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Abstract

In this thesis I examined three important ecological questions to understand the role of 

forest management disturbance on unmapped small stream riparian plant communities: I) how 

do small stream riparian plant communities respond to forest harvesting and site preparations?

ii) How do species diversity -  functional diversity reiationships vary in disturbed riparian and 

disturbed upland habitats? and iii) Do riparian buffer reserves act as plant refuges in the 

clearcut boreal forests?

In chapter 1, I answer the first question by reviewing and synthesizing published 

(searching ISI Web of Knowledge™ database) and grey literature. I found that small stream 

riparian plant communities are very poorly studied. Forest harvesting and scarification 

significantly reduce riparian plant species richness and diversity causing a shift from 

herbaceous to shrub dominance. I suggest that disturbance along small streams may facilitate 

the spread of invasive species into the streams that are protected by buffer reserve. I argue that 

the distribution patterns of plant functional traits might be useful as a predictor in developing an 

early warning system against habitat degradation.

In chapter 2, I answer the second question by sampling naturally colonized plants along 

small streams in clearcut, clearcut plus soil scarification, riparian buffer reserve near clearcut, 

riparian buffer near clearcut plus soil scarification and uncut reference sites. Using 36 sets of 

functional traits as a surrogate of functional diversity, I test the effects of disturbance on species 

diversity -  functional diversity relationships in two habitats: riparian and upland, I found that both 

species diversity and functional diversities reach their peak under moderate intensity of 

disturbance, producing a bell shaped disturbance-diversity curve. The disturbance-habitat 

sensitivity coupling has very little effect on overall diversity although the effect on particular life 

forms and functions may be significant. The novel finding in this study is that in natural 

communities, species-functional diversity relationships are linear in low intensity disturbance but 

this relationship shifts to curvilinear (quadratic) with moderate to high intensity of disturbance, 

due to uneven functional redundancy. This finding invokes that the current approach of 

conservation that predominantly relies on species richness needs to be reevaluated by 

considering plant functional traits.

In chapter 3, I answer the third question by sampling plant communities around small 

streams in the clearcuts, the riparian buffer reserves around clearcut and in the uncut reference 

forests. I used a combination of trait based functional dichotomy and plant cover to predict plant 

colonization from the clearcuts to riparian buffer reserves. I found that riparian buffer reserves 

support more species than the clearcuts and the reference forests. In the trait display I was able 

to show that additional species in riparian buffer reserves were coming from adjacent clearcuts. 

This finding suggests that in the boreal forest, riparian buffer reserves act as refuges for plants, 

especially in the early stages after clearcutting. This finding invokes that careful management of 

riparian buffers may help in reducing the local extinction risk of many disturbance-sensitive 

plants.
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Introduction

Loss of biodiversity and the proportional loss ot ecosystem functions has likely been 

the most dramatic change humans have imposed on ecosystems in the past century (Chapin et 

al. 2000). Natural resource managers and ecologists have been trying to understand the effects 

of disturbance on biodiversity and ecosystem functions. Most ot these studies are conducted in 

biodiversity rich areas (Lamb et al. 2003). Riparian ecosystems, located at the land-water 

interface, are one ot the most biologically diverse and functionally active ecosystems in the 

boreal forest (Naiman et al. 2005). Riparian habitats are considered to be biodiversity hotspots 

and are attributed high conservation value (Naiman and Decamps 1997, Malanson 1993, 

Naiman et al. 2005, Sabo et al. 2005). Current understanding ot riparian ecology is largely 

based on larger stream riparian ecosystems. Riparian ecosystems of small streams receive 

very little attention (Hupp 1986, Wiptli et al. 2007), although small streams occupy almost 80% 

ot the total stream length in a watershed (MacDonald and Coe 2007). Studies on small stream 

riparian plants constitute only 5% ot the total published riparian literature. Few studies have 

been conducted on the response ot small stream riparian plants to habitat disturbance; 

although small stream riparian plant community experiences frequent anthropogenic 

disturbance from forest management as well as natural disturbance. Natural disturbances 

include tires, flooding, beaver activities and insect infestations whereas anthropogenic 

disturbances include forest management by clearcutting and site preparation by soil 

scarifications.

Ecologists are interested in understanding the responses ot ecosystems to

anthropogenic disturbance so that negative impacts can be minimized. Lamb (2002) found that

anthropogenic disturbances, especially clearcutting, do not affect the species composition ot

riparian plant communities ot relatively larger streams that are protected by riparian butter

reserves. However, how riparian plant communities vary along unmapped small streams that

are not protected by riparian butter reserves respond to the forest management disturbances

remains unknown. This knowledge is critical tor developing an ecologically sound management

plan tor forest harvesting around small streams because small streams are connected with

larger streams both structurally and functionally (Gomi et al. 1991). In this thesis I review the

existing riparian literature and synthesize the possible impacts ot, and responses by, small
1



stream riparian plant communities to the forest management disturbances of clearcut 

harvesting and soil scarification.

One of the main objectives of biodiversity conservation is to conserve functional 

diversity so that diverse ecosystem functions are sustained. Hence, a clear understanding of 

the relationship between species diversity and functional diversity is essential, and critical for 

conservation planning. So far this understanding is mostly based on theoretical study (Naeem 

2002). A predominant understanding in conservation ecology is higher the number of species 

conserved more and more ecosystem functions would be maintained (Loreau et al. 2001,

2002). Very recently Danovaro et al. (2008) challenged this concept. Using deep sea benthic 

diversity, they provided evidence of an exponential relationship between species diversity and 

functional diversity. Findings of Danovaro et al. (2008) is a warning for the conservation 

ecologist since exponential relationship implies that rare species play an important role in 

sustaining ecosystem functions. Therefore, it is urgent to test this relationship in natural plant 

communities that are affected by anthropogenic disturbances such as forest harvesting and 

scarification. To my knowledge no field study evaluated this relationship in naturally colonized 

plant communities, let alone riparian plant communities, especially in a gradient of habitat 

disturbances. In this thesis, using plant communities around small streams I evaluate the 

relationship between species diversity and functional diversity in a gradient of disturbance 

severity (i.e. varied intensity of forest management disturbances). I also test this in two habitat 

conditions that differ in their sensitivity to disturbances: riparian and upland habitats.

An important part of riparian management and conservation is the management of 

riparian buffer reserves. Ecological theory predicts that in the human dominated forest 

landscape, remnant forest patches play an important role in maintaining biodiversity (Fahrig

2003). In managed North American boreal forests, riparian buffer reserves constitute protected 

forest patches adjacent to the clearcut forests. It is likely that the riparian buffer reserves may 

help maintain biodiversity by providing tem porary habitat for plants colonizing from the adjacent 

clearcut forest. In other words riparian buffer reserves may act as refuges for plants. This 

potential role of riparian buffer reserves as refuges for plants has never been evaluated, 

although this understanding could help in effective planning for riparian plant conservation.



This thesis consists of three chapters covering three important ecological aspects of 

small stream riparian plants in the context of habitat disturbance. These are i) a review and 

synthesis on how small stream riparian plant communities respond to forest management, ii) an 

empirical study on the effects of disturbance on species diversity -  functional diversity 

relationships in small stream riparian plant communities and iii) a study on the potential of 

riparian buffer reserves as a plant refuge in fhe clearcut boreal forests. Specific questions 

addressed in the three chapters are;

Chapter 1 ;

i) What is the current state of knowledge on small stream riparian vegetation?

ii) What are the effects of forest harvesting and site preparations on riparian plant 

communities along unmapped small streams?

iii) What are the functional responses of riparian plant communities to forest 

management disturbance?

Chapter 2:

i) Does moderate disturbance intensity favour high species and functional 

diversity?

ii) Does habitat sensitivity influence the relationship between species diversity and 

functional diversity?

iii) Does species diversity-functional diversity relationship shift from linear to 

curvilinear in disturbed natural communities?

Chapter 3:

i) Do the riparian buffer reserves support more plant species than a clearcut and 

an uncut forest?

ii) Is the prevalence of colonization traits higher in the riparian buffer reserves 

than the nearby clearcuts and the uncut forests?

The three chapters are standalone manuscripts preceded by an Introduction and a 

general methods section. The three chapters are followed by a general discussion. In the 

general discussion, I synthesize the findings of these chapters, discuss the implications for 

these findings in a broader context and highlight future research needs.



General methods

In this chapter I provide an overview of my study sites and the general sampling 

protocol. Specifics of the study sites and sampling protocol relating to particular questions are 

also described in the following chapters that were written as standalone manuscripts.

1. S ite  descrip tion

I conducted this study in the Current River and Mackenzie River Watershed 30 km east 

of Thunder Bay, Ontario, Canada (Fig.1). Geologically, this area is characterized by 

Precambrian rocks of the Lake Superior and glacial tills. In some areas Phanerozoic 

sedimentary rocks overlie the bedrock. The bedrock is chiefly shales of low porosity and 

permeability resulting in marginal groundwater supply. This area enjoys a boreal temperate 

(modified continental) climate. Mean temperatures between of January and July range from -26 

to -22 °C and from 21 to 25 °C, respectively. Total annual precipitation ranges from 700 to 850 

mm (Baldwin et al. 2000). The region is marked by a pattern of low winter and high summer 

precipitation. In summer, a succession of cyclonic storms passes through the area. This area 

lies in the Boreal forest region and is dominated by black spruce (Picea mariana (Mill.) BSP.), 

jack pine {Pinus banksiana Lamb.) and balsam fir (Abies balsamea (L.) Mill.) as well as mixed 

wood communities of conifers and northern deciduous species such as trembling aspen 

(Populus tremuloides Michx.) and white birch (Betula papyrifera Marsh.) (Baldwin et al. 1997). 

In the study sites, the dominant overstory vegetation includes black spruce, white spruce, 

balsam fir and trembling aspen, whereas the dominant understory vegetation includes large- 

leaved aster (Aster macrophyllus L.), bunchberry (Cornus canadensis L.) and blue bead lily 

(Clintonia borealis (Ait.) Raf.). In Table 1, I describe the site specific dominant vegetation and 

habitat parameters of my sampled sites.
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Table 1

Dominant vegetation and habitat parameters (+ standard deviations) of the sampling sites

Vegetation Exposed 
minerai soii

Canopy
exposure
r%)

Ground
exposure

Soil
moisture
content

Soii
temperature
e o

Upland
slope

01 BP, PB, PT, AI 0.61+0.27 14.81+4.27 1.23+0.33 15.05+2.27 11.30+0.09 1.84+0.30

02 PM, PB,SD 0.50+0.37 12.39+4.05 7.64+2.09 13.83+3.08 11.26+0.28 2.61+0.40

03 AB, PM, AI 0.44+0.23 8.88+1.21 6.72+1.95 6.60+2.26 11.09+0.27 12.60+0.51

04 PM, SD, AI - 34.73+7.44 0.64+0.44 17.37+2.99 11.21+0.15 1.20+0.21

05 BP, PM, SD, AI 1.23+0.39 1.57+0.48 12.20+2.20 16.17+2.18 11.28+0.18 0.59+0.18

06 BP, PM, PT,AI 2.07±0.80 7.24+2.27 8.48+2.30 5.90+1.70 11.60+0.21 7.93+0.99

07 BP, PM, AS - 15.57+3.02 9.95+2.10 8.82+1.70 11.39+0.31 3.62+0.50

08 BP, PM, AS 0.17±0.16 1.00+0.43 12.03+2.07 2.87+0.46 11.65+0.18 4.10+1.46

09 BP, PT, PM, AS 0.47+0.46 9.59+3.51 13.13+1.50 4.12+0.49 11.41+0.17 3.44+0.81

O10 FN, AB, PM 0.74+0.30 5.53+1.00 12.12+1.41 7.56+1.12 11.60+0.26 3.60+1.60

001 PM, PB, Al 1.78+0.80 100.00 12.50+5.32 19.25+1.36 11.32+0.18 2.72+0.52

002 PM, PG, PB, Al 2.00+0.78 100.00 4.55+3.08 22.87+2.12 11.40+0.26 0.25+0.12

003 PB, PB, Al 3.00+0.43 100.00 3.75+1.51 14.18+2.97 11.29+0.29 15.63+7.09

004 PM, Al 1.41+0.44 79.18+8.30 8.45+3.33 8.741+1.12 11.84+0.33 1.06+0.24

005 PG, PB 0.25+0.21 100.00 19.10+5.82 7.55+5.23 11.61+1.04 2.00+0.02

006 PT, Al 0.70+0.37 100.00 2.48+0.78 24.63+1.45 11.78+0.25 1.70+0.85

007 PM. BP, LL 1.96+0.68 78.26+7.76 3.35+0.85 35.14+2.76 11.69+0.39 2.75+0.75

008 PM, Al 2.39+1.74 100.00 4.83+2.11 19.72+2.04 11.54+0.31 0.43+0.22

0 09 PM, PT, AS 1.60+0.63 100.00 2.85+0.78 26.98+6.21 11.44+0.07 4.25+0.75

CC10 PM,PG, PB 1.30+0.56 91.30+6.01 10.00+2.74 8.88+1.64 11.64+0.34 4.60+1.92

SCI PM, Al, OS 7.86+3.18 100.00 16.24+5.51 16.92+3.91 11.79+0.42 4.24+1.45

SC2 PT, Al 4.47+2.02 100.00 2.50+0.61 22.93+1.58 11.52+0.20 14.00+6.14

SC3 PT, Al, e s 4.56+3.32 100.00 6.06+4.41 27.92+4.21 11.73+0.41 0.67+0.30

SC4 PB, PT, Al 1.50+0.86 100.00 2.25+0.98 20.67+1.69 11.86+0.45 5.96+1.15

S05 BP, PM, AB 0.52+0.44 100.00 0.30+0.23 16.59+2.46 11.84+0.42 0.52+0.18

SC6 PT, Al 10.20+3.86 95.00 14.40+5.03 18.47+3.43 11.53+0.29 4.20+1.21

SC7 AB, PM, PT 6.43+2.4 98.57+1.04 11.29+3.87 26.77+1.07 11.35+1.10 3.20+0.81

SC8 PM, PT, Al 2.53+1.07 90.00 7.42+3.12 28.03+2.01 11.44+0.17 1.25+0.41

S09 PM, PT, Al 7.09+2.36 100.00 9.36+3.63 26.68+1.76 11.89+0.31 -.12+0.53

SC10 PM, BP, 1.96+0.78 100.00 3.12+1.07 21.68+1.79 11.87+0.20 2.00

Where: C = reference sites, CC = clearcut sites and SC = clearcut plus soil scarification. In vegetation, PM 

= Picea mariana, PG = Picea glauca, PT = Popuius tremuioides, PB = Pinus banksiana, LL = Larix 

iariciana, AB = Abies baisamea, PB = Populus baisamifera, BP = Betuia papyrifera, AI = Ainus incana. 

NB. Soil temperature, soil moisture are instant measurement (using HH2 moisture meter, Delta-T, 

Devices, Cambridge, UK). All sites are measured within a week with no noticed significant weather 

change. The continuous measurement of soil temperature [using HOBO Temperature Logger (H08-001- 

02), Onset Computer Corporation; USA] tor the study period is reported in Appendix 1.



2. Experimental design

2.1 Small stream: definition and their identification In the field

In the literature the terms small, headwater, first order and narrow stream  are often used 

interchangeably to describe small streams. I use the term small stream. In the boreal forest, 

small streams are characterized by missing channel features (Hupp, 1986), channels on the 

bed rock and subsurface or below ground flow. As such, it is a challenge to identify small 

streams in the field, especially in harvested sites. For field sampling, first, I used a GIS map 

derived from a digital elevation model (i.e. flow accumulation) to locate potential small streams 

on the map. Secondly, I verified those streams in the field using the following five criteria:

1. Connection with a larger stream

2. Flowing water to the downstream

3. Width between -0.25 -1 m

4. Presence of a stream bed and upward slope on either side and

5. Catchment area less than 1 km^

2.2 Sampling design

I sampled 30 small streams in total; 10 of which received a clearcut treatment, 10 

clearcut plus soil scarification and the remaining 10 streams were from the reference sites. In 

Ontario, all streams receive Area of Concern (AOC) prescriptions which usually mean retention 

of riparian buffer reserves along streams. My selected streams were not in the topographic map 

so there was no riparian buffer reserve retained along those streams during harvesting. After 

forest harvesting the elevated water table and surface runoff create temporary channels that 

can be confused with a small stream. To ensure that my study streams were indeed small 

streams, I selected streams that were connected with larger streams which typically had 

riparian buffer reserves. These buffer reserves also served as sites for intermediate 

disturbance. Therefore, each of my selected small streams in clearcut and clearcut plus soil 

scarified sites had received two types of treatments: i) disturbance (i.e. either clearcut or 

clearcut plus soil scarification -  no protection) and ii) adjacent riparian buffer reserves (these 

are riparian buffer reserves of larger streams not the sampled small stream). On each stream, I 

laid six transects. Four of those transects were in the respective disturbance treatments (i.e.

7



either in clearcut or in clearcut plus scarified) and the remaining two transects were in the 

nearby riparian buffer reserves (i.e. riparian buffer reserve of large stream) (Fig.2). I considered 

two habitat types across the stream: i) riparian habitat and ii) upland habitat, situated adjacent 

to the riparian zone.

Buffer reservefapprox. 30 m.)

Upland E

•o
3
a

Riparian zone

.S m all stream

B uffer reserve(approx. 30 m.)

Fig. 2 Schematics of sampling design for the study

On each study stream, I selected a 50 m section 10 m from the cut edge towards the 

upstream (i.e. towards either clearcut or clearcut plus scarification area) and divided it into five 

10 m sections. From these five sections, I randomly selected two sections for sampling and 

placed four transects perpendicular to the stream bank towards the upland (see Fig.2). I placed 

two such transects in the adjacent riparian buffer reserve using the same protocol.

On each side of the stream, each transect was divided into approximately ten 1x1 m 

consecutive quadrats. The numbers of quadrats were not fixed because the width of riparian



zones is not constant. However, I placed at least two consecutive quadrats for riparian zone 

and two random quadrats in the uplands.

2.3 Field data

I collected field data on two broad categories: i) habitat and ii) vegetation. Habitat 

conditions were characterized by recording: stream width (in meters), channel morphology 

(single or multiple channel), flow type, ground slope to the upland forest (in degrees), degree of 

harvesting ruts (percent estimation in a 1 m^ quadrat) and exposed mineral soil (percent 

estimation in a 1 m® quadrat) and depth of organic matter (in meters using soil Auger). I also 

measured soil moisture, and soil temperature using a HH2 moisture meter, Delta-T, Devices, 

Cambridge, UK.

Under the vegetation head, I recorded the name of species encountered and visually 

estimated their percent cover in the 1 m^ quadrates.

2.4 Data analyses

Data analyses and statistical protocols are described in the following chapters as they 

relate to the individual research questions.



Chapter 1

Response of riparian plant communities of boreal small 
streams to forest management -  A review and synthesis*

Abstract

Small headwater streams are numerous and occupy a large portion (60 - 80%) of a 

watershed. With hydrologie connections, they influence higher order streams that are protected 

by riparian buffer reserves. Adversely affected riparian plant communities affect vertebrate, 

invertebrate and microbial diversity. However, forest harvesting and silvicultural impacts around 

less protected small streams, especially on the plant communities, have received very little 

attention. In this review and synthesis, I address three specific questions: i) what is the current 

state of knowledge on small stream riparian vegetation? ii) how do riparian habitat and plant 

communities of small streams respond to forest harvesting and site preparations? and iii) can I 

identify a set of functional responses of riparian plant communities to disturbances with respect 

to species traits? I searched the ISI Web of Science™ (Expanded) data base and consulted 

citations therein. I also reviewed the available grey literature and communicated with 

contemporary researchers working on small streams. I found that of all the forest stream 

riparian studies, only 5% are studies on small stream riparian vegetation. Forest harvesting and 

scarification significantly reduce riparian plant species richness, diversity and shift the 

herbaceous dominance to shrubs. Disturbance along small streams may facilitate the spread of 

invasive species into the streams protected by riparian buffer reserve. I hypothesize that 

functionally, riparian plant communities respond to forest harvesting and scarification by 

converging disturbance-responsive and invasive traits. I argue that the distribution pattern of 

plant functional traits might be useful as a predictor in developing an early warning system 

against habitat degradation and biological invasion.

Keywords: riparian plant community; clearcutting; invasive species; trait dispersion; community 

assembly

Manuscript submitted to Journal of Environmental Management
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1. Introduction

Naiman et al. (2005) defines riparian systems as “transitional semi terrestrial areas 

regularly influenced by fresh water, usually extending from the edge of water bodies to the 

edges of upland communities” . Riparian ecosystems support a disproportionately large number 

of plants, vertebrate, invertebrate and microbial communities in comparison to either of the 

adjacent aquatic or terrestrial environments. Riparian ecosystems provide a wide range of 

ecological services to streams (Malanson 1993) including i) input of organic matter, ii) filtering 

and buffering of sediment, nutrient, agricultural contaminants and runoff, iii) maintaining water 

quality (Triska et al. 1993, McClain et al. 1994, Molles et al. 1995, Sabo et al. 2005), iv) 

protection of stream banks from erosion, v) contribution of energy to the ecosystem energy 

budget, and vi) provide propagule dispersal corridors for plants and animals (Gregory et al. 

1991, Gould and Walker 1999; Hannon et al. 2002, NRG 2002, Allan et al. 2003, Melody and 

Richardson 2004, Shirley 2004, Sabo et al. 2005). The quality and quantity of these ecological 

services are highly influenced by the ecological setting of a riparian ecosystem and its plant 

community. Ecological condition of the riparian ecosystems is determined by the complex 

interactions of geomorphological, hydrological and biological processes. These processes vary 

depending on stream size, flow patterns (e.g. surface and subsurface flow), upland slope and 

aspect (Dodds and Oakes 2007, Hack and Goodlett 1960) and riparian vegetation. Small 

headwater streams differ from larger streams in many ways. For example, in the North 

American boreal forests small streams may have subsurface flow that often lack externally 

visible channel morphology (e.g. riffles) and continuous flows (some flows are either 

discontinuous or intermittent) (Lamb 2002). Therefore, the ecological characteristics of small 

stream riparian areas are presumably different from those of larger streams (Richardson et al. 

2005). However, small streams are structurally and functionally connected with larger streams 

(see Fig. 1.1 for small stream -  large stream connectivity), and provide some unique ecological 

services (see Wipfli et al. 2007 and references therein). For example, smali stream riparian 

ecosystems provide a predator-free environment as large predators usually do not move on the 

small streams because of space constraint (see the reviews of Richardson and Danehy 2007, 

Olson et al. 2007).

11
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Scot et al. 2005).

Disturbance is a common phenomenon in natural ecosystems, and riparian 

ecosystems are no exception. Natural disturbance includes flooding, beaver {Castor 

canadensis) activity, insect/pathogen infestation and fire (Gregory et al. 1991, Pollock et al. 

1998, Naiman et al. 2000). These disturbances are normal processes and they influence 

ecosystem functioning (Bendix 1994). For example, flooding assists seed dispersal, forest fire 

facilitates conifer regeneration, etc. Anthropogenic disturbances primarily originating from forest 

harvesting and site preparation by scarification cause additional disturbance in riparian habitat 

and biota. For example, forest harvesting alters the macro and micro-environment;

12



scarifications displace top soil and redistribute soil nutrients (de Chantai et al. 2006), logging 

road construction and slash accumulation modify stream channels etc.

High biodiversity and associated ecological services of riparian ecosystems prompted 

ecologists, conservationists and forest managers to protect riparian habitats and their biota 

from adverse effects of forest management (Lamb et al. 2003). Riparian buffer reserves (also 

called RMAs; riparian management areas) are often used as a management tool to protect 

stream water quality and associated riparian values from the adverse effects of land use 

activities (Lee et al. 2004). A riparian buffer reserve is a belt of forested vegetation that is kept 

intact along the streams. Topographic maps are used to locate the forest streams and the 

riparian management areas. Therefore, streams that appear on the topographic maps receive 

buffer reserve protection (Hupp 1986). However, a watershed contains both relatively large and 

small headwater streams. Small streams are numerous and occupy a major portion, between 

60 and 80 % of the total stream length in a watershed (MacDonald and Coe 2007). For the 

protection of wetlands and small streams, additional management protocols such as Best 

Management Practices (BMP) and Area of Concern (AOC) are used with situation specific 

management planning during forest harvesting. These protocols suggest that care should be 

taken during harvesting of any wetlands with emphasis on water quality (Phillips et al. 2000). 

Although AOC and BMP are obligatory management protocols, often small streams and their 

riparian plant communities are affected by forestry activities.

Responses of a plant community to disturbance can be determined in several ways 

including change in species richness, composition and abundance. These are also related to 

the abundance of species functional trait(s). Plant functional traits have evolved in response to 

the habitat, thus identification and quantification of plant functional traits is very useful to 

determine their response to disturbance and environmental change (see Menges and Waller 

1983, Lamb and Mallik 2003, McIntyre et al. 1999, Weiher et al. 1999). Analysis of functional 

traits Is often used as a proxy measure of ecosystem functions. This approach has received 

significant attention in recent years because of its universality in interpretation of ecological 

change beyond taxonomic identity of species.

Current understanding on the effects of forest harvesting and silviculture on riparian 

ecosystems has so far been focused on the effectiveness of buffers to prevent changes in

13



riparian ecosystems including water quality and biota (specifically fauna) due to forest 

management (e.g. Nilsson and Homstrom 1985, Nilsson 1987, Buttle and Metcalfe 2000, 

Macdonald et al. 2003a, 2003b, Story et al. 2003, England and Rosemond 2004, Melody and 

Ricfiardson 2004, Price et al. 2004, De G root et al. 2007, Melody and Ricfiardson 2007). Very 

few studies were conducted on riparian vegetation responses to forest harvesting along buffer- 

protected streams (e.g. Lamb et al. 2003). However, small unmapped streams are largely 

ignored. To my knowledge no field study demonstrated the effects of forest management and 

silvicultural site preparation around small headwater streams that are not protected by buffer 

reserves.

The specific objectives of this paper are to review and synthesize i) the current state of 

knowledge on small stream riparian vegetation, ii) identify the effects of forest harvesting and 

site preparations on riparian plant communities along unmapped small streams, and iii) discuss 

functional responses of riparian piant community to disturbance .

2. Methods

2.1 Literature review

I searched the ISI Web of Knowledge ™ (Science Citation Index - EXPANDED) 

database for relevant articles published in English from 1975 to April 2007 by using the word 

riparian in the title, abstract, or keywords. First, I categorized the studies into large and small 

streams by using the i) advanced search and analyzing options of the ISI Web of Knowledge ™ 

and ii) reading the abstract and methods of these papers. I restricted the literature search to 

plant ecology of small headwater streams. Secondly, I categorized the small stream studies into 

i) type of streams ii) study aspects (such as habitat and biota, plants, animals) and iii) 

geographical area where the study was conducted. 1 reviewed the available literature and 

citations relating to the questions that I asked. Following these reviews I developed some 

hypotheses that are based on research results on higher order streams, common ecological 

knowledge, discussion with persons involved in riparian plants research and personal field 

observations. The results of a preliminary field survey of 11 unmapped small streams 

conducted by Mallik et al. (2007) to determine the response of riparian plant communities to i)

14



clearcut, ii) clearcut witti soil scarification and iii) unhiarvested sites provided empirical support 

to my arguments and fiypotfieses.

2.2 Definition of key terms

(a) Small streams: Tfie term small streams is defined as cfiannel width between 0.5 and 3 m (at 

high water mark), have continuous or intermittent water flow above ground, below ground or a 

combination of the two. All unmapped streams are considered smali streams.

(b) Small streams riparian ecosystems: I define small stream riparian ecosystem as the 

dynamic ecosystem at the land - water interface shaped and reshaped by the lateral and 

longitudinal influence of a small stream.

(c) Forest management disturbance: I consider forest harvesting through clear cutting and 

silvicultural site preparation by soil scarification to be the major forest management disturbance.

(d) Plant functional traits: I consider plant functional traits as defined by Violle et al. (2007) ‘any 

morphological, physiological or phonological feature measurable at individual level, from cell to 

the whole-organism level, without reference to the organism or any other level of organization.’

(e) Invasive traits vs disturbance responsive traits: Invasive traits are the plant functional traits 

that help a plant to invade and gradually expand in a newly colonized habitat. These traits 

include rapid colonization, competitive ability (Seabloom et al. 2003), enhanced resource 

capture ability (Davis et al. 2000), stress tolerance and chemical defense (Callaway and 

Ridenour 2004). The difference between disturbance responsive traits and invasive traits is that 

disturbance responsive traits help a plant to survive and grow in a disturbed habitat whereas at 

a later stage the invasive traits not only help the plant to survive and grow well but also 

dominate the habitat by out-competing the local inhabitants including disturbance specialists 

that do not possess invasive traits. Examples of invasive traits include rapid and profuse 

regeneration by seeds and vegetative means, extensive root formation, high ecological 

amplitude and high competitive ability.

(f) Trait convergence: I define trait convergence as having a lower value of a particular trait, or 

group of traits, or abundance of traits, along a single or multiple disturbance gradients in a 

temporal scale.
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3. R esults  and d iscussion

3.1 Limited knowledge on small stream riparian plant community

With the growing emphasis on land management and biodiversity conservation, 

riparian ecosystems have received increasing attention since the early 1990s. This is reflected 

in the increasing number of peer reviewed papers focused on riparian ecology (Fig.1.2). 

However, the study of riparian ecosystem along small streams remains almost unaddressed. 

To date, limited research has been conducted on small streams. Research on small streams 

accounts for only 5% of the total riparian studies (Fig. 1.2). Within the 5% of small stream 

riparian research, review and synthesis lies a large proportion. Secondly, irrespective of stream 

size, studies on riparian plant communities are extremely few and limited to the boreal
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Fig. 1.2 Publication rate of papers on small streams riparian ecosystem. The total length of a 

bar illustrates the total number of paper published per year with the word “riparian” in the title, 

abstract, or keywords, that occurred in ISI’s Web of Knowledge ™. Dark coloured bars within a 

bar and pie chart illustrate the total number of studies on small streams riparian ecosystem. 

‘ The result is updated as of April, 2007.
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forest. Hagan et al. (2006) studied riparian plant communities along small headwater streams in 

Maine. It was the first study that provides empirical evidence on the existence of riparian 

vegetation along unprotected small streams. Plant community studies in the riparian areas of 

higher order streams of the boreal region have mainly focused on species richness along the 

Arctic-boreal rivers (Gomi et al. 2001), lakeside riparian vegetation distribution in Quebec 

(Danneler et al. 1999), stream flow responses to disturbances in northeastern Ontario (Buttle 

and Metcalfe 2000), and ecological attributes including trait structure (Lamb and Mallik 2003) 

and early impact of adjacent clearcutting and forest fire on riparian zone vegetation along small 

coldwater streams in northwestern Ontario (Lamb 2002, Lamb et al. 2003). Table 1.1 provides 

an account of existing research on small stream riparian vegetation with the geographic 

location of the studies.

3.2 Forest management impacts on riparian habitat and vegetation

Forest harvesting activities have both direct and indirect effects on riparian habitats and 

their biota. Physical damage of habitat, removal of plants and, displacement and compaction of 

soil by heavy machineries are direct impacts. The canopy removal by forest harvesting changes 

the light regime at the forest floor (Fedoroff et al. 2005). Furthermore, forest harvesting is 

normally followed by site preparation by scarification and tree planting. Scarification causes five 

major ecological disturbances: i) removal of the humus layer from the top soil, ii) stream 

channel blocking/displacement, ill) frost heaving, iv) alteration and often damage to soil- 

microbial associations, and v) displacement of the soil seed bank as buried seeds can be 

exposed by scarification while seeds on the soil surface get buried. Logging roads built prior to 

harvesting can cause significant damage to small streams as they are not mapped and easily 

overlooked during road building process. These effects on the habitat can be mirrored in the 

plant community.

3.2.1 Im pact on plant species richness and dom inance

Mallik et al. (2007), following a preliminary study in NW Ontario, reported that species 

diversity was lower in sites subjected to clearcut harvesting and scarification compared to
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unharvested control. Harvesting and scarification along small streams alters and often impair 

stream flow. Alteration of stream flow regimes can cause a shift in dominant species 

(Stromberg et al. 2007). In undisturbed conditions, riparian ecosystems are dominated by 

herbaceous species (see Fig. 1 .3A) whereas clearcut followed by soil scarification facilitates the 

shift in species dominance from herbs to graminoids, ferns, and in some instances shrubs (Fig. 

1.3B,C). Maliik et al. (2007) in the same study reported a significant increase of grasses and 

mosses but a significant decrease of trees, herbs and ferns in both clearcut and clearcut 

followed by scarified sites (Fig. 1.4). They found that shrub abundance and diversity increase 

following clearcutting but with clearcut followed by scarification both abundance and diversity of 

shrubs decrease.

3.2.2 Shift in dominant plant’s regeneration strategy

Riparian plants have regeneration strategies (e.g. ruderal, competitive, and stress 

tolerant; sensu Grime 1979) to cope with frequent disturbance such as frequent flooding by 

acquiring certain life history traits (McIntyre et al. 1999). In an undisturbed or naturally disturbed 

riparian ecosystem plants with competitive, stress tolerant and ruderal strategies might co-exist 

and the dominance is ultimately governed by the competitive exclusion principie. On the other 

hand, disturbance in the riparian ecosystem facilitates colonization and persistence of species 

with ruderal strategies. Tabacchi and Planty-Tabacchi (2001) provided empirical evidence in 

support of ruderal dominance along large stream riparian ecosystems experiencing frequent 

natural flooding. In their study they didn’t notice any significant change in the dominant plant 

strategy even over a ten year period (Fig. 1.5). Although Tabacchi and Planty-Tabacchi (2001) 

did not include an anthropogenic disturbance in their study, it is likely that there would be a 

rapid shift from competitive to ruderal dominance in riparian vegetation along an added 

disturbance gradient i.e. forest management disturbance. Second, this vegetation shift might be 

more prominent along the small streams since small streams are more sensitive to 

environmental change than larger streams (Richardson and Danehy 2007).
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U

Fig. 1.3 Effect of disturbance on small stream riparian plant community. (A) Undisturbed 

streams are dominated by herbs and shrubs. (B) The disturbed riparian area is often colonized 

by grasses and mosses after clearcutting and scarification. (C) Extensive ground disturbance 

during and after harvesting, slash piling and puddling results in destruction of small streams.
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□ Control

□ Clearcut

■  Clearcut and scarified

Trees Shrubs Herbs Graminoids Ferns Mosses Liveworts 
and lichens

Fig. 1.4 Mean richness (+1S.E) of plant functional groups in clearcut and clearcut with scarified 

sites as compared with control (data from Mallik et al. 2007).

(A )1989

27.80

21.70
50.50

R

(B)1999

28.20

22.6049.30

Fig. 1.5 Riparian vegetation is subjected to frequent disturbance and dominated by species 

with ruderal strategy. The two triangles are the results successive survey in the same location 

in 10 years (data from Tabacchi and Planty-Tabacchi 2001). C, S and R indicate species with 

competitive, stress tolerant and ruderal strategy as per Grime (1979).
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3.2.3 Disturbed riparian ecosystem and exotic invasion

Disturbances encourage invasive species colonization and persistence (Burke and 

Grime 1996, Rajmanek 1989). Forest tiarvesting and scarification creates added stress on ttie 

unprotected riparian ecosystems over and above the natural disturbance regime and make 

them more prone to invasion. The main reasons behind the susceptibility of riparian zones to 

invasion are their diverse habitats and repeated hydrological disturbance (Planty-Tabacchi et 

al. 1996). Stohlgren et al. (1998), after an extensive study in Colorado, South Dakota, Wyoming 

and Montana stated that ‘riparian corridors are heaven for invasive species’. Of the total exotic 

species encountered in these areas, 85% were present in the riparian zone. Following a field 

study in the Gros Morne National Park, Newfoundland, Rose and Hermutez (2004) concluded 

that boreal ecosystems are susceptible to alien invasion. In light of the findings of Stohlgren et 

al. (1998) and Rose and Hermutez (2004) it is obvious that disturbances, such as trampling, 

frequent flooding and animal movement can increase plant invasion in the riparian ecosystems 

of boreal forests. Specific reproductive strategies of invasive plants allow them to colonize, 

persist and out-compete native species in highly disturbed habitats (Grime 1979).The 

investigation of invasive species so far has focused on exotics. There is a strong possibility that 

native species can also become invasive, since many native aggressive species possess 

similar functional traits as the exotic invasive species (Thompson et al. 1995). To my 

knowledge, the invasion pattern in small stream riparian ecosystems of boreal forests has not 

been investigated. However, it is likely that small stream riparian zones are highly susceptible 

to exotic invasion since they experience frequent anthropogenic disturbances in addition to 

natural disturbances. If small streams are colonized by invasive species they can quickly 

expand their range into the protected streams and throughout the watershed through flow 

facilitated dispersal (see Nilsson 1987, Deferral and Naiman 1994 for circumstantial examples).

3.3 Disturbance mediated riparian plant assembly- a functional perspective

From the late 1990s ecologists and land managers have been concerned with the 

distribution of plants’ functional traits to understand how habitat disturbance affects 

ecosystems. This is a major shift from the understanding of species richness or species 

diversity response to disturbance. Empirical studies in other ecosystems (e.g. grassland)
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showed that plant response to disturbance is clearly reflected by the changes in their functional 

traits even though species level response often fails to capture this change (e.g. Fukami et al. 

2005).

Disturbance acts as a filter for trait structuring that eventually assembles riparian plant 

communities. Grime (2006) opined that in herbaceous vegetation disturbance leads to 

convergence of species with disturbance responsive functional traits. Although empirically 

untested in the riparian context, this statement is a concern for riparian managers since riparian 

ecosystems are dominated by herbaceous species and experience frequent disturbance such 

as flooding, beaver activities, clearcut harvesting, soil scarification and forest fire. Numerous 

findings of ruderal dominance in riparian plant assemblage bolster this concern (Fig. 1.5). In 

small stream riparian ecosystem, these changes may be conspicuous shortly after disturbance 

because of high habitat sensitivity (Richardson and Danehy 2007).

Hypothetically, plants’ functional traits converge at a very slow rate (i.e. a forest will 

approach climax in a successional gradient) and we assume that repeated disturbance 

accelerates the rate of trait convergence even though overall species richness remains high. 

For example, immediately after disturbance, trait diversity would be higher because of co­

occurrence of generalist and disturbance specialists. Empirically, the degree of trait divergence 

in naturally disturbed riparian plant communities will be similar to that of riparian buffer reserves 

-  where only natural disturbance enriches species richness as well as trait diversity. However, 

with added disturbance, certain disturbance responsive traits will converge. Among the 

disturbance responsive traits, invasive traits can become dominant at the later successional 

stage provided the disturbance is chronic (see Fig. 1.6). The underlying mechanisms can be 

explained as: i) at natural disturbance (of low to intermediate level) three groups of plants can 

co-occur - generalist, disturbance specialist and invasive, ii) with an added disturbance such as 

clearcutting (i.e. natural disturbance + clearcut), the habitat starts to become unsuitable for 

generalist species but favourable for the disturbance specialists possessing disturbance- 

responsive traits; these plants will gradually out compete the generalists, iii) if another 

disturbance is added such as scarification (natural disturbance + clearcut + scarification), the 

habitat may not be suitable for all the disturbance specialists and plants with severe 

disturbance tolerance traits (i.e. invasive plants) might occupy the habitat (Fig. 1.6).
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Maximum trait 
diversity

Disturbance 
responsive Irai

Low Low0 * '

iHIgh
invasive traits

Fig. 1.6 A hypothesis on successive filtering of plant traits based on disturbance intensity and 

frequency. Outer circle (A) is characterized by low to intermediate level of disturbance; 

disturbance filter permits all traits here, consequently supporting the highest species diversity. 

The second circle (B) indicates frequent/severe disturbance and plants (from circle A) that can 

tolerate such disturbance with their disturbance responsive traits will occupy here. The inner 

small circle (C) represents most severe disturbance and plants with only invasive traits.

Fukami et al. (2005), after nine years of manipulative experiments with varying degrees of 

disturbance, concluded that species diverge temporally but traits converge, and occupancy by 

dominant traits depends on the ecological memory in the nature of the vegetation that occupied 

the site prior to disturbance. We can expect that after natural disturbance there will be a lesser 

degree of trait convergence in riparian areas. Natural disturbances are less frequent and less 

severe allowing a quicker recovery of riparian vegetation. Forest management activities 

(harvesting and scarification) on the other hand increase disturbance intensity to small stream 

riparian zones that does not allow sufficient time for vegetation to recover and may result in a 

rapid convergence of disturbance responsive and invasive traits. For example, the natural fire 

cycle in the North American forest varies depending on geographic location, ranging from 60 -  

2000 years in Atlantic Canada (Wein and Moore 1979) while in the Rockies it is roughly 60-70 

years (Wanger et al. 2006). These time frames provide ample opportunity for riparian
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vegetation to recover. This contrasts with harvesting disturbance in these areas, which usually 

rotates on a 60-80 year cycle. This does not allow sufficient time for a full recovery of the 

riparian zone vegetation (Lecomte et al. 2005).

4. Conclusion and management implications

Limited knowledge on small stream riparian plant community response to disturbance 

(Fig. 1.2) forces us to rely on large stream riparian and even non riparian literature to predict 

forest management impacts on riparian community. Two factors might contribute to the lack of 

research in this field: i) small streams are ignored as they are inconspicuous and often not in 

the forest inventory maps, and ii) it is assumed that small streams behave more or less similarly 

to larger streams. Towards the end of the last century, riparian ecologists have become 

interested in small streams (see Richardson and Danehy 2007, Wipfli et al. 2007). For example, 

the University of British Coiumbia recently organized a conference exclusively on the ecology of 

small headwater stream riparian ecosystems, and the journal Forest Science (April 2007) 

published a special issue on headwater streams. Nonetheless, there remains a serious concern 

that riparian vegetation receives little attention. With poor understanding of riparian plant 

communities we run the risk of making poor judgments on the protection of biodiversity and 

ecosystem services of small headwater streams.

Inadequate knowledge on ecological functions of small streams and their associated 

riparian plants communities raises a controversy on the effectiveness of the protective functions 

of riparian buffer reserves along the mapped streams. By the same token considering their 

large numbers and extensive networks in a watershed, it is also not practical to provide buffer 

protection along all small streams. Nonetheless, certain negative impacts must be and can be 

minimized by informed management. For example, soil scarification can be avoided close to 

small streams (De Groot et al. 2007). Specific conservation and management steps can be 

taken only after a thorough understanding of the impacts and functional responses of riparian 

plants to disturbance. It is only the proper ‘Best Management Guidelines’ in the protection of 

small streams can be developed and practiced.

In this paper I showed how the species and functional traits of relatively less protected 

small stream riparian vegetation can be affected by forest management activities. Distribution
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patterns of plant functional traits along a disturbance gradient will serve as a useful indicator of 

riparian ecosystem integrity and this might be a good predictor for the amount of vegetation 

required to protect riparian functions.

Biological invasion is a threat to the global biodiversity. In a riparian ecosystem, small 

streams can act as a point of introduction for invasive species which could gradually expand to 

the larger streams and even into the entire watershed. A thorough understanding of the trait 

dispersion (with and without disturbance over time) and monitoring of small streams riparian 

vegetation can provide an early warning system against plant invasion. For example, in 

disturbed riparian habitats if invasive traits become dominant then steps can be taken to 

eradicate them or stop further expansion in the downstream.

Like other watersheds, the North American boreal forest watersheds are characterized 

by the presence of large streams, small streams and ephemeral streams; all these form a 

complex network in the whole watershed. Ecological impacts of forestry operation on the 

riparian zone are different from those of upland areas and the response of riparian plant 

communities to forestry operations would most likely differ from the upland plant community 

response. We must understand these differences and incorporate the knowledge into forest 

management guidelines for the conservation of riparian habitats and biodiversity.
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Chapter 2

Disturbance effects on species diversity- functional 
diversity relationship in small stream riparian plant 

communities*

Abstract

Understanding the relationship between species diversity-functional diversity is of 

fundamental importance in conservation ecology. Here I tested the relationships between 

species diversity and functional diversity in small stream riparian plant communities along a 

gradient of forest management disturbance. I further tested if the degree of species and 

functional diversity responses to disturbances vary depending on habitat sensitivity. I studied 

natural plant assemblages around stream banks (considered fragile habitats) and uplands 

(stable habitats) of 30 small streams (width < 1 m) in the boreal forest of north-western Ontario, 

Canada. The forests were harvested and sites prepared by soil scarification 2-4 years 

previously. I conducted habitat and vegetation surveys along stream banks in clearcuts, 

clearcuts plus scarified and riparian buffer reserves and compared these with unharvested 

reference sites. I used 36 plant functional traits as a surrogate of dominant functions; life 

history, morphology, productivity, potential of supporting other biodiversity, site stability, 

reproduction, and adaptation to disturbance. Using nested ANOVAs I analyzed how species 

diversity and ecosystem function react to disturbance and habitat sensitivity. 1 tested the 

linearity assumption of species diversity and functional diversity relation using curvi-linear 

regression. I found bell shaped diversity curves in a disturbance gradient. I explained the bell 

shaped diversity curves in light of species composition and trait dispersions. Species diversity 

response to disturbance was similar in both fragile and stable habitats with an insignificant 

interaction effect. However, the relationships between species diversity and functional diversity 

shifted from linear to a quadratic function with increasing disturbance intensity. The curvilinear 

relationships between species diversity and functional diversity appeared to be due to low and 

uneven functional redundancy. My results highlight the need for considering species richness 

and functional traits simultaneously instead of just species richness and diversity as a 

conservation priority.

Key words: Forest harvesting, functional redundancy, headwater stream, intermediate 

disturbance hypothesis, plant functional trait, riparian buffer, soil scarification

* Manuscript submitted to Ecology
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1. Introduction

Although ecologists have tried for decades to understand the processes and 

mechanisms of disturbance, diversity and ecosystem functions, the conceptual linkages are not 

clear (Diaz et al. 2007). These linkages are even more puzzling in disturbed habitats, especially 

in natural, multi-species assemblages. Here I tested the species diversity and functional 

diversity response to disturbance and the relationships between these two in naturally 

colonizing small stream riparian plant communities along a gradient of forest management 

disturbance. I also tested whether this response differs depending on habitat sensitivity to 

disturbances.

First, to explain species diversity in a disturbed habitat, the intermediate disturbance 

hypothesis (IDH) (Grime 1973, Connell 1978, Huston 1979) is a prominent and widely debated 

theory (Collins and Glenn 1997, Mackey and Currie 2001, Roxburgh et al. 2004). The IDH 

predicts that species diversity would be at a maximum at a moderate intensity of disturbance. 

Although counter evidence is available (Arim and Barbosa 2002, Shea et al. 2004, Haddad et 

al. 2008), generally both control (Gaedeke and Sommer 1986, Welder 1992, Buckling et al. 

2000) and manipulative field experiments (Sousa 1979, Folder and Sommer 1999) support the 

assertion of IDH. High species diversity is considered to be synonymous with high functional 

diversity, as supported by rigorous experimentation (Tilman et al. 1994, Hooper and Vitousek 

1997). Presumably, peak functional diversity can be expected at moderate intensity of 

disturbance. Although this assumption held true for natural plankton communities (Willby et al. 

2001, Weithoff 2003) it remains unclear in natural plant communities. Surprisingly few studies 

focused on functional diversity response to disturbance (e.g. Mayfield et al. 2005).

Second, the current approach to understanding the relationship between disturbance, 

species diversity and ecosystem function is highly monotonie with ecologists treating 

environmental variability as background noise and focusing on independent mechanisms to 

explain patterns (Shea et al. 2004). Bypassing the environmental variability in dynamic natural 

systems introduces the risk of ignoring habitat sensitivity even though that might affect plant 

community reactions to disturbance. Habitat sensitivity can be defined as the ease by which a 

habitat absorbs a particular disturbance (sensu Levitt 1980). Although this is highly context 

dependent, in a forest ecosystem, soil moisture, soil particle size (a combination of these can
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act as a surrogate of soil strength) and depth of organic matter can be a good surrogate of 

habitat sensitivity. I predict that depending on habitat sensitivity, disturbance effects on species 

and functional diversity will differ. For example, in a riparian habitat that has low soil strength 

due to high soil moisture and organic content, the impact of small scale disturbance on species 

diversity may be abrupt, whereas in the less sensitive upland habitat, this reaction might be 

gradual. Here, I test if species and functional diversity response to disturbance varies 

depending on habitat sensitivity (i.e. between two habitats: riparian and uplands).

.1

I
■a

3

High

Fig. 2.1 Possible relationships between species diversity and functional diversity. A. linear, B. 

logarithmic, C. exponential, D. quadratic/cubic relationships (see text for explanations)

Third, a common assumption in conservation ecology is that the relationship between 

species diversity and functional diversity is linear or log-linear (reviewed by Srivastava and 

Vellend 2005). Linear relationships signify unique functions for each species (Fig. 2.1 line A) 

whereas a log-linear relationship implies that a small number of species could provide most of 

the functions (Fig. 2.1 line B). This type of curve is expected in moderately disturbed habitats 

where diversity of life form is at its peak (minimum stress). Theory predicts that in highly 

disturbed habitat, species with similar disturbance-related traits can co-occur, i.e. they can 

provide similar functions (Grime 1973). In a disturbed habitat, initially many species would

contribute little to the total ecosystem functions followed by an increase in functions with
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increasing species diversity. This would produce an exponential curve (Fig. 2.1 line C). 

Danovaro et al. (2008) recently provided evidence of this pattern from deep sea benthic 

diversity. However, in a disturbed habitat, another possible pattern is a quadratic curve where 

few but not too many species provide similar functions {sensu rivet hypothesis of Ehrlich and 

Ehrlich 1981, Ehrlich and Walker 1998) (Fig. 2.1 line D).

Explanations in the literature, exploring the relationship between species diversity and 

functional diversity, do exist, however, often as a secondary focus (Fukami et al. 2005, Mayfield 

et. al. 2005) and many of them are in other ecological systems (e.g. Micheli et al. 2005, 

Danovaro et al. 2008). In the context of plant communities, studies that provide evidence for 

linearity are predominantly theoretical and manipulative (reviewed by Schwartz et ai. 2000, 

Srivastava and Vellend 2005) and in most cases their primary focus was to test the effects of 

species diversity (addition and/or removal) on ecosystem stability. Although it is commonly 

assumed that disturbance leads to changes in species diversity which in turn leads to changes 

in functional diversity, in most ecosystems these links are unclear (Naeem 2002). To my 

knowledge no field study tested the relationships between species diversity and functional 

diversity in natural plant communities along a disturbance gradient. Although field experiments 

are often criticized because study variables are affected by abiotic factors (Lawton et al. 1998), 

a careful consideration can often provide valuable insights and can be complementary to 

theoretical and controlled experiments.

In North American boreal forests small streams that do not appear on the forest 

management map (i.e. topographic map) remains mostly unprotected from forest management 

activities that create a range of disturbance from severe in riparian areas to less severe in 

upland area (Richardson et al. 2005). Such streams provide ideal locations to test i) the 

relationship between species diversity and functional diversity following disturbance and ii) how 

this relationship differs between sensitive and stable habitats.

The objective of this study is to gain an insight into the disturbance—diversity- 

ecosystem function linkages in natural communities. I test three hypotheses: i) moderate 

disturbance favours high species and functional diversity, ii) habitat sensitivity influences the 

response of diversity to disturbance, and iii) species-functional diversity relationship shifts from 

linear to curvilinear in disturbed natural communities.
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2. Methods

2.1 Study system and natural history

I conducted my study in the Mackenzie River and Current River watersheds, on the 

north side of Lake Superior and about 30 km northwest of Thunder Bay, Canada (48°22' N, 

89°19^W; 199 m above sea level). While ground slope of the larger area varies from 0 -  50°, 

slopes of my selected study sites ranged from 5 - 15°. This area has low rolling relief with 

underlying bedrock composed of primarily Precambrian granite and gneiss. This area has a 

boreal temperate climate with minimum and maximum temperature ranges from -45°C to + 

40°C (mean 2.5°C). Mean temperatures for the months of January and July range from -26 to - 

22°C and from 21 to 25°C, respectively. Total annual rainfall varies from 700 -  850 mm 

(Baldwin et al. 2000).

Vegetation in the boreal forest is dominated by fire-adapted conifers. Pre-harvested 

and existing (for control sites) dominant overstory species were Picea mariana, Picea glauca, 

Abies baisamea and Poplus tremuloides. Alnus incana, Aster macrophyius, Cornus canadensis 

and Ciintonia boreaiis dominated the understory (Stewart and Mallik 2006). All the reference 

sites, and presumably the riparian buffers, were 80-100 years old whereas the harvested sites 

were 3-5 years old. Detail habitat and vegetation of the sampled sites are described in section 

1 and Table 1 In general methods.

In North American boreal forests, many small streams are on bedrock, on subsurface 

and often have a discontinuous flow (Lamb 2002); ruts created by harvesting machines at times 

give a false impression of small streams. Therefore, it is a real challenge to correctly identify 

small streams in the field in harvested areas. I used a digital elevation model to identify 

potential streams on maps and followed by field verification with three specific criteria: i) flowing 

water to the downstream, ii) small streams connected to a large stream and III) the presence of 

a stream bed, e.g., indication of water movement, gravel movement etc. The width of our study 

streams was between 0.5 -1 m.

2.2 Disturbance regimes and habitat sensitivity

I selected my sites based on similar vegetation, ground slope, aspect, and drainage. 

Three types of sites were selected, i) unharvested (control), ii) clearcut harvested (3-5 yrs old)
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and iii) clearcutting plus scarification, creating a gradient of disturbance intensity. I also 

included two more treatments with moderate disturbance intensity between control and 

clearcut. These were riparian buffer reserves (width 30 m) adjacent to clearcut sites and buffer 

reserves adjacent to clearcut plus scarified sites. Biologically, disturbances (compared to 

control) in a riparian buffer reserve originate from increased canopy openings with higher 

susceptibility to wind throw and interrupted water flow in small streams due to adjacent clearcut 

and soil scarification (Stewart and Mallik 2006). Thus, altogether I had five treatments in a 

disturbance gradient from low to high. In order to validate this disturbance gradient, I combined 

field data on canopy exposure, ground exposure, exposed mineral soil and ruts into a 

quantitative index of disturbance severity (IDS). The IDS differed significantly between the five 

disturbance categories in the hypothesized direction (Kruskal Wallis x^df=4 = 68.967; p<0.0001), 

and IDS was positively correlated to ruderal species abundance (Spearman’s correlation r = 

+0.39, p<0.001).

I followed Levitt’s (1980) mechanistic concept of sensitivity and translated that into our 

contextual definition of habitat sensitivity as the ease (mechanical strength) with which a habitat 

absorbs disturbance. My previous data (unpublished data) and that of Lamb (2002) revealed 

that riparian habitats have significantly higher moisture content, finer soil particles and higher 

organic matter content in comparison to adjacent uplands (also supported by N. Braithwaite, 

personal communication), rendering them more sensitive (hereafter referred as fragile habitats) 

than the adjacent uplands (hereafter referred as stable habitats).

2.3 Sampling protocol and sample size

I studied 30 small streams where we sampled 174 transects and 1044 quadrats. On 

each study stream I selected a 50 m section 10 m from the cut edge towards the upstream and 

divided it into five 10 m sections. From these five sections I randomly selected two sections for 

sampling by placing transects perpendicular to the stream bank towards the upland (see Fig.2 

in General methods). I placed one such transect In the adjacent riparian buffer reserve using 

the same protocol. On each side of the stream, each transect was divided into approximately 

ten 1x1 m consecutive quadrats. Since the widths of riparian zones vary, I placed at least two 

consecutive quadrates for riparian zone and two in the uplands.
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2.4 Floristic survey and diversity indices

I determined percent cover of vascular and non-vascular plants in 1x1 m^ quadrats by 

visual estimate. Reference specimens were collected and subsequently identified by consulting 

identification keys and comparing pressed samples in the Claude Garton Herbarium of 

Lakehead University. For species diversity, I used richness (number of species) and Shannon’s 

H sd, defined as - Ip ilnp, where p, is the relative cover of species / in the community.

For functional diversity, I used functional richness (analogous to phylogenetic richness) 

and Shannon’s h Vd- Although recent literature shows several functional diversity indices (e.g. 

FD of Petchy and Gaston 2006, FAD of Walker et al. 1999, FD^ar of Mason et al. 2005, and 

Rao’s Quadratic entropy), I used Shannon’s index to make our study comparable to the 

majority of published articles in the area. Several authors (e.g. Stevens et al. 2003; Fukami et 

al. 2005; Danovaro 2008) found that Shannon’s h Vd is sufficient to capture variation in 

functional diversity.

Many authors (e.g. Lavorel and Gamier 2002, Diaz et al. 2007, Lavorel et al. 2008) are 

of the opinion that until we clearly know the specific ecological role of individual species and 

their interaction effects, plants functional traits can be used as a good surrogate of ecosystem 

functions. Therefore, I used diversity of plant functional traits as a synonym of functional 

diversity. I followed Viole et al. (2007) for the definition of plant functional traits as “any 

morphological, physiological or phonological feature measurable at an individual level, from cell 

to the whole organism, without reference to the organism or any other level of organization” . I 

included 36 functional traits related to life history, morphology, productivity, phenology, potential 

of supporting other biodiversity, site stability, reproduction and adaptation (see Appendix 2.1A 

and B for the list of traits and surrogate functions). My trait selection was constrained by the 

availability of information and functions of interests. Many traits are sensitive to disturbance (i.e. 

plastic traits Fukami et al. 2005) and therefore, I included only static traits in our study and give 

equal weight for each traits. I developed my trait database from published literature and the 

USDA plant data base (www.usda.org).

For functional trait analysis I followed Gamier et al. (2007). I constructed a species- 

abundance matrix and a species-trait matrix. By multiplying these two matrices I developed a 

trait-abundance matrix. I used the abundance weighted trait matrix for testing treatment effects
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as tra it i  -  Z iL i f /  x traiti  where p, is the relative contribution of species i to the community 

and trait, is the trait value of species i. The relative contribution of each particular attribute was 

calculated as the sum of the relative abundance of a species within that attribute.

2.5 Data analyses and statistical protocol

To test the effects of disturbance on the richness and diversity of species and 

functional traits, I conducted four nested model of ANOVAs with type III sum of squares. I used 

disturbance and habitat type (riparian and upland) as fixed factors, sites as random factors and 

species richness, functional richness, species diversity and functional diversity as responses. 

The model was expressed as

Yijk = H + D| + S(i)| + Hk + DH|k + SH(i)jk + ê k)

Where, Yijki is the species richness, species diversity, functional richness and functional 

diversity, p, is the overall sample mean, D, is the disturbance effect (i= 1, 2, .., 5), S;,), is the 

effects of site j (j=1, 2, .. ,30) nested within disturbance i, Hk is the effects of habitat type k (k= 

1 ,2 ), DHik is the interactions between disturbance i and habitat type k, SĤ gjk is the interactions 

between habitat type k and site j nested within disturbance i, G(ijk) is the error term. To identify 

significant differences between disturbances, I used Tukey’s Honest Significant Difference 

(HSD) post-hoc test. To estimate the proportion of the total variance that attributed to an effect, 

I calculated the effect size (q°) of each factor as the ratio of the effect variance (SS,actor) to the 

total variance (SS,otai) i.e. q^= (SS,actor) /  (SStotai), where SS is the sum of squares (Tabachnick 

and Fidell 1989).

To meet the assumptions of ANOVA, I checked the residuals for normality (Kolmogrov- 

Smirnov test; p = 0.05) and homogeneity of the variances (Levene test; p = 0.05). Species 

richness and functional richness data were transformed to loge.

To test for differences in species composition and functional trait composition, I 

conducted a series of nested ANOVAs, using the number of species for each life form (e.g. 

trees, shrubs, herbs, ferns, grass, mosses and lichens) or trait state as response variables and 

disturbance category and habitat type as fixed factors and site as random factors. I calculated 

the effect size (q°) as in previous tests. Treatment effects were tested using Tukey’s Honest 

Significant Difference (HSD) post-hoc test.
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To identify the relationship between species diversity (H^sd) and functional diversity 

(h Vd)> I used curvi-linear regression analyses using least squares (SPSS 1999). I compared 

five models i.e. linear, logarithmic, quadratic, cubic and exponential models. I used species 

diversity as independent variable and functional diversity as the dependent variable. I selected 

the final model based on lowest Akaike’s Information Criterion (AlC) and distribution of 

residuals. I calculated AlC value as

AlC = -2*ln(RSS/n)+2*k, 

where, RSS is the residual sum of squares, n the number of observations and k  the number of 

parameters in the model. I selected a cut off value of n/K<40 for bias adjustment and corrected 

as

AlCoorreoted = -2 *ln(RSS/n)+2 *k +(2 *k*(k+1 ))/(n-k-1 ).

To identify a second possible model, we calculated the distance from observed (A,) for 

the models as

Ai = AlCi - AlCmin,

Where, AIQ is the AlC value of model i and AlCmin the model with the lowest AlC (best fit). We 

performed all the analysis in SPSS version 16 released in 2007 (SPSS 1999).

3. Results

3.1 D ive rs ity  response to d is tu rbance  a n d  hab ita t sens itiv ity

I found significant differences in species richness (Nested ANOVA, p<0.0001), species 

diversity (Nested ANOVA, p<0.0001), functional richness (Nested ANOVA, p<0.0001) and 

functional diversity (Nested ANOVA, p<0.05) for different disturbance treatments (Table 2.1). 

Tukey’s post- hoc HSD (at a = 0.05) identified two homogeneous subsets for species richness 

and three homogeneous subsets for functional richness. Both extremes of disturbances were 

found in one subset and moderate disturbances were in other subset.
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This resulted in bell shaped curves (Fig. 2.2A,B). For species diversity, low to extreme 

disturbances were found in one set and moderate disturbances in another set, resulting in a 

bell curve (Fig. 2.2C). The functional diversity curve was idiosyncratic (Nested ANOVA, p<0.05) 

with higher functional diversity in moderate disturbed habitats than the other two extremes (Fig. 

2.2D). All of four diversity indices (diversity and richness) were higher in moderately disturbed 

habitats (T2,T3) than in other habitats. Compositionally, at the species level we found a 

significant increase in graminoides (Nested ANOVA, p<0.0001) and a significant decrease in 

lichens (Nested ANOVA, p<0.0001) while other life forms (trees, herbs and ferns) showed a 

unimodal response to disturbance (see Appendix 2.2 for post-hoc comparisons). At the 

functional level, disturbed habitats were dominated mostly by plants with functional traits of a 

low 0 : N ratio (Nested ANOVA, p<0.0001), low rooting depth (Nested ANOVA, p<0.0001), 

annual (Nested ANOVA, p<0.0001), evergreen leaf (Nested ANOVA, p<0.0001), a persistent 

soil seed bank (Nested ANOVA, p<0.0001) and seed dispersal by water (Nested ANOVA, 

p<0.0001), whereas the undisturbed habitats were dominated by a high 0 : N ratio (Nested 

ANOVA, p<0.0001), high rooting depth (Nested ANOVA, p<0.0001), vegetative reproduction 

(Nested ANOVA, p<0.0001) and colourful flowers (Nested ANOVA, p<0.0001) (see appendix

2.5 for post- hoc comparisons).

Species richness (Nested ANOVA, p<0.0003) differed significantly between two habitat 

types but species diversity (Nested ANOVA, p=0.0564), functional richness (Nested ANOVA, 

p=0.753) and functional diversity (Nested ANOVA, p=0.1788) did not significantly differ. The 

disturbance-habitat coupling (interactions) was non-significant for all diversity measures, with a 

very low effect size (Table 2.1, Fig. 2.2). In terms of composition, however, the interaction 

between disturbance and habitat sensitivity was significant in a few cases. For instance, I found 

significant interaction effects at the species level for graminoides (Appendix 2.2) and at the 

functional level for plants with low rooting depth and high drought tolerance (Appendix 2.3).

3 .2  L inea r a n d  cu rv ilinea r re la tionsh ips betw een  species a n d  func tiona l d ive rs ity

I found both linear and curvilinear relationships between species and functional

diversity. In fragile habitats I found linear relationships at both extremes of the disturbance

gradient (Fig. 2.3A,E), whereas at a moderate intensity of disturbance, the relationship was
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logarithmic (Fig. 2.3B-D). In stable habitats, this relationship shifted from linear (Fig. 2.3F) to 

logarithmic (Fig. 2.3G) to quadratic (Fig. 2.3H-J) along a gradient of disturbance intensity. In all 

cases the best fitting model was either liner or logarithmic as evident from the iowest value of 

the distance from observed (Table 2.2; A,). The exponential model always deviated significantly 

from the observed.
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Fig. 2.2 Response of species richness, functional richness, species diversity and functional 

diversity (±1 SE) in a gradient of forest harvesting disturbance. The dark bar represents riparian 

habitat (fragile) and grey bar represents uplands (stable) habitat. T1, T2, T3, T4 and T5 

indicates disturbance treatments: unharvested sites (T1), protected riparian buffer reserves 

adjacent to the clearcut (T2), protected riparian buffer reserves adjacent to the clearcut plus 

scarification (T3), clearcut (T4) and clearcut plus scarification (T5). Note that species and 

functional richness are in loge scale. The interval of the abscissas is arbitrarily set equal but do 

not imply equal scale.
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42



protected riparian buffer reserves adjacent to clearcuts plus scarification, clearcut and clearcut 

plus scarification.

Table 2.2

Values of Akaike’s Information Criterion (AiC) used to identify the reiationship between species 

diversity and functional diversity in harvesting treatments and habitat types. Values in the 

parenthesis indicate distance from the observed (Aj).

Disturbance Habitat Possibie modeis (relationships)

sensitivity Linear Logarithmic Quadratic Cubic Exponential

T1 Low Riparian 10.66(AICmin) 10.81(0.15) 11.86(1.2) 12.07(1.41) 15.27(4.61)

T2 Riparian 12.98(0.07) 12.91 (AiCmin) 13.84(0.93) 14.73(1.82) 17.99(5.08)

T3 ; Riparian 12.18(0.04) 12.14(AiCmin) 12.89(0.75) 13.2(1.06) 16.79(4.65)

T4 ; Riparian 11.06(0.25) 10.81 (AiCmin) 11.8(0.99) 11.87(1.06) 15.72(4.91)

T5 High Riparian 9.75(AiCmin) 10.89(1.14) 10.92(1.17) 10.93(1.18) 14.29(4.54)

T1 Low Upland 11.68(AlCmin) 11.76(0.08) 12.69(1.01) 12.75(1.07) 16.29(4.61)

T2 i Upland 15.99(0.06) 15.93(AICmln) 17.01(1.08) 17.02(1.09) 20.9(4.97)

T3 Upland 14.86(0.89) 14.26(0.49) 13.77{AI rnin) 14.13(0.36) 18.55(4.78)

T4 Upland 12.94(1.04) 12.94(1.04) 11.9(AICmln) 12.18(0.28) 16.55(4.65)

T5 High Upland 12.99(1.37) 12.91(1.29) 11.62(AICmin) 12.00(0.38) 16.14(4.52)

4. D iscussion

This study presents a comprehensive field test of the response of species diversity and 

functional diversity to disturbance and the nature of the reiationship between species diversity 

and functional diversity. All of our diversity indices (species richness, functionai richness, 

species diversity, and functional diversity) were significantly higher in the moderately disturbed 

habitat in comparison to both extremes of disturbance (lowest and highest) resulting in beli 

shaped curves. Irrespective of habitat sensitivity, species richness and species diversity were 

significantly lower in high and low disturbance sites in comparison to moderately disturbed 

habitats. Although at both extremes of disturbance they did not differ, disturbed habitats were 

characterized by marginally higher species richness and diversity (Fig. 2.2A,B). Seen from a
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functional perspective, highily disturbed tiabitats tiad significantly lower functional rictiness than 

low to moderately disturbed habitats (Fig. 2.2C,D). This differential tail was due to a differential 

rate of trait dispersions (convergence /divergence) (Fig. 2.4) that may lead towards species 

divergence while traits converge (Fukami et al. 2005). My abundance weighted diversity indices 

failed to capture these sharp changes because Shannon's index (H )̂ is more sensitive to higher 

species abundance. Furthermore, the weighted index was a trade-off for the abrupt changes in 

species abundance and reflects a gradual and not an immediate change. The idiosyncratic 

effects of functional diversity with disturbance in the fragile habitat might be due to instability of 

the riparian habitat. Riparian plant communities are exposed to frequent natural disturbances 

such as flooding, fire, and beaver activity (Tabacci and Tabacci 2001, Lamb and Mallik 2003). 

Adaptations of riparian plants to those natural disturbances might equip them in coping with 

other forms of disturbances such as forest management and scarifications. My result of 

decreasing functional richness but stable functional diversity in riparian habitat indicates that 

although the total number of functional groups may not be higher, they are evenly abundant. In 

a space constrained system like small stream riparian zones, grasses are early colonizing 

species and they might facilitate other grass species to colonize and maintain higher 

abundance, hence functional diversity remains unchanged (higher), although species richness 

and functionai richness are decreased. Kimbro and Grosholz (2006) observed similar facilitation 

by early colonizing species in a space-constrained benthic oyster community on the Californian 

coasts. My results support the growing consensus of using species richness as a better 

predictor to capture disturbance response than species diversity (O’Connor and Crowe 2005).

My data did not support my hypothesis of different shapes of disturbance - diversity

curves as a product of disturbance - habitat sensitivity coupling. I found non-significant

disturbance -  habitat sensitivity interaction, with very low effect size (see Table 2.1). Although

the traits are related to disturbance, in natural communities environmental heterogeneities often

are a trade-off for the treatm ent responses that may mask a significant relationship (W right et

ai. 2006). Although I am rejecting the effect of disturbance habitat sensitivity interactions on

diversity, my present study provides some clues for future thought, especially at species

compositional levels. For instance, I found an exponential increase of graminoides and a

decrease of lichens as a result of disturbance (Appendix 2.2). At a functional level, productivity
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(C: N ratio, growth rate), potential to support other species (flower colour), site stability (rooting 

depth) and adaptability to drought and fire tolerance functions showed a gradual decline (Fig

2.5 and Appendix 2.3).
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Fig. 2.4 Species and trait dispersions in response to disturbance. Increasing species richness 

also increases functional richness but at a decreasing rate. After ascending the composite 

disturbance index and corresponding species and functional richness, I calculated the marginal 

increase in species richness (AS/AdJ and functional richness (AF/Ad,) per unit of disturbance 

when IDS was used as a measure of disturbance (Ad,). Fluctuation above 0 means divergence 

while negative values correspond to convergence. See Boxi .for the quantification of trait 

dispersions. T1, T2, T3, T4 and T5 represent corresponding disturbance treatments as 

mentioned in Fig. 2.2. The interval of the abscissa in Fig. 2.4 and 2.5 are arbitrarily set equal 

but do not imply equal scale.
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Box 1

Quantification of trait dispersions

I measured the mean and rate of trait dispersions (convergence/divergence) in 

a disturbance gradient. I defined the rate of trait dispersion as the marginal change in 

the trait richness per unit of disturbance increment.

Let ti be the trait richness at a disturbance level di. If the level of disturbance 

increase to c(?, ds, ...d„and fg, are the trait abundance for the corresponding 

levels of disturbances; then the marginal change in the trait richness A f’s are f,). (ts 

_ y ,  (U -  h), Therefore, mean trait convergence/divergence ( f j  can be

expressed as:

Mean trait dispersion = (Ah +Ah +Ats +A h  +  +AfJ

fc =  { ( t -  h ) +  { i s -  t )  +  i U -  t s )  +  . . .  +  ( t n  -  t n - i ) }

Consider that the marginal increase of disturbance (I used IDS as a measure of 

disturbance) is Adi, and then it can be quantified as.

dc = {Adi +Ad2 + Ads + Ad^ +....+ AdJ

dg -  {(dg_ d() + (ds- dg) + (d.^_ dg) + ... + {dn _ dn-i)]

The rate of trait convergence /divergence (rtc ) can be expressed as

Rate o f trait convergence /divergence rfc ^(Ah/^dy+AfaAch+Afg/Adg^

At4/Ad4+ +AtnAdn)

In this exercise I considered number and abundance of traits; therefore, if to is 

negative (to < 0) then it Is said to be convergence whereas for the positive value (to > 0) 

it will be divergent (if anyone considers abundance of a particular trait state, then 

positive values will indicate convergence).
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If it is assumed that a system with low species diversity is dominated by disturbance- 

sensitive species, then it will not be surprising to see the disturbance diversity curve to be 

idiosyncratic (Schlapfer and Schmid 1999). It also confirms the fact that choice and number of 

functional traits is an important factor in determining disturbance response to functional 

diversity (see review of Lavorel et al. 2008).

The level of functional redundancy can explain the overall shape of the species 

diversity -  functional diversity relation (Walker 1992, Lawton and Brown 1993, Naeem 1998). 

My result of a curvilinear (quadratic) species-functional diversity relationship was at the cost of 

uneven and low functional redundancy. In a disturbed habitat, where plants with disturbance- 

related traits dominate, many generalists can also survive for quite a long period (Grime 1973). 

This creates a pulse in functional redundancy which ultimately leads to deviation from a 

straight-line relationship. The uneven functional redundancy can be explained as follows; with 

natural disturbance (of low to intermediate intensity), three groups of plants can co-occur -  

generalist, disturbance specialist and some disturbance-sensitive species, which can provide 

diversity of ecological functions. Therefore, an increase in the number of species also means 

increasing number of life forms and functional groups, i.e., low functional redundancy. With 

increasing disturbance such as clearcutting in my case, habitat becomes less suitable for 

generalist and disturbance sensitive species, whereas the habitat favours the disturbance 

specialists with disturbance-related functional traits. This creates high functional redundancy for 

few functions (disturbance responsive functions), while a very low redundancy for many other 

functions (Fig. 2.5) causes very uneven functional redundancies. With uneven functional 

redundancy, the species diversity -  functional diversity curve can move into two possible 

directions, either closer to a parabolic or an exponential relation (Fig. 2.1). My data showed that 

a second degree polynomial fit in a disturbed stable habitat. Linear and logarithmic 

relationships in the fragile habitat exist because of habitat instability and are less predictable. 

Secondly, florlstic recovery might be more rapid in a riparian zone than in an adjacent upland 

because of flow facilitated propagule arrival. My results are consistent with those of Mayfield et 

al. (2005) who found differential responses in species and trait-state relationships between 

forested and deforested tropical habitats. There remains a paucity of studies exploring the
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effects of habitat sensitivity on the species diversity -  functional diversity relationship, 

highlighting the need for future attention to this topic.

4  High C:N ratio

01

jk y liL
White flower

t |  «
3 C cO Z3 
' O) &
g m

j j0) !.$_ Û. o
CA O)

c  ra 

Û . 2

High moisture use 12
11
10

jIllL  Whi
Vegetative
regeneration

7

Persistent soil 
seed bank

High drought 
tolerance

High rooting depth

Seed dispersal 
. by water

JlIlL
High Tire tolerance

illlL illll illll
T1 T 2  T 2  1 4  TE 

L o w  ^  High
I I  T2 1 3  T4  TE 
L o w  ^  High

Disturbance gradient

Low
T1 T2  1 3  T4 TE 

— ► High

Fig. 2.5 Number of plants per functional group (surrogate of functional redundancy) of selected 

traits in a gradient of forest harvesting disturbance and habitat sensitivity. Note that we present 

traits which show significant differences between disturbed and undisturbed habitat. T I, T2, T3, 

T4, and T5 represent corresponding disturbance treatments as mentioned in Fig. 2.2

Several assumptions are associated with my findings and must be considered in data 

interpretations. I conducted this study in habitats where plant colonization occurred naturally 

under field conditions. Although I selected my sites very carefully with similar terrain, pre­

disturbance vegetation and in the same watershed and bioclimatic region, I cannot completely 

reject the possibility of habitat heterogeneity. I was aware of this at the beginning and tried to 

overcome the challenge by increasing my sample size. I sampled over large riparian areas

48



along the 30 small streams (1 m^ quadrats, n = 1044) and considered diverse life forms, 

including trees, shrubs, herbs, ferns, grasses, lichens, mosses and liverworts.

5. C onclusions

I can draw three main conclusions from this study. First, both species diversity and 

functional diversity reached its peak in moderate intensity of disturbance, producing a bell 

shaped disturbance-diversity curve. Second, disturbance-habitat sensitivity coupling has very 

little effect on overall diversity although the effect on particular life forms and functions may be 

significant. Third, in natural communities, species-functional diversity relationships are linear at 

low disturbances but this relationship shifts to curvilinear (quadratic) with moderate to high 

intensities of disturbance. My result signifies that in disturbed habitats, functional redundancy 

becomes low implying that failure to implement careful conservation measures may result in 

functional collapse. To overcome these risks I suggest that both number of species (richness) 

and functional groups be considered in determining disturbance impact on biodiversity in order 

to safeguard the natural ecosystem functions.
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Chapter 3

The refuge concept extends to plants as well: 
riparian buffer reserve as a biodiversity refuge in the cut­

over North American boreal forest*

Abstract

Understanding the role of remnant habitats in human dominated forests is important for 

effective conservation planning. The riparian buffer reserve is a thin, remnant habitat in the cut­

over North American boreal forest. Here 1 tested if a riparian buffer reserve can act as refuge 

for forest plants after clearcutting. I sampled naturally colonized plants along small streams (n = 

10) within the clearcut forest, adjoining riparian buffer reserves and the uncut reference forest. I 

predicted the potential plant colonization from their regeneration and dispersal traits. I 

quantified buffer affinity of the sampled species using Ivlev (1961) electivity coefficient. I found 

that both species richness (p = <0.0001) and colonization traits were higher in riparian buffers 

than adjacent clearcuts (p<0.0001) and uncut (p = <0.0002) forests. Multiple response 

permutation procedure (MRPP) showed significant differences in the composition of 

colonization traits between habitats (p = <0.0001). Using non-metric multidimensional scaling 

(NMDS), I explain that additional species in riparian buffers were seed regenerating plants, 

mostly dispersed by wind, water and vertebrates suggesting that these plants might have 

arrived from the adjacent clearcuts. My findings add a novel conservation value to the riparian 

buffers as they act as refuges for disturbance sensitive plants from the clearcut boreal forest. 

This signifies that careful management of riparian buffers may help in reducing the risk of local 

extinction of many disturbance sensitive plant species from the boreal forest.

Key words: Buffer affinity, clear-cutting, dispersal traits, plants migration, Ivlevs electivity 

coefficient, small stream riparian plants

' Manuscript submitted to Applied Vegetation Science
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1. Introduction

Given the increasing human disturbance in the boreal forest, conservation ecologists 

are curious to know if remnant forest patches contiguous to disturbed habitats provide shelter 

for plants displaced from the disturbed habitats (Fahrig 2003, Owen-Smith 2008). This concept 

of biodiversity maintenance by the remnant habitat is known as refuge (Berryman and Hawkins 

2006, Owen-Smith 2008). The concept and mechanisms of refuge are well developed for 

animal ecology (Berryman and Hawkins 2006, Bihn et al. 2008); however, the approach 

remains to be widely adopted for plants (Haddad et al. 2003, Owen-Smith 2008). Using riparian 

buffer reserves as representative patches of remnant forest after clearcutting, I evaluate if the 

refuge concept extends to plants as well.

Borrowing the idea from social science, I define a refuge for plants as a habitat that can 

be used by plants as a shelter in the event of disturbance. These disturbances may be caused 

by anthropogenic activities such as forest harvesting as well as natural occurrences such as 

forest fire, flooding, insect infestation etc. Clearcutting of the forest is one form of human 

induced disturbance (Keenah and Kimmins 1993, Lamb et al. 2003) that opens the canopy and 

alters the micro-environment (e.g. light, moisture etc) and that may affect plants (Hamilton and 

Yearsley 1988, Naiman et al. 2005). In order to minimize these disturbances, the concept of 

riparian buffer reserve management was introduced (O’Laughlin and Belt 1995) and now 

riparian buffer reserve management is an integral component in management of the North 

American boreal forest (Lee et al. 2004, Naiman et al. 2005). A typical riparian buffer reserve 

consists of a -30  m wide unharvested forest along both sides of a stream. Retention of the 

riparian buffer reserve sustains key ecosystem functions (Malanson 1993, O ’Laughlin and Belt 

1995) including water quality, wildlife habitat, stream temperature and stream bank stability 

(Naiman et al. 2005, Lamb et al. 2003). However, the role of a riparian buffer reserve to the 

plant community, especially to the ground vegetation remains unexplored.

Ecological theory predicts that a protected habitat adjacent to a disturbed habitat helps

in maintaining species diversity (Fahrig 2003). In this theoretical context, riparian buffer

reserves may represent the protected habitats adjacent to clearcut forests (disturbed habitat)

and likely play an important role in maintaining plant diversity. There are two ways riparian

buffer reserves may help in maintaining plant diversity. First, because of the
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interconnectedness of forest streams, riparian buffer reserves are interconnected (Gomi et al. 

2002). Therefore, in the clearcut forest landscape, riparian buffer reserves provide habitat 

connectivity that may facilitate plant propagule dispersal. Second, riparian buffer reserves could 

also support migratory plants (hereafter referred as colonized plants and relevant traits as 

colonization traits) from the clearcut forest. I define plant migration as a combined phenomenon 

of dispersal of propagules and establishment of progeny rather than movement of the same 

individual. After forest harvesting, the altered habitat conditions (e.g. light) creates stress for the 

understory plant community (Fredrickson et al. 1999, Hart and Chen 2008). Many plant species 

may persist by adopting colonization strategies that allow them to colonize a nearby protected 

habitat (Gibbs 2000), and riparian buffer reserves represent the remnant protected habitats 

adjacent to the clearcuts. Addition of these newly colonized species would enrich the species 

pool in the riparian buffer reserve. I speculate that overall species richness and cover of 

colonized species would be higher along small streams in a riparian buffer reserve than along 

small streams in the clearcut or the uncut reference forest where there are no adjacent habitat 

disturbances and no colonization events occurring.

Fig. 3.1 Panoramic view of a typical boreal forest landscape showing the riparian buffers and its 

adjacent clearcut areas.

52



Which plants will colonize from a stressed habitat to a protected habitat? The answer 

depends on the possession of certain traits (i.e. colonization traits) that determines plants ability 

to survive the disturbance and colonize a new habitat (Brunet and Oheimb 1998, Graae and 

Sunde 2000). The mode of regeneration (Bond and Midgley 2001) and the mode of seed 

dispersal (Grashof-Bokdam 1997, Takahashi and Kamaitani 2004) are two important traits that 

influence plants dispersal and colonization (Matlack 1994). Typically, a stress sensitive plant 

with a set of dispersal traits can colonize a protected forest patch (Matlack 1994, Graae and 

Sunde 2000), and may persist in response to land use changes (McIntyre et al. 1999). I predict 

that any addition of colonized species in a riparian buffer reserve would be reflected in the trait 

display. In other words the prevalence of colonization traits will be diverse and abundant in the 

riparian buffer reserve.

In this study, in keeping with the overall goal of testing the potential of riparian buffers 

as a plant refuge, I evaluate two hypotheses: i) riparian buffer reserves support more plant 

species than a clearcut and an uncut reference forest and ii) the prevalence of colonization 

traits is higher in a riparian buffer reserve than a nearby clearcut and an uncut reference forest. 

To test these hypotheses, I studied naturally established plants around small streams within the 

clearcut, the uncut reference forest and the riparian buffer reserves adjacent to the clearcuts.

2. M ethods

2.1 Study sites

My study sites were located in the Mckenzie River and Current River watersheds, on 

the north shore of the Lake Superior, about 30 km northwest of Thunder Bay, Canada (48°22^ 

N, 89°19^ W; 199 m above sea level). Ground slope of the study sites ranged from 5 -1 5° .  This 

area has low rolling relief with underlying bedrock composed of primarily Precambrian granite 

and gneiss. Climate is boreal temperate, with minimum and maximum temperature ranging 

from -50°C to +40°C. Total annual precipitation varies from 700 to 850 mm (Baldwin et al.

2000). Vegetation is predominantly coniferous such as Picea mariana, Picea giauca, and Pinus 

banksiana. Dominant understory and ground layer plants include Aster spp, Clintonia boreaiis, 

Cornus canadensis, Viola spp., Lycopodium  spp. and others. Ages of the reference sites and

the riparian buffers were 8 0 - 100 years old whereas the clearcut sites were 3-5 years old.
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2.2 Sampling design

I selected 10 small streams in the clearcut forest and riparian buffers adjacent to that 

clearcut forest. Small streams that flow from the clearcut forest through a riparian buffer reserve 

and into larger streams were selected. I also selected an equal number (n = 10) of small 

streams from the nearby uncut reference forest. Study sites were selected with similar 

vegetation, ground slope and soil characteristics. On each stream, I laid my sampling transects 

in two different locations: two transects within the clearcut area and one transect within the 

riparian buffer reserves. This sampling choice allowed me to compare the ground vegetation 

within a clearcut forest (stressed; A in Fig. 3.2) and a riparian buffer reserve (protected patch a ' 

in Fig.3.2). On each transect, I placed 1 m^ consecutive quadrats in the riparian zones. I 

recorded presence of vascular and non vascular plant species and visually estimated their 

percent cover in the quadrats.

R iparian  b u ffe r reserve  
(a p pro x . 30 m.)

Up land  area

R ip a r ia n  z o n e

Small stream

R iparian  b u ffe r reserve  
(a p p ro x . 30 m.)

Fig. 3.2 Schematic of sampling layout showing transects and quadrat positions along a small 

stream in two locations: clearcut (A. stressed habitat) and riparian buffer reserves of a large 

stream {A'. protected habitat).
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2 .3  Q uantifica tion  o f  bu ffe r a ffin ity

I considered a species to be a colonized (immigrant) if it had higher mean abundance 

in a riparian buffer reserve than in an uncut reference forest and in a clearcut forest. Secondly, I 

identified the species that were absent in the uncut reference forest but present both in a 

riparian buffer reserve and an adjacent clearcut forest. I described the buffer affinity of a 

species using a coefficient ( C b a )  derived from Ivlev’s (1961) electivity coefficient. Shitzer et al. 

(2008) found this coefficient useful while quantifying affinity of the grazing sensitive plant 

species to smali rock refuge. I calculated the coefficient of buffer affinity ( C b a )  as:

C bA) =■
6rb *^cf 
Crb'^ 6cf

Where, C * and Get are the mean cover of species / in a riparian buffer reserve and a clearcut 

forest, respectively. Values of Cba were set between -1 to +1. Following the protocol of Shitzer 

et al. (2008), I set a cut off value of +0.50 to +1 for a colonized species (i.e. positive buffer 

affinity) and - 0.50 to -1 for a disturbance specialist species (negative buffer affinity). Species 

that showed a Cba value between - 0.50 to +0.50 were categorized as generalist species. I 

limited the quantifications of buffer affinity to vascular plants only, due to limited information on 

nonvascular dispersal traits.

2 .4  C olon ization  tra its

I considered three major sets of plant functional traits that influence a plant’s 

colonization and/or migration (e.g. Matlack 1994, Grashof-Bokdam 1997, Brunet and Oheimb 

1998, Graae and Sunde 2000, Takahashi and Kamaitani 2004). The selected traits were: i) 

mode of seed dispersal (wind, water and vertebrate), ii) presence of soil seed bank (persistent, 

transient) and iii) mode of regeneration (seed, vegetative). In conjunction with buffer affinity, I 

used a trait based dichotomous key (Fig. 3.3) to qualitatively verify the colonized species in 

case of any dispute between colonization and habitat mediated flourishing (high abundance). I 

compiled my trait data base from published literature and the USDA plant data base 

(www.usda.org).

55

http://www.usda.org


Vegetative parts

Soil seed bank

Persistent Transient

Dispersed seed

Wind

Seed

Vertebrates

Water

REGENERATION STRATEGY

Fig. 3.3 Plant’s trait contributing to their colonization. Colonization traits are indicated by solid 

line whereas non-colonization traits are indicated by dotted lines. I used this trait based 

dichotomy in conjunction with cover based buffer affinity to identify the colonized plants in a 

riparian buffer by rejecting the potential dispute of habitat mediated higher abundance.

2.5 Statistical analyses

To test if species richness differed significantly between habitats, I ran one way

analysis of variance (ANOVA) using type III sum of squares followed by Tu keys Honest

Significant Difference post-hoc test with species richness as the dependent variable. To meet

the assumptions of ANOVA I checked the residuals for normality (Kolmogorov-Smirnov test;

p=0.05) and homogeneity of the variance (Levene test; p=0.05). I transformed species richness

to loge for the analysis.

To identify potential colonized species in riparian buffer reserves, I first compared the

mean percent cover of a species In a riparian buffer reserve and in a reference site by using

one way ANOVA. To test if the composition of colonization traits differs between habitats, I ran

a multiple response permutation procedure (MRPP) test with Sorensen distance measure.

MRPP is a nonparametric technique for detecting the difference between a priori classified

groups. Although MRPP is analogous to parametric tests it is more attractive than its parametric
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counterparts because of its robustness under violations of parametric assumptions (Mielke and 

Berry 1994). Also, MRPP derives the exact probabilities associated with a test statistic, rather 

than approximate values obtained from common probability distributions (Mielke and Berry

2001).

To test the display of colonization traits, I ran a non-metric multidimensional scaling 

(NMDS) ordination using the slow and thorough analysis option and the default settings 

(Sorensen distance measure) in the PC-Ord version 5.11 (McCune and Mefford 1999). NMDS 

is a non parametric ordination method well suited to community data that avoids many 

assumptions about the underlying structure of the data made by traditional ordination methods 

(Clarke 1993).

3. Results

I found a significantly higher number of species along small streams in the riparian 

buffer than along small streams in the clearcut and in the uncut reference forest (p2,29 = 21.08, 

p  = <0.0001, Fig. 3.4). Richness of shrubs, herbs and lichens was significantly higher in the 

riparian buffer than each of the other two habitats (Fig. 3.5). Based on the buffer affinity 

coefficient, 17 species were colonizing species (i.e. showed strong affinity toward the riparian 

buffer), 35 species were disturbance specialists and the remaining were generalists (Appendix

3.1). The composition of plant colonization traits was significantly different in the riparian buffer 

reserve than in the clearcut and In the uncut reference forest (p= 0.000017, Table 3.1). NMDS 

ordination gave a three dimensional optimal solution for predicting trends in the abundance 

weighted functional traits. The solution accounted for 97% of the cumulative variance of the 

data sets. First, second and third NMDS axes explained 15, 31 and 51% variance of the data 

sets. The dominant axis three represents a gradient of very few to a high number of 

colonization traits. The buffer reserve sites are clearly separated from the clearcut and uncut 

sites and are distributed at the top of the ordination space (Fig. 3.6A,B). Axes one and two, on 

the other hand, are not as clear as axis three, but represent a weak gradient of water (axis 1) 

and wind dispersed plants (axis 2) in a gradient of low to high species richness.
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Table 3.1

Results of the Multiple Response Permutation Procedure (MRPP) testing the null hypothesis of 

no significant difference in the composition of colonization traits between uncut reference 

forest, clearcut forest and riparian buffers. The observed delta is calculated from the data while 

the expected delta is derived from a null distribution. T is the MRPP statistics. A is the chance 

corrected within group agreement.

Multiple comparisons I A P MRPP statistics

Uncut reference vs Riparian buffer -7.255 0.257 <0.0001 T =  -7.5124053

Uncut reference vs clearcut -0.091 0.003 0.38251127 Observed delta = 0.37567

Riparian buffer vs clearcut -8.053 0.299 <0.0001 Expected delta = 0.50000 

Variance of delta = 0.000274 

Skewness of delta = -1.1646 

A = 0.24866587 

p =  0.00001689

In the ordination space (Fig. 3.6A) clearcut sites are distributed on the top left hand

side (support disturbance specialist species) and uncut sites on the top right hand side

(support disturbance tolerant species) while riparian buffer reserves are spread all over, but 

more concentrated in the middle indicating that they support both groups of species. In Fig. 

3.6B clearcut, uncut and riparian buffer reserve sites are sorted in left, middle and right hand 

sides that run a gradient of abundance of lower to higher water and wind dispersed plants.

4. D iscussion

I found that both species richness and associated colonization traits were higher In a 

riparian buffer reserve than the adjacent clearcut and the uncut reference forest. My findings of 

higher species richness in a riparian buffer reserve are in accordance with the current 

understanding of the secondary edge processes of species addition (sensu Harper et al. 2005). 

The possible source of the additional species in the riparian buffer reserve might be the

adjacent clearcut forest. Harper et al. (2005) predicted similar patterns of species invasion
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along clearcut forest edges. This raises the question as to how these additional species arrive 

in a riparian buffer reserve.
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Fig. 3.6 Non-metric multidimensional scaling ordination (NMDS) diagram of the abundance 
weighted functional traits in three habitats: riparian buffer reserve ( # ,  clearcut forest ( Q  and 
uncut reference forest (|23). The ordination gives a three dimensional solution, (a) Axis 1 vs axis 
3 (b) axis 2 vs axis 3. Scale along the ordination axis depicts the estimated effects of 
colonization traits on the explained variances highlighting the contribution of vertebrate ( SH) 
wind ( ■ )  and water r ---) dispersal traits. I calculated the effects size as the ratio of the variance 
of the factor to the total explained variance by an axis.

It is likely that one dominant dispersal vector or a combination of several dispersal 

vectors including wind, water, and vertebrates may facilitate this dispersal and colonization. In 

the NMDS ordination space (Fig. 3.6A,B), riparian buffer reserves are grouped at the top of axis 

3 (a gradient of the diversity of colonization traits) indicating higher diversity of plant 

colonization traits.

These results are predictable as small windblown seeds can easily be deposited in a

riparian buffer reserve which acts as a wind barrier. Secondly, harvesting and site preparation

leads to channel bed deformation and interrupted water flow in small streams, therefore, it is
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likely that seeds can be dispersed only a short distance. The riparian buffer reserve is the 

closest protected habitat; hence, higher colonization potential for wind and water dispersed 

plants. Thirdly, if I consider herbivores, after grazing they prefer to take shelter in a shaded 

place. It is likely that increased frequency of vertebrate movement between the clearcut and 

uncut riparian buffer reserve facilitate plants dispersal in the riparian buffer reserves. My 

current study did not allow me to provide direct evidence that additional species in the riparian 

buffer reserve are coming from a clearcut forest. However, the prevalence of the higher number 

and abundance of functional traits that determines the colonization potential of plants is in 

agreement with my arguments.

Stress created by forest harvesting may affect plant species differently depending on 

their autecological attributes (Haila 1999, Dupre and Ehrlen 2002). Species cover value may be 

a good predictor to capture this response. For the encountered species, my pair-wise 

comparison of the cover in the uncut reference forest with the clearcut forest and the riparian 

buffer reserves made it clear that apart from the addition of new species in the riparian buffer 

reserve, as indicated by their higher cover some species were showing strong affinity towards 

the riparian buffer reserve (Appendix 3.1). Although it can be argued that after forest harvesting 

and edge creation, the altered and improved habitat conditions in the riparian buffer reserve 

(Murcia 1995, Stewart and Mallik 2006) may increase abundance of some species, however, 

my careful qualitative evaluation of the dispersal traits following the trait based dichotomous 

key (see Fig. 3.3 for screening methods) should account for that possibility (Graae and Sunde 

2000). Roy and Blois (2006) used a similar trait based analysis while evaluating hedgerow 

corridors as an environmental filter for forest herbs.

My results showed that plants from all life forms have the colonization potential (Table

3.2). For instance, Dien/illa lonicera, Thalictrum dasycarpum, Matteuccia struthiopteris and 

Carex intumescens represents colonization and refuge use potential from shrubs, herbs, ferns 

and graminoides life forms, respectively. However, among the vascular plants, shrubs have 

more affinity toward riparian buffer reserves than other plants. Dispersal of shrubs into the 

riparian buffer reserves can be enhanced by their height, growth forms and fleshy fruits that 

facilitate their dispersal by wind, water and vertebrates (Shitzer et al. 2008).
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Table 3.2

Buffer affinity and colonization traits of the selected plant species that are confirmed or 

speculated to be colonizers in a riparian buffer reserve from an adjacent clearcut. The complete 

set of colonization traits for the encountered species is available upon request. For a complete 

list of buffer affinity see Appendix 3.1.

Life

form

Species Buffer

affinity

Colonization traits

fvtode of reaeneration 

Seed Vegetative

fvtode of seed disoersai 

Wind Water Vertebrate 

s

Shrub Dierviila lonicera 0.543 +++' +++‘^ +' + ' +++■'

Herbs Thalictrum dasycarpum 0.589 +++' +++"

Ferns fdatteuccia struthiopteris 0.559 +++'

Grass Carex intumescens 0.595 +++’

^USDA plant data base, ^Leck et al. 1989, ®Arnup et al. 1995, '‘ Lamb 2002, ®Prange and 
Vonaderkas 1985, ®Byers and Meagher 1997. +++, ++ and + stands for primary, secondary, occasional 
process.

Several assumptions are associated with my conclusions and they should be 

interpreted with caution. My findings regarding this vegetation response were obtained shortly 

after clearcutting (3-5 yrs). Given the fact that most of the common open habitat species arrive 

at a site soon after disturbance (Connell and Slayter 1977) this study should be considered in 

the context of a disturbance-colonization scenario. Secondly, I predicted the immigrant species 

in a riparian buffer reserve based on their functional traits instead of direct tracking. Thirdly, I 

limited the quantifications of the buffer affinity to vascular plants, due to limited information on 

the nonvascular dispersal traits. From this study, I am also unable to infer how long an 

incoming species persists in a riparian buffer reserve. It would be worthwhile to study whether 

these colonized (immigrant) species in the riparian buffer reserves contribute to recovery of the 

adjacent clearcut forest. A chronsequence study covering wide range of post-harvest times of 

clearcuts may answer these questions.

In conclusion, this study provides evidence that, in the boreal forest, riparian buffer 

reserves could act as a refuge for plants, especially at an early stage after clearcutting. These
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findings have several implications for riparian management and conservation. For instance, in 

riparian management, two issues are emerging in importance: i) protection of water quality and 

aquatic environment and ii) reducing the risk of local extinction of boreal plants. Ecologists and 

managers are trying to address these concerns separately with more focus on water quality and 

aquatic environment. My findings imply that a careful management and conservation of riparian 

buffers may reduce the risk of local extinction of many disturbance sensitive plant species from 

the boreal forest. If these two issues are integrated then both of the problems can be solved 

with a minimal conservation effort. However, there remains a paucity of studies on this topic 

highlighting the need for future research attention in this topic.
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Chapter Four

General discussion

I studied plant communities along small streams in norttiwestern Ontario by focusing on 

three aspects; i) current state of knowledge on small stream riparian plant communities, ii) 

disturbance effects on the relationship between species diversity and functional diversity and iii) 

if riparian buffer reserves act as refuges for plants in the cut-over boreal forests.

I found that riparian plant communities of small forest streams are very poorly studied 

(chapter 1). Studies of small stream riparian plant communities occupy only five percentages of 

the total riparian studies (see Fig. 1.2). Several studies (e.g. Gomi et al. 2002, Richardson and 

Danehy 2007) have shown the structural and functional connectivity between small headwater 

streams and larger streams. Because of the connectivity between small and large streams in a 

watershed, it is logical that adversely affected small streams may affect the larger streams. 

Secondly, riparian habitats are considered to be biodiversity hotspots in the North American 

boreal forest (Sabo et al. 2005). Plants provide habitat templates for fauna and adversely 

affected plant community might affect the faunal community. In the synthesis 1 found that forest 

management disturbances along unprotected small streams may affect the riparian plant 

community in terms of reducing plant species richness, and more importantly, shifts the 

herbaceous dominance to shrubs. It can be predicted that if the plant composition changes, the 

associated fauna will also be changed leading to a possible danger of functional anomalies. In 

the recent years, wetland ecologists have become interested in small streams as evident from 

the increasing number of publications on small stream riparian systems (see section 3.1 in 

chapter 1 for details). However, one inadequacy is the study on plant communities and future 

study needs more focus on this topic.

Conservation ecology traditionally relies on the number of species to evaluate if 

ecosystem functions are maintained, with an understanding that with higher numbers of 

species a higher the diversity of functions will be achieved. I found that the relationship 

between species diversity and functional diversity remains linear in lightly disturbed habitat but
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that relationship shifts to curvilinear with increasing disturbance intensity (see section 3.2 in 

chapter 2). Danovaro et al. (2008) found an exponential relationship between species diversity 

and functional diversity in a deep sea benthic community; their findings are opposite of my 

findings in terms of the curvature of this relationship. The nature of disturbance and resiliency 

of the investigated community may have contributed to the differing results. However, a 

common but key message is that the relationship between species diversity and functional 

diversity is not consistently linear and in fact, this relationship is very much dynamic, like a 

dynamic natural system.

I suggested that uneven functional redundancy was one of the underlying mechanisms 

causing the differential relationships. From the perspectives of community assembly, in low 

disturbed sites competition is the dominant filter structuring plant communities resulting in more 

or less even redundancy (Grime 1973, Grime 1979, Tilman 1999). In the disturbed habitat, 

however, abiotic filters become dominant allowing only disturbance tolerant and disturbance 

specialist species to colonize, followed by competitive filtering that structures the final 

community of disturbance specialists (Diamond 1975, Weiher and Keddy 1995). Therefore, the 

final communities in disturbed habitats are inclined towards a limited number of functional 

groups that can provide only a limited number of functions, resulting in high redundancy for 

some functions while no or low redundancy for other functions. In my study I found evidence of 

this type of uneven functional redundancy with increasing disturbance (see section 3, Fig. 2.5; 

in chapter 2). This finding might add to the growing interest to explain the assembly of natural 

communities from a functional basis. However, this may be a concern for conservation 

biologists because in conservation it is common to use species richness (number of species) as 

a surrogate of ecosystem functions. From the above explanations of functional redundancy, my 

findings and Danovaro’s (2008) findings, it is clear that in disturbed habitats a high number of 

species does not always correspond to a high number of functions. Conservation activities 

concentrate more on disturbed habitats where the relationship between species diversity and 

functional diversity does not follow a straight line. It is the right time to evaluate whether 

conservation is meeting its goal of functional sustenance. Detailed studies using functional 

traits may be an avenue for this sort of understanding.

66



Another emerging concept in contemporary conservation biology is the refuge concept 

where ecologists are arguing that remnant/protected habitats adjacent to a disturbed habitat 

could act as a refuge for biota from the disturbed landscape (Fahrig 2003). Animal ecologists 

have found evidences in support of this concept (e.g. Berryman and Hawkins 2006, Bihn et al. 

2008). However, in plant ecology it is still discussed at a theoretical level (Owen-Smith 2008) 

with little empirical evidence. Using riparian buffer reserves as protected habitats and adjacent 

clearcuts as disturbed habitats, I empirically evaluated this concept and found some 

‘preliminary evidence’ that the refuge concept is applicable to plants. I use the term preliminary 

evidence because 1 did not directly track the plant’s movement. That is a long term and difficult 

task in the field as opposed to radio telemetry to track animals. I used two surrogates: I) a 

functional dichotomy that may identify possible migratory plants and ii) changes in plant cover 

due to addition of migratory plants using Ivlev’s coefficient (Ivlev 1961). In addition to theoretical 

unification of the refuge concept, this finding also added a new conservation value to the 

riparian buffer reserves in clearcut landscape. I should caution however, that these findings are 

from a small scale study covering only the early phase (3-5 years) after clearcutting. Research 

covering all ages would be helpful to develop a clear understanding of refuge concept as well 

as the role of riparian buffer reserves to adjacent disturbed plant communities.

One interesting aspect throughout the thesis is the use of functional trait in conjunction 

with species level analysis. Using this simultaneous measure I showed possible risks involved, 

if reliance is placed only on species level analysis. My use of functional traits for qualitative 

evaluation of plant colonization showed the power and wide applicability of functional traits in 

understanding the natural systems (Ackerly and Cornwell 2007). One shortcoming in the trait 

based analysis is the availability of trait data. Europe is far advanced in developing and using 

the exhaustive trait data bank, in North America, however, efforts continue to develop a trait 

data bank. Once detailed trait information is available it can be used as a powerful tool for 

ecological inference.

Future research directions

More research is needed in the following ecological aspects of riparian vegetation of small 

streams:
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1. Is there any functional difference between riparian plant communities of small and large 

streams?

2. Do small stream riparian plant communities interact differently in presence and 

absence of habitat disturbances? What is the threshold of disturbance that shifts 

competitive filtering to abiotic filtering in natural communities?

3. Do small streams in the forest act as a seed dispersal corridor for plants in the boreal 

watersheds?

4. Do the riparian buffer reserves facilitate recovery of clearcut forests? If so, how?

5. Which faunal groups use riparian buffer reserve as a refuge? After clearcutting does 

the movement of herbivores increase in the riparian buffer reserves?

6. Does disturbance around small streams facilitate spread of invasive species in the 

down streams and the protected riparian buffer reserves?
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î d
\  d

j  LU ç  !_•
■ o ^  -é  
E "O o

:ÊÊ̂
i O) O) G 
> 3 3 ^
: C/D C/D H

°  OC

o d

^  9 
C/D ^  co

- a ï9 (0 0 ) c \ i

d  -3

itS

lil:
d i g

I 3

o

i!lg i <  01

gi
: un

0
: s s

ill
i l
: | l: E ô

S

ü

2>
O

U  s

I £  - s '

i a S 3  

l i a  3 '

c G ^
I 3  o  C\J «V
» G  LU CO CL

È K i -
I CM g

E cc

0 0 0 lo

| 2 !
“  G

PI
o  8  § 0 . ■= s

: > _  

> LU c

3  &■-

fît : i l '
il!

o  Ë p
■o a  œ 8 £

0 en ■

> 1 3 ' -9  0  CO .

9  ' ■ C  -i

Illl
III'

F ,

\ E î '

13 S3
-

 ̂ o  I  d  • f  *  2  ,g

il

#5# 
R m  2

ill
9 c  g  
0  9  m

■

II#:;
gii|;
2 o f R ,

G)

( S 2 Z -

li
0 : 2

111
■ a c e ;
2 H

; <  
.  LU

S’ — -  ,  o  u  >,
m -%i î |

6 :  | o i < ( f ^ < œ o  

m co ?
S - Ô  S

III
I  Q  I

îffi
III

3  H  O)

C/D ;$si
: 2 _ - <

LU 0  ™ «

0 m m

1 |ilX CD 2  2  :
c o o ) O i - ( N c o T f i n ( o ;
" < T ' < T i n u D u D i n i n i n i G

m
O n



Appendix 2.2

Compositional difference in plants life forms due to disturbance

Results from Tukeys post-hoc  test after two way ANOVAs, each with the number of species of a certain 
life form  as response variable and disturbance intensity and habitat sensitivity as fixed factors with 
factorial interactions. Values with same superscript do not d iffer significantly at a=0.05. Sym bol |  

indicates increasing dom inance whereas i  means decreasing and *  indicates where habitat sensitiv ity 
(disturbance x habitat interaction) is significant.

Life form Disturbance 
F-ratio 

(p - value)

Control Buffer adjacent 
to clearcut

Buffer adjacent to 
clearcut plus 
scarification

Clearcut Clearcut plus 
scarification

Tree 6.51 (0.000) 2.27* 2.51* 2.56*" 2.22" 2.31""
Herbs 4.18 (0.059) 3.56* 4.12*" 4.81" 4.13*" 4.40*"
Shrubs 6.97 (0.000) 2.23* 3.48* 3.20* 2.20" 2.24"
Ferns 5.58 (0.000) 0.75**": 0.90"" 0.99" 0.41* 0.54*"

fGraminoids* 16.95 (0.000) 0.59* 0.81* 0.62* 1.39" 1.23"
Mosses and 5.45 (0.001) 0.98*" 1.29" 1.43" 0.63* 0.95*"
liverworts 
i. Lichens 11.10 (0.000) 0.57*" 0.84"" 1.18" 0.17* 0.07*
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Appendix 2.3

Compositional difference in plant functional traits in a gradient of habitat 
disturbance

Results from  Tukeys post-hoc  test after nested ANOVAs, each with the num ber of plant species with a 
specific functional tra it as response variable and disturbance and habitat type as fixed factors and site as 
random factor. Values with same superscript do not d iffer significantly at a =0.05. Symbol t  indicates 
increasing dom inance whereas |  means decreasing and *  indicates where habitat sensitivity 
(disturbance x habitat interaction) is significant.

Plants functional traits Response
direction

Disturbance 
F-ratIo 
(p - value)

Control Buffer 
adjacent to 
clearcut

Buffer 
adjacent to 
clearcut plus 
scarification

Clearcut Clearcut plus 
scarification

High C/N ratio i 27,910 (0.000) 5.00" 5.14" 4.89" 2.97" 3.50"
Medium C/N ratio 4.172(0.004) 2.65" 2.13" 2.18" 3.70"" 3.60""
Low C/N ratio 2.621 (0.040) 0.34" 0.56"" 0.84" 0 .9 3 * 0.85""
Colourful flower i 22.527(0.000) 3.63" 3.90" 3.68" 3.16" 3.09"
White flower Î 1.726 (0.005) 1.74" 1.57" 1.55" 2.75" 2.89"
High rooting depth i 15.734(0.000) 5.64" 5.72" 5.73" 3.63" 4.32"
Medium rooting depth 1.162 (0.333) 2.25 2.64 2.38 3.11 2.97
Low rooting depth * 1.080 (0.371) 1.12 1.49 1.36 2.35 1.88
High moisture use 9.564(0.000) 3.33" 3.43"" 3.67" 3.05"" 2.87"
Moderate moisture use 4.171 (0.004) 3.12" 3.28"" 2.91" 3.45" 3.67"
Low moisture use 0.953 (0.438) 0.61 0.73 1.15 1.07 0.83
Fast growth rate i 11.975(0.000) 4.41" 5.39" 4.98" 2.74" 3.03"
Moderate growth rate 7.886(0.000) 2.31" 1.70" 1.93" 2.46" 2.41"
Slow growth rate 1.689(0.159) 1.71 2.50 2.37 3.40 2.05
Annual 2.958 (0.024) 0.02" 0.09"" 0 .0 3 * 0.34" 0.25*
Perennial Î 18.487(0.000) 2.97" 2.85"" 2.81" 3.14"" 3.17"
Woody stem tissue 15.275(0.000) 4.95" 4.60"" 4.50" 4 .3 2 * 4.65"
Herbaclous stem tissue 6.878(0.000) 1.63" 1.40" 1.70"" 1.92" 1.95"
Evergreen 3.559(0.010) 1.66* 1.99"" 2.51" 1.14" 1.64""
Deciduous 11.517(0.000) 3.00" 2.92" 2.70" 3.12" 3.25"
Vegetative regeneration 8.658(0.000) 2.60" 2.93"" 2.80"" 3.21"" 3.21"
Seed regeneration Î 18.586(0.000) 3.15" 3.13"" 3.05" 3 .3 0 * 3.29"
Vertebrate dispersal 1.466(0.2190 2.46 2.68 2.60 3.54 3.56
Wind dispersal i 20.611(0.000) 4.24" 4.09" 4.19"" 3.49" 3.67"
Water dispersal i 16.222(0.000) 5.15" 4.09" 4.68"" 1.88" 2.51"
High resprouting ability i 12.248(0.000) 4.71" 4.36" 4.23"" 3.20" 3.59"
Low resprouting ability Î 0.401(0.0087) 2.00" 2.50" 2.42" 3.77" 3.83"
Persistent seed bank 12.220 (0.000) 3.32" 3.13"" 3.02" 3 .4 6 * 3.40"
Transient seed bank 10.672(0.000) 3.06" 2.60" 2.74" 2.66" 2.96"
High drought tolerance Î  * 6.365(0.000) 1.22" 1.29" 1.80" 4.2l" 3 .5 2 *
Moderate drought 
tolerance

* 0.715 (0.584) 1.60 2.11 1.76 3.19 3.10

Low or no drought 
tolerance

i 19.278(0.000) 3.91" 4.03" 4.12"" 3.43" 3.59"

High fire tolerance* 1.1008(0.408) 2.54 3.31 3.06 3.95 3.98
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Plants functional traits Response
direction

Disturbance 
F-ratIo 
(p - value)

Control Buffer 
adjacent to 
clearcut

Buffer 
adjacent to 
clearcut plus 
scarification

Clearcut Clearcut plus 
scarification

Moderate fire tolerance 12.752 (0.000) 3.37" 1.92" 1.98" 1.54" 1.56"
Low or no fire tolerance i 13.345(0.000) 4.55" 3.74" 3.60" 2.16" 1.81"

96



Appendix 3.1

Buffer affinity of the encountered vascular plants

Species Buffer affinity (Cw) Species cluster

Acer spicatum 0.48 G
Alnus incana 0.479 G
Alnus viridis 0.129 G
Amelanchier stolonifera 0.31 G
Cornus stolonifera -0.125 G
Corylus cornuta 1.000 Bs
Diervilla lonicera 0.543 Bs
Gaultheria hispidula -0.502 Ds
Ledum groenlandicum 0.186 G
Linnaea borealis -0.322 G
Lonicera hirsute -0.143 G
Lonicera vlllosa -0.600 Ds
Prunus pensylvanica 0.50 Bs
Prunus virglnlana 1.000 Bs
RIbes glandulosum -0.098 G
Ribes hudsonlanum 0.111 G
Ribes oxycantholdes 0.208 G
Rosa aclcularls -0.116 G
Rubus acaulls -0.267 G
Rubus Idaeus -0.255 G
Rubus pubescens -0.208 G
Sallx spp. 0.184 G
Vacclnium angustlfolium -0.227 G
Vacclnlum myrtllloides -0.169 G
Viburnum edule 0.199 G
Anaphalis margarltacea -1 Ds
Anemone quinquefolla 1 Bs
Aralla nudlcaulls 0.429 G
Aster clllolatus 0.263 G
Aster conspicuous -0.351 G
Aster macrophyllus 0.318 G
Aster umbellatus 0.25 G
Caltha palustris 0.538 Bs
CIrcaea alpine -0.053 G
CIrsium muticum -1 Ds
Clintonia borealis 0.131 G
Coptls trifolia -0.147 G
Cornus Canadensis -0.177 G
Drosera rotundifolia 0.633 Bs
Epiloblum angustlfolium -0.346 G
Epiloblum clllatum -1 Ds
Epiloblum palustre 0.061 G
Equlsetum arvense 0.180 G
Equlsetum sylvatlcum 0.196 G
Fragarla virglnlana -0.040 G
Galium asprellum -0.347 G
Galium boreale 0.325 G
Galium triflorum -0.062 G
Geocaulon lividum 1 Bs
Hleracium aurantlacum -1 Ds
Hleraclum caespitosum -1 Ds
Iris versicolor 1 Bs
Lactuca spp. -0.123 G
Lycopus unlflorus -1 Ds
HAaianthemum canadense -0.095 G
fvlentha arvensis -1 Ds
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Species Buffer affinity (Cia) Species cluster

Mertensia paniculata 0.049 G
Mitella nuda 0.083 G
Oenothera biennis -1 Ds
Petasites frigidus 0.060 G
Petasites sagittatus -1 Ds
Polygonum cillnode -1 Ds
Potentilla norvegica -1 Ds
Potentilla palustris -1 Ds
Pyrola elliptica 1 Bs
Sanicula marllandica -1 Ds
Scutellaria galerlculata 1 Bs
Smilacina trifolia 1 Bs
Solidago canadensis 0.047 G
Sonchus asper -1 Ds
Streptopus roseus 0.257 G
Taraxacum offlclanale -1 Ds
Thalictrum dasycarpum 0.589 Bs
Trientalis borealis 0.099 G
Trillium cernuum 0 G
Typha latifolia -1 Ds
Viola adunca -1 Ds
Viola nephrophylla -0.003 G
Viola pubescens -1 Ds
Viola renlfolia 0.039 G
Athyrium flllx-femina 0.314 G
Dryopterls expansa 0.321 G
Gymnocarplum dryopterls 0.263 G
Lycopodlum annotlnum 0.530 Bs
Lycopodium clavatum 1 Bs
Lycopodlum dendroideum 0.046 G
Matteuccia struthlopterls 0.559 Bs
Osmunda claytonlana -1 Ds
Osmunda regalls -1 Ds
Phegopterls connectllls -1 Ds
Woodsla 0.132 G
Agrostis scabra -1 Ds
Calamagrostis Canadensis -0.472 G
Carex bebbil -1 Ds
Carex brunnescens -1 Ds
Carex deweyana -1 Ds
Carex diandra -1 Ds
Carex interior 0.132 G
Carex intumescens 0.595 Bs
Carex lasiocarpa -1 Ds
Cinna latifolia -1 Ds
Elymus canadensis -1 Ds
Glycerla grandis -1 Ds
Poa pratensis -1 Ds
Schlzachne purpurascens -0.450 G
Scirpus cyperlnus -1 Ds
Scirpus hudsonianus -1 Ds

Where, Bs = buffer specialist, Ds =disturbance specialist and G = generalist; N.B. Here, we listed species witft 
m inimum 2% mean cover in any of tfie  three habitat types.
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