior knowledge of the system being under estimation to be able to overcome 
them. One of these drawbacks is the iterations needed by the Nelder-Mead algo­
rithm to effectively perform the minimization. These iterations should not exceed a
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maximum iteration number specified by user. This maximum iteration number has 
to be selected carefully to achieve a balance between accomplishing the minimal er­
ror and the time consumed to reach it. Nelder-Mead optimization algorithm either 
will not execute the minimization efficiently if this maximum iteration number is 
too small or will consume a lot of computing time if the maximum iteration number 
is too large. The later is not good in case of using small sampling period. How 
small or large the maximum iteration number should be depends on the number 
of variables of the function being minimized as well as the sampling period. In 
the trials conducted in this chapter, it has been noticed that the estimated process 
parameters (k, r , rj) could be poor if the maximum iteration number is set to 
be a small number. Figs. 3.16 to 3.21 show the estimated process parameters of 
Process 1 with measurement noise SNR=4dB when applying different maximum 
iteration numbers (20, 60, 100, 120, 140 and 200) with different simplex step sizes 
(Delta=0.005, 0.05 and 0.1).
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Figure 3.16: The estimated model parameters (k, r , r^) with different simplex step 
size and maximum iteration number equal to 2 0 .
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Figure 3.17: The estimated model parameters (k , r, r d) with different simplex step 
size and maximum iteration number equal to 60.
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Figure 3.18: The estimated model parameters (k , r , r^) with different simplex step 
size and maximum iteration number equal to 1 0 0 .

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



CHAPTER 3. FREQUENCY RESPONSE-BASED MODEL IDENTIFICATION  32

Delta = 0.005 Delta = 0.05 Delta = 0.1

2000

« 2.2

1000 2000 1000 2000  0 
80

1000

40 >

2000 1000 200 0  0 10001000 000

0 1000 2000 0 1000 2000 0 1000 2000 
Sampling instant Sampling instant Sampling instant

Figure 3.19: The estimated model parameters (k, r, tj) with different simplex step 
size and maximum iteration number equal to 1 2 0 .

Delta = 0.005

2000
r  so

60

1000

Delta = 0.05 Delta =  0.1

1000 2000

tr-w v

2000

0 1000  2 0 0 0  0  1 0 0 0  2 0 0 0  0 
Sampling instant Sam pling instant

1000 2000
80 80

60 60

40 40
1000 2000 0 1 0 0 0 2000

1 0 0 0  20 0 0  
Sampling instant

Figure 3.20: The estimated model parameters (fc, r , tT) with different simplex step 
size and maximum iteration number equal to 140.
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Figure 3.21: The estimated model parameters (k, r , rj) with different simplex step 
size and maximum iteration number equal to 2 0 0 .

As can be seen from the figures, in case of using small maximum iteration number, 
the estimated process parameters (k, r , r^) can be completely different from Process 
1 parameters. These estimated parameters could potentially cause undesirable 
performance if the controller is designed based on them. On the other hand, the 
estimated process parameters (k, r ,  r^) are very close to Process 1 parameters when 
the maximum iteration number is assigned properly. It is clear from the previous 
figures that selecting the maximum iteration number and the simplex step size 
(Delta=0.005, 0.05 or 0.1) has a big effect on the minimization task. Selecting 
the starting point of the simplex vertices is also another issue that might be faced 
when using Nelder-Mead optimization algorithm. This is because this starting point 
might be assigned far away from the optimal solution which in turn will increase 
the time consumed by the algorithm to reach the optimal solution. In this case, if 
the maximum iteration number is not set correctly, the optimal solution may not 
be reached.

3.4 C onclusions and O bservations

It is obvious now that no matter what the under or over-parameterized model 
structure is, its frequency response data can be used to estimate the process model 
parameters (fc, r , tj)  of the assumed first order process plus dead time model. This 
can be done by fitting the frequency response of the under or over-parameterized
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model to the frequency response of the assumed first order process plus dead time 
model (FOPDT) by using Nelder-Mead optimization technique. However, the es­
timated process parameters (k, r , tj) could be poor if Nelder-Mead optimization 
algorithm parameters of maximum iteration number, simplex step size and initial 
conditions are not set correctly. In practice and in case of on-line estimation, even 
a prior knowledge of the process under estimation may not be enough sometimes to 
guide the setting of these parameters when model parameters being estimated are 
large and the sampling period being used is small. Therefore, this approach can be 
applied in some cases but not in others. Another approach is, therefore, developed 
in the next chapter.
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Chapter 4 

Line Fitting Approach

4.1 In trodu ction

As illustrated in the last chapter, using Nelder-Mead optimization approach to 
fit the discrete-time under or over-parameterized model based frequency response 
to the frequency response of the assumed first order plus dead time model might 
provide poor estimation outcomes if Nelder-Mead algorithm shortcomings are not 
dealt with suitably. Line fitting approach, which is a form of least squares technique, 
can be applied to identifying properly the process model parameters (k, r , rj) from 
the under or over-parameterized model frequency response without drawbacks tha t 
the Nelder-Mead approach faces. Moreover, the use of line fitting approach is 
more practical and beneficial than the use of Nelder-Mead optimization algorithm 
because of two reasons. The first reason is as pointed out earlier that the line 
fitting approach does not have any parameters that require to be set appropriately. 
Secondly, unlike the Nelder-Mead optimization approach, the line fitting approach 
can provide acceptable and reliable estimation results within a small time. The 
key factor that makes the line fitting approach provide good estimation results and 
be a powerful technique is the under or over-parameterized model based frequency 
response. Using under or over-parameterized model based frequency response has 
made the line fitting approach a superior method that can be used in ” on-line” 
system identification. This is because at each sampling period, n frequency response 
data corresponding to n frequency points can be generated when using an under or 
over-parameterized model. This property, particularly, is the driving force for the 
line fitting approach to be one of the powerful ” on-line” identification techniques.

4.2 Line F ittin g  A pproach
Line fitting approach can perform effectively in presence of measurement noise up 
to OdB. Further, it doesn’t require large frequency region to estimate the process 
parameters (k, r , r^). Three frequency points can suffice to perform the identifica­
tion task. Moreover, this approach not only can be applied in case of large sampling
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periods, but also can be practical in case of small sampling periods.

Since the process that is going to be estimated, as assumed in the last chapter, 
is a first order process plus dead time model, let us describe it by the following 
equation:

Ic p  ^  ̂

=  ( 4 - 1 )

The procedure is to estimate the gain k, time constant r  and time delay of
(4.1) from the under or over-parameterized model based frequency response. The
magnitude and the lagging phase shift of the frequency response of (4.1) can be 
expressed as follows:

H (4-2)
a / 1  +  t 2lu2

p = tan 1(cur) +  utj. (4-3)

The parameters g and p are the under or over-parameterized model based magnitude 
and phase frequency response respectively, since the frequency responses of the
under or over-parameterized model and the process are almost identical at low
frequencies. Equation (4.2) can be rewritten as in (4.4) in order to find k by using 
the measured gains g at each frequency u>.

=  1 +  uj2t 2 (4.4)
9

With one further manipulation, (4.4) can be recognized as a straight line relation 
of y = m x  +  c with:

1
V =  ~2 > 92

c = k2 ’

x  =  u>

T
m = k2

(4.5)

(4.6)

Where m  and c are the slope and y-intercept of the line, respectively. Therefore,
for n points of the angular frequency uy (for % — 1 , .... , n ) and their corresponding
under or over-parameterized model frequency response magnitude data , the best 
least squares line fit [23] is given by:
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(4.7)

E n
i=i  V i - m  Xj (4.8)

n

The coefficient of linear correlation r is given by:

E n \r-^n
i=i W i  -  E t= i ^  E i= i Vi (4.9)

The closer the magnitude of r is to 1, the better the least squares line fits the data. 
On the other hand, the closer the value of magnitude of r  is to 0, the poorer the fit 
by a straight line to the data.

The gain k and the time constant r  can be now calculated from (4.6), (4.7) and
(4.8), while (4.9) can be used to estimate the goodness of the fit. Equation (4.3) can 
be processed now to calculate the time delay r<j, using the obtained time constant 
r  , and can be rewritten as:

Equation (4.10) can be recognized as a straight line relation of y = mx  with:

Thus, least squares approach can be applied now to fit the line and obtain Td for n

or over-parameterized model phase p*. To get a good estimation of rd, the parameter

(4.10) is of the form y — mx,  where c =  0. In addition, the correlation coefficient 
r calculated by (4.9) must be close to one because when the least squares fits the 
measured data perfectly, this correlation coefficient r  is equal to one. Therefore, 
during the on-line estimation of the process parameters (k, r ,  r^), the correlation

t , rd) are good enough or not. Line fitting approach is applied on the same two

p — tan 1 (tor) = (4.10)

y = p — tan 1 (lot)  , (4.11)

m  = Td (4.12)

points of the angular frequency u>i (for i =  1 , ,...,n) with their corresponding under

c calculated by (4.8) must be equal to zero or close to it as the line equation of

coefficient can be used as a rule to assess whether the estimated parameters (k,
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processes used in the previous chapter in order to see how good the estimated 
process parameters are in comparison with the real ones.

4.3 S im ulation

4.3.1 Process 1
Let a process be described as follows:

O p-25  s
G(s) =   (4.13)

w  60s +  1

Assume that the discrete-time transfer function of this process is parameterized 
with a sampling period of Ts = 5s as follows:

-N**{b1z~1 + .... + bNuz - N')
G(z~1) =   ---- 0̂ l _ Nu _N } (4.14)

1 +  CLiZ +  — +  Q,NyZ y

As in the previous chapter, the process input and output are filtered by using 
FIR filters before estimating the discrete-time under or over-parameterized transfer 
function parameters. This discrete-time transfer function is prearranged in this 
sub-section with only under-parameterized structure. The under-parameterized 
structure that is being used here is the structure (1-3-0), with Ny =  1, N u — 3 and 
Ndu =  0. This structure is selected in order to observe how reliable and acceptable 
the estimated process parameters (k, r , r<f) would be with different SNRs, up to 
OdB, when using the line fitting approach. The normalized cut off frequency of 
each FIR filter and the maximum frequency point of the frequency range used in 
this case are similar to those used for Process 1 in Chapter 3. Figs. 4.1 to 4.7 
show the estimated process parameters (k, r , tj)  versus sampling instants with 
different SNRs. The SNRs used in these simulations are 14dB, lOdB, 6 dB, 4dB, 
3dB, 1.5dB and OdB. Unlike the simulations performed using the Nelder-Mead 
optimization approach of the previous chapter, the simulations in case of the line 
fitting approach is performed concurrently with RLS since none of Nelder-Mead 
algorithm’s drawbacks are present in this algorithm.

As can be seen from the figures, the line fitting approach together with discrete-time 
under-parameterized models can be used profitably to estimate the process param­
eters (k, r , rd). The estimated parameters are always very close to the real ones 
even in case of low SNRs (high measurement noise) up to OdB. This also confirms 
what was mentioned in Chapter 2 that discrete-time under or over-parameterized 
model could be used profitably to obtain the process frequency response.
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Figure 4.1: The estimated model parameters (k, r, r^) with the under­
parameterized model structure of (1-3-0) and S N R  =  14dB
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Figure 4.2: The estimated model parameters (k, r , Td) with the under­
parameterized model structure of (1-3-0) and S N R  = lOdB
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Figure 4.3: The estimated model parameters (k , t , t j ) with the under­
parameterized model structure of (1-3-0) and S N R  = 6 dB

2.3
2.2

30001000 2000 4000 5000 6000 7000 8000

tS 70 
§ 65

1000 30002000 4000 5000 6000 7000 8000

1000 2000 3000 60004000 5000 7000 8000

Estimated Process Parameters 
Real Process Parameters

f= 22.5 ! 
20 -

------

Sam pling instant

Figure 4.4: The estimated model parameters (k, r , r^) with the under­
parameterized model structure of (1-3-0) and S N R  = 4dB
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Figure 4.5: The estimated model parameters (k, r, rd) with the under­
parameterized model structure of (1-3-0) and S N R  = 3dB
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Figure 4.6: The estimated model parameters (k, r , rd) with the under­
parameterized model structure of (1-3-0) and S N R  =  1.5dB
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Figure 4.7: The estimated model parameters ( k ,  t , tj)  with the under­
parameterized model structure of (1-3-0) and S N R  — OdB

4.3.2 Process 2
Like in Chapter 3, consider

o p -2 5 s
G(s) = ------  (4.15)

v '  300s +  1 v '

with the discrete-time transfer function at a sampling period of Ts =  15s described 
as follows:

G (z _!)  =  * : - v ^  ; (4  16)
1 +  a \ Z  +  —  +  ct,Ny z  *

Since under-parameterized structures are tested in Process 1, over-parameterized 
structures are selected here to evaluate the effect of different SNRs on the esti­
mated process parameters (k , r ,  rrj) when using line fitting approach. The over­
parameterized structure used here is (1-5-0), with Ny =  1, Nu =  5 and Ndu = 0. 
The process input and output are first filtered by using low pass FIR filters before 
being fed to the RLS algorithm. Both the cut off frequency of each FIR filter and the 
frequency range used to calculate the frequency response of the over-parameterized 
model are set as those used in Process 2 in Chapter 3. Figs. 4.8 to 4.14 show the

-Ndu (bxz 1 +  .... +  bNuz Nu)
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model structure of (1-5-0) and S N R  =  14dB
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Figure 4.10: The estimated model parameters (k, r , r^) with the over-parameterized 
model structure of (1-5-0) and S N R  =  6 dB
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Figure 4.11: The estimated model parameters (k, r ,  r^) with the over-parameterized 
model structure of (1-5-0) and S N R  =  4dB
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Figure 4.12: The estimated model parameters (k, r , rd) with the over-parameterized 
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Figure 4.14: The estimated model parameters (k, r ,  rd) with the over-parameterized 
model structure of (1-5-0) and S N R  = OdB

estimated process parameters (k , r, rd) versus sampling instants with different 
SNRs. The SNRs used in this simulation are 14dB, lOdB, 6 dB, 4dB, 3dB, 1.5dB 
and OdB. It is apparent from all the figures that the estimated process parameters 
are converging to values that are very close to the real parameters. This means 
that the line fitting approach and discrete-time over-parameterized models can 
be employed together profitably to estimate these parameters (k, r , rd). These 
estimated parameters, as can be seen from the figures, are always very close to the 
real ones even in low SNRs up to OdB.

4.4 C onclusions and O bservations

In this chapter, it is observed that no matter what the structure of the discrete-time 
model identified by RLS algorithm is (under or over-parameterized), its frequency 
response can be used with the line fitting approach to estimate the process parame­
ters (k , r , Td) of a first order plus dead time process. This line fitting approach has 
been tested on two different FOPDT processes with different discrete-time model 
structures and with different SNRs. The estimated process parameters (k, r ,  Td) 
are always very close to the process parameters even with high measurement noise 
(low SNR) up to SNR=0dB. Also, line fitting approach can provide acceptable and 
reliable estimation results within a small time in comparison with the Nelder-Mead
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optimization approach. Moreover, using under or over-parameterized models to ob­
tain the frequency response of process has made the line fitting approach a powerful 
on-line identification technique. Thus, these estimated process parameters identi­
fied by the line fitting approach can be employed efficiently to design a controller 
that can meet the desired specifications in a self-tuning approach. Last but not 
least, all simulations performed previously on Process 1 and Process 2 using either 
the Nelder-Mead optimization approach in Chapter 3 or the line fitting approach 
in this chapter assume the processes are linear time invariant processes. The appli­
cation of the Nelder-Mead optimization approach and the line fitting approach to 
slowly time-varying processes will be discussed in the next chapter.
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Chapter 5

Slowly Time-Varying FOPDT 
Process Estimation

5.1 In trodu ction

In several industrial problems, it is of interest to consider the situation in which the 
parameters are slowly time-varying [3]. In practice, there are many different sources 
of variations, and there is usually a mixture of internal and external influences [3]. 
The underlying reasons for the variations are in most cases not fully understood [3]. 
This is because most industrial processes are very complex and not well understood; 
it is sometimes neither possible nor economical to make a thorough investigation 
of the causes of the process variations [3]. This is an important reason for using 
recursive identification methods in practice so that the identification algorithm 
might track these variations [4]. This is handled in a natural way in the weighted 
recursive least squares criterion by assigning less weight to the older measurements 
that are no longer representative for the system. This means that the forgetting 
factor should be less than one in order to have the old measurements in the criterion 
exponentially discounted [4,13].

Process parameters, in practice, might change either continuously but slowly or 
abruptly but infrequently [4]. Parameters identification by using the line fitting 
and Nelder-Mead approaches of a FOPDT process whose parameters are changing 
continuously but slowly over time will be studied in this chapter. In case of linear 
time invariant parameters, the frequency responses calculated from the discrete­
time under or over-parameterized model, which is assigned for the process by the 
user, at different sampling instants are almost identical with the frequency response 
of the process particularly at the low frequencies. This is true because the process 
parameters are not changing over time. On the other hand, in case of slowly 
time-varying parameters, the frequency responses of the discrete-time under or 
over-parameterized model at different sampling instants will not match each other. 
This is normal since the process parameters are not the same as time goes on.

48
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However, the process parameters estimated by the line fitting or the Nelder-Mead 
approaches must follow these changing parameters. The line fitting and Nelder- 
Mead approaches perform the identification at every sampling period, and only 
depend on the corresponding frequency response calculated at the same sampling 
period from the under or over-parameterized model.

5.2 Frequency R esponse E stim ation  o f  S low ly T im e- 
V arying P rocesses

Frequency response of the process used by the line fitting and Nelder-Mead ap­
proaches is estimated from a discrete-time under or over-parameterized model 
assigned for the process, as illustrated in Chapter 2. The parameters of this 
discrete-time under or over-parameterized model, as explained in Chapter 2, can 
be estimated from the process input and output by using recursive least squares 
algorithm [6,21]. The frequency response calculated from this under or over­
parameterized model at each sampling period, as long as the process parameters 
are not changing abruptly, can track the frequency response of the process at this 
particular sampling period. It can also be used by the line fitting approach or 
the Nelder-Mead approach to estimate the process parameters. To show how the 
frequency response calculated from the discrete-time under or over-parameterized 
model of a slowly time-varying process matches the process frequency response, an 
example is given.

Example:

Consider a process (Process 3) described by:

2 „ - 4 0 s

G <*> -  S oT m  <5-‘ >

Assume this process starts slow varying with time at a particular point and finally 
ends up as:

o  Kp—45s

G<s> =  250JT T  <5-2>

Fig. 5.1 shows this variation of the parameters of this Process 3 versus sampling 
instants with sampling period of Ts = 15s. As can be seen from the figure, Process 
3 remains linear time invariant (LTI) and can be described by (5.1) up to the
sampling instant 2000. After that, Process 3 parameters start slow varying with
time until the sampling instant 4000. Afterwards, Process 3 becomes again LTI 
and can be described by (5.2). In presence of these slowly time-varying process
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Figure 5.1: Process 3 parameters versus sampling instant

parameters, three different sampling instants have been chosen to see whether or 
not the discrete-time under or over-parameterized model based frequency responses 
are tracking or almost matching the real frequency responses at these three sampling 
instants. Two of these sampling instants are chosen at 1500 and 5000 where Process 
3 is described by (5.1) and (5.2), respectively; whereas the third sampling instant 
is selected at 3000 where Process 3 is assumed to be described by LTI transfer 
function of (5.3) which is obtained by reading the values of parameters from Fig. 
5.1 at this sampling instant. Fig. 5.2 shows the frequency responses of the processes 
described by (5.1), (5.2) and (5.3).

O o r:,,-4 2 .5 s

GM  -  W T T  <5-3>

To estimate the frequency responses at the sampling instants 1500, 3000 and 5000, 
an over-parameterized model with the structure (1-5-0) as described in (5.4) has 
been assigned for Process 3 with a sampling period of Ts = 15s.

b\Z ■*■ +  — +  65 z ®
1 +  diZ~lG( 0  = 1 (5-4)

Fig. 5.3 shows the discrete-time over-parameterized model parameters versus sam­
pling instant. Figs. 5.4 to 5.6 show the frequency responses from the over-
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Figure 5.2: Frequency responses of the processes of (5.1), (5.2) and (5.3)

parameterized models at the sampling instants 1500, 3000 and 5000 respectively.

Although the discrete-time over-parameterized model parameters are not converg­
ing and varying over time, the frequency responses calculated at each sampling 
period are not affected by theses variations as explained in Chapter 2 . As can be 
seen from Fig. 5.4, the frequency response of the over-parameterized model calcu­
lated at the sampling instant 1500 is almost identical with the frequency response 
of the process described by (5.1). Furthermore, the frequency response of the over­
parameterized model computed at the sampling instant 5000, as can be noticed in 
Fig. 5.6, is almost identical with the frequency response of the process described 
by (5.2). In addition, the frequency response of the over-parameterized model cal­
culated at the sampling instant 3000 and the frequency response of the process 
described by (5.3) are also very close to each other as can be seen from Fig. 5.5. 
However, this matching is not as good as the first two cases. But, generally, this 
is normal and acceptable as the RLS algorithm used to identify the discrete-time 
over-parameterized model parameters can often track the process parameters varia­
tions reasonably well if these deviations are slowly time variant [4,13,14]. This can 
be done by either selecting a suitable forgetting factor or resetting the covariance 
matrix. However, in this work, it is preferred to use a forgetting factor instead of 
resetting the covariance matrix as in processes it is neither possible to know when 
the process parameters variations occur nor whether such variations are abrupt.
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Figure 5.3: The discrete-time over-parameterized model parameters.
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Figure 5.4: The frequency response of the over-parameterized model and the process 
frequency response at sampling instant 1500.
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Figure 5.5: The frequency response of the over-parameterized model and the process 
frequency response at sampling instant 3000.
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Figure 5.6: The frequency response of the over-parameterized model and the process 
frequency response at sampling instant 5000.
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5.3 S im ulation

The Nelder-Mead optimization approach and the line fitting approach have been 
employed to estimate the parameters of a slowly time-varying process (Process 3) 
with sampling period of Ts =  15s. The process input and output are first filtered 
using FIR filters before being fed to the RLS algorithm to identify the parameters 
of the discrete-time under or over-parameterized model assigned for Process 3 as in 
the previous chapters. This discrete-time model of this process is structured as in 
(5.4), with Ny =  1, Nu — 5 and Ndu — 0. Since there are six unknown parameters 
to be estimated by the RLS, the normalized cut off frequency of each FIR filter 
is calculated based on the seventh harmonic of the persistent excitation spectrum. 
With a sampling period of 15s and an excitation period of 1200s, the normalized 
cut off frequency of each FIR filter is equal to (7 x =  0.175). Similar to the 
last chapters, the frequency response of the discrete-time model is calculated at 
each sampling period for a certain range of frequency points. The upper limit of 
this range is chosen to be less than the un-normalized cut off frequency of each FIR 
filter. Both the Nelder-Mead optimization algorithm and the line fitting approach 
are applied to the same process with the same operating circumstances. Figs. 5.7 to 
5.13 show the estimated process parameters (k , r , Td) versus sampling instants with 
different SNRs. The SNRs used in this simulation are 14dB, lOdB, 6 dB, 4dB, 3dB, 
1.5dB and OdB. The dotted lines in the figures represent the process parameters 
(k , r , Td) of Process 3. However, the solid lines represent the estimated process 
parameters (k , r , Td) when the Nelder-Mead and the line fitting approaches are 
applied.

It can be seen from the figures that the estimated process parameters (k, r , r^) 
especially in case of SNRs greater than 1.5dB are converging to values that are 
very close to the real ones. On the other hand, in case of SNRs of 1.5dB and OdB, 
the estimated process parameters (k , r ,  Td) are converging to values close to the 
real ones, but are not as good as those for SNRs greater than 1.5dB. In general, 
these figures have shown that both Nelder-Mead and line fitting approaches can 
reasonably estimate the parameters (k, r , Td) of slowly time-varying first order plus 
dead time processes even in presence of high measurement noise.
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Figure 5.7: The real and estimated process parameters ( k ,  r , r d ) identified by both 
line fitting and Nelder-Mead approaches with SNR=14dB.
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Figure 5.8: The real and estimated process parameters (k , r , rd) identified by both 
line fitting and Nelder-Mead approaches with SNR=10dB.
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Figure 5.9: The real and estimated process parameters ( k ,  r ,  Td) identified by both 
line fitting and Nelder-Mead approaches with SNR=6 dB.
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Figure 5.10: The real and estimated process parameters (k , r , rd) identified by 
both line fitting Nelder-Mead approaches with SNR=4dB.
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Figure 5.11: The real and estimated process parameters (k , r , tj)  identified by 
both line fitting and Nelder-Mead approaches with SNR=3dB.
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Figure 5.12: The real and estimated process parameters (k , t , t^) identified by 
both line fitting and Nelder-Mead approaches with SNR=1.5dB.
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Figure 5.13: The real and estimated process parameters (k , r ,  Td) identified by 
both line fitting and Nelder-Mead approaches with SNR=0dB.

5.4 C onclusions and O bservations
It has been noticed that no matter what the structure of the discrete-time model 
whose parameters are estimated by the RLS is, its frequency response will fit or at 
least track the frequency response of the slowly time-varying process, provided a 
suitable forgetting factor for the RLS algorithm is used. Also, it has been observed 
that both line fitting and Nelder-Mead optimization approaches can be used effec­
tively to estimate the parameters of a slowly time-varying first order plus dead time 
process. Both techniques are tested while taking into consideration different SNRs 
up to OdB. It has been seen that the process parameters estimated by the two ap­
proaches are very close to the real ones even in presence of noise up to SNR=1.5dB. 
On the other hand, the estimated process parameters in case of measurement noise 
of 1.5dB and OdB are still acceptable and reasonable, but not as good as those in 
case of SNRs greater than 1.5dB. Last but not least, it has been also noticed that 
the process parameters (k, r , Td) estimated by the line fitting approach are much 
better than those estimated within the same time by the Nelder-Mead approach.
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Chapter 6 

Distillation Column Experiment

6.1 In trod u ction

In this section, the line fitting approach studied in the last few chapters is imple­
mented on an experimental system, a distillation column, in the Chemical Engi­
neering Unit Operations Laboratory at Lakehead University. The objective of this 
experimental study is to apply this technique on a real-world problem as opposed to 
computer simulation of transfer functions considered in the examples of the previous 
chapters. A schematic diagram of the distillation column is given in Fig. 6.1. The 
column usually runs on methanol-water mixture. The top and bottom temperature 
of the distillation column are controlled with individual SISO PID controllers. As 
can be seen from Fig. 6.1, a temperature controller is used to regulate the bottoms 
composition at tray 2. This temperature controller output is, then, cascaded to a 
reboiler steam flow control. Both the feed flow and the temperature of the top tray 
(tray 1 1 ) are controlled by a feed flow controller and a temperature controller based 
on the reflux ratio. The level of the mixture in the bottom, on the other hand, is 
regulated by a level controller.

Line fitting approach is only applied to the distillation column bottoms tempera­
ture to estimate the process parameters using both the controller output and mea­
sured temperature output obtained from the bottoms temperature control loop. 
A first order plus dead time (FOPDT) model was assumed to represent the pro­
cess describing the distillation column bottoms temperature. It is normal that the 
data obtained from a real system are corrupted by noise, which will in turn af­
fect the identification results if the noise is not reduced. Also, the recursive least 
squares (RLS) system identification algorithm used to identify the under or over­
parameterized model employed to estimate the process frequency response requires 
persistent excitation. The set-point used should have sufficient magnitude to cause 
the excitation of system dynamics and should be persistent [3]. In this experiment, 
a square wave has been used for exciting the set-point, as in the previous chapters. 
The excitation, thus, is selected as a periodic temperature set-point bumps between
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Figure 6.1: A schematic diagram of a distillation column [22].

97-98C for the bottoms temperature loop, with a period of 1500s for three cycles. 
The set-point period selected ensures that the closed loop system output tracks the 
set-point before the next bump is applied (i.e. steady state is achieved). It is re­
quired that the excitation frequency should be such that it provides rich excitation 
in the frequency range of interest. Also, the signal to noise ratio is affected by the 
magnitude of the excitation. This amplitude also controls the frequency range used 
for the identification, since the magnitude in the frequency spectrum will depend 
on it. At higher frequencies, the effective magnitude frequency spectrum drops and 
noise perturbs the process parameters estimation [18,22,48]. As the identification 
of the process parameters is to be carried out in terms of the frequency response, 
an adequate sampling rate is required. The sampling rate should be at least 20 
times faster than the frequency range of interest [22,47,48]. The sampling period 
selected for this experiment is Ts = 15s.

RLS also requires initial values for both of the covariance matrix and the parameters 
that are to be estimated. The selection of these initial conditions will also affect the 
RLS estimate’s convergence. A forgetting factor of 0.997 is used. The performance 
of the RLS algorithm will also depend on the noise corrupting the system. For 
RLS to converge quickly, the noise corrupting the system has to be reduced. This 
is because in case of no noise or at low noise condition, the RLS is solving a set of 
(mostly) linear deterministic equations for unknown parameters [3,31].

RLS also requires that the data being used in the system identification (i.e. process
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input and output in open loop system identification, and set-point and process 
output in closed loop system identification) have to be free of DC bias. This is 
because the linearized models are valid around steady state operating conditions 
which are set by the DC bias applied to the process input. Perturbing the set-point 
applied to the closed loop system usually induces small changes on the process input 
and output without changing the DC bias, and the linearized model is only seeking 
to interpolate the behavior due to these changes. However, the change in DC bias 
in process variables, when process changes or in presence of disturbance due to 
controller action, affects the identification severely unless the bias is appropriately 
factored out [21]. In case of off-line process identification, for a slowly time-varying 
process, the DC bias can be eliminated on a cycle to cycle basis. Since the line 
fitting approach is to be implemented on-line in this experiment, an alternative 
approach for DC bias removal has been applied.

6.2 D C  B ias R em oval

The DC bias estimation can be implemented by taking the mean of set of data 
as stated previously, or by using a filter. The exponential filter used in digital 
control systems to attenuate noisy signals can be used to estimate the DC bias. 
This exponential filter is a standard form of low-pass filters. It is a first-order lag 
with unity gain [24], and can be described as follows:

n > )  =  ~ x i s )  (6 .D

Where V(s) and X(s)  are the filter output and input, respectively. Tf  is the filter
time constant, an adjustable parameter.

To obtain a discrete-time version of this filter, the idea is to start with the Laplace 
transfer function and replace the s variable with the z-transform variable. The key
relationship [24] between the operators (s and z) is given as:

(6 .2 )

Substitute (6.2) into (6 .1 ) and replace the Laplace transforms with the z-transforms 
of the sampled signals to obtain

Y (z ) =  r A  X( z )  =  —---- - — -X( z )  (6.3)Tfi}— ^)  +  1 {Tf + T) -  T jz~ l
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From (6.3), it is possible to obtain the recursive formula by replacing the z-transforms 
with the sampled values as per:

(Tf  +  T)Yn -  Tf z~xYn = T X n (6.4)

Equation (6.4) can be rewritten as follows:

Yn — cTYn_ x +  (1  — a )X n (6-5)

Where a = f  +T is always less than 1.

Equation (6.5) is used with a  =  0.99 to estimate the DC bias from the process 
input and output. Fig. 6.2 shows the process input and output, obtained from 
the experiment of the distillation column bottoms temperature control, with their 
estimated DC bias. Fig. 6.3 shows the process input and output after bias removal.

The figures indicate that the DC bias is estimated properly as time goes on. By 
using this type of DC bias removal, it is possible to estimate the DC bias at every 
sampling period. Also the DC bias estimated using this technique is not constant 
over a number of samples and it starts responding immediately to any process 
changes. The faster convergence of DC bias estimation has the potential benefit of 
achieving faster convergence in system identification.

6.3 D istilla tion  C olum n B o tto m s T em perature C on­
trol Loop P rocess E stim ation

6.3.1 Line F itting  Approach
The process input and process output, obtained from the distillation column bot­
toms temperature control loop, are fed to FIR filters after removal of DC bias.
The filtered data is fed to the RLS algorithm to identify the discrete-time under or 
over-parameterized model which is structured as follows (with a sampling period of 
15s):

b\z 1 +  62Z 2 +  63Z 3 

1 +  a\z~xG(* ) =    -  (6 -6 )
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Figure 6.2: Distillation column bottoms process output and input with their esti­
mated DC bias.
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Figure 6.3: Distillation column bottoms process output and input after DC bias 
removal.
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At each sampling period, the discrete-time under or over-parameterized model pa­
rameters are estimated by the RLS algorithm, and then used to calculate the fre­
quency response of this discrete-time model at the same sampling period for a 
selected range of frequency points. Fig 6.4 shows these discrete-time model param­
eters versus sampling instants. The frequency range specified for this experiment 
consists of only three frequency points. As mentioned in the last chapters, this 
frequency range has to be chosen suitably, where the large frequency point of this 
range should be less than the un-normalized cut off frequency of each FIR filter. 
Since the discrete-time model has four unknown parameters to be estimated, the 
cut off frequency of the two FIR filters is selected at the fifth harmonic of the persis­
tent excitation spectrum. With a sampling period of 15s and an excitation period 
of 1500s, the normalized cut off frequency of each FIR filter specified based on the 
fifth harmonic of the persistent excitation spectrum is equal to (5 x ~  0.1).
Therefore, the frequency response of the discrete-time model is calculated up to a 
frequency less than the un-normalized cut off frequency of each FIR filter which is 
equal to =  0.0067 rad/sec). Fig. 6.5 shows the estimated process parameters 
(k, r, Td) of the distillation column bottoms temperature control loop process when 
the line fitting approach is applied. To make sure these process parameters are 
estimated properly, an open loop step test is performed immediately after finishing 
the line fitting approach experiment.

0.4
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S3Ua

«  - 0.2 
<u■a.3
S  -0.4 <uI

- 0.6
u

50 100 150
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Figure 6.4: The estimated distillation column temperature control loop process 
parameters (k, r , r^).
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Figure 6.5: The estimated distillation column temperature control loop process 
parameters (k, r , r^).

6.3.2 Step R esponse Test
The open loop output response of a process to a step change in input can be used 
to estimate the model of this process if its structure is known. This type of process 
identification is classified as one of the off-line techniques. Usually, performing 
and analyzing step response tests for first order plus dead time processes [25] have 
potential difficulties:

• In real systems, a perfect step change might not be formed properly. This is 
because the process equipment such as pumps and control valves take some 
time to perform the step change rather than instantaneously move. However, 
if this time is small compared to the process time constant, a reasonable step 
response may be obtained.

• The response curve to the step input will not represent the behavior of first 
order processes if the process is not first order .

• In case of high noise corrupting the data, it is difficult to estimate reasonably 
the FOPDT process parameters from this output.

• Since the step test is performed in an open loop sense, disturbance might 
affect the process response without the operator’s knowledge.
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To fit the first order plus dead time model (FOPDT) described by the following 
equation

G(s)
ke TdS 
t s  +  1

(6.7)

to the distillation column bottoms temperature control loop measurements obtained 
from a step change in the input of magnitude M%, the following steps as illustrated 
in [25] have to be taken to calculate the process parameters from a response shown 
ideally in Fig. 6 .6 :

y

k M
In f le c tio n
P o in t

Figure 6 .6 : A step response of first order plus dead time process [25].

• The steady state value calculated from the step response is equal to the pro­
cess gain k multiplied by the step change M. Thus, the process gain k can 
be calculated by obtaining the ratio between the step response steady state 
value kM  and the step input change M.

• Process time delay can be obtained by calculating the time interval between 
the step change starting time and the time specified by the intersection be­
tween the time axis and the tangent line drawn at the step response inflection 
point.

• The time interval between the step change starting time and the time calcu­
lated at the intersection between the step response steady state line (where 
y = kM ) and the tangent line drawn at the step response inflection point is 
corresponding to the time (r +  tj) .  Thus, the process time constant can be 
calculated by subtracting the time delay from this time.
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A step test is performed on the distillation column bottoms temperature control 
loop immediately after performing the line fitting approach experiment. This is 
done by making the controller work on the manual mode for sometime until the 
steady state response is reached. Afterwards, a bump test is done by the changing 
the controller output from 41.0 to 45.0%. Figs. 6.7 and 6 .8  show the distillation 
column bottoms temperature control loop step response to the step change in pro­
cess input. By applying the previous steps on the obtained step response curve, 
the distillation column process parameters are approximately estimated.

Y(t> c*
97.1 r

Si«p Rtspons« A

97

KM
Step Response 0

96 7

96  .S'60 70 6 0 90 100 110 120 130 UO 180

Sampling Instant

Figure 6.7: The distillation column bottoms temperature output response to a step 
input change.

As can be seen from the Fig 6.7, the step response curve is corrupted with noise 
and most likely disturbances as well. In such situations, typical of most industrial 
processes, it is impossible to estimate the process parameters accurately. This is 
because it is difficult to fit a first order plus dead time model to the measured step 
response. Thus, the accuracy of the estimated process parameters (k, r , r^) will 
always depend on the precision of the drawn FOPDT model curve on the process 
response curve. As can be seen in Fig. 6.7, two different step response curves (step 
response A and B) have been drawn, and it is hard to decide which one fits the 
measurement data better. In addition, the process parameters could be estimated 
inappropriately if the inflection point is not selected reasonably. However, in this 
step test experiment, the objective is to know at least approximately the estimated 
process parameters. This is to confirm that the estimated process parameters cal-
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Figure 6 .8 : The distillation column bottoms temperature input step change.

culated by the line fitting approach are very close to those approximately obtained 
by the open loop step response test. Therefore, the three steps mentioned above 
are applied on Fig. 6.7 to approximately identify the FOPDT process parameters 
( k ,  t , Td) , which are obtained as:

The process gain A; ~  ^  ~  ^  ~  0.06 

the process time delay «  (97 — 92) x T s «  75s

and the time constant (110 — 97) x Ts m 195s.

These approximately estimated process parameters as can be seen are close to those 
parameters obtained by the line fitting approach which are plotted in Fig. 6.5.

6.4 C onclusions and O bservations

Line fitting approach has been successfully applied on a distillation column bottoms 
temperature control loop to estimate on-line the process parameters (fc, r ,  Td) .  The 
process input and output are subjected to a discrete-time exponential filter to 
remove the DC bias before being fed to FIR filters to reduce the noise. An under­
parameterized model has been assigned for the discrete-time model to estimate
the frequency response of the process. An open loop step response test has been
performed on the distillation column bottoms temperature control loop in order to 
compare the estimated process parameters with those identified by the line fitting
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approach. It has been noticed that the process parameters (k, r, Td) estimated by 
the line fitting approach are very close to those parameters estimated approximately 
by a step response test. This indicates that the line fitting approach is capable of 
being used in industrial situations to estimate the process parameters and in turn 
these estimated parameters can be employed in tuning the controller.
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Chapter 7 

Conclusions and Future Work

In this work, the frequency response of a discrete-time under or over-parameterized 
model at each sampling instant has been used to estimate the process parameters. 
This estimation has been performed using two different techniques, Nelder-Mead 
approach and line fitting approach. In the Nelder-Mead optimization approach, 
the linear time-invariant or slowly time-varying process parameters are estimated 
reasonably even with SNR of OdB. However, when using the Nelder-Mead approach, 
there are some parameters such as the maximum iteration number, the simplex size 
step and the starting point of the simplex vertices have to be selected properly in 
order to get good estimation results especially when the sampling period being 
used is small. On the other hand, when using the line fitting approach, the linear 
time-invariant or slowly time-varying process parameters are estimated properly 
and reasonably even with SNR of OdB. These process parameters identified by the 
line fitting approach are much better than those obtained within the same time by 
the Nelder-Mead optimization approach. Also, the line fitting approach has been 
successfully applied on a distillation column bottoms temperature control loop to 
estimate on-line the process parameters (k, r ,  r^). In addition, it has been noticed 
that the process parameters (k, r ,  r^) estimated by the line fitting approach are close 
to those parameters estimated by an open loop step response test. To sum up, the 
line fitting approach and the frequency response of an under or over-parameterized 
model have been shown to estimate on-line FOPDT parameters, and are capable 
of being applied profitably in industrial situations.

The future work has two parts. The first part is to try to take advantage of the 
FOPDT parameters estimated by the line fitting approach to design and/or tune 
a PID controller or any other controller to meet the desired specifications. The 
second part is to extend the line fitting approach to work with second and high 
order plus dead time processes.
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