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ABSTRACT

We have used a combination of scanning tunneling microscopy (STM) and 

low energy electron diffraction to investigate the Au-induced morphology of 

vicinal Si samples misent from (111) by 3.8°, and 12.3° toward [112]. The 

surface morphology changes dramatically with Au coverage on both samples. On 

the 3.8° samples, gold deposition leads to the formation of the (775) facets. The 

(775) facet is orientated 8.5° toward [112] and characterized by 1-d chains running

along [1Ï0] with a spacing of 21.3 A. The formation of the (775) facet is 

consistent with previous ideas that it represents a low energy facet on these 

surfaces. On the 12.3° sample no single low energy facet was observed in the 

coverage range (0-0.24ML) investigated. Instead, (13 13 7), (995), and (553) 

facets are formed at 0.10 ML, 0.20 ML, and 0.24 ML respectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 1: Introduction 3

Chapter 2: Background 5

2.1 Silicon crystallography 5

2.2 Gold Induced Surface Restructuring 9

2.2.1 Gold induced restructuring on flat surfaces 9

2.2.2 Gold induced restructuring on vicinal surface 11

Chapter 3 : Experimental Techniques 17

3.1 Instrumentation 17

3.1.1. UHV system 17

3.1.2 Low Energy Electron Diffraction 20

3.1.3 Auger Electron Spectroscopy 24

3.1.4 Scanning Tunneling Microscopy 28

3.1.4.1 Quantum Theory of Tunneling 28

3.1.4.2 Tip Preparation and STM Instrumentation 30

3.2 Sample Preparation 33

3.2.1 Clean surface preparation 33

3.2.2. An evaporator 35

Chapter 4: Results 37

4.1 Morphology of 3.8” samples as function of Au coverage 37

4.2 Morphology of 12.3“ samples 47

Chapter 5: Discussion 55

Chapter 6: Conclusion 59

References 61

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 1 : Introduction

One dimensional (1-d) nanostructured materials have attracted a great deal 

of scientific interest. They provide potential for understanding both fundamental 

physical concepts, and for applications in nanoscale electronic and optoelectronic 

devices and bio-sensing techniques'’̂ . One of the recent areas of investigation is 

the self-assembly of Au-induced atomic wires on Silicon surfaces. It is thought 

that these systems may act as prototypical systems to study the 1-d confinement of 

electrons^ .

Electronic behaviour becomes more exotic as the dimensions of the system 

are reduced^ Single particle excitations are replaced by collective excitations. 

The electronic and structural properties of 1-d metallic systems are predicted to be 

fundamentally different from those in higher dimensions.^ In particular, in the 

Luttinger liquid'" (a quantum liquid in one dimension), it is proposed that the 

collective excitations associated with charge and spin separate to form holons and 

spinons respectively.

It is well known that 1-d metals are prone to a variety of structural and 

electronic instabilities. For example, many systems are prone to a Peierls 

distortion" where a doubling of the unit cell leads to a metal-insulator transition. 

In other words metalicity collapses in one dimension unless there are interaction 

potentials stabilizing it. One way to avoid this transition may be to deposit the 1-d 

atomic chains on a rigid template.^

Vicinal, or misent, silicon surfaces are attractive substrates for the formation 

of 1-d wires." Vicinal surfaces can be prepared with regular step arrays, and the
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bulk band gap prevents hybridization of the chain states at the surface with the 

bulk.

Previously, J.N.Crain et a l . have demonstrated that a variety of chain 

structures with novel 1-d behaviour can be prepared by evaporating a small 

amount of gold onto vicinal silicon substrates. They show that the dimensionality 

of these chains can be tailored by varying the gold coverage and the angle of the 

misent.

Much of the work to date has focused on the electronic properties of the 

chains; while relatively little work has investigated their formation. In this thesis 

we expand upon previous experiments and study the Au-induced morphology of 

wafers orientated 3.8° and 12.3° away from the (111) plane towards [112). On the 

3.8° wafer, we vary the gold coverage from 0-0.46 monolayers (ML), and on the 

12.3° sample we study coverages <0.24 ML.

In Chapter 2 we develop the necessary background and review previous results. 

In Chapter 3 we discuss the experimental techniques and sample preparation. Our 

results are presented in Chapter 4 and are discussed in Chapter 5. Chapter 6 gives 

a brief summary of our findings.
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Chapter 2: Background

2.1 Silicon crystallography

The crystal structure of silicon is a diamond lattice. It consists of tetrahedral 

bonds. As seen in Figure 2-1-1, each atom has 4 nearest neighbors and 12 next 

nearest neighbors. The space lattice of silicon is a face-center-cubic (fee) structure, 

with a two atom basis, one at (000), and the second offset at (^ , ^ ,).

Figure 2-1-1 crystal structure of silicon, showing the tetrahedral bond arrangement. Figure 
reproduced from Reference 13.

The natural cleavage plane of Silicon is the (111) plane where (111) is the 

Miller-index. The Miller-index of a surface is defined in Figure 2-1-2. All the 

surfaces referred to in this thesis are labeled in the same way.

The bulk terminated (111) surface exhibits hexagonal symmetry with a

lattice spacing of 3.8 A. For many surfaces, to reduce the number of dangling 

bonds atoms rearrange themselves from their bulk terminated positions to reduce 

the overall surface energy. This rearrangement is called surface reconstruction.
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Figure 2-1-2 The intercept of a plane with the crystal axes is 2a, 3b, and 3c respectively. The 

reciprocals of the intercepts a r e ^ , and ^ . The smallest three integers having the same ratio is 3, 

2, and 2, thus this plane is defined as the (322) plane. Figure reproduced from Reference 13.

The 7x7 structure is the low energy reconstruction for the clean S i( ll l)

surface below 850°C. The 7x7 unit cell (with a unit length of 26.6A) is 7 times 

larger than the bulk terminated unit cell. The surface unit cell in real space retains 

the same hexagonal symmetry. The accepted model for the 7x7 reconstruction was 

proposed by Takayanagi et al.^" and is called the dimer adatom stacking fault 

(DAS) model (Figure 2-1-3). The key structural features of this model are: (a) 12 

“adatoms” in the top layer, (b) a stacking fault in one of the two triangular 

subunits of the second layer, (c) nine dimers that border the triangular subunits in 

the third layer, and (d) a vacancy at each apex of the unit cell, the so called comer 

holes.
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Figure 2-1-3 DAS model of Si (lll)-7x7: (a) first three layers of atoms shown in top view. The 
surface unit cell is outlined (Robinson et al., 1986) Figure reproduced from Reference 16. (b) side view 
of the 7x7 reconstructions. Figure reproduced from Reference 15.

In Figure 2-1-4, we show an STM image of the 7x7 reconstmction. We can 

clearly see each half of the 7x7 unit cell, and the boundary between each triangular 

subunit. In fact, the first STM observation of the 7x7 reconstruction by Binnig et 

al. in 1981 was instrumental in verifying the 7x7 DAS model and the 

subsequent award of a Nobel Prize in 1986 to Binnig and Rohrer.

m

o o
Figure 2-1-4 An STM image (160 A  x 200 A )  of a clean 3.8° sample. The image was taken at a bias of 

+2.14 V, a tunneling current of 0.53 nA, with a PtRh tip.
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Besides the natural cleavage plane, silicon can be intentionally cut along any 

direction. Wafers cut away from the (111) plane are referred to as “vicinal 

surfaces”. Vicinal wafers tilted towards [11 2] or [Î Ï 2] are particularly interesting 

since they exploit the crystallography of the Si crystal to produce well defined 

atomic steps running straight along the {110} directions. The two directions 

exhibit very different behavior. Unreconstructed Si atoms at the step edge in the 

[112] direction have one dangling bond per atom while atoms at the edge of [Ï 12] 

steps have two (Figure 2-1-5). In this thesis I will focus on vicinal wafers 

orientated towards [112].

mol
BULK CUBIC 
AXES

Figure 2-1-5 Diagram of steps cut aiong [Î Î2] and [112]. Figure reproduced from Reference 17.

Cleavage produces atomic steps which can form facets. The morphology of 

vicinal crystal surfaces is mainly determined by the distribution of atomic steps. 

This distribution depends on misent angle, sample preparation'*’̂ ,̂ and metal 

coverage^®.

In this thesis we employ a heating procedure outlined by L.Lin et al.^’.

Figure 2-1-6 shows two examples of the morphology of the clean 3.8° and 12.3°

surfaces following heat treatment. It is clear from the STM images that even

though the two wafers are misent towards [112], the clean surfaces are quite

different. The surfaces are far from flat. The clean 3.8° exhibits large (111)

8
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terraces separated by facets tilted T  away from the (111) plane. The 12.3° 

surface forms smaller terraces characterized by regular chain structures running 

along [110] separated by atomic steps. Further details of this morphology will be 

discussed in chapter 4.

\ \

Figure 2-1-6 (a) An STM image (2000 A  x 1800 A )  of a 3.8“ clean surface taken at a bias of +2.32 V,

tunneling current of 29.0 pA, with a PtRh tip. (b) An STM image (3000 A  x 3000 A )  of a clean 12.3° 

surface taken at a bias of +2.42 V, tunneling current of 323 pA, with a PtRh tip.

2.2 Gold Induced Surface Restructuring

2.2.1 Gold Induced restructuring on flat surfaces

For S i( lll)  surfaces, upon Au adsorption, the 7x7 reconstruction transforms 

into a 5x2 reconstmction. Normally this reconstmction occurs on flat (111) terraces 

but it also persists on samples with slight miscut^^ “ According to measurements 

by Bauer, et al.^^’̂®, the Au coverage for the (5x2) is 0.443+0.008 ML, where one 

monolayer is defined by the density of S i( lll)  surface atoms and is equivalent to 

7.8x10“*atoms'/cm^. This experimental value implies an average of 2 Au atoms per 

5x2 unit cell.

Although the exact stmcture of this surface is still under debate, the model

9
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displayed in Figure 2-2-1 was recently proposed by Steven C. E r w i n T h e  

reconstruction occurs purely in the surface layer, and includes a double honeycomb 

chain (DHC) structure with an underlying 5x2 periodicity. Honeycomb chains occur 

when Si atoms are bonded to three atoms in the same layer but not to a fourth in the 

layer below. One chain is formed by hexagons of alternating Au and Si atoms while 

the other one consists of pure Si atoms. The gold atoms sit within the outermost Si 

double layer^*’̂ .̂ LEED patterns of the 5x2 reconstruction exhibit half order streaks 

between two rows miming along [112]. The streaks are the result of incoherence of 

the 2x periodicity between two adjacent rows.

An STM image of 5x2 reconstmction is shown in Figure 2-2-2. The unit cell of 

5x2 reconstmction is shown in white. The 2x periodicity is mnning along the chains 

in the [1Ï0] direction. The bright protmsions evident along the chains are extra 

silicon adatoms and they are located randomly. The extra adatoms occupy 1/4 of the 

available 5x2 sites. In fact they randomly populate about one half of the sites on a 

5x4 superlattice. It has been proposed that the presence of these adatoms is the key 

to the electronic stability of the 5x2 stmcture^’.

10
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Au-Si HC Si HC

Figure 2-2-l“Double honeycomb chain” structure of Si (lll)-(5x2)-Au. Large yellow circles are Au, 
small circles are Si. The elementary 5x2 unit cell is outlined. Each unit cell contains two honeycomb 
chains (HC) based on the outlined hexagons, one of alternating An and Si atoms, the other of all Si. 
Three additional Si adatoms, in dark colour, are also shown. The origin of the adatoms is discussed in 
the text. Figure reproduced from Reference 27.

Figure 2-2-2 An STM image (320 A ^210 A) taken on a 3.8°sample following 0.44+0.03 ML of

gold. The image was taken at a bias of -2.45 V, a tunneling current of 420 pA, with a tungsten tip. A 5x2 
unit cell is outlined.

11
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2.2.2 Gold induced restructuring on vicinal surface

When gold is introduced onto vicinal surfaces, as we will see, it dramatically 

affects the morphology of the surface. The exact nature of the restructuring 

depends on Au coverage, deposition conditions and the wafer orientation. Au 

adsorption often produces well defined facets not observed on the clean surface to 

decrease the total surface energy.

D.J.Chadi'^ showed that for wafers orientated towards [112 ], the relationship 

between the surface normal (relative to the bulk cubic axes) and the Miller-index 

is given by:

n= ip+m, p+m, p-m), p>m>\ (2 .1)

tan^ = (2.2)
3p  + m

d = (p+ml3) a (2.3)

where m is the number of atomic layers missing between two adjacent 

terraces. For the 3.8“ wafer, m always equals 1. The angle 0 is between the 

unknown facet and the (111) plane and p  is the number of bulk atoms across the 

terrace. Assuming the facet consists of (111) terraces separated by atomic steps. 

Equation 2.3 yields the periodicity of the structure along the [112] direction.

Figure 2-2-3 illustrates a vertical cut through a bulk silicon crystal. The [111] 

direction is vertical and [110] is into the page. In the figure, if you connect the 

leftmost point to any other point, this defines the labeled facet with respect to the

(111) plane. The red and blue lines represent the orientation of our 3.8“ and 12.3° 

samples respectively.

12
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Figure 2-2-3 “Si road map” for vicinal silicon surfaces. The image represents a cut through the

Si bulk crystal in the (110) plane. The dots indicate the position of Si atoms in the bulk and the black

horizontal line in the middle of the crystal is the (111) plane. The red and blue lines represent the 
orientations of 3.8“ and 12.3“ samples respectively. Figure reproduced from Reference 30.

Several groups have investigated the gold induced surface restructuring of 

vicinal surfaces miscut towards [112]. Previously J.D.O’Mahony et used 

STM to investigate samples oriented 4° towards [112]. Using their heating 

procedure, the clean surface consists of small ( 111) terraces separated by single

height steps. At 0.1 ML, the surface exhibits larger (111) terraces (120A width) 

with 7x7 and 5x2 regions of equal width and regions of step bunching. The 5x2 

regions are adjacent to the rising steps. As the coverage increases to 0.2 ML, the

large (111) terraces with 7x7 and 5x2 regions grow (300-400A). At 0.5 ML the 

entire (111) terraces exhibit a 5x2 reconstruction and regions of step bunching 

form a well defined (775) facet. The (775) facet is orientated 8.5° towards

[112] and characterized by 1-d chains orientated along the [1Î 0] direction

spaced 21.3 A apart. Beyond 0.5 ML, the (111) terraces transform to 

a Vs X V3 R30° reconstruction.

L.Seehofer et al.^  ̂ studied the structure of surfaces tilted 2°, 4°, 9°

13
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towards [112] at the 5x2 coverage of gold. In all cases, they found that the 

surfaces consisted of flat (111)5x2-Au terraces separated by regular (775) facets.

Shibata et alV  ̂ showed at 0.3 ML, 4° surfaces consist of large (111)7x7 

terraces and well ordered (775) facets. They also found adatom-like structures on 

the step edge adjacent to the 7x7 terraces. These authors suggested that the (775) 

facet resembles a 5x2 unit cell modified to include an atomic step. As a result, 

the (775) facet represents a An induced low energy facet on these surfaces.

Figure 2-2-4 schematic view of (775), all the atoms have the same denotation as figure 2-2-2. 
Figure reproduced from Reference 30

Although the exact structure of the (775) surface is not known, one model 

proposed by J.N.Crain et al.^° on the basis of photoemission measurements is 

shown in Figure 2-2-4. The Au adsorbed facet has a characteristic chain of

spacing 21.3 A, and an inclination angle of 8.46° from the (111) plane.

R.Hild et al.^  ̂ published a detailed LEED investigation of the structure of a 

4.3° sample as a function of An coverage and annealing temperature shown in 

Figure 2-2-5. According to their results the (775) facet appears on the surface

14
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over a wide range of gold coverage (0.1- 0.46 ML). Beyond 0.5 ML the surface

undergoes restructuring to (553) facets separated by flat (111) terraces. Below

0.75 ML, the (111) terraces are 5x2 reconstructed, while beyond 0.75 ML the

(111) terraces are R30° reconstructed.

T('C)
9 0 0 -

800

700

60(r

GOO

(443) (77G)
vicinal 

(653) (221)

step bunches

step 
bunches

i éâfwféiMâSWMlâill :

(111)-5x2(111). 7x7 (11 1 )-V 3 x 7 3 ,

0 0.5 1.0 e (̂ML)

Fig 2-2-5 Structure diagram for a 4.3° vicinal Si (111) with the miscut towards the [112] direction as 
a function of Au coverage and sample temperature. Figure reproduced from Reference 33,

On samples with a higher miscut M.Jalochowski et al.̂ '̂  observed ideal 

Si (755) facets at 0.2 ML of Au on samples orientated 9.44° towards [112]. 

Previously our lab has investigated the morphology of samples miscut 8° over a 

wide range of Au coverage (0 - 0.44 ML)^^. It was found that well defined (775) 

facets are formed at the onset of gold deposition up to 0.32 ML. Below 0.18 ML, 

gold migrates exclusively to the (775) facets and non-(775) facets are gold free. In 

agreement with Hild et al.^  ̂beyond 0.32 ML, the surface forms steeper facets i.e. 

(332) and (553), with shorter chain spacing. Using UHV reflection electron 

microscopy Aoki et al.^  ̂ observed (553) facets on samples miscut 12.3° towards 

[1 1 2 ].

15
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The (553) facet has been observed by several authors at higher gold 

coverage or on samples with a larger miscut. It is characterized by chains spaced

14.8 a apart and oriented 12.3° towards [112]. While the exact nature of the (553) 

facet is unknown, Figure 2-2-6 illustrates a recent model based on first-principle 

density function calculations.

Figure 2-2-6 top (a) and lateral (b) view of the double row mode of the Si (553)-Au after 300 steps 
of unconstrained structural relaxation. Red ones are gold atoms and the rest are silicon atoms. Figure 
reproduced from Reference 37.

In this thesis we extend the work of these authors to study the gold induced 

morphology of samples miscut 3.8° and 12.3° towards [112] as a function of 

gold coverage. These two wafers are chosen because 3.8° is below the 8.5° 

orientation of (775) facet while 12.3° is above it.

16
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Chapter 3: Experimental Techniques

3.1 Instrumentation

3.1.1. UHV system

All of the work in this thesis was performed in an ultra-high-vacuum (UHV) 

chamber. The low pressure was necessary for the surface to maintain a stable 

composition. The UHV environment allows for low arrival rates of reactive 

species from the surrounding gas phase. The rate of arrival of atoms or molecules 

from a gas of density n and average velocity , is

r = ^ n c ^  (3.1)

Using the kinetic theory of gases, the rate of arrival can be rewritten to yield:

(3.2)

Where r is in molecules/(cm^s), P is in Torr, and M  is the molecular mass in 

g/mole and T is in Kelvin. For example, in our UHV system, the pressure is kept 

below 2x10 Torr. At ambient temperature, and assuming a unity sticking 

coefficient, the time for a monolayer (7.8xl0^‘'cm^^) of molecules (M=28) to 

accumulate is almost 5.6 hrs, which is acceptable for our experiments. For 

comparison, in high vacuum {10'^ Torr), this period would be 2 s.

Our experiment starts with the input of a sample into the UHV system

through a load lock. The load lock is pumped to around 2xlO~^Torr before

introducing the sample into the main chamber. The pressure in main chamber is

kept below 2x10"^° Torr. The main chamber is a two level system with low energy

electron diffraction (LEED) and Auger electron spectroscopy (AES) on the upper

level, and a gold evaporator, load-lock, and scanning tunneling microscope (STM)

17
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on the lower level.

To produce the UHV pressures required for our experiments, we use several 

pumps working together to achieve the ultimate pressure. The first stage of 

pumping is a mechanical pump. Gas enters the chamber of the pump and is 

compressed by a rotor and vane and then expelled to the atmosphere through a 

discharge valve. The oil-sealed unit pumps gases in the pressure range of 1 to 

10^Pa. We use an Edwards E2M2 pump^^, with a displacement o f 10 to 200 mVh.

The next pumping stage we utilize is a turbomolecular pump'*®. This pump 

consists of a molecular turbine that compresses gases by momentum transfer from 

the high speed rotating blades (which in our case is 60,000 rev/min). The relative 

difference in velocity between the slotted rotating blades and slotted stator blades 

is designed to transfer gas molecules from pump inlet to outlet. To evaluate the 

pump performance, we define two parameters, the first is the compression ratio, 

which is defined as the ratio of outlet pressure to inlet pressure, and the other 

parameter is the pumping speed.

Normally, the turbo pump works in the so-called molecular flow region. 

Molecular flow is defined in terms of two quantities; the Knudsen number K„, and 

the Reynolds number R. The Knudsen number is the ratio of the mean free 

path of the gas to the characteristic dimensions of the system. The Reynolds 

number R is defined as:

(3.3)
n

where p  is the mass density of the gas, 7 is the viscosity and U is the stream

18
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velocity in a pipe of diameter d. Molecular flow occurs when >1, and

The ultimate pressure of the pump is determined by the compression ratio 

for light gases. One advantage of the turbo pump is that it does not backstream 

hydrocarbons from the lubricating fluid. We use a Varian T u r b o - m o d e l  for 

initial pump down of the main chamber and to pump the load lock. The 

specifications of our turbo pump are listed in Table 3-1-1 :

Nitrogen: Helium: Hydrogen:

Pumping speed (1/s) 65 55 45

Compression ratio 5x10' 4x10' 4x10'

Base pressure (Torr) SxlO-'" 8x 1 O'" 8x 10"

Table 3-1-1 Specifications of Turbo-V60 Turbo molecular Pump'*'

The main pump in our system is an ion pump and is used to achieve UHV

pressures. This pump is oil free, and it has no moving parts which is important for

our vibration sensitive STM experiments. The potential difference between anode

and cathode (~7kV) in the pump along with an axial magnetic field forces the

electrons from the cathode to travel in circular orbits. The circular path helps

electrons travel long distances before reaching the anode and thus increases the

probability of ionizing collisions with gas molecules. The ionized gas molecules

can also trigger further ionization. The cations are accelerated towards the cathode

and captured. In the process, they sputter away cathode material (Titanium). The

freshly sputtered titanium is highly reactive and provides further pumping. The ion

pump used in our system is a Varian, Vaclon Plus 150 with a pumping speed of

19
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150L/s, and a base pressure of 70'" T o r /\

To increase the pumping speed at our base pressure we also use two getter 

pumps; a titanium sublimation pump (TSP), and a non-evaporable getter pump 

(NEG). Titanium is used in the TSP because it has a high vapor pressure at much 

lower temperatures than most other metals and is highly reactive. The freshly 

evaporated Ti reacts with adsorbed gases. As the Ti film becomes saturated, a 

fresh titanium layer is sublimed periodically to ensure continual pumping. At 

UHV pressures, the Titanium layer lasts for at least 24 hours.

The Capacitorr-D400 NEG pump , pumps by surface adsorption and 

diffusion into the bulk. During initial pump down of the chamber, the NEG pump 

needs to be activated by heating the getter material to 800° C for about an hour to 

diffuse the adsorbed gases into the bulk. This pump has an extremely high 

pumping speed for hydrogen (1380 L/S) which is the main residual gas in our 

chamber.

In spite of these pumps, there are always gas species outgassing from the 

walls. To achieve UHV pressures, the entire system must undergo a baking 

procedure. This procedure promotes diffusion out from the walls of the chamber. 

The entire chamber is heated to above 100°C and is held at this temperature for 

several days. Following the bake, it takes, one or two days for the chamber to cool 

down and reach an ultimate pressure of 10'‘  ̂Torr.

3.1.2 Low Energy Electron Diffraction

One of the primary experimental techniques used in the thesis is Low Energy

Electron Diffraction (LEED), discovered by C.J. Davisson in 1927'^^ LEED is an

20
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extremely powerful technique to investigate surface structure, since the 

mean-free-path for inelastic scattering of electrons is very short. At the energies 

used (50-lOOeV), electrons can travel elastically no more than two or three atomic 

layers.

The diffraction pattern measured in LEED represents an image of the surface 

atomic structure in reciprocal space. Defining the incident wave vector as k and 

the emerging wave vector as k ', elastic scattering requires:

(3.4)

in addition, in the surface plane, conservation of momentum requires:

* ' / / = * / / ^ (3.5)

Where g ^ is a reciprocal lattice vector of the crystal lattice in the plane of the 

surface:

g ' 4 - '  (3.6)

where a ”̂ 2 n and b * =̂ 2k
a»hxn a» bxn

a and b are the real space lattice vectors, and « is a unit vector normal to surface.

For a surface, it is easy to demonstrate that the reciprocal lattice becomes a 

set of rods normal to the plane of the layer. The best method to illustrate this is the 

familiar Ewald sphere construction as shown in Figure 3-1-2-1. The Ewald sphere 

is a graphical representation of the conservation of energy and momentum. A 

reciprocal lattice rod passes through every point of surface reciprocal net normal 

to the sinface. Diffraction occurs at all points where the Ewald sphere, which has a 

radius equal to the magnitude of the incident electron wave vector, intersects a
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reciprocal rod. i and are the angles the incident and diffracted beams make 

with the surface normal respectively'*'*. In our experiment q equals 0.

X'X

4M
i 1

#icx))(icAt2o*

Figure 3-1-2-1 Reciprocal lattice for a single plane of atoms and Ewald construction for electron 
diffraction. Figure reproduced from Reference 44.

A schematic diagram of a typical LEED instrument is shown as in Figure

3-1-2-2. Electrons emitted by the gun are focused at normal incidence onto the

surface of the sample. The electron gun is aligned along the central axis of the

optics. The screen assembly consists of three or four concentric grids and a

fluorescent glass screen with the centre of curvature at the sample position. The

second and third grids are connected together. The grids are made from tungsten

wire mesh and are gold coated to have a chemically inert surface with a uniform

work function. The whole LEED optics is magnetically shielded by a Mu-metal

tube. The first grid of the screen and the last electrode of the electron gun are held

at the potential of the crystal, creating a field-free region for diffraction'**. When

low energy electrons are incident on a surface the majority of the electrons

back-scattered from the crystal will lose energy in the scattering process (inelastic

scattering). These electrons contain no diffraction information and have to be

separated from the elastic contribution. This is achieved by applying a retarding
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potential to the second and third grids that repels all electrons that have lost energy 

in the scattering process. The elastic electrons that pass through the retarding field 

are then accelerated to high energy and travel to the spherical fluorescent screen 

and create the diffraction pattern. The image is formed on a fused silica 

hemisphere coated with indium-tin oxide and high luminosity phosphor.

Electron Gwn

\
cn#*i

n
incident beatn

V,;.. 1st grid 

L̂ ...Q f I dS
Winded'

Figure 3-1-2-2 simplified LEED schematic. Figure reproduced from Reference 44.

The apparatus used in our UHV system was manufactured by OCI Vacuum 

M icroengineering . The LEED experiment is controlled by a LAB VIEW 

program'*^ and the image is recorded using a CCD camera.

In Figure 3-1-2-3, a LEED image of a clean Si (111)7x7 reconstructed surface 

is shown. In real space the reconstructed unit cell exhibits hexagonal symmetry. 

The cell is defined by real space vectors |a,| =7a (outlined in part (a) of Figure

3-1-2-3) where a is the dimension of the bulk terminated lattice. In reciprocal
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space this leads to a periodicity |6,| as illustrated in part (c) of Figure 

3-1-2-3.

a)

b)

Figure 3-1-2-3 (a) A real space 7x7 unit cell model. Figure reproduced from reference 35 (b) A 
LEED diffraction pattern of the SI (lll)-7x7 reconstruction taken from a clean 3.8° wafer at energy of 
70 eV. The Image highlights the dimensions of the bulk terminated cell, (c) MagnlUed portion of the 
Image highlighting the I n  Ha. periodicity associated with the reconstruction.

3.1.3 Auger Electron Spectroscopy

We used Auger Electron Spectroscopy (AES) named after its discoverer,

Pierre Auger^^ to measure the surface composition of our samples. The Auger

process is initiated by the creation of an ion with an inner electron shell vacancy.

An electron from a higher lying energy level fills the inner shell vacancy along

with the simultaneous emission of an Auger electron. This simultaneous two

electron process results in a final state with two vacancies (Figure 3-1-3-1). In the
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figure, the original ionization occurs in the K shell. To occupy the core hole, an 

electron in the L̂  ̂ shell falls into the vacancy and the potential energy lost is 

transferred to a second electron in L leading to the emission of that electron. All 

the energies in Figure 3-1-3-1 are referenced to the Fermi energy Ej,

Auger Electron

KIL

3/2
1/2 Incident Particle

Is

Figure 3-1-3-1 schematic diagram of an Auger electron emission process. Figure reproduced 
from Reference 46.

For a proper description of the kinetic energy of the Auger emitting 

electron, we can write.

Where E  is the one-electron binding energy of the core electron level 

{K shell), Eb is the energy of the valence electron which drops into the K  shell 

{Lu level), Ec is the energy of the initial energy level of the Auger electron 

(emitted from 1 level), and U is the hole-hole interaction energy.

The kinetic energies of emitted electrons for a number of specific Auger 

transitions are well known for many elements and used to identify the chemical 

composition of a surface. For example, in the left part of Figure 3-1-3-2 an 

undifferentiated Auger electron spectrum of the number of electrons as a function
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of energy contains a contribution from the Carbon (KLL) Auger emission at an 

electron energy of around 275 eV. On the right, the Auger spectrum is shown in 

the more conventional differential form with dN/dE as a function of energy. This 

mode has the virtue of suppressing the large secondary electron background and 

turns a simple peak in N(E) into a positive and negative excursion. It is common to 

define the peak energy in the differentiated spectrum as the energy of the largest 

negative excursion.

I!

\
23(1 240 2.S0 2MS 370 ’ S t  2<»(1 300 230 240 230 2«iO '  270 ZKÔ  l u u

K i w i k -  E n e r g y  ( c V i  K in e t i c  E n e r g y  ( c V l

Figure 3-1-3-2 Two different modes to illustrate Auger electron spectra. Figure reproduced 

from Reference 46.

We obtain our AES data using a cylindrical mass analyzer (CMA) 

manufactured by Omicron GMBH'*’. The CMA was first introduced by Palmberg 

et al.̂  ̂in 1969.
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S a m p le
C h a n n e ltro n

Figure 3-1-3-3 Schematic representation of a cross section of the upper half of the Cylindrical 
Mirror Analyzer. This diagram illustrates the energy selectivity of the analyzer. Figure reproduced 
from Reference 46.

A schematic cross section of the upper half of a typical CMA is shown in 

Figure 3-1-3-3. The figure illustrates the energy selectivity of the analyzer. Energy 

selectivity is provided by a radial electric field between the inner and outer 

cylinders. Auger electrons with energy equal to the Em defined by the electric field 

are able to travel to the channeltron and be detected.

Figure 3-1-3-4 is an example of an Auger spectrum taken in our lab of the 

clean Si(l 11)7x7 surface. As can be seen from the spectrum, the largest peak in 

the low energy range always shows up at energy of 96 eV, corresponding to the 

SiKvv peak. We use AES to evaluate the cleanness of the surface as the technique 

can detect surface contaminants down to 7.8xl0‘  ̂ atoms/cm^, or 1 percent of a 

monolayer"*^. The most common contaminant for our surface is carbon which 

appears around 270 eV^^. If the sample is not heated properly, or has not been 

degassed at an appropriately elevated temperamre for a sufficient period of time, 

the AES spectra will exhibit a small carbon peak.

We also use AES is to determine the gold coverage by measuring the ratio
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between the gold {48 eV) and silicon {96 eV) peaks. At low coverage, the ratio of 

these peaks decreases linearly with An coverage.

0 200 400 600 800 1000

Energy (eV)
Figure 3-1-3-4 Auger spectra taken on a clean 3.8° sample surface at energy of 72 eV.

3.1.4 Scanning Tunneling Microscopy

The primary experimental technique used in this thesis is Scanning Tunneling 

Microscopy (STM) as invented by Binnig, Rohrer and Gerber''* in 1981, and 

which led to the awarding of a Nobel Prize in Physics to Binnig and Rohrer in 

1986.

3.1.4.1 Quantum Theory of Tunneling

STM relies on the quantum mechanical phenomena of vacuum tunneling. 

Tunneling is a process by which particles can traverse potential barriers at energies 

which are classically forbidden. In vacuum tunneling, the potential in the vacuum 

region acts as a barrier to electron travel between two electrodes. The two 

electrodes can be metals or semiconductors. In our case we have a Si surface and a 

metallic STM tip.
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Figure 3-1-4-1 schematic of potential barrier for vacuum tunneling, (a) When separated the Fermi 
level of two electrodes differs by an amount equal to the work function difference, (b) When the 
electrodes are connected electrically the Fermi levels align (c) If a voltage is applied between the 
electrodes a net tunnel current can flow. Figure reproduced from Reference 15.

For tunneling to occur between two electrodes a voltage difference V is 

applied across the gap and filled states within energy eV of the Fermi level can 

tunnel into the empty states on the other side.

From quantum mechanics the transmission probability, and thus the 

tunneling current /, decays exponentially with barrier width d  as

(3.8)

where J^=2m(<p-E)/h^, <j> is the barrier height, and E is the kinetic energy of the 

electrons. Since most work functions are around 4-5 eV, this leads to a decay 

constant k  of the order of 1 A '^ For voltages of the order of a volt, a typical 

barrier width of 9 A produces a tunnel current of several nanoamps. In addition, 

the tunneling current drops nearly an order of magnitude for every 1A increase of 

the separation. This exquisite sensitivity to separation is ultimately responsible for 

the success of STM. The STM uses current feedback to maintain a constant 

tip-surface distance as it is scanned above a surface to produce a topographic 

image. More specifically the STM maps contours of constant surface charge 

density.

It is not easy to write down an exact expression for the tunneling current in
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realistic 3-d tunneling. Amongst various approximations, the Tersoff and Hamann 

approach"^ is the most widely used. They treat the surface “exactly”, and the tip is 

modeled locally as a spherical potential. Based on first-order perturbation theory, 

Bardeen^*^developed an expression for the electron current between two electrodes.

(3-9)

Where f(E) and f(E^+eV), are the Fermi functions in the tip and sample 

respectively, V is the applied voltage, and is the tunneling matrix element 

between states and energies in the tip, and and in the surface. At 

room temperature, in the limit of small voltage, and by replacing the tip by an 

ideal point source of current, Tersoff and Hamann showed that Equation (3.9) 

reduces to;

-jCf) (3.1(0

The quantity on the right of the above Equation is defined as the surface local 

density of states (LDOS) of the surface at the position of the tip, (r„ ). Thus, the 

STM image is a contour map of constant surface LDOS.

3.1.4.2 Tip Preparation and STM Instrumentation 

A schematic diagram of an STM is shown in Figure 3-1-4-2. Our STM is an 

Omicron Micro SPM'^’, and we control the STM with SPM 32 software from RHK 

Technology Inc^'.
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a) b)
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tunnelling 

\ electrons

surface

Figure 3-1-4-2 a) Schematic diagram of an STM. Figure reproduced from Reference 38. b) 

Illustration of STM operation. Figure reproduced from Reference 47.

Prior to tunneling; the tip and associated scanner must be brought into 

tunneling distance in a very precise manner. Our STM uses an inertial coarse 

approach system where a voltage is applied to a piezoelectric stack. By applying 

voltage to the elements in the stack it extends towards the sample. The scanner and 

tip are mounted on the stack and move with it, but when the stack is quickly 

contracted the inertia of the scanner keeps it and the tip in place. The result is a net 

displacement (around 400nm) of the scan and tip with respect to the sample. To 

prevent the tip from crashing into the sample, the feedback contracts the scanner 

and moves the tip away from the sample during the inertial step. The tip relaxes 

back after the step and if no tunneling current is detected, the former process 

repeats.

Once in tunneling distance, the tip is raster-scanned across the surface 

without crashing into the sample. The distance between sample and tip is 

maintained within 0.05 A . Both of these functions are fulfilled by a single
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piezoelectric scanner tube. The tip sits on the top of a hollow tube. To allow for X, 

Y and Z motion the outer electrode of the tube is etched into four quadrants and 

the inner electrode is grounded. Applying a voltage difference between opposite 

quadrants moves the tip in a parallel direction (X or Y). Applying a voltage 

uniformly to all four quadrants moves the tip in the Z direction.

Obviously the success of any STM experiment depends on the preparation of 

a sharp tip. In our experiment, we make the STM tips out of two materials, 

tungsten and a PtRh alloy. To prepare tungsten tips, we use an electrochemical 

etching technique"^,where we cut a piece of tungsten wire and hang it through a 

drop of 1 molar NaOH solution. An AC voltage is applied between the tungsten 

wire and an annular ring that holds the NaOH drop. The field completely etches 

through the tungsten and the bottom portion of the tip below the ring falls. After 

rinsing the fallen wire in distilled water, the tip is ready to be introduced into the 

UHV chamber. Normally, there is still an oxide layer on the tip, and the oxide is 

removed by field emission in vacuum. We also utilized PtRh tips which were 

simply prepared by cutting a piece of wire.

As mentioned, W tips often require an additional step prior to use. Field 

emission is produced by applying a high accelerating electric field (several 

hundred electron volts) between the tip and the metal surface. Field emitted 

electrons bombard the tip and can induce electron stimulated desorption of the 

oxide or other contaminants.

Vibration isolation is also critical if atomic resolution is to be achieved. Our

STM sits on a Viton stack inside the UHV chamber to dampen any vibrations. In
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addition, the entire UHV system is pneumatically levitated while imaging.

3.2 Sam ple Preparation

3.2.1 Clean surface preparation

To ensure the cleanness of the sample surface, handling outside the UHV 

system needs to be done with gloves. In addition, to avoid Ni contamination no 

steel tools can be used.

The wafers we use are n-type samples cut either 3.8° or 12.3° from the 

S i ( l l l )  plane towards [112] and placed in a specially designed sample holder. 

The sample holder consists of two electrically isolated metal halves each with a Ta 

wire loop spotted welded onto them. The sample is mounted between the two 

loops to allow current to flow between the two halves through the sample. To 

ensure straight steps, the samples are mounted as stress free as possible and 

aligned so that the current travels parallel to the [1Ï0] step direction. Applying a 

current parallel to the step edge avoids electromigration effects which complicate 

the step morphology^^. Once inside the main chamber, the sample is introduced to 

the vacuum chamber via a load lock, and the load lock is pumped to below 2 x1 0~̂  

Torr.

The samples are prepared using a heating sequence outlined by L.Lin et al.^‘.

The first stage of preparation is degassing of both the sample and holder at 650° C

for one hour. This is below the temperature at which the Si surface oxide is

removed. Following degassing, we wait for one hour to allow the pressure in the

chamber to recover before calibrating the temperature on the sample. To calibrate

the temperature we use an Ircon Ultimax Plus UX20P^^ infrared pyrometer with
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the emissivity set to 0.4. To prepare the sample, we use the following sequence. 

The sample is flashed to 1260° C for 70 s' to diffuse residual surface carbon into the 

bulk, and then cooled to 1060°C in 1 min. At 1060°C single atomic steps are 

stable^^ The critical part in the procedure is a slow cool down from 1060° C to 

850° C at a rate of 0.5° C/s or slower. This is necessary to allow for the 

development of regular arrays of bunched steps. According to R.J.Phaneuf et 

al.̂ '̂ ’̂ ^ 850° C is the transition temperature for the silicon surface to transform from 

(7x7) to (1x1). How the sample is cooled through this critical temperature will 

affect the facet width and step density. A 20 min post-anneal at 650° C is also 

applied to allow the bunched steps to reach a self-limiting size.

Following heating, AES is used to verify surface cleanliness and LEED is 

used to ensure long range order. A comparison of two Auger spectra before and 

after cleaning is shown in the Figure 3-2-1. Before cleaning, the spectra exhibits 

oxidized silicon peaks at around 80 eV,di carbon peak at 270 eV, and an oxygen 

peak at 570 eF. Following the cleaning, AES reveals a strong Si peak at 96 eV.

Si'
?
i

i
m

1
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E n a  gjy < eV )

Figure 3-2-1 Auger spectra of (a) Si with carbon and an oxide layer, (b) Clean surface after 

removing the oxide layer.
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In addition to AES, we also use LEED to ensure a suitable starting surface. 

A sharp LEED pattern is further evidence of a clean well prepared surface.

3.2.2. Au evaporator

We deposit Au using a Au filled tungsten basket. To calibrate the An flux, 

we use the coverage dependent evolution of the LEED pattern on a flat S i ( l l l )  

sample in combination with AES. From previous work we know that the 5x2 and 

V3 X 73 reconstructions occur at 0.44 and 0.9 ML respectively^^’̂ ’. In addition to a 

LEED measurement, an AES spectrum is taken at each coverage. We obtain a 

graph of the Auger ratio of the Si/Au peaks as a function of gold coverage. Since 

the flux is constant, the coverage on the surface is proportional to time. To convert 

the time axis to coverage, we correlate AES with the optimized LEED images at 

0.44 and 0.9ML. The result allows us to determine the coverage based on the 

Auger ratio at any intermediate exposure.

We deposit Au onto the silicon surface using the following procedure. First, 

the evaporator is brought up to evaporation temperature and the flux is stabilized 

by waiting for 60 s. The sample temperature is stabilized at 650° C. The sample is 

then exposed to the An flux for the required time. After deposition, the sample is 

annealed at 850° C for two minutes.

To reduce thermal drift, we wait for approximately two hours prior to STM

measurements. Results indicate that at a base pressure of 10'̂ *’Torr, samples can

be imaged for several days with no apparent change in surface quality.

Experiments also indicate that we can only investigate one An coverage per

sample. Attempts to deposit more Au onto a surface following STM experiments
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result in a poor quality surface.
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Chapter 4: Results
4.1 Morphology of 3.8® samples as function of An coverage

We have investigated the Au dependent morphology of a vicinal Si wafer 

with a misent angle of 3.8° toward [112]. The deposition of a submonolayer of An 

onto this surface alters the surface morphology and ultimately produces 1-d 

chain-like reconstructions.

WÊL
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Figure 4-1-1 (a) An STM image (5000 A  x 5000 A  ) of a clean 3.8° off-axis sample taken at a bias of

+2.32 V with a PtRh tip. (b) A line scan corresponding to the black line in (a). The nanofacets are tilted 
7° with respect to the (111) plane.

According to Equations (2.1) and (2.2) (assuming m=l) the 3.8° orientation
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nominally corresponds to a (15 15 13) facet. This facet is not stable on the clean 

surface and instead, the surface consists of well defined (111) terraces with a 7x7 

reconstruction and regions of step bunching, with atomic steps running along the

[110] direction.

Figures 4-1-1 (a) is an STM image of a clean 3.8° sample where the large 

regions correspond to flat (111) terraces. A cross sectional cut through the image, 

corresponding to the black line in part (a), is obtained by first flattening the 

terraces using the “plane subtract” macro in the SPM32 software^®. In agreement 

with Lin et al.^\ the steps bunch to form facets tilted at an angle of 7° with 

respect to the (111) plane and once again using equation (2.1) and (2.2) with m=l, 

corresponds to a (443) facet. Although the sample in figure 4-1-1 was cooled 

slowly from 1060 to 850° C, we found the resultant morphology to be independent 

of the cooling rate.

Even at An coverage as low as 0.04+0.03 ML, the surface structure 

undergoes dramatic changes. The large (111) terraces on the clean surface are no 

longer present, but as seen in Figure 4-1-2, the surface is now composed of small

(111) terraces with steps running along the [110] direction. It is clear that Au 

deposition has dramatic effects on step-step interactions and the steps are far less 

bunched than on the clean surface.

The introduction of a small number o f Au atoms onto the surface also induces

the formation of chain structures at step edges (Figure 4-1-3). The STM image

reveals two ( 111) terraces and a chain-like structure is apparent at the step edge.

The LEED also develops weak streaks running along [112] consistent with initial
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chain formation (Figure 4-1-2 (b)). As with the clean surface, the Au induced 

restructuring at this coverage is insensitive to the rate of cooling.

111

w
:

Figure 4-1-2 (a) An STM image (4980 A  x 4610 A )  of a 3.8® sample following 0.04+0.03 ML of An.

The image was taken at a bias of +2.4 V, with a PtRh tip. (b) Corresponding LEED image was obtained 
at 72 eV.

Figure 4-1-3 An STM image (220 A  x 290 A )  of a 3.8° sample following 0.04+0.03 ML of Au. The

image was taken at a bias of -2.49 V with a tungsten tip. The arrow highlights the location of a 1-d 
structure at the step edge.

With higher coverage (0.12-0.20 ML), the steps which were initially
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separated coalesce once again and the (111) terraces become larger than at 

0.04 ML. At 0.18 ML for example, the step bunches form facets with an overall 

angle of 7.8° (Figure 4-1-4). At this stage the (111) terraces are still 7x7 

reconstructed and gold free. Since the 7x7 reconstruction still dominates on the 

flat terraces, this indicates that all the adsorbed gold is incorporated at the steps. 

The LEED in part (c) shows further evidence of streaking consistent with facet 

formation.
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Figure 4-1-4 (a) An STM image (430 A  x 1000 A )  of a 3.8" sample following 0.18+0.03 ML of An.

The image was taken at a bias of +2.46 V, with a tungsten tip. (b) Corresponding line scan, (c) LEED 
image of a 3.8” sample following 0.12+0.03 ML of An, taken at energy of 73 eV.

With increased Au, within the areas of step bunching, the step spacing
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becomes more regular (Figure 4-1-5). In addition, at 0.20 ML STM measurements 

also reveal that the large flat (111) terraces now exhibit 5x2-Au reconstruction. 

Despite the 5x2 reconstruction on the large terraces STM indicates that in the 

regions of step bunching the smaller terraces still exhibit a 7x7 reconstruction. 

Contrary to our previous results on 8° samples^^, the presence of the 5x2 

reconstruction on the large terraces indicates that gold is adsorbed on the flat 

terraces prior to the formation of well formed facets.

Figure 4-1-5 (a) An STM image (850 A ^850 A) of 3.8” sample following 0.20+0.03 ML of Au. The 
image was obtained at a sample bias of -2.52 V, and a current of 72.9 pA, with a tungsten tip.

At still higher coverage, the terrace spacing within the regions of step 

bunching becomes even more regular. In the STM image in Figure 4-1-6, the steps

exhibit a striking 60.5 A periodicity. The periodic terraces are comprised of small

(111)7x7 terraces.
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Figure 4-1-6 An STM image (2830 A  x 2830 A )  of a 3.8° sample following 0.28+0.03 ML of Au. 

The image was taken at a bias of +2.06 V, and a current of 427 pA, with a tungsten tip. (b) 
Corresponding LEED image at An coverage of 0.28 ML.

Figure 4-1-7 was obtained at a gold coverage of 0.25 ML. Once again, the 

image exhibits large 5x2 terraces separated by regions of step bunching. On closer 

inspection the steps exhibit chains with several chain spacings (Figure 4-1-8).

Figure 4-1-7 An STM image (1000 A  x 1000 A )  of a 3.8° sample following 0.25+0.03 ML of Au. 

The image was obtained at a bias of +2.74 V, and a current of 0.5 nA, with a tungsten tip.

In Figure 4-1-8 there are at least three different chain structures present. The 

chains are characterized by 1-d structures running along [1Î 0], with a well defined

periodicity along [112]. Some chains are spaced 21.3 A and define a (775) facet,
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however other chain spacings are also evident. To the left of the (775) facet is a 

regular chain structure with a spacing of 32.9 A , and to the right is a region with a 

chain spacing of 36.7 A. According to the Equations (2.1), (2.2) and (2.3)these 

spacings correspond to (11 119) and (665) facets respectively.

'4

32.9A
/

JSL.

Figure 4-1-8 An STM image (340 A  x 1000 A  ) of a 3.8“ sample following 0.24+0.03 ML of An. The 

image was obtained at a bias of -2.37 V, and a current of 1.18 nA, with a tungsten tip.

With increasing coverage, the step bunches continue to evolve into 

well-defined facets. A single chain structure starts to emerge. The chain spacing is

close to 21 A. In addition, the LEED exhibits well-defined spots indicating regular 

chain spacing along [112] (Figure 4-1-9).

Figure 4-1-9 A LEED image obtained at 72 eV of a 3.8“ sample following 0.35+0.03 ML of An.

At 0.43 ML, the surface develops a well defined hill-valley structure as

shown in Figure 4-1-10. The LEED image Figure 4-l-10(b), exhibits a

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



superposition of spots associated with the 5x2 reconstruction on the (111) terraces, 

and extra spots associated with the (775) facet. Furthermore, from the 

corresponding line scan (Figure 4-1-10(b)) the angle between the (111) terraces 

and facets is 8°. The transformation to a surface with (111)5x2 terraces and (775) 

facets is also evident in Figure 4-1-11. This coverage is similar to that necessary to 

optimize the (5x2) reconstruction for on-axis wafers^’’̂ .̂

^  140

a . 120

50 100 150x10'
Distance (A)

<0 - :

Figure 4-1-10 (a) An STM image (2000 A  x 2000 A )  of a 3.8“ sample following 0.43+0.03 ML of Au. The

image was taken at a bias of +2.09 V, and a current of 194 pA, with a tungsten tip. (b) Corresponding 
line scan, (c) LEED image taken at energy of 72 eV.
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Figure 4-1-11 An STM image (700 A  x700 A )  of a 3.8" sample following 0.44+0.03 ML of Au. 

The image was taken at a bias of -2.45 V, and a current of 199 pA, with a tungsten tip.

Beyond 0.44 ML the surface maintains a well-defined “hill-valley” structure 

(Figure 4-1-12), however the second facet now has an orientation of 12° with 

respect to the (111)5x2 terraces . This angle corresponds to the Au-induced (553) 

facet. This assignment is further verified in Figure 4-1-13, where the 12° facet

consists of chains spaced 14.1 A  apart as expected. It has been shown 

previously that the local Au coverage on the (775) facet is 0.24 ML^ .̂ On the 8° 

sample, with increasing gold coverage the surface needs to form steeper facets 

with shorter chain spacing to accommodate more gold, i.e. 14.1 Â for the (553) 

facet versus 21 A for the (775).
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Figure 4-1-12 (a) An STM image (1990 A  x 1260 A )  of a 3.8" sample following 0.46+0.03 ML of

An. The image was taken at a bias of +2.48 V, and a tunnel current of 61.8 pA, with a tungsten tip. (b) 
Corresponding line scan, (c) LEED image taken on the same sample at energy of 72 eV.

m
Figure 4-1-13 An STM image (70 A  x 4 6 0 A )  of a 3.8" sample following 0.46+0.03 ML of An. The 

image was taken at a bias of +2.05 V, and a current of 166 pA, with a tungsten tip.
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4.2 Morphology of 12.3“ samples

We have also investigated the Au-induced morphology of wafers miscut 

12.3° towards [112], This angle exceeds the 8.5° miscut of the (775) facet. On 

the 12.3° sample, (111) terraces are not stable, even on the clean surface. In all 

cases studied, the surface exhibits 1-d structures running along [1Ï0]. The 

periodicity and degree of order of these structures depend on the gold coverage.

Figure 4-2-1 (a) An STM image (3000 A x 3000 A ) of a clean 12.3" wafer, taken at a bias of +2.4 V, 

and a current of 323 pA, with a PtRh tip. (b) Corresponding LEED image at 96 eV. (c) An STM image

(510 A X 510 A ) of a clean wafer taken at a bias of +2.4 V, and a current of 260 pA, with a PtRh tip.
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Figure 4-2-1 shows STM and LEED images of the clean surface. The STM 

image reveals large terraces consisting of 1-d structures separated by atomic steps. 

The periodicity of the chains is 26 A .  If we measure the step height between each 

terrace, we find that it is quantized in units of about 1.4A. On closer inspection 

each chain exhibits periodic spots along the [110] direction. The periodicity along

[1Î 0] is 22A.

From the LEED pattern in part (b), we observe uniformly spaced spots along 

the [112] direction. Based on this periodicity, we calculate a chain spacing of

27 A  which is consistent with the STM.

As with other vicinal surfaces studied, the surface structure changes 

dramatically with a small amount of gold. From the large size scan image of STM 

in Figure (4-2-2 (a)), we see that the larger terraces apparent on the clean surface 

break into smaller terraces. The terrace width of these small structures varies 

considerably.

It is also quite evident from the LEED image in (Figure 4-2-2 (b)) that the 

sharp spots evident on the clean surface are replaced by significant streaking along 

the [112] direction.
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Figure 4-2-2 (a) An STM image (4630 A  x 4630 A )  of a 12.3° sample following 0.05+0.03 ML of Au. 

The image was taken at a bias of +2.3 V, and a current of 117 pA, with a PtRh tip. (b) Corresponding 

LEED image at energy of 72 eV.

At somewhat higher coverage (0.1 ML) as in the Figure 4-2-3, the chain

spacing becomes more regular. Large areas of the surface consist of uniform

chains with a regular chain spacing of 36 Â. A 36 Â spacing corresponds to a

Miller index of (13 13 7). This facet is tilted 14.4° towards [112]. From the STM

image we see the (13 13 7) terraces are composed of regular chains with some

bright protrusions. The large (13 13 7) terraces are separated occasionally by
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atomic steps as indicated by arrows.

â r

Figure 4-2-3 (a) An STM image (880 A x680 A) of a 12.3° sample following 0.10+0.03 ML of An

deposition. The image was taken at a bias of -2.33 V, and a current of 320 pA, with a PtRh tip. Arrows 

indicate positions of atomic steps, (b) Corresponding LEED image taken at energy of 72 eV.

With more gold (0.13 ML), the periodicity of the 1-d structures is once again 

non-uniform (Figure 4-2-4). We observe at least three different chains structures in 

the STM image. One of the chain spacing is 41 A, corresponding to a (13 13 11) 

facet, while another is 8 A, corresponding to a (331) facet, and the third is 27A 

corresponding to a (997) facet. There are always two or three such structures

coupled together. LEED exhibits spots running along [1 1 2 ], with several
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periodicities, consistent with STM.

t

a) b)

Figure 4-2-4 (a) An STM image (1000A  x 1000 A )  of a 12.3° sample following 0.13+0.03 ML of 

Au. The Image was taken at a bias of -2.3 V and a tunneling current of 0.88 nA with a PtRh tip. (b) 
Corresponding LEED image taken at energy of 72 eV.

Beyond 0.10 ML, we did not observe a surface with well-defined facets until a 

gold coverage of 0.20 ML. At 0.20 ML (Figure 4-2-5), we see large terraces 

separated by steps. On further investigation, Figure 4-2-5(b), we measured the

chain spacing on the terraces and obtained a spacing of 25 A , corresponding to a 

(995) facet. LEED also reveals a sharp pattern with regular spaced spots along 

[112] suggesting a regular chain spacing. From the LEED image we measure a

chain spacing of 23 A which is not inconsistent with the STM. In addition, we 

observe streaks in the LEED reminiscent of those in the Si(l 11)5x2 pattern which 

indicate periodicity along the chains.
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Figure 4-2-5 (a) An STM image (3280 A  x 3280 A )  of a 12.3° sample following 0.20+0.03 ML of

Au. The image was taken at a bias of +2.4 V, and a tunnel current of 440 pA, with a PtRh tip. (b) An 
STM image (380 A x 380 A) of the same 12.3° sample, (c) Corresponding LEED image taken at energy 

of72eV .

At 0.24 ML, further restructuring takes place. The surface exhibits a 

well-ordered “hill-valley” structure. We can clearly see well defined facets as 

shown in Figure 4-2-6. From the line scan of (d) in the same figure it is evident 

that the relative angle between the facets is 5.9°. Since a priori we do not know 

the crystallographic orientation of either facet, to find the orientation of the surface 

we need to measure the chain spacing on one of the facets (Figure 4-2-6(b)). The 

measured chain spacing is 14.9 A corresponds to a (553)-Au facet within
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Figure 4-2-6 (a) An STM image (2700 A  x 4500 A )  of a 12.3° sample following 0.24+0.03 ML of 

The image was taken at a bias of -2.4 V, and a tunnel current of 320 nA, with a PtRh tip. 
Corresponding line scan (c) An STM image (230 A x250  A) of the same 12.3° sample. 
Corresponding LEED image at energy of 72 eV.

Au.

(b)
(d)
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error. The (553) facet is oriented 12.5° from (111). The measured chain spacing

on the other facet is 28.1 A, and corresponds to (997) facet which is oriented 6.6° 

away from the (111) plane. The difference between these two facets is 5.9° in 

agreement with the angle measured in Figure 4-2-6(a). The LEED image in part 

(c) of the same figure shows a sharp LEED pattern, exhibiting sharp regular spots 

running along [112] indicating well formed facets consistent with STM.
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Chapter 5: Discussion
In the previous chapter, we have presented our experimental results on the 

Au-induced morphology of samples misent 3.8° and 12.3° towards [112]. As 

discussed in this thesis, several authors have investigated the Au-induced 

morphology of similar samples^^’̂ ’̂̂ ’̂̂ ’̂̂ .̂ The common observation made by these 

groups was that at a certain gold coverage well-defined (775) facets are formed 

characterized by 1-d chains spaced 21.3 Â apart running along [110]. It has been 

argued that the driving force for the formation of the (775) facet is the fact that the 

structure is closely related to Si(lll)5x2-A u reconstruction. The 5x2 structure is 

the preferred Au-induced reconstruction on (111) terraces.

On both samples we find that the morphology is sensitive to gold deposition. 

Clearly gold deposition has a large effect on step-step interactions and mass 

transport. For example, 0.04 ML of gold changes the morphology of the 3.8° 

surface dramatically. The large flat terraces on the clean surfaces break up into 

smaller (111) terraces. On the 12.3° sample, 0.05 ML of gold is sufficient to break 

up the large uniform (995) facets and induce narrow terraces with a variety of 

chain spacings.

In agreement with others, we find the deposition of gold onto the 3.8°

surface does induce formation of (775) facets, although it does not occur until 0.44

ML. This result is in contrast to the results of Shibata et al.^  ̂who observed

well-defined (775) facets at a An coverage of 0.31 ML on 4° samples deposited at

700°C. Hild et al.^  ̂ observed the onset of (775) facets at 0.2 ML on similarly

prepared samples with LEED. On 8° samples, Pedri et al.^  ̂observed the (775)
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facet over a wide range of gold coverage (0.03-0.32 ML).

As mentioned, initial gold adsorption eliminates large terraces resulting in 

small terraces separated by atomic steps. With further gold deposition, the steps 

come together once again forming larger terraces separated by regions of step 

bunching. At 0.18 ML for example, the step bunching is sufficiently regular so that 

a facet with an inclination angle of 7.8° can be defined.

While the original gold does migrate exclusively to the step edges, at 

0.20 ML we observe a 5x2 reconstruction on the large (111) terraces. The small 

(111) terraces associated with the step bunching still exhibit 7x7 reconstruction. 

This is consistent with O’Mahony et al.^  ̂ who observed 5x2 regions on (111) 

terraces prior to the formation of (775) facets, however this is in contrast to the 8° 

experiments,^^ where gold migrates exclusively to the steps and the terraces remain 

gold free until 0.31 ML.

With more gold (0.31-0.43 ML), the steps become more regular and 1-d

chains are observed. Initially a variety of chains structures are formed, however

eventually the 21Â spacing dominates the entire facets. At this stage the (775)

facet is fully developed and the surface is covered by alternating (775) facets and

(111)5x2-Au terraces in agreement with Seehofer et al.̂ ^

Beyond 0.44 ML, in agreement with previous reports, the (775) facet is no

longer observed. According to Pedri et a l . the stoichiometry of the (775)-Au facet

corresponds to a local coverage of 0.24 ML. Similarly, the local coverage of 5x2

corresponds to 0.44 ML. Therefore beyond 0.44 ML, excess gold must be

accommodated on the surface by steeper facets than (775). For example, at

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.46 ML the surface is composed of (553)-Au facets with a shorter chain spacing 

and (111)5x2-Au terraces.

In summary, our result on the 3.8° samples is consistent with the idea that the 

(775) facet is a low energy facet for surfaces miscut towards [112]. Since the 

sample miscut on the 8° sample is close to the orientation of (775) facets (8.5°), 

the (775) facet appears over a wide range of gold coverage. On the 3.8° sample, 

however, the formation of the (775) facet is more gradual, and the driving force 

for the surfaces to form (775) facets is not as strong. As a result, the gold induced 

5x2 reconstruction appears on the flat terrace before the (775) facets are fully 

formed. The smaller driving force may also explain the slight differences that 

some groups observe for samples prepared under different conditions.

The evolution of the surface morphology of the 12.3° sample is quite 

different. 12.3° exceeds the 8.5° angle of the (775) facet. In all the cases we 

studied (0-0.24 ML), we did not observe any (775) facets on the surface. In all 

cases, the surface consists of 1-d structures running along [1Ï0]. For example, the 

clean surface exhibits a uniform chain spacing of 26 Â. Based on the periodicity 

and the overall miscut angle of the wafer this corresponds to a (995) facet.

STM and LEED measurements indicate that gold adsorption induces the

further formation of 1-d chain structures. With the exception of specific coverages

discussed below, in general the surfaces exhibit a mixture of chain structures

leading to a rather disordered surface morphology. At 0.10 ML however, the

surface exhibits large terraces with a single well-defined chain spacing of 36 Â.

From the chain spacing and the overall miscut of the wafer, we identify this as a
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(13 13 7) facet which is tilted 14.4° towards [112]. Similarly at 0.20ML, we 

observed a well defined chain spacing of 25 Â consistent with a (995) facet. Also a 

well-defined chain spacing of 14.6 Â was observed at 0.24 ML corresponding to a 

(553) facet. At this coverage the (553) facets were separated by (997) facets to 

preserve the overall miscut of the wafer.

Below saturation coverage, on the 3.8° and 8° samples the Au-induced (775) 

facet represents the low energy structure. On the 12.3° surface however, the stable 

facet depends on gold coverage. At 0.10 ML, 0.20 ML, and 0.24 ML, the surface 

forms (13 13 7), (995), (553) facets respectively. All three facets have a miscut 

angle close to 12.3°. With increasing gold coverage facets with shorter chain 

spacing become more stable, i.e. (13 13 7)->(995)->(553). At intermediate 

coverages the surface exhibits a mixture of chains associated with these facets.

Although we have not observed a (775) facet on the 12.3° sample up to

0.24 ML, it may occur at higher coverage. To preserve the miscut of the sample 

the (775) facet must be accompanied by a much steeper facet (steeper than 12.3°). 

The local coverage of the (775) facet is 0.24 ML, and the coverage of the steeper 

facet would have to be even higher. In other words, we would not expect to see the 

(775) facet in the range of coverage we have investigated.
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Chapter 6: Conclusion
In this thesis, we have extended the previous work done in this lab on 8° 

samples to study the gold induced morphology of samples miscut 3.8° and 12.3° 

towards [112]. Using STM, LEED and AES techniques we have measured the 

morphology of surfaces over a coverage range of 0-0.46 ML on the 3.8° samples 

and up to 0.24 ML on the 12.3° samples. In agreement with others we find that 

gold adsorption has dramatic effects on surface structure. An extremely small 

amount of gold completely changes the step-step interactions and resultant 

terrace-step morphology.

On the 3.8° samples, gold adsorption led to the formation of well-defined (775) 

facets separated by (111)5x2-Au terraces. The (775) facets were not fully 

developed until 0.43 ML, and initial gold adsorption did not occur exclusively at 

the step edges. By comparison, on the 8° samples the (775) facet was observed at 

the onset of adsorption and gold migrates exclusively to step edges until 0.31 ML. 

Beyond 0.44 ML the surface exhibits steeper facets to accommodate more gold. 

Our results are consistent with the previous idea that the (775) facet represents a 

low energy facet on Au-induced samples miscut towards [112].

For the 12.3° samples, we did not observe (775) facets in the 0-0.24 ML range

we investigated. Rather than a single low energy facet, we observed three

Au-induced facets with a miscut angle close to 12.3°. (13 13 7), (995), (553)

facets are formed at 0.10 ML, 0.20 ML, and 0.24 ML respectively. The energy

difference between these facets is small as evidenced by the fact that at

intermediate coverages the surface is comprised of a mixture of chain structures
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producing a disordered surface.
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