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ABSTRACT
The spatial variability of stream temperature is an important component of habitat within 
streams providing optimal temperatures for foraging and thermal réfugia for sensitive 
species such as brook trout. Riparian shading and lateral contributions o f groundwater 
through the hyporheic zone are the main contributors to spatial variability in stream 
temperature. The first two objectives o f this study were to quantify thermal variability in 
stream systems through extensive mapping of streambed temperatures and to evaluate the 
influence of thermal variability on the stream fish distribution and community structure. 
The third objective was to examine associations between thermal variability and 
environmental variables at reach, riparian and catchment scales to identify features that 
may be used to characterize thermally important stream reaches. A total o f 55 sample 
sites were surveyed during the warmest and driest season for Northwestern Ontario (mid- 
July - September) in streams from 4 catchments size classes; 1 ,3 ,5  and 10 km^. 
Streambed thermal variability occurred on a sub-metre scale with temperature fluctuating 
up to 5.8 °C across a transect perpendicular to stream flow. The maximum variability 
found was 10.1 °C within a 50 m reach and 12.0 °C within a 300 m survey. Thermal 
variability was driven by cold streambed temperatures; 44 of 55 reaches had larger 
deviations below the mean streambed temperature than above the mean, which is an 
indication o f cool groundwater entering the streambed. Fish species diversity and brook 
trout abundance was significantly higher in reaches with high thermal variability, while 
rainbow trout abundance was significantly lower. Fish species richness within a reach 
could be predicted as low (<5) or high (>5), with thermal variability as an independent 
variable using logistic regression. High (>0.10) or low (<0.10) rainbow trout abundance 
(fish/m^) could also be predicted using thermal variability. Fish size was not found to be 
associated to thermal variability. Furthermore, thermal variability was correlated with 
terrestrial variables associated with groundwater movement, including the amount of 
adjacent land contributing surface and subsurface runoff to the stream, also known as 
reach contributing area (RCA). Reaches with large RCAs had significantly higher levels 
of thermal variability compared to reaches with small RCAs. However, the relationship 
between thermal variability and RCA was only found for reaches in the two largest 
stream catchment size classes (5 and 10 km^) due to the dominance o f groundwater 
during base flow of the two smallest catchments (1 and 3 km^). Areas o f low and high 
thermal variability differed in landscape topography, terrestrial surface roughness, 
landform geology and streambed permeability, which are all related to groundwater flow. 
In regions such as Northwestern Ontario, where hydrologie pathways are related to 
topographic features it is possible to use environmental features, such as RCA, to locate 
lateral groundwater inputs into streams. This predictive ability allows for identification, 
management and protection of valued ecosystem components important for the 
maintenance o f ecological integrity of streams.
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1.0 INTRODUCTION
The distribution of organisms within ecosystems is affected by both biotic and

abiotic factors. For aquatic organisms, temperature can have a profound influence on the 

distribution of individual species, populations and on community structure (Brunke and 

Gosner 1997; Caissie 2006; Meisner 1990). Thermal influences play a vital role in the 

composition, development and function of biota throughout a stream system (Vannote 

and Sweeny 1980). Stream temperature can also regulate food availability for biota such 

as fish and invertebrates, and growth of aquatic vegetation and algae. The ‘Thermal 

Equilibrium Hypothesis’ proposed by Vannote and Sweeny (1980) suggests that 

temperature is the critical variable in biotic niche differentiation as well as diversity and 

distribution patterns of fish and invertebrates. Thermal variation within streams allows 

for diverse community structure based on the conditions necessary for primary 

production and optimal thermal conditions for organisms (Hynes 1970). The effect of 

temperature on community structures and health is a combination o f specific thermal 

tolerance levels for individual species and the need for stability in thermal regimes.

Disturbances to the abiotic conditions of a stream system may lead to the 

dispersal o f an organism from one habitat to another, provided adequate connectivity 

between habitats is available for migration (Power et al. 1999; Fausch et al. 2002; With 

2002). The migrations may alter the dynamics o f a stream community including the 

distribution and persistence of organisms, inter- and intrapecific competition or the 

trophic interactions o f the system (Schlosser 1991; Fausch et al. 2002; Brasher 2003; 

Attrill and Power 2004). Changes in stream temperature may create habitats no longer 

suitable for the persistence o f organisms within them by exceeding the thermal tolerance



of species, constricting other physiological important processes or reducing available 

resources such as food availability along the trophic scale (Wootton 1998).

Water temperature plays a key role in regulating the chemical properties of the 

ecosystem. Higher stream temperatures decrease the levels of dissolved oxygen and 

nitrate available to stream organisms (Fry 1971, Duff and Triska 1990). Increases in 

water temperature increases reaction rates and toxicity o f other substances. The impact of 

higher toxicity levels may be compounded by a decrease in an organism’s ability to cope 

with stressors in warmer conditions (Duffus 1980).

Primary production, such as periphyton growth, can be influenced by stream 

temperatures both directly; increasing within thermal tolerance levels and decreasing 

outside of those level, and indirectly; by the availahility of nitrate and dissolved oxygen 

changing with temperature (Triska et al. 1989; DeNicola 1996).

Temperature has a direct affect on aquatic invertebrates by influencing their life 

cycles and behaviour through alterations in their growth, metabolism, reproduction, 

emergence and distribution (Vannote and Sweeny 1980). Invertebrate community 

diversity has been seen to alter with increasing temperatures outside thermal tolerance 

levels. Sponseller et al. (2001) found that as the maximum stream temperature increased, 

species richness, diversity and evenness declined and density increased but was attributed 

to the abundance single, thermally tolerant family, Chironomidae. The reduction of 

species diversity may have a bottom-up effect on the trophic scale; changes in food 

availability may influence fish community structure and distribution.

The distribution of fish within stream networks is influenced by individual and 

population optimal thermal preferences (Power et al. 1999). Many stream fish migrate



long distances to find thermal réfugia during both summer and winter seasons (Bell 2006; 

Torgensen et al. 1999). Elevated stream temperatures slow fish growth hy affecting 

activity, appetite, enzyme efficiency, and increasing expenditure of energy on 

metabolism (Power et al. 1999). While smaller fish can move into the substratum to keep 

cool, larger fish will move large distances to find cooler reaches and moderate their body 

temperature (Drake and Taylor 1996).

In Northwestern Ontario stream water temperatures are of particular importance 

due to the vast network o f streams with communities composed of organisms with 

preferences for colder temperatures. A coldwater stream is defined as a stream that is 

supporting or capable o f supporting coldwater fishes with an upper limit of 26 °C in the 

summer (OMNR 2008a). Coldwater stream fish species in the region include sculpins 

and salmonids, which include brook trout (Salvelinus fontinalis) and rainbow trout 

{Oncorhynchus mykiss) (Scott and Crossman 1973). Although stream water temperature 

is most strongly influenced by atmospheric temperature (Poole and Berman 2001), and 

the amount o f solar radiation penetrating the stream (Johnson 2004), groundwater inputs 

are a significant component in the maintenance o f suitable habitat for fish by providing 

cool upwellings in the summer and warm inputs in the winter (Cunjak 1996).

The temperature stabilizing influence o f groundwater inputs into streams 

influences habitat suitability for many fish species and plays a key role in habitat choice. 

The selection of habitat based on the presence of groundwater has been observed in brook 

trout due to low temperature preference, relatively low upper lethal temperature and their 

requirement for thermally stable areas for successful reproduction (Blanchfield and 

Ridgway 1997). Although water depth, stream velocity, substrate composition and cover



are important to brook trout spawning site (redds) selection, none are as essential to the 

preference as the chemical or physical nature of up welling groundwater (Curry et al. 

1994, Curry and Noakes 1995, Blanchfield and Ridgway 1997). The presence of 

groundwater at redds enhances reproductive success by allowing young of the year brook 

trout to avoid predation while experiencing optimal temperature and chemical conditions 

(Power et al. 1999).

In addition to the importance of groundwater in brook trout spawning site 

selection, cooler temperatures associated with groundwater plays a key role in 

behavioural thermoregulation for brook trout and other salmonids (Biro 1998). 

Behavioural thermoregulation involves active regulation of body temperature by 

behavioural means and occurs when fish avoid water temperatures above their tolerance 

level to reduce time spent in stressful environments (Reynolds and Casterlin 1979;

Tiffian et al. 2009). In warm summer months, hrown trout have heen observed using 

coldwater plumes to thermoregulate during the day when stream temperatures are at 

maximums, suspending foraging until the cooler evening temperatures (Olsen and Young 

2009). Breau et al. (2007) found that juvenile Atlantic salmon would aggregate in cool 

plumes or seeps during daily temperature maximums and disperse as stream temperatures 

lowered, suggesting that juveniles were actively choosing to occupy higher densities to 

maintain optimal body temperatures. Observations of juvenile brook trout have noted 

competitive behaviour for cooler thermal habitat and active avoidance o f temperatures 

over 20 °C (Biro 1998). Juvenile brook trout may also decrease foraging in sub-optimal 

temperatures (>22 °C) due to the stressful physiological conditions, which amplified 

when refuge is unavailable (Marchand et al. 2002). Similarly the use of thermal réfugia



for thermoregulation has been observed juvenile rainbow trout, coho and Chinook salmon 

(Sutton et al. 2007). Thermal refuge areas for aquatic species produced from groundwater 

input from springs, tributaries, seeps and plumes and these allow fish to inhabit streams 

with abundant resources that may otherwise exceed thermal tolerance levels (Sutton et al. 

2007).

Water temperatures not only influence the daily distribution and behaviour of 

stream fish but can have an impact on key aspects of their life cycle such as migration or 

spawning time. During high water temperatures, Atlantic salmon have heen seen to halt 

their upstream migration, move into cooler trihutaries and remain there until the main 

stream water temperatures are below their upper thermal tolerance level (Goniea et al. 

2006).

Regions o f cool water from springs, seeps or plumes influence fish distribution 

within a stream because such features lower the temperatures o f the entire stream but 

rather smaller point locations distributed along a stream (Olsen and Young 2009). In 

these cool patches the maximum daily temperature is lowered and the diel variation in 

temperatures is smaller. Ebersole et al. (2003) found a reduction o f 5.4 °C in daily 

maximum temperature and 5.7 °C in diel variation in a groundwater patch compared to 

the main stream surface water. The quality o f groundwater patches is influenced by the 

surrounding habitat and riparian zone characteristics. Riparian variables such as shading 

can further lower daily maximum in the cool patches while stream habitat variables such 

as velocity and substrate composition may increase the utilization of these sites by biota 

(Ebersole et al. 2003).



The thermal characteristics o f streams are important to stream biota and drastic 

changes in temperature can significantly impede many life stages for these organisms. 

Heterogeneity in stream temperatures at both a spatial and temporal scale diversifies 

aquatic communities. According to Townsend’s (1989) ‘Patch Dynamics’ theory, 

temporal variability in stream conditions provide differing habitat conditions for a 

diversity o f aquatic organisms. A study by Constantz (1998) found that within an annual 

cycle, temperatures are not only warmer during the summer season due to increase air 

temperature but are more variable within and between days.

This is complemented by the ‘Process Domains Concept’ by Montgomery (1999) 

which suggests that spatial heterogeneity in stream conditions is necessary for aquatic 

diversity. There are many variables which act upon and regulate stream temperature both 

at the temporal and multiple spatial scales. At a catchment scale, water temperatures are 

influenced by the climatic, regional, hydrological and structural conditions within the 

region (Dallas 2008). Within a catchment, variation between streams or within a single 

stream is influenced by the hydrological and physical variations among the individual 

streams (Meisner 1990). During the summer, temperatures are generally cooler in the 

headwater portion of a stream and warm longitudinally down the system into the lowland 

areas (Caissie 2006). Many factors have been correlated with the longitudinal thermal 

gradient in stream systems but perhaps the most recognized are those discussed in the 

‘River Continuum Concept’ by Vannote et al. (1980). The River Continuum Concept 

suggests that small headwater streams receive only minor longitudinal contributions from 

upstream sources and are therefore dependent upon water received laterally from the 

terrestrial landscape in the form of shallow groundwater and surface runoff. During the



summer, the groundwater contributing to small headwater streams creates a cooler, stable 

thermal regime because subsurface groundwater is not influenced by solar radiation and 

has a temperature that is typically close to the mean annual air temperature o f the region 

(Kalbus et al. 2006; Power et al. 1999).

The lateral inputs of cooler groundwater however are not restricted to the 

headwater regions o f a stream but can be distributed throughout the stream network 

(Contant Jr. 2004; Freeze and Cherry 1979). Because groundwater emerges from the 

streambed sediments to mix with the surface water the temperatures o f the sediment in 

groundwater upwelling areas should be variable in comparison to the stream water 

(Becker et al. 2004).

Sampling of streambed temperatures can be an effective tool to indicate areas of 

groundwater discharge in streams and lakes (Kalbus et al. 2006). Bustros-Lussier et al. 

(2007) dragged a thermal sensor (Reelogger Model 2011) along the streambed to measure 

temperature and found that at low discharge, thermal anomalies were evident and these 

were attributed these to groundwater upwellings. A different study on streambed 

temperatures found a thermometer probe inserted directly into the streambed sediments 

gave a more accurate representation o f streambed temperatures and was more effective at 

locating cooler regions (Bustros-Lussier et al. 2007). Contant Jr. (2004) completed a 

study by measuring streambed temperatures along transects every metre with a 

thermometer probe at point locations across each transect for a length of 60 m. A 

streambed thermal map was then generated showing the spatial distribution of streambed 

temperatures within a single stream, indicating cooler plumes and groundwater inputs as 

well as warm shallow regions throughout the stream survey.



The combined influence of groundwater inputs, air temperature and solar 

radiation on surface water creates heterogeneous thermal patterns, laterally and 

longitudinally along a stream (Webb and Zhang 1997). These heterogeneous thermal 

patterns create thermal variability in streambed temperatures where cool groundwater 

mixes with surface water. The heterogeneous patterns exists because groundwater inputs 

are not evenly distributed along a streambed and many sections of a stream may only 

receive minor lateral contributions or none at all, relying only on longitudinal 

contributions or surface runoff following perception events (Schmidt et al. 2006).

Lateral groundwater contributions into a stream are associated with structural and 

hydrological characteristics that occur at multiple spatial scales from the entire catchment 

(km) to instream habitat condition (m) (Dallas 2008). The presence and rate of 

groundwater flow is determined by the hydrological gradient of local topography and soil 

permeability (Beven and Kirkby 1979). Steeper topography will have a higher rate of 

flow compared to low gradient topography due to an increase retention and accumulation 

capacity (Chang 2003). Fine grain soils such as silt and clay impede water movement and 

compared to coarse soils like gravel and sand which have high water permeability and 

allow groundwater to easy flow through (Raymond Jr. 1988). It is these topographical 

and geological characteristics that determine where groundwater will enter into an 

aquatic system. Because streams are highly influenced by the landscapes in which they 

flow (Fausch et al. 2002) there should be topographic, geologic, riparian zone structure 

and stream morphology indictors that can he used to locate areas of groundwater inflow 

(Hewlett and Hibhert 1963; Freeze and Cherry 1979; Cey et al. 1998; Raymond Jr. 1988; 

Borwick et al. 2006).



At this point, there is a need for a better understanding of the hydrological linkage 

between the terrestrial and aquatic environment due to the vulnerability o f the 

relationship to landscape disturbances. This is of particular importance with disturbances 

that may potentially alter the quality and quantity of groundwater reaching a stream such 

as forest management activities (Curry et al 2002), urban development (Taylor and Stefan 

2009), road construction (Baxter et al 1999), and agriculture (Scanlon et al. 2005). In 

Northwestern Ontario, forest management is the most prevalent threat to groundwater 

pathways. Following tree removal, a reduction canopy interception and 

evapotransporation may enhance the delivery of water into a stream by increased soil 

saturation and raise annual stream flow yield (Stednick 1996; Brunke and Gonser 1997; 

Chang 2003). At the local scale, changes in groundwater delivery after forestry activities 

may impact stream temperature, chemistry, and nutrient inputs, which may lead to 

detrimental effects to all trophic levels of the stream biota community from algal 

abundance to fish community structure (Curry et al. 1994; Allan 1995; Martin et al.

2000).

The common management technique used to mitigate harvesting impacts is to 

leave undisturbed shoreline zones, or buffers, along streams and lakes. However 

traditional stream side buffers do not account for the alterations in dynamics or 

distribution o f groundwater inputs and do not consider the hydrological connection of 

subsurface water from the terrestrial environment (Curry et al. 1994; Buttle 2002). Even 

with only a small proportion of a catchment harvested there may be increases in stream 

water temperature in the first few years and has been suggested to be associated with the 

disturbance to groundwater pathways (Kreutzweiser et al. 2009). In a small



Newfoundland stream, the thermal regime was altered even when a sufficient buffer was 

left to shade the stream from solar input caused by warmer groundwater discharge 

entering the stream (Curry et al. 2002). Similarly, Bourque and Pomeroy (2001) reported 

warming o f stream temperature following harvesting because o f increased heating of 

contributing subsurface water from the forest harvesting blocks. The occurrence of 

stream warming may persist many years after the harvesting disturbance (Carigan and 

Steedman 2000) which may permanently habitat degrade fish hahitat.

It is important to understand the spatial and temporal patterns of variahility 

occurring in a stream and how this thermal variability influences stream fish distribution 

and community structure. It is necessary to look at the variation in temperatures found 

laterally and longitudinally across a channel to identify different habitats for fish species 

(Ebersole et al. 2003). Many studies have focused on point locations of thermal 

variability or the variability of surface water temperatures rather than subsurface thermal 

regulation throughout large portions of a stream. My intention was to extensively 

examine the degree o f spatial variability in streambed temperatures as an indication of 

lateral groundwater contributions into a stream. My study also explored the influence of 

thermal variability on stream fish characteristics to determine the necessity of thermally 

diverse habitats for community structure. Furthermore, I attempted to characterize areas 

of thermal variability using environmental variables at multiple spatial scales. My goals 

are related to land use implications such as improving the ability o f natural resource 

mangers to easily and quickly identify the terrestrial regions adjacent to streams of 

thermal importance to minimize the level of disturbance to the natural thermal regime of 

coldwater streams.
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The specific objectives and hypotheses o f my study were to:

(1) Investigate the spatial distribution of the thermal characteristics and the degree of 

thermal variation in streambed temperatures for different stream sizes. I 

hypothesized that if  the contribution of lateral inputs along a stream channel was 

heterogeneous and this is indicative o f cooler groundwater entering the stream 

then there will be thermal variability in streambed temperatures along a stream 

channel in association with these areas.

(2) Measure the relationship between stream thermal variability and stream fish 

abundance, diversity, biomass as well as brook trout and rainbow trout 

characteristics inclusively. I hypothesized that if  thermal variability exists and fish 

are inhabiting the stream then regions of high thermal variability will have a 

higher fish abundance, diversity and productivity because they are more diverse 

and maintain optimal thermal conditions than less thermally variable regions. 

Furthermore, I predicted that hrook and rainbow trout abundance, relative 

abundance, and productivity will be higher in regions with more thermal 

variability and cooler temperatures than less variable areas.

(3) Examine the associations between streambed thermal characteristics and 

environmental variables at multiple spatial scales including the catchment, 

riparian zone and habitat characteristics. I hypothesized that if  stream thermal 

characteristics are associated with the amount of lateral contribution the stream 

reach receives then thermal variability will be associated with the size o f the area
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contributing to it as well as hydrological characteristics that are associated with 

groundwater flow. I predicted that areas with high thermal variability will have 

larger contributing areas and different catchment, riparian and habitat 

characteristics than reaches with less thermal variability and smaller 

contributions.

2.0 STUDY AREA
The study area was located in Northwestern Ontario in the Nipigon Bay Basin,

~20 km east of the Town of Nipigon, Ontario (UTM 424858, 542992, zone 16). The 

portion of the basin used for this study consists o f 14 sub-watersheds and covers an area 

of approximately 176800 hectares, all of which drain into the north shore of Lake 

Superior (Figure 1). This area has an active forest industry in combination vast coldwater 

stream networks that maintain an abundant fish population.

The ecoregion for the area is a combination of the Superior Highlands in the south 

and the Lake St. Joseph Plains in the north (Wickware and Rubec 1989). Annual mean 

temperature is 1.7 °C; the warmest temperatures are in July with a mean o f 17 °C and 

coldest in January with a mean o f -16.6 °C. The average annual rainfall is 576.6 mm and 

the average snowfall is 237.5 cm for a total precipitation of 814.1 mm (Environment 

Canada 2009).

The region is defined by a moderate amount of topographic relief made up of 

granitic bedrock outcrops which include rock knobs, sheer cliffs and, glacially eroded 

valleys filled with sandy outwash, lacustrine clay or silt deposits. The region is covered 

by shallow sandy soils comprised of loamy moraine (Wickware and Rubec 1989). 

Topographic elevation within the region o f the study sites varies from a low of 184 m to a
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high of 467 m above sea level although the maximum elevation for the region is much 

higher than these levels and exceeds over 500 m on bedrock bluffs (OMNR 2009). Soil 

moisture varies from dry and well-drained with humo-ferric podzol soil to low slopes that 

are poorly drained with organic/peat soils. Stand types vary accordingly to the soil and 

drainage capacity. In drier well-drained areas there are stands o f pure Jack pine (Pinus 

banksiana) or boreal mixed woods consisting of Trembling aspen (Populus tremuloides), 

White birch (Betula papyriferd). Black spruce (Picea mariand). White spruce {Picea 

glauca), Jack pine and Balsam fir (Abies balsamed). In the wetter areas, Black spruce. 

Tamarack (Larix laricind) and Eastern white cedar (Thuja occidentalis) stands occur. 

Under the conifer canopy, the undergrowth consists of feather moss mats and small Jack 

pine and lichen groundcover in bedrock-dominated regions (Wickware and Rubec 1989). 

The riparian zones along the stream banks are made up of a variety of small trees, shrubs 

and herbaceous vegetation. The prevailing riparian species included speckled (Alnus 

incand) and green alder (Alnus viridis), mountain maple (Acer spicatum), high bush 

cranberry (Viburnum trilobum), red osier dogwood (Cornus stolonifera), Labrador tea 

(Ledum groenlandicum) and black ash (Fraxinus nigra). The Nipigon Bay Basin has 

negligible permanent residences or agriculture and primarily land use is recreation and 

forestry practices (Wickware and Rubec 1989).
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Figure 1 . Overview map o f the stream survey area located with the Nipigon Bay 
Basin watersheds.

14



3.0 METHODS

3.1 Site Selection and Design
In order for a stream site to meet the sampling criteria it needed to fall within 1,3,

5, or 10 km^ (+/- 30%) catchment size categories, contain a defined continuous stream 

channel and have minimal to no recent (>10 years) forest harvesting within the 

catchment. Catchments were delineated in a GIS using a filled raster-based digital 

elevation model (DEM) generated with the Environmental Systems Research Institutes 

(ESRJ) ArcMap Spatial Analyst (version 9.2, ESRI 2002). Larger catchment streams (3, 

5, 10 km^) were located in close proximity to Lake Superior and below fish movement 

barriers to increase the potential for fish presence (Figure 1). Sites were chosen in a non­

nested design and were assumed to be spatially independent with each stream on a 

separate tributary. A 300 m maximum sample unit was established at each site; 300 m 

was the preferred length for a stream survey but not required due to unavailability of 

flowing water, undefined upstream channel or a change in catchment size.

To examine the amount of in stream thermal variation each 300 m stream survey 

section was divided into 6, 50 m reaches. Each 50 m reach survey included streambed 

temperature measurements along a transect across the width of the stream channel at 2 m 

intervals; collection of GPS coordinates at each transect; a one-pass electro-fishing 

survey; 4 habitat assessments; a riparian zone assessment and an evaluation of the 

catchment scale environmental and geological variables (Figure 2).
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Figure 2. Field sampling design for the streambed thermal mapping, fish surveys and 
environmental measurements.
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3.2 Thermal Characteristics

3.2.1 Streambed thermal mapping
Streambed thermal sampling were conducted on 11 streams and occurred between

July and September during periods of base flow when precipitation in the region is low in 

order to increase the probability o f detecting hyporheic influences and to reduce the 

influence o f surface water. Two sites were sampled from each of the 3, 5 and 10 km^ 

catchment categories and five from the 1 km^ catchment category. The thermal data was 

measured using a waterproof heavy-duty, K-type digital thermocouple thermometer with 

an accuracy o f 0.1 °C (Hanna Instruments). Transects were set across the stream channel 

perpendicular to stream flow and across each transect 5 evenly spaced streambed 

temperatures and depth measurements were taken (Figure 3). Streambed temperatures 

were measured by inserting the thermometer probe into the streambed to a maximum 

depth of 10 cm and allowing the digital reading to stabilize before recording (~5 sec). 

Stream surface water temperature was measured in the middle o f each transect in the 

middle of the water column.

Stream channel morphologies were generated from GPS points collected with a 

Trimble Pro XRS (sub-metre accuracy) and a Recon handheld PDA equipped with 

ArcPad software (ESRI version 7.1.1). GPS location data were collected at the centre o f 

every 2 m transect for a maximum of 300 m (Figure 3). Real time differential correction 

was applied using a Coast Guard beacon and post-processing was completed using the 

Centre for Northern Forest Ecosystem Research (CNFER) base station located at 

Lakehead University. Along with GPS points, the wetted width of the stream channel was 

also recorded at each transect.
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Figure 3. Streambed temperature and GPS point locations for streambed thermal 
mapping methods. Stream depth was also collected at each point (ABCDE) and wetted 
stream width for each transect.
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The thermal maps for each stream were created individually using a combination 

of ESRI GIS software packages ArcMap and Arclnfo with the Tools for Graphics and 

Shapes extension, version 1.1.85 (Jenness 2008) and Microsoft Excel and Access 

software. Thermal maps were generated by reconstructing the stream channel into a 

multipart polygon vector and using recorded streambed temperatures for the interpolation 

of the thermal raster grid (Appendix I).

3.2.2 Statistical analyses - Thermal variability
The streambed thermal data used in analyses was standardized to account for

surface water differences within and among days. Standardization included calculating 

the difference between individual transect surface water temperature and the coldest 

surface water transect within the entire reach. The difference in surface water 

temperatures was subtracted from each streambed temperature within each individual 

transect for the reach.

To reduce the effect of diurnal temperature variation between site survey dates 

standardization included calculating the deviation of individual streambed temperatures 

from the overall mean streambed temperature. Streambed temperatures that were warmer 

than the mean were positive and temperatures that were cooler were negative. Thermal 

variability within a 50 m reach was summarized as the range between the maximum 

positive and negative deviations from the mean stream reach temperature. Differences in 

thermal variability among streams catchment size classes was analyzed by using nested 

design, analysis of variance (ANOVA). Due to the non-independent nature of reaches 

within streams, a nested design was used to control within site variability with catchment 

size as the main fixed factor, stream site as a random nested factor and reach as the
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sampling unit (Krebs 1989). The ANOVA was used to establish a difference between 

means among catchment sizes and a least square difference (LSD) post-hoc method was 

used to interpret how the means differed among catchment size classes.

3.3 Thermal and Fish Relationships

3.3.1 Stream fish  surveys
Stream fish surveys were conducted in 7 sites during the 2008 field season by

OMNR fishery technicians using a single pass method with a backpack electrofisher unit 

(Smith-Root inc. 1992, Model 15-B). All of the reaches in the 3, 5 and 10 km^ catchment 

size categories were sampled and one 1 km^ stream catchment, the remaining 1 km^ 

streams were upstream of barriers to fish movement or had water level conditions to low 

to conduct an electrofishing survey. The stream electrofishing surveys were divided into 

50 m reaches which corresponded with reaches surveyed during the streambed thermal 

mapping surveys (Figure 2). Prior to electrofishing, block nets (4.57 m. 0.6 cm seine 

mesh) were set in the stream at the upstream and downstream ends o f the survey to 

prevent fish movement between reaches. At the end o f the 50 m survey, captured fish 

were identified to species, counted and batch weighed (g) by species except for brook and 

rainbow trout which were weighed (g) and measured for total length (mm) individually. 

Fish were released below the upstream blocker net in the same reach in which they were 

collected.

The data collected from the electrofishing survey for each 50 m reach was 

summarized into 3 categories: total fish community, brook trout populations and rainbow 

trout populations (Table 1). The total fish community variables included abundance 

(fish/m^), biomass (g/m^), species richness, and species diversity, a measurement of 

species evenness determined using the Simpson Diversity Index (1-D). The species
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specific variables for both brook trout and rainbow trout were the same as the total fish 

variables but also included relative abundance and mean length (mm). Relative 

abundance was used to examine the dominance of the two salmonid species o f interest 

within a reach and refers to the abundance of an individual species divided by the total 

abundance of all species combined (Krebs 1989).

3.3.2 Statistical analyses -  Fish characteristics
The relationship between stream thermal variability and fish commimity

characteristics was assessed by examining associations between independent variables 

describing the thermal, habitat and catchment characteristics and 14 dependent variables 

describing the fish community (Table 1). Differences in fish community structure among 

different catchment size classes were analysed using a series of nested univariate 

ANOVAs. The nested design was used to control within stream site variability by 

subgrouping stream site within catchment size class and using the 50 m reaches as the 

sampling unit. A LSD post-hoc comparison analysis was used to interpolate any 

significant differences revealed between catchment size classes. Collinearity between the 

dependent fish variables was tested using a Pearson correlation matrix and one variable 

from highly collinear pairs (r >0.5, p <0.05) was omitted from the multivariate analyses.

Associations between streambed thermal variability and fish community variables 

were examined to investigate the presence and strength as well as the nature of the 

relationship, whether positive or negative between the variables. The presence of a 

significant relationship (p <0.05) and strength of an association from the coefficient of 

determination (r^) was used to explain the influence thermal variability may have on 

stream fish community structure and which community variable is most related to it. The
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correlation between the 14 dependent fish community variables and thermal variability

was tested using univariate linear regressions.

To determine if fish distribution was associated with stream thermal 

characteristics I examined the association between thermal variability and the probability 

of fish presence. Fish presence was characterized by binary, categorical variables for 

several measures of the fish community based on frequency distribution curves to evenly 

distribute the numbers into categories (Table 2). Logistic models were developed using 

logistic regression to use thermal characteristics to predict the probability of each class.

Stream habitat variables (Table 1) were added to thermal variability as 

independent variables to look for associations between the stream habitat condition and 

the fish community structure as well as the strength of these variables in comparison to 

thermal variability. The intention was to find out if  stream habitat had a stronger 

influence on community structure than thermal variability or if  variables in the habitat 

increase previous associations found between thermal variability and the fish community. 

Stream width was not used in the multivariate analyses for the abundance (fish/m^) or 

biomass (g/m^) which included area within the variable. To assess how stream habitat 

characteristics contribute to the association between the thermal characteristics and the 

structure of the stream fish communities, a multiple regression was used as an additive 

linear model. Using forward stepwise regression the thermal and habitat variables were 

added to the model for each fish community variable until the r  ̂variable was no longer 

improved.

I also examined whether the abundance or characteristics of the two salmonid 

species was associated with one another, which may over shadow any associations seen
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between the two species and thermal variability. To test for correlations between the two 

species, brook trout abundance, relative abundance, biomass, and mean length 

measurements were regressed against the equal variables for rainbow trout using simple 

linear regression for each set of variables.
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Table 1. Independent and dependent variables used in analyses.

Independent Units Dependent Units
Thermal Variables Total Fish
Thermal variability °C Total fish abundance (density) fish/m^
Stream Habitat Variables Species richness
Width m Species diversity 1-D
Depth m Total fish biomass g/m^
Slope (gradient) ° Brook Trout
Percent of porous sediment % Brook trout abundance (density) fish/m^
Percent of canopy closure % Brook trout relative abundance
Average bank heights m Brook trout biomass g/m^

Brook trout mean weight g
Brook trout mean length mm
Rainbow Trout
Rainbow trout abundance (density) fish/m^
Rainbow trout relative abundance
Rainbow trout biomass g/m^
Rainbow trout mean weight g
Rainbow average length mm

Note: Average values were used for the habitat variables within the 50 m reach sampled.
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Table 2. Binary categorical variables for fish variables in logistic regression analyses.

Variables Few (1)
Categories

Many (2)
Total fish abundance < 0.20 > 0.20
Species richness < 5 > 5
Species diversity <5 > 5
Total fish biomass < 1.50 > 1.50
Brook trout abundance < 0.10 > 0.10
Rainbow trout abundance < 0.10 > 0.10
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3.4 Thermal and Environmental Variables

3.4.1 Habitat characteristics
Stream habitat, riparian zone and catchment scale characteristics were measured

for each 50 m reach for all o f the 11 streambed thermal mapping sample sites (Table 3).

The instream habitat variables were measured at the beginning of each reach, every 20 m

within the reach and again at the end o f each reach (n= 4/reach) (Figure 2). Stream

habitat variables included wetted stream width, streambed substrate, bank heights and

percentage of canopy closure. The percentage of canopy closure was collected in 4

cardinal directions during full leaf out using a spherical hand held densitometer and

averaged as a representation of the canopy closure from the riparian and upland zone

(OMNR 1997). Streambed substrate percent composition was visually estimated using a

modified version of the texture classes found in Sims et al. (1997) that included fine

sediment (silt and sand), porous sediment (gravel and cobble) and impervious sediment

(clay and bedrock). The geomorphic structure of the stream was classified into riffles

where the stream flow is rapid and shallow; runs where the stream water was flat but

moving and pools where the water is slow and deep (Chang 2003). Stream depth and

geomorphic structure, (riffle, run and pool) were recorded at every 2 m transect during

the thermal surveys.
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Table 3. Summary o f  the environmental variables collected for each 50 m reach.

Stream Habitat Units Riparian Zone Units Landscape Units
Depth m Stream Slope CV %
Geomorphic structure RCA ha Landscape slope
Wetted width m Riparian width m Bedrock %
Bank height m Riparian canopy % Topographic relief l/m/h

Fine sediment % Riparian slope ° Soil moisture w/m/d
Porous sediment % Soil moisture w /d
Impervious sediment % Soil type 1 - 5
Canopy closure % Soil depth 

Wetland type
m

W-type
Note: Riparian soil moisture, w = wet, d = dry; Riparian soil type, 1 = organic, 2 = silt, 
3 = sand, 4 = clay, 5 = bedrock; Landscape topographic relief, 1 = low, m = medium, h = 
high; Landscape soil moisture, w = wet, m = mixed, d = dry
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3.4.2 Riparian zone characteristics
Riparian variables were measured at the beginning and end of each reach, or when

distinctive changes in riparian zone structure were apparent (Figure 2). Riparian zone

variables were measured on both stream banks from the bank edge to the upland forest

transition. On each bank side riparian width, riparian zone slope, riparian canopy closure,

wetland type and soil characteristics were measured (Table 3). Wetland type was

determined using the Field Guide to Wetland Ecosystem Classification fo r  Northwestern

Ontario (Harris et al. 1996). Soil and canopy closure measurements were taken at 25, 50

and 75% of the riparian zone width. Soil characteristics measured were measured by

taking samples using a small, stainless steel auger to a maximum depth o f 85 cm. The

dominant soil type was categorized into organic, silt, sand, clay or bedrock (Sims et al.

1997). Soil moisture was classified as either wet or dry. Soil depth was quantified by

measuring the depth o f auger penetration. The percentage of canopy closure within the

riparian zone was measured once at each soil sample point, perpendicular to the stream

flow. The riparian variables on both bank sides were averaged to summarize riparian

zone dimensions, vegetation and soil characteristics within a reach.. Stream gradient

measurements were taken using a clinometer in the upstream direction in 10 to 20 m

intervals, depending on the line o f sight, to find the gradient angle (degrees °). Due to the

variation in slope distance lengths (S.D.) in stream gradient measurements (a) within a

reach, total slope (°) over an entire reach was calculated using the horizontal distance

(H.D.) and the change in elevation (D.E) in flowing equation:

/  H.D (S.D.*(cos(g)) ,
Slope -  t a n ' \  D.E (S.D.*(sin(a)) )
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Stream slope was not measured for small 1 km^ streams due to poor sight lines and 

calculation of it with a GIS using a digital elevation model provided unreliable results 

and hence was not available for analyses. Riparian gradient was measured using the 

clinometer and angle readings were taken from the bank edge looking into the riparian- 

upland transition zone.

3.4.3 RCA delineation
I used Reach Contributing Area (RCA) as a measurement of the lateral terrestrial

contribution o f surface and subsurface water, organic and inorganic material to a portion 

of a stream reach. The RCA index was adapted from Beven and Kirkby’s (1979) 

topographical index (77) model. The 77 is a simple model that uses In (a/ tan fi) to predict 

the contributing area of a basin where a is the contributing upslope area and fi  is the slope 

of that area. The 77 increases as the contributing area size increases and the slope o f the 

land decreases (Buttle et al. 2001). RCA was intended to represent the groundwater 

pathways based on the assumption that surface topography is similar to bedrock 

topography in regions of shallow soil depth (Freer et al. 1997) This assumption can be 

made in the Northwestern Ontario where there is thin glacial till overlaying bedrock 

(Wickware and Rubec 1989). Similar to the 77 model, as the amount o f land contributing 

to the portion o f the stream increases and the slope of the land decreases, the size of the 

RCA increases, indicating a larger potential groundwater contribution to a stream reach 

(Buttle et al. 2001).

The RCA for a stream was determined using GIS with a filled DEM, and the 

enhanced stream lines created during the construction of the thermal maps. Enhanced 

flow accumulation and flow direction grids (20 m^ grid) were created to establish the
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direction of surface flow on the landscape. The stream line points from the thermal maps 

were used landmarks, to divide up the stream into discrete sections for the calculation of 

RCAs. The flow direction grid and stream points were combined to generate RCA 

polygons (Figure 4) and zonal statistics were used to calculate the number and size of the 

RCAs contributing to each reach from both bank sides. Road intersections were 

accounted for raising the DEM values which blocked any subsurface flow, except for 

where a culvert location was known (Appendix II).

30



r

1:3,209 

25 50 100 
Meiers

RCA size 
hectares

J  0.04-0.20 

] ]  0 2 1  - 0 4 0

J  0.41 -0.00

g  0 . 8 1 - 2 . 0 0

g  2.01-6.08

R C A pour points 

— Stream line
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represents the amount o f terrestrial land that in contributing to a specific portion o f the 
stream, as indicated by the RCA pour points. The size o f the contributing area is 
symbolized by the size o f the individual polygons and the colour gradient from light to 
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5.4.4 Catchment characteristics
Terrestrial landscape characteristics were measured within the boundaries o f each

RCA contributing to a survey reach (Table 3). Upland vegetation was measured in the 

field using visual assessment of the dominant upland stand type and categorized into 

conifer, conifer mix, mixwood, hardwood mix and pure hardwood according to the 

Terrestrial and Wetland Ecosites o f  Northwestern Ontario Field Guide (Racey et al. 

1996). The coefficient of variation in elevation (CV) as well as the slope, geology and 

amount of topographic relief for each RCA contributing to a survey reach was calculated 

using zonal statistics in a GIS. The CV summarizes the amount of variation in elevation 

within a RCA and is an index of roughness. The landscape data for the zonal statistics 

was from Natural Resources and Values Information System (NRVIS) (OMNR 2008b) 

and included the provincial DEM (OMNR 2005a) as well as the Digital Northern Ontario 

Engineering Geology Terrain Study (NOEGTS) (OMNR 2005b). The CV in elevation is 

the standard deviation divided by the mean value o f the elevation for each 20 m^ grid cell 

in a RCA catchment.

The geology of the landscape was summarized to the percent of landscape dominated 

by bedrock materials which includes plateaus, knobs and plains which are typically 

covered by a thin mantle of drift no more than 1 m (Gartner et al. 1981). Topography 

relief was defined into three NOEGTS categories: low relief (L), a difference of >15 m in 

local elevation, moderate (M); a difference between 15 m and 60 m and high (H) with 

differences in local elevation over 60 m. Surface soil moisture was also defined into three 

categories by the NOEGTS as wet, dry and mixed (Gartner et al. 1981).
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3.4.5 Statistical analyzes -  Environmental variables
The environmental variables from the 3 spatial scales were tested for collinear

relationships using a Pearson’s correlation matrix. Relationships were deemed highly

correlated with two-tailed significance at the 0.01 level and r >0.5. For each collinear

relationship one variable was omitted from the analyses. RCA was log(io) transformed

were transformed appropriately to improve normalility as necessary.

To examine whether there was a relationship between thermal variability and the

amount o f lateral contributions a stream receives, the association between RCA and reach

thermal variability was tested using simple linear regression with all catchment sizes

pooled together. The coefficient of determination (r^) was used to determine the strength

of the association and relationships of p <0.05 were deemed significant.

The thermal variability data was separated into normal and extreme categorizes

based on a frequency distribution curve. The categories were divided using 1 standard

deviation above the mean thermal variation value. Reaches thermal variability above one

standard deviation were classified as extreme variability and reaches with thermal

variability below one standard deviation were classified as normal variability. The

proportion of normal and extreme thermal categories were then compared based on

catchment size to look at the distribution of the thermal categories amongst the o f 1,3, 5

and 10 km^ catchments.

The relationship between thermal variability, based on catchment size, and RCA

was examined to look for associations between lateral contributions and streambed

temperatures for different catchment size classes. This was completed using univariate

linear regressions in which the strength of the correlations as well as the direction of
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correlation were considered to interpret the relationship between temperature and lateral 

inputs.

To examine whether there were correlations between thermal variability and the 

habitat, riparian and catchment scale variables, univariate linear regressions were 

performed on each variable. The strength of the association was determined using the 

coefficient of determination (r^) and the significance was used to test the relationship (p 

<0.05). The direction of the relationship was also considered using the standardized beta 

coefficient (P) and regression line to examine the influence o f the environmental 

variables on thermal variability.
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4.0 RESULTS

4.1 Thermal Characteristics

4.1.1 All streams
A total of 11 stream sites were surveyed, 5 with a catchment of 1 km^ and 2 each 

for catchment sizes of 3, 5, and 10 km^ (Table 4). A total o f 55, 50 m reaches were 

sampled, 23 reaches in the 1 km^ catchment class and a 32 in the 3, 5 and 10 km^ 

catchment classes. Over the entire field survey season, 33 055 streambed thermal points 

were measured within 6611 transects. Mean temperatures varied widely both within and 

between streams and catchment size classes. Mean streambed temperatures ranged from

7.4 °C in R25 to 16.6 °C in G3 (Table 4). The maximum streambed temperature was 19.4 

°C, recorded in G4 while the minimum temperatures 2.9 °C in R26.

Thermal variability is defined as the difference between maximum and minimum 

streambed temperatures within the 11 streams ranged from 1.6 °C in L4 to 11.9 °C in G7. 

In most streams the largest deviations from the mean streambed temperature were those 

below or colder than the stream mean (Figure 5). Larger streams tended to have a greater 

range o f streambed temperatures. Streams within the 4 catchment size classes differed 

significantly in the level of thermal variability measured within them (F(3_ = 4.992, p = 

0.039). The variability was due to the differences between catchment size classes and not 

due to the variability among stream sites within the catchments. The streams with 

catchment sizes of 5 and 10 km^ had, on average, approximately twice the thermal 

variability as the 1 and 3 km^ streams (Figure 6). The highest total thermal variability was 

seen in the 10 km^ catchments and was incrementally lower in each catchment size class, 

however, there was no significant difference between 1 and 3 km^ or the 5 and 10 km^
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size classes. The significant differences in thermal variability were found between the 1 

km^ and 5 km^ (p = 0.02), and lOkm^ (p <0.01) as well as the 3km^ and the 5km^ (p = 

0.009) and lOkm^ (p <0.01).
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Table 4. Summary of the streambed temperatures for all survey sites in 2008.

Site
Catchment
size

# o f
Reaches

Mean of 
Stream
(°C)

Max. of 
stream 
(°C)

Min. of 
stream 
(“C)

Thermal
variability

Deviation 
range from 
mean

L4 1 2 10.4 11.3 9.7 1.6 0.9 -  (-0.7)

L5 1 5 11.2 12.1 8.5 3.6 0.9 -  (-2.7)
M8 1 6 10.1 10.6 8.2 2.4 0 .5 -(-1 .9 )

R25 1 4 7.4 8.4 6.4 2.0 1 .0 -(-1 .0 )

R26 1 6 8.0 9.0 2.9 6.1 1 .0 -(-5 .1 )

G1 3 6 8.8 9.9 7.0 2.9 1.1 -(-1 .8 )

G2 3 4 11.7 14.5 9.7 4.8 2.8 -  (-2.0)
G4 5 5 13.5 15.2 8.0 7.2 1 .7 -(-6 .8 )

G5 5 5 14.3 15.9 7.5 8.4 1 .6 -(-6 .8 )

G3 10 6 16.6 19.4 10.0 9.4 2.8 - (-6.6)

G7 10 6 15.4 18.3 6.4 11.9 2 .9 -(-9 .0 )

37



4.00

I 1 1 1 1 I
fi -2 .00

o  -4 .00

Stream Site

Figure 5. Range in streambed temperatures for all 11 study sites. Temperature 
distributions were standardized to mean = 0. Positive deviations from the mean are in red 
while negative deviations are in blue. The numbers below individual bars indicate the 
range (°C) between the maximum and minimum temperature deviation for the reach, or 
thermal variability.
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Figure 6. Distribution o f thermal variability among stream reaches (n= 55) for each 
catchment size class. The median is represented by the solid lines, inter-quartile range by 
the boxes and range by the whiskers. Closed circles represent outliers. Different letters 
denote significant differences between means using a nested univariate ANOVA with 
least squares post-hoc analysis to revel differences between catchment size classes.
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4.1.2 Small catchments -  1 hn
Thermal variability in 1 km^ streams ranged from 1.6 °C to 6.1 °C (Table 5). The

widest thermal variability was seen in R26, with a range of 6.1 °C throughout the total 

survey and 5.5 °C within one 50 m reach. The lowest thermal variability was measured in 

stream L4 with 1.6 °C range within entire survey. Within streams, the temperature range 

varied considerably with most o f the thermal variability being below the mean streambed 

temperatures (Figure 7).

The thermal map for R26 (Figure 8) illustrates the spatial distribution of 

streambed temperatures throughout the 300 m of stream surveyed. The mean streambed 

temperature over the entire survey was 8.0 °C and a large proportion of the streambed 

temperatures fell on or near that temperature, indicated by the yellow shading. There 

were distinct regions where streambed temperatures were cooler than the stream mean, 

indicated by blue regions on the thermal map. The largest amount of variation within one 

transect had streambed temperatures ranging from 2.9 °C to 8.3 °C, a range of 5.4 °C. 

Although the majority of the streambed temperatures throughout the stream survey were 

close or equal to the stream mean, the regions with the largest deviation from the mean 

tended to be cooler, with deviations of up to 5.1 °C below the mean. In contrast, 

relatively few areas had temperatures deviating above the mean temperature and of those 

that did the maximum deviation was 1.0 °C above the mean (Figure 9). A more detailed 

examination of streambed temperatures across the entire stream survey shows several 

areas of relatively large negative deviations from the mean and a few areas of much 

smaller positive deviations (Figure 9). The remainder of the thermal maps for the 1 km^ 

catchment streams are found in Appendix 111.
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Table 5. Summary of the thermal characteristics for all o f the 50 m reaches surveyed in 
small, 1 km^ stream catchments in 2008 (n= 23).

Site Max deviation
Min

deviation
Thermal

variability
Mean

deviation % negative
L4

0 0.7 -0.8 1.5 0.03 40
50 0.8 -0.8 1.6 -0.04 60

Stream survey 1.6
L5

0 0.9 -0.2 1.1 0.33 4
50 0.5 -0.9 1.4 -0.13 62

100 0.6 -2.7 3.3 -0.05 32
150 0.2 -1.7 1.9 -0.04 28
200 0.5 -1.7 2.2 -0.12 34

Stream survey 3.6
M8

0 0.5 -0.9 1.4 0.05 20
50 0.3 -0.4 0.7 0.03 28

100 0.3 -1.1 1.4 0.06 15
150 0.3 -1.3 1.6 -0.12 42
200 0.4 -0.9 1.3 0.02 22
250 0.4 -1.9 2.3 -0.04 25

Stream survey 2.4
R25

0 1.0 -0.7 1.7 0.04 35
50 0.7 -0.5 1.2 0.07 30

100 0.3 -1.0 1.3 -0.03 52
150 0.5 -0.7 1.2 -0.12 79

Stream survey 2.0
R26

0 0.5 -2.9 3.4 -0.02 33
50 1.0 -4.3 5.3 -0.06 35

100 0.4 -2.9 3.3 -0.02 30
150 0.7 -2.5 3.2 0.02 28
200 0.4 -5.1 5.5 -0.15 35
250 0.5 -0.1 0.6 0.23 6

Stream survey 6.1
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Figure 7. Streambed thermal variability for each 50 m reach sampled in the 1 km^ 
catchments surveyed (n= 5). Temperature distributions were standardized to mean = 0. 
Positive deviations from the mean are in red while negative deviations are in blue. The 
numbers beneath the bars indicate the total amount o f thermal variability (°C) for the 
stream.
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Figure 8. Streambed thermal map for stream survey, R26.The thermal map illustrates the 
pattern o f  thermal variation in streambed temperature. Differences in streambed 
temperatures are shown by a colour gradient with blue for the coldest temperature and red 
for the warmest.
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4.1.3 Large catchments -  3, 5, 10 km^
The larger catchment streams, 3, 5 and 10 km^ had a wide range in streambed

temperatures both between and within individual streams. The highest thermal variability 

was in G7 a stream in the 10 km^ catchment class, with a range in temperatures of 11.9 

°C over the 300 m survey and 10.1 °C within a 50 m reach (Table 6). The least thermal 

variation was seen in G l, a 3 km^ stream with a temperature range of 2.9 °C throughout 

the entire stream. Although the thermal variability within stream surveys ranged widely, 

as in the 1 km^ streams, the majority o f the variability was below the mean temperature 

(Figure 10).

The streambed thermal map for site G4 illustrates the spatial pattern of thermal 

variability with streambed temperatures ranging from a maximum temperature of 15.2 °C 

to a minimum of 8.0 °C, a range of 7.2 °C (Figure 11). The majority of streambed 

temperatures were close to the mean of 13.5 °C (areas shaded in yellow; Figure 11) 

however several distinctly cooler regions occurred throughout the stream (areas in blue; 

Figure 11). The coolest streambed temperature throughout the survey was 8.0 °C, a 5.5 

°C disparity from the mean streambed temperature. Within the transect with the coolest 

temperature, there was a range o f 5.8 °C in streambed temperatures. In contrast, the 

warmest streambed temperature was 15.2 °C, deviating only 1.4 °C above the mean 

streambed temperature (Figure 11). The most apparent cooler regions were found 

between transects 78 and 96 and between 202 and 234 (Figure 12). Thermal maps for the 

G l, G2, G3, G5 and G7 are found in Appendix IV.
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Table 6. Summary o f the thermal characteristics for all of the 50 m reach surveyed in 
larger, 3 ,5 , 10 km^, catchments in 2008 (n= 32).

Min Thermal Mean
Site Max deviation deviation variability deviation % negative
G1

0 0.4 -0.4 0.8 0.06 45
50 0.5 -0.4 0.9 0.03 48

100 1.1 -1.8 2.9 0.02 60
150 0.7 -0.8 1.5 -0.07 70
200 0.3 -0.3 0.6 0.04 51
250 0.7 -0.4 1.1 0.04 56

Stream survey 2.9
G2

0 2.0 -2.0 4.0 -0.56 67
50 1.9 -1.9 3.8 0.18 29

100 2.8 -0.7 3.5 0.24 27
150 1.8 -0.8 2.6 0.2 27

Stream survey 4.8
G4

0 0.4 -1.1 1.5 0.1 22
50 1.3 -2.9 4.2 0.13 26

100 0.7 -1.0 1.7 0.16 16
150 1.7 -1.7 3.4 0.14 29
200 0.4 -5.5 5.9 -0.79 67

Stream survey 7.2
G5

0 1.6 -5.5 7.1 0.19 21.4
50 1.5 -3.2 4.7 -0.01 39.5

100 1.4 -4.8 6.2 -0.34 59.2
150 1.5 -6.8 8.3 -0.17 43.2
200 1.1 -1.0 2.1 0.31 16.9

Stream survey 8.4
G3

0 1.8 -1.5 3.3 0.39 5
50 0.6 -3.1 3.7 0.03 18

100 2.9 -5.3 8.2 -0.06 42
150 2.8 -6.6 9.4 -0.23 52
200 1.2 -6.1 7.3 -0.26 43
250 0.5 -2.7 3.2 0.12 12

Stream survey 9.4
G7

0 1.1 -9.0 10.1 -0.54 75
50 1.2 -5.3 6.5 -0.43 62

100 2.9 -3.1 6.0 0.2 24
150 1.1 -0.7 1.8 0.29 5
200 0.6 -0.9 1.5 0.23 9
250 0.8 -1.3 2.1

11.9
0.25 15
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4.2 Thermal and Fish Relationships

4.2.1 Stream fish  data
A total of 636 fish from 14 species were captured in 4 of the 7 survey sites

sampled by backpack electrofishing in the summer of 2008 (Table 7). The 3 streams 

without fish were, R25, a 1 km^ catchment, G l, a 3 km^ catchment and 1 o f the 5 km^ 

catchments, G5. Only the 2 downstream reaches in G2 had fish captured in them so the 2 

most upstream reaches were omitted from the analyses. The absence of fish was expected 

due to low flow conditions which created a culvert barrier rather than a lack of suitable 

habitat. The total number of 50 m reaches surveyed with the fish present was 19.

The most common fish species were rainbow trout and brook trout constituting 

36.7 % and 28.8 %, respectively, of all fish caught. Rainbow trout were found in 16 of 

the 19 reaches and brook trout were found in all of the 19 reaches sampled where fish 

were present (Table 7). The highest abundance of fish, 0.25 fish/m^, was measured in G4, 

a 5 km^ stream. G3 had the highest number of fish and highest species richness; 240 fish 

from 12 species. G7 had the highest total fish biomass of 2.209 g/m^ (Table 7).

Species diversity was the only fish community variable which varied significantly 

among catchment size classes and not among sites within catchment sizes (F(2,i6)= 6.909, 

p = 0.23; Figure 13). The 10 km^ catchment streams had species diversity approximately 

1.4 times higher than the other catchment size classes. Brook trout abundance and 

relative abundance as well as rainbow trout abundance, relative abundance and biomass 

among reaches varied significantly by stream site within the catchment classes. The 

remaining fish variables did not differ significantly among in stream catchment size class.
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Fish distribution was variable within and among surveyed streams. Total fish 

abundance in 19 reaches surveyed ranged from 0.09 fish/m^ in G l, reach 0 (G7 0) to 0.49 

fish/m^ in G3 150 (Table 8). Reaches with high fish abundance did not have the most 

biomass. The reach with the largest biomass (G7 50) was 50 % less abundant than most 

abundant reach (G3 150). Species richness did not coincide with species diversity. The 

highest diversity was seen in G3 200 with only 6 species, 4 less species than the reach 

with the greatest richness, G3 0 with 11 species.

The distribution of the two salmonid species, brook and rainbow trout was 

variable among the stream reaches surveyed. Brook trout abundance ranged from 0.01 to 

0.21 fish/m^ while rainbow trout abundance ranged from 0 to 0.29 fish/m^ (Table 8). 

Similar to total fish biomass, areas o f high brook trout abundance tended to have smaller 

brook trout (Table 8). G3 100 had brook trout abundance values 7.4 times higher than the 

reach with the greatest biomass, G7 50. The relationship between size and abundance was 

not apparent for rainbow trout.

The relative abundance of the two salmonid species was higher in every reach 

surveyed compared to other fish species (Table 8). Brook and rainbow trout made up at 

least 50 % of the relative abundance for 16 o f the 19 reach surveys; when the proportion 

of one species was higher the proportion o f the other species was low. Brook trout had 

high relative abundance in G3, from 0.32 to 0.58 where as the relative abundance of 

rainbow trout was less than 0.10 in each reach within that stream (Figure 14).

Conversely, the relative abundance o f rainbow trout was 4 times higher than brook trout 

in the first two reaches of G4 (0, 50) (Figure 14).
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4.2.2 Fish and thermal variability
Significant relationships were found between 8 of the 14 stream fish community

variables and thermal variability for the 19 reaches surveyed (Table 9). A significant 

relationship was seen between the Simpson diversity index and stream reach thermal 

variability (r^ = 0.289, p = 0.018). The Simpson diversity index ranged from a low of 0 to 

a high of 1 ; diversity values over 0.5 indicate high diversity while values below 0.50 are 

considered low diversity (Krebs 1989). Areas of greater thermal variability tended to be 

more diverse with Simpson diversity values over 0.5 (Figure 15). All of the diversity 

levels lower than 0.5 where found in reaches with less than 4.5 °C in thermal variability. 

However, the positive relationship may be an effect of catchment size because large 

catchments (5 and 10 km^) had higher thermal variability values and were more diverse 

than smaller catchments (Figure 6 & 13). Total fish abundance, species richness and total 

biomass were not found to be significantly associated with thermal variability (Table 9).

The presence and abundance o f brook trout was positively correlated with the 

thermal variability within stream reaches. Brook trout abundance was significantly 

associated with thermal variability (r^ -  0.232, p = 0.037). Reaches with higher thermal 

variability also had a higher number o f brook trout (Figure 16a). The reach with the most 

brook trout, 0.208 fish/m^, had a thermal variability value of 8.2 °C compared to the 

reach with the lowest number o f brook trout, 0.007 fish/m^ which also had the lowest 

thermal variability, 1.5 °C in 50 m. The positive relationship between brook trout 

presence and thermal variability was further illustrated by the association between 

thermal variability and relative abundance of brook trout (r^= 0.225, p = 0.04). In reaches 

with higher thermal variability the proportion of the fish community comprised of brook
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trout was also higher (Figure 16b). The reaches with the greatest thermal variability had 3 

out o f 5 of the highest brook trout proportions, although the greatest relative abundance 

of brook trout was recorded in a reach with low thermal variability (3.70 °C). However, 

the two measures o f brook trout presence, abundance and relative abundance, were found 

to be collinear (r = 0.749) so their similar association with thermal variability should be 

expected. Other remaining measures of the brook trout populations: biomass, mean 

weight and mean length, were not found to be significantly correlated with thermal 

variability (Table 9).

In contrast to brook trout, measures o f the rainbow trout population were all 

significantly negatively associated with reach thermal variability (Table 9). Stream 

reaches with higher variability in streambed temperatures tended to have lower rainbow 

trout abundance (r  ̂= 0.303, p = 0.015; Figure 17a). The reach with the greatest thermal 

variability, 10.1 °C, had rainbow trout abundance 10 times (0.021 fish/m^) lower than the 

reach with the lowest thermal variability o f 1.5 °C (0.216 fish/m^). The proportion of the 

fish community comprised of rainbow trout tended to be lowest in reaches with high 

thermal variability (r^= 0.317, p = 0.012; Figure 17b). Rainbow trout abundance and 

relative abundance were not independent of one another (r = 0.899) so a similar 

association to thermal variability is expected.

The presence of larger rainbow trout, measured as weight, biomass or length, was 

negatively associated with high thermal variability (Table 9). The larger rainbow trout 

tended to be found in regions of low thermal variability, less than 4.3 °C (Figure 18a &

18b). The mean weight (g) of rainbow trout was highest in stream reaches with thermal 

variability less than 3.0 °C (Figure 18c).
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Table 9. Results from simple linear regressions performed on stream fish community

Fish variable r= P F P df
Total Fish
Total fish abundance (density) 0.030 0.477 0.528 0.174 18
Species richness 0.077 0.249 1.426 0.278 18
Simpson’s Diversity Index (1-0) (diversity) 0.289 0.018 6.912 0.538 18
Total fish biomass (g/m^) 0.013 0.643 0.223 -0.114 18
Brook Trout
Brook trout abundance (fish/m^) 0.232 0.037 5.131 0.481 18
Brook trout relative abundance 0.226 0.040 4.940 0.475 18
Brook trout biomass (g/m^) 0.000 0.999 0.000 0.000 18
Brook trout mean weight (g) 0.002 0.867 0.223 0.041 18
Brook trout mean length (mm) 0.091 0.211 1.692 -0.301 18
Rainbow Trout
Rainbow trout abundance (fish/m^) 0.303 0.015 7.381 -0.550 18
Rainbow trout relative abundance 0.317 0.012 7.884 -0.563 18
Rainbow trout biomass (g/m^) 0.430 0.002 12.829 -0.656 18
Rainbow trout mean weight (g) 0.401 0.004 11.374 -0.633 18
Rainbow trout mean length (mm) 0.386 0.005 10.666 -0.621 18
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Figure 15. Relationship between thermal variability and fish community diversity 
indicated by the Simpson’s Diversity Index (1-D). The horizontal dotted line represents 
the division between low and high diversity values (0.5). Points represent diversity index 
for the 19 stream reaches sampled.
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Figure 16. Relationship between thermal variability and brook trout (a) abundance 
(fish/m^) and (b) relative abundance (brook trout abundance/total fish abundance). Points 
represent the abundance (a) and relative abundance (b) for brook trout in the 19 stream 
reaches sampled.
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Figure 17. Relationship between thermal variability and rainbow trout {a) abundance 
(fish/m^) and {b) relative abundance (rainbow trout abundance/total fish abundance). 
Points represent rainbow trout abundance (a) and relative abundance (6) for 19 stream 
reaches sampled.
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Figure 18. Relationship between thermal variability regressed and rainbow trout (a) 
biomass (g/m^), (b) mean length (mm) and (c) mean weight (g). Points represent the total 
biomass (a) mean length (b) and mean weight (c) of rainbow trout for 19 stream reaches 
sampled.
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There was a clear separation between reaches with high and low species richness 

based on the thermal variability o f the reach. In regions of high thermal variation, more 

species (>5) were found than in areas of low variability however, there were two 

exceptions in which the high richness category was predicted in areas of low thermal 

variability (Figure 19). Using thermal variability as a predictor increased the logistic 

model’s accuracy 26.3 % relative to random with a correct classification percentage of 

84.2 (Table 10).

Rainbow trout abundance was significantly associated with thermal variation 

(Table 10). The probability of high abundance o f rainbow (>0.10 fish/m^) decreased as 

thermal variability increased (Figure 20). Using thermal variability in the logistic model 

increased the correct classification of the rainbow trout categories by 21.0 % relative to 

random with a correct classification of 84.2 % (Table 10).

Thermal variability was not an effective predictor of total fish abundance, total 

fish biomass and brook trout abundance categories and did not significantly improve the 

predictive ability of the logistic models relative to random. The increase in the logistic 

model’s correct classification of these variables using thermal variability was less than 10 

% for each case (Table 10).
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Thermal variability (oC)

Figure 19. Predicted probability of low or high species richness using thermal variability 
as the predictor variable. Open circles represent reaches with low species richness, less 
than 5 species recorded (n= 11). Solid circles represent reaches with high species 
richness, more than 5 species recorded (n= 8).
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Figure 20. Predicted probability o f few or many rainbow trout using thermal variability 
as the predictor variable. Open circles represent reaches with low rainbow trout 
abundance, less than 0.10 fish/m^ (n= 12). Solid circles represent reaches with high 
rainbow trout abundance, more than 0.10 fish/m^ (n= 7).
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Brook trout and rainbow trout dependent variables were highly correlated so only 

abundance and length for each species was used in the multiple regression analyses 

(Table 11).

Associations were found between fish community structure and stream habitat 

variables as well as thermal variability. Species richness was higher in wider stream 

reaches (r^= 0.325, p = 0.011; Table 12), species diversity was higher in reaches that were 

wider and more thermally variable (r^= 0.456, p = 0.007; Table 12). Fish abundance and 

biomass was not significantly associated with any of the habitat or thermal variables 

measured in this study (p = >0.05). None of the habitat variables contributed to 

regression model between thermal variably and brook trout abundance. There were no 

apparent relationships between brook trout mean length and the habitat variables or 

thermal variability. The percentage of porous material in the streambed had the strongest 

relationship with rainbow trout abundance (r^= 0.393, p = 0.04; Table 12). The 

abundance o f rainbow trout tended to be lower in reaches with streambed comprised of 

porous material such as sand and gravel (P = -0.624). Thermal variability did not improve 

the fit o f the model despite having a significant relationship with rainbow trout 

abundance (r^= 0.303, p = 0.015; Table 9). The habitat variables did not improve the fit 

of the regression model between thermal variability and rainbow trout mean length and 

were not added to the model.
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Table 11 Correlations between fish community variables.
Correlated Variables r P
Brook Trout
Abundance x Relative abundance 0.749 < 0.01
Biomass x Mean weight 0.968 < 0.01
Rainbow Trout
Abundance x Relative abundance 0.899 < 0.01
Abundance x Biomass 0.721 < 0.01
Abundance x Mean weight 0.777 < 0.01
Relative abundance x Biomass 0.812 < 0.01
Relative abundance x Mean weight 0.711 0.001
Biomass x Mean weight 0.964 < 0.01
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Table 12. Multiple regression results using thermal and habitat independent variables.

r= F P Variables P P
Total abundance (density) - - - - - -
Total species richness 0.325 8.201 0.011 Width 8.201 0.011
Simpson’s diversity (1 -D ) 0.456 6.959 0.007 Thermal 0.484 0.018

Width 0.423 0.036
Total biomass - - - - - -
Brook trout abundance 0.232 5.131 0.037 Thermal 0.481 0.037
Brook trout mean length - - - - - -
Rainbow trout abundance 0.393 11.014 0.004 % porous -0,627 0.04
Rainbow trout mean length 0.386 10.666 0.05 Thermal -0.621 0.05
Note. Predictor variables; Width = wetted stream width (m). Thermal = thermal 
variability, % porous = percent o f porous streambed sediment. Dashes (-) indicate the 
absence o f significant correlations between dependent and independent variables.
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4.2.3 Relationship between salmonid species
The abundance of brook trout had a negative relationship with the abundance of

rainbow trout (r^= 0.219, p = 0.043; Figure 21a). The reach with the greatest abundance

of brook trout, 0.208 fish/m^, had no rainbow trout present, while the stream reach with

the smallest brook trout abundance, 0.007 fish/m^, had a rainbow trout abundance 18

times higher (0.127 fish/m^). Similarly, the inverse relationship between the relative

abundance of brook trout and the relative abundance of rainbow trout indicates that fish

communities comprised mainly of brook trout will have few rainbow trout than a

community with a small proportion o f brook trout (r^= 0.702, p <0.01; Figure 21b). The

measurements o f brook trout and rainbow trout productivity, biomass, mean weight and

mean length, did not show any significant correlations (p >0.05).

70



(S

^  0 .2 0 -

0 .15 -

$  0 .1 0 -

0 0 5 -

R S q  L i n e a r :  0 . 2 1 9

0.00 0.05 0.15 0.250 1 0 0.20

Brook trout abundance (fish/m2}

(a)

1 00 -

41 0 .80-

P  0 .40-

0 ^ 0 .20-

R S q  L i n e a r :  0 . 7 0 2

0 .00 -

0.00 0.10 0-20 0.30 0.600.40 0.50

Brook trout relative abundance

(b)

Figure 21. Relationship between brook trout and rainbow trout (a) abundance (fisb/m^) 
and (b) relative abundance. Points represent the abundance (a) and relative abundance (b) 
of the brook trout and rainbow trout caught in 19 stream reaches sampled.
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4.3 Thermal and Environmental Variables

4.3.1 Environmental variability between streams
The majority o f the habitat, riparian and catchment variables were highly variable

both within and between watersheds and among the watershed size classes. When

averaged over a reach scale, stream geomorphic structure and dominant W-type had very

little to no variability and were determined not to be valuable variables for differentiating

among streams and were omitted from any analyses.

The stream morphology of the 1 km^ catchments was generally shallow water

depths and narrow channels, with streambeds dominated by porous sediments comprised

of coarse gravel and cobble (Table 13). The structure o f the riparian zone for 1 km^

streams was highly variable from narrow and steep to wide and flat. The variability in

riparian zone structure was similar to the variation in RCA sizes, which ranged from <1

ha to almost 40 ha. The catchment landform geology for the 1 km^ streams was

comprised o f bedrock with medium relief but the soil moisture and the coefficient of

variation in elevation was too variable between sites to generalize.

The reaches with the 3, 5 and 10 km^ catchment size classes had stream channels

that were shallow and comprised of porous streambed sediments but were generally

wider than the 1 km^ streams (Table 14). The shallow depth of all stream sites was likely

due to the low flow conditions when measurements were taken rather than the channel

morphology. The riparian zone and catchment variables for the stream reaches in the 3, 5

and 10 km^ categories were highly variable within and among streams.

The RCA classes for all the stream reaches varied from less than 1 ha to over 122

ha (Table 15).
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Table 15. Summary o f  RCA size (ha) within individual stream reaches (n= 55).

1 km̂  streams 3,5,  10 km̂  streams

Reach L4 L5 M8 R25 R26 G1 G2 G3 G4 G5 G7

0.96 39.72

3.68 1.76

92 1.04

96 1.00

96 23.12

21.12

41.88

56.48

65.92

70.08

65.88

36.72 122.20

67.12

Mean 2.78 1.90 14.63 41.21 2.57 7.17 31.90 1.48 2.30 12.19 23.29

75



4.3.2 Environmental variables and thermal variability
Stream bank height, % impervious sediment, % fine sediment, stream slope,

riparian canopy closure, riparian soil depth, landscape slope were highly collinear with

the other environmental variables and were omitted from the analyses (r >0.5, p <0.01;

Appendix V). The number of environmental variables was reduced from 20 to 13. RCA

size classes were log(io) transformed to improve normality.

Thermal variability was not significantly associated with RCA(log(io)) when

tested with all o f the catchment size reaches pooled together in the regression analysis

(r^= 0.017, p = 0.336, n=55). The lack of a relationship between thermal variability and

RCA(log(io)) may be an effect o f catchment size due to the significant difference in

thermal variability amongst the 1 and 3 km^ and the 5 and 10 km^ catchments (Figure 6).

The distribution of thermal variability measurements within stream reaches was

highly positively skewed. Thirty-two percent of the reach thermal variability measures

were greater than one standard deviation (SD) above the mean. For further analyses,

reach were categorized as normal (within one SD of the mean, 0 - 5 .5  °C) or extreme

(above SD from the mean. Figure 22).

Reaches within the 5 and 10 km^ catchment size classes had both normal and

extreme thermal variability; reaches within the 1 and 3 km^ catchments had only normal

thermal variability values (Figure 23). The difference in thermal variability by catchment

size grouped the stream reaches in size classes as, 1 and 3 km^ catchments (n= 33

reaches) and 5 and 10 km^ catchments (n= 22 reaches). The remaining analyses were

conducted on the groups separately.
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The relationship between RCA(log(io)) and thermal variability differed among 

catchment sizes. There was a positive relationship between thermal variability and 

RCA(log(io)) for the reaches within the 5 and 10 km^ catchment sizes (r^= 0.237, p = 

0.022). Stream reaches with larger contributing areas tended to have more variability in 

streambed temperatures than reaches with small contributing areas (Figure 24). There 

was no significant relationship between thermal variability and RCA(log(io)) for the 1 and 

3 km^ catchment size category (Figure 24). There was a distinct grouping of the reaches 

in the 1 and 3 km^ catchments in lower surface water temperatures and low thermal 

variability and no relationship was seen between thermal variability and mean surface 

water temperature (r^= 0.056, p = 0.185; Figure 25). The reaches in catchments of 5 and 

10 km^ were spread between low and high thermal variability with a positive relationship 

between thermal variability and mean surface water temperature (r^= 0.429, p = 0.001; 

Figure 25).

Thermal variability for stream reaches within the 1 and 3 km^ catchment size was 

higher in reaches with catchments that had large CV values (r^= 0.274, p = 0.002, P = 

0.523) and a low percentage of bedrock (r^= 0.183, p = 0.013, P = -0.428). None of the 

habitat or riparian variables had a significant relationship with thermal variability for the 

32 reaches.

Thermal variability for stream reaches within the 5 and 10 km^ catchment size 

category was higher in reaches a larger percent o f porous streambed material (r^= 0.233, 

p = 0.023; Figure 26) and larger RCAs. None of the catchment variables had a significant 

relationship with thermal variability in the 5 and 10 km^ catchments (r^ <0.15, p >0.05, n 

= 22X
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Figure 22. Frequency distribution curve of the thermal variability in stream reaches. Bars 
represent the frequency o f occurrence and the solid black line indicates the frequency 
distribution. The vertical solid line indicates the mean (3.24 °C) and the dashed line 
indicates 1 standard deviation from the mean (2.30 °C). Reaches below 1 standard 
deviation (5.5 °C) were classified as normal and above (> 5.5 °C) were classified as 
extreme thermal variability.
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Figure 23. Distribution of stream reaches based on catchment size classes within the 
thermal variability categories, normal (0 -5 .5  °C) and extreme (>5.5 °C). The height of 
the bars represents the number o f reaches within 1 ,3 ,5  and 10 km^ catchment sizes that 
had normal or extreme thermal variability.
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Figure 24. Relationship between thermal variability and RCA(logno)) for reaches in 
streams with 1 & 3 km catchments and reaches within 5 & 10 km catchment size 
streams. The x symbols represent the 33 reaches in the 1 & 3 km^ catchment category and 
the open circles represent the 22 reaches in the 5 & 10 km^ category. The dashed line is 
the regression line for the 1 & 3 km^ and the solid line is the regression line for the 5 & 
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Figure 25. Relationship between thermal variability and mean surface water temperature 
for reaches in streams with 1 & 3 km^ catchments and reaches within 5 & 10 km 
catchments size streams. The x symbols represent the 33 reaches in the 1 & 3 km^ 
catchment category and the open circles represent the 22 reaches in the 5 & 10 km^ 
category. The dashed line is the regression line for the 1 & 3 km^ and the solid line is the 
regression line for the 5 & 10 km^.
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Figure 26. Relationship between thermal variability in the 5 & 10 km^ catchments size 
streams and porous streambed material. The open circle points represent the 22 stream 
reaches sampled with the 5 &10 km^ catchment category.
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5.0 DISCUSSION
Stream temperature is one the most critical abiotic factors in the maintenance and

health o f stream ecosystems. It influences other abiotic conditions such as the dissolved 

oxygen and pH as well as biotic processes such as organism health (Caissie 2006).

Spatial variability in surface water temperature has typically been used as the prime 

indicator of stream thermal conditions (Clarke et al. 1999; Arscott et al. 2001; Medina et 

al. 2002; Picard et al. 2003; Storey 2003) however the variability in streambed 

temperatures may be equally important to the thermal conditions of a stream system as 

seen by the results of this study.

There was a great deal o f thermal variability within and among streams, 

potentially associated with differences in groundwater input as predicted by my first 

hypothesis. Thermal variability was primarily associated with temperatures colder than 

the reach average; reaches tended to have larger negative deviations from the mean than 

positive deviations which supports my assumption that variability is an indicator of 

groundwater input. Other studies have also concluded that, during the summer, regions 

receiving groundwater are cooler than streambed regions with only surface water mixing 

(Moore et al. 2005; Schmidt et al. 2006; Tague et al. 2007). Due to the heterogeneous 

nature of groundwater inputs into a stream, one stream section may be receiving 

groundwater while a few metres up or down stream may be downwelling (surface water) 

into the streambed (Chen 2009). The upwelling (groundwater input) areas of a streambed 

would be cooler than downwelling areas creating microthermal variation in streambed 

temperatures (Webb et al. 2008). In a 600 m streambed thermal survey, Westhoff et al.

83



(2007) found a 4.5 °C difference in streambed temperatures with the highest variability 

measured directly downstream of a known groundwater source.

The level of thermal variability was unequal among reaches o f different 

catchment sizes. Reaches in streams that had a catchment size of 5 or 10 km^ had on 

average double the level of thermal variability than stream reaches within 1 or 3 km^ 

catchments. The reduced level of thermal variability in the 1 and 3 km^ catchments may 

be explained by the stream flow conditions and time of year in which the thermal 

mapping was completed. During base flow conditions, the surface water in small streams 

has had relatively little time to warm from the groundwater source so it is likely not 

sufficiently thermally discrete from groundwater upwellings to be easily detected 

(Brunke and Gosner 1997; Malcolm et al. 2004; Schmidt et al. 2007).

The structure o f a fish community in a stream environment may be highly 

influenced by thermal conditions o f a stream (Baltz et al. 1987). My results partially 

support my second hypothesis that thermal variability would be positively associated 

with fish abundance, species diversity and total biomass, specifically for brook trout and 

rainbow trout populations. Species diversity, richness and brook trout abundance was 

higher in stream reaches with more thermal variability, however there was no difference 

in brook trout size in these areas. In contrast to brook trout, rainbow trout size and 

abundance was lower in reaches with high thermal variability, which was opposite to my 

prediction. Additionally, contrary to my hypothesis, there was no correlation between 

thermal variability and the abundance or size o f fish. This observation may be related in 

part, to the observed pattern of brook trout and rainbow trout abundance. Brook trout and 

rainbow trout were the most abundant species encountered in all the stream surveys and
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comprised more than 65 % of all fish sampled. However, the abundance o f brook and 

rainbow trout were negatively correlated and had opposite relationships with thermal 

variability so a high abundance of one species was contrasted low abundance of the other. 

This pattern masked any relationship between total fish abundance and thermal 

variability.

Fish species richness and diversity were positively associated with thermal 

variability. Regions with variable thermal habitats had a greater number of fish species 

and were more homogenous in abundance within species. High species richness was 

predicted in reaches with high thermal variability and low richness in reaches with low 

thermal variability. Species diversity had a positive correlation with thermal variability 

and was nearly 1.5 times greater in the 10 km^ catchments with the highest thermal 

variability levels than in the less variable 3 km^ catchments. These results may be 

explained by the River Continuum Concept which suggests that low diversity in 

headwater streams was due to the small differences in the spatial and temporal thermal 

regimes, where as streams directly receiving contributions from the headwaters had more 

temperature variation and more biotic diversity (Vannote et al. 1980). The River 

Continuum Concept is one example of, and support for, the hypothesis that a positive 

species-area relationship existed because larger areas had more habitat heterogeneity and 

available resources, and thus may support more species (Williams 1964). An alternative 

hypothesis is that increasing sampling area increased the chance of finding more 

individual organisms as well as more species; because larger areas can contain more 

individuals (Cormor and McCoy 1979). The results from this study seem to support the 

habitat heterogeneity hypothesis because there was no significant relationship between
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abundance and stream size, while diversity was higher in larger catchments because of 

the potential for more available resources and preferred habitat niches (Angermeier and 

Schlosser 1989).

Areas with greater thermal heterogeneity may support a diverse community 

structure by incorporating the preferences and optimal temperatures o f multiple fish 

species (Vannote and Sweeny 1980; Brown et al. 2005; Chu et al. 2006). The importance 

o f thermal variability in maintaining species diversity is illustrated by 3 coldwater fish 

species found in Northwestern Ontario, slimy sculpin, Chinook salmon and brook trout, 

whose optimal temperature range differs by almost 7 °C. Slimly sculpin have a 

preference for temperatures around 10 °C while Chinook salmon prefer 14 °C and brook 

trout in the region of 17 °C (OMNR 2008a). Yet, during the electrofishing surveys, slimy 

sculpin, Chinook salmon and brook trout were found in streams with surface water 

temperatures beyond their thermal preference. Slimy sculpin and brook trout were found 

in areas with stream water temperatures o f 22 °C, while Chinook salmon was found in 

temperatures of 19 °C. These coldwater species may have tolerated surface water 

temperatures exceeding their preferred temperatures by as much 12 °C by using cooler 

streambed areas as temporary habitats with temperatures nearer their thermal preference 

(Matthews and Berg 1997). The distribution of slimy sculpin within a stream has been 

strongly correlated to temperature. During the summer months the highest densities may 

be found in groundwater input areas, which coincide with the lowest summer 

temperatures in a stream (Edwards and Cunjak 2007). Similarly, Chinook salmon inhabit 

stream reaches with temperatures that exceeded their lethal limit of 25 °C due to cooler 

groundwater patches distributed throughout the stream (Torgersen et al. 1999).
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The positive influence o f thermal variability in streambed temperatures on fish 

abundance was most evident in brook trout. Brook trout abundance was probably higher 

in reaches with greater thermal variability because of the thermal réfugia that cooler areas 

provide during warm summer water temperatures (Curry et al. 1997). The majority of the 

brook trout caught in the stream surveys were small, young individuals that use upwelling 

groundwater to maintain body temperature. Unlike the larger adults, young brook trout 

are unable to migrate long distances into deeper lake habitats and rely on groundwater 

inputs throughout they warm summer months (Power et al. 1999). The cold patches in 

streams are critical to the growth of young brook trout. High water temperature can raise 

basal metabolic costs, leaving less energy for growth and activity (Drake and Taylor 

1996).

Length and biomass was not correlated with thermal variability in brook trout 

populations possibly because larger adults can migrate into larger water bodies (Lake 

Superior) maintaining body temperature according to the, “bigger fish -  deeper habitat”, 

relationship (Faush and Bramblett 1991; Bell 2006). For example, a study on brook trout 

movement patterns in Nipigon Bay found that brook trout often used deeper areas during 

the warmest part o f the daylight hours and moved to shallow near shore areas during 

cooler periods (Mucha and Mackereth 2008).

In contrast to brook trout the abundance, relative abundance, length and biomass 

of rainbow trout were lower in areas o f high thermal variability than in areas with low 

thermal variability. The negative relationship observed between thermal variability and 

rainbow trout was unexpected because brook trout and rainbow trout have generally been 

grouped in the same coldwater species category (Wang et al. 2003). Thermally sensitive
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cold water fish species, such as brook and rainbow trout tend to be found in deep, narrow, 

high gradient coldwater streams with high inputs of groundwater (Wang et al. 2003). In 

this study, both brook trout and rainbow trout were found in these types o f coldwater 

streams, however, at a smaller reach scale the abundance of the two species differed 

within this stream type.

One possible explanation for the observed pattern of rainbow trout distribution 

may be that they are more strongly influenced by habitat characteristics other than 

thermal variability. Thermal variability was generally greatest in stream sections with low 

gradients, slower discharge and porous streambed materials (Chang 2003), while rainbow 

trout prefer swifter moving water and are often found at the bottom of a riffle entering a 

pool (Scott and Crossman 1973). Ebersole et al. (2001) examined the association 

between coldwater réfugia provided by groundwater inputs and the density of rainbow 

trout in a stream. The authors found no significant correlation between the number of 

coldwater patches and the density o f rainbow trout in a stream. They suggested that this 

may be due to the réfugia not meeting important physiological requirements such as 

dissolved oxygen concentration, food availability and predation avoidance.

Differences between brook trout and rainbow trout methods of behavioural 

thermoregulation may also explain their different relationships with thermal variability. 

Coldwater stream fish typically thermoregulate by actively migrating into an area that is 

within their thermal preference, for instance, a groundwater seep or deep lake habitat 

(Reynolds and Casterlin 1979). However, it has been noted that in water near lethal 

thermal conditions juvenile rainbow trout may not always thermoregulate by moving into 

cooler temperatures but compensate for the conditions by continuously foraging (Spina
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2007). Maintaining body temperature below lethal limits may be more critical to young 

brook trout than rainbow trout, which may choose to trade optimal body temperature for 

larger foraging territory. For instance, a study on behavioural thermoregulation in brook 

trout and rainbow trout found that brook trout consistently had cooler body temperatures 

than the stream surface water during the summer months as well as having significantly 

cooler body temperatures than rainbow trout (Baird and Krueger 2003).

Competition and displacement may also contribute to the negative relationship in 

abundance o f rainbow trout and the presence of brook trout. According to Yodzis (1986) 

community structure may be niche controlled where, in order for species to coexist 

without competition they must differ in their trophic niches. Although the specific habitat 

niches between brook trout and rainbow trout differ, there may have been certain 

overlapping preferences, such as food, which may have lead to completion between the 

two species. The competitive ability o f species within an aquatic habitat aquatic can be 

easily altered by abiotic changes o f the habitat (Taniguchi et al. 1998; Wotton 1998; 

Blanchet et al. 2008). The abiotic influence of the outcome of the competition may 

explain the differences in the dominance of brook trout and rainbow trout under different 

thermal variability conditions. A review of the literature however, provides conflicting 

results on the outcomes from competition between brook trout and rainbow trout over 

differing habitat types. In slow velocity habitats brook trout have been observed to have 

dominance over rainbow trout (Cunjak and Green 1984), however, they have also been 

found to dominant in faster velocities as well (Magoulick and Wilzbach 1998). In 

contrast, Isley and Kempton (2000) found that in laboratory trials with mixed 

communities o f juvenile brook trout and rainbow trout, rainbow trout were dominant and
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had significantly higher growth rates over brook trout. Sympatry has also been observed 

between the two species with no displacement, so brook trout and rainbow trout 

effectively overlap each other in habitat locations (Strange and Habera 1998). The 

negative association between brook trout and rainbow trout was beyond the scope of my 

project; however, the ability of rainbow trout to tolerate near lethal conditions to secure 

optimal foraging opportunities (Spina 2007) and reduce competition with brook trout for 

optimal thermal habitats may be a reasonable hypothesis.

Considering that streambed thermal variability was associated with increasing 

species diversity and had an effect on population distribution o f coldwater species, it is 

essential to develop hypotheses related to the consequences of landscapes changes on 

thermal variability. Proper planning must be applied during landscape alterations such as 

forest harvesting operations, road construction and development to maintain thermal 

variability in coldwater stream systems (Schlosser 1991). Indicators of thermal variability 

that are easily identifiable may assist in predicting the locations of groundwater 

movements for the purpose of plaiming which may mitigate disturbances within these 

areas.

Thermal variability was associated with RCA size and environmental 

characteristics related to groundwater flow; however these associations were dependent 

on catchment size. My results partially support the third hypothesis of this study that 

reaches with high thermal variability have larger contributing areas and different 

environmental variables than reaches with low variability. While no relationship existed 

between RCA and thermal variability in a reach when all reaches were analyzed, thermal 

variability was significantly greater in reaches with large RCAs in the 5 and 10 km^
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catchments. Thermal variability in the 1 and 3 km^ catchments was significantly lower 

than the 5 and 10 km^ classes, and this may explain why there was no relationship with 

RCA for the 1 and 3 km^ classes. Thermal variability was less than 5.5 °C and 74 % of 

thermal variability levels fell below 3.0°C within all of the 1 and 3 km^ catchments. The 

narrow range of temperature may make any difference in groundwater movement 

associated with larger RCAs difficult to detect in these small streams.

Greater differences between surface and streambed temperatures were found in 

the 5 and 10 km^ reach classes. Within these larger streams, reaches with large RCAs had 

greater variability in streambed temperatures in comparison to the small RCAs. Larger 

RCAs have more surface area to accumulate and retain groundwater, while small RCA 

have less storage capacity and will contribute more surface water during precipitation 

events than groundwater (Thompson and Moore 1996). Although large RCAs may 

accumulate more groundwater the pattern of thermal variability is also influenced by the 

streambed which must be comprised o f permeable sediment to allow for the movement o f 

groundwater from the RCA into the aquatic environment.

The results of this study indicated that reaches with greater thermal variability (5 

and 10 km^ catchments) had streambeds comprised of porous materials such as gravel 

and sand. Differences in the permeability o f streambed substrate contribute to the 

heterogeneous distribution of groundwater inputs (Chang 2003; Kalbus et al 2009). Areas 

with gravel and coarse sand may enhance upwellings resulting in cooler temperatures 

than areas of less permeable substrate such as clay or fine silt (Lapointe et al. 2004). The 

differences in streambed substrate may result in the distribution of groundwater into 

specific areas and contribute to the thermal variability within a reach.
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Although no relationship was found between thermal variability and RCA size in 

1 and 3 km^ catchments, there were correlations between thermal variability and 

topographic and hydrogeological features associated with groundwater accumulation, 

retention and discharge. Thermal variability for the 1 and 3 km^ catchments was highest 

in reaches that had a high coefficient of variation in elevation values within the RCA 

contributing to the reach. This may be because rougher terrain within a RCA is associated 

with higher levels o f groundwater movement and higher thermal variability. At a spatial 

scale of a few metres, landscape roughness is a combination of ridges, mounds and 

depressions in the terrain (Candela et al. 2005). Within a RCA, the landscape may have 

numerous micro-topographical changes including concave areas that trap water and 

recharge soil moisture (Bronstert et al. 1998). An increase in terrain roughness creates 

more storage “pockets” for groundwater accumulation and retention, which may hold and 

store groundwater long after a rainfall event, cooling the temperature of the groundwater 

before it moves into a stream system (Freeze and Witherspoon 1968; Berry 2007).

The geologic characteristics of RCAs were also correlated with thermal variability 

in the 1 and 3 km^ catchments. RCAs with relatively little bedrock had higher thermal 

variability. Landscapes dominated by bedrock outcrops have low infiltration capacity 

because o f the shallow overlaying till depth where the pore spaces in the soil quickly fill 

with water from precipitation events and move quickly into a stream channel as surface 

runoff and shallow subsurface flow (Freeze and Cherry 1979; Weis et al. 1991). Because 

of the smaller infiltration rates and shorter retention time, bedrock dominated RCAs may 

contribute relatively little groundwater to a stream and therefore streambed temperatures
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of the receiving reach would be closer to surface water temperature and less thermally 

variable.

According to the Process Domains Concept (Montgomery 1999), spatial 

variability in the topological and geological features within a stream catchment may be 

used to estimate stream conditions and community structure at specific points within the 

watershed as well as potential response to disturbances. Within my study, I found that the 

use of topographical features, such as RCA, could effectively estimate the thermal 

conditions o f a stream reach which, were associated with differences in the fish 

community structure.

The results of my study provide only a single snapshot of the distribution of 

thermal variability in streambed temperatures. To better understand how thermal 

variability is affecting stream habitat conditions a long term monitoring of stream 

temperature would be necessary. Future studies may include sampling a larger set of 

stream reaches with known fish populations, such as brook trout, along with long-term 

streambed temperature monitoring to provide a better representation o f the relationship 

between stream fish and streambed temperatures. However, it is difficult to estimate fish 

presence in the region of this study because there is very little information on fish 

inventory for the small streams in Northwestern Ontario. GIS provided a good tool to 

quantify the local topographic features of stream catchments but the inaccuracies in the 

DEM and the disparity in spatial scales, from a 20 m^ RCA grid cell to a narrow 50 m 

stream reach, make precise modeling o f RCAs difficult. Increased accuracy in field 

testing of RCA generation with a CIS would improve the reliability o f this tool for future 

use in the determination of stream thermal conditions.
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6.0 CONCLUSIONS
My results demonstrated the heterogeneous spatial distribution of cool

groundwater inputs in streams systems using streambed thermal maps. The thermal maps 

illustrated that variability in streambed temperatures can be measured at stream reach and 

transect scales as well as between streams within different catchment sizes. Catchment 

size was an important factor related to thermal variability, the level of thermal variability 

increased incrementally between the 1,3, 5, and 10 km^ stream catchment sizes.

Thermal variability was linked to the structure o f the stream fish community; 

areas o f high variability had a more diverse community with more brook trout compared 

to areas with little variability in temperature during the warm summer months. Rainbow 

trout were less abundant in regions with high thermal variability which was unexpected 

because they are considered to be cold water species. However, rainbow trout presence 

was also negatively related to brook trout presence possibly due to factors such as: 

thermal preferences, foraging opportunities, habitat preference, behavioural tradeoffs or 

competition. Thermal variability can provide optimal thermal conditions for a diversity of 

fish species as well as refuge for species with low thermal tolerance. Stream reaches with 

high thermal variability tended to have a large amount of adjacent reach contributing area 

(RCA) as well as a channel structure that permits groundwater flow through the 

streambed.

Contrary to my hypothesis, the relationship between thermal variability and RCA 

was present in 5 and 10 km^ catchment size stream reaches but was absent in the 1 and 3 

km^ catchment size stream reaches. Stream reaches within the 1 and 3 km^ catchment size 

had only small variations in streambed temperatures because base flow was sustained by 

groundwater inputs which maintained cooler surface water temperatures. The cool
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surface water made areas of lateral inputs difficult to identify using temperatures so there 

was little thermal variability despite the size of the RCA. Although the thermal variability 

was small in the 1 and 3 km^ catchment size classes, it was higher in reaches that had 

rougher surface terrain and less bedrock geology in the contributing catchment areas 

compared to reaches with smoother bedrock dominated catchments.

The results from this study are a preliminary indication that RCAs can be used to 

estimate thermally sensitive areas in stream systems. RCAs may be an important feature 

to consider during land use practices to protect the groundwater pathways contributing to 

thermally important areas from disturbances such as road construction and forest 

harvesting. Further research is needed to examine the accuracy of RCA as a predictive 

tool for locating groundwater discharge flowing into streams. Sampling a larger set of 

stream reaches of varying catchment sizes would assist in increasing the predictability 

power o f RCAs. Furthermore, more research needs to be considered looking at the effect 

o f landscape disturbance on the quality and quantity of cool lateral inputs into a stream 

and how this may influence the structure of the stream fish community.

95



LITERATURE CITED

Allan, J.D. 1995. Stream ecology: structure and function o f rurming waters. Chapman 
and Hall, London.

Angermeier, P.L. and Schlosser, I.J. 1989. Species-area relationship for stream fish. 
Ecology. 70: 1450-1462.

Arscott, D.B., Tockner, K. and Ward, J.V. 2001. Thermal heterogeneity along a braided 
floodplain river (Tagliamento River, northeastern Italy). Can. J. Fish. Aquat. Sci. 
58:2359-2373.

Attrill, M.J. and Power, M. 2004. Partitioning of temperature resources amongst an 
estuarine fish assemblage. Eustuar. Coast. Shelf. S. 61: 725-738.

Baird, O.E and Krueger, C.C. 2003. Behavioral thermoregulation o f brook and rainbow 
trout: comparison o f summer habitat use in an Adirondack river. New York.
Trans. Amer. Fish. Soc. 132: 1194-1206.

Baltz, D.M., Vondracek, B., Brown, B. and Moyle, P.B. 1987. Influence of temperature 
on microhabitat choice by fisheries in a California stream. Trans. Amer. Fish.
Soc. 116: 12-20.

Baxter, C.V., Frissell, C.A. and Hauer, F.R. 1999. Geomorphology, logging roads and 
distribution o f bull trout spawning in a forested river basin: implications for a 
management and conservation. Trans. Amer. Fish. Soc. 128: 854-867.

Becker, M.W., Georgian, T., Ambrose, H., Siniscalchi, J. and Fredrick, K. 2004.
Estimating flow and flux of ground water discharge using water temperature and 
velocity. J. Hydrol. 296: 221-233.

Bell, J.M. 2006. The assessment of thermal impacts on habitat selection, growth, 
reproduction and mortality in brown trout (Salmo trutta L.): a review of the 
literature. Rep. No. EPA GRANT #WS 97512701-0. Applied Ecological Services 
INC. Minnesota.

Berry, J.K. 2007. Characterizing micro terrain features In Beyond Mapping III:
Compilation of Beyond Mapping columns appearing in Geo World magazine 1996 
to 2009. BASIS Press. Available from 
http://www.innovativegis.com/basis/MapAnalvsis/

Beven, K.J. and Kirkby, M.J. 1979. A physically based, variable contributing area model 
of basin hydrology. Hydrol. Sci. Bull. 24: 43-69.

96

http://www.innovativegis.com/basis/MapAnalvsis/


Biro, P.A. 1998. Staying cool: behavioral thermoregulation during summer by young-of- 
year brook trout in a lake. Trans. Amer. Fish. Soc. 127: 212-222.

Blanchet, S., Loot, G, Bematchez, L. and Dodson, J.J. 2008. The effects o f abiotic factors 
and intraspecific versus interspecific competition on the diel activity patterns of 
Atlantic salmon {Salmo salar) fry. Can. J. Fish. Aquat. Sci. 65: 1545-1553.

Blanchfield, P.J. and Ridgway, M.S. 1997. Reproductive timing and use of redd sites by 
lake-spawning brook trout {Salvelinus fontinalis). Can. J. Fish. Aquat. Sci. 54: 
747-756.

Borwick, J., Buttle, J., and Ridgway, M.S. 2006. A topographic index approach for 
identifying groundwater habitat of young-of-year brook trout {Salvelinus 
fontinalis) in the land-lake ecotone. Can. J. Fish. Aquat. Sci. 63: 239-253.

Bourque, C.P. and Pomeroy, J.H. 2001. Effects of forest harvesting on summer stream 
temperatures in New Brunswick, Canada: an inter-catchment, multiple-year 
comparison. Hydrol. Earth. Syst. Sci. 5: 599-613.

Brasher, A.M. 2003. Impacts o f human disturbances on biotic communities in Hawaiian 
streams. Bioscience. 53: 1052-1060.

Breau, C., Cunjak, R.A. and Bremset, G. 2007. Age specific aggregation o f wild juvenile 
Atlantic salmon Salmo salar at cool water sources during high temperature 
events. J. Fish. Biol. 71: 1179-1191.

Bronstert, A., Gliising, B. and Plate, E. 1998. Physically-based hydrological modeling on 
the hillslope and micro-catchment scale: examples of capabilities and limitations. 
lAHS-AISH P. 248: 207-215.

Brown, L.E., Hannah, D M. and Milner, A.M. 2005. Spatial and temporal water column 
and streambed temperature dynamics within an alpine catchment: implications for 
benthic communities. Hydrol. Process. 19: 1585-1610.

Brunke, M. and Gonser, T. 1997. The ecological significance o f exchange processes 
between rivers and groundwater. Freshwater Biol. 37: 1-33.

Bustros-Lussier, E., Robin, M.J.L. and Conant Jr., B. 2007. Identifying groundwater
discharge in rivers in eastern Ontario using an electrical conductivity drag probe. 
60th Canadian Geotechnical Conference and 8th Joint CGS/IAH-CNC 
Groundwater Conference; Ottawa, Ontario, Canada.

Buttle, J.M., Hazlett, P.W., Murray, C.D., Creed, I.E., Jeffries, D.S. and Semkin, R.
2001. Prediction o f groundwater characteristics in forested and harvested basins 
during spring snowmelt using a topographic index. Hydrol. Process. 15: 3389- 
3407.

97



Buttle, J.M. 2002. Rethinking the donut: the case for hydrologically relevant buffer 
zones. Hydrol. Process. 16: 3093-3096.

Caissie, D. 2006. The thermal regime of rivers: a review. Freshwater Biol. 51: 1389- 
1406.

Candela, A., Noto, L.V. and Aronica, G. 2005. Influence o f surface roughness in 
hydrological response o f semiarid catchments. J. Hydrol. 313: 119-131.

Carignan, R., and Steedman, R.J. 2000. Impacts of major watershed perturbations on 
aquatic ecosystems. Can. J. Fish. Aquat. Sci. 57 (Suppl.2): 1-4.

Cey, E.E., Rudolph, D.L., Parkin, G.W. and Aravena, R. 1998. Quantifying groundwater 
discharge to a small perennial stream in southern Ontario, Canada. J. Hydrol. 210: 
21-37.

Chang, M. 2003. Forest hydrology: an introduction to water and forests. CRC Press EEC. 
Boca Raton, Florida.

Chen, X.H., Song, J.X., Cheng, C., Wang, D.M. and Lackey, S O. 2009. A new method 
for mapping variability in vertical seepage flux in streambeds. Hydrogeol. J. 17: 
519-525.

Chu, C., Jones, N.E., Mandrak, N.E., Piggott, A.R. and Mirms, C.K. 2008. The
influence of air temperature, groundwater discharge, and climate change on the 
thermal diversity o f stream fishes in southern Ontario watersheds. Can. J. Fish. 
Aquat. Sci. 65: 297-308.

Clark, E., Webb, B.W and Ladle, M. 1999. Microthermal gradients and ecological 
implications in Dorset rivers. Hydrol. Process. 13: 423-438.

Conner, E.F., and McCoy, E.D. 1979. The statistics and biology of the species-area 
relationship. Am Nat. 113: 791-833.

Constantz, J. 1998. Interaction between stream temperature, streamflow, and groundwater 
exchanges in alpine streams. Water Resour. Res. 34: 1609-1615.

Conant Jr., B. 2004. Delineating and quantifying ground water discharge zones using 
streambed temperatures. Ground Water. 42: 243-257.

Cunjak, R.A. 1996. Winter habitat o f selected stream fishes and potential impacts from 
land-use activity. Can. J. Fish. Aquat. Sci. 53(Suppl. 1): 267-282.

Cunjak, R.A. and Green, J.M. 1984. Species dominance by brook trout and rainbow trout 
in a simulated stream environment. Trans. Amer. Fish. Soc. 113: 737-743.

98



Curry, R.A. and Noakes, D.L.G. 1995. Groundwater and the selection of spawning sites 
by brook trout (Salvelinus fontinalis). Can. J. Fish. Aquat. Sci. 52: 1733-1746.

Curry, R.A., Gehrels, J., Noakes, D.L.G. and Swainson, R. 1994. Effects o f river flow 
fluctuations on groundwater discharge through brook trout, Salvelinus fontinalis, 
spawning and incubation habitats. Hydrobiologia. 277: 121-134.

Curry, R.A., Brady C., Noakes, D.L.G. and Danzmann, R.G. 1997. The use of small 
streams by young brook charr {Salvelinus fontinalis) spawned in lakes. Trans. 
Amer. Fish. Soc. 126: 77-83.

Curry, R.A., Scruton, D A. and Clarke, K.D. 2002. The thermal regimes of brook trout 
incubation habitats and evidence o f changes during forestry operations. Can .J. 
For. Res. 32: 1200-1207.

Dallas, H. 2008. Water temperature and riverine ecosystems: an overview of knowledge 
and approaches for assessing biotic responses, with special reference to South 
Africa. Water SA. 34: 393-404.

DeNicola, D. 1996. Periphyton responses to temperature at different ecological levels. In 
Algal ecology in freshwater benthic ecosystems. Academic Press New York.

Drake, M.T. and Taylor, W.W. 1996. Influence of spring and summer water temperature 
on brook charr, Salvelinus fontinalis, growth and age structure in the Ford River, 
Michigan. Environ. Biol. Fish. 45:41-51.

Duffus, J. 1980. Environmental toxicology. Edward Arnold Publishers, London.

Duff, J.H. and Triska, F.J. 1990. Denitrification in sediments from the hyporheic zone 
adjacent to a small forested stream. Can. J. Fish. Aquat. Sci. 47: 1140-1147.

Ebersole, J.L., Liss, W.J. and Frissell, C.A. 2001. Relationship between stream
temperature, thermal réfugia and rainbow trout Oncorhynchus mykiss abundance 
is arid-land streams in northwestern United States. Ecol. Freshw. Fish. 1: 1-10.

Ebersole, J.L., William, J.L. and Frissell, C.A. 2003. Cold water patches in warm
streams: physicochemical characteristics and the influence of shading. J. Am. 
Water Resour. As. 39: 355-368.

Edwards, P.A. and Cunjak, R.A. 2007. Influence o f water temperature and streambed 
stability on the abundance and distribution of slimy sculpin {Cottus cognatus). 
Environ. Biol. Fish. 80: 9-22.

99



Environment Canada. 2009. Canadian climate normal, 1971-2000; Cameron Falls, 
Ontario. National Climate Data and Information Archive. Fredericton, NB. 
Available from http://www.climate.weatheroffice.ec.gc.ca.

Environmental Systems Research Institute (ESRI), Inc. 2002. ArcGIS. Version 9.2. 
Environmental Systems Research Institute, Inc. Redlands, California.

Fausch, K.D. and Bramblett, R.G. 1991. Disturbance and fish communities in intermittent 
tributaries of a western Great Plains river. Copeia. 3: 659-674.

Fausch, K.D., Torgersen, C.E., Baxter, C.V. and Li, H.W. 2002. Landscapes to
riverscapes: bridging the gap between research and conservation of stream fishes. 
BioScience. 52: 483-498.

Freer, J., McDonnell, J., Beven, K.J., Brammer, D., Hooper, R.P. and Kendal, C. 1997. 
Topographic controls on subsurface storm flow at the hillslope scale for two 
hydrologically distinct small catchments. Hydrol. Process. 11: 1347-1352.

Freeze, A.R. and Cherry, J.A. 1979. Groundwater. Prentice-Hall, Inc, New Jersey.

Freeze, R.A. and Witherspoon, P.A. 1968. Theoretical analysis of regional groundwater 
flow 3. quantitative interpretations. Water Resour. Res. 4: 581-590.

Fry, F.E.J. 1971. The effect of environmental factors on the physiology of fish. pp. 1-98.
In: W.S. Hoar & D.J. Randall (ed.) Fish Physiology, Vol. 6, Academic Press, New 
York.

Gartner, J.F., Mollard, J.D. and Roed, M.A. 1981. Ontario engineering geology terrain 
study users' manual. Ontario Geological Survey, Northern Ontario Engineering 
Geology Terrain Study 1, 51 p.

Goniea, T.M., Keefer, M.L., Bjomn, T.C., Peery, C.A., Bennett, D.H. and Stuehrenberg,
E C. 2006. Behavioral thermoregulation and slowed migration by adult fall 
Chinook salmon in response to high Columbia river water temperatures. Trans. 
Amer. Fish. Soc. 135: 408-419.

Hansson, L. 2000. Landscape and edge effects on population dynamics: approaches and 
examples, pp. 73-88. In: J. Sanderson & L.D. Harris (ed.) Landscape Ecology: a 
top down approach. Lewis Publishers, Florida.

Harris, A.G., McMurray, S.C., Uhlig, P.W.C., Jeglum, J.K, Foster, R.F. and Racey, G.D. 
1996. Field guide to the wetland ecosystem classification for northwestern 
Ontario. OMNR, Northwest Sci. & Technol. Thunder Bay, Ont. Field Guide FG-
01. 74pp. +Append.

1 0 0

http://www.climate.weatheroffice.ec.gc.ca


Hewlett, J.D. and Hibbert, A.R. 1963. Moisture and energy conditions within a sloping 
soil mass during drainage. J. Geophys. Res. 68: 1081-1087.

Hynes, H.B.N. 1970. The ecology of running waters. Liverpool University Press, 
Liverpool.

Isley, J.J. and Kempton, C. 2000. Influence o f costocking on growth of young-of-year 
brook trout and rainbow trout. Trans. Amer. Fish. Soc. 129: 613-617.

Jermess, J. 2008. Tools for Graphics and Shapes: Extension for ArcGIS. Jenness
Enterprises. Available at: http://www.iennessent.com/arcgis/shapes graphics.htm

Johnson, S.L. 2004. Factors influencing stream temperature in small streams: substrate 
effects and a shading experiment. Can. J. Fish. Aquat. Sci. 61: 913-923.

Kalbus, E., Reinstorf, F. and Schimer, M. 2006. Measuring methods for groundwater- 
surface water interactions: a review. Hydrol. Earth Syst. Sci. 10: 873-887.

Kalbus, E., Schmidt, C., Molson, J.W., Reinstorf, F. and Schirmer, M. 2009. Influence of 
aquifer and streambed heterogeneity on the distribution of groundwater discharge. 
Hydrol. Earth Syst. Sci. 13: 69-77.

Kenny, F. and Matthews, B. 2005. A methodology for aligning raster flow direction data 
with photogrammetrically mapped hydrology. Comput. Geosci. 31: 768-799.

Krebs, C.J. 1989. Experimental designs & Species diversity measurements In 
Ecological methodology. Harper Collins, New York.

Kreutzweiser, D.P., Capell, S.S. and Holmes, S B. 2009. Stream temperature responses to 
partial harvest logging in riparian buffers o f boreal mixedwood forest watersheds. 
Can. J. For. Res. 39: 497-506.

Lapointe, M., Bergeron, N., Berube, F., Pouliot, M. and Johnston, P. 2004. Interactive 
effects of substrate sand and silt contents, redd-scale hydraulic gradients, and 
interstitial velocities on egg-to-emergence survival of Atlantic salmon {Salmo 
W ar). 61: 2271-2277.

Magoulick, D.D. and Wilzbach, M.A. 1998. Are native brook charr and introduced
rainbow trout differentially adapted to upstream and downstream reaches? Ecol 
Freshw Fish. 7: 167-175.

Malcolm, LA., Soulsby, C., Youngson, A.F., Harmah, D M., McLaren, I.S. and Thome, 
A. 2004. Hydrological influences on hyporheic water quality: implications for 
salmon egg survival. Hydrol. Process. 18: 1543-1560.

1 0 1

http://www.iennessent.com/arcgis/shapes


Marchand, F., Magnan, P. and Boisclair, D. 2002. Water temperature, light intensity and 
zooplankton density and the feeding activity o f juvenile brook charr {Salvelinus 
fontinalis). Freshwater Biol. 47: 2153-2162.

Martin, C.W., Hombeck, J.W., Likens, G.E. and Buso, D.C. 2000. Impacts o f intensive 
harvesting on hydrology and nutrient dynamics o f northern hardwood forests.
Can. J. Fish. Aquat. Sci. 57(Suppl. 2): 19-29.

Matthews, K.R. and Berg, N.H. 1997. Rainbow trout responses to water temperature and 
dissolved oxygen stress in two southern California stream pools. J. Fish. Biol. 50: 
50-67.

Meisner, J.D. 1990. Effect of climatic warming on the southern margins o f the native 
range of brook trout, Salvelinus fontinalis. Can. J. Fish. Aquat. Sci. 47: 1065- 
1070.

Mellina, E., Moore, R.D., Hinch, S.G., Macdonald, J.S, and Pearson, G. 2002. Stream 
temperature responses to clearcut logging in British Columbia: the moderating 
influences o f groundwater and headwater lakes. Can. J. Aquat. Sci. 59: 1886- 
1900.

Montgomery, D.R. 1999. Process domains and the river continuum. J. Am. Water 
Resour. As. 35: 397-410.

Moore, R.D., Spittlehouse, D.L. and Story, A. 2005. Riparian microclimate and stream 
temperature response to forest harvesting: a review. J. Am. Water Resour. As. 41 : 
813-834.

Mucha, J.M. and Mackereth, R.W. 2008. Habitat use and movement patterns of brook 
trout in Nipigon Bay, Lake Superior. Trans. Amer. Fish. Soc. 137: 1203-1212.

Olsen, D.A. and Young, R.G. 2009. Significance o f river-aquifer interactions for reach- 
scale thermal patterns and trout growth potential in the Motueka River, New 
Zealand. Hydrogeol. J. 17: 175-183.

Ontario Ministry o f Natural Resources (OMNR). 1997. Comparative aquatic effects 
program: Stream survey data collection manual. Centre for Northern Forest 
Ecosystem Research.

OMNR. 2005a. Provincial Digital Elevation Model, Version 2.0.0 [computer file]. Land 
Information Ontario (LIO). Peterborough, ON. Available from 
http://www.mnr.gov.on.ca/en/Business/LIO/index.html.

OMNR 2005b. Digital Northern Ontario Engineering Geology Terrain Study (NOEGTS). 
Ontario Geological Survey, Ministry of Northern Development and Mines and 
Northeast Science and Information Section.

1 0 2

http://www.mnr.gov.on.ca/en/Business/LIO/index.html


OMNR. 2008a. A definition for coldwater stream. Lake Ontario Fisheries Discussion
Papers. Assessment Internal Report LOA 08.22. Lake Ontario management Unit. 
Picton.

OMNR 2008b. Natural Resources and Values Information System [computer file]. 
Toronto, ON.

OMNR. 2009. Land Information Ontario (LIO) Warehouse. Available from 
http://www.mnr.gov.on.ca/en/Business/LIO/index.html

Picard, C.R., Bozek, M.A. and Momot, W.T. 2003. Effectiveness of using summer
thermal indices to classify and protect brook trout streams in northern Ontario. N. 
Am. J. Fish. Manage. 23: 206-215.

Poole, G.C. and Berman, C.H. 2001. An ecological perspective on in-stream temperature: 
natural heat dynamies and mechanisms of human-caused thermal degradation. 
Environ manage. 27: 787-802.

Power, G. Brown, R.S. and Imhof, J.G. 1999. Groundwater and fish - insights from 
northern North American. Hydrol Process. 13: 401-422.

Racey, G.D., Harris, A.G., Jeglum, J.K., Foster, R.F. and Wickware, G.M. 1996.
Terrestrial and wetland ecosites o f northwestern Ontario. OMNR, Northwest Sci. 
& Technol. Field Guide FG-02. 94 pp. + Append.

Raymond Jr., L.S. 1988. What is groundwater? N.Y. State Water Resource Institute. 
Bulletin #1.

Reynolds, W.W., and Casterlin, M.E. 1979. Behavioral thermoregulation and the final 
preferendum paradigm. Am. Zool. 19: 211-224.

Scalon, B.R., Reedy, R.C., Stonestrom, D.A., Prudicz, D.E. and Dermehys, K.F. 2005.
Impact o f land use and land cover change on groundwater recharge and quality in 
the southwestern US. Glob. Change. Biol. 11: 1577-1593.

Schmidt, C., Bayer-Raich, M. and Schirmer, M. 2006. Characterization o f spatial
heterogeneity of groundwater-stream water interactions using multiple depth 
streambed temperature measurements at the reach scale. Hydrol. Earth Syst. Sci. 
Discuss. 3: 1419-1446.

Schmidt, C., Contant Jr., B., Bayer-Raich, M. and Schirmer, M. 2007. Evaluation and
field-scale application of an analytical method to quantify groundwater discharge 
using mapped streambed temperatures. J. Hydrol. 347: 292-307.

Schlosser, I.J. 1991. Stream fish ecology: a landscape perspective. BioScience. 41: 704- 
712.

103

http://www.mnr.gov.on.ca/en/Business/LIO/index.html


Scott, W.B. and Crossman, E.J. 1973. Freshwater fishes of Canada. Fisheries Research 
Board of Canada Bulletin 184.

Sims, R.A., To will, W.D., Baldwin, K.A., Uhlig, P. and Wickware, G.M. 1997. Field 
guide to the forested ecosystem classification for northwestern Ontario. OMNR, 
Northwest Sci & Technol. Thunder Bay, ON. Field Guide FG-03. 176 pp.

Spina, A.P. 2007. Thermal ecology of juvenile steelhead in warm-water environment. 
Environ. Biol. Fish. 80: 23-34.

Sponseller, R.A., Benfield, E.F. and Valett, H.M. 2001. Relationships between land use, 
spatial scale and stream macroinvertebrate communities. Freshwater. Biol. 
46:1409-1424.

Stednick, J.D. 1996. Monitoring the effects of timber harvest on armual water yield. J. 
Hydrol. 176: 79-95.

Storey, A., Moore, R.D. and MacDonald, J.S. 2003. Stream temperatures in two shaded 
reaches below cutblocks and logging roads: downstream cooling linked to 
subsurface hydrology. Can. J. For. Res. 33: 1383-1396.

Strange, R.J. and Habera, J.W. 1998. No net loss of brook trout distribution in areas of 
sympatry with rainbow trout in Tennessee streams. Trans. Amer. Fish. Soc. 127: 
434-440.

Sutton, R.J., Deas, M.L., Tanaka. S.K., Soto, T. and Corum, E.A. 2007. Salmonid
observations at a Kalamath River thermal refuge and under various hydrological 
and meteorological conditions. River. Res. Applic. 23: 775-785.

Tague, C., Farrell, M., Grant, G., Lewis, S. and Rey, S. 2007. Hydrogeologic controls on 
summer stream temperatures in the McKenzie River basin, Oregon. Hydrol. 
Process. 21: 3288-3300.

Taniguchi, Y., Rahel, F.J., Novinger, D.C. and Gerow, K.G. 1998. Temperature
mediation o f competitive interactions among three fish species that replace each 
other along longitudinal stream gradients. Can. J. Fish. Aquat. Sci. 55: 1894-1901.

Taylor, C.A. and Stefan, H.G. 2009. Shallow groundwater temperature response to 
climate change and urbanization. J. Hydrol. 375: 601-612.

Thompson, J.C. and Moore, R.D. 1996. Relations between topography and water table 
depth in a shallow forest soil. Hydrol. Process. 10: 1513-1525.

Tiffan, K.F., Kock, T.J., Coimor, W.P., Steinhorst, R.K. and Rondorf, D.W. 2009. 
Behavioural thermoregulation by subyearling fall (autumn) Chinook salmon 
Oncorhynchus tshawytscha in a reservoir. J. Fish Biol. 74: 1562-1579.

104



Torgensen, C., Price, D., Li, H. and Macintosh, B. 1999. Multiscale thermal réfugia and 
stream habitat associations o f Chinook salmon in northeastern Oregon. Ecol. 
Appl. 9: 301-319.

Townsend, C.R. 1989. The patch dynamics concept of stream community ecology. J. N. 
Am. Benthol. Soc. 8: 36-50.

Triska, F.J., Kennedy, V.C., Avanzino, R.J., Zellweger, G.W. and Bencala, K.E. 1989. 
Retention and transport o f nutrients in a third order stream: hyporheic processes. 
Ecology. 70: 1893-1905.

Vannote, R.L. and Sweeny, B.W. 1980. Geographic analysis of thermal equilibria: a 
conceptual model for evaluating the effect o f natural and modified thermal 
regimes on aquatic insect communities. The American Naturalist. 115: 667-695.

Vannote, R.L., Minshall, G.W., Cummins, K.W., Sedell, J R., and Cushing, C.E. 1980. 
The river continuum concept. Can. J. Fish. Aquat. Sci. 37: 130-137.

Wang, L., Lyons, J., Rasmussen, P., Seelbach, P., Simon, T., Wiley, M., Kanehl, P., 
Baker, E., Niemeal, S. and Stewart, P.M. 2003. Watershed, reach, and riparian 
influences on stream fish assemblages in Northern Lakes and Forest Ecoregion, 
U.S.A. Can. J. Fish. Aquat. Sci. 60: 491-505.

Webb, B.W. and Zhang, Y. 1997. Spatial and seasonal variability in the components of 
the river heat budget. Ftydrol. Process. 11: 79-101.

Webb, B.W., Harmah, D.M., Moore, R.D., Brown, L.E. and Nobilis, Franz. 2008. Recent 
advances in stream and river temperature research. Hydrol. Process. 22: 902-918.

Weis, C., Taylor, C H., Cornett. J. and Lazerte, B.D. 1991. Streamflow generation in a 
headwater basin on the Precambrian shield. Hydrol. Process. 5: 185-199.

Westhoff, M.C., Savenije, H.H.G., Luxemburg, W.M., Stelling, G.S., van de Giesen, 
N.C., Selker, J.S., Pfister, L. and Uhlenbrook, S. 2007. A distributed stream 
temperature model using high resolution temperature observations. Hydorl. Earth. 
Syst. Sci. 11: 1469-1480.

Wickware, G.M. and Rubec, C.D.A. 1989. Ecoregions of Ontario. Environment Canada. 
Ecological land classification series. No. 26.

Williams, C.B. 1964. Patterns in the balance of nature. Academic Press, New York, New 
York, USA.

105



With, K.A. 2002. Landscape connectivity and metapopulation dynamics, pp. 208-227. In:
S.E. Gergel & M.G. Turner (ed.) Learning Landscape Ecology: a practical guise 
to concepts and techniques. Springer-Verlag, New York.

Wootton, R.J. 1998. Ecology of Teleost Fishes. Chapman and Hall, UK.

Yodzis, P. 1986. Competition, mortality and community structure, pp. 480-491. In: J.M. 
Diamond & T.J. Case (ed.) Community Ecology. Harper and Row, New York.

106



APPENDICES

Appendix I - Detailed information on thermal map construction

1. GPS points were collected with a Trimble ProXRS and ArcPad every 2 m along the 
centreline of the channel for the entire length of the reach. All points were post­
processed for differential correction. These points marked the locations where five 
stream bed temperatures would be collected across the wetted width of the channel.

2. UTM coordinates were calculated for the GPS point shapefile in ArcMap.
3. A line layer was generated from the GPS coordinates to produce a series of connected 

arcs, each approximately 2 m long, along the centreline of the channel
4. The upstream azimuth of each 2 m line segment was determined with an extension for 

ArcGIS called “Tools for Graphics and Shapes” (J. Jenness, version 1.185, 
downloaded directly from Jenness Enterprises at: 
http://www.iennessent.com/arcgis/shapes graphics.htm.

5. Using Microsoft Excel, the bisecting angle between two adjacent 2 m centerline 
segments was calculated to determine the azimuth of the cross-channel transect 
located at each node (GPS point) along the centreline.

6. Microsoft Excel was used to calculate the coordinates for the from- and to-nodes, 
representing the left and right banks respectively, for each transect using the cross­
channel transect azimuths determined in step 6, the centreline node UTM coordinates, 
and channel widths measured in the field. These coordinates were then used to 
generate a point layer representing the left and right bank for each cross-channel 
transect.

7. Using ArcGIS an empty polygon layer was created. The empty polygon was digitized 
on-screen along the left and right bank points for each cross-channel transect to 
define the two-dimensional extent o f the surveyed channel. The lower and upper most 
cross-channel transects closed the polygon. If a road crossed the surveyed reach the 
polygon was broken, and a multi-part polygon was created.

8. Microsoft Excel was used to calculate point coordinates for the five locations along 
each cross-channel transect where streambed temperatures were collected in the field. 
During the field survey the temperature survey points were located along each cross­
channel transect at 12.5, 25.0, 50.0, 75.0, and 87.5 % of the channel width, with the 
50 % points coincident with the GPS-located channel centreline points. Temperature 
point locations were calculated from the UTM coordinates of the 50 % points, the 
field measured wetted widths, and the cross-channel azimuths determined with the 
GIS. A point layer was generated in the GIS to represent the locations where 
streambed temperatures were measured and recorded in the field.

9. Using a common join-field preset the streambed temperature data (contained in a 
*.dbf file) and the streambed temperature point layer were joined.

10. A raster, with a resolution of 0.2 m, representing the distribution of streambed 
temperatures within the two-dimensional extent of the surveyed reach was 
interpolated using the spline algorithm available through the Spatial Analyst 
extension for ArcGIS. The polygon representing the extent of the surveyed stream
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reach was used as an analysis mask to limit the interpolation to the boundary of the 
surveyed portion of the stream.

11. The streambed temperature raster data was symbolized stretched blue to red colour 
ramp representing colder to warmer temperatures, respectively.
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Appendix II - Detailed information on RCA delineation

1. GIS data contained within Ontario’s Natural Resources Values Information System 
(NRVIS) dataset (Ontario Ministry of Natural Resources (OMNR) 2008) were used 
as inputs to generate Reach Contributing Areas (RCAs). Specific datasets used 
included; Provincial Digital Elevation Model (version 2, 20 m resolution) (DEM), 
stream lines (NRVIS Waterline shapefile), lake and wetland polygons (NRVIS 
Waterpoly shapefile), and road lines (NRVIS Roadseg shapefile).

2. Model builder for ArcGIS 9.2 and Python 2.4 were used to develop a processing 
model for generating the RCAs (ESRI, version 9.2) and PythonWin (version 2.4).

3. The NRVIS Waterline and Roadseg data are generalized representations of the on- 
the-ground features they represent. A Trimble ProXRS sub-metre GPS unit was used 
to capture a more precise level of detail on the pathways of stream reaches surveyed 
for this study. GPS point data were collected approximately every 2 m along the 
centreline o f the wetted stream channel for the length of each study reach. GPS data 
were post-processed for differential correction using the Ontario Ministry of Natural 
Resources’ community base station, located at Lakehead University in Thunder Bay, 
Ontario. These data were used to generate a directionally correct stream line shapefile 
for each study reach. Newer roads not present in the Roadseg shapefile were GPS 
located and added to the base NRVIS dataset.

4. The new detailed stream lines and Waterpoly shapefiles and DEM were used as 
inputs to generate an enhanced flow direction grid (called efdirl), as per the method 
described by Kenny & Matthews (2005).

5. To account for the influence that roads have on surface runoff, DEM grid cells 
coincident with these features were raised by 5 m, except at locations where culverts 
were known to exist. Doing this effectively forced surface runoff intercepted along 
the uphill sides of roads to be directed downhill, alongside the roads, as flow in 
roadside ditches would be directed. The surface runoff could then effectively flow to 
the other side o f the road through the culverts where the 5 m was not added to the 
DEM. This new DEM was called DEM rd.

6. The fill tool available through the Spatial Analyst extension for ArcGIS was used to 
fill sinks in the DEM rd grid and generate a sink-free DEM called Filll rd.

7. The flow direction tool available through the Spatial Analyst extension for ArcGIS 
was used to generate a new flow direction grid from the Filll rd grid. This new grid 
was called Fdirl rd.

8. The road centreline was buffered on both sides and ends by a distance o f 20 m (equal 
to the width o f one grid cell) to create a poly shapefile called Roadbuff_20.shp.

9. Culverts points were buffered by 30 m to create a poly shapefile called 
Cul vbuff_3 0. shp.

10. The Roadbuff_20.shp poly was erased with the Culvbuff_30.shp poly to create a new 
poly shapefile called Rd_msk.shp.

11. The Rd msk.shp polygon was set as a mask for the Spatial Analyst extension, then 
the F d i r l r d  raster was merged over the enhanced flow direction grid (efdirl) to 
derive the final flow direction grid, called efdirl rd.
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12. Pour points were created from the detailed stream centreline by first using the 
“Polyline to Raster” tool to convert the stream centreline to a grid called Str_ctrl 
(Spatial Analyst cell size and analysis window set to match those of the F i l l l r d  grid, 
with no mask). Next, the “Raster to Point” tool was used to convert the Str ctrl grid 
to a point shapefile called RCA_pours. An extra point was created upstream of the 
stream centreline to stop longitudinal flow from entering the stream centreline where 
only lateral inputs were of interest.

13. The watershed tool available from Spatial Analyst extension for ArcGIS was used to 
delineate RCAs for each point in the RCA_pours shapefile using the flow direction 
grid, efdirl rd.

14. RCA area (m^) was calculated in a new attribute field using the field calculator. Using 
a common join-field preset the RCA data (contained in a *.dbf file) was joined to the 
RCA_pours shapefile to allow for zonal statistics to be completed on stream reaches.
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Appendix III -  Streambed thermal maps for 1 km^ catchment streams.
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Figure 1. Thermal map for site L4 demonstrating the spatial distribution in streambed temperatures.
The minimum and maximum streambed temperatures recorded are noted.
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flow

Maximum Temp.

Streambed Temperature
< High : 14.50

Low : 9 .70

G2 S t r e a m  c h a n n e l

OBM S t r e a m  line

R o a d sMinimum Temp. 
9.70 Minimum Temp. 

9.70

Minimum Temp. 
9.70

Minimum Temp. 
9.70 1 : 8 2 5

Minimum Temp. 
9.70 Mete rs

20 30 40

Figure 2. Thermal map for site G2 demonstrating the spatial distribution in streambed temperatures. 
The minimum and maximum streambed temperatures recorded are noted
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flow

M a x im u m  T e m p .  
19.40

M in im u m  T e m p .  
10.00

Stream bed Tem perature
High : 19.40

L ow : 10.00

G3 S tream bed channel

OBM S tream line

R oads

M eters

Figure 3. Thermal map for site G3 demonstrating the spatial distribution in streambed
temperatures. The m inimum and maximum streambed temperatures recorded are noted.
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Maximum Temp. 
15.90

Minimum Temp. 
7.50

flow

G5 Streambed Temperature
High: 15.90

Low: 7.50

G5 Stream channel

1:750 Roads

Meters OBM Stream line

Figure 4. Thermal map for site G5 demonstrating the spatial distribution in streambed
temperatures. The m inim um  and m aximum streambed temperatures recorded are noted.
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flow

Maximum Temp. 
18.30

Streambed Temperature
High .18 .30

Minimum Temp. 
6.40

Lo w : 6.40

G 7 S tream  channel

R oads

OBM  S tream  line

1: 1,000

M e te rs

Figure 5. Thermal map for site G7 demonstrating the spatial distribution in streamhed 
temperatures. The minimum and maximum streambed temperatures recorded are noted.
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