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Abstract 

Classification and prediction algorithims have recently become very powerful 

tools to a wide array of real-world applications. Some real world applications include 

system condition monitoring, bioinformatics, robotics, predictive control, earthquake 

prediction, weather forecasting, stock market and traffic pattern prediction, just to name a 

few. 

Within this work, several novel approaches, as well as modifications to some 

existing approaches, are introduced in order to improve the performance of current 

classification and prediction paradigms. 

In the first section of this work, a novel weighted recurrent neuro-fuzzy inference 

system is introduced alongside two existing neural networks. It is found that the novel 

design outperforms both the existing neural networks in terms of equal-step and 

sequential-step inputs for time-series forecasting. 

The second contribution of this work is the development of a novel evolving 

clustering algorithim for classification and prediction. This particular algorithim starts 

without any priori knowledge of the distribution of the data set. The novel design is 

capable of revealing the true cluster configuration in a single pass of the data, estimating 

the location and variance of each cluster. After a rigorous performance evaluation, it is 

found that the novel design outperforms many existing clustering approaches including 

the well-known potential-based evolving Takagi-Sugeno (eTS) clustering scheme. 

The third and fourth contributions of this work are the development of a second 

novel clustering technique and a novel hybrid training technique. 
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The clustering technique is a combination of the aforementioned scheme and the 

potential-based technique. The new training algorithm is a combination of the decoupled-

extended Kalman filter (for the backward pass) and the recursive least-sequares estimate 

(for the forward pass). It is found that the novel clustering technique outperforms many 

available clustering techniques. Also, the novel training algorithm is proven to 

outperform most existing training techniques. 
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Chapter 1 
INTRODUCTION 

This Introduction is organized as follows: Classification, prediction and problems 

associated with them are defined in Section 1.1. Section 1.2 gives a brief description and 

some background information on fuzzy logics. In Section 1.3, neural networks are 

introduced. Section 1.4 introduces the adaptive neuro-fuzzy inference system (ANFIS) 

which is used as a foundation for most work carried out in the following chapters. In 

Section 1.5, a brief literature survey is given. And, finally, in Section 1.6, the thesis is 

outlined. 

1.1 Classification and Prediction 

Classification is the process by which large amounts of data are divided into different 

categories, or classes, for evaluation. The Wisconsin Breast Cancer Data [1], for 

example, consists of nine cell features and 683 patterns to evaluate and classify as either 

benign or malignant. In order to evaluate the data, one must determine a distinguishable 

pattern between the input data (the features) and the output data (the classes). The 

problem of classification arises when there is no distinguishable pattern (or mapping) of 

the data. It is this problem that fuels the classification genre of research. 
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Prediction, or time-series forecasting, is to apply the available information of a 

system to forecast the system's future states. It encompasses the same problems as 

classification with the exception of organizing the output data into a set of classes. In 

prediction, features are the inputs as in classification, but the outputs are predicted data. 

The use of neural networks and fuzzy logics to solve the aforementioned problem 

appears to be very promising. When neural networks and fuzzy logic paradigms are 

trained properly they prove to be a very useful tool for the non-linear mapping that exists 

in classification and prediction. In order to understand the problem, the next several 

sections will give a brief introduction to neural networks, fuzzy logics and the adaptive 

neuro-fuzzy inference system. 

1.2 Fuzzy Logics 

1.2.1 Introduction to Fuzzy Logics 

Fuzzy set theory was first introduced by L.A. Zadeh in his blockbuster paper [2]. Shortly 

after, fuzzy logic was derived from it for use in many applications. Applications include, 

but are not limited to, air conditioners, cameras, elevators, pattern recognition and remote 

sensmg. 

Fuzzy logic is a form of multi-variable logic derived from fuzzy set theory; it 

introduces vagueness by eliminating sharp boundaries that divide members from 

nonmembers in a group. For example, consider the running speed of a vehicle v. 

Traditional logic would represent v by specific quantities such as 30, 60, and 1 00 km/h. 
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In a fuzzy system, however, v can be represented by fuzzy sets such as slow, fast, very 

fast, which have greater generality, higher expressive power, and enhanced capability to 

model real-world problems. An example is given in the following section to illustrate 

fuzzy reasoning processes. 

1.2.2 A Fuzzy Reasoning Example 

Given a number between 0 and 1 0 that represents quality of service and cleanliness, what 

is the right amount of money to tip your housekeeper? The following example will use 

fuzzy reasoning to determine the best tip. 

Step 1: Linguistically representing the input and output variables. 

We have two input variables; cleanliness and service. Service will be divided into 

three linguistic terms; poor, good and excellent. Cleanliness, however, will be divided 

into two terms; dirty or clean. The output variable, tip= (0, 30%], will be represented as 

cheap, average and generous. 

Theoretically, any type of function can be used to represent the membership 

functions herein. Typical functions include, but are not limited to, the Gaussian bell, 

triangular, trapezoidal and sigmoidal functions [3]. For our example, we will use 

Gaussian for the service, trapezoidal for cleanliness and triangular for the tip as shown in 

Figures 1.1, 1.2 and 1.3, respectively. 
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Membership function plots 
1 ' good exc~llent 

Input variable "service" 

Figure 1.1. Membership functions for service. 

Membership function plots 

Input variable "cleanliness" 

Figure 1.2. Membership functions for cleanliness. 

Membership function plots 

generous 

output variable "tip" 

Figure 1.3. Membership functions for tip. 
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Step 2: Establishing the rule-base. 

The following rules are established for fuzzy reasoning in this example: 

1. IF the service is poor OR the cleanliness is dirty, THEN the tip is cheap 

2. IF service is good, THEN tip is average 

3. IF service is excellent OR cleanliness is clean, THEN tip is generous. 

Step 3: Fuzzy reasoning. 

When an input is given and the related values are determined from the 

corresponding Membership Function(s) (MFs), the rule outputs can be computed by 

appropriate fuzzy operators [3], such as T-norm (AND) and T-conorm (OR) [3]. For our 

example we will use the highest value for an OR operation and the lowest value for an 

AND operation. 

Step 4: Defuzzijication. 

In order to obtain output information from the fuzzy reasoning system, we must 

apply an appropriate type of defuzzification technique [3]. For our example, we will use 

the centriod method. 

semce = 3 cleanliness "'8 tip= 16.5% 

~ 1'--
\\· ... \ lA 

2 
1/,../···· ... \\ 

./' ."'-.. 
...... 

3 
.. // I ~ 

0 10 0 10 

0 30 

Figure 1.4. Rule-base for the fuzzy tipper. 
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The finished fuzzy structure is depicted in Figure 1.4. For example, if service was 

poor (given a 3/10) and cleanliness was clean (given 8/10), the resulting tip is 16.5%. 

A majority of the work in this thesis deals with combining fuzzy reasoning with 

neural network-based training. The next section gives an overview of neural networks 

followed by an explanation of the adaptive neuro-fuzzy inference system (ANFIS). 

1.3 Neural Networks 

A Neural Network (NN) is an interconnected group of neurons that use a mathematical 

model for processing data. NNs are adaptive, or are comprised of equations with adaptive 

coefficients, that can change its structure, or coefficients, based on input and output data. 

The adaptive nature of NNs allows for a wide area of applications such as function 

approximation, regression analysis, time-series prediction and modeling, just to name a 

few. 

xo.2 f3 2 x3,2 

xi,3 

r I I I 
Layer 0 Layer 1 Layer 2 Layer 3 

Figure 1.5. A two-input two-output neural network. 
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NNs can have as many inputs, outputs, layers, recursive links, or functions as 

required by the designer, but for simplicity, we will examine a two-input two-output 

feed-forward NN as shown in Figure 1.5. JL,k represents a function where L is the layer 

and k is the component of the actual output vector produced by P entries. fL,k can take 

on many different functions such as hard-limit, linear and log-sigmoid functions [24]; 

depending on specific mapping applications. 

NNs act as mapping approximators between input and output data spaces. 

Through a series of iterations, the NNs can be trained by an appropriate algorithm which 

modifies the network coefficients so as to optimize the mapping between the input and 

output data. Since a major part of this thesis deals with novel and existing training 

techniques, several training algorithms will be discussed in full detail in the following 

chapters. 

1.4 The ANFIS structure 

The Adaptive Neuro-Fuzzy Inference System (ANFIS), in fact, is a fuzzy reasoning 

scheme whose system parameters are trained by using NN-based algorithms. Consider n 

input variables, {xp x2 , • ··, xn}, which are normalized in [0, 1], the fuzzy reasoning is 

performed by the following general representation 

9t1 : IF(x1 isA()AND(x2 isA{)AND ... (xn isA:)THEN(y1 =f/) (1.1) 

where 9t 1 denotes the jth fuzzy rule, j e [1, N] ; N is the total number of fuzzy rules 

(clusters); A( is the jth fuzzy set for xi' i e [1, n] ; y 1 = [y JP y 12 , • · · , y JM ] is an M-

dimensional consequent (output) structure. 
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Based on the consequent reasoning structure, three types of reasoning paradigms are 

commonly used in fuzzy applications: 

Type I (Mamdani model): f/ = D/, where D/ is a consequent fuzzy set, 

Type II (zero order TS model): f/ =a(, where aj is a singleton·, 

Type III (first order TS model): // = b61 + b(x1 + · · · + b~,xn, 

where b! are consequent parameters; j E [1, Nr], Nr is the total number of fuzzy rules 

and l E [1, M] , M is the total number of outputs. 

Type I models are mostly used in diagnostics and control applications due to their 

properties of diversified selection in the shape of membership functions, fuzzy reasoning, 

and defuzzification methods [4]. A Type II model, however, is simply a special case of 

the Type I paradigm in which the consequent term becomes a singleton. A Type III 

model is mostly used on higher order or nonlinear systems due its higher degree of 

flexibility in modeling. For this thesis, the Type III model will be used exclusively due to 

the fact that it is more accurate for non-linear mapping. It is worth noting, however, the 

Mamdani or the zero order TS model can be used in substitute. 

Consider a simple example for a two-input first-order Sugeno fuzzy model: 

Rule 1: IF xis A1 ANDy is B1 THEN f.. = p1x + q1y + r1 , 

Rule 2: IF xis A2 ANDy is B2 THEN fz = p 2x + q2y + r2 , 

where the coefficients in f.. and fz are called the consequent parameters and are 

optimized m the training process. Figure 1.6 depicts the corresponding network 

architecture. 
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X 
X y 

y 
X y 

r r r r r 
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 

Figure 1.6. A two-input first-order Sugeno fuzzy model. 

The input state variables are fuzzified in layer 1. The layer output can be 

represented as: 

q,;=JiA;(x) fori=l,2 and 

q,; =Jln(i-2)(y) fori=3,4 
(1.2) 

where x andy are inputs to layer 1, and Jl Ai,Bi are the desired membership functions for 

x and y , respectively. 

• A singleton is a fuzzy set whose support is a single point in the universe with a membership function of 
one. 
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Fuzzy operation is conducted in layer 2. The rule output (or firing strength) can 

be represented as: 

(1.3) 

All the rule outputs (or firing strengths) are normalized layer 3, or: 

i = 1,2. (1.4) 

The nodes in layer 4 serve as linear combination of the input variables with 

additive functions. The outputs are given as: 

(1.5) 

Layer 5 conducts defuzzification, and the overall system output becomes 

(1.6) 

In current literature, the ANFIS structure, or a modification of it, is widely used 

to solve the problems associated with classification and prediction. Many authors have 

used this structure as a foundation for newer and improved paradigms. In the next 

section, a brief literature review of the current classification and prediction techniques 

are g1ven. 

1.5 Review of the Literature 

The review of literature began with a review of neuro-fuzzy (NF) and soft computing 

techniques. The book authored by Jang et al. introduces fuzzy logic and NNs [3]. Some 

of the NNs reviewed include the feed-forward neural network (FFNN), the focused-time 

delay neural network (FTDNN) and the non-linear autoregressive network with 

exogenous inputs (NARX). They also introduce training techniques such as least-squares 
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estimate, (for the consequent parameters in the Type III model), derivative-based 

optimization techniques (for the premise parameters) and Genetic Algorithms (GA). The 

authors also present the ANFIS network and its applications to system control. 

The book proved to be an excellent source for reference and foundational knowledge. In 

addition, the User's Manual for Neural Network and Fuzzy Logic Toolboxes by 

Mathworks Inc. [24] also provided useful information regarding theoretical review of 

these reasoning schemes. These toolboxes continue the work from Jang et al. and 

introduce Radial Basis Networks (RBN), adaptive filters, and some advanced topics and 

training algorithms. 

The authors' research group has developed several types of NF classifiers and 

predictors for machinery condition diagnostics and prognostics [22, 23, 50, 51]. Their 

investigation results have shown that if an NF scheme is properly trained, it outperforms 

those based on the feedforward NNs, the recurrent NNs, and fuzzy logic in both 

classification and forecasting applications. 

Reference [5] discussed the issues of multi-step-ahead prediction with NNs. The 

authors begin with arguing between some of the benefits of global modeling versus local 

modeling. Local modeling tends to generate too many segments and trainable 

parameters. Global modeling, through the use of multi-layered perceptron(s) (MLPs) or 

recurrent network(s) (RNs), for example, builds a single complex model for the entire 

range of behaviors identified in the time series. On major advantage to global modeling 

is the decrease in trainable parameters resulting in faster training. Because of the 

advantage of global modeling, an RN for multi-step-ahead prediction is presented as 

opposed to single step prediction. 
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In order to predict more time steps, however, the authors investigate three techniques for 

the structure training in multi-step ahead prediction: Back Propagation Through Time 

(BPTT), Constructive Back Propagation Through Time (CBPTT) and Exploratory Back 

Propagation Through Time (EBPTT). Furthermore, the authors use the well known 

Mackey-Glass [6] benchmark data for simulation and verification. Experimental results 

indicate that the EBPTT training technique outperformed the other training techniques up 

to 14 steps-ahead. Results also indicate that the error of the EBPTT training technique 

converges faster and to a lower value. 

The biggest problem with the aforementioned techniques for prediction (and 

classification) is the required prior knowledge in selecting the ideal number of rules or 

number of nodes required for a certain task. Hence, the review of literature continued 

with evolving rule-base structures. 

In evolving rule-base structures the model continually evolves by adding or 

subtracting rules with more summarization power and by modifying existing rules and 

parameters. Plaman P. Angelov can be considered the pioneer researcher of evolving 

rule-base structures. In his paper entitled Evolving Rule-based Models: A Tool for 

Intelligent Adaptation [7], Angelov et al. introduce a novel technique for updating or 

modifying an existing rule-base. As the input/output data iterates, the presented 

algorithm calculates the potential of the new data point as a rule (or cluster) for the rule-

base. If the potential of the new data point is greater than all the existing clusters, a new 

rule is formed with the current data points and a fixed spread for the cluster radius. After 

this decision making process, the consequent parameters are trained, online, via recursive 

least-squares estimate (RLSE). 

12 



In reference [8], Angelov et al. extend the work in [7] and apply the evolving 

rule-base technique to a Takagi-Sugeno structure. Takagi-Sugeno structures ensure that 

the rules are more gradual (that they are able to describe a larger number of data samples) 

from time oftheir initiation [8]. The authors were successful in applying their algorithm 

to air-conditioning installation surveying a real building. Despite the promising results, 

one problem still loomed in their algorithms. When new rules were generated, the 

spreads of the newly formed clusters would stay fixed; as well as the location of the 

clusters. A new training technique that embodies training the premise parameters as well 

as the consequent parameters would result into a more accurate paradigm. 

Angelov et al. introduced a technique to recursively change the stze of the 

spreads of all the rules in [9]. Even though this new algorithm did outperform the latter 

technique, it did not solve the problem of training the location of the clusters. 

Wang eta!. proposed a novel technique for structure identification and simulation 

[10]. The paper introduced an MCA clustering algorithm that can identify a parsimonious 

internal structure in the sense that the number of clusters is equal to the true number of 

clusters; furthermore, a fast recursive linear/non-linear least-squares optimization 

algorithm is used to accelerate the learning convergence. The novel MCA clustering 

algorithm outperformed several existing algorithms [ 11-14] but was not compared to 

Angelov's latter algorithm. 
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1.6 Thesis Organization 

The objective of this research is to develop advanced intelligent tools with novel 

structures and novel training techniques to overcome the obstacles of current clustering 

and prediction techniques. The purpose is to provide a wide array of industries more 

reliable and robust classifiers and predictors for dynamic system classification and 

forecasting applications. 

In Chapter 2, feed-forward and recurrent NNs are introduced and simulated in 

order to compare sequential-based inputs to step-inputs. Also in Chapter 2, a novel 

weighted recurrent NF paradigm is proposed and proven to be a more reliable and robust 

multi-step ahead predictor. 

Chapter 3 deals with self-organizing or evolving NF paradigms for classification 

and prediction. Chapter 3 begins with introducing some well known techniques and some 

novel techniques. Also in Chapter 3, a novel clustering algorithm and hybrid training 

technique is introduced and compared to the literature. 

Chapter 4 introduces another novel clustering algorithm and novel training 

algorithm. The new clustering approach is an enhanced version of the evolving Takagi-

Sugeno paradigm suggested by Angelov in [8]. The new training technique is a hybrid 

technique consisting of the decoupled-extended Kalman filter and the recursive least-

squares training technique. 

Chapter 5 concludes the thesis and introduces some future work to be carried out. 
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Chapter 2 
NF FORECASTING SCHEMES WITH FIXED STRUCTURES 

2.1 Introduction 

Multi-step ahead forecasting tools are very useful to a wide assortment of real-

world applications. In economical applications, for example, forecasting tools can be 

used to predict the stock market, the Canadian dollar or the price of oil. In industrial 

applications, however, forecasted information can be used to schedule repairs and 

maintenance for important fabrication facilities so as to prevent production performance 

degradation, malfunction or even catastrophic failures. 

Several techniques have been proposed in current literature for time-series 

prediction [15]. The classical forecasting techniques are mainly based on classical 

stochastic models which can be derived mathematically. However, it is hard to accurately 

derive an analytical model for complex systems [16, 17]. 

Within the last decade, a shift has been made from the classical approaches to the 

use of knowledge-based data-driven paradigms, such as various neural networks (NNs) 

[18- 20] and neuro-fuzzy (NF) paradigms [21 - 23]. Despite the data-driven paradigms 

being able to demonstrate their superiority in many applications, the paradigms are 

mainly used for one step-ahead prediction. 
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It is apparent that advanced research needs to be done before a more robust multi-step-

ahead predictor can be used. Accordingly, the objective of this chapter is to 1) compare 

step inputs to sequential inputs for multi-step ahead prediction and to 2) improve the 

performance of multi-step prediction by adopting a novel recurrent weighted NF 

paradigm. 

2.2 Feed-Forward Neural Networks 

In this section, a feed-forward NN is used to facilitate the idea that a step-input based 

multi-step predictor outperforms a sequential-step multi-step predictor. In the next 

subsection the feed-forward structure is introduced. In subsection 2.2.2 the steepest-

descent training algorithm is introduced. Simulation results are given in section 2.2.3. 

2.2.1 Feed-fonvard Structure 

The network architecture for the step-input based feed-forward neural network is given in 

Figure 2.1. The variable s represents the time step. For a sequential input structure, the 

input variables would take on { x0 x_1 ••• x_n} as opposed to { x0 x_s ... x-ns} for 

step-based inputs. The latter subscript represents the s time step whereas the former 

represents the numbered input. 
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Figure 2.1. Network architecture for the step-input based feed-forward NN. 

The nodes in layer 1 represent the tan-sigmoidal transfer function [24]. By tests, it is 

found that the tan-sigmoidal transfer function allows for better input/output mapping for 

non-linear data in this case. 

To get an idea of the number of parameters to be trained, consider n = 9. In this 

situation, ten nodes will be used in layer 1 and 1 node will be used in layer 2 with a total 

of 11 biases. The total number of parameters to be trained, then, is 121. 

2.2.2 The Steepest-Descent Algorithm 

There exist several training techniques for the aforementioned system parameters [3]. 

This section introduces one well known training technique called the Steepest-Descent 

(SD), or Gradient-Descent (GD), algorithm [3]. This method is one of the classical 

optimization techniques for minimizing a given function defined on a multidimensional 

input space [3]. 

The gradient of a differentiable function E, or objective function, as in this case, 

is the vector of first derivatives of E, denoted as g. Hence, 
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_ -[dE(B) dE(B) ... dE(B)] 
g - del ' d 82 ' den 

(2.1) 

where B; is an adjusTable (trainable) parameter for i = l, ... ,n parameters. The objective 

function E is a user defined function to be minimized and, in this case, is denoted as 

(2.2) 

where dkrepresents the desired value, x+s(Bk) represents the system output as a function 

of the adjustable parameters at time step k and Pis the total number of training data pairs. 

With the above, the steepest descent algorithm can be defined as: 

(2.3) 

where 77is the learning rate and is calculated with line search techniques [10]. 

The training technique discussed in this section, including all the corresponding 

equations, are applied to the feedforward NN, recurrent NN and the novel NF paradigm 

in the following sections and subsections of this chapter. 

2.2.3 Experimental Results 

Experiments are performed by a series of simulation tests based on data sets from the 

Mackey-Glass equation [6], 

dx(t) = 0.2x(t- r) _ O.lx(t). 
dx 1+x10 (t-r) 

(2.4) 

The Mackey-Glass equation has specific natures such as chaotic, non-periodic 

and non-convergence and has been used as a benchmark for evaluating the performance 

of predictors. Initial conditions used for the simulations are T = 30 , x(O) = 1.2, dt = 1 , 

and x(t) = 0 for t < 0. 
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For this experiment, the FFNN will have 10 inputs, 12 nodes in the hidden 

(second) layer and one output node. The total number of parameters to be updated is 155, 

that is, 120 input weights, 12 output weights, and 23 biases. 

The FFNN is tested with 10 inputs incorporating time steps s = [3, 6, 9 and 12]. 

For each time step, the system is trained over 100 epochs t and 800 data points from the 

equation (2.4). Each test is repeated over 10 times to minimize random effects related to 

initial values of weights. After the training period, 400 data pairs are used for verification 

to prevent over training. 

Figure 2.2 depicts the results for the sequential based FFNN with 10 inputs and a 

12 step-ahead prediction capability. Figure 2.3 illustrates the results for the step-input 

based FFNN with 10 inputs and a 12 step-ahead prediction capability. Table 2.1 

summarizes the mean-square errors (MSE) and convergence errors from training. 
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Figure 2.2. 12 step prediction via FFNN by means of sequential input steps. 

tAn epoch refers to the entire range of given data sets. 
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Figure 2.3. 12 step prediction via FFNN by means of equal input steps. 

Table 2.1. Results for the sequential and step based FFNNs. 

Sequential Equal step 

Epoch 3 6 9 12 3 6 9 12 

0 4.26E+00 5.79E-Ol 3.99E+00 1.23E+00 6.52E+00 3.37E-Ol 2.33E+00 2.69E+OO 

10 6.70E-04 3.07E-03 1.79E-03 1.27E-03 1.75E-05 2.73E-05 1.55E-03 2.04E-03 

20 6.13E-04 2.40E-03 1.53E-03 9.89E-04 6.58E-06 7.46E-06 2.21E-05 4.20E-04 

30 5.44E-04 2.16E-03 1.49E-03 8.56E-04 3.56E-06 5.90E-06 1.66E-05 2.70E-04 

40 5.18E-04 2.08E-03 1.45E-03 7.90E-04 2.66E-06 4.90E-06 1.36E-05 2.15E-04 

50 4.90E-04 1.91E-03 1.42E-03 ?.OOE-04 2.16E-06 4.38E-06 1.23E-05 1.56E-04 

60 4.59E-04 1.85E-03 1.40E-03 ?.OOE-04 1.84E-06 3.92E-06 1.21E-05 1.23E-04 

70 4.37E-04 1.68E-03 1.35E-03 ?.OOE-04 1.44E-06 3.49E-06 1.19E-05 5.88E-05 

80 4.26E-04 1.62E-03 1.31E-03 ?.OOE-04 1.02E-06 3.08E-06 l.l?E-05 4.86E-05 

90 4.19E-04 1.56E-03 1.28E-03 ?.OOE-04 8.68E-07 2.70E-06 l.ISE-05 4.43E-05 
100 4.10E-04 l.SOE-03 1.26E-03 6.90E-04 8.13E-07 2.55E-06 1.12E-05 3.82E-05 

MSE 9.30E-05 3.62E-04 2.55E-04 1.77E-04 7.44E-07 9.48E-06 8.44E-06 1.46E-04 

Table 2.1 shows that the equal step predictor outperforms the sequential step 

predictor in training and verification. 
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For both structures the training errors converge, although, for the equal step predictor, the 

errors converge to a smaller number incorporating the same number of epochs as the 

sequential step predictor. Also, Table 2.1 verifies the fact that it becomes increasing 

difficult to train predictor systems requiring higher prediction steps. 

In the following section, the recurrent NN is introduced and compared to the 

feed-forward NN. 

2.3 Recurrent Neural Network 

In this section, a recurrent NN is used to enhance the idea that a step-input based 

predictor outperforms a sequential-step multi-step predictor. Also in this section, the 

recurrent NN is compared to the feed-forward NN. 

In the following subsection, the recurrent structure is introduced. Experimental 

results are given in Section 2.3.2. 

2.3.1 The Recurrent Structure 

The network architecture for the step-input based recurrent NN is given in Figure 2.4. 

The architecture resembles the FFNN with the exception of the recurrent links. The 

recurrent links provide a better mapping of the input/output data because historical 

information is utilized in the system. 

As in the case of the FFNN, the variable s represents the time step. For a 

sequential input structure, the input variables would take on { x0 x_1 ... x_n} as 

opposed to { x0 x_s .. . x-ns} for step-based inputs. 
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xo 

Figure 2.4. The RNN. 

The nodes in layer 2 represent a special case of the tan-sigmoidal transfer 

function [24]. The input to the tan-sigmoidal transfer function is a combination of the 

input variable x and a single step delay of the output of the corresponding tan-sigmoidal 

function. This configuration will prove to be a more accurate model for multi-step-ahead 

prediction. 

2.3.2 Simulation Results 

The performance of a knowledge-based data-driven forecasting scheme is directly related 

to its reasoning structure and the number of network parameters (25]. To facilitate the 

comparison study among the FFNN, the number of network parameters will be kept 

comparable. 
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Consider (n+ 1) input state variables { x0 x_s · · · x-ns} , which represent the current 

(x0 ) and the previous states of a dynamic system with a time step s. If ten inputs are 

employed in the input layer, that is, n = 9, ten nodes will be used in the recurrent context 

layer. The s-step-ahead state, x+s , will be given from the output node. In total, there are 

151 parameters to be updated in this predictor: 100 input weights ( w& ), 10 output 

weights ( wt ), 10 recurrent weights ( wt· ), and 31 biases; a similar number of parameters 

to the aforementioned FFNN. 

Figure 2.5 depicts the results for the sequential based RNN with 1 0 inputs and a 

12 step-ahead prediction capability. The error in Figure 2.5 converges after 

approximately 25 samples. This is due to the fact that a unit step delay is used for 

predicting s = 12 time steps. Figure 2.6 illustrates the results for the step-input based 

RNN with 10 inputs and a 12 step-ahead prediction capability. Table 2.2 summarizes the 

verification errors (in MSE) and convergence errors from training. 
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Figure 2.5. 12 step prediction via RNN by means of sequential input steps . 

. --\ (/\ ~1\ / --Predicted Output 
z 0.5 --Actual Output z \! \ ( v -0 0 "5 
c.. -s \ 0 -0.5 

'c \) 

... 
-1 0 50 100 150 200 250 300 

Predicted Steps 

(/) 0.15 
c.. 
Q) 

(ij 0.1 -c 
Q) 

ti 
'iS 0.05 
!!;! 

~~ 
a. 
0 0 ._ 
0 
1::: 
w -0.05 

0 50 100 150 200 250 300 
Predicted Steps 

Figure 2.6. 12 step prediction via RNN by means of equal input steps. 
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Table 2.2. Results for the sequential and equal-step RNN. 

Sequential Equal step 

Epoch 3 6 9 12 3 6 9 12 

0 1.36E+Ol 2.25E+OO 5.07E+OO l.IIE+OO 7.41E-Ol 3.49E+OO 5.38E-Ol 3.24E-01 

10 2.82E-03 3.80E-03 4.83E-03 1.27E-03 1.65E-06 7.67E-04 4.51E-04 6.30E-04 

20 4.90E-04 2.14E-03 1.64E-03 S.OIE-04 1.39E-06 2.20E-05 3.73E-05 2.12E-04 

30 2.46E-04 1.70E-03 1.40E-03 3.47E-04 1.23E-06 1.21E-05 2.73E-05 I.OOE-04 

40 1.61E-04 1.70E-03 1.35E-03 2.91E-04 l.ISE-06 7.02E-06 2.11E-05 7.20E-05 

50 1.43E-04 1.66E-03 1.27E-03 2.55E-04 9.17E-07 5.09E-06 1.48E-05 6.21E-05 

60 1.34E-04 I.SOE-03 1.24E-03 2.22E-04 8.77E-07 4.34E-06 1.20E-05 5.54E-05 

70 1.27E-04 1.29E-03 I.IOE-03 1.93E-04 8.32E-07 3.87E-06 I.OOE-05 4.98E-05 

80 I.OOE-04 l.ISE-03 I.IOE-03 1.61E-04 7.84E-07 3.53E-06 8.36E-06 4.49E-05 

90 I.OOE-04 9.10E-04 l.IOE-03 1.33E-04 7.34E-07 3.29E-06 6.41E-06 4.04E-05 

100 I.OOE-04 7.90E-04 I.IOE-03 l.ISE-04 6.85E-07 3.11E-06 6.22E-06 3.65E-05 

MSE 5.40E-04 1.33E-04 1.02E-04 9.90E-05 3.58E-07 5.89E-06 3.99E-06 8.88E-05 

Simulation results of the RNN are analogous to that of the FFNN. Table 2.2 

shows that the equal step predictor outperforms the sequential step predictor in training 

and verification. For both sets of inputs, the training errors converge, although, for the 

equal step predictor, the errors converge to a smaller number incorporating the same 

number of epochs as the sequential step predictor. Also, as in the case of the FFNN, 

Table 2.2 verifies the fact that it becomes increasing difficult to train structures of higher 

step-inputs. 

When comparing the mean squared errors for the RNN and the FFNN, it can be 

seen that the errors are significantly lower for the RNN for all time steps. This is proof 

that the step-input based recurrent predictor outperforms all other predictors mentioned 

so far in this chapter. Results of the above simulation have been published in the Journal 

of Computer Science [25]. 
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Following the results obtained in the previous sections, the next section will compare a 

NF inference system to a novel recurrent NF inference system. The novel design, which 

will incorporate step-inputs and recurrent links, will prove to be a more reliable and 

robust multi-step predictor. 

2.4 The Step-input-based recurrent weighted NF Predictor 

In this section, a novel weighted recurrent NF predictor is developed and 

compared to the other predictors introduced in this chapter. The idea of the proposed 

novel design is to create a more reliable and robust predictor for industrial applications. 

In the next subsection, the novel design is introduced followed by an introduction to a 

hybrid training technique. This section concludes with a simulation and comparison in 

subsection 2.4.3. 

2.4.1 The Recurrent Structure 

An NF reasoning scheme applies a set of fuzzy IF-THEN rules to describe the 

input/output data mapping and forecast the future states of a dynamic system. The fuzzy 

system parameters are optimized by a hybrid training algorithm. According to some 

advanced investigation [22], it is found that the first order TS fuzzy paradigm is more 

flexible in modeling higher order nonlinear systems, and will be adopted in this thesis. 

To simplify forecasting reasoning, two membership functions (MFs), small and large, 

are assigned to each input state variable. The s-step-ahead state of the dynamic system 

x+s can be formulated by: 
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(2.5) 

where g{ 1 denotes the /h fuzzy rule, j = 1, 2, ... , M, M is the total number of fuzzy 

rules; x = { x0 x_1 ... x_n} for sequential inputs; Af is the /h fuzzy set for x-is, i = 0, 

1, ... , n, k = 1, 2, ... , m, where m = 2n in this case. 

To make the network comparable with the previously mentioned NN predictors, 

four input state variables are applied in this case, that is, i= 0, 1, ... , 3, M = 16, and 

m = 2n = 8, and the number of parameters to be updated is 104. 

The network architecture of this weighted recurrent NF predictor is architecturally 

shown in Figure 2.7 It is a S-layer network in which each node performs a particular 

activation function on the incoming signals. The links have unity weights unless 

specified. Layer 1 is the input layer. Each node in layer 2 acts as a MF. Different from 

the general NF schemes [26] and the predictor as proposed in [22], this recurrent NF 

system has a weighted feedback link to each node in layer 2. The recurrent context units 

copy the activations of output nodes from the previous time steps, and allow the network 

to remember information from the past. 

Given an MF, the actual input ofthe node at the lh time instant is 

x<l) = x<l) + w. A1 (x<r-l)) 
-IS -IS 1k k -IS (2.6) 

where x~/s and X~;~ I) are, respectively, the input x-is at the lh and (t-1 )th time instants; 
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A£ ( x~i;l)) is the node output (membership grade) in the last time step, and wik is the 

weight ofthe feedback link; i = 0, 1, ... , n; k == 1, 2, ... , m; and t = 0, 1, ... , P-1, where 

P is the total number of time instants (or training data sets) of interest. 
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Figure 2.7. Network architecture of the weighted recurrent NF predictor. 

Each node in layer 3 performs a fuzzy T-norm [3] operation. If a max-product 

operator is applied [3], as in this case, the rule firing strength is 

n 

TI . ( (1)) JL1 = A£ X-is , j=1,2, ... ,M; i=0,1, ... ,n. 
i=O 

(2.7) 
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The rule firing strengths are normalized in layer 4. After a linear combination of the 

input variables in layer 5, the predicted outputx+s, after s-steps, is computed by using 

centroid defuzzification [3] 

M 

x+s = LJi/c6x0 + c( x_s + · · · + c~x-ns + c~+1 ) , 
j=l 

(2.8) 

is the normalized firing strength of the /h rule. The fuzzy system 

parameters W;k and c{ and Aj are optimized by the related training algorithms as 

discussed in the next subsection. 

2.4.2 The Hybrid Training Technique 

Once the NF predictor structure is created, a forecasting paradigm should be properly 

trained to optimize the input/output mapping [27-29]. Since the suggested recurrent NF 

scheme in (2.5) contains both linear consequent weights and nonlinear premise 

parameters, to improve the training convergence, a hybrid training technique is suggested 

in this subsection: the nonlinear fuzzy parameters in the recurrent context layer are 

optimized by using the classical gradient-descent algorithm [3], whereas the consequent 

linear parameters are fine-tuned by employing a weighted least squares estimate (LSE). 

A hybrid training technique is superior to classical single training algorithms, because it 

possesses randomness that may help to escape from local minima and it is also necessary 

to accommodate different characteristics in time-varying systems. 

Consider the lh input data pair {xg) x~] · · · x~1~s}, t = 0, 1, ... , P-1, P is the total 

number of training data pairs. The forecast state after s steps, x~], is computed by (2.8). 
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If eft) denotes the desired output state, which represents the actually observed output 

value for the (t+ 1 )th data set, that is, d(l) = xal+l) ' the forecasting error is defined as 

P-l 1 P-1 
E = "E =-" ..1(x<t)- d(1

))
2 

2 ~ 21 2 ~ +S 
1=0 1=0 

(2.9) 

where A E [0.95 1] is a weight factor to highlight the contribution of the recent data sets 

from a time-variant system. 

Given the values of the MF parameters and P training data pairs to the adaptive 

d. { (I) (I) (I) d(l)} k- 0 1 2 p 1 p 1" . • f h pre 1ctor, x 0 x_s • • • x-ns , - , , , •.. , - , mear equatiOns m terms o t e 

consequent parameters 9 can be formed as [25]: 

R9=d, (2.10) 

where R is the resulting matrix from the inference operation of the NF predictor 

Ji(l) x<I) Ji(l)x(l) Ji(I)x(l) -(1) 
I 0 I -s M -ns JiM 

j1(2) x<2) j1(2)x(2) j1(2) x<2) -(2) 

R= I 0 I -s M -ns JiM (2.11) 

ji(P)X(P) ji(P)X(P) ji(P)X(P) -(P) 
I 0 I -s M -ns JiM 

9 is the consequent parameter set whose elements are to be updated 

(2.12) 

and d represents the vector of the desired system states 

d = [ d(l) d(2) • • • d(P) r . (2.13) 
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Because the row vectors in R and the associated elements in d are obtained 

sequentially, 9 in (2.10) can be computed recursively. For the objective function with 

respect to the adjusTable parameters 91 at the current time instant t, 

(2.14) 

where x+s(91)is determined by (2.8); R1 in (2.11) is the resulting matrix from the 

corresponding fuzzy inference operation at time t. The LSE is computed by 

(2.15) 

(2.16) 

where t = 0, 1, ... , P-1. A E [0.95 1] is the weight factor. The optimal estimate of 9 

is 9 P, whereas 90 = 0. The initial conditions for the covariance matrix S1 is S0 = al, 

a E [1 02 1 06], and I is an identity matrix. 

2.4.3 Simulation Results 

Four different configurations are used to compare the performance of the novel 

paradigm. The first structure simulated is the structure mentioned in (2.5) with the 

recurrent weights equaling zero incorporating sequential inputs. The second structure is 

similar to the first with the exception of equal-step inputs as opposed to sequential step 

inputs. Structures 3 and 4 are similar to 1 and 2, respectively, with the exception of the 

recurrent links. 

The suggested hybrid adaptive training method adopts two algorithms: the GD and 

the LSE. 
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In each training epoch, the fuzzy system parameters in the recurrent context are 

adaptively optimized by applying GD in the back pass, whereas the linear consequent 

parameters are updated by using the weighted LSE in the forward pass. 

The GD algorithm trains the recurrent network while the network continues to 

perform its signal processing function, rather than at the end of the presented sequences. 

In initialization, the synaptic weights of the algorithm are set to small values (0.025 in 

this case) from a uniform distribution, while both the state vector and its partial 

derivative (with respect to the weight vector) are set to zero. 

The comparison is performed by a series of simulation tests based on data sets 

from the Mackey-Glass equation [6]. The paradigms are tested with 4 inputs, 

incorporating time steps s = [3, 6, 9 and 12]. For each time step, the systems are trained 

over 100 epochs and 800 data points from the Mackey-Glass equation. Each test is 

repeated over 10 times to minimize random effects related to initial values of weights. 

After the training period, 400 data pairs are used for prediction verification. Table 2.3 

presents the results. 

Table 2.3. Mean square errors for the recurrent and neuro-fuzzy predictors. 

MSE- St~£_s I 
Inputs 3 6 9 12 

NF sequential 2.45E-05 3.33E-04 1.91E-04 1.55E-04 
NF equal 5.31 E-07 2.22E-06 8.02E-06 7.13E-05 

RNF sequential 4.11E-05 9.20E-05 9.88E-05 1.06E-04 
RNF equal 1.85E-08 3.89E-07 3.50E-07 7.72E-06 
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In Figure 2.8 the original MFs and trained MFs are given for the recurrent NF 

paradigm. Figure 2.9 illustrates the results for 12 step-ahead prediction on the RNF 

paradigm. As can be seen, both illustratively and numerically, the weighted recurrent NF 

paradigm incorporating equal-step inputs outperforms all other suggested structures in 

this chapter. Applications of this novel paradigm can be found in [25]. 
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Figure 2.9. 12 step prediction via RNF by means of equal input steps. 

2.5 Summary of the Results 

Within this chapter, knowledge-based data-driven multi-step-ahead forecasting schemes 

are evaluated in terms of performance and efficiency. Of the feedforward NNs, recurrent 

NNs, and recurrent NF systems, analysis results have shown that predictors based on step 

inputs perform better than those based on sequential inputs, as long as the same number 

inputs are employed. Moreover, the recurrent NF predictor performs better than those 

based on feedforward and recurrent NNs, in multi-step-ahead forecasting operations. A 

summary of the results can be found in Figures 2.10 and 2.11. 
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A hybrid training algorithm was adopted to improve the robustness and reliability 

of the recurrent NF predictor, by which the fuzzy parameters in the recurrent context 

layer are trained by using the GD algorithm, whereas the fuzzy consequent parameters 

are updated by applying a weighted LSE. The paradigm integrates the benefits of both 

GD and weighted LSE and posses the randomness that is helpful to escape from local 

minima. 

Although the recurrent NF paradigm outperformed all the aforementioned 

structures, there exists one drawback; training time. Average training times for the feed-

forward NN, recurrent NN, NF and recurrent NF paradigms are 12s, 22s, 12s and 17 s, 

respectively. Although the times are relatively insignificant due to the speeds of current 

processors, it is worth noting, however, care must be taken if applying the novel design 

to on-line applications. 

Despite the positive results in this chapter, problems exist when it comes to 

creating a NF structure. The current training is mainly for NF parameters, whereas its 

reasoning structure remains unchanged in training. Sometimes it is hard to determine, 

initially, an ideal fuzzy reasoning structure, for example, how many rules to create. Some 

priori knowledge is required in order to develop a more efficient and accurate predictor 

(or classifier). 

In the next chapter, evolving NF paradigms are explored. Evolving paradigms are 

capable of generating their own rule-base resulting in a more accurate and robust 

structure. 
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Chapter 3 
A NEW EVOLVING SCHEME WITH MAPPING CONSISTENCY AND 

CLUSTER COMP AT ABILITY 

In Section 3.1, the literature survey in Chapter 1 is extended to introduce a brief 

introduction to some of the evolving NF structures in literature. In Section 3.2, a novel 

evolving clustering technique is introduced. The novel technique is compared to the 

potential-based eTS, or eTst, method developed by Angelov et a/. [8]. The two 

techniques are evaluated in real-time. In Section 3.3, a hybrid training technique is 

proposed and the two aforementioned structures are trained off-line. The structures are 

first established, and then the parameters are trained by the mentioned hybrid-technique. 

3.1 Introduction to Evolving Structures 

Evolving fuzzy systems originated from a self-organizing fuzzy inference system 

(SOFIS) suggested by Tanaka eta/. [30]. They created a self-organizing algorithm based 

on the Takagi-Sugeno-Kang fuzzy model. The authors simplify a procedure for finding 

the optimal structure of fuzzy partition. The SOFIS consisted of four stages which 

effectively realized structure identification and parameter identification. 

t Potential-based eTS or eTS will be used interchangeably through this thesis. 
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The first three stages incorporate a simplified unbiased criterion that measures the 

sensitivity of parameters to the training set. In the last stage, the delta rules are used for 

adaptively modifying the related parameters of the system. 

Juang eta!. in paper [31], expanded on the idea of SOFIS by developing a NF 

system that exhibits some self-adaptive properties. They developed a self-constructing 

NF inference network (SONFIN) that is capable of on-line learning. The SONFIN is a 

modified Takagi-Sugeno-Kang type fuzzy rule-based model possessing NNs learning 

ability. The NNs learning ability allowed the authors to use RLSE for the consequent 

parameters and backpropagation for the premise parameters. In this way, they were able 

to adopt a paradigm for real-time applications. In this structure, the rule-base would grow 

in accordance to the partitioning of the input space, however, not at the rate of 

exponential growth. 

Up to now, several clustering methods exist [32, 33, 34] and have been explored 

for partitioning the input and output spaces. An exhaustive review of NF rule generation 

can be found in [35]. 

3.2 The Evolving Fuzzy System (EFS) Structure 

3.2.1 The EFS Clustering Procedure 

The majority of clustering algorithms available today cluster the input/output data 

separately [32, 33, 34]. Clustering the data separately generates specific problems. The 

generated clusters, for example, may not be consistent if some training data are noise 

affected or outliers. 
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In this subsection, a novel clustering technique is proposed. In this scheme, both input 

and output patterns are clustered simultaneously, with the added constraint of mapping 

consistency and cluster compatibility. In this way, the noise affected data (or outliers) can 

be excluded resulting in more meaningful clusters (rules). 

Update distance matrices 

Determine input/output space winner clusters 

no 

Create a 
new cluster 

Is the mapping consistent and are 
the clusters compatible? 

Rule-base modification 

RLSE for the consequent parameters 

yes 

Update the 
winner 
cluster 

Export desired data 

Figure 3.1. Flowchart for the EFS clustering algorithm. 
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The evolving clustering technique is data-driven, non-iterative, and a one-pass algorithm, 

based on the subtractive and mountain clustering techniques [3]. This technique extracts 

fuzzy rules gradually from the incoming data sets and the rule-base is updated based on 

specific criterion. A flowchart for the process is illustrated in Figure 3 .1. The algorithm is 

as follows. 

Step 1: Initialization. 

Initially, the scheme starts with an empty rule-base. The first input is used to create the 

first rule. The data defines the cluster center and the initial widths of the cluster. That is: 

where m~, mf, u~ and uf are the cluster centers and spreads in the input and output 

spaces, respectively, k E (1, K]; The number of the clusters: K ~ 1; The volume (i.e., the 

number of samples) in this cluster: Nk ~ 1. 

Step 2: Distance matrix determination. 

D 1 and D 0 , D 1 E RKxK and D 0 E RKxK, are distance matrices in input and output spaces, 

respectively. The distance matrices represent the distance measurement between the 

centers of the corresponding clusters and are defined as 

Step 3: Winner cluster determination. 

Within this step, the winning clusters, that is the closest clusters for an incoming data set, 

[x1 , y 1 ], t = 1, 2, · ··, P, x E W, y E RM, are calculated. The winner clusters are calculated 

as follows 
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K 

for the input space: WI = argrr!rllm~- x,ll; (3.2) 

K 

for the output space: Wo = arg rr!rllm7 - Yt II· (3.3) 

Step 4: Structure recognition. 

The algorithm has two constraints in checking whether the sample belongs to an 

existing cluster; (1) mapping consistence and (2) cluster compatibility. If WI = W0 , then 

mapping consistence holds. The cluster compatibility is measured by checking if the new 

incoming data set is highly descriptive by an existing cluster, or with a description grade 

larger than Jlmin ( 113 in this case). The description grade includes the area of the cluster 

from the maximum value to 113 ofthe maximum. If both conditions hold, merge the new 

data set to the existing cluster: 

K f- K ; The volume of the winner cluster: N w f- N w + 1 . 

The winner cluster parameters are modified to accurately reflect the change, whereas the 

other cluster information remains unchanged. 

Fortheinputspace: 

(3.4) 

(3.5) 

For the output space: 

(3.6) 

0 
o o Yt - mw,t-I 

mw,t f-mw H + (3.7) 
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After the computation of equations (3 .4) to (3. 7), update the distance matrices D 1 

and D0 . 

Step 5: If the criteria in step 4 does not hold, create a new cluster. 

If the constraint criteria, mapping consistence and cluster compatibility, do not hold 

simultaneously, create a new cluster. That is 

Upon creating a new cluster, update the distance matrices D1 and D0 . 

These two constraint criteria are applied to prevent contradictory rules. For 

example, two closest clusters may not be merged to one cluster if they belong to different 

classes (out of consistence). 

Step 6: Rule-base modification. 

It is common for some clusters to form, which may be compatible with existing 

clusters. Two clusters, a and f3 are compatible, if both DI,afl and Do,ap are minimum 

(a '* /3), in addition, to the clusters having a descriptive grade larger than Pmin • If this is 

the case, merge them to a new cluster, that is 

a~a+fJ, K~K-1. 

(3.8) 

(3.9) 
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(3.1 0) 

(3.11) 

(3.12) 

Upon computation, update the distance matrices D1 and D0 . 

Step 7: Training of the consequent parameters. 

The consequent parameters are trained via the RLSE as discussed in subsection 

2.4.2. 

Step 8: Output prediction. 

The output for the next time step is predicted by 

(3.13) 

The algorithm continues from Step 2 by reading the next data sample at the next time 

step. 

3.2.2 Experimental Results 

The new algorithm is compared to the potential-based eTS [8] algorithm which 

outperforms the Dynamic Evolving Neuro-Fuzzy Inference System (DENFIS) [36], a 

Resource Allocation Network (RAL) [37], an Evolving Self-Organizing Mapping system 

(ESOM) [38] and an Evolving Fuzzy Neural Network (EFuNN) [39]. Performance is 

based on the number of rules generated, the mean-square error (MSE) of the verification 

data and the time it takes to iterate the input data. The two algorithms, the new approach 

and the eTS, are compared based on data sets from the Mackey-Glass [6] time series. 
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The inputs are sequential and the prediction is 10 steps-ahead. Sixteen hundred 

data sets are used for training and 1000 are used for verification. 

Figures 3.2 and 3.3 illustrate the rules (clusters) in 2 dimensions with respect to 

the first two and last two outputs, respectively. The algorithm generated ten rules based 

on the number of data samples used for this experiment. The evolving rule-base is shown 

in Figure 3.4. Figure 3.5 depicts the MFs for all the input variables with respect to the 

number of rules. 

Once the structure is established, 1000 data sets are entered into the system for 

verification. At this point, no parameters are trained. The result of the simulation is 

demonstrated in Figure 3.6. 
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Figure 3.2. 2-D illustration (x1 vs. x2) of the rule-base for the eTS structure. 
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Figure 3.3. 2-D illustration (x3 vs. x4) of the rule-base for the eTS structure. 
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Figure 3.4. Evolving rule-base for the eTS structure. 
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Figure 3.6. The target and predicted outputs of the eTS scheme. 
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The new EFS is simulated with the same number of data sets for online training 

and verification. Figures 3.7 and 3.8 illustrate the rules (clusters) in 2 dimensions with 

respect to the first two and last two outputs, respectively. 

The clusters in the EFS are much different in size and location than the clusters 

produced by the eTS scheme. The difference in location and size are due to the recursive 

update equations (3.4) to (3.7). 

The numbers of rules generated are significantly less than that of the eTS scheme. 

This is due to the fact that the mapping consistency criterion and the cluster compatibility 

criterion eliminate the outlying clusters. 
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Figure 3.7. 2-D illustration (x1 vs. x2) of the rule-base for the EFS structure. 
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Figure 3.11. The target and predicted outputs of the EFS scheme. 
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The MFs for the EFS structure are better defined; they represent the input/output 

mapping with more accuracy. This is due to the fact that the MFs are iteratively adjusted 

for the new data sets and any required modification of the rules. 

Figure 3.11 depicts the results for the EFS scheme. Although the EFS scheme 

generated less error than the eTS scheme, with of MSE 0.00299 compared to 0.00349, 

the iteration times for the complete data sets leans towards favoring the eTS structure 

(1.771 s to 1.800 s). However, it is worth noting, the difference in the iteration time is 

considered insignificant for most real-time applications [8]. 

3.3 Off-line Structure Identification 

In this section, the EFS developed in section 3.1 is trained through a Recursive 

Levenberg-Marquardt (RLM)-RLSE hybrid training technique after the structure is 

identified on-line. Once the structure of the EFS is recognized, its premise and 

consequent parameters are trained via the RLM and RLSE training techniques, 

respectively. Training in this way will allow for optimization of the premise and 

consequent parameters. Once the parameters are optimized, the EFS structure will be 

simulated through the use of verification data for a performance evaluation. 

The performance of the new EFS structure and training technique will be 

compared to the eTS structure incorporating the GD-RLSE and RLM-RLSE training 

techniques. 

3.3.1 Introduction of the RLM-RLSE hybrid technique 

For the sake of clarity, the following derivation of the RLM-RLSE will be based 

on a multi-input and single-output (MISO) system. 
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After the structure has been determined by the algorithm described in section 3.1, the 

ESF paradigm then performs the parameter identification to further tune the premise and 

consequent parameters of the existing structure. 

The error function of a NF system represents the error of the predicted (classified) 

output amongst the desired value. The function incorporates the system's equations and, 

in this case, the error function with respect to adjustable parameters 81 at the current 

time state, t, is 

(3.14) 

where y 1 ( 81 ) is the lh output, t = 1, 2, · · ·, P ; d1 is the desired output; and r1 is the error 

vector. If r1 is linear, (3.14) becomes a linear optimization problem whose global 

minimum can be found by a least-squares method. If the vector r1 is nonlinear in nature, 

as in this case, it is a non-linear least-squares optimization problem that usually arises in 

the phase of parameter learning due to the non-linear nature ofthe MFs [10]. 

By observing the EFS structure, the premise weights are non-linear in nature 

whereas the consequent weights are linear in nature. Ergo, the premise weights will be 

trained via the RLM algorithm in the backward pass and the consequent parameters will 

be trained via RLSE in the forward pass. 

Taking the Taylor series, then, of (3.14) about the current parameter [10], and 

neglecting the higher order terms, (3 .14) becomes 
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where A1 = 1-a, is the learning rate, the Jacobian matrix J, E RNxz, J, = 82
r(B,) and z 
ae, 

is dimension (or the number of adjustable parameters) of 81 • H, E Rzxz is the modified 

Hessian matrixH, = a,HH- (1- a, )(J,r J, + 77,/); IE Rzxz is an identity matrix and 77, 

is the forgetting factor. 

When the scalar 771 is zero, (3.15) becomes Gauss-Newton's method; when 771 1s 

large, (3.15) becomes a gradient algorithm with a small step size [3]. 

The forgetting factor 771 can be optimized by line search or a trust region 

algorithm [ 40]. Both methods try to determine a region, in which the nonlinear problem 

is adequately represented by a quadratic model, so that convergence of the algorithm to a 

local minimum can be guaranteed. 

One major problem does exist with the direct implementation of (3.15). The 

computational inverse of the Hessian matrix makes it impractical for online applications. 

To solve this problem, the matrix inversion lemma [41] will be applied to avoid the 

computation of the inverse Hessian matrix. The lemma states that 

(3.16) 

where A, B, C and D are matrices such that A and (C-1 + DA-1B) are nonsingular 

matrices. 

Based on (3 .15), (3 .16) can be rewritten as 

-1 T 81+1 = 8, + (1- a, )H, J, r, = 8, + (1- a,) x (3.17) 
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However, a modification of the term J{ J1 + 771l in (3.15) has to be made so that 

the lemma can be used. One possible solution to this problem, as suggested in [41], is to 

add one diagonal element at a time of the 771l matrix; as opposed to adding 7711 at each 

time step. Thus, the Hessian matrix can be expressed as 

(3.18) 

where A e Rzxz has only one nonzero element located at t {mod(Z) + 1} diagonal 

position, or 

A. ={1 
ll 0 

if i = t {mod(Z) + 1} 
otherwise 

Alternatively, (3.18) can be rewritten as 

(3.19) 

(3.20) 

where U is a Z x 2 matrix with the first column corresponding to J 1 and the second 

column consisting of a Z x 1 vector with one element to 1 at the position of 

{t mod(Z) + 1} 

Hence, 

ur (0) = [ J[ ] and 
I o ... o1o ... o (3.21) 

v-1 _ [1 o J 
- 0 Z77t . (3.22) 

Assume A = a 1H 1_1 , B = (1- a 1 )U, C = v-1
, and D = UT. Then based on 

(3.17), the RLM algorithm can be represented by 
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(3.23) 

(3.24) 

The term atV + UT tPt_1U is a matrix with dimension2 x 2; its inverse 

computation is simple, and can be implemented for real-time applications. at E [0.95, 1] 

is the forgetting factor, at = 0.995 in this case. 80 = 0; tPt is a covariance matrix with 

initial condition tP 0 = pi , where p E [1 0 2 , 10 5 ] is a positive quantity. 

The above derived RLM algorithm will be used in the backward pass to train the 

nonlinear system parameters. In the forward pass, the consequent parameters will be 

trained using the RLSE [3]. 

3.3.2 Experimental Results 

The performance of the new EFS structure and RLM-RLSE hybrid technique is 

evaluated based one of the better known benchmark data sets in research of 

classification; the iris data. 

The Fisher-Anderson iris data consists of four input features, sepal length (sl), 

sepal width (sw), petal length (pl) and petal width (pw), on 150 specimens of an iris 

plant. Within this experiment, three species are involved, Iris Sestosa, Iris Versiolor and 

Iris Virginica where each specimen contains 50 instances. 

To evaluate the performance of the new EFS structure, 75 instances have 

randomly been taken for structure identification (establishing the rule base), 75 instances 

have been randomly taken for parameter optimization (consequent and premise 

parameters) and the remaining 75 samples have been used for verification. 
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The data set was normalized to the range [0, 1]. To perform the classification, the output 

y of the EFS structure used the following classification rule: 

{ 

Sestosa, if y < 0.33 
Iris= Versiolor, if 0.33 ::s; y < 0.67 

Virginica, if 0.67 ::s; y. 

(3.25) 

The new EFS structure and hybrid learning technique is compared to the 

potential-based eTS [8] algorithm. Through the literature, the eTS algorithm was proven 

to outperform the majority of classifiers and predictors [36, 37, 38 and 39]. Performance 

is based on the number of rules generated, the amount of training and testing errors and 

the ability of the system to properly classify data. 

Figures 3.12 and 3.13 illustrate the results of the potential-based eTS clustering 

algorithm. Although the rules are represented in a multi-dimensional input space, for 

simplicity, the rules (clusters) are represented in 2-dimensions. The number of rules 

generated during the first random 75 instances of iris data is four. How the rules evolved 

based on the input data can be depicted in Figure 3.14. 

The eTS structure did an excellent job in describing the rule-base. This can be 

seen in the lack of deviation of the number of rules after 28 instances. The initial (before 

parameter optimization) MFs corresponding to the individual inputs are depicted in 

Figure 3.15. Next, the aforementioned structure will be subjected to GD-RLSE and 

RLM-RLSE parameter optimization. 
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Figure 3.12. Sepal Length vs. Sepal Width for the eTS Scheme. 
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Figure 3.16 shows the recognized structure, through GD-RLSE, and the 

corresponding MFs of each feature after the parameter learning phase and 75 random 

instances of iris data. One hundred epochs were used for parameter training. Within the 

training process, some of the MFs amalgamated. This is because some of the term sets 

were highly similar. The fuzzy rules of the iris classification can be extracted from the 

learned eTS structure from Figure 3.15 as follows. 

1) IF pw is medium AND pl is small AND sw is medium AND sl is medium, THEN 

Iris is Versicolor. 

2) IF pw is large AND pi is small AND sw is large AND sl is large, THEN Iris is 

Virginica. 

3) IF pw is small AND pl is medium AND sw is small AND sl is small, THEN Iris 

is Sestosa. 

Figure 3.17 illustrates the final output of the eTS structure incorporating the GD-

RLSE hybrid training algorithm. The amount of testing errors accumulated to 16. The 

recognition rate, based on 75 instances for verification, is 78.67%. 

Figure 3.18 shows the identified structure, through RLM-RLSE, and the 

corresponding MFs of each feature after the parameter learning phase and 75 random 

instances of iris data. One hundred epochs were used for parameter training. Within the 

training process, as in the case of GD-RLSE, some of the MFs amalgamated. 
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Figure 3.16. Final MFs for the eTS Scheme via GD-RSLE. 
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Figure 3.17. Final output for the eTS via GD-RSLE. 
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Figure 3.18. Final MFs for the eTS Scheme via RLM-RSLE. 
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Figure 3.19. Final output for the eTS via RLM-RSLE. 
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The fuzzy rules of the iris classification can be extracted from the learned eTS structure 

from Figure 3.18 as follows. 

1) IF pw is large AND pl is medium AND sw is medium AND sl is medium, THEN 

Iris is Versiolor. 

2) IF pw is medium AND pl is large AND sw is large AND sl is large, THEN Iris is 

Virginica. 

3) IF pw is small AND pl is small AND sw is medium AND sl is small, THEN Iris 

is Sestosa. 

Figure 3.19 illustrates the final output of the eTS structure incorporating the 

RLM-RLSE hybrid training technique. The amount of testing errors accumulated to 7. 

The recognition rate, based on 75 instances for verification, is 90.67%. 

Figures 3.20 and 3.21 illustrate the results of the EFS clustering algorithm. Again, 

the rules are represented in a 2-dimensional input space, to simplify demonstration. The 

number of rules generated during the first random 75 instances of iris data is three; one 

less than the eTS scheme. The rule evolution based on the input data can be depicted in 

Figure 3.22. The EFS scheme did a better job at identifying the optimal amount of 

clusters needed for iris classification. 

The major reason for the better identification is the rule-base modification 

approach introduced in step 6 of the algorithm. As depicted in Figure 3.22, when two 

clusters become compatible, in addition to being consistent, the rules are merged into 

one. This phenomenon can be seen at time instances 5 and 32. 
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Figure 3.20. Petal Length vs. Petal Width for the EFS Scheme. 
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Figure 3.21. Sepal Length vs. Sepal Width for the EFS Scheme. 

62 



3.5 

3 

~ 2.5 
:; 
0: 

'o 2 ;;; 
.c 
E 
~ 1.5 

0.5 

10 20 30 40 50 60 70 80 
Sample Number 

Figure 3.22. Evolving rule-base for the EFS Scheme. 

The initial (before parameter optimization) MFs corresponding to the individual 

inputs are depicted in Figure 3.23. Next, the aforementioned structure will be subjected 

to GD-RLSE and RLM-RLSE parameter training. 

Figure 3.24 shows the recognized structure, through GD-RLSE, and the 

corresponding membership functions of each feature after the parameter learning phase 

and 75 random instances of iris data. One hundred epochs were used for parameter 

training. The fuzzy rules of the iris classification can be extracted from the learned EFS 

structure from Figure 3.24 as follows. 

1) IF pw is small AND pl is large AND sw is small AND sl is small, THEN Iris is 

Versicolor. 

2) IF pw is medium AND pl is small AND sw is medium AND sl is medium, THEN 

Iris is Virginica. 

3) IF pw is large AND pl is medium AND sw is large AND sl is large, THEN Iris is 

Sestosa. 
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Figure 3.23. Initial MFs for the EFS Scheme. 
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Figure 3.24. Final MFs for the EFS Scheme via GD-RSLE. 
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Figure 3.25 illustrates the final output of the EFS structure incorporating the GD-

RLSE hybrid training algorithm. The amount of testing errors accumulated to 4. The 

recognition rate, based on 75 instances for verification, is 94.67%. 

Figure 3.26 shows the identified structure, through RLM-RLSE, and the 

corresponding membership functions of each feature after the parameter learning phase 

and 7 5 random instances of iris data. One hundred epochs were used for parameter 

training. Within the training process, as in the case of GD-RLSE, some of the MFs 

amalgamated. The fuzzy rules of the iris classification can be extracted from the learned 

eTS structure from Figure 3.26 as follows. 

1) IF pw is large AND pl is large AND sw is medium AND sl is small, THEN Iris is 

Versiolor. 

2) IF pw is small AND pl is small AND sw is large AND sl is medium, THEN Iris is 

Virginica. 

3) IF pw is small AND pl is large AND sw is large AND sl is large, THEN Iris is 

Sestosa. 

Figure 3.27 illustrates the final output of the eTS structure incorporating the 

RLM-RLSE hybrid technique. The amount of testing errors accumulated to 3. The 

recognition rate, based on 75 instances for verification, is 96%. 
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Figure 3.25. Final output for the EFS Scheme via GD-RSLE. 
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Figure 3.26. Final MFs for the EFS Scheme via RLM-RSLE. 
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Figure 3.27. Final output for the EFS via RLM-RSLE. 

3.4 Summary of the Results 

Within this chapter, a novel approach to real-time and off-line clustering and 

prediction was introduced. The novel design incorporated simultaneous clustering of the 

input and output data sets, with the added constraint of mapping consistency and cluster 

compatibility. It was found that these constraints proved to help the EFS algorithm 

generate the optimal number of rules for clustering. As a result, the EFS algorithm 

outperformed the eTS potential-based algorithm in both real-time and off-line 

applications. A summary of the results can be found in Table 3.1. 
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Table 3.1. Results for off-line training of the eTS and EFS structures. 

Training Number of Training Training Testing Recognition Structure Rules Epochs Technique Generated Time(s) Errors Errors Rate 

eTS GD- RLSE 4 100 0.8 24 16 78.67% 
RLM- RLSE 4 100 1.54 4 7 90.67% 

EFS GD- RLSE 3 100 1.442 4 4 94.67% 

RLM- RLSE 3 100 2.684 3 96% 

The EFS scheme generated fewer rules, training errors and testing errors than the 

potential-based eTS scheme. Also, the RLM-RLSE method proves to be a more powerful 

training algorithm than the classical GD-RLSE training algorithm. Albeit the EFS 

structure is more accurate in recognizing class, the training times for the EFS are slightly 

greater than that of the potential-based eTS. As mentioned in [8], however, the difference 

in the iteration time is considered insignificant for most real-time applications. 

Figures 3.28 and 3.29 illustrate the resulting architecture of the eTS and EFS 

reasoning schemes, respectively. 
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Figure 3.28. Architecture ofthe eTS via RLM-RLSE 
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Figure 3.29. Architecture of the EFS via RLM-RLSE 
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In the next chapter, another novel approach to clustering and training is 

introduced. The new clustering scheme is a combination of the potential-based and EFS 

reasoning schemes. The new learning technique is a combination of the decoupled-

extended Kalman filter [42, 43] and the RLSE. 
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Chapter 4 
AN ENHANCED ETS (E2TS) SCHEME FOR 

CLASSIFICATION/FORECASTING APPLICATIONS 

In this chapter, a novel clustering technique, the enhanced-eTS ( e2TS), is developed for 

classification and forecasting applications. The e2TS clustering technique is an enhanced 

version of the potential-based eTS clustering method as illustrated in Chapter 3. A novel 

training technique based on the integration of the decoupled-extended Kalman filter and 

RLSE is adopted for system training. The effectiveness of this new e2TS technique is 

verified by simulation tests. Its performance is compared to other related clustering 

schemes such as the generic potential-based clustering technique, a transductive NF 

inference system with weighted data normalization and an NF inference system based on 

prior knowledge. 

4.1Development of the e2TS 

4.1.1 Architecture of the e2TS 

The fuzzy model adapted here has its roots in the pioneering papers of Sugeno and his 

coworkers [44, 45] and is associated with the so-called Takagi-Sugeno fuzzy model- a 

special group of rule-base models with fuzzy antecedents and functional consequents that 

follow from the Takagi-Sugeno-Kang reasoning method [8]. 
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If we consider an input vector x = { x1, x2 , • • ·, xn} where n represents the number of 

inputs, which are normalized in a hypercube [0, 1], the fuzzy reasoning is performed by 

the following general representation: 

911 : IF (x1 is A() AND ... AND (xn is A~) THEN 

(4.1) 

where 911 denotes the /h fuzzy rule, j E [1, Nr] , Nr is the total number of fuzzy rules (or 

clusters); b! are the consequent parameters; A/ is the /h fuzzy set for X;, i E [1, n]; 

y 1 = [y 11 , y 12 , · · ·, y JM] is an M-dimensional consequent (output) structure. 

The e2TS reasoning system is capable of taking on three different consequent 

reasoning structures: Type I (Mamdani model), Type II (zero order TS model) and the 

Type III (first order TS model), as discussed in Chapter 1. Due to the fact that Type III 

model are more accurate for non-linear mapping, the e2TS scheme will adopt Type III 

reasoning as an example in this section for illustration. 

In a NF inference system, nodes of the same layer usually have similar functions. 

In the proposed e2TS, for example, all the fuzzy set MFs are in a Gaussian form 

(4.2) 

where miJ and (jiJ are the centers and spreads of the MFs, respectively. The Gaussian 

bell function has the characteristics of continuity and generalization property, and can be 

decomposed into multiple one-dimensional Gaussian MFs corresponding to different 

input variables. These properties can facilitate the implementation of input/output 

partitioning if each cluster is treated as a fuzzy rule (cluster) [49]. 
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Despite the type of consequent reasoning structure selected, the premise rule 

structure remains the same. Assuming the use of a max-product operatior for the premise 

part of the structure, the rule firing strength is 

n n ( ( )2 J ( n ( )2 J x-m x-m 
,u1 =fl(,uA/xJ)=flexp- 1 

21) =exp -I 1 

2u ,}E[l,N,]. 
1=1 1=1 2a iJ 1=1 2a iJ 

(4.3) 

Once the firing strength is calculated via (4.3), the firing strengths are 

normalized. After normalization, the overall output will be 

~ ,u1 r 1 . [1 N ] Y=L,.-Jt' JE ' r 
)=1 ,UE 

(4.4) 

where f/ is the result from the consequent part (where M = 1 for classification); ,u 1 is 
Jir. 

the normalized firing strength of the /h rule, in which 

N N ( n (x -mlJ 
.ur.=IJJJ=Iexp -I 12 21) , 

J=1 J=I 1=I a iJ 
(4.5) 

where ,u1 is determined by (3). 

4.1.2 The e2TS Clustering Procedure 

The suggested e2TS is an enhanced version of the well known evolving eTS system [8]. 

The e2TS is different from the standard eTS by use of a recursively adaptive updating 

algorithm of the spread and centers. Unlike the eTS system, the e2TS recursively updates 

the cluster centers (and spreads) based on the volume of data of the corresponding 

cluster(s). In this way, the e2TS system will generate a significantly less amount of rules 

[9]. Figure 4.1 illustrates the flowchart of the clustering algorithm of the suggested e2TS. 

Each part of the process is described in full detail below. 
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Update the Potential of the existing clusters 

yes 

no 

no 

Figure 4.1. Flowchart for the e2TS clustering processes. 

Step 1: Initialization. The e2TS starts with one rule. The first rule (cluster) is located at 

the first input data sample. The radius (spread) is initialized to 0.25. Then 

where N~ is the number of samples in cluster j; j E [1, Nr] and j is initialized to 1; 

miJ and o-iJ are the cluster centers and spreads, respectively; z = [x; y]; and ~ (zk) is the 

potential of data sample k. 
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Step 2: Input the next data sample. 

k~k+1 

The new data sample zk is collected. 

Step 3: Potential of the new data sample. After collecting zk, the potential of zk 1s 

calculated as follows: 

(4.6) 

n+1 n+1 n+1 

where .9k = ~)z£)2 
; ak = ak_1 + ~)z£_1 ) 2

; vk = L z£ fJ/ ; and fJf = fJf-1 + zL as in [8]; 
}=1 }=1 }=1 

fJf and ak are initialized to the appropriate vector of zeros. 

Step 4: Potential update of existing clusters. The recursive formula for updating the 

potential of all existing clusters is given as: 

(k -l)P. (z) P.(z)= k-1 1 
k J n+1 . 2 

k- 2 + P,_1 (z1) + P,_1 (z1) I ( df(k-1)) 
(4.7) 

J=l 

where z1 represents the x andy coordinates of all existing clusters; P, (z1) is the potential 

of all existing clusters; and d£(k-1) = zf- zL. z1 is initialized to zk and Pk (z1) is 

initialized to 1 when k ~ 1 . 

Step 5: Structure recognition. IF the potential of the current cluster is greater than the 

potential of all existing clusters AND the new data point is close to an old cluster, THEN 

merge the new cluster. If both conditions hold, merge the new data set to the existing 

cluster. 
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That is: 

(4.8) 

THEN Nr ~ Nr ; and the volume of the cluster becomes: N~ ~ N~ + 1 where 

I = arg ( ~~1x ( ~ (z1))) . The new centers and spreads are recursively updated via the 

following algorithm: 

(4.9) 

( 4.1 0) 

where m1,k and G 1,k represent the updated cluster centers and spreads, respectively. 

IF, however, the potential ofthe current cluster is greater than the potential of all existing 

clusters AND the new data point is not close to an old cluster, THEN create a new 

cluster. That is 

Step 6: Tuning the consequent parameters via RLSE. If the Type III or Type II structure 

is desired, train the consequent parameters, recursively, via the RLSE algorithm. 

(4.11) 

(4.12) 
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where k = 1, 2, .. . , K andak is a forgetting factor in the range of ak =[0.9,0.99]. The 

covariance matrix is initialized as 'P0 =pi, where I is an identity matrix and 8 is a 

constant normally in the range of 8 = [1 02 ,104
] • 

Step 7: Output prediction: At this stage, the output is predicted via 

.Yk+l = n;ak (4.13) 

and compared to the desired value. The corresponding results can be exported for data 

analysis. When k = K, end the program and proceed to DEKF-RLSE training; otherwise 

proceed back to step 2. 

4.2 Introduction to the DEKF-RLSE Hybrid Training Technique 

Once the structure is established through the aforementioned clustering procedure, the 

premise and consequent parameters are optimized by a hybrid training technique: the 

decoupled extended Kalman filtering (DEKF) and the RLSE. The consequent parameters 

are linear and hence are optimized by the RLSE algorithm in the forward pass. The 

premise parameters are nonlinear and will be optimized by the DEFK procedure in the 

backward pass. 

The derivation of the DEKF is based upon a natural simplification of the global 

extended Kalman algorithm (GEK) of Singhal and Wu [46] by ignoring the 

interdependence of mutually exclusive groups of weights [ 42]. The DEKF is based upon 

the assertion that the weights of the network can be grouped (or decoupled) such that the 

elements of P;(k) corresponding to weights from different groups can be ignored [43]. 

Accordingly, if the weight groups are judicially chosen (e.g. by node, layer or 

subnetwork) then a sizeable reduction in training time is found. 
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Given a network with M weights and NL output nodes, partition the weights into g 

groups, with m; weights in group i. The weight update equations at time step k of the 

DEKF is given by: 

vi (k) =Pi (k)ui (k) 

A(k) ~ [ R(k) + t {u; (k)v,(kl}[q>,(k)q>i (k)] r 
B(k + 1) = B(k) + { rpr (k)(A(k)q(k))} vi (k) 

P;(k + 1) = P;(k)- { rpr (k)(A(k)rp;(k))} [ v;(k)v; (k)] 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

where v;(k) is a m;-by-NL matrix containing the Kalman gains for weight group i. P;(k) 

denotes a m; -by- m; matrix defined as the approximate conditional error covariance 

matrix for group i. u;(k) is the input vector for the ;th node. A(k) is non-singular and a 

NL-by-NL matrix that is referred to as the global scaling matrix. R(k) represents a 

diagonal NL-by-NL matrix whose diagonal components are equal to or slightly less than 1. 

rp;(k) is a vector of partial derivatives of the network's output node signals with respect 

to the lh node's net input and B(k) is a vector of length m; containing the weight values 

of group i. 

Two natural members exist in this set of DEKF algorithms. They are referred to 

as node-decoupled EKF or NDEFK, and the limiting case in which each weight of the 

network constitutes a group in itself, which is referred to as fully-decoupled EKF or 

FDEKF. 
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Based upon group partitioning, the computational complexity of the NDEKF is reduced 

from O(NzM +NLI:
1
mJ) to O(NzG+NLI:

1
m;2 ) whereas the computational 

complexity of the FDEKF is reduced from O(NzM + NLM) to O(NzG + M) [43]. As a 

result, to save time in training, the FDEKF will be adapted in this chapter. 

Due to a lack of a forcing function (see Reference [4]) in [43], the DEKF can lead 

to some computational difficulties. It is possible that P(k) can become singular, lose the 

necessary property of nonnegative definiteness, or vanish completely [43]. In order to 

prevent such difficulties, an artificial noise process will be introduced into equation 

( 4.17) which then becomes 

( 4.18) 

where Q;(k) is a diagonal matrix with small non-negative components in the range 

4.3 Performance Evaluation 

The performance of the proposed e2TS is compared to the generic potential-based eTS 

clustering technique [8], a transductive neuro-fuzzy inference system with weighted data 

normalization (TWNFIS) [47] and a NF inference system based on prior knowledge. The 

above four techniques are compared by use of the well accepted GD - RLSE hybrid 

training technique. 

To compare the above structures, the Wisconsin Breast Cancer Diagnostic Data is 

used. 
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Six hundred eighty three patterns are used to evaluate the performance of the proposed 

structure. Each data sample consists of 9 features: clump thickness, uniformity of cell 

size, uniformity of cell shape, marginal adhesion, single epithelial cell size, bare nuclei, 

bland chromatin, normal nucleoli and mitoses. The data is normalized to the range [0, 1] 

and is divided as follows: 250 data samples are used for structure recognition, 230 are 

used for premise and consequent parameter optimization and 203 data samples are used 

for verification. 

The output is classified as follows 

{ 
Benign, 

Class= 
Malignant, if 0.5 :s; y 

if y < 0.5 
(4.19) 

Table 4.1, summarizes the results of the experiment. The results located in the Table 

are an average over 1 0 trials to minimize random effects related to initial values of 

weights. The TWNFIS created more clusters and took the most time in training than the 

other systems used for comparison, but did, however, outperform the custom NF and eTS 

structures that had 94.1% and 96.6% recognition rates, respectively. The custom NF 

system is constructed based on prior knowledge. Four static rules have been given to the 

custom design and were based on the rule generation of the eTS model. The eTS model 

did outperform the custom NF design (96.6% to 94.1 %), but took more time in training. 

This is due to the fact that the eTS is generating its own rule-base whereas the custom NF 

design already had one established. 
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Table 4.1. Results ofthe GD-RLSE Comparison. 

Neuro-Fuzzy Models No. of Epochs Training time Training Testing Recognition 
Rules (avg.) Errors (avg.) Errors (avg.) Rate(%) 

custom neuro-fuzzy 4 100 21.0211 3 7 94.1 
TWNFIS 5 100 29.77639 1.2 2.8 97.2 
eTS 4 100 23.0211 0.9 3.4 96.6 
e2TS 2 100 1.5632 0.09 0.2 97.8 

Due to the recursively updating of the radius and spread in the e2TS structure, the 

e2TS generated less rules and hence less time for training. Also, the e2TS outperformed 

all the other mentioned structures. 

The performance of the DEKF-RLSE hybrid training technique is compared to 

the GD-RLSE and the RLM-RLSE hybrid algorithms via the novel structure 

identification technique constructed in this paper. Analogous to the first part in this 

evaluation, the mentioned hybrid training techniques are compared using the same 

Wisconsin Breast Cancer Diagnostic data series. 

TabJe 4.2. Results for the training techniques. 

Training Method Training time Training Testing Recognition 
per epoch (avg.) Errors (avg.) Errors (avg.) Rate(%) 

GD-RLSE 1.5632 s 0.12 2.2 97.8 
RLM-RLSE 1.7225 s 0.09 I 99 
DEKF-RLSE 1.8076 s 0.07 0.2 99.8 

It can be seen, in Table 4.2, that the DEKF-RLSE hybrid technique outperforms 

the other hybrid algorithms in terms of recognition rate, training errors and testing errors. 

Due to the highly complex calculations in the DEKF [43], however, the DEKF-RLSE 

technique takes more amount oftime to train. 
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Since processing power in computers is increasing4
, the added time is insignificant; 

especially for application specific problems [4]. 

Figure 4.2 illustrates the generated MFs of the e2TS after clustering. Figure 4.3 

depicts the learned MFs of the e2TS via the DEKF-RLSE through 100 epochs. The final 

structure is architecturally shown in Figure 4.4. 

(f) 
(f) 
Q) 
c Q) 
~ Q) a.. 
.~ N ro 
..c 0.5 c:n 0.5 ..c 0.5 1- (I) \ (.) 

~ a.. :;:) u 
E ::> 
::J 0 0 0 u 0 0.5 0 0.5 0 0.5 

Universe Universe Universe 

'U 

\ ~ <( 
(I) u 

::J ro 0.5 (.) 0.5 z 0.5 c w 
OJ (I) ~ ..... 
ro ro 
~ 0 0 ID 0 

0 0.5 0 0.5 0 0.5 
Universe Universe Universe 

-
I~ E 0 

Q) 
0 u (Jl ..... ::J Q) 

!~ ..c 
u 0.5 z 0.5 (Jl 0.5 0 
'U ro ..... 
c E ~ ro ..... 
iD 0 0 0 0 

0 0.5 z 0 0.5 0 0.5 
Universe Universe Universe 

Figure 4.2. MFs of the e2TS before parameter training. 

4 See Moore's Law. 
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Figure 4.3. MFs of the e2TS after parameter training. 
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4.4 Summary of the Results 

In this chapter a novel clustering algorithm and training technique were proposed. The 

new e2TS technique is an enhanced version of the potential-based evolving TS clustering 

algorithm. From experimental results, it is proven that the new e2TS outperforms the 

generic potential-based eTS clustering technique [8], a transductive NF inference system 

with weighted data normalization [ 4 7] and a NF inference system based on priori 

knowledge in terms of training errors, testing errors, recognition rate and training time. 

Test results have shown that the new scheme can generate fewer amounts of rules but 

higher accuracy than the other techniques. 

The new training technique, the DEKF-RLSE, also proved to be a superior 

training technique compared to the other related classical algorithms. The DEKF-RLSE 

outperformed the others in terms of training errors and testing errors, albeit it took a little 

more time in training operations. 
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Chapter 5 
CONCLUSIONS AND FUTURE WORK 

5.1 Summary of the Main Results 

The objective of this thesis was to develop more accurate and robust multi-step ahead 

predictors and classifiers for industrial applications. In Chapter 2, step-inputs were 

compared to sequential-step inputs via the feed-forward NN, recurrent NN and the 

proposed weighted NF inference system. Through experimental results, it was proven 

that an equal-step-based predictor outperformed a sequential-step counterpart through 

many different time-steps. Also in Chapter 2, experimental results showed that developed 

weighted recurrent NF inference system outperformed the feed-forward NN and 

recurrent NN in both sequential-based and equal-step-based input situations. Albeit the 

results in Chapter 2 were promising, there still loomed one problem for some 

applications. Without any prior information pertaining to the number of rules for 

successful mapping, it is hard to construct a fixed structure for classification and 

prediction. This problem led to the investigation of self-organizing or evolving NF 

paradigms. 

In Chapter 3, a novel approach to clustering was suggested. In the new scheme, 

both input and output patterns were clustered simultaneously, with the added constraints 

of mapping consistency and cluster compatibility. 
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These extra constraints eliminated clusters forming due to noise affected data. Ergo, 

more meaningful clusters were formed. The new technique was compared to the related 

classical paradigms such as the potential-based eTS clustering algorithm. The new 

method outperformed the eTS algorithm in terms of accuracy and number of rules 

generated, albeit the new algorithm did take a marginal time longer to develop its 

structure due to the extra constraints. Furthermore, a novel hybrid training algorithm 

based on the recursive LM and recursive LSE was adopted for system training. 

Simulation test results demonstrated that the new algorithm outperformed the well-

accepted potential-based eTS schemes. 

In Chapter 4 an enhancement to the potential-based clustering technique was 

suggested. The so-called e2TS clustering algorithm recursively updated the cluster 

centers (and spreads) based on the volume of data of the corresponding cluster(s). This 

enhancement allowed the e2TS to generate fewer clusters then its potential-based cousin. 

The e2TS was rigorously simulated against other clustering techniques. Through a 

performance evaluation it was found that the e2TS scheme outperformed all the related 

classical schemes. Furthermore, another novel training algorithm based on the decoupled 

extended Kalman filter and recursive LSE was suggested. This technique is a hybrid 

technique, in the sense that the RLSE is performed in the forward pass (the consequent 

parameters) and the DEKF is performed in the backward pass (the premise parameters). 

Rigorous simulations verified the effectiveness of the adopted novel training technique. 

88 



All the suggested techniques and tools will have a great potential to be used 

directly or indirectly for different types of applications, such as machinery condition 

monitoring, fault diagnostics and prognostics, predictive control, bioinformatics, 

earthquake forecasting, to name but a few. 

5.2 Future Work 

Future work to be carried out is summarized as follows: 

1) Implement the developed e2ST scheme for real applications, such as machinery fault 

diagnostics, system state forecasting, and material property prediction, and gene 

production analysis. 

2) Develop novel forecasting and online training strategies for predictive (functional) 

control in parallel robots. 

3) Suggest more effective training algorithms to further improve training speed and 

convergence related to local minima. 
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