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ABSTRACT

ELECTRON-PHOTON INTERACTIONS IN QUANTUM DOTS:

COUPLED OSCILLATORS

BY

SHAUN HOWRIGAN

Master of Science
Lakehead University
Thunder Bay, Ontario

Canada, 1993

A coupled oscillator model is developed for the far infra-red response
of a quantum dot, and this model is used to predict the vacuum-field

Rabi splittings of a dot-cavity system.
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Chapter 1

Heterostructures and Quantum

Dots

Introduction

In this thesis it is our aim to demonstrate the effectiveness of employing a
coupled harmonic oscillator model (pioneered by Ullersmaf®! and refined by Ford,
Lewis and O’Connell[3]) to describe the interaction of a quantum dot structure
with the electromagnetic field. The quantum dot-EM field serves as an example
of a system which can be conveniently modelled as a family of coupled harmonic
oscillators, and although chosen only as an example, this system is an attractive
choice for several reasons.

Most importantly, recent experiments performed with quantum dots have
shown that when subjected to a far infrared probe beam, the electrons in the
dot behave as if they were confined in a harmonic potential, making them an
ideal candidate for the coupled oscillator model. Also attractive is the analogy
that can be made between quantum dots and atoms, since dots, like atoms, posses
a discrete level structure (also the product of a central potential) and may be oc-

1
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cupied by one or many electrons. This close correspondence has resulted in the

name “artificial atoms” being used in conjunction with quantum dots.

The analogy can be extended to the electrodynamical effects commonly associ-
ated with atoms, such as the Lamb shift or stimulated and spontaneous emission.
The quantum dot is especially attractive in this case, since the dot-field system
can be solved exactly, obviating the need for the pertubation theory approach

used in the case of real atoms.

The Evolution of Quantum Dots

Physicists have long realized that spatial confinement of a quantum particle
results in the appearance of energetically discrete bound states for the system, an
effect encountered in the familiar infinite and finite square well problems. Devices
that exhibit this effect were until recently the realm of speculation, but the large
body of knowledge and experience developed for the semiconductor electronics
industry over the past four decades has made the fabrication of such devices not
only possible, but commonplace. The earliest example of engineered quantum
confinement in a solid state system is the two-dimensional electron gas (2DEG)
in a silicon inversion layer, produced in 1966 by Fowler®! et al, which sparked

research into two-dimensional systems that continues to this day.

Our increasing ability to control matter at fine scales is what drives the fab-
rication of devices that show higher degrees of spatial confinement, and so ad-

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



vancements in fabrication technologies or techniques lead almost immediately to
new or improved devices. Perhaps the single most important advance that has
had an impact on modern device technology is the epitaxial growth of ultra-thin
films, which allowed the first semiconductor quantum well to be built at Bell Labs
by Di.ngle[61 et. al in 1974. The performance of these early quantum wells were
limited by their low carrier mobilities, however, and it was this limitation that

lead to another major advance, modulation doping.

The technique of modulation doping, where the impurity atoms that supply
carriers are spatially separated from the carriers themselves, results in conduction
with greatly reduced impurity scattering and hence very high electron mobilities.
The energy band diagrams below illustrate the modulation doping technique.

3
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FIG. 1. Energy-band diagrams for n~doped and undoped GaAs-
Al,Ga,. As superiattices.

In 1990, GaAs/AlGaAs heterojunctions had electron mobilities in the range

of 107 2%, resulting in exceptionally high quality 2DEG’s in quantum wells.

V—~s

These high mobility quantum wells have in turn made the investigation of ballistic
electron transport in semiconductors an experimental reality, and this has become

another active field of both theoretical and experimental research.

Higher m6bility implies both a longer mean free path length and coherence
length, and it was in anticipating the implications of these extended path lengths
in quantum wells in 1969 that Esaki and Tsu proposed the idea of an engineered
superlattice structure, what Esakil’l calls “do-it-yourself quantum mechanics”.
Their basic idea was that the conduction and valence band edges could be spa-

4
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tially varied in a semiconductor structure by either modulating the doping or
composition of the device. So long as the coherence length exceeds the spatial
period of the modulation, the carriers can sample these variations, and the su-
perlattice device will display a dispersion which is potentially much different than
that of the semiconductor material. Progress in this field has resulted in the abil-
ity to design and build devices with customized band diagrams, at least for the
case of electron propagation perpendicular to the plane of the well (i.e., in the

growth direction).

Parallel to the plane of the well, however, the carriers will remain free unless a
lateral potential is imposed on the 2DEG. And while the epitaxial techniques have
matured to give us considerable control of potentials in the growth directions of
these heterostructure devices, the ideas and methods required for the same degree
of control of lateral potentials in these devices are in their infancy. In fact, it was
not until the mid 1980’s that fabricated nanostructures (i.e., devices that exhibit
quantum confinement in more than one spatial dimension) were first constructed,
due primarily to advances in electron and optical lithographic techniques. At
present, the minimum lateral dimension attainable with either of these techniques
is about 15 nm, which results in confinement energies of up to 30 meV. The
hope is that with an improved technology of lateral confinement, heterojunction
devices could have energy level spacings in the hundreds of meV’s range (Reed[S],
p6). This would lead to hosts of new engineered devices, both electronic and

5
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optoelectronic, that would display fully quantized behavior. The implications of
such a technology are difficult to accurately speculate on, but it will most certainly

heavily impact the information industry, and most probably many others.

Although devices that employ lateral confinement potentials are not currently
manufactured commercially, they are the subject of intense industrial and aca-
demic research. Quantum wires, structures with carriers confined in the growth
and onpe lateral dimension, and quantum boxes, structures with carriers confined
in the growth and both lateral dimensions, are currently fabricated and charac-
terized in many research labs. (In this thesis we deal with a specific example of
a quantum box, the quantum dot, which is characterized by a lateral confining
potential which is parabolic m both lateral dimensions). The techniques employed
in the fabrication of these devices are at present quite varied and quickly chang-
ing as researchers find new and better means of producing lateral confinement in
structures. In the case of quantum wires, a slightly more mature field than that
of quantum dots, clever growth techniques developed by P.M. Petroffid! et. al. at
AT&T Bell Labs. in 1984 are now used in the production of high quality quantum
wire arrays. In those cases where single quantum wires are desirable, Kapon[w] et.
al.(1989) of Bellcore have found ways of growing high quality V-groove quantum

wires using organometallic chemical vapor deposition.

In the case of quantum dots, however, the fabrication techniques are more
primitive, involving physically and\or chemically etching wafers to produce cylin-

6
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drical columns (Reed[m] et. al. 1987), or chemically precipitating spherical clus-
ters (nanocrystallites) of semiconductor material onto surfaces (Oshinowofm] et.
al, 1994) or into polymer matrix materials (Salatails] et. al, 1994). Both meth-
ods originally displayed serious drawbacks, but continued effort has served to

resolve some of these difficulties.

The impetus behind this considerable effort is a technological one, stemming
from the benefits reduced dimensionality bring to optoelectronic semiconductor
devices. Most importantly, the more sharply peaked electron density of states
associated with confined systems results in a highly selective gain profile for such
systems (narrower linewidths). while the reduced volume of the active medium
required for spatial confinement means there are fewer electron-hole pairs available
for population inversion, which in turn means that a very small current will be
required to reach inversion (typically microamps, Kapon[ml et. al, 1989). These
benefits make low-dimensional structures ideal candidates for solid-state lasers,
and indeed this is the most active area of research and development associated
with these structures. Lasing action requires of course that the low-dimensional
devices be placed in a tuned cavity which supports modes that overlap the peaks
in the gain profile of the active medium. In practice, this is accomplished by
integrating the devices with a pair of distributed Bragg reflectors (DBR), although
it may also be possible to place them in a micro-machined confocal cavity. Again,
this technology is more developed in the case of quantum wires than for the case

7
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of quantum dots.

In the case of quantum wire arrays in a DBR cavity, the geometry of the
vertical cavity surface emitting laser is the natural choice of the designer, and
high quality quantum wire array microcavity lasers have been constructed recently
based on this geometry (Chavez—Pirson[ul et. al., 1994). The case of quantum
dots in a cavity has been more problematic, since physically integrating the dot
structures into a DBR cavity necessitates overgrowing the dots with some suitable
matrix material, a process which so far has shown limited success. This does not
deter theoretical speculation, however, and the subject of a quantum dot in a
resonant cavity is an interesting problem in its own right, one with both theoretical
and practical aspects. In fact, thJs problem is closely related to another active field
of research, namely cavity quantum eleétrodynamim (QED), but more specifically
to the study of atoms in optical cavities. The analogy is an attractive one, since the
discrete level structure of quantum dots has already earned them the nickname
“artificial atoms”. What we are considering here could then be called “cavity
QED with artificial atoms”, and as we progress the analogy will reveal itself in

the mathematics of the system.

A discussion of the dynamics of the quantum well or quantum dot-DBR cavity
system is in actuality a discussion of the interaction between the modes of the
spatially confined electron system and the modes of the electromagnetic (EM) field
in the cavity. For the case of the quantum well-DBR cavity structure, Weisbuch!12!

8
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et. al. observed in 1992 that exciton polaritons are formed in the well when the
structure is resonantly excited. This behavior is similar to another well-studied
system, that of an atom in a confocal cavity, where researchers (Rempe[ml et. al,
Zhu17] et al.) have observed vacuum Rabi splitting in the transmitted spectrum
of the atom-cavity system as a probe beam was scanned through resonance. Zhu
et. al. state that this behavior can be explained by a completely classical model,
which is surprising in light of the fact that the atom is a fully quantum entity and
that the intensity of the probe beam is such that the fundamental cavity mode is

occupied by zero or one quanta.

As mentioned previously, here we are considering the case of quantum dots,
which means the confining potential is parabolic in the lateral dimensions, and
so the electron system sees a simple harmonic oscillator potential. Interacting
with this electron osdillator is the electromagnetic field, which itself is modeled
as a heat bath of independent quantum oscillators, and so we end up with the
situation of a harmonic oscillator coupled to a heat bath of quantum oscillators.
This is a venerable problem in physics, and one of its most recent and complete
treatments has been given by Ford, Lewis, and O’Connell in the context of de-
veloping the quantum Langevin equation[4] in 1988. The beauty of this model
of an electron interacting with the EM field is that the solution for the system
frequencies is exact, as shown by Ullersma in 1966 (the eigenvectors will have to
be found numerically, however). This also holds in the quantum case, since in

9
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the Heisenberg picture the equations of motion for the operators take exactly the

same form as their classical counterparts.

The situation becomes more complex when we consider more than one electron
in the harmonic potential, since the Coulomb interaction between electrons makes
this a many body problem. The solution of these systems is more difficult, and
when we have more than 4 electrons we rely solely on numerical methods for a
complete description of the system dynamics. There is, however, one situation for
which we may still obtain an exact solution for some of the system dynamics. This
is the case when we treat this problem in the dipole approximation, meaning that
the wavelength of the EM field modes is large enough to guarantee constant field
intensity over the region occupied by the quantum dot. Kohn!!! showed in 1961
that the centre of mass of such a system. of N electrons in a magnetic field behaves
like a single particle of mass Nm and charge Ne coupled to the electromagnetic
field, and his work on the subject has become known as Kohn’s theorem. This
means that the system of electrons in a dot appears as a single particle whose
charge we can select. This selectable charge affords an excellent opportunity to
investigate self-field eflects equivalent to the Lamb shift and spontaneous emission

in atoms.

Kohn’s theorem has since been extended, largely due to work done on semicon-
ductor nanostructures such as parabolic quantum wells, wires and quantum dots,
and is now known as the generalized Kohn’s theorem (GKT, Breylls] et. al.) and

10

i
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the Harmonic Potential Theorem (HPT, Dobsonllg], Yiprzo]). The experimental
record on quantum dots confirms the validity of these theoretical assumptions, and
because dots are very young (the first being successfully demonstrated in 1988 by
Reed!193 et. al), it is relatively easy to track the experiments that motivated the

theoretical developments, and vice versa.

Ciebertll et. al., working at AT&T in New Jersey in 1986, demonstrated
carrier confinement to one and zero degrees of freedom in GaAs-GaAlAs struc-
tures. Using low temperature cathodoluminescence, they found luminescence lines
which they attributed to transitions between ground and excited states in their
fabricated devices. Motivated by these and other contemporary experiments also
demonstrating low dimensional confinement, in 1987 Bryanth] calculated the
states for a few interacting electrons confined to small (10 to 1 nm) boxes. As ex-
pected, the level structure became very complicated for interacting multi-electron

systems.

Early experiments which probed dots through their interaction with far in-
frared light observed a much simpler spectrum than predicted by the many body
models of Bryant and others (Laugh]j.naz,’], Kirsenowl24, Pfannaguche[“zsl), and
several researchers made the observation that the dots were exhibiting spectra
with the same level structure as a single electron in a parabolic potential (Sikorski
& Merkt26l in 1989; Liu7l et. al, in 1989; Demel®8l et. al, in 1990). Such
a single electron system had been treated by V. Fock?9 in 1928, whose results

11
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predicted the same spectra recorded in the FIR quantum dot measurements, a
fact which was quoted often in the original experimental literature. Bryant’s cal-
culations had made apparent the fact that level structure was highly dependent on
many body effects, yet the experimental results seemed to indicate the opposite:
that level structure was independent of the number of electrons occupying the
dot. This was explained rigorously in 1990 by Maksym and Chakraborty!30! and
also Bakshi, Broido and Kempa[31] in terms various versions of the Generalized
Kohn’s Theorem. The essential observation in each case is that for a harmonic
confinement potential, the Hamiltonian of the system separates into relative and
centre of mass terms, and in the dipole approximation, light couples only to the
centre of mass term. This is the state of quantum dot models today. An exact
solution is available for FIR spectra, and numerical solutions are used for those
cases where the dipole approximation does not apply or the confining potential is

non-parabolic.

Our Approach to the Quantum Dot

In this thesis, an investigation is made of the behavior of quantum dots in per-
pendicular magnetic fields and probed with light ranging from microwave to near
infrared frequencies. Consequently, only the centre of mass solution is presented
explicitly, although we begin with a more general description of the system. Fol-
lowing a discussion of the two dimensional electron gas (2DEG), our approach here

12
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is to begin with the classical Lagrangian (in the Coulomb gauge) for an arbitrary
distribution of electrons in a harmonic oscillator potential and interacting with a
vector potential describing both the magnetic and FIR fields. The Lagrangian is
then transformed to reciprocal space since the interaction between the electrons
and field modes is most apparent in the k-space representation. Additionally,
complex coordinates for electron position and the vector potential are introduced.
This is motivated by the fact that electrons in magnetic fields follow circular or-
bits, which can be concisely described with complex coordinates, and by the fact
that photons coupled to such a system will display circular polarization. The
resulting reciprocal space Lagrangian is a real function of complex coordinates.
Following the early work of Ullersma and the more recent work of Ford, Lewis
and O’Connell the Lagrangian can be written as an ensemble of interacting oscil-
lators. Lagrange’s equation then yields the equations of motion for the system.
These equations for the electrons and the fields display coupling between the par-
ticle momenta and the field coordinates, what Ford et. al. call velocity coupling.
Additionally, the Coulombic electron-electron interaction remains present in the
equation of motion for the electrons. At this stage the problem is still general,
and can in principle be solved for both the relative (many-body) motion as done
by Laughlin for the case of three electrons in a magnetic field or by Maksym
and Chakraborty for quantum dots in a magnetic field, or for the centre of mass

(collective) motion, which has been done by many authors in the context of dis-

13
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cussing FIR absorption in quantum wells. The solution in the many body case
will by necessity be numerical in nature if more than a few electrons are present.
In contrast to this is the centre of mass case, which has been shown to posses an
exact solution, regardless of the number of electrons present, making it attractive
theoretically. Moreover, since we are investigating the FIR case here, the centre

of mass solution will be sufficient to describe the dynamics of our system.

In fact, it is because we are in the FIR limit that an exact solution is possi-
ble. In this limit, with the eleciron in a magnetic field (ot any other harmonic
potential), Kohn’s theorem states that the electron-electron interactions do not
affect the absorption spectrum of the electron-magnetic field system, which dis-
plays a narrow resonance at the cyclotron frequency. This means that in the
centre of mass case, the Coulomb interaction term is not coupled to the field and
does not affect the centre of mass equation of motion and so we can solve the
system exactly. This gives us the dispersion relation for the system, from which
we can graphically determine the system frequendies, as well as investigate the
behavior of the system under circumstances such as varying FIR and magnetic

field frequencies.

Although a Lagrangian is completely adequate for our purposes here, it is also
advantageous to employ a Hamiltonian approach, for the reasons that the trans-
lation to quantum mechanics is more straightforward in that formalism. Conse-
quently, we also write the Hamiltonian for the system. This also allows a simple

14
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demonstration of the independence of centre of mass and relative coordinates
for the quantum dot in the dipole appraximation, and shows that the proposed

solutions block diagonalize the Hamiltonian.

15
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Chapter 2

Modelling the Quantum Dot

The Two Dimensional Electron Gas

Much of the behavior of the quantum dot stems from the dynamics of the
underlying two-dimensional electron gas (2DEG) upon which the dot’s parabolic
confinement potential is imposed. A brief review of the properties of 2DEG’s
which apply to our treatment of dots will be helpful in the understanding of the
system. This review contains by necessity only a small portion of the vast body
of literature on the subject, that which applies most immediately to this analysis
of quantum dots.

2DEG’s manifest themselves in several physical structures: in thin films, in
insulator-semiconductor interfaces (inversion layers) and semiconductor-semiconductor
junctions (heterostructures), or on the surface of liquid helium. The defining char-
acteristic in these situations is that the carriers are free to move in the two spatial
dimensions parallel to the film or junction or liquid surface, but are confined
in the third spatial dimension, the direction perpendicular to the interface, and
consequently have quantized energy levels in that dimension. These systems are
not truly two-dimensional, however, as the electron wavefunction will have some

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



small but finite extent in the perpendicular dimension. Furthermore, the elec-
tronic system couples to the electromagnetic field, which is not confined to the

plane.

One can, however, as a first approximation, treat the system two-dimensionally
in an attempt to determine the energy level structure and dynamical behavior of
the 2DEG. It was JR. Schreiffer!33], studying inversion layers in silicon, who
pointed out that if the carrier wavelength was of the same magnitude as the dis-
tance from the interface to the dassical turning point, the behavior of the carrier
in the interface would have to be treated quantum-mechanically, since penetration
of the carrier wavefunction into the barrier is a strictly quantum effect. In order to
justify the assumption that the electron’s behavior is essentially two—dimensional
in quantum dots, we consider a well known example from the experimental liter-

ature.

Reed(13] et. al. have demonstrated fully quantized energy level structure in
an AlGaAs-InGaAs quantum dot structure. Using electronic spectroscopy on a
50 A quantum well layer the group observed two transmission peaks, a ground
state resonance at 50 mV and an excited state resonance at 700 mV. Subsequent
measurements on quantum dots based on the same quantum well geometry show
finer structure superposed on these quantum well resonances. This finer structure
consists of equally spaced oscillator modes with a level spacing of 50 mV. From
this one can see that across a broad range of energies (i.e., 50 to 700 mV), only

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the first subband of the quantum dot will be occupied, and so the assumption of
two-dimensional behavior is justified.

Generally, treating the interface potential is a complex problem, depending
on the type of physical structure being investigated (e.g. a MOS junction like
Si-SiO2 or a heterojunction such as GaAs-Al;Ga;_.As which may have a grad-
ing of the junction interface that ranges from abrupt to very gradual). These
treatments comprise an extensive literature in themselves, with ongoing debate as
to the proper methods and techniques with which to approach the problem. The
most common treatment is a self-consistent solution of Schrédinger’s and Poisson’s
equations, evaluated numerically. The work of Stern and Howard34 is represen-
tative of these original self-consistent solutions. More recent work incorporates
the use of exchange and correlation potentials, which becomes increasingly im-
portant at low carrier densities, a region of particular interest for quantum dots.
The most effective approach has been the density-functional method developed
by Hohenbergi3%! and Kohn, and Kohn37! and Sham in 1965, which Andol39l
applied to the space-charge layer in silicon in 1976.

An electron constrained in the z dimension by an interface potential will dis-

play an energy structure like

nz
E=E. +5— (K +k),

where E, denotes discrete level structure determined by the interface potential,

krand k, are the wavevector components parallel to the interface, and m* is the

18
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effective mass of the carrier moving parallel to the interface. This gives rise
to a subband structure with the discrete values of E, defining the bottom of
each subband. As the energy of electrons at the imterface rises past the epergy
levels determined by E.;, E.3, etc., the high energy electrons will begin to fill the
higher-order subbands consecutively. As we have already noted, the calculation
of the discrete level structure can be complicated for interfaces. A more realistic
treatment of the interface models the interface potential as a finite square or
triangular well, in which case graphical or numerical solutions are necessary when
determining the energy eigenvalues of the system. The deeper the actual finite
well, the better an approximation the infinite square well becomes, especially for
the lowest-lying levels.

In the case of quantum well heterostructures, however, the modelling of the
junction by a finite square-well potential is a reasonably realistic approach, sup-
ported by the experimental literature. As a first approximation to the square well,
we can assume an idealized heterojunction with infinite barriers, and employ the

effective mass approximation to find the familiar energy band structure

R w? , RK?
Enk = op @™ +

>

2m*’

where m, is the effective mass for carrier displacement at right angles to the plane
of the well, m* is the effective carrier mass for motion parallel to the well, &
(k* = k2 + k2) is the wavevector for motion parallel to the well, and d is the
physical width of the well. With a definite expression for the energy levels of the

19
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2DEG, we are able to determine the density of states (DOS) explicitly.
If we use the infinite square well model of the well with the effective mass ap-

proximation, the density of states (D, (Bak) = &%) in two dimensions becomes:
o1
D; (Bni) = (LLLy). (2.1)

where g, accounts for any degeneracy in the energy band structure of the semi-
conductor. The curves below demonstrate the effect of dimensional confinement

on the density of states of an electron gas.
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Fig.1 Comparison of density of states in the three-dimensional (3D) elec-

tron system with those of a superfartice, and the two-dimensional (2D),
one-dimensional (1D), and zero-dimeansional (0D) electron systems

In the case of quantum dots, the quantum well is more accurately modelled
with a finite square well potential, which will also yield discrete energy levels, but
which does not posses a convenient analytical expression.

While the density of states presented in eq.(2.1) is satisfactory for electrons
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which are free to move in two dimensions, it does not describe the DOS for a
quantum dot (in or out of a magnetic field). A correct expression for the DOS in
a quantum dot must account for the spatial confinement owing to the parabolic
confinement potential found in dots also and the perpendicular magnetic field
acting on the 2DEG discussed above. Without explicitly calculating the DOS for
a quantum dot, we can anticipate some characteristics of its structure. First, the
dot density of states will be a collection of delta function peaks spaced according to
the energy level structure of the dots, which is a characteristic possessed generally
by any zero-dimensional system (see Fig. 1). These peaks will be characterized
by three quantum numbers, as in any zero-dimensional quantum system, and will
be broadened by various mechanisms (such as emissions into available EM and

phonon modes), in much the same way that atomic energy levels are broadened.

Lagrangian Treatment and Equations of Motion

The physical system we deal with here, the quantum dot, can be described
as an electron gas strongly confined in the z-direction (i.e. a 2DEG), laterally
confined by a harmonic potential, and immersed in a static external magnetic
field, B. This dot is then probed with a FIR field. Our treatment of the system
dynamics considers only the centre of mass motion of the system, and the effect

of electron-electromagnetic field interactions.

We begin by writing the classical Lagrangian for the system in the Coulomb
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gauge,

L=3.

( —.uor) Viow + = /dsr cz(VxA)2]+/d3rj-A,

where r,(%) is the position vector for the ath particle, A(r,f) is the vector poten-
tial, and j(r, ) is the current density.

In this case we deal with point charges, namely electrons, so

j(r,t) = =5 efab (r —ra).

Furthermore, we can break the vector potential into a dynamic (time-dependent)
part, A p, and a static (time-independent) part, As, so that A(r,t) = A, (r) + A (t).
This works well in our case since the magnetic field turns out to be completely
independent of time, whereas the FIR ptobe is a harmonic function of time. This

division of the vector potential yields

L = S0 (8 —ufrd) —Vou+ S [ [Ah - (V x Ap) ]—lea Ap

—GZf‘a 'As.
x

At this point it is advantageous to work with our dynamic field terms in k-
space, since these are the normal modes for the electromagnetic field, and this leads
to a simpler representation for the Lagrangian. Defining the Fourier transform

pair as

AD(I‘, t)

)exp(Zk 1'),

V)
()
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Alkt) = : / d*rAp (r,t)exp (—ik - 1),

...1r)

and employing the Parseval-Plancherel identity

/d"rF‘(r)G(r)=/d3kP(k)G(k),

ZTZ (r ~wpr2) — Viow + 2 /dsk Ak t)? - 2(zkxA(k,t))]

—e(%% % -/dsk/i(k,t)exp(z’k-r)—e;i-a-As.

We can discretize the integrals using periodic boundary conditions, which

results in the prescription

I

giving us
or)® . .
ZmT( —u)or) Vcoul'*‘_(,:;) Z[A:’,\—C-IikXAkw\lz]
o> - - kA
(2r )%
—e % Zra Ak,,\e'-:p(zk ra —lea As.
ok A

Where the summation is over k, the field modes, and )\, the field polarizations.
Noting that (ikxA)” - (tkxA) = kA2, and defining an oscillator coordinate q; =

e(2r)} )
,—n%rkLV exp (ik - ro) A for each EM field mode, we find
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m* eV
- =2 2.2) _ 2 3[e3 _ )
L =) 5 (ra .uora) V;""l+2e3§ mj.u'j[ i — qu] E mjw;Fa
a = J

where the summation over field modes and polarizations has been simplified to
Zj = Zk.A-
In the same manner as Ford, Lewis and O’Connell we define a new quantity,

mj, as

ez

™= A
which has the dimensions of mass, and which allows us to write the field energy

term in the Lagrangian as a harmonic oscillator term, so our Lagrangian becomes

L= Z 5 ( —wir? )+Z [Jz qu] Vm—Zm,w,ra QGi—e) fa-As.

Note that the Lagrangian now looks like a family of two-dimensional electron
oscillators (experiencing the Coulomb interaction) coupled through the j - A term
to a family of two-dimensional field oscillators.

Two definitions will allow us to write our Lagrangian as a real function of
complex coordinates, taking advantage of the system’s inherent rotational sym-
metry. The first definition, z, = z, + ¥, is the normal mode coordinate for the
electron-magnetic field system[ll. The second definition, g = ¢, + ig,, anticipates
the circularly polarized normal modes of the EM field coupled to this electron-
magnetic field system. The time derivatives of these complex coordinates can be
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written as 2, = £o + i¥a, and ¢ = ¢ +i¢,. In terms of these npew coordinates, our

Lagrangian is (see Appendix A for details)

L = g nzl (2as -—ugz..z;) +3 %’J' (‘17‘1; ~ wjgiq;)
3

At this point we abandon generality in the static vector field, A,, and spec-

ify a magnetic field By, perpendicular to the plane of the 2DEG. Hence A, =

%! (_y, z, 0)’ and

L = ;T'Z— E 32as) +Z% (44 - i)
J

miw; . . . Bui L
—-Z ; . (::aq,- + ::aq,-) - 401 Z (za2f — 252a)

%] o

—Veou (Iza - z3])- (2.3)

This, then, is our classical Lagrangian. Our equations of motion are derived

from the Lagrange equations, % ('a%) - agé = 0 and ECLt (g—f.—) — 375 = 0, and
o “a 5] J

likewise for z,, and g;. We first consider the variables z* and q;, with their

~a

resulting equations of motion being

m* eBgi . m* miw; . oV,
R N LT
J = o
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and

Gi+wigi+w;d_ z.=0. (2.5)

Note that these equations of motion govern the behavior z, and g;, respectively.
We could also write the equations of motion for =} and g}, but this proves to be
unnecessary since they would simply be the complex conjugates of the equations
of motion shown above. This redundancy in the equations of motion results from
the use of complex coordinates and their corresponding effect on the apparent
degrees of freedom of the system. This is discussed further in appendix A.

If we work in the dipole limit, i.e., assume the external electric field is constant
over the dimension of the dot, we can apply the generalized Kohn’s theorem and so
the electron-electron interactions do not couple to the centre of mass coordinate,
eliminating the a_v?m term. It is possible to express the equations of motion in
terms of the centre of mass coordinates of the electrons in the dot. If we define

the electron centre of mass coordinate as
1N
Zem = % Ea:

and sum the equation of motion for the electrons (eq.2.4) over the electron index,

a, we find

{(m Za —eBgiza +m wo.,o,) Z m;iw;iq; = 0}

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



or, equivalently

m‘ZL‘fa — eByi .":a+m‘wgz:a —Nijqu,- =0.
a [ i

[« 3

Note that the common factor of ; has been eliminated from the equation of motion

for z,. In terms of the electron centre of mass coordinates, Z.,,, this becomes
m* 2., —eByiZum + mwiz,, = Z mjw;gj, (2.6)
J
and the equation of motion for the jth field coordinate (eq.2.5) becomes
Gi +wigj = —Nw;Zem. (2.7)

Note that we have a quadratic Lagrangian, which suggests solutions of the
form: Z.,(t) = Zo(w)e™™* and ¢;(t) = gjo(w)e™™*. Substitution into our equa-

tions of motion yields

(—m? — eBow +mwf) Zo(w) = —iw i mjw;gjo (w) (28)
(—wz + wf) gjo (w) = iNww; Zo (w) . (2.9)

This system of equations in Z; and g;o supports a solution if the determinant
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of the coefficient matrix vanishes, i.e.,

(—m*w?® — eBow + m*wj) — WMy —wmaws —ee — WMy,
—iNwmw, my (—w? + w}) 0 S 0
—iNwmaws 0 mg (—w? +wd) --- 0
— i Nwmpw, 0 0 ces My (—? + W2

Alternatively, we can also solve eq.(2.9) for g;o and substitute this in eq.2.8, which

results in the relation

(~m*u? — eB .3 - e
- —eBow +m .uo) N%:mj(_wz+w$)
which, if we define the cyclotron frequency as w, = 2 , becomes
i
(—m.a —mwew +m wo) NZm, (—u3+w ) i (2.10)

Recall that this expression originated from the condition that our equations
of motion be soluble. The allowed system frequencies can be found graphically by
plotting the left versus right hand sides of this expression, and the intersections of
these two curves give the solutions we seek. Alternatively, we can solve the above
expression for w, the system frequency. This gives us the dispersion relation, and
plotting the roots of these expressions as functions of the field frequency, w;, gives
us the dispersion diagram for the system. These will be shown in the Results

section for a variety of cases.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




Hamiltonian Treatment

Working from the Lagrangian (2.3) of the previous section, we can translate

our results into Hamilton’s formalism using the general prescription

H= ZP&'Qi - L’
i=1

where g; is a general coordinate and p; the corresponding conjugate momentum .

In our case, the Hamiltonian becomes

H= Z(p- Za + Do i )+Z(pq,¢z1 +pg @) — L. (2.11)
The canonically conjugate momenta are given by p; = % (see Appendix A),

yielding

{) QJ 4 ~ox

J

. .
m m]wJ . €eBg
) k]

j -

- {5e-
_ oL m mjw;j eBoi _
=2 az‘ {2~a_z o % 4~a}7
aL _

P, = EXS _9_’; and
oL m; .
Pg; = _q? ?Q‘i (2.12)

for the momenta conjugate to the coordinates z,, 2%, gj, and q;, respectively.

Substituting our conjugate momenta in eq.2.11, we find

m* mjiw; eBoz
— 5% __ 277 = 0 - -
H = Z{—z = =3 g+ 1 (e
7
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collecting terms and substituting eq.2.3 for the Lagrangian gives us

H(zo, Gy Zar @) =Y "; (iaé; +wg::az;) +Z % (q,q,' +wfq,~q,‘-)+Vw,,¢. (2.13)
~ 2

However, a Hamiltonian is properly a function of momenta and coordinates,
that is H =H (::a, Pear @is p.b.), and the generalized velocities in eq.2.12 can be

expressed in terms of the momenta p., and p,, and their complex conjugates as

o 2 eBOZ t meJ t
2= g Z :

m*
5= % (P:; + eﬁoz . ; m;wj %) ,

v 2

g = —m—quj, and

. 2

G = b (214)

Substituting this in H (2., &, Zay %), we have

=

m

H =

m“)

(zpz S

eBoz' . miw;
4 ;:a'{'z Z)Jq]
3,

m.w
Z —2_“)0“0"’0 + Z (p‘bpq, 1 Q’lq]) + Vw'd'

Expanding and collecting terms, along with the definition w, = ‘;BP, gives us

i

(%ch. + pead) +Z ’q,q,) + Viow

(Z PeiPsa + Z
7 \m; Pa;Pa, 2 '

mywj

9 (zan" - Qiz;) +

uJ [7%)
0, = e -
5 e +i5 Y (%P —Peza)
~* o

e
)
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which is the Hamiltonian for the quantum dot-magnetic field system acted on by
a homogenous time-varying electric field. Note that this is of the same form as the
velocity coupling Hamiltonian discussed by Ford, Lewis, and O’Connell4l. (With
one exception: in a typical Hamiltonian we are accustomed to kinetic energy terms
like -5% The Hamiltonian presented above, however, has kinetic energy terms that
look hke . This originates in the use of complex coordinates, and is explained

in detail in appendix A.)

The External Field and the €Centre of Mass

Returning to the Hamiltonian as a function of the coordinates and their gen-
eralized velocities, as in eq.2.13, we have

H (G iy or @) = 3 o (Zaa + wBzaza) + 3 22 (4 +w2056]) + Vs

[ 3 - 7

Making use of the complex version of the identity for quadratic forms20!

N . 1
S =5 (Sw) (T=)+5 T n-wr s,

a,fia<3

we may recast the Hamiltonian in terms of centre of mass and relative motion

coordinates for the electrons only, leaving the field terms as they are, resulting in

7= g (T) (T2) + g Z, Gt e -0

« a3
*E * m*wi .
T(?)N ; (Z ) (; ' ) (2 ;()) a,gqx (2a — 28)" (2a — 25)

1
a#s \/( — 25)" (2a — 25)

+30 5 (44 +fag) +¢° (2.16)
J

31
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We now redefine our coordinates to centre-of-mass and relative variables using

the new coordinate definitions Z,, for the electron centre of mass coordinate

1 N
Zcm = ﬁ;zav

and =, for the electron relative motion coordinates

S = 21— 23

S = =+ 29 — 22‘3

Zy = 1+ 23473 — 32
N—1

ey = Z::,-——(N—l)::N.
a=1

Likewise we can write the new electron velocity definitions Z.,, for the electron

centre of mass velocty

. 1 XN
Zcﬂx=ﬁzim

a=1

and 2, for the electron relative motion velocity

e = T — 23
Iy = Qi+ 2%
Zy = D1+ +35—32
N-1
Zy = Y H—(N-—1)in.
a=1
32
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Our Hamiltonian expressed as a function of the centre of mass variables becomes

H = ™ N)z-  Zem +

-l -l

Z (~a - 33). (211 - ~B) + Z (~ax - zd)‘ (za - :d)

a.ﬂn<d a,Fx<i3

1
+ _'7. q’1q‘ + “Jz%q' -+ e2 .
zj: 2 ( T J) azaéd\/(za—m)'(za-zu)

Inspection of this Hamiltonian reveals that each term is a function of either centre

W) 22z Zem (2.17)

of mass coordinates or relative coordinates, but not both, and so may be written

as a sum of centre of mass and relative Hamiltonians.
H (Zcm’ Zry emy Sy ‘i‘i’ %) = Hem (Zcmy Zcfn)+Hr (éra zr)+Hcmd (f(:r))+Hfidd(Qi’ ‘Z?)

If we now consider the case where the dynamic vector potential, Ap, is such
that the electrons see an electric field which is slowly varying over the dimension
of the quantum dot, ie., E(r,t) = —eEge '™ x~ E(t) = —eE¢e ™, the

interaction term in our Hamiltonian corresponding to the ath electron will be
H! = —eEq -r e ™"

(Note that this interaction is implicitly incorporated into our Hamiltonian (eq.
2.17) through the conjugate velocities that form the centre of mass terms. What
we want to show here is the effect of this interaction Hamiltonian on the rest of
eq. 2.17.)

The interaction term representing all of the electrons will be

>_H,

33
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= > (—eEo . rae_"“’t)

[« 3

= (—eEoe"""‘) ) ra.
Recalling that R,,, = # > o La, this interaction term becomes
H' = (—Ne)Eg - Re™™?,

which we can write in terms of the complex coordinates if we first transform
Eo to complex coordinates with the definitions Ey = Ey; + iFEp, and recall that

Zem = Xem + Y- Then

(BoZem + EgZem)
D)

-t

= EoeXem + EoyYem = Eq - Rem,

and the interaction Hamiltonian can now be written as

(BoZom + i Zem) s
D) A

-t

H’ = (—Ne)

and so we see that the field interacts only with the centre-of-mass coordinates,
and hence only the centre-of-mass Hamiltonian. This means that the electron-
electron interactions do not play a role in the behavior of the centre of mass of
the quantum dot-magnetic field-FIR field system.

For the case of FIR excitations the system dynamics are then represented

exactly by the electron centre-of-mass Hamiltonian:

: . N.. . Nm*)w?
Hem (Zems Zemr 42 45) = Z:,,,zcm+(——"f',l°ﬁz:,,,zm

-d

3{

t

= m; L -
+3° 5 (46 +«7aig;) - (2.18)

7

H
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Which describes a collection of .+ 1 oscillators: one physical oscillator with mass
Nm" and charge Ne, and n field oscillators of effective mass m;. Coupling of

these oscillators occurs through the Z.,, and Z., terms.
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Chapter 3

Results

From the preceding section we have as the solutions of the system the cyclic
functions

Zem (t) = Zo (w) e ™" (3.1)
and

g; (t) = gjo (w) e™". (3.2)
These can be identified with the Cartesian centre of mass coordinates in the usual

way, namely Z.,, = Xon + iYern. One can then write for Z,
Xem+iYom = Zy (w) e ™" = Z4 (w) [cos (wt) — isin (wt)] = R cos (wt + ¢)—iRsin (wt + ¢),

and likewise for g;. The system frequencies, w, are determined from the solubility

condition derived previously
3,2

m* m*w, m*w? m;  WwWj
T D, % NZ e ,
2 2 (7-)

where n; represents the number of field modes interacting with the electronic

(3-3)

system, and N represents the number of electrons in the system. This expression
is difficult to solve in its most general form, but with a few simplifications we can
find analytic solutions for specific cases.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The Case of One Field Mode

If we specify only one field mode . n; = 1, as would be the case for an ideal

cavity, the summation drops out and our expression becomes

m.
(—wz — wew + .ag) (wf - .dz) - N2 =0,
m’

or equivalently
W + wew® — {wg + (1 + N%) w?}w’ - wcw;‘i'w +w§w§ =0. (3.4)

We see that this is a quartic in w, yielding four roots which we will label wy, w3,
w3, and wy, the system frequencies. The solution of such a polynomial is fairly

involved, and we will return to it later.

The Case of Zero Magnetic Field

The situation is greatly simplified in the case of zero magnetic field (w. = 0),
since the above equation becomes
ot — {wg + (l + N%) w?} w? 4+ wjw? =0, (3-5)

a quartic whose four roots are the system frequencies we seek.

The Level Behavior

The quartic can easily be solved as a quadratic, and yields the roots (i.e., the
dispersion relations)

37
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1 ” 1
wy = 5\/(.u3+» +N ;+2wow,-)+2\/(wo+w +Nﬁw2—2wou,)
. = l I R ij 3.9 1 2.2 ij 2 _9
Wy = 3 o +wj + ;wj-i-.wowj —3 wp +wj + 7—n-:wj—..wouj ’
- 1 Wi + 3 +7V w? + 2gw; +l B 4+w?+ N 2w
s 2 0 ] 0% 2 “o +wj m.."dj Ldows |y
and

1 m; 1 m;
wg = —3\/(ug +w?+ N;z—fw}- +2uowj) - 3‘/ (wg +w? + N#Wf —?wowj)-

(3.6)
The behavior of these levels can best be demonstrated graphically, shown below

in figure 1.

00 0.5 1.5 2

Figure 1. A plot of w vrs. w; for one field mode. The levels exhibit anticrossing
behavior when the field, w;, is resonant with the oscillator frequency, w,. The
graph is plotted in terms of the variables z = < e andj= -J- and so resonance

occurs at j = 1. The coupling constant NZ2w? has been set at .3 x 1075

38
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In plotting the curves shown in Figure 1, we have had to choose a numerical value
for the quantity N =%, which represents the degree of interaction between the
electrons and the EM field, and hence may be thought of as a coupling constant.
The behavior and evaluation of this coupling constant is treated in detail in the
final section of this chapter. The anticrossing behavior of the levels may be easily
seen at a finer scale, and expanding Figure 1 in the region where it exhibits

anticrossing behavior yields the curves shown below in figure 2.

1.0003-
1.0002-

1.0001—;

1- .
0.99991

0.9998+

0.9997 0.999.9985 0.999 0.9995 } 1.0005 1.001 1.0015 1.002

Figure 2. Detail of the anticrossing of levels w; and w;. The vertical gap at

resonance corresponds to the Rabi flopping energy.

Figure 2 shows the resonant anticrossing behavior of the system, and the
splitting characteristic of Rabi oscillations as the system oscillates between an
excited dot + ground state cavity and a ground state dot + excited cavity. The
case we deal primarily with here, that of a single quantum dot occupied by one
electron interacting with one field mode, is exactly the case of a dot in a resonant
cavity.

39
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The Graphical Solution

Note that we can also determine the system frequendes graphically. This
involves independently plotting the left and right hand sides of the simplified

solubility condition,

; w?
77; ((-dg —wz) = N—T;lw:—(w:——uﬂ)- (3.7)

The intersection of the resulting curves yield the solutions of the system. This
graphical solution technique is familiar from the solutions of transcendental equa-
tions, and is the method employed by Ullersmal?! in his treatment of the Brownian
motion problem and by Ford, Lewis and O’Connell! in their development of the
quantum Langevin equation. The four intersections generated by our dispersion

relation give the system frequencies, as shown below in figure 3.

p

-.z
ff

Figure 3. A plot of the LHS versus the RHS of the solubility condition for the
case of no magnetic field. The intersections of the curves shown give the system

40
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frequencies at resonance(w; = wp). The coupling has been exaggerated for

purposes of illustration.

In this simplified case of one field mode and zero magnetic field, this graphical
solution technique is redundant since we already have an analytic expression for
w, but we will see that for the solution of more complex cases the technique proves

very valuable.

The Case Involving a Magnetic Field

With only one field mode (r; = 1) and a magnetic field present, the solubility

condition becomes

=

2
m m; w
5 (ug—u}cw—wz)=. —q’wf-———.
2 @)

Expanding this gives us the fourth-order polynomial
wt W — {wg + (1 + N%) w'f} Wi — wcwfw + wgw]z. =0,

which can be solved to give an analytic expression for the four system frequencies.
We do this for the case we are most interested with: that where the electric field
is resonant with the quantum dot potential, i.e. w; = wp, leaving w. independent.

The quartic becomes
wt +we® — {(2+N%) wg}wz — wewgw + wi =0, (3.8)

and the roots of this expression give us the behavior of the levels with varying
magnetic field.

41
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The Level Behavior as a Function of Cyclotron Frequency

These roots are found using the standard algebraic solution formulae found
in mathematical references. For quartics this can be a tedious process, and so
here we have employed Maple, a software tool capable of analytic solutions of
polynomials (up to fourth order). The roots generated in solving quartics can
be extremely complicated, generally involving many terms. This was a limiting
factor here, since in the most general case, where we wish to solve the quartic in
terms of w; and w,, the roots generated were of a size that exceeded the capacities
of the software to manipulate explicitly. This was not completely debilitating,
however, since the dispersion curves could still be plotted implicitly, and explicit
solutions were found for special cases, which we present below.

The case of fixed field frequency, w; = wp (resonance), and variable cyclotron
frequency, w,, was one such manageable case. The dispersions of the four system
modes are given below, for the case of ten electrons and one field mode (N = 10

and n; = 1, respectively).

w1 = —25w +5.0 x 107%,/(2.5 x 1072 + 227.0)

+5.0 x 10-5 ~1.0 —5.0><107w§\/(2.5x107w§+227.0)—-4.0x103\{(2.5x 107w2+227.0)+2.5x 1011 w3 +2.27x 105w,
V/(35x107w2+337.0)

— 25w, + 5.0 x 1075,/(2.5 x 1072 + 227.0)

5.0 % 105 \/ ( 10 =S0x 10w /[(BEx 10707+337.0)—4.0x 103 /(2 5x 1072 +337.0) +2.5x 10M g +2.97 wﬁuc)

%]

V/(35x107w34337.0)
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wsg = —.25w, —5.0 x 107%,/(2.5 x 1072 +227.0)

450 x 10-5 5.0x 107w3 /(2.5 107w2+2327.0)+4.0x 108y /(3.5x 107w3+337.0)+3.5x 10! w3+3.27x 106w,
: V/(3.5x 107024227 .0) ’

and
wy = —25w, —5.0x 107%,/(2.5 x 1072 + 227.0)
50 x 10-5 5.0x107w2/(2.5x 107w3+2327.0)+4.0x 108 /(2.5 107wZ4-327.0)+3.5x 10! 1w3+3.27x 106w,
: v/ (35x107w2+227.0) .
(3.9)

Plotting these yields the behavior shown below in figure 4.

24

T3 -2- . 0p 2 4

- e e e e e e e o e :>.L_____-_-- __________
21

i

-4}

Figure 4a. A plot of the behavior of the levels with the field, w;, resonant with
the oscillator frequency, wq, plotted as a function of the dimensionless variable c,

where ¢ = (w,, = %) The coupling constant is set at =~ 3 x 1075.
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Figure 4b. An expanded plot of the positive frequency solutions from Figure 4a,

showing the anticrossing behavior of the dot-cavity levels.

Recall that since the cyclotron frequency, «., is defined as w, = ‘—’mg}, and we
have fixed the direction of By, the sign change that occurs in the system fre-
quencies (wy, ..., w4) as they pass through zero represents a change in the rotation
direction of the electron-field system. This is reflected in Figure 4a, since for any
one solution the system displays asymmetric behavior with respect to w,, indi-
cating that the magnetic field acts to increase or decrease the rotation frequency
depending on the sign of w. and the handedness of the system solutions. Further-
more, each solution is seen to have a counterpart which exhibits antisymmetric

behavior with respect to w..
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The Graphical Solution

We can apply the graphical intersection method to the case where the magnetic
field is not zero, and once again a plot of the LHS and RHS of the dispersion

relation,

m”* (dg — W/ —-.Jz) = N%wf(,jfz—w—z), (3.10)
J

W

yields the system frequencies from the four intersections of the given curves, shown

below in figure 5. Again, a large coupling constant is used for illustration.

4r
%
-1
-3 -2 ] - \\-i 0p Ryas 2 3
i W
i I )
-2t :
¢
4-

Figure 5. A plot of the system frequencies for the case of w, = wy. The magnetic
field is seen to to shift the intersection points, and hence the system frequencies.
Note that with a magnetic field present, we have lost the symmetry between

positive and negative frequency solutions.

We can see that as the magnetic field increases in strength, the system frequencies
grow smaller for positive w, and larger for negative w, corresponding to the cases
where the circulation due to the magnetic field has a handedness opposite to
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or the same as the handedness of the orbital motion of the composite electron
centre of mass, respectively. This breaks the symmetry between the positive and
negative frequency solutions for the dot, and allows us to distinguish each of the
system modes individually. The explicit nature of this symmetry breaking can
be discovered from a consideration of the magnetic dipole moment-magnetic field
interaction energy, Ug = —u - B.

The magnetic dipole moment can be defined as

u=

/ (r x J)dv,

L4

B -

and so the interaction energy is
_ 17
Ug = SL/(rxJ)dv]-B.

where J =qif = —ef’ and B =ByZ. In the case of the quantum dot, both r and
J lie in the x-v plane, so r x J will point either in the z or -z direction, parallel
or antiparallel to the magnetic field. In the case where I is oriented in a coun-
terclockwise (ccw) direction, J is clockwise (cw), and so r x J points antiparallel
to B which gives us Ug = —u - B >0. Likewise, for I oriented in a cw direc-
tion, Ug = —u - B <0. If we now recall that Z., () = X.n (2) + 1Yoy (2), which
describes cw rotation for Z,, ~ e “* (see 3.1), we see that the case Ug < 0
corresponds to the Z, (or Z7,,) modes with w > 0 (or w < 0 for the Z7,, modes),
decreasing (or increasing) the centre of mass rotation frequency as shown above
in Figure 7. Likewise the Ug > 0 case corresponds to the Z7 (or Z.,) modes
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with w > 0 (or w < 0 for the Z, modes), increasing (or decreasing) the centre of

mass rotation frequency as also shown in Figure 7.

The Level Behavior as a Function of FIR Field Frequency

As mentioned above, explicit solutions for the system frequencies proved un-
manageble owing to the length of the resulting expressions. This forced us to plot
the dispersion curves implicitly, which are shown below in figure 6 in the case

of a strong magnetic field (w. = wo) and an exaggerated coupling constant for

purposes of illustration.

2+

T, /
X l[L ,///

1 —
'

0p™—~~—___ 05 L L5 2
: \\ J

-1- T~
11 \__—
3

-2+

Figure 6. The system behavior for a dot in a strong magnetic field. Note how
the magnetic field affects the Rabi frequency according to the sense of electronic

centre-of-mass rotation.

The most notable effect of the magnetic field is to eliminate the degemer-
acy in the Rabi frequencies between the positive (w > 0) and negative (w < 0)
frequency solutions. This implies that a quantum dot in a magnetic field discrim-
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inates between left and right circularly polarized light, a fact which has been used
extensively in the FIR characterizations of dots performed by the experimental

community.

Multiple Field Modes

Returning to the situation where there are multiple field modes, we once again

have our original solubility condition
m* m*w, m; ..uzwz
(— w? — w + ) N Z -2 ( . (3.11)

2 2 — )

With the summation present, it becomes increasingly difficult to find analytic

solutions for the system frequencies, and so the graphical solution techniques of

Ford, Lewis and O’Connell will be used to find the frequencies we seek.

The Case Without Magnetic Field

Exploring the simplest case first, consider the situation where there is no

magnetic field. The solubility condition becomes

2

(G 5) =SB

2 2 (w —wz)

which we rewrite for purposes of plotting as
(_uﬁ +w§) =Ny} mj_ww (3.12)

Once again plotting the LHS and RHS we find the intersection points that give
the system frequencies. This is shown below for the simplest case of two field
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modes, w; = wo and w; = .

Figure 7. A plot of the system frequencies for a dot interacting with two field
modes, w; = wg and ws = Zvy. Note the appearance of two more system

frequencies. The coupling constant here is set to 10~!.

We can see that the number of solutions increases by two for each additional field
mode, so for the case of two field modes we have the six system frequencies shown
above. Furthermore, since the above plot is symmetrical, we can determine all the
system frequendies by considering only the positive frequency (w > 0) solutions.
This allows us to plot Figure 7 in the same manner as both Ullersma and Ford
et. al, where we plot the LHS and RHS of the solubility condition as a function

of w? (labelled as v in Figure 8). This is shown below for purposes of comparison.
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Figure 8. A plot of the system solutions in the style of Ullersma and Ford. The
positive and negative roots of the intersection points shown above give the six
system frequencies. The LHS and RHS of the dispersion relation are plotted as

functions of w2, labelled as v in the graph.

The Case With Magnetic Field

If the magpetic field is now included in the system, the solubility condition

becomes
= = - 2 n 2, ,2
_‘mw,_mwc mTwy _szJ wow;
2 2 2 o 2 (.2 2\’

which we rewrite as

R
(—w? — wew + ) =$%(T;—WJT3) (3-13)

and plot for the case of two field modes, w; = wg and w; = Zvgy, shown in figure 9.
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Figure 9. The case of a magnetic field and two field modes.

Note that in this case we are constrained to plot the LHS and RHS as functions of
w, since by including the magnetic field we have lost the symmetry of the previous

(Bo = 0) situation.

The Coupling Constant

If we consider the most general dispersion relation for our system,
3w’
m ()

we can investigate the strength of the coupling of the electric field to the electrons

(—wz — Wew + w‘o) NZ i (3.14)

in the system. Inspection of this dispersion relation indicates that the coupling
of the electronic and field oscillators depends on the magnitude of the N 3, =4 wy

term. With the definition of m; given previously (and below) this simplifies to

e2N
em*V" "

Since e, &, and m™ are constants, we see that the coupling goes as %,

the number of electrons divided by the cavity volume. This has two important
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implications. First, that the strength of the coupling grows linearly as the number
of electrons occupying a quantum dot. The £ dependance also indicates that the
coupling grows linearly with the number of dots in the cavity volume, so long as
the dots act as isolated entities, namely that they do not couple to each other
(in practioe this means an array of dots with a spacing large enough to ensure
that there is no dipole interaction between adjacent dots). If we assume that
each dot is occupied by the same number of electrons, the coupling constant will
scale as NpN,, where Np and N, represent the number of dots and the number
of electrons per dot, respectively. This assumption allows us to write the total
number of electrons in the cavity as N = NpN,, which will be used for the
calculated splitting of the oscillator levels presented belcw.

In the graphs of the preceding section the curves have been plotted against
frequencies relative to the natural oscillator frequency, wo. This modifies the form
of the dispersion relation slightly, and so a detailed treatment is presented here.
As a matter of convenience we divide eq.3.14 through by w3 and introduce the

dimensionless variables
= %5 and c= _w_c (3.15)

The dispersion relation then becomes

(—a: —ca:+1) NZ (szz 3y’ (3.16)

and the strength of the particle-field coupling is determined solely by the coupling
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constant, KX, defined as
n; m.
‘=NY 25 3.17
2 e (3.17)
With the previous definition of m; from Chapter 2, namely m; = eV =, and the
definition j = ZZ, the coupling constant becomes

N T 1 & J Née?
Z m* eV.u’ "] T emr BV
“o 0

Note that V' in this expression is taken to be the volume occupied by the fun-

damental cavity mode, 32 (where Agwo = 2mc), which for an idealized cubical

Ao )®
V= (?) .

The wavelength of this cavity mode can be expressed in terms of the oscillator

resonator would be

frequency, wyq, as

where n is the index of refraction. This gives us for the volume of the fundamental

cavity mode

v (R _ 'n-"c3’
2 3

-t

and so our coupling constant becomes

P Ne? Ne? 3w3 Nne?
e RV emrR 18 | megmrd

(3.18)

where we have used the relation between the index of refraction, n, and relative

permittivity, €, = n%. Note that because we have redefined our variables to z and
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j, K is dimensionless. Values of the coupling constant A” and the corresponding
splitting of the normal modes are tabulated for a range of energies in Table 1
below for the case of a single electron dot (N = 1) in zero magpetic field, with

m* = .069m, and e, = 12.65 for GaAs.

wo (£24) Energy Range zo= \/—;,"—70- (nm) K=15x10"2u, Aw ('T)
6.09 x 10° 4 peV radio 459 nm 9.07 x 10— 1 6.69 x 10°
1.53 x 10! 100 eV  microwave 92 nm 2.28 x 10~ 8.42 x 10°
6.09 x 10" 400 eV 46 nm 9.07 x 10~ 6.69 x 10°
1.17 x 102 1.61 meV  farIR 33 nm 1.75 x 10~1° 1.78 x 107
1.53 x 108 10 meV 9.15 nm 2.28 x 10~° 8.42 x 108
6.13 x 10® 40.4 meV  mid IR 4.6 nm 9.14 x 10~* 6.75 x 10°
2.44 x 10" 161 meV 2.3 nm 3.63 x 10~% 5.36 x 10'°
1.53 x 10%® leV near IR 0.9 nm 2.28 x 10~ 8.42 x 10"
6.11 x 10®  4eV  optical\uv 0.46 nm 9.12 x 10~ 6.72 x 10'?

Table 1.

It is clear that the charge-field coupling scales linearly with the oscillator
energy, and so the strongest coupling occurs for highly confined systems, and falls
to zero for free systems, as expected. A comparison of K and Aw in Table 1

above indicates that the magnitude of the splitting grows as VK, and hence as
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VN = /NpN., which can also be seen clearly ineq.3.6. For a realistic case N, can
be as large as 200 electrons, meaning splittings roughly 14 times larger than those
stated in Table 1. Np can also be quite large. Sikorski and Merkt use a dot spacing
of 250 nm in a 3x3 mm? array for a total of Np = 1.44 x 10® non-interacting
dots, and Reed et. al. use an array containing Np = 10% non-interacting dots.
The values presented above for Np and N, indicate that large splittings should
be observable for quantum dot arrays embedded in Bragg cavities. As an example,
consider the entry in Table 1 where wy = 1.53 x 10 %d , yielding a splitting for a
one-electron dot of Aw = 8.42 x 10! 22, If instead of a single dot we consider an
array of 10* dots, each occupied by 100 electrons, the cavity induced splitting of
the oscillator modes for wy = 1.53 x 10'5 " becomes Aw = /106-8.42x 10!! 2% =
8.42 x 10™* =2, Researchers in industry are currently attempting to find ways to
embed dots in monolithic structures to facilitate their use in practical applications.
As early as 1988 Reed et. al. used spun polyimide to fill dot arrays to allow
the overlay of columnar dots with a conducting contact layer. Other groups have
investigated the possibility of using semiconductor to fill arrays, with some success.
If these groups achieve this goal, it may become possibic to fabricate monolithic

dot-cavity structures, which should demonstrate the behaviors presented here.
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Chapter 4

Disscussion

The Centre of Mass Dynamics

We have found that an N-electron quantum dot interacting with a perpendic-
ular magnetic field and a spatially homogenous electric field can be modelled as a
single particle of mass Nm* and charge Ne interacting with the those same fields,
and that this system has exact solutions. This result stems from the applicability
of Kohn'’s theorem to our system, yielding a system of coupled oscillators, which
is solved exactly using techniques employed first by Ullersma and later by Ford,
Lewis and O’Connell

The behavior of this exact solution is investigated as a function of electric field
frequency, w;, magnetic field strength, By, and number of field modes, n;. We
also investigate the strength of the coupling (&) between the electronic centre of

mass oscillator and the field oscillators in terms of the system parameters.

An Exact Solution

The most notable aspect of the results presented here is that the solution

is exact for the centre of mass behavior of our system. At first consideration
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this may be somewhat surprising, since one would expect many-body interactions
owing to the screened Coulombic potential existing between the electrons in the
dot. Furthermore, since we deal here with the case of a two dimensional electron
gas confined to a heterojunction, screening effects become weaker than in the three

dimensional case and so we expect stronger interactions between electrons.

The system, originally envisioned as a quantum dot in a perpendicular mag-
netic field and illuminated with a spatially homogenous periodic electric field (i.e.,
assuming the dipole approximation), is modelled as a set of NV electrons confined
to a parabolic well and coupled to the electromagnetic field which itself is modelled
as a family of harmonic oscillators. Note that if the electron-electron interaction
term were not present in the above model, we would expect an exact solution,
since a system of coupled oscillators possesses such solutions. What allows an
exact solution in our case, with the electron-electron interactions present in the
system, is that the electric field couples only to the centre of mass of the N
electrons in the well and so the electron-electron interaction term (a function of

relative coordinates) does not affect the centre of mass behavior of the system.

This independence of centre of mass and relative motion for a charged particle
in a homogenous magnetic field and/or harmonic potential was established in
1961 with the by now well-known Kohn’s Theoremm, and applied more recently
to quantum dots and parabolic quantum wells by Brey and Halperinils] as the
Geperalized Kohn’s Theorem (GKT). When the GKT is applied to our system,
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we obtain the exact centre of mass solution presented in the thesis. This means
that after a transformation to centre of mass and relative coordinates, we find
that the dynamics of the centre of mass of the system are completely independent
of the relative motion of the particles which comprise the system. Because the
dot—field system can be modelled as a set of coupled harmonic oscillators, we can
find an exact solution for the dynamics of the centre of mass. The solution for
the relative motion dynamics of the system is naturally more complex and will
generally require a numerical approach if more than a few particles are involved,

since the electron-electron interactions must be incorporated into the calculation

It is possible to make a clear distinction between those situations where the
centre of mass solution will adequately describe the system dynamics and sit-
uations where the more detailed relative motion solutions are required for an
adequate treatment of the system’s behavior. In those cases where the incident
electric field has a wavelength which is long in comparison with the dimensions
of the dot, the centre of mass description will provide the system behavior. In
those cases where the wavelength of the incident field approaches the dimensions
of the dot, the solution for the relative motion of the particles is necessary to
describe the behavior of the dot. Note that the absolute dimensions of the dot
or the wavelength of the field are not important, what is important is the criteria
that we are working in the dipole limit. This means that although the results pre-
sented here were originally motivated by an analysis of experimental FIR spectra
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of quantum dots, they will in fact apply at larger and smaller length scales than
are practically attainable with dots so long as we continue to work in the long
wavelength (dipole) limit. As we have seen in Table 1 of the previous chapter ,
this becomes important since the magnitude of the splitting scales inversely with

the physical dimensions of the system.

Comparison with the Atom-Cavity System

It is instructive to compare our dot-cavity system with another, more familiar,
system — that of an atom in a confocal cavity. Experiments on these atom-
cavity systems have yielded observations of vacuum field induced normal mode
splitting (i.e., Rabi splitting) analogous with the splittings we have calculated for
the quantum dot-cavity system. Because we have considered the splittings of a
single dot-cavity system, the best example of the analogous atom-cavity system
can be found in the work of Rempe, Thompson and Kimble!16] (RTK), who have
studied the case of a single atom in a resonant confocal cavity and observed the
Rabi splitting of an optical mode. A schematic of their experiment is shown below.
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D1 Cs Beam D2 03

Fig. 1: Diagram of apparatus with atomic beam, monitor detector, optical pumping region,
cavity and light detectors as described in the text.

Atom-Cavity Splitting

RTK consider the D; line of Cesium, produced by the 6S L F=41 mg=
4 — 6P% , F' =5, mg = 5 transition. The D; line has a wavelength of 852 nm,
with a corresponding frequency of 3.52 x 10'* Hz. They employ Cesium and laser
beams of low atomic and photon number densities to ensure that on average only
one atom and one photon occupy the confocal cavity, which has its resonance
frequency tuned to the Cesium D, line. RTK use a standard analysis of this
system, known as the Jaynes-Cummings model, which predicts Rabi oscillations
between the atom and the single cavity mode. In their experimental setup, the
laser beam (probe beam) is scanned through the atom-cavity resonance and the
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transmission of the system as a function of the laser probe frequency is recorded.
The splitting of the D; line yields the Rabi flopping frequency. Several examples
of such splitting are shown below for varying mean number of intracavity atoms,

N.

3l

0 T e ————

-20 -10 0 10 0
Frequency Q [MHz}

Fig. 2: Normal-mode or vacuum-Rabi splitting for different numbers of intracavity atoms.
The transmitted intensity is plotted as a function of the detuning of the probe ficld 2 from
the common atomic and cavity resonance frequency (wa=wc)-

If we consider the case where on average only one atom occupies the cavity
(ie., N=1), we find from the intensity versus frequency plots that the splitting
frequency, Af, is roughly 6 MHz. Compared to the unsplit D; line, this yields
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a relative frequency splitting of éfi = ﬁ;%ff—g—z = 1.71 x 1072, In terms of a

percentage frequency shift, this is éf-ﬁ% =171 x 107¢ %.

Dot-Cavity Splitting
The coupled oscillator analysis applied to the quantum dot-cavity system

yields a splitting from the oscillator frequency given by the expression

1 : 1 .

-d

If we evaluate this expression for a single-electron dot at the same resonance
frequency and conditions as the atom-cavity system discussed above, that is wg =
2nf = 2w (3.52 x 10 Hz) = 2.21 x 10" ¢ and w; = wy, we find a splitting
frequency, Aw, of Aw = 2(w; —wp) = 4.4 x 107 % This yields a relative
splitting of 2 = z—;%% = 2.0 x 107, and a percentage splitting of 24% =
2.0 x 107%. By comparison, this dot-cavity system displays roughly the same
degree of splitting as the atom-cavity system. There is, however, one important
difference between the dot and atom cavity systems, namely that in the dot-cavity
case the splitting frequency scales as the square root of the number of electrons
occupying the dot, that is as \/N,Aw, where Aw is the splitting for a single-
electron dot. The number of electrons which can occupy a dot is limited by the
fact that as electrons are pushed into the dot, their Coulombic fields will distort
the confinement potential until it is no longer parabolic. In practice, this number

depends on the composition, design and physical dimensions of the dot. Demel 28!
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et. al. have used as many as 210 electrons in a 600 nm radius dot, which would

yield a splitting frequency approximately 14 times larger for the dot—cavity system

than the corresponding atom—cavity system. This comparatively large splitting

frequency could make the observation of vacuum-field induced Rabi oscillations

possible for dot-cavity systems.

In addition to the /N, splitting with number of electrons per dot, the splitting

will also scale as the square root of the number of dots in the cavity, /Ny, which

means a total splitting of /NyN_Aw.

The question remains: can this predicted vacuum Rabi splitting be detected

experimentally? To address this we consider several of the entries from Table 1

in the previous chapter, and express the peak splittings presented there in terms

of conventional spectroscopic quantities.

1.17 x 102
1.53 x 10
6.13 x 1013

2.44 x 101

1.53 x 105

far TR

mzd TR

1.78 x 107
8.42 x 108

6.75 x 10°

5.36 x 10'°

near IR 8.42 x 1011

AX (um)

1.06 x 108
2.24 x 108
2.79 x 10°
3.50 x 10*

2.24 x 10%

eV

11.7 neV
0.55 peV
4.44 peV
35.5 peV

0.55 meV

wavenumber (cm™!)

9.44 x 1075
4.47 x 10~
3.58 x 102
2.86 x 10!

4.47

The wavenumbers presented above indicate that the vacuum induced Rabi
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splitting of the oscillator modes is of a magnitude to allow detection with current
equipment. Modern FTIR spectrometers have resolution on the order of 107>
wavenumbers. Since the values in the table above can be scaled by the /NuN,
factor for numbers of dots and electrons, it seems that the effects presented in this

thesis should be observable experimentally.

Coupled Oscillators or the RWA?

Note that we could also have modelled the dot-resonant cavity system with the
well-known rotating wave approximation (RWA) of Jaynes and Cummings. This
approximation consists essentially of discarding those elements of the particle-
field interaction term that do not conserve energy, often called the virtual terms,
and is frequently used in the field of quantum optics. The RWA can also be
applied directly to our dot-resonant cavity system where the dot interacts with
only one resonant cavity mode. For the case where only one quantum of energy
inhabits the system the dot will be in either its ground or first excited state, and
so can be viewed as a two-state atom and treated by the RWA, which yields well-
known analytic solutions. It becomes apparent that our dot-cavity system can be
modelled either as coupled oscillators or as a two-state atom interacting with the
EM field in the rotating wave approximation. A comparison of the properties of
these respective solutions shows the coupled-oscillator model to be the preferable
choice for the dot-cavity system, and also the preferable choice for several other
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systems which are frequently modelled using the RWA.

The most obvious advantage of the oscillator solution is that it is exact for all
frequencies, whereas the RWA solution applies only near resonance. Extending the
RWA solution to ensure its validity off-resonance requires the use of perturbation
theory, which can lead to questions concerning the convergence of the perturbation

expansion.

Ford, Lewis and O’Connell make the point that the RWA is a version of
the linear-coupling model of a heat bath, which has the flaw characterizing all
such linear coupling models: that the lowest frequency solution of the system
is imaginary, and so the ground state energy of the bath becomes increasingly
negative as time passes (the solution is a growing exponential), i.e., the bath is
not passive. Correcting the RWA with the electron’s self-interaction terms cures
this behavior and results in a physically realistic passive bath. FLO’C show that
this corrected RWA is exactly equivalent to the independent oscillator (IO) model
of the bath, and so in the end nothing is gained by the use of the RWA. (The one
exception to the usefulness of the RWA is in the treatment of those systems which
are genuine two-state entities, such as spin systems. In this case the two-state

atom and the RWA are a realistic model of the system.)

Rabi is well-known for his work on such a two-state system, namely a spm-%
magnetic dipole interacting with a resonant radio field. The periodic exchange of
energy that arises is such systems now bears the title of Rabi oscillations. The
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two-state atom (TSA) interacting with an electric field is also an example of a
system that exhibits these oscillations, and in 1963 Jaynes and Cummings were
the first to apply the RWA to the two-state atom in the special case where only
one (optical) resonant cavity mode interacts with the TSA. Tavis and Cummings
in 1968 worked out the theory for the case where N two-state atoms interact with
a single resonant cavity mode. Because of the technical challenge of setting up an
atomic Rabi system in the real world, experiment has lagged theory throughout
the history of the topic. The original experiment performed by Rabi and his col-
laborators in 1936 was a Stern-Gerlach type experiment, in which they performed
radio spectroscopy on molecular and atomic beams. Measurements at microwave
frequencies were originally made on a large collection of atoms in 1983, and sim-
ilar work was done in the optical domain in 1986. The case originally described
by Jaynes and Cummings proved to be the most challenging experimentally, and
was not performed successfully until 1993, a thirty year gap between theory and

experiment.

Although the theory of Rabi osdllations was originally developed to describe
the interaction of atomic (or molecular beams) with a resonant electric field, re-
cent exciting developments in device physics have lead to this phenomena being
observed in the solid state. Weisbuch et. al. have recently (1992) demonstrated
the existence of Rabi oscillations for quantum well excitons in a semiconductor
heterojunction embedded within a DBR cavity.
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The work presented here predicts vacuum Rabi splitting for a quantum dot
in a cavity, and in this sense we have come full circle: dots have become known
as artificial atoms (the number of electrons in a dot determines which “element”
we have), and dots placed in proximity to other dots will couple and produce an
artificial molecule. These artificial atoms and molecules will interact with the EM

field and in the proper circumstances, manifest Rabi oscillations of their own.

Extending the Model

The model we present here yields useful information on several aspects of the
dot-field behavior. Of primary interest in this thesis was the dispersion behavior of
the system. In the course of determining the dispersion relations we also found the
classical equations of motion and explicitly determined the form of the coupling
constant. Other information can be extracted from the coupled oscillator model,
for example one could calculate the lifetimes of excited isolated dots using Fermi’s
Golden Rule to determine the rate at which the excited dot loses energy to the

continuum of available EM field states.

The system as it stands could also be quantized with the appropriate set of
commutation relations, although for our purposes this was unnecessary since the
dispersion relation is unchanged in the quantum limit. A quantized treatment
would allow a calculation of the oscillator strength matrix elements which would
in turn yield the intensity profile for the dot-field spectrum. One could also use
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a second quantized treatment to express the system in terms of its oscillator and

field creation and anmnihilation operators.

While the model used here is adequate for our purposes, a more realistic model
will eventually be needed to accurately predict the behavior of real-world dots.
This can be accomplished with a more sophisticated coupled oscillator model

Some of the necessary modifications are discussed below.

In this thesis we have modelled the dot—-EM field system as a collection of cou-
pled oscillators. These oscillators were assumed to be ideal, suffering no frictional
forces or other dissipative losses. This is an appraximation, of course, and since
the majority of real systems will display some degree of dissipation, an improved
osdllator model of such systems should take account of these losses. In classical
mechanics this is accomplished through the use of a damping term, which can be
either derived (as in the case of the viscous damping force described by Stoke’s
Law) or determined phenomenologically by comparing experimental data to the
general solution for a damped oscillator. Qur system consists of the centre of mass
electron oscillator coupled to a (family of) cavity—field oscillator(s), each of which

will be subject to various damping mechanisms.

Consider first the electron oscillator. Any mechanism by which the electron
can lose energy other than radiating it into the cavity—field oscillator mode will
constitute a dissipative process as far as Rabi oscillations are concerned. Scat-
tering from impurities in the semiconductor crystal, interactions with phonons,
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interaction with defect states at the heterojunction interfaces, radiation into field
modes other than the desired cavity—field oscillator modes and trapping in dan-
gling bonds resulting from the etching process are all possible sources of dissipa-
tion in semiconductor quantum dot devices. If these processes could be modeled
explicitly in terms of the electron centre of mass position and momenta coordi-
nates, it might be possible to explicitly derive a damping term that reproduces
the phenomenological damping constant.

Likewise, we can consider the cavity—field oscillator. Both confocal and dis-
tributed Bragg reflector cavities are characterized by how quickly the cavity decays
from its excited resonant mode to its unexcited state. The speed of this decay
is determined by factors such as the geometry of the cavity, the absorptivity of
any media inside the cavity, and the reflectivity of the cavity mirrors. Again, it
may be possible to derive an effective decay constant based on an analysis of these
dissipative mechanisms, and compare this derived constant to its experimentally
determined value.

With acceptable values for the particle and cavity—field oscillator decay con-
stants, one could then solve the resulting system of coupled damped oscillators.
This would be a significant improvement over the work presented in this thesis,
providing not only the system frequencies, but also the linewidths of these fre-

quendies, allowing a complete prediction of the quantum dot—cavity field spectra.
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Appendices

A. Complex Coordinates

In this thesis we have made use of complex coordinates in order to write a
Lagrangian (originally expressed in terms of real displacement and velocity vec-
tors) as a real function of complex coordinates. This is motivated by the circular
symmetry of our quantum dot-magnetic field system. The resulting Lagrangian is
easier to work with since terms originally containing inner products become terms
containing only complex multiplication.

The change of coordinates from real vectors to complex scalars is straightfor-

ward. We begin with the real Lagrangian

L=%

)3

(£2 —r2) — Ve + 3 [ — 3] — - mywsta-q —eS A,
7 - %]

and define the complex coordinates zn = za + iya and g; = ¢;; + igy; for the
particle and field displacements, respectively. Various linear combinations of these
coordinates (and their time derivatives, 3o = o + ia and ¢; = ¢; +1q,,) give us
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the terms in the new Lagrangian. These combinations are

B2 = 2 +9=z23,
= Iczt + yg = 303;7
a4 = & +4, =%
9 = &+ =94,
fa'q; = Zalr; +Y%aP, = Zag; + 329- (A.1)

Finally, we can also express the Coulomb term in complex coordinates

-5 < . (A2)
—rdl d \/(35 ‘373) (Za — 25)

These allow us to write our Lagrangian as

=2 oo |ra

L = ; —7;1 (:."a:’:; .ag.,a.,a) Veow + Z [q,q]‘ —wjz-q,-q;]
—Z% (:':aq; -+ :aq,-) —-lea .
oy o
leaving only the e} , Ia - As term in real coordinates. This can be remedied
through choosing a specific form for A, namely A, = %‘ (—y, z,0), a constant

magnetic field in the z direction, perpendicular to plane inhabited by the electrons.

The Lagrangian then becomes

L = Z —7‘;3 (:-fa;. -U§~a~¢.) Veou + Z [q’qJ - qu’q;]

[+ 3

ST (s 4 52g) - eﬁ"zzuaz;—z:éa% (a3)
aJ o

and so we have written the Lagrangian as a real function of complex coordinates.
Note that although L is a function of complex variables, it does not satisfy the
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Cauchy-Riemann equations. This means that L is not analytic on the complex
plane. As an example, consider the function f = z2* =r2 = 2% +y®. If we express
f as an arbitrary complex number, say f = u+iv, we have u = 2% +y® and v = 0.

The Cauchy-Riemann equations.

u _
d &y
o _ X
&y o
applied to f = z=z*, vield
Su v
=% — =
p x;éay 0
and
Su ov
—=2 —_—— ==
3y y% 5 =0

which tells us that f is not analytic on the complex plane, except in the trivial
case where r = y = 0. This same argument holds for our Lagrangian, L.
The solution of the system now requires that we develop the equations of

motion for the system, which we find from Lagrange’s equation:

a4 (oeLy_oL _,
dt \ 3x; oz;

where z; represents the dynamical variables of the system. In our case, these
dynamical variables are z., 2}, ¢, and g}, which means that we will need to
evaluate partial derivatives like -g;_% and %. But what does a partial derivative

with respect to these complex coordinates mean? We can get a feeling for this by
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considering a function f (z,y), and operating on f with 2 using the formal rules

of calculus. The chain rule gives us

Of (z,y) _0f0x= 9fdy
T8z owbs o

which we can evaluate using our original definitions of the complex coordinates.

= = z +1iy, then we can write = and y as linear combinations of = and z*. These

are
from which we see that
Or J(z+z) 1 8y 9 —i(z—2z2") —i
T 2 a2yt T3
Substituting these into 2%, we get
Of (z,y) 1 (8f .Of
Tz 2 (3:1: _’5)’
from which we surmise the form of the operator a to be
Likewise, we find
% = %(53—‘1“%), (A.6)
a% = %(ai, _’aZ,J)’ (A7)
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and

0| =

o .9
(aq%’ A Oy, ) (A-8)

for the forms of the other complex differential operators.

a——
i =

In an identical manner, we can also determine the form of differential operators

such as a-i" These are
o -

—‘?— = % (—3— —ii), (A.9)

and

and likewise for the complex congujate operators.

With these in hand, we can proceed to find the equations of motion from the
Lagrangian of our system in the normal way, performing the complex derivatives
in manner prescribed by the above complex differential operators.

It is important to note that employing complex coordinates will change the
form of the Lagrangian and Hamiltonian functions. Compare the familiar real

Hamiltonian for a free particle,

X,

b

H (ra,P..) = -

o

to the complex Hamiltonian for the same free particle

2p?
H(Zmpza) = ’%

The apparent factor of four difference between the two Hamiltonians stems from
the definitions of momentum in the real and complex planes. In the real plane we
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P;. = D3, + P
with p,, and p,_ given by

o Ie)
Pza = éx'—aL and py = @’L,

or, expressing these momenta as differential operators, we find

and p?a

pza axa aya

In the complex plane the same development yields

2 -
P:, = PeaPsys

with p., and p]_ given by

o o}
Psw = 5L and p;_ = L,
~a aua
or, in operator form
o
e = mr-and pl = ——.
Peo = g oomd Pl = 5

These complex differential momentum operators can be written explicitly based

on equation A.9 and its complex conjugate,

from which we can see that

1 : . 1 .
pzo = 3 (pxa —I'pyn) and p‘.:o = 3 (.pza +?'p'ya)'
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Returning to the complex Hamiltonian, we have

2 2
H(:avpza)= £= —’1 (i _ii.) ']: (‘—?—‘ +zi.) = Pz,-‘,’

and so the real and complex Hamiltonians can be seen to be equivalent. The
factor of four difference stems from the use of complex coordinates.

In the course of our change of variables from real vector to complex scalar
coordinates, we also encounter some complication when the degrees of freedom of
the system are considered. Where we began with two degrees of freedom labelled
by r and q, we now apparently have four degrees of freedom, labelled by z,, =3,
g;, and ¢;. The situation resolves itself when we realize that the equations of
motion in the case of the complex coordinates are redundant, since the equation

of motion for z, is simply the complex conjugate of that for =3, and likewise for

q; and q;-

B. Kohn’s Theorem

The use of Kohn’s theoremi!! is escential to the investigation of the behavior of
a quantum dot immersed in a magnetic field interacting with a spatially homoge-
nous, time-varying electric field. The theorem is simply stated: given an electron
gas in a constant magnetic field, the cyclotron resonance frequency of the system
is independent of the electron-electron interaction. More recent and slightly more
general incarnations of the theorem are known as the generalized Kohn’s theo-
rem (GKT)(Brey!!8 et. al, 1989; SK. Yip/0l, 1990) or the Harmonic Potential
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theorem (HPT)(Dobson[lgI. 1994).

Both GKT and HPT (which is itself an extension of GKT) differ from the
original Kohn'’s theorem in that they allow for an external scalar harmonic poten-
tial (most generally, Veze = %~ (wg:v"’ + wiy? + wgzz)), such as we find in quantum
dots. The proof of GKT is reasonably straightforward, and the essential aspects
of the proof will be presented here.

Consider an gas of N electrons confined to the z=0 plane (i.e., a 2DEG) and
constrained laterally by the harmonic potential V = %v‘ﬁ,,.z, where r = (2% + %) 3

If this system (already a quantum dot) is placed in a uniform magnetic field

oriented along the z-axis, the Hamiltonian of the system is

(72, +72) + 2 (a2 +22) + U (ra —1rs),  (BLI0O)
2 2

where a is the electron index, 7, is the canonical momentum (i.e., o = Pa —
2A (ra)), and the last term represents the electron-electron interaction. The vec-
tor potential A allows for the inclusion of the perpendicular magnetic field and
the EM field.

The proof of the theorem rest essentially with two algebraic manipulations.
First, we apply the identity for quadratic forms to the Hamiltonian, then we
rewrite the result in terms of centre of mass and relative coordinates and momenta.
There are several ways to choose centre of mass and relative coordinates which
ensure that we maintain a complete basis set for system’s phase space. The choice
used here is fairly common in the literature. We define the centre of mass variables

7
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1 N
R, = Z_V‘ Z Loy (B'll)
a=1
N
Hcm = Z MTas (B'l?‘)
a=1
and the relative variables as
Tret, = Y Ta—(i—1)ry (B.13)
a=l1
and g = Y Ma—(i—1)m. (B.14)
a=]

for i = 2,---, N. The identity for quadratic forms is
N N P, N 2
Zq‘?.=ﬁ(zqa) +ty 2 (@—aw), (B.15)
o b a,Sex<3

where g, may represent any of the space or momentum coordinates. When we

apply this to the Hamiltonian given above, we get

2

N =, 2 N
_ g miw; m*w? _
H = ‘7Nm‘ (AZ m,,) "Nm‘ V (e — m3)" + aN (agl xa) aN Z (za z;)?

o J.a<J a,go<ld
m dz N 2
Z Yo 2N Z (ya _yB) +EU(ra —1'3) L] (B.IG)
aFiox <3 o3

to which we can apply our definitions of the centre of mass and relative variables.
Notice that the first, third and fifth terms can be expressed in terms of the centre of
mass variables, while the second, fourth, sixth and seventh terms are all functions
of the relative coordinates. Rewriting this Hamiltonian in terms of the centre of
mass variables vields

M Nm*w?

1 2 z 2
H = o+ —5 = Xo+ —5 Yo ‘7Nm

Z (ﬂ'a - “B

a,f:<B
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-1‘.3)
a.Be <3 o<l

~ys)’ + Y U(ra—rs),
@3

(B.17)

and we readily see that the Hamiltonian has been separated into centre of mass

and relative motion variables. We write this as

H= Hcm +Hrel9

where
1 3 Nm* , 3 .3 2x 3
o = g Mo + —5— (W2XG +J¥2,), (B.18)
and
1 N 2 mth N 2 m* 2 N
Hr = INm" Z (ﬂ'a - ﬂ'u‘) + 2Nz Z (.‘L’a —x‘i) Z yg) +ZU (l'a —rg)
axFae <3 - a3 B [ %4

(B.19)

Notice that we can now write the centre of mass canonical momentum as

N

and that the new centre of mass Hamiltonian looks like the Hamiltonian for a
single electron of mass Nm* and charge Ne.
We can determine by direct calculation that the commutation relations for
the centre of mass and momentum variables are
[ 3y zrd] = [ncma yrd] { a’rrd] [},cmv 7rrel] =0
and with these in hand we can show that
[Hcms H, rel] =0
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Standard quantum mechanics then implies that the eigenstates of H can be written
as the product state

1¥) = [Tem) [Prei)

and so we see that centre of mass motion and relative motion separate completely
for our system.
Now consider the behavior of this system under a spatially homogenous, time

varying electric field of the form
E (t) = Eee ™",
which yields an interaction term for the ath electron of
H! = —eEq - r,e™™*
The interaction term representing all the electrons will be

HI

> H,
= > (-—eEo -ro,e"'"‘")

[«

= (—eEoe""“t) -Z;ra . (B.20)

Recall, however that Rem = 3 Sa Ta, and so the interaction term can be written
as

H' = (—Ne)Eg - R, (B.21)

from which we can see that the electric field will interact only with the centre of
mass Hamiltonian, since R.,, and hence A/ commute with the relative motion
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coordinates. As previously mentioned, the centre of mass Hamiltonian for N
electrons is identical to the Hamiltonian for a single particle of mass Nm™ and
charge Ne, and such a particle will experience resonance at the cyclotron frequency
of a single electron, since the mass of the particle and the force exerted on it by

the electric field scale linearly with N.
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