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ABSTRACT 

Homagain, K. 2016. Environmental and Economic Impact Assessment of Biochar-
Based Bioenergy Production (BBBP) in Northwestern Ontario, Canada 

Bioenergy is becoming very popular in Ontario with the 2014 ban on the use of coal in power 

generation. Biochar is produced as a by-product or a co-product of bioenergy. Past literature 

shows that if biochar is produced as a co-product with bioenergy from sustainably managed 

forests and used for soil amendment, it could provide a carbon neutral or even carbon 

negative solution for current environmental problems. It also shows that detailed life cycle 

assessment (LCA) and life cycle cost assessment (LCCA) that compares the potential 

environmental and economic impacts of BBBP system with those of conventional coal-based 

system is missing. This study fills that gap by assessing environmental and economic 

implications of a BBBP system in northwestern Ontario throughout its lifecycle using 

SimaPro® Ver. 8.1, EIOLCA® software and spreadsheet modeling.  Under the assumption that 

only forest residues and/or under-utilized species are used, results show that although a 

system including biochar based land application consumes 4,847 MJ t-1 dry feedstock more 

energy than the conventional coal-based system, it reduces the GHG emissions by 68 

kgCO2e t-1 dry feedstock during its life cycle. It also improves the ecosystem quality by 18%, 

reduces global warming potential by 15%, and resource use by 13% but may impact human 

health by increasing disability adjusted life years (DALY) by 1.7% if biomass availability is low 

to medium. The economic viability of this BBBP system, within the LCA system boundary, is 

directly dependent on the costs of pyrolysis, feedstock processing (drying, grinding and 

pelletization), feedstock collection and the value of total carbon offset provided by the system. 

The BBBP system is economically viable only in case of high biomass availability within 

200km and when the cost of carbon sequestration exceeds C$60 t-1 of CO2e. The 

environmental and economic impact assessment results developed through this study, can be 

scaled up to a larger regional scale which is expected to help in reinforcing the confidence of 

industries and its partners in promoting BBBP systems and the use of biochar as a soil 

amendment in the region.  

KEYWORDS 
Biochar, Bioenergy, Biochar-based Bioenergy, Biomass feedstock,  CO2e, Economic analysis, 

EIOLCA®,  Forest biomass,  Lifecycle Assessment (LCA), Lifecycle Cost Assessment (LCCA), 

Northwestern Ontario, SimaPro®, Soil amendment 
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CHAPTER 1 INTRODUCTION 

 

Krishnahari Homagain* 

* Lakehead University, Faculty of Natural Resources Management, 955 Oliver Road, 

Thunder Bay, Ontario, Canada P7B 5E1 

 

THESIS RATIONALE AND OVERVIEW  

Ever increasing global demands for energy and concerns for the sustainability of 

planet earth and its natural resources have dictated the use of bioenergy1 in various 

forms. Bioenergy is one of the largest renewable energy sources, which provides about 

10% of world primary energy supply (IEA 2015). Most bioenergy is consumed in 

developing countries for cooking and heating, using mostly inefficient open fires or 

simple cookstoves, with considerable impact on health (smoke pollution) and the 

environment (deforestation). Although modern bioenergy supply is comparably small, it 

has been growing steadily at the rate of about 3% per year in the last decade. One of 

the most significant areas of modern bioenergy is bioelectricity2, which accounts for 

about 2% of world's electricity production as of 2014 (IEA 2015). Bioelectricity is 

considered to be more carbon friendly than conventional coal based electricity as it 

replaces the use of fossil fuel (mainly coal) based energies from the energy production 

                                                 
1 Bioenergy is the energy derived from the conversion of biomass where biomass may be used directly as fuel, or processed into 

liquids and gases. 

2 Electricity generated from bioenergy 
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system. Several technologies for generating bioenergy heat and power already exist; 

these range from solid wood heating systems for buildings to biogas digesters for power 

generation and large-scale biomass gasification plants for heat and power. Co-firing 

biomass with coal in existing coal-fired power plants is also becoming an important 

option to achieve short-term emission reductions and make more sustainable use of 

existing assets. In addition, new improved bioenergy plants with pyrolysis3 systems are 

becoming increasingly common in meeting growing demand for bioelectricity and 

biochar4. In woody biomass5 rich regions, like Ontario and Canada, there have been 

several bioenergy initiatives to comply with Canada's commitment to reducing climate 

change and in line with Ontario's Green Energy Act. This trend will increase in coming 

years as the province of Ontario formally banned the use of coal for power generation 

effective 2014 Dec 31. Use of biomass-based feedstocks especially from agriculture 

and forestry has been popular in recent years. Northwestern Ontario (NWO), in 

particular, has a rich and sustainable source of woody biomass supply through the 

sustainable management of about 12 million ha of productive forest through 18 Forest 

Management Plans (MNRF 2015). Several previous studies (Alam et al. 2012; 

                                                 
3 Pyrolysis is a thermal degradation process producing heat, bio-oil, syngas and biochar in the absence of oxygen (Spokas et al. 

2012) 
4 Biochar is a porous and stable carbon-rich co-product of the pyrolysis process that has diverse uses including soil amendments 

and long term carbon sequestration (Lehmann et al. 2006). Biochar differs from charcoal in the sense that it is not used as fuel. 

Although biochar can be produced from a variety of biomaterials in a variety of ways, in this paper we refer only to biochar produced 

from woody biomass in a bioenergy plant. 
5 Biomass is any organic, i.e. decomposable, matter derived from plants or animals available on a renewable basis. Biomass 

includes wood and agricultural crops, herbaceous and woody energy crops, municipal organic wastes as well as manure. Within the 

scope of this thesis, biomass refers to the woody materials derived from sustainably managed forests of northwestern Ontario, 

Canada in the form of harvest residue, sawmill residue and underutilized trees. 
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Hacatoglu et al. 2011; Kennedy et al 2011; Wood and Layzell 2003) have also indicated 

that the NWO forests are capable of sustainably supplying enough biomass feedstock 

to generate electricity from power-generating stations, which used coal as feedstock 

until 2014. Therefore the study area for this dissertation is chosen to be within 

Northwestern Ontario, Canada.  

Use of woody biomass in producing bioenergy is becoming a common practice 

elsewhere in the world as agriculture grain based biofuel is facing criticism from food 

security experts (Elbehri et al. 2013). Production of bioenergy as a stand-alone product 

(e.g. heat, biofuel etc.) from woody biomass is technically viable but may not be 

financially sustainable (Stephen 2013). A trade-off between different co-products of 

bioenergy and biochar is widely considered as one of the GHG emission reduction 

strategies given that land application of biochar sequesters the carbon for a relatively 

very long time. An effective implementation of biochar as a climate-change mitigation 

tool would however require an application of massive quantities of biochar into the 

environment (Biederman and Harpole 2013), which may result in its exposure to non-

target terrestrial and aquatic systems as wind and water can erode up to 50% of applied 

biochar material during application (Major et al. 2010). Therefore, a comprehensive 

study of biochar-based bioenergy production (BBBP) and its subsequent application to 

land is required to assess its potential environmental and economic impacts. Ideally, 

such a study would include every stage of production and utilization of the product in its 

life cycle. Woody biomass can be converted into bioenergy (heat or electricity) or 

energy carriers (char, oil or gas) by different thermochemical and biochemical 

conversion technologies (Van-Loo and Koppejan 2008).  
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Life cycle assessment (LCA, also known as life-cycle analysis or ecobalance) is 

a standard technique (ISO 14040: 2006 series) to assess environmental impacts 

associated with all stages of a product's life from cradle-to-grave (i.e. from raw material 

extraction through materials processing, manufacturing, distribution, use, repair and 

maintenance, and disposal or recycling) (Afrane and Ntiamoah 2011). A few studies 

have also used LCA to compare GHG mitigation and direct carbon sequestration 

potential of biochar produced from different feedstocks (Hammond et al. 2011; Roberts 

et al. 2010; Gaunt and Lehmann 2008; Woolf et al. 2010).  

Although these studies conclude that all biochar systems have GHG mitigation 

and direct carbon sequestration potential, there exists an inherent trade-off between 

bioenergy and biochar production (Fowles 2007). The typical tradeoff is less biochar 

yield if bio-oil and syngas is preferred and vice versa. Cost of bioenergy production is 

being high when compared to coal-based electricity production as these new systems 

are expensive to install and run. In many cases, economic incentives are currently 

needed to off-set cost differences between bioenergy and fossil fuel-generated 

electricity. Such support is justified by the environmental, energy security and socio-

economic advantages associated with sustainable bioenergy, but should be introduced 

as a transitional measure leading to cost competitiveness in the medium term. Support 

measures should be backed by a strong policy framework which balances the need for 

energy with other important objectives such as greenhouse-gas reduction, food security, 

biodiversity, and socio-economic development.  
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Therefore, this thesis, with a detailed life cycle assessment, life cycle cost 

assessment and economic analysis of proposed biochar-based bioenergy intervention, 

provides a comprehensive environmental impact of utilizing biochar based bioenergy 

system in Northwestern Ontario. This chapter includes a general rationale of the study, 

provides a theoretical basis for biochar-based bioenergy systems and environmental 

impacts in terms of life cycle assessment, life cycle cost assessment and economic 

analysis along with thesis objectives. 

Chapter 2, 3 and 4 have been prepared as separate independent peer-reviewed 

journal papers. Two of these have already been published in the Springer Journal of 

Forestry Research and the third one is accepted with minor revision in the Journal of 

Forest Ecosystems. Because of the independent nature of the peer-review article, some 

of the background information, study rationale and research analysis information are 

interlinked and repeated in multiple places. In individual papers, some research context 

and processes are overly summarized and some are a little bit elaborated during the 

peer review process.  

Chapter 2 deals with a comprehensive review of biochar production as a co-

product of bioenergy and its implications. The review focused on biochar production 

with reference to biomass availability and sustainability, and on biochar utilization for its 

soil amendment and greenhouse gas emissions reduction properties. It further explored 

Northwestern Ontario's supply of biomass feedstock that can be used to produce 

biochar-based bioenergy and its possible land application with the purpose of replacing 

fossil fuel consumption, increase soil productivity and sequester carbon in the long run.  
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Chapter 3 provides a thorough life cycle assessment of biochar-based bioenergy 

production and biochar's land application in Northwestern Ontario by using ISO 

standard SimaPro® Ver. 8.1 software. The energy consumption and potential 

environmental impact of biochar-based bioenergy production system are assessed and 

compared with those of conventional coal-based system.  

Similarly, Chapter 4 contains a comprehensive life cycle cost and economic 

assessment of biochar-based bioenergy production for Northwestern Ontario, Canada. 

By using SimaPro®, EIOLCA® software and spreadsheet modeling, this assessment 

compared biochar-based bioenergy production and its land application under four 

different scenarios: i) biochar production with low feedstock availability; ii) biochar 

production with high feedstock availability; iii) biochar production with low feedstock 

availability and its land application; and iv) biochar production with high feedstock 

availability and its land application. It also includes an economic assessment for the 

break-even and viability of a medium scale slow-pyrolysis biochar-based bioenergy 

technology over 25 year project period.  

Finally, Chapter 5 synthesizes the findings of the three papers and presents 

conclusions, critiques and implications of this study based on life cycle assessment of 

biochar-based bioenergy production and biochar's land application in Northwestern 

Ontario. 

  



 



 8  
 

 

 

Life Cycle Assessment 

 LCA is an environmental assessment tool used to quantify potential 

environmental burdens throughout the life cycle of a product or service. The life cycle 

stages of a product include extraction and processing of raw materials, manufacture, 

transportation, distribution, use/re-use/maintenance, recycling, final disposal, and 

transport at all stages. Assessment is done by compiling relevant inputs and outputs of 

the product system and calculating the possible associated impacts. The environmental 

impacts are calculated based on a functional unit which provides a reference for both 

the inputs and outputs. The magnitude of overall environmental impacts can be used to 

evaluate environmental performance of the product.  

The environmental impact categories assessed in LCA can be divided into three 

main groups: resource depletion, human health impacts and ecosystem consequences. 

The LCA methodology, as described in ISO 14040 series, comprises four phases: Goal 

and scope definition, Inventory analysis, Impact assessment, and Interpretation (Figure 

1.3). While conducting LCA, the objectives and intended application of the LCA study, 

the system boundary and the methodological choices are identified in the Goal and 

scope definition phase. The environmental inputs and outputs associated with the 

product system are quantified in the Inventory analysis phase, and the results are used 

to calculate the potential environmental impacts in the Impact assessment phase. The 

results of the Inventory and Impact assessment phases are analyzed in the 

Interpretation phase and recommendations for environmental improvement suggested. 
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Life Cycle Environmental Impact Assessment 

An environmental impact is a change to the environment that is caused either 

partly or entirely by one or more environmental aspects such as water pollution, air 

quality deterioration etc. An environmental aspect can have either a direct and decisive 

impact on the environment or contribute only partially or indirectly to a larger 

environmental change. In addition, it can have either a beneficial or an adverse 

environmental impact. The term “life cycle” refers to the major activities in the course of 

the product’s life-span from its manufacture from raw materials, use, and maintenance, 

to its final disposal. Figure 1.2 illustrates the possible life cycle stages that can be 

considered in an LCA and its typical inputs/ outputs measurements (SAIC, 2006). It is a 

“Cradle-to-Grave” approach for assessing any industrial system’s environmental 

performance which begins with the gathering of raw materials from the earth to create 

the product and ends at the point when all materials are returned to the earth. A life 

cycle assessment is also defined as a comprehensive analysis of the environmental 

burdens and impacts incurred when a specific goal or project is realized (BASF 2000).   

LCA is a technique to assess the environmental aspects and potential impacts 

associated with a product, process, or service, by: i) Compiling an inventory of relevant 

energy and material inputs and environmental releases; ii) Evaluating the potential 

environmental impacts associated with identified inputs and releases; and iii) 

Interpreting the results to help decision-makers make a more informed decision. 
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 Source: (EPA 1997) 
Figure 1. 2 Life cycle stages  

 

Life cycle assessment is a systematic and phased approach and consists of four 

components: goal definition and scoping, inventory analysis, impact assessment, and 

interpretation as illustrated in Figure 1.3. 
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Source: (ISO 1997) 

Figure 1. 3 The life cycle analysis model 

 

Stage 1 Goal Definition and Scoping: Define and describe the product, process or 

activity.  Establish the context in which the assessment is to be made and identify the 

boundaries and environmental effects to be reviewed for the assessment. 

Stage 2 Inventory Analysis:  Identify and quantify energy, water and materials usage 

and environmental releases (e.g., air emissions, solid waste disposal, waste water 

discharges). 
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Stage 3 Impact Assessment: Assess the potential human and ecological effects of 

energy, water, and material usage and the environmental releases identified in the 

inventory analysis. 

Stage 4 Interpretation:  Evaluate the results of the inventory analysis and impact 

assessment to select the preferred product, process or service with a clear 

understanding of the uncertainty and assumptions used to generate the results. 

 

Benefits of conducting LCA  

 Life cycle assessment, along with cost and performance data, can support 

management in the selection of a product or process that results in the least impact to 

the environment. LCA data identifies the transfer of environmental impacts from one 

medium to another (e.g. eliminating air emissions by creating a wastewater effluent 

instead) and/or from one life cycle stage to another (e.g. from end use of a sawmill 

residue to the wood pellet raw material collection phase). If a detailed LCA is not 

performed, the transfer impacts might not be recognized and properly included in the 

analysis because it is outside of the typical scope or focus of product selection 

processes. 

  Life cycle analysis gives a more complete picture of the waste and energy 

associated with a product. Rather than just looking at the amount of waste that ends up 

in a landfill or an incinerator, life cycle analysis is a cradle-to-grave approach which 

measures energy use, material inputs and waste generated (in terms of carbon and 

other emissions) from the raw materials collection to the final disposal of the product 
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into the environment after the end use. Adding life cycle assessment to the decision-

making process offers an understanding of the human health and environmental 

impacts that is not considered conventionally when selecting a product or process. This 

valuable information offers a way to account for the full impacts of decisions, especially 

those that arise outside of the particular stage that are directly influenced by the 

selection of a product or process. It should be mentioned here that LCA is only a tool to 

better inform decision-makers and should always be included with other decision criteria 

such as cost and economic assessment, to make a well-balanced and widely informed 

decision. 

 

Limitations of conducting LCA 

 Performing an LCA can be resource and time intensive. Depending upon how 

exhaustive an LCA we wish to conduct, gathering the data can be challenging as life 

cycle inventories (LCI) are not developed for each region/ country and the availability of 

data can greatly impact the accuracy of the final results. Therefore, it is important to 

balance the availability of data, the time necessary to conduct the study, and the 

financial resources required against the projected benefits. LCA will not govern which 

product or process is the most cost effective or works the best. Therefore, the 

information developed in an LCA study should be used as a component of a more 

comprehensive decision process that assesses the trade-offs between cost and 

performance (e.g., Life Cycle Management). A life cycle assessment is a snapshot of 

the conditions prevailing at a particular time and place at which the data were collected. 
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Any future improvements that may be introduced after the life cycle inventory cannot be 

taken into consideration. 

Life Cycle Cost and Economic Assessment 

 Environmental life cycle costing (LCC) is a process to summarize and appraise all 

costs associated with the life cycle of a product that are directly covered by one or more 

of the stages in that life cycle (e.g. production, transportation or consumption) and those 

involved at the end of a product or service's life.  LCC should include externalities that 

are expected to be adopted in the decision-relevant future interventions. A 

complementary life cycle assessment (LCA), with the same or comparable system 

boundaries and functional units, is a pre-requisite for LCC. It is performed on a basis 

analogous to that of LCA, with both being steady-state in nature. Figure 1.4 shows a 

conceptual framework of environmental LCC model for the life cycle cost analysis 

(LCCA). 

 

Source: (Rebitzer and Hunkeler 2003) 

Figure 1. 4 Conceptual framework of environmental LCC 
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In many cases LCC is further supplemented by a comparative economic assessment 

which in turn helps analyze the return on investment of a particular intervention. 

 

RESEARCH OBJECTIVES  

With the use of life cycle assessment, life cycle cost assessment and economic analysis 

this dissertation assesses the environmental and economic impacts of biochar 

production from woody biomass and its application as a soil amendment in 

Northwestern Ontario, Canada. The first objective is to identify the knowledge gaps in 

the published literature by documenting the current state of knowledge relating to the 

potential for biochar production as a co-product of bioenergy using woody biomass in 

Northwestern Ontario and to relate this knowledge nationally and globally looking 

outside of Ontario when necessary for insights into the Ontario context. The second 

objective is to conduct a comprehensive life cycle assessment (LCA) of a Biochar-

Based Bioenergy Production system with biochar land application as a soil amendment 

in Northwestern Ontario by comparing greenhouse gas emission, net energy and global 

warming potential. This life cycle assessment will be further analyzed in the third 

objective by conducting a life cycle costing (LCCA) based economic analysis of a BBBP 

system in Northwestern Ontario.  

Finally the LCA and LCCA results will be synthesized as the fourth objective to generate 

a comprehensive environmental and economic impact assessment tool for biochar-

based bioenergy production in Northwestern Ontario. 



16 
 

 

CHAPTER 2 
PAPER 1: BIOCHAR-BASED BIOENERGY AND ITS ENVIRONMENTAL IMPACT IN 

NORTHWESTERN ONTARIO CANADA: A REVIEW 
 

Krish Homagain*1 • Chander Shahi • Nancy Luckai • Mahadev Sharma 
Received: 2014-01-23;       Accepted: 2014-05-19 
 
Springer Journal of Forestry Research    25(4): 737-748
 

ABSTRACT 

Biochar is normally produced as a by-product of bioenergy. However, if biochar is 

produced as a co-product with bioenergy from sustainably managed forests and used 

for soil amendment, it could provide a carbon neutral or even carbon negative solution 

for current environmental degradation problems. In this paper, we present a 

comprehensive review of biochar production as a co-product of bioenergy and its 

implications. We focus on biochar production with reference to biomass availability and 

sustainability and on biochar utilization for its soil amendment and greenhouse gas 

emissions reduction properties. Past studies confirm that Northwestern Ontario has a 

sustainable and sufficient supply of biomass feedstock that can be used to produce 
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bioenergy, with biochar as a co-product that can replace fossil fuel consumption, 

increase soil productivity and sequester carbon in the long run. For the next step, we 

recommend that comprehensive life cycle assessment of biochar-based bioenergy 

production, from raw material collection to biochar application, with an extensive 

economic assessment is necessary for making this technology commercially viable in 

Northwestern Ontario.  

 

Keywords: biomass, life cycle assessment, LCA, CO2, carbon sequestration, 

greenhouse gas emissions, soil amendment.

 
INTRODUCTION 
 

The earth has sustained hazardous and rapid climate change patterns due to 

anthropogenic carbon dioxide (CO2) emissions that have been rising by more than 3% 

annually since 2000 (Solomon et al. 2009; Raupach et al. 2007). Climate change and 

global warming have been among the most important and widely debated issues for the 

last decade and will continue to be so for many years to come. Anthropogenic CO2 is 

responsible for about 25% of the total greenhouse gas (GHG) emissions in the 

atmosphere (Cherubini and Stromman 2011), and its current global level (385ppm of 

CO2) has already exceeded the safe limit (350ppm of CO2) for human beings 

(Rockstrom et al. 2009). As a result, global environmental changes including severe 

weather events (like flood and drought) and land degradation have posed immediate 

threats to biodiversity and productivity at the same time that demands for food and 

energy are increasing worldwide (Eriksen et al. 2009). The International Energy Agency 
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predicts that world demand for energy will double by 2035 (IEA 2012). At present, most 

of the energy demand is being met through the use of non-renewable energy sources 

(e.g. fossil fuels), which are in fact the most significant contributors of GHG emissions.  

Canada is one of the highest energy using countries per capita (16,800 kWh 

household-1 year-1), next only to Iceland and Norway (Nepal et al. 2012). About 15% of 

this energy is being generated by coal-fired generating stations, which are responsible 

for 11% of Canada's total GHG emissions and 77% of GHG emissions from the heat 

and electricity sector alone (EC 2011). In the province of Ontario, coal fired power 

generating stations working at 10% of the installed capacity meet 2.7% of the total 

energy demand (IESO 2013), but produce more than 50% of GHG emissions from the 

electricity sector (EC 2012). In order to reduce the GHG emissions from coal-fired 

power generating stations, the Ontario Government decided to replace coal with 

biomass as a feedstock by the end of 2014 (MOE 2010, MOE 2010a). Ontario Power 

Generation's (OPG) Atikokan Generating Station (AGS) in Northwestern Ontario is 

being converted to use 100% wood pellet feedstock using forest biomass.  The 

converted AGS with an installed capacity of 230 megawatts will be the largest (Basso et 

al. 2013) 100% biomass fueled power plant in North America (OPG 2012) requiring 

about 90,000 tonnes of wood pellets annually. The converted AGS plant will supply 

renewable energy, on demand peak capacity power, and create about 200 jobs. 

Therefore, the use of woody biomass feedstock for power generation not only has the 

potential to address the environmental problems related to air pollution and climate 

change but also ensures energy security for local communities (BioCAP 2008).  

However, concerns have been raised about the sustainability of the supply of woody 
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biomass to AGS and other power generating stations, without causing any negative 

environmental impacts.   

Productive forest on Ontario Crown land in the managed forest area (Area of 

Undertaking or AOU) covers about 26.2 million hectares with a significant portion 

located within the boreal. About 18.8 million hectares of this area are eligible for forest 

management activities. Studies on forest based fibre availability suggest that Ontario 

has enough surplus biomass available (Wood and Layzell 2003; OPG 2011) to meet the 

AGS’s requirements.  There are 18 actively operating forest management units in 

Northwestern Ontario, capable of supplying about 2.1 million green tonnes (gt) of forest 

harvest residues and 7.6 million gt of underutilized woody biomass for bioenergy 

production; these numbers are based on  an average annual forest depletion rate of 

0.6% of the total productive forest area (Alam et al. 2012). This amount is more than 

enough to produce the 90,000 tonnes of wood pellets annually required for AGS.  

Biomass can be converted into energy (heat or electricity) or energy carriers 

(char, oil or gas) by different thermochemical and biochemical conversion technologies 

(Van-Loo and Koppejan 2008). The common thermal conversion technologies in 

bioenergy systems include: direct combustion, liquefaction, gasification and pyrolysis. 

Direct combustion, where the biomass is burnt to produce heat with wood ash as a 

waste product, is the most commonly used complete oxidation process (Obernberger 

and Thek 2010). Liquefaction, or the conversion of biomass to the liquid phase (biofuel) 

at low temperature and high pressure (Van-Loo and Koppejan 2008), also produces a 

significant portion of wood ash as waste. Biomass gasification produces combustible 

gases including carbon monoxide, hydrogen and traces of other gasses in controlled 
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partial combustion of biomass under high heat and pressure.  Pyrolysis is a thermal 

degradation process producing heat, bio-oil, syngas and biochar in the absence of 

oxygen (Spokas et al. 2012). Biochar is a porous and stable carbon-rich co-product of 

the pyrolysis process that has diverse uses including soil amendments and long term 

carbon sequestration (Lehmann et al. 2006). Biochar differs from charcoal in the sense 

that it is not used as fuel. Although biochar can be produced from a variety of 

biomaterials in a variety of ways, in this paper we refer only to biochar produced from 

woody biomass in a bioenergy plant. Biochar is commonly produced using slow 

pyrolysis techniques based on heating rate and duration. Slow pyrolysis at 300-500℃ 

with a vapor residence time of 5–30 min is preferred as it maximizes the biochar 

production (Bruun et al. 2012; Boateng et al. 2010; Sohi et al. 2010).   

Co-production of biochar with bioenergy, with its subsequent application to the 

soil, has been suggested as one possible method to reduce atmospheric CO2 

concentration (Laird 2008; Fowles 2007; Lehmann 2007; Lehmann et al. 2006). At 

present, there is no bioenergy production plant that uses the slow pyrolysis process for 

producing biochar as a co-product in Northwestern Ontario. Resolute Forest Products 

(Thunder Bay) burns biomass in its boiler and produces a significant amount of bottom 

ash, which contains varying amounts of biochar (RFP 2012).  

Therefore, conversion from traditional power generation using fossil fuel to 

bioenergy production with biochar as a co-product can have both short and long term 

positive environmental impacts. Biochar-based bioenergy can reduce the rate of current 

GHG emissions by fixing atmospheric carbon into the soil, thereby mitigating the 

problem of global warming in the long term (Campbell et al. 2008).  However, a 
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comprehensive study of the potential environmental and economic impacts of bioenergy 

and biochar co-production in the region that includes each stage of production and 

utilization of the product in its life cycle needs to be conducted. Life cycle assessment 

(LCA, also known as life-cycle analysis or ecobalance) is a standard technique (ISO 

14040: 2006 series) to assess environmental impacts associated with all stages of a 

product's life from cradle-to-grave (i.e., from raw material extraction through materials 

processing, manufacturing, distribution, use, repair and maintenance and disposal or 

recycling) (Afrane and Ntiamoah 2011). We could find no study documenting the LCA of 

biochar and bioenergy co-production in Northwestern Ontario and we suggest that this 

is because the necessary background information has yet to be collected. Therefore, 

the general purpose of this review paper is to establish the context within which such an 

analysis could occur. The specific objectives are to review the literature that: (1) 

explores biochar production potential based on biomass availability and feasibility of 

sustainable bioenergy production in Northwestern Ontario; (2) documents the effects of 

biochar on soil property and productivity; (3) examines the life cycle environmental 

impacts of biochar production and application in terms of GHG emissions and climate 

change mitigation; and (4) identifies research needs and potential environmental impact 

assessment methods for woody biomass utilization for biochar-based bioenergy 

production in Northwestern Ontario in a sustainable manner.  
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METHODS 

We conducted a thorough literature search on biochar-based bioenergy 

production and its environmental impacts in Northwestern Ontario through ISI Web of 

Science and Google Scholar. Based on the search keywords (biomass, bioenergy, 

biochar, life cycle assessment, biochar soil amendment, Canada, Ontario and 

Northwestern Ontario and combinations) we selected 91 peer reviewed publications 

(Figure 2.1).  

 
 

 
Figure 2. 1 Study spectrum and number of studies covered in this paper 

 
  The extent of papers reviewed is more or less global, with one third focusing on 

studies related to the USA (Figure 2.2). Only 13 papers focused on Canada and only 6 

of those were directly related to Northwestern Ontario. This shows the lack of attention 

biochar and its environmental impact assessment has received in Canada in general 

and in Northwestern Ontario in particular. 
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Figure 2. 2 Number of studies reviewed in different regions 

 
REVIEW RESULTS 

Biochar production potential in Northwestern Ontario 

Biochar is emerging as an important co-product of bioenergy production in 

Canada (Thomas 2013). Over the last decade, there has been a constant increase in 

the use of sawmill and harvesting residue to produce bioenergy that meets the industrial 

energy demand (NRCan 2010). Northwestern Ontario has a forest area of about 48 

million ha of which 67% is covered by productive forests (MNR 2011). There are 18 

active forest management units (FMU) in Northwestern Ontario (MNR 2012). Harvesting 

residue and underutilized tree species in the FMUs and sawmill waste are already being 

used as feedstocks in Northwestern Ontario for energy generation. Studies reviewed in 

this paper vigorously agree that there is an abundant supply of woody biomass for 

sustainable bioenergy production in Northwestern Ontario (Table 2.1). Depending upon 
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the pyrolysis technique used, there is a possibility of producing up to 35% biochar from 

available woody biomass (Brick and Wisconsin 2010). 

 
Table 2. 1 Woody biomass availability (million tonnes year-1) in Northwestern Ontario 

Source Quantity 
available year-1 

Region covered Reference 

Forest harvest residue and 
underutilized tree species 

7.9 million green 
tonnes 

Northwestern 
Ontario 

Alam et al. 
2012 

Woody and agri-based 
biomass 

34 million dry 
tonnes 

Canadian side of 
Great Lakes 
region 

Hacatoglu et 
al. 2011 

Harvest residue, sawmill 
residue and underutilized 
hardwoods 

2.3 million dry 
tonnes 

Parts of 
Northeastern 
Ontario 

Kennedy et al. 
2011 

Traditionally unmerchantable, 
unused and available trees 

7.6 to 7.9 million 
green tonnes 

All over Ontario 
but harvest and 
saw mill residue 
not included 

MNR 2011 

Harvest residue and sawmill 
residue and residual trees 

3.8 million dry 
tonnes 

Northwestern 
Ontario  

Wood and 
Layzell 2003 

 
 

Biomass is widely accepted as the oldest source of energy in the world (Van-Loo 

and Koppejan 2008). Woody biomass, used as a primary source of energy for cooking 

and heating in many parts of the world, made up approximately 10% of the world’s 

energy use as of 2009 (Van-Loo and Koppejan 2008). Biomass combustion, 

responsible for over 90% of the global contribution to bioenergy, is the main technology 

used for bioenergy production. However, ash formation is one of the major challenges 

associated with biomass combustion and directly impacts the hearth, boiler or stove 
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depending upon the feedstock (Obernberger and Thek 2010). In recent years, many 

technological developments, such as fast and slow pyrolysis, in the field of biochar 

based bioenergy production have taken place. The properties of biochar from these 

techniques vary with the production technique used (Table 2.2). 

 
Table 2. 2 Properties of biochar produced from fast and slow pyrolysis techniques  

Properties Fast Pyrolysis Slow Pyrolysis Reference 

Biochar yield (% by Volume) 12 35 Sohi et al. 2010 

Carbon (C) Content (% by 
Volume) 

69.6 49.3 Bruun et al. 2012 

Hydrogen (H) Content (% by 
Volume) 

2.1 3.7 ibid 

Oxygen (O) Content (% by 
Volume) 

7.1 24.1 ibid 

Nitrogen (N) Content (% by 
Volume) 

1.5 1.2 ibid 

H/C Ratio 0.02 0.06 ibid 

O/C Ratio 0.08 0.38 ibid 

C/N Ratio 47 40 ibid 

Ash Content 19.8 21.6 ibid 

pH Value 10.1 6.8 ibid 

Biochar surface area (cm2 g-1) 220 10 Brown et al. 2006 

Fast - Moderate temperature (~6000C), short vapor residence time (<2 sec); Slow - Low 
temperature (~4000C), long vapor residence time (>30 min) 

 

Biochar produced at high temperatures from fast pyrolysis results in lower 

biochar mass recovery, greater surface area, elevated pH, higher ash content, and 
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minimal total surface charge (Novak et al. 2009). Removal of volatile compounds at high 

pyrolysis temperatures also results in higher percentages of carbon, and much lower 

hydrogen and oxygen contents (Novak et al. 2009). The properties of biochar also vary 

with the type of biomass used (Mohan et al. 2006). A typical analysis of average dried 

woody biomass yields about 52% C, 6.3% H, 40.5% O and less than 1% N. A 

comparison of the proximate, ultimate and elemental analysis of typical woody biomass 

with herbaceous plants and agricultural waste is presented in Table 2.3 (Tillman et al. 

2009).  
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Table 2. 3 Variability of different biomass feedstock composition (Tillman et al. 2009) 

Parameter Woody biomass Herbaceous plants Agricultural waste 

Proximate analysis (wt. %) 

Moisture 42.0 9.84 8.00 

Ash 2.31 8.09 6.90 

Volatile matter 47.79 69.14 69.74 

Fixed Carbon 7.90 12.93 15.36 

Ultimate analysis (wt. %) 

Carbon 29.16 42.00 42.60 

Hydrogen 2.67 5.24 5.06 

Oxygen 23.19 33.97 36.52 

Nitrogen 0.60 0.69 0.83 

Sulfur 0.07 0.17 0.09 

Ash 2.31 8.09 6.90 

Chlorine  0.01 0.18 0.24 

Calorific Value (kcal 
kg-1) 

2790 3890 3900 

Elemental analysis (% Dry) 

Al2O3 3.55 4.51 3.80 

CaO 45.46 5.60 8.80 

Fe2O3 1.58 2.03 1.80 

P2O5 7.40 4.50 2.70 

SiO2 17.78 65.18 52.10 
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Biochar effects on soil properties and productivity 

 
Biochar possesses varying amounts of nutrients including essential elements 

such as nitrogen, phosphorous and potassium that contribute positively to soil fertility 

and productivity (Table 2.4). Properties such as large surface area, micro porosity, high 

mechanical strength and stability contribute positively to soil texture and fertility of the 

land (Waters et al. 2011). 
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Table 2. 4 Nutrient content of selected biochars [Modified from (Waters et al. 2011)] 

Biochar source N  P  K  Ca  CEC  
(cmol 
kg-1) 

C  pH C:N Tem
p 0C 

References 

Green wastes 0.18 0.07 0.82 <0.01 24 36 9.4 200 450 Chan et al. 2007 

Hardwood bark 1.04    37 40 7.4 38 300 Yamato et al. 2006 

Paper mill sludge and 
wood (1:1) 

0.48  0.22 6.20 9 50 9.4 104 550 Van Zwieten et al. 2010 

Paper mill sludge and 
wood (1:2) 

0.31  1.00 11.00 18 52 8.2 168 550 Van Zwieten et al. 2010 

Pine bark <0.01 <0.01 - - 34 72 4.8 - 350 Gundale and DeLuca 
2007 

Pine wood chips 0.25 0.01 0.15 0.17 7 74 7.6 290 400 Gaskin et al. 2008 

Hardwood chips 0.30  3.10 4.40 10 87 7.5 290 - Asai et al. 2009 
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Biochar application, as a soil enhancer, increases initial growth and crop 

productivity in tropical soils (Sohi et al. 2010). The growth of organisms involved in N 

cycling in the soil, specifically those that decrease the flux of N2O, improves with biochar 

application, thereby resulting in decreased plant pathogens (Anderson et al. 2011). 

Biochar also influences mycorrhizal abundance by altering soil physico-chemical 

properties (Smith et al. 2010; Zimmerman 2010), and detoxifying allelochemicals, which 

provide refuge from fungal grazers (Warnock et al. 2007).  

Reports of the effects of biochar application on soil quality and crop productivity 

are highly variable in the literature. High yield improvements (up to 300%) were noticed 

in some studies when biochar was applied to soils of low fertility (Koide et al. 2011; 

Kookana et al. 2011; Mankasingh et al. 2011; Sparkes and Stoutjesdijk 2011; Sohi et al. 

2010; Van Zwieten et al. 2010; Laird et al. 2010; Sohi et al. 2009; Chan et al. 2007; 

Lehmann and Rondon 2006), whereas soils of temperate climates and of generally 

higher fertility showed modest biomass production improvements in the range of 420% 

(Laird et al. 2010; Husk and Major 2010). The forage value of mixed species grown on 

soil with biochar application (3.9 t∙ha-1 for 3 years) was also found to be greater than in 

un-amended soil (Husk and Major 2010). The increase in forage quality was followed by 

an increase in cow milk production (44% increase) and animal biomass production 

(Major et al. 2010a). Sohi et al. (2009) provide a comprehensive review of the impact of 

biochar application on crop yield (Table 2.5). 
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Table 2. 5 Impact of biochar application on crop yield [Modified from Sohi et al. (2009)] 

Application amount Results summary Reference 

0.5 Mg∙ha-1 wood-char Increased biomass 160% (pea) 
and 122% (Soybean) 

Iswaran et al. 1980 

0.5 Mg∙ha-1 wood-char 

5 Mg∙ha-1 wood-char 

15 Mg∙ha-1 wood-char 

Increased yield 151% 

Decreased yield to 63% 

Decreased yield to 29% 

Kishimoto and Sugiura 1985 

Kishimoto and Sugiura 1985 

Kishimoto and Sugiura 1985 

NA Increased biomass by 13% and 
height by 24% 

Chidumayo 1994* 

67 Mg∙ha-1 char 

135 Mg∙ha-1 char 

Increased biomass 150% 

Increased biomass 200% 

Glaser et al. 2002 

Glaser et al. 2002 

NA Increased biomass production by 
38 to 45% 

Lehmann et al. 2003 

NA Increased grain yield 91% and 
biomass yield 44% 

Oguntunde 2004 

Acacia bark charcoal 
plus fertilizer 

Increased maize and peanut yields  Yamato 2006 

100 t∙ha-1 

10 to 50 t.ha-1 

Without added N 

Increased yield by three times  

Increased yield  

No effect 

Chan et al. 2007 

Chan et al. 2007 

Chan et al. 2007 

90 g∙kg-1 biochar 

60 g∙kg-1 biochar 

Increased biomass production by 
46% 

Increased biomass production by 
39% 

Rondon 2007 

Rondon 2007 

Charcoal amended 
with chicken manure 
(12.4 Mg∙ha-1) 

Highest cumulative crop yield Steiner 2007 

NA Crop yield doubled in maize  yield Kimetu et al. 2008* 

(The term 'Biochar' was coined in 2005, terms like char, and charcoal were used in 
previous research) 

* As cited in Sohi et al. 2009 (Original record not retrieved) 
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Some studies also attribute changes in N immobilization to biochar application 

(Kookana et al. 2011; Blackwell et al. 2010; Asai et al. 2009) but this phenomenon is of 

relatively short duration while the unstable fraction of biochar is decomposed. Kishimoto 

and Sugiura (1985) found 37% and 71% lower soybean yields with biochar application 

of 5 and 15 tonne per hectare (t∙ha-1) respectively, and attributed this reduction to the 

rise in pH, which led to micronutrient deficiencies induced by the biochar application. In 

a 2-year trial, Gaskin et al. (2008) observed lower corn yields with peanut hull biochar 

applied at 22 t∙ha-1 compared to the control under fertilized conditions. With pine chip 

biochar application, yield reductions occurred at both 11 and 22 t.ha-1 of biochar 

application in the first but not the second year of the trial. However, trials in both years 

were affected by drought. The interaction of biochar application with fertilizer rate and 

type as well as inoculation with mycorrhizae is also complex and not yet well 

understood (Blackwell et al. 2010).  

Biochar application benefits are not only limited to increased production of 

biomass and crop yield in the short term. Its long term impacts on plant soil systems, 

nutrient cycling, climate change and mitigation have also been documented (Waters et 

al. 2011). A summary of significant impacts on ecosystem function is presented in Table 

2.6. 
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Table 2. 6 Summary of ecosystem benefits of biochar application (Waters et al. 2011) 

Plant-Soil System Climate Change adaptation Climate Change 
Mitigation 

 Improve soil air and 
water storage 

 Improve soil structure  

 Increase soil CEC, pH, 
C and nutrients 

 Increase soil microbial 
activity and diversity 

 Enhance plant growth 
conditions 

 Enhance agriculture 
input efficiencies 

 Enhance soil water use 

 Improve water quality 

 Reduce nutrient 
leaching and runoff 

 Enhance global food 
security 

 Increase ecosystem 
resilience 

 Increase stable soil C 
pool 

 Reduce soil 
greenhouse gas 
emissions 

 Reduce soil 
degradation 

 Reduce N fertilizer 
use 

 Reduce CH4 
emissions from 
biomass decay 

  

Biochar applications monitored over several years in agricultural lands have 

shown many short and long term positive effects, such as a liming effect and improved 

water holding capacity of the soil along with improved crop nutrient availability (Jeffery 

et al. 2011; Kookana et al. 2011; Scheer 2011; Sohi et al. 2010; Van Zwieten et al. 

2010; Major et al. 2010b; Sohi et al. 2009). Because of the variability of biochar applied 

and the soil types used in these studies, it is difficult to recommend biochar application 

as a soil amendment for all soil types and cropping systems. More field trials are 

required on several sites assessing the effect of biochar application in combination with 

other production factors. 
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Environmental impacts and life cycle assessment of Biochar 

Soil carbon is one of the major sources of GHG emissions (Lal 2007). Carbon 

Dioxide (CO2), Methane (CH4) and Nitrous Oxide (N2O) are the most prevalent GHGs in 

the atmosphere and these three gases together make up about 99% of GHGs (EC 

2011). In addition to the potential long term soil carbon sequestration value, biochar 

application also provides considerable greenhouse gas mitigation benefit by reducing 

N2O emissions over time (Table 2.7). The extent of this reduction, however, depends on 

soil type, application rate, soil moisture content, and biochar type (Taghizadeh-Toosi et 

al. 2012; Park et al. 2011; Sparkes and Stoutjesdijk 2011; Waters et al. 2011; Sohi et al. 

2009). However, in some studies, neutral to slight increases of emissions of N2O from 

soil were observed in the short term (Clough and Condron 2010). N2O, produced as a 

result of microbial processes of nitrification and denitrification, has high global warming 

potential and contributes more than 8% to global GHGs (Harter et al. 2014). The exact 

mechanisms for observed effects of biochar application on N2O emissions remain 

unknown (Van Zwieten et al. 2010). The effectiveness of biochar application in reducing 

soil N2O emissions can increase over time because of the increased sorption capacity 

of biochar through oxidative reactions on large surface area (Singh et al. 2010). In a 

recent laboratory study of boreal charcoal (biochar) study Hart (2013) reported that 

increased mineralization due to the addition of biochar is short lived and likely related to 

the least stable component of biochar. A brief summary of the reviewed studies on 

environmental impacts of biochar are outlined in Table 2.7.  
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Table 2. 7  Environmental impacts of biochar application 

            Beneficial Environmental impacts Reference 

Reduced Improved 

Bacterial Plant Pathogens;  
N2O emission 

Phosphate solubilizing bacteria Anderson et al. 
2011 

Ammonium leaching;  
N2O emission 

Availability of macro-nutrients (N and 
P); 
Electrical conductivity (EC), cation 
exchange capacity (CEC)  

Atkinson et al. 2010 

Pollutant mobility from 
contaminated soils 

Sorption of both organic and inorganic 
contaminants 

Beesley et al. 2011 

GHG emissions  Long-term carbon sequestration Bruun et al. 2011,  
Gaunt and 
Lehmann 2008 

Microbial degradation of organic 
compounds 

Bioavailability and efficacy of 
pesticides 

Kookana 2010 

Anthropogenic C emissions  Biological decomposition, microbial 
activities 

Lehmann and 
Rondon 2006 

Contaminants accumulating in 
soil 

Physical and chemical properties of 
soil 

Sohi et al. 2010 

N2O production and ambient 
CH4; leaching and runoff 
losses; fertilizer requirement 

Sorption; Physical properties Spokas et al. 2009 

GHG emissions  Climate-change mitigation potential Woolf et al. 2010 

 
Another notable benefit of biochar application to soil is its ability to reduce 

nitrogen fertilizer requirements in agricultural systems (Waters et al. 2011). Production 

of one tonne of nitrogen fertilizer releases more than 3 tonnes of CO2 into the 

atmosphere (West and Marland 2002). Biochar application can reduce the frequency 

and quantity of N application and subsequently lower emissions from the production of 
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nitrogen fertilizer. In order to have a complete picture of the contribution of biochar 

production and utilization to GHG emissions, environmental quality, and human health, 

life cycle assessment (LCA) studies have been done. 

LCA considers the flows of raw materials and energy across a system boundary 

to determine the process’ or product’s full cradle-to-grave impact (Steele et al. 2012; 

Roberts et al. 2010). LCA techniques have quantified all stages of bioenergy production 

and utilization systems to assess the environmental impact (Steele et al. 2012; Roberts 

et al. 2010; Fantozzi and Buratti 2010). Several recent LCA studies considering GHG 

emissions and carbon sequestration effects have focused on the co-production of 

biochar and bioenergy from slow pyrolysis of various biomass feedstocks (Hammond et 

al. 2011; Woolf et al. 2010; Roberts et al. 2010). These studies conclude that biochar 

systems could mitigate 0.7–1.4 tonnes of CO2 t-1 of feedstock consumed. A review of 

life cycle studies with a brief finding from each study is presented in Table 2.8. 
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Table 2. 8 Life cycle analysis studies covered in this review 

Life Cycle Study with brief finding References 

Compared slow pyrolysis biochar systems (PBS) with gasification for 
electricity generation and carbon abatement (CA). Gasification showed 
better electricity generation outputs, however, PBS offered more CA.  

Ibarrola et al. 
2012 

295 kg CO2e GHG is released for every tonne-1 pellets exported from British 
Columbia to Netherlands. If locally used it can reduce impacts on human 
health, ecosystem quality, and climate change by 61%, 66%, and 53%, 
respectively. Transportation consumes 35% total energy followed by 
harvesting.  

Pa et al. 2012 

There is a significant net reduction in GHG emissions when bioenergy 
replaces fossil energy. 

Cherubini and 
Stromman 
2011 

Global warming impacts of imported pellets are greater than in-situ 
utilization. Imported pellets emit significantly less GHGs than fossil fuel if 
used to produce electricity. 

Dwivedi et al. 
2011 

Compared PBS with other bioenergy systems for carbon abatement. PBS is 
33% more efficient than direct combustion, even if soil amendment benefits 
of biochar are ignored. 

Hammond et 
al. 2011 

Electricity from wood pellets reduces emissions in the long run but net 
mitigation may be delayed by 16-38 years. 

Mckechnie et 
al. 2011 

Emissions from controlled gasification systems for wood pellets are lower as 
compared to wood waste. Costs and GHG emission can be reduced by 35% 
and 82%, respectively by wood pellets gasification.  

Pa et al. 2011 

GHG emission is reduced in the life cycle if coal is replaced by biomass.  Sebastian et al. 
2011 

Forest residue has less environmental impact in the long run than agri-
residue when used for electricity production. 

Butnar et al. 
2010 

Wood pellets from short rotation coppice crop provide long term solution for 
sustainable supply of feedstock. Farm operations account for most of the 
environmental impacts in initial years. 

Fantozzi and 
Buratti 2010 

Biomass has lower GHG emissions than conventional gasoline in the life 
cycle. Differences in NEV are caused by conversion technology rather than 
by feedstock.  

Hsu et al. 2010 

Initial moisture content of the feedstock and fuel consumption during the 
carbonization process was the greatest contributors to CO2 emissions within 
the life cycle. Farmland application of bagasse charcoal can sequester 60-
90 t CO2 ha-1 year-1. 

Kameyama et 
al. 2010 
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Life Cycle Study with brief finding References 

Biofuels provide greater GHG mitigation benefits in the life cycle as 
compared to conventional fossil fuels. 

Larson 2006 

Biomass reduces GHG emissions by displacing fossil fuel in transportation 
and electricity sector and by sequestering atmospheric carbon. GHG 
emissions increase if bioelectricity displaces wind electricity.  

Lemoine et al. 
2010 

The net energy produced from the slow PBS is highest but it can be a net 
GHG emitter. About two-thirds of emission reductions can be realized from 
C sequestration in the biochar.  

Roberts et al. 
2010 

Wood pellets provided significant reductions of GHG (91%), NO2 (47%) and 
SO2 (81%) in the life cycle as compared to coal and natural gas. The most 
cost effective GHG reduction was found at $160 tonne-1 of pellets and $7GJ-

1 natural gas. 

Zhang et al. 
2010 

Bioenergy production, in short run, may cause higher environmental impacts 
(e.g. air pollution, eutrophication etc.) than fossil fuels because of site-
specific issues and too many uncertainties in the LCA process. These issues 
should be evaluated by weighting GHG emissions trade-off in the long run.  

Cherubini et al. 
2009 

Electric train transportation and local wood had lowest environmental 
impacts in the life cycle as compared to conventional diesel train and 
imported woods. 

Gonzalez-
Garcia et al. 
2009 

Bioenergy emits less than 25% GHGs than conventional or liquefied natural 
gas but may cost double than current coal based systems. Bioelectricity 
produced through this technology will emit only 10% carbon (in full life cycle) 
as compared to coal based power.  

Hacatoglu 
2009 

Wood pellets production and shipping consumes about 39% of the total 
energy content of the wood pellets with one-third contribution of 
transportation in the life cycle.  

Magelli et al. 
2009 

Carbon savings from biofuel depend on their feedstock. Perennial woody 
biomass in abandoned agri-land produce very little or no carbon debt and 
can offer immediate and sustained GHG advantage than biomass produced 
by converting rainforests, peatlands, or grasslands to agri-land. 

Fargione et al. 
2008 

Emissions reductions from slow PBS are between 2 and 5 times greater 
when biochar is applied to agricultural land than used only for fossil fuel 
offsets.  

Gaunt and 
Lehmann 2008 

Biofuels provide greater GHG mitigation benefits in the life cycle as 
compared to conventional fossil fuels. 

Larson 2006 
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Economics of biochar based bioenergy production 

 
The economic feasibility of biochar based bioenergy production includes the 

comparison of cost of collection, transportation, processing of feedstock and energy 

generated during the pyrolysis process; and benefits obtained from the production of 

bioenergy and biochar as co-products (McCarl et al. 2009). The cost-benefit analysis 

also includes the trade-offs between economic gains and environmental and ecosystem 

function losses. The economics of the biochar based bioenergy system depends on the 

availability of advanced technology to produce and optimize the co-products based on 

management objectives. If long term carbon sequestration is valued above renewable 

energy, then more biochar should be produced in comparison to bio-oil (Palma et al. 

2011). However, in order to maximize the economic outputs and beneficial outcomes, 

the supply chain including feedstock collection, transportation, pyrolysis plant design 

and operation, and product recovery need to be optimized (Moon et al. 2011; McCarl et 

al. 2009).  

 

Onsite portable pyrolysis bioenergy production plants are used to reduce the 

transportation costs of forest biomass(McElligott et al. 2011). Portable units are 

economically feasible if located at stock piled sources of feedstock (McCarl et al. 2009). 

However, there is a low probability of a positive net present value (NPV) with portable 

systems as compared to stationary scenarios (Palma et al. 2011).  Stationary fast 

pyrolysis facilities, using woody biomass feedstock, show the highest potential for 

profitability with a price of $87 tonne-1 of biochar (Granatstein et al. 2009).The maximum 

revenue using woody biomass feedstock for energy production using slow pyrolysis is 
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$0.09 kg-1 and using fast pyrolysis is $0.11∙kg-1 (Granatstein et al. 2009). Furthermore, 

slow pyrolysis units will deliver net-negative emissions of greenhouse gases and 

revenue from C trading could make biochar production for soil application a worthy 

venture (Gaunt and Lehmann 2008).  

 

The cost-effectiveness of global biochar mitigation potential using marginal 

abatement cost curves has been evaluated (Pratt and Moran 2010). Biochar stove and 

kiln projects in developing nations are more cost-effective than pyrolysis plants in 

developed countries, and thus could abate more fossil fuel carbon emissions (up to 

1.03Gt by 2030 in Asia). Biochar based bioenergy projects are expensive, but can 

compete with other carbon negative technologies, depending on a range of factors 

including the price of carbon and significant ancillary benefits in terms of biomass 

productivity (Pratt and Moran 2010). One of the future economic consequences of 

biochar-based bioenergy may appear when there is a regulatory carbon trading 

mechanism such as the Carbon Trade Exchange (CTX). Assuming the existence of a 

carbon trading mechanism for biochar soil application, Galinato et al. (2011) estimated 

the economic value of biochar application on agricultural cropland for carbon 

sequestration and its soil amendment properties, and found that it may be profitable to 

apply biochar as a soil amendment if the biochar market price is low enough and/or a 

carbon offset market exists. These economic impact assessment studies emphasize the 

need for a local level accounting of all the stages of production to end use. 
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RESEARCH NEEDS AND POTENTIAL ENVIRONMENTAL IMPACT ASSESSMENT 
METHODS 
 

Bioenergy is being widely accepted as a green alternative to fossil fuel based 

energy in many parts of the world. Bioenergy with biochar as a co-product is even more 

promising in terms of soil amendment and emission reductions benefits. A number of 

bioenergy production technologies have been developed that produce biochar as a co-

product. Biochar application as a soil amendment not only increases crop and biomass 

production, but also helps in managing waste from bioenergy generation plants that 

would otherwise end up in landfills. In order to make biochar-based bioenergy 

production more efficient, past research has identified the use of wood pellets instead of 

direct biomass as feedstock. Wood pellets help to reduce GHG emissions and the cost 

of electricity production (Fantozzi and Buratti 2010). The life cycle GHG emission 

reduction potential and cost efficiency of electricity production from wood pellets can 

reduce GHG emissions by 90%, NOx by 4547%, and SOx by 7681% as compared to 

coal and natural gas (Zhang et al. 2010). Wood pellets produced in North America and 

used in European countries to replace fossil fuels in electricity generation, have 

considerably reduced GHG emissions (Dwivedi et al. 2011). However, it is better to use 

wood pellets locally than to transport them over long distances, as transportation of 

wood pellets consumes one third of their energy content (Pa et al. 2012; Magelli et al. 

2009). In addition, if wood pellets are used to replace natural gas in district heating 

systems, it may reduce GHG emissions by 82% and cost by 35% (Pa et al. 2011).  

Notwithstanding the beneficial uses of biomass utilization for energy production, 

some non-governmental organizations (Schlamadinger et al. 1997) have been raising 
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concerns about the sustainability of the system in the long run (Huang et al. 2013). In a 

recent report, which focuses on Ontario's biomass utilization policy, Green Peace (An 

international NGO on environmental advocacy) has strongly opposed the province's 

claim about carbon neutrality of biomass fuel and recommended that full and 

independent life cycle analyses of forest bioenergy projects be performed to track 

carbon emissions every year and take into account the “carbon payback time” of each 

bioenergy project (Mainville 2011). However, Ter-Mikaelian et al. (2008) state that the 

total forest carbon stock has increased under the current forest management in Ontario. 

They calculated that, if forests in Ontario are managed for energy production using 

wood pellets, it would take at least 28 years to theoretically achieve minimum break-

even and carbon-neutral periods resulting from displacing coal with biomass feedstock, 

whereas the current forest age structure in Ontario has a minimum break-even period of 

32 years after harvest for carbon balance (Ter-Mikaelian et al. 2011). 

There are also differences of opinion in the net benefit of bioenergy production 

when considering competing interests in the energy sector. Most studies focus on 

maximization of energy production from biomass using combustion, which may 

compromise soil amendment and carbon sequestration benefits (Tilman et al. 2009; Lal 

and Pimentel 2007). Similarly, bioenergy produced from agriculture based feedstock 

may compete with food production (Pimentel et al. 2009; Searchinger et al. 2008), even 

though grain- and seed-based biofuels provide significant GHG mitigation benefits 

(Cherubini et al. 2009). Those competitions, in some extents, are being addressed by 

using transgenic woody plants especially in the production of biofuels (Tang and Tang 

2014). There is an opportunity cost associated with biochar that is used for soil 
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amendment as there is some energy lost in the carbonized biomass. For example, 

approximately 50% of feedstock energy is lost in the form of carbon in biochar when 

pyrolysis technology is used for maximizing biochar production (Roberts et al. 2010).  

Therefore, not all biomass can either be converted to bioenergy or to biochar.  

Most studies reviewed in this paper present the potential benefits of bioenergy or 

biochar in terms of GHG emissions reduction in the life cycle, but none of the studies 

conducted the carbon-balance and economic analysis of the whole biochar production 

and utilization within the system boundary. Therefore, a long term life cycle assessment 

is needed for the specific region of interest (e.g. Northwestern Ontario) to make better 

decisions about the viability of any biochar production and utilization system (Hammond 

et al. 2011; Mckechnie et al. 2011).   

 
CONCLUSIONS  
 

Northwestern Ontario (Canada) has a sustainable and sufficient supply of woody 

biomass that can be used to produce biochar based bioenergy for household and 

industrial purposes. While several biochar based bioenergy plants are operating around 

the world, the switch to biomass based energy is relatively recent in Northwestern 

Ontario with the AGS conversion representing a new era in large scale fuel 

requirements. If biochar and bioenergy are produced, they will serve two immediate 

functions: a) to provide fossil fuel free energy and b) to sequester stable carbon for a 

longer period. Biomass may be sourced from either harvesting waste or underutilized 

species. The former is usually piled at roadside and, if not burned in situ, returned to the 

site or used for fuel, its presence can inhibit regeneration for long periods of time. So 
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called “slash piles” can also pose a fire hazard (McElligott et al. 2011). Harvesting of 

underutilized species or extension of harvesting to include coarse woody debris (CWD) 

has raised concerns about reduced soil nutrient inputs thereby altering forest site 

productivity (Hazlet et al. 2007, Wiebe et al. 2013). CWD also contributes to the 

structure, microhabitat diversity, and nutrient cycling of forests (Pedlar et al. 2002). 

Therefore, utilization of forest biomass may warrant a regional harvesting policy. 

Replacing fossil fuels with biomass for power generation would certainly change the 

carbon budget of the regional ecosystem, through transportation, collection, processing, 

and pyrolysis of biomass, and possibly, land application of biochar. However, a 

comprehensive life cycle analysis of the biochar-based bioenergy production, from raw 

material collection to biochar application, with an extensive economic assessment is 

necessary for future development and commercial viability of this technology. Such a 

study would help decision makers as they create effective bioenergy policies for the 

region and boost confidence of potential investors to start up new businesses in the 

area. Future research work in the area of bioenergy production should focus on 

transportation, storage and processing of biomass, which could further improve the 

knowledge base in this area. 
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ABSTRACT  

Biochar-based bioenergy production and subsequent land application of biochar can 

reduce greenhouse gas emissions by fixing atmospheric carbon into the soil for a long 

period of time. A thorough life cycle assessment (LCA) of biochar-based bioenergy 

production and biochar land application in Northwestern Ontario is conducted using 

SimaPro® Ver. 8.1. The results of energy consumption and potential environmental 

impact of biochar-based bioenergy production system are compared with those of 

conventional coal-based system. Results show that biochar land application consumes 

4,847.61 MJ per tonne dry feedstock more energy than conventional system, but 
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reduces the GHG emissions by 68.19 kgCO2e per tonne of dry feedstock in its life cycle. 

Biochar land application improves ecosystem quality by 18%, reduces climate change 

by 15%, and resource use by 13% but may adversely impact on human health by 

increasing disability adjusted life years (DALY) by 1.7% if biomass availability is low to 

medium. Replacing fossil fuel with woody biomass has a positive impact on the 

environment, as one tonne of dry biomass feedstock when converted to biochar 

reduces up to 38 kg CO2e with biochar land application despite using more energy. 

These results will help understand a comprehensive picture of the new interventions in 

forestry businesses, which are promoting biochar-based bioenergy production.  

 
Keywords: woody biomass, carbon sequestration, environmental impact 

assessment, greenhouse gas emissions, life cycle analysis, soil amendment. 

 

 

 

INTRODUCTION 
 

Biochar is a highly porous and stable carbon-rich co-product of pyrolysis that has 

many uses including soil amendments and long term carbon sequestration (Lehmann et 

al 2006). Pyrolysis is defined as a thermochemical decomposition process occurring in 

the absence of oxygen (Spokas et al. 2012). Although chemically similar, Biochar differs 

from charcoal in the sense that it is not used as fuel (Lehmann et al. 2009). In this paper 

we deal with biochar produced from woody biomass in a bioenergy plant using the slow 

pyrolysis technique, a process that maximizes production, at 300500°C with a vapor 

residence time of 530 min (Boateng et al. 2010; Bruun et al. 2012; Sohi et al. 2012). 
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Co-production of bioenergy with biochar, with the latter’s subsequent application to the 

soil, has been suggested as one possible method to reduce atmospheric carbon-dioxide 

(CO2) concentration [Lehmann et al 2006; Fowles 2007; Laird 2008; Lehmann 2007), 

thereby mitigating the problem of global warming in the long term (Campbell et al. 

2008).  However, very few studies have been conducted to assess the comprehensive 

environmental impacts of biochar-based bioenergy production (IBI 2013). A comparison 

of a pyrolysis biochar system (PBS) with other bioenergy production systems for carbon 

abatement found that PBS is 33% more efficient than direct combustion, even if the soil 

amendment benefits of biochar are ignored (Hammond et al. 2011). There are also 

many environmental, economic and legal concerns about the production of biochar and 

the incorporation of this manufactured material into soils on farms, in forests and 

elsewhere in the environment (Kookana et al. 2011). Although PBS can be a net GHG 

emitter (Roberts et al. 2010), biochar produced from forest residue can significantly 

reduce GHG emissions if biochar is used in land application (Dutta and Raghavan 

2014).  

Power generation is one of the significant contributors to current GHG emissions 

(IEA 2013). As of 2009, the electricity and heat generation sectors alone contributed 

about 9% of total GHG emissions in the province of Ontario (OPG 2012). Ontario 

enacted its green energy act (MOE 2010) in 2009 with a major milestone of achieving 

significant reduction of GHG emissions related to power production. The province has 

banned the use of coal in electricity production by replacing its coal-generating plants 

with biomass as feedstock by the end of 2014 (MOE 2010). Accordingly, Ontario Power 

Generation's (OPG) two coal-fired generating stations (Thunder Bay and Atikokan) are 
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being converted to use wood pellets, from Ontario-sourced forest biomass, as 

feedstock. The Atikokan station (AGS), with an installed capacity of 230 megawatts 

(OPG 2012), is now one of the largest 100% biomass fuelled power plant in North 

America (Basso et al. 2013). If wood pellets used for power production are locally 

produced, these will have much less impact on ecosystem quality, climate change, and 

human health as compared to fossil fuels, whereas transporting wood pellets over long 

distances adds to the GHG emissions, as transportation is estimated to consume about 

35% of total energy (Dwivedi et al. 2011; Pa et al. 2012). However, conversion from 

traditional power generation using fossil fuel to wood pellets may have both short and 

long term unknown (positive or negative) environmental impacts.  

Ontario has a large forestland base including 26.2 million hectares of boreal 

forest. A significant proportion of this (about 18.8 million hectares) is available for 

intensive forest management activities (MNR 2014). However, concerns have been 

raised about sustainable supply of woody biomass to produce wood pellets for power 

generating stations. As the new operations will require more than a million metric tonnes 

of wood pellets annually, the harvesting of biomass for wood pellets production could 

possibly have negative environmental impacts. Studies on forest based fibre availability 

suggest that Ontario has enough surplus biomass available (Wood and Layzell 2003) to 

meet the demand.  There are 18 actively operating forest management units in 

Northwestern Ontario, which can supply about 2.1 million green tonnes (Finnveden et 

al. 2009) of forest harvest residue and 7.6 million green tonnes of underutilized woody 

biomass for bio-energy production, assuming an average annual forest depletion rate 

0.6% of the total productive forest area (Alam et al. 2012). 
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Use of woody biomass in producing biofuel is becoming a popular practice 

elsewhere in the world as agriculture grain based biofuel is facing food security critics 

(Elbehri et al. 2013). Production of biofuel as a stand-alone product from woody 

biomass is technically viable but financially may not be sustainable (Stephen 2013). A 

trade of between different co-products of biofuel and biochar is widely considered as 

one of the GHG emission reduction strategy as land application of biochar sequesters 

the carbon relatively in a very long time. Han et al. (2013) conducted a life cycle (well-

to-wheel) assessment of fast pyrolysis woody biomass based biofuel and found that 

biofuels can reduce the GHG emission when co-produced biochar is applied to the soil. 

An effective implementation of biochar as a climate-mitigating tool would require 

an application of vast quantities of biochar into the environment (Biederman and 

Harpole 2013), which may result in its exposure to non-target terrestrial and aquatic 

systems, as wind and water can erode up to 50% of applied biochar material during 

application (Major et al. 2010). Therefore, a comprehensive study of biochar-based 

bioenergy production and its subsequent application to land is required to assess its 

potential impacts on environmental and economic parameters of the region. Ideally, 

such a study should include every stage of production and utilization of the product in its 

life cycle. Woody biomass can be converted into bioenergy (heat or electricity) or 

energy carriers (char, oil or gas) by different thermochemical and biochemical 

conversion technologies (Van-Loo and Koppejan 2008). Life cycle assessment (LCA, 

also known as life-cycle analysis or ecobalance) is a standard technique (ISO 14040: 

2006 series) to assess environmental impacts associated with all stages of a product's 

life from cradle-to-grave (i.e., from raw material extraction through materials processing, 
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manufacturing, distribution, use, repair and maintenance, and disposal or recycling) 

(Afrane and Ntiamoah 2011). LCA techniques have been widely applied to study the 

impacts of biofuel and bioenergy systems (Roberts et al. 2010; Steele et al. 2012; Rehl 

and Mueller 2011; Fantozzi and Buratti 2010; Kilpelainen et al 2011; Zhang et al. 2010) 

in different regions including Northwestern Ontario. A few studies have also used LCA 

to compare GHG mitigation and direct carbon sequestration potential of biochar 

produced from different feedstocks (Hammond et al. 2011; Roberts et al. 2010; Gaunt 

and Lehmann 2008; Woolf et al. 2010). Although these studies conclude that all biochar 

systems have GHG mitigation and direct carbon sequestration potential, there exists an 

inherent trade-off between bioenergy and biochar production (Fowles 2007). A recent 

review (Homagain et al. 2014) also suggested a thorough life cycle study of biochar-

based bioenergy production. 

Therefore, the general purpose of this paper is to collect and analyze background 

information using standard methods, and establish the context within which LCA of 

biochar and bioenergy co-production in Northwestern Ontario could be carried out. The 

specific objectives are: (1) to conduct a thorough life cycle inventory of biochar-based 

bioenergy production with the use of standard local and related global databases; (2) to 

calculate net energy and GHGs emission of the biochar-based bioenergy production 

system; (3) to conduct a life cycle environmental impact assessment for potential 

damage in different impact categories; and (4) to compare the potential environmental 

impact assessment results for conventional energy production with those for biochar 

based bioenergy production and its land application in Northwestern Ontario. 
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MATERIALS AND METHODS  
 

In this paper, we use International Standards Organization's (ISO) 14040 series 

standard LCA methodology consisting of four major steps - goal and scope definition, 

inventory analysis, impact assessment, and interpretation (SAIC 2006). 

 

Goal and Scope definition 
 

The goal and scope of LCA for this study is to assess the net energy balance, 

greenhouse gas emissions and associated environmental impact s of a biochar-based 

bioenergy system and its utilization as a soil amendment to sequester carbon.  

 

LCA System Boundary and Functional Unit 

 
Figure 3.1 illustrates the life cycle study system boundary within the solid lines. 

The dotted lines represent the life cycle cost analysis (LCCA) boundary which is not 

covered in this paper. The unit of analysis is one tonne of biochar (and one megawatt of 

equivalent electricity that is generated) produced from woody biomass processed into 

wood pellets. The System boundary, depicted by the solid line in Figure 3.1, extends 

from raw material collection to the application of biochar to the forest, and includes 

different interdependent phases including collection, transportation, storage, processing 

and pyrolysis with and without land application. The extended system boundary, 

depicted by both solid and dotted lines, is used in the life cycle cost estimation phase 

and is not part of this paper. 
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Figure 3. 1 System boundary for LCA of biochar-based bioenergy production 

 

 

Study location and case assumptions 

 

The study area lies in Northwestern Ontario Canada, where the Atikokan 

Generating Station (AGS) has been converted from coal to biomass (wood pellet) 

feedstock. Although AGS plans to use the combustion process for energy generation, 

our study uses a scenario where biomass feedstock will be converted to biochar using 

the best available pyrolysis process in order to illustrate the benefits of biochar-based 

bioenergy production. The input-output data for the system boundary and unit 

processes were obtained directly from the regional forest management unit, forest 

management plan, and personal communication with harvesters, transporters and other 

professionals. 
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Inventory analysis 
 

An ISO standard inventory analysis was performed on material and energy 

inputs, air emissions (GHGs), and other environmental factors using SimaPro 8.1 LCA 

software. Inventory data of the built-in database (Ecoinvent and USLCI) of SimaPro 8.1 

LCA software for input materials, equipment, processes and emissions was used in this 

paper (Table 3.1).  

 

Raw material collection 

 

Forest harvest residue (FHR), sawmill residue (SMR) and underutilized trees 

(UTS) are used as feedstock raw materials, with each source contributing equally in the 

feedstock mix. FHR and SMR are mostly composed of boreal softwoods (especially 

SPF-Spruce, Pine, Fir), whereas UTS consists of hardwoods (e.g. Poplars and Birch) 

and some Tamarack. 

 

Transportation at different stages 

 

Northern Ontario forest industry standards for transporting biomass feedstock 

from the forest management unit to storage (average 200 km one-way distance), 

processed feedstock from storage to the pyrolysis unit (20km), biochar from the 

pyrolysis unit to land application (100 km one-way), and biofuels from the pyrolysis unit 

to markets (100km) are used in the study. The average truck size is 40 tonnes (60m3) 

(Hammond et al. 2011) with a load factor of 75%. Regular gasoline is used as standard 

fuel type.   
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Biochar production 

 

The standard biochar production process or “slow pyrolysis” occurs at 450° C 

with a 5-30 min vapor residence time (Brown 2009). The process of slow pyrolysis using 

standard wood pellets (moisture content less than 12%) is simulated within SimaPro 8.1 

LCA software environment with the help of Ecoinvent and USLCI databases. A product 

yield of bio-oil 35%, syngas 30% and biochar 35% by weight of dry feedstock was used 

for this study (Brownsort 2009; Ronsee et al. 2013). 

 

Storage 

 

Two different storage stages are considered in the LCA: (i) storage of biomass 

feedstock before processing and pelletizing, and (ii) storage of pellets. Storage of 

biochar is not considered in this study, assuming that it will be applied to land 

immediately after production.  

 

Land application 

 

Land application of biochar is used to sequester carbon, and a weight loss of 

10% is assumed during transportation and application. Application loss in could be as 

high as 30% depending on the type of biochar (Major 2010). 

 

Impact assessment 
 

Eco indicator 99 model of SimaPro 8.1 LCA software, one of the most widely 

used impact assessment methods in LCA (Cavalett  et al. 2013), is used to assess 
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endpoint damage for each scenario in this study based on its scope (system boundary) 

and available life cycle inventory database (Goedkoop and Spriensma 2001). Impact 

categories analyzed in this study include damages to human health, damages to 

ecosystem quality, damages to resources and climate change in global warming 

potential terms (Afrane and Ntiamoah 2011). Damages to human health are caused by 

emissions of carcinogens, respiratory effects caused by the emission of organic and 

inorganic substances, climate change, ionizing radiation and ozone layer depletion. 

Impact assessment unit for this category is disability-adjusted-life-years (DALY). 

According to Jolliet et al. (2003) DALY characterizes the disease severity, accounting 

for both mortality (years of life lost due to premature death) and morbidity (the time of 

life with lower quality due to an illness, e.g., at hospital). Default DALY values of 13 and 

1.3 (years/incidence) are adopted for most carcinogenic and non-carcinogenic effects, 

respectively. For example, a product having a human health score of 3 DALYs implies 

the loss of three years of life over the overall population not the person (Humbert et al. 

2012). Damages to ecosystem quality are caused by ecotoxic emissions, combined 

effects of acidification and eutrophication, and land occupation and conversion. LCA 

unit for ecosystem quality damage assessment is Potentially Disappeared Fraction 

(PDF) of species over an area during a certain amount of time (PDF.m2.yr) (Humbert et 

al. 2012). This represents the fraction of species disappeared on 1 m2 of earth’s surface 

during one year. For example, a product having an ecosystem quality score of 0.2 

PDF.m2.yr implies the loss of 20% of species on 1 m2 of earth surface during one year 

(Jolliet et al. 2003). Damages to resources are caused by extraction of minerals and 

fossil fuels. Climate change impact in this study was assessed by the global-warming 
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potential (Afrane and Ntiamoah 2011) which is a relative measure of how much heat a 

greenhouse gas traps in the atmosphere. GWP compares the amount of heat trapped 

by a certain mass of the gas in question to the amount of heat trapped by a similar 

mass of CO2. It is calculated over a specific time interval, e.g. 20, 100 or 500 years. 

GWP is expressed as a factor of carbon dioxide (whose GWP is standardized to 1).  

 

Interpretation 
 

The results from SimaPro 8.1 LCA software were normalized, weighted and 

interpreted in terms of defined impact categories within production stages of the System 

boundary. In order to understand the effect of changes in the availability of biomass raw 

material in future, a sensitivity analysis was carried out. It is likely that biomass 

feedstock for wood pellets will experience competition from other conventional uses. 

Therefore, the sensitivity analysis is designed to assess the overall impacts of low, 

medium and high availability of biomass feedstock. 

 

Life cycle net energy analysis 
 

Net energy of the system was calculated by deducting the energy output from the 

total energy input. Similar previous studies in different areas of biomass and bioenergy 

production (Hammond et al. 2011; Zhang et al. 2010; Papong et al. 2010) were followed 

to calculate the net energy of the system in each stages of production within system 

boundary. 
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Table 3. 1 Inventory data and general assumptions of study 

Category Component Unit and Description Remarks 

Raw 
Material Forest harvest residue (FHR)  33.3% (SPF 80%, Others 20%) 

Sawmill residue (SMR) 33.3% (SPF 80%, Others 20%) 

Underutilized trees (UTS) 33.4% (HW 80%, Others 20%) 

Collection Standard roadside FHR 33.3% This Study 

Average SMR 33.3% This Study 

Cut and carry UTS 33.4% This Study 

Transport truck 40 tonne (60 m3) (Hammond et al. 2011) 

Load factor 75% This Study 

Emission factor 0.9 kg CO2e (DEFRA 2009) 

Fuel type Standard gasoline This Study 

Transportation distance for 
biomass feedstock 200km Logging road and 

standard highway 

Transportation distance for land 
application 100 km Forest road and 

standard highway 

Storage Standard shed Not heated This Study 

Moisture loss 33% This Study 

Processing Grinding and chipping Standard MC 20% This Study 

Drying and pelletizing Standard MC 10-12% This Study 

Emissions from construction of 
pyrolysis plant 

0.22 tonne CO₂/tonne of 
dry feedstock 

(Elsayed and Mortimer 
2001) 

Biochar to land transport vehicle 60m³ capacity truck (Mortimer et al. 2009) 

Transportation distance 100 km This Study 

Biochar mean residence time 
(yrs.) 500 Expert judgment 

Biochar yield from pyrolysis 33.5% (Brownsort 2009) 

Syngas yield from pyrolysis 31.9% (Brownsort 2009) 
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Category Component Unit and Description Remarks 

Oil yield from pyrolysis 34.6% (Brownsort 2009) 

Syngas carbon content 30% (Brownsort 2009) 

Syngas calorific value 11 MJ/t (Brownsort 2009) 

Pyrolysis oil carbon content 45% (Brownsort 2009) 

Pyrolysis oil calorific value 16 MJ/t (Brownsort 2009) 

Biochar carbon content 75% (Brownsort 2009) 

Biochar calorific value (if burnt) 26 MJ/t (Brownsort 2009) 

Conversion of C to CO2 44/12 Scientific knowledge 

GWP CH₄ 25 (IPCC 2007) 

GWP N₂O 298 (IPCC 2007) 

Conversion of N to N₂O 44/28 Scientific knowledge 

Electrical 
offsets 

Coal 939 kg CO₂/MWh (StatsCan 2012) 

Natural gas 405 kg CO₂/MWh (StatsCan 2012) 

Grid average 501 kg CO₂/MWh (StatsCan 2012) 

Kg of CO2/liter of diesel 2.63 (StatsCan 2012) 

MJ/liter of diesel 38.6 (Hammond et al. 2011) 

Biomass 
availability 

High Within 100km distance This Study 

Medium Within 200km distance This Study 

Low Within 300km distance This Study 

SPF= Spruce, Pine, Fir HW=Hardwood, MC= Moisture Content 
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RESULTS  
 

Life-cycle inventory 
 

Selected key environmental flows for the production stages of biochar, including 

land application, are presented in Table 3.2. Processing, pyrolysis and transportation, in 

that order, utilize the highest total amounts of primary fossil fuel inputs.  Storage and 

land application account for less than half these amounts with collection at about 5% of 

processing. With respect to emissions, the order of the largest contributor changes to 

pyrolysis, transportation and processing with the other three stages accounting for less 

than 10% of the amount associated with pyrolysis. Of these emissions, nearly 100% are 

accounted for by CO2, SO2, SOx, NMVOC, COD and phosphate for all stages but 

pyrolysis.  Pyrolysis, which consists of several internal thermochemical processes 

converting biomass to char, gas and bio-oil, also results in the highest levels of CH4, 

N2O, NOx and nitrate emissions.  
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Table 3. 2 Life-cycle inventory for production of 1 tonne biochar from forest biomass 
feedstock 

Inventory Collection Transportation Storage Processing Pyrolysis Land 
Application 

Primary fossil 
inputs       

     Gasoline (GJ) 0.1253 2.0326 0.0015 0.9547 0.5633 1.0327 

     Natural gas 
(GJ) 

0.0026 0.0195 1.2001 0.9862 1.7960 0.0022 

     Crude oil (GJ) 0.0025 0 0.0146 0.5630 0.0015 0.0001 

Emissions       

     CO2 (kg) 7.50 118.03 69.94 194.02 135.78 59.52 

     CH4 (kg) 0.47 0.28 0.58 0.54 12.24 0.06 

     N2O (g) 0.01 0.05 0.03 0.03 25.36 0.96 

     NOx (g) 0.05 0.56 0.01 0.02 10.23 0.86 

     SO2 (g) 5.56 0.19 0.02 1.89 120.23 1.12 

     SOx (g) 1.26 101.22 0.96 0.56 98.63 0.99 

     NMVOC (g) 20.36 121.03 11.95 25.33 124.01 10.23 

     BOD (kg) 0.001 0.001 0.002 2.22 101.65 0.026 

     COD (kg) 0.001 0.001 0.001 1.22 186.44 0.025 

     Nitrate (g) 0.001 0.22 0.002 0.96 2.23 0.001 

     Phosphate (g) 0.001 0.011 0.002 0.88 90.23 0.002 

*NMVOC =Non-methane volatile organic carbon, BOD=Biological Oxygen Demand, 
COD=Chemical Oxygen demand  
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Net energy and GHG emissions  
 

Values for net energy and GHG missions for the production stages of biochar do 

not differ based on the addition of land application.  Net energy and GHG emissions per 

tonne dry feedstock with and without land application of biochar are therefore presented 

in Table 3.3 for comparison.  Energy balance results show that about 1 GJ more energy 

is consumed when biochar is applied to the land however, emissions change from a 

source (-215 kg CO2e) to a sink (68 kg CO2e) when land application is included.  

Table 3. 3 Net energy and GHG emissions per tonne dry feedstock with and without 
land application of biochar as compared to coal based energy production system 

LCA Stages 

Energy (MJ per unit) GHGs (Kg CO2e per unit) 

Consumption Generation Emitted Reduced* 

Collection 1120.26 5015.36 196 201 

Transportation 8236.23 -100.23 300 102.02 

Storage 1269.23 -56.36 25.1 100.23 

Processing 2153.36 123.23 150.32 25.4 

Pyrolysis 5623.25 9623.25 96.01 123.98 

Without Land 
Application 

Net Gain/Loss -3797.08 Emission 
change 

-214.8 

Land Application 592.36 -458.15 13.32 296.32 

With Land 
Application 

Net Gain/Loss -4847.61 Emission 
change 

68.19 

 Gain if (+ve)  Emitted if (-ve) 

*when compared to coal 
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Transportation and pyrolysis are the largest consumers of energy while pyrolysis and 

collection are the largest generators of energy.   

 

Environmental impacts  
 

SimaPro results for biochar-based bioenergy production using pyrolysis with and 

without land application for potential environmental impacts and impact reduction by 

each impact category are compared with a conventional coal-based system and 

presented in Table 3.4. Negative percent variations indicate reductions from the 

reference scenario which means that there is a positive environmental impact. With or 

without land application, the biochar production scenario adversely impacts respiratory 

organics and inorganics, ionizing radiations, and aquatic acidification. However, the 

impact on aquatic acidification with land application scenario is less severe than in the 

pyrolysis alone scenario. Similarly, aquatic eutrophication changes with land application 

improving the situation substantially. The pyrolysis scenario alone leads to reductions in 

the impacts of 9 categories; inclusion of land application actually reduces this number to 

8 with terrestrial ecotoxicity and acidification increasing while aquatic eutrophication 

declines.  The negative impacts of global warming and non-renewable energy, 

respectively, are reduced from 18% to 21% and from 4% to 7% with land application.   

Damage assessment and total impact single scores per tonne of biochar 

production within the system boundary are presented in Table 3.5. Both scenarios 

resulted in reduced impacts on all scores except DALY (disability adjusted life years).  

Land application nearly doubles the positive impacts on ecosystem quality and climate 
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change while improving resource use by approximately 30%. DALY (Disability adjusted 

life years) increases by 1.69% and 3.39% with and without land application, 

respectively. 

Table 3. 4 Comparative environmental impact potential per tonne of biochar produced 
as compared to coal based energy production system 

LCA Impact 
category Unit 

Conventional 

(Reference 
Case) 

Biochar w/o 
Land 
Application 

Differencea  Rank 
Biochar w/ 
Land 
Application 

Differencea  Rank 

Global warming kg CO2 eq 1.08E+00 8.85E-01 -18.02 1 8.53E-01 -21.06 1 

Aquatic 
ecotoxicity 

kg TEG water 
eqb 4.31E+01 4.07E+01 -5.49 2 4.16E+01 -3.40 5 

Mineral 
extraction MJ surplus 1.08E-03 1.02E-03 -5.48 3 1.02E-03 -5.21 4 

Non-renewable 
energy MJ primary 1.03E+01 9.90E+00 -3.89 4 9.57E+00 -7.11 3 

Terrestrial 
ecotoxicity 

kg TEG soil 
eqb 9.44E+00 9.17E+00 -2.89 5 9.78E+00 3.56 9 

Terrestrial 
acidification kg SO2 eq 1.60E-02 1.56E-02 -2.76 6 1.67E-02 4.23 11 

Carcinogens kg C2H3Cl eq 2.72E-03 2.65E-03 -2.54 7 2.65E-03 -2.63 6 

Non-
carcinogens kg C2H3Cl eq 1.53E-02 1.50E-02 -1.90 8 1.51E-02 -1.02 7 

Ozone layer 
depletion kg CFC-11 eq 8.16E-09 8.07E-09 -1.06 9 8.16E-09 -0.03 8 

Respiratory 
inorganics kg PM2.5 eq 6.02E-04 6.10E-04 1.40 10 6.31E-04 4.81 13 

Respiratory 
organics kg C2H4 eq 5.76E-05 5.95E-05 3.26 11 5.98E-05 3.89 10 

Aquatic 
eutrophication kg PO4 P-limc 3.16E-06 3.32E-06 5.01 12 2.87E-06 -9.02 2 

Aquatic 
acidification kg SO2 eq 4.22E-03 4.44E-03 5.21 13 4.41E-03 4.62 12 

Ionizing 
radiations Bq C-14 eq 1.25E+00 1.34E+00 7.00 14 1.34E+00 7.20 14 

a=percentage change in per unit of environmental impact compared with the conventional (reference) system (Huang et al. 
2013); b=TEG water/soil: triethylene glycol into water/soil; c=P-lim: into a phosphorus-limited land. 
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Table 3. 5 Life cycle impact points of biochar-based bioenergy per tonne of biochar 
produced 

Impact Category Unit Conventional 

(Reference 
system) 

Pyrolysis Differencea  Land  

Applicati
on 

Differencea  

Human health DALYb 4.72E-07 4.88E-07 3.39 4.80E-07 1.69 

Ecosystem 
quality PDF*m2*yrc 9.78E-02 8.90E-02 -9.00 7.97E-02 -18.51 

Climate change kg CO2 eq 1.08E+00 9.91E-01 -8.24 9.09E-01 -15.83 

Resources MJ primary 1.03E+01 9.20E+00 -10.68 
8.90E+0
0 -13.59 

Total pointsd pt 2.51E-04 2.23E-04 -11.28 2.14E-04 -14.92 

a = Percentage change in per unit of environmental impact compared with reference system 
(conventional electricity); b = DALY: disability adjusted life years; c = PDF: potentially 
disappeared fraction of plant species; d = The total impact single scores of the normalized and 
weighted damage assessments. 
 

Sensitivity analysis 
 

Sensitivity analysis based on biomass availability was done to assess the 

damage for each impact category (Figure 3.2). Impacts decline as biomass availability 

increases and land application improves all impacts over pyrolysis alone. 
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accounted for collection of raw materials (woody biomass), transportation in different 

stages, storage, processing (drying, grinding and pelletization), pyrolysis and land 

application of biochar in the system boundary defined for our analysis. 

Our assumption of biochar-based bioenergy production is based on conventional 

forest biomass transportation, storage, processing and burning in a modern pyrolysis 

plant. Each of these operations requires major consumption of fossil fuel and has 

related GHG emissions (Paa et al. 2011; Magelli et al. 2009). The additional GHG 

emissions may be reduced by land application of biochar, which is stable for many 

years, and also by using bio-oil and syngas produced in the pyrolysis process to replace 

fossil fuel in power generation. 

Net energy consumption warrants that the biochar-based bioenergy system is a 

net energy consumer, which uses more energy than it generates. But it will reduce GHG 

emissions significantly within the life cycle if biochar is applied to the land. Xu et al. 

(2011) also concluded that the thermal self-sustainability of lab based biochar 

production by pyrolysis can be energy negative but with the alternation in the system 

and use of advanced technology these losses can be reduced in the future. Our results 

of consumption of 3.7 GJ of more energy to sequester 214 kg of equivalent CO2 is 

consistent with other studies (Hammond et al. 2011; Zhang et al. 2010). 

Both positive and adverse environmental impacts of biomass burning are 

eminent. Among the different kind of biomass available for burning, forest based woody 

biomass are considered environmentally cleaner as they claim that they are being 

burned for the power generation instead of letting them decompose in the nature and 

they use less energy input in production. In our results, we found that most of the impact 
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categories are positively impacted by biochar production and land application. The most 

notable advantage is reduction of global warming potential by 18 and 21% with either 

scenario. Some notable adverse effects are mostly related to human health by exposing 

to carcinogenic emissions, respiratory organics and land pollution but which are pretty 

low in scale as compared to similar other disadvantages of burning coal. This adverse 

impact is mainly due to the new wood burning scenario and added biomass 

transportation in the system boundary which in the future might be reduced by proper 

personal protection instruments and improving pyrolysis plant and improving 

transportation efficiency. The damage assessment of the unit process as indicated by 

LCA and inventory is mostly positive for each impact category except in human health. 

With the improvement of ecosystem quality by 18% reducing climate impact by upto 

15% and reducing non-renewable resource dependency by 15% in the life cycle of 

biochar can easily contribute to compensate this human health impact of 2-3% DALY. 

Similar increase of DALY was also reported by Huang et al. (2013). Our sensitivity 

analysis of availability of biomass also resulted in best performance when availability of 

biomass is high in the close area to the pyrolysis plant. It reflects directly with the 

reduced transportation and low loss of energy. It also supports the local use of biomass 

resource.  

 

 

CONCLUSIONS 
 

Life cycle assessment of biochar-based bioenergy production system with land 

application of biochar is conducted within a defined system boundary in Northwestern 

Ontario. It is found that i) biomass collection, transportation and pyrolysis processes are 
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most energy intensive and account for about 75% of the total GHG emissions of the 

system; ii) the net energy of the biochar-based bioenergy system is negative but it can 

reduce and GHG emissions with land application of biochar; iii) biochar-based 

bioenergy can have some adverse impact on human health but it significantly reduces 

the impact of climate change by improving ecosystem quality and reduction of 

dependence on non-renewable resources; and iv) pyrolysis and land application of 

biochar have most promising positive environmental impacts as compared with 

conventional coal based power generation system, if biomass availability is high. In this 

paper, we have only accounted for the environmental impact side of biochar-based 

bioenergy production, and did not consider the cost of production and GHG emissions 

reduction. Further research should focus on life cycle cost analysis of the biochar-based 

bioenergy system, as its economics are fundamental to the financial sustainability of the 

system.  
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ABSTRACT 

Background: Replacement of fossil fuel based energy with biochar-based bioenergy 

production can help reduce greenhouse gas emissions while mitigating the adverse 

impacts of climate change and global warming. However, the production of biochar-

based bioenergy depends on a sustainable supply of biomass. Although, Northwestern 

Ontario has a rich and sustainable supply of woody biomass, a comprehensive life cycle 

cost and economic assessment of biochar-based bioenergy production technology has 

not been done so far in the region. Methods: In this paper, we conducted a thorough life 

cycle cost assessment (LCCA) of biochar-based bioenergy production and its land 

application under four different scenarios - 1) biochar production with low feedstock 

availability; 2) biochar production with high feedstock availability; 3) biochar production 

with low feedstock availability and its land application; and 4) biochar production with 

high feedstock availability and its land application- using SimaPro®, EIOLCA® software 
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Faculty of Natural Resources Management, Lakehead University, 955 Oliver Rd. Thunder Bay, ON P7B 5E1 Canada 
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and spreadsheet modeling. Based on the LCCA results, we further conducted an 

economic assessment for the break-even and viability of this technology over the 

project period. Results: It was found that the economic viability of biochar-based 

bioenergy production system within the life cycle analysis system boundary based on 

study assumptions is directly dependent on costs of pyrolysis, feedstock processing 

(drying, grinding and pelletization) and collection on site and the value of total carbon 

offset provided by the system. Sensitivity analysis of transportation distance and 

different values of C offset showed that the system is profitable in case of high biomass 

availability within 200km and when the cost of carbon sequestration exceeds CAD $60 

per tonne of equivalent carbon (CO2e). Conclusion: Biochar-based bioenergy system is 

economically viable when life cycle costs and environmental assumptions are 

accounted for. This study provides a medium scale slow-pyrolysis plant scenario and 

we recommend similar experiments with large-scale plants in order to implement the 

technology at industrial scale. 

 

Keywords:  LCA, LCCA, SimaPro, Biochar, Biomass, Pyrolysis, Bioenergy, Wood 

Pellets 
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INTRODUCTION 

 

Biochar1-based bioenergy production through slow pyrolysis2 of sustainably 

produced biomass feedstock is one of the simplest and cheapest method among 

several carbon capture and storage (CCS) methods (Woolf et al., 2010). Production of 

biochar and bioenergy is gaining significant momentum worldwide over the last decade 

with a steady growth of 3% per year (IEA 2015, IBI 2016). Growing worldwide attention 

towards combating the adverse impacts of climate change, and the future courses of 

actions towards climate related issues were willfully agreed during the recent (2015) 

climate conference in Paris by different nations.  Canada made a further commitment to 

achieve 30% reduction in CO2 from 2005 levels by 2030 which basically lies within the 

provincial jurisdictions as management of natural resources is a provincial affair in 

Canada. The Province of Ontario further targeted to reduce 37% CO2 from 1990 levels 

by 2030 (Lyman 2015, MOECC 2015). As a forest resource rich province, Ontario has 

the best opportunity to utilize its forest-based biomass to reduce carbon emission by 

reducing its dependency towards much debated fossil fuel. A significant step towards 

this has already begun in Ontario as the province legally banned coal burning for the 

power generation.  

 

                                                 
1 Biochar is a highly porous and stable carbon-rich co-product of pyrolysis that has many uses including soil amendments and long 

term carbon sequestration. Although chemically similar, Biochar differs from charcoal in the sense that it is not used as fuel 

(Lehmann and Joseph, 2009). 
2 Pyrolysis is defined as a thermochemical decomposition process occurring in the absence of oxygen (Spokas et al. 2012).  

In this paper we deal with biochar produced from woody biomass in a bioenergy plant using the slow pyrolysis technique, a process 

that maximizes production, at 300500°C with a vapor residence time of 530 minute. (Please see details in Homagain et al. 2015). 
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Use of biomass-based feedstocks especially from agriculture and forestry has 

been popular in recent years. Northwestern Ontario (NWO), in particular, has a rich and 

sustainable source of woody biomass supply through the sustainable management of 

about 12 million ha of productive forest through 18 Forest Management Plans (MNRF 

2015). Several previous studies (Alam et al. 2012; Hacatoglu et al. 2011; Kennedy et al 

2011; Wood and Layzell 2003) have also indicated that the NWO forests are capable of 

sustainably supplying enough biomass feedstock to generate electricity from power-

generating stations, which used coal as feedstock until 2014. One of the limiting factors 

in the use of biomass feedstock for power generation is the energy density and its vast 

variability within different types of woody biomass. To overcome this limitation and to 

continue a sustained supply of the feedstock, the wood biomass raw materials are being 

processed and pelletized. Atikokan generating station (AGS-200MW) in NWO, a coal 

burning power plant recently converted to wood burning facility has already started 

using locally produced wood pellets to produce clean electricity. Although the production 

of bioenergy1 is a fairly established technology, it is not economically competitive 

compared to the production of energy using fossil fuel, because of its high cost of 

production (Klinar 2016). The other secondary issue related to bioenergy production 

that is gaining momentum is landfilling with wood ash, which may contain heavy metals. 

If these issues are not properly addressed, bioenergy production may lose its 

competitive edge as a clean energy producing technology. Co-production of biochar 

with bioenergy, and applying biochar back to the land from where the biomass 

                                                 
1 Bioenergy is the energy derived from the conversion of biomass where biomass may be used directly as fuel, or processed into 

liquids and gases. 
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feedstock originated is suggested as one of the most feasible solutions for GHG 

emissions and waste management issues (Lehmann and Joseph, 2009). Several life 

cycle analysis studies including our study (Homagain et al., 2015) have shown GHG 

emissions reduction with co-production (Sohi, 2013; McElligott et al., 2011; Roberts et 

al., 2010; Winsley, 2007). However, there is no study to our knowledge, which conducts 

a comprehensive life cycle cost assessment of the biochar-based bioenergy system, 

and accounts for every step of the production and use cycle.  

 

Most of the related studies in literature focus on economic assessment of biochar 

systems (Galinato et al., 2011; Shackley et al., 2011; Yoder et al., 2011; Pratt and 

Moran, 2010; Roberts et al., 2010; McCarl et al., 2009). These studies typically found 

that the potential economic profitability of biochar production systems varies depending 

on the feedstock used (Cleary et al., 2015; Roberts et al., 2010), the conversion 

technology employed (Bruun et al., 2011; Pratt and Moran, 2010), or the inclusion of 

carbon sequestration subsidies or carbon credits1 reflecting the social value of GHG 

mitigation (Galinato et al., 2011; Shackley et al., 2011; Pratt and Moran, 2010; Roberts 

et al., 2010). One study, modeling the trade-off between product yield and product 

quality as conversion temperature increases, has explored the implications of different 

production techniques and resulting variations in biochar properties for overall system 

performance (Yoder et al., 2011). Recent techno-economic assessments of slow-

                                                 
1 A carbon credit (often called a carbon offset) is a financial instrument that represents a tonne of CO2 (carbon dioxide) or CO2e 

(carbon dioxide equivalent gases) removed or reduced from the atmosphere from an emission reduction project, which can be used, 

by governments, industry or private individuals to offset damaging carbon emissions that they are generating. 
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pyrolysis biochar and heat production (Patel et al., 2016; Klinar, 2016) also showed that 

the biochar system can be profitable provided it is customized into the local production 

system. The size and scale of the biochar system affects the cost and its economic 

viability. Studies that compared the life cycle costs of different scale bioenergy systems 

with (Kulyk, 2012) and without (Cleary et al., 2015; Roberts et al., 2010) biochar land 

application found that production cost of large-scale plant is lower than smaller scale 

plant but the GHG mitigation cost for large-scale plant is very high as compared to the 

smaller plant.  For the purpose of this paper, we define 'biochar-based bioenergy' as the 

energy (char, syngas and bio-oil) produced by slow pyrolysis of woody biomass in a 

pyrolysis plant in the absence of oxygen. Bio-oil and syngas is then converted into 

electricity and biochar is applied in the same forest land where the raw material was 

collected. In this paper we assess the life cycle cost of producing biochar-based 

bioenergy and its land application with high and low availability scenario of biomass 

feedstock in NWO, Canada. 

 

METHODS 

Life cycle cost analysis is a combination of life cycle environmental assessment, 

life cycle costing and economic analysis. We used a combination of LCA outputs, 

collected cost information for each analysis steps and scenario, created LCCA 

spreadsheet calculation tool, calculated net present value for each analysis scenario 

and conducted break-even analysis. 
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LCCA System Boundary, Study area and Analysis Scenarios 

Life cycle cost analysis system boundary is presented in Figure 4.1. This is the same 

study area and system boundary that was used in life cycle assessment of biochar 

based bioenergy in our earlier paper (Homagain et al., 2015). The system boundary 

extends from raw material collection to the application of biochar to the forest including 

the co-products to the market, and covers different interdependent phases including 

collection, transportation, storage, processing and pyrolysis.  

 

 
Figure 4.1 System boundary for LCCA of biochar-based bioenergy production 

 

The study area lies in NWO Canada, where the Atikokan Generating Station 

(AGS) has been converted from coal to biomass (wood pellet) feedstock (OPG 2012). 

NWO has a vast amount of forest based woody biomass which can sustainably supply 
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biomass feedstock to recently converted power plant. Although AGS plans to use the 

combustion process for energy generation, our study uses different scenarios where 

biomass feedstock is converted into bio-oil, syngas and biochar using the normally 

available slow-pyrolysis machine in order to illustrate the cost assessment of biochar-

based bioenergy production. The input-output data for the system boundary and unit 

processes were obtained directly from published literature, the NWO regional forest 

management units, forest management plans, and personal communications with 

harvesters, transporters and other professionals. 

 

Our hypothetical biochar system is a medium sized (1 MWh) slow-pyrolysis 

system with fixed bed twin-fire pyrolyzer (Power Max 2015) with a life span of 25 years. 

We used four different cost analysis scenarios based on the availability of biomass 

feedstock, transportation distance and application of biochar back to the same forest 

land from where it was collected. Basic description of these scenarios is provided in 

Table 4.1. Same average transportation distance (300km for low availability and 100km 

for high availability) for biochar land application is used as feedstock transportation. 

Biochar land application rate is used as 50 tonne per ha which was set during the life 

cycle assessment in SimaPro® assumption (See Homagain et al. 2015 for details).  
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Table 4. 1 Life Cycle Cost Assessment Scenarios 

Scenario Feedstock 
Availability 

Feedstock 
Transportation 
distance 

Biochar Land 
Application 

Project 
Period 

1. Biochar Low Low More than 200 km 
Average 300 km 

No 25 
years 

2. Biochar High High Less than 200 km 
Average 100 km 

No 25 
years 

3. Land 
Application Low 

Low More than 200 km 
Average 300 km 

Yes 
50 t ha-1 at 
300km 

25 
years 

4. Land 
Application High 

High Less than 200 km 
Average 100 km 

Yes  
50 t ha-1 at 
100km 

25 
years 

 
Life Cycle Costing and Net Present Value 

Following the life cycle environmental assessment (Homagain et al. 2015), we 

conducted a comprehensive life cycle cost assessment of each production stage within 

the system boundary using the following model (Eq. 1). Description of each variable and 

the sources of information are given in Table 4.2.  

𝐿𝐶𝐶𝑡 = 𝑀𝑆𝐶𝑡 + 𝐹𝐶𝐶𝑡 + 𝑇𝐶𝑡 + 𝑆𝑃𝐶𝑡 + 𝑃𝐶𝑡 + 𝐿𝐴𝐶𝑡 …………………….. (1) 

Where, LCCt = Total life cycle cost at year t, MSCt = Machine and setup cost at 

year t, FCCt = Feedstock collection cost at year t, TCt = Transportation cost at year t, 

SPCt = Storage/processing cost at year t, PCt = Pyrolysis cost at year t, and LACt = 

Land application cost at year t.  
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We used SimaPro® for life cycle assessment (Pre Consultants 2013) and 

Environmental Input and Output Life Cycle Assessment (EIOLCA®) for detailed cost 

assessment (GDI 2010). We then developed a spreadsheet LCCA tool and calculated 

the whole life cycle cost of every stage of production. Revenue calculation included the 

equivalent electricity generated per kWh basis, and using the current market value for 

electricity, syngas and bio-oil. For non-land application scenarios (Scenario 1 and 2), 

the by-product biochar was again used as fuel in the system. Carbon sequestration 

benefit (Carbon credit) is also considered for land application scenarios. Similar 

transportation distance is assumed for market and land application of biochar as for 

feedstock transportation to processing site. A standard net present value model (Eq. 2) 

is used for the 15 year project period to calculate the NPV. 

𝑁𝑃𝑉𝑦 =  ∑ (𝑅𝑡 − 𝐶𝑡)/(1 + 𝑟)𝑡𝑦
𝑡=1  … … … … … … … … … … … … (2) 

 

Where, NPV = Net present value, R = Revenue, C = Life cycle cost, r = Discount 

rate 

Discount rate is a factor that takes into account the effect of time value of money. 

It is defined as the financial advantage of one investment when compared to a risk free 

annual rate of return (EPA 2010). Discount rate takes care of both the existing interest 

rate and inflation rate.  

In general, the discount rate is calculated as: r = i + f where, r is discount rate 

(nominal), i is interest rate, and f is inflation rate. The exact equation that links nominal 

and real interest rates is represented in (Eq. 3):  
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(1 + 𝑟) = (1 + 𝑖)(1 + 𝑓) … … … … … … … …. … .. … … .. … … … ..(3) 
 

Ten year averages of real interest and inflation rates were used (Bank of Canada 

2013). Year 2013 is considered the base year for the project for all four scenarios, 

defined in Table 4.1, and all future costs and revenues are discounted for this year. 

Value of carbon sequestration is considered as one of the important dependent variable 

for the net present value calculation of the system. We also conducted a sensitivity 

analysis of different values of carbon credit and used CAD 60 for each equivalent tonne 

of carbon sequestered, while biochar is applied to the soil. 
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Table 4. 2 Description of specific cost information 

Variable Description Source 

Total life cycle cost 
(LCC) 𝐿𝐶𝐶𝑡 = 𝑀𝑆𝐶𝑡 + 𝐹𝐶𝐶𝑡 + 𝑇𝐶𝑡 + 𝑆𝑃𝐶𝑡 + 𝑃𝐶𝑡 + 𝐿𝐴𝐶𝑡 

This study 

Machine and Setup 
Cost (MSC) 

 Planning - Feasibility study  
 Environmental Impact  Assessment (EIA) and 

development services 
 Detailed Engineering Design 
 Industry renewal fee 
 Plant site Construction costs and maintenance 

in every 5 yrs. 
 Equipment base price and delivery 
 Plant Set Up and maintenance 

MOECC 2015, 
PowerMax 2015, 
Pers. comm. 

Feedstock 
Collection Cost 
(FCC) 
 

 Forest Harvest Residue (FHR) 
 FHR-Labor - and related  
 Saw Mill Residue (SMR) 
 SMR-Labor- and related  
 Underutilized trees (UTS) 
 UTS-Labor- and related 

AAFC 2008, Gautam 
et al 2010, Pers. 
comm. with 
harvesters, 
Upadhyay et al. 2012 

Transportation Cost 
(TC) 

 Feedstock Transportation to Storage 
 Transportation from storage to Pyrolysis 

Facility  
 Biochar Transportation to Land  
 Bio-oil Syngas Transportation to market 

AAFC 2008, Alam et 
al 2012, Pers. comm. 

Storage/Processing 
Cost (SPC) 

 Storage  
 Grinding/Pelletization Cost 

AAFC 2008, WPAC 
2013 Pers. comm. 

Pyrolysis Cost (PC) 
 Cost of plant operation  
 Skilled labor/ Product Testing  
 Pyrolyzed Products storage 

NREL 2010, IRENA 
2012 

Land Application 
Cost (LAC) 

 Material handling, tractor and fuel costs  
 Transportation and skilled labor costs  
 Other incidental cost (2%) 

Pers comm with 
independent 
applicators 
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RESULTS 
Life cycle cost assessment tool (spreadsheets) with all assumptions and calculations 

are compiled in the appendix or as a supplementary document. A 25 year average 

annual cost inventory of the biochar-based bioenergy system of 1MWh plant (Figure 

4.2) shows that cost of pyrolysis ($ 381,536 yr-1) is the most expensive stage of 

production followed by storage/processing ($ 237,171 yr-1) which includes pelletization. 

There is an extra cost of $ 156,739 yr-1 and $ 133,228 yr-1 for the land application of 

biochar for low and high availability of feedstock. Feedstock collection costs about $ 

134,053 yr-1 (low availability) and $ 113,945 yr-1 (high availability). Transportation costs 

for low and high availability are $ 97,962 yr-1 and $ 83,268 yr-1, respectively. Pyrolyzer 

machine purchase, delivery, setup and environmental assessment costs as a whole 

averages $ 82,727 yr-1.  

 

Figure 4. 2 Average annual life cycle cost inventory (undiscounted) for the biochar-
based bioenergy system 
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Total inventory cost is further aggregated to calculate total annual cost of plant 

operation and its present value for each scenario and is presented in Figure 4.3. Total 

annual plant operation cost is high in land application with low feedstock availability 

(Scenario 3) followed by land application with high feedstock availability (Scenario 4), 

biochar with low feedstock availability (Scenario 1), and biochar with high feedstock 

availability (Scenario 2). Average annual cost of operation from all scenarios is $ 

988,550 with a present value of $ 532,816 in 2013 dollar terms and a discount rate of 

5.06%. 

 
Figure 4. 3 Total annual (undiscounted) and present value (discounted) of biochar-
based bioenergy production costs ($) in different scenarios. (Horizontal solid line depicts 
the average) 

 

A cumulative cost for all scenarios (Figure 4.4) shows that both land application 

scenarios costs more than 25 million. 
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Figure 4. 4 Cumulative life cycle cost (undiscounted) for 25-yr project period  

 

Sensitivity analysis of carbon credit provided for each tonne equivalent of CO2 

sequestration on rate of return of all four scenarios shows that both land application 

scenarios are profitable, but both biochar only scenarios are not profitable (Figure 4.5). 

The rate of return maximizes at 9% when per tonne of carbon is priced at CAD 60. This 

figure is used for entire calculation and economic assessment. 
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Figure 4. 6 Life cycle break-even analysis of 1-mwh biochar-based bioenergy system in 
25-yr period 

 

DISCUSSION 

Biochar based bioenergy production is a costly investment. Our LCCA analysis 

shows that it warrants at least about a million dollar investment each year for a 25 year 

project. However, we noticed some thoughtful observation in our results. 

Pyrolysis has the highest (36%) share of total cost  

Pyrolysis is the most costly stage among all production stages in the life cycle of 

bioenergy production and accounts for 36% of the total cost of the system. Although 

pyrolysis is an old and established technology, there is a need to develop highly efficient 

and optimized machines. When producing biochar, bio-oil and syngas, the pyrolyzer 

consumes large amounts of energy and requires more skilled work force as compared 
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to other stages. The average annual cost for the 1-MWh pyrolyzer in our study is slightly 

more than a similar half-capacity portable pyrolyzer (Coleman et al. 2010), but is 

cheaper than bio-oil pyrolysis system used in the UK (Rogers and Brammer, 2012).  

In a study on carbon market investment criteria for biochar projects conducted by 

California Energy Commission (CEC 2014), the authors also found that pyrolysis may 

be one of the most energy/resource expensive investments for biochar production. 

Although, pyrolysis biochar is becoming popular, it is still in research and development 

stage. If the demand for bioenergy production increases due to its environmental 

benefits, there will be more emphasis on developing highly efficient and cost effective 

system, thereby reducing the cost of pyrolysis.  

Feedstock collection cost (12%) is higher than transportation cost (9%) 

Our study uses three types of feedstock: forest harvest residue, saw mill residue 

and underutilized trees that are available in the study area of NWO. Collection of these 

materials would be a relatively new business and there are no established companies 

that can provide a sustainable supply of feedstock. On the other hand, there is an 

established forestry raw material transportation service provided by contractors on a 

competitive basis in the study area. Collection of these vast amounts of scattered 

feedstock is relatively labour and time intensive, and costs more than transportation. 

However, in other studies (Kaliyan et al., 2015; Ronsse et al., 2013; Kung et al., 2013; 

Zhang, 2010; Simon et al., 2010) where the feedstock was mainly agriculture or 

municipal waste, the transportation cost was always found to be more than raw material 

collection cost. 
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Land application cost (14%) is higher than feedstock collection and 

transportation cost (9%) 

Biochar land application would be completely new business in the area. Land 

application in forest lands or in recently harvested area is a cumbersome job as 

compared to homogenous agriculture farming field. Our study used a rate of 50 t ha-1 

which is almost half of what is suggested in the cropping field (Major 2010). Land 

variability, distance and rate of application may have contributed to the high cost of land 

application. However, land application is considered as paying carbon back to the 

nature for a long-term sequestration so the carbon credit accrued from the 

sequestration ultimately offsets this cost in the long run. 

 

Land application scenarios have early break even and more return  

Both land application scenarios with high and low feedstock availability have 

early break even periods (12 and 13 years) as compared to non-land application 

scenarios where break-even is after 17 years. This is because of the revenue generated 

through the carbon credits earned through the land application of biochar and the cost 

associated with the application is low as compared to the cost of land application.  

 

Limitation of the study  

Biochar-based bioenergy is a new socio-economic intervention in the area where 

fossil fuel has been contributing in the past. Social dimensions of bioenergy system 

especially macro-economic demand and supply side effects cannot be ignored while 
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evaluating life cycle carbon and costs of the individual projects. This study did not 

consider this area, nor it did anything on the local job creation scenarios (direct, indirect 

and induces) as there are highly visible displacement effects and local job creation 

functions of the biochar-based bioenergy system.  

This study was conducted during 2011-2013 (three year span) when most of the 

wood market was relatively slow and energy prices (especially petroleum) were high as 

compared to 2014 onwards. Collection of cost information in a longitudinally spanned 

time frame may have caused some deviations in the total costs but all the future values 

are discounted with national real and 10-yr average inflation rates.  

All other related costs above and beyond the system boundary (Fig 4.1) are 

assumed to be constant throughout all study period and across all scenarios. 

 

CONCLUSION 

Canada has committed to achieving 30% reduction in CO2 emissions from 2005 

levels by 2030, while the province of Ontario in Canada has further committed to 

reducing CO2 emissions by 37% from 1990 levels by 2030. As a result, Ontario has 

banned the use of coal and is utilizing its forest-based biomass instead for energy 

production. However, the slow pyrolysis process of biochar-based bioenergy production 

has not been tested so far in Ontario due to its uncertain environmental and economic 

impacts.  In this study we conducted a comprehensive life cycle cost and economic 

assessment analysis of biochar-based bioenergy production and biochar land 

application in Northwestern Ontario, Canada using LCA assumptions from our previous 

study (Homagain et al., 2015). Within the biochar-based bioenergy production system 
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boundary and study assumptions, we found that pyrolysis process accounts for the 

highest share of 36% cost in the production system; whereas land application accounts 

for 14%, feedstock collection for 12%, and transportation cost for 9% of the total 

production cost. Land application scenarios are economically viable with 12 to 13 years 

of break-even time, when carbon sequestration is credited for at least CAD 60 per tonne 

of CO2e. Therefore, if biochar and bioenergy are co-produced, these can not only 

provide an economic alternative to fossil fuel energy production, but also help in 

sequestering stable carbon for longer periods of time. However, utilization of forest 

biomass may warrant an improvement in the regional biomass harvesting policy. 
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List of abbreviations and definitions 

AAFC = Agriculture and Agri Foods Canada, a federal department. 

AGS = Atikokan Generating Station. A 200 MWh power generating station owned by 

OPG. This is the largest wood pellet burning station in North America as of 2014 

when it was converted from lignite coal burning to wood pellets.  

C = Carbon 

CAD = Canadian Dollar 

CCS = Carbon capture and storage 

CEC= California Energy Commission 

CO2 = Carbon dioxide 
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CO2e= Carbon dioxide equivalent, is a standard unit for measuring carbon footprints to 

express the impact of each different greenhouse gas in terms of the amount of CO2 

that would create the same amount of warming. Carbon footprints of different 

greenhouse gases can be expressed as a single number as CO2e. 

EIOLCA® = Environmental Input and Output Life Cycle Assessment, a software 

developed by GDI 

FCC = Feedstock collection cost 

GDI= Green Design Institute. Developer of EIOLCA 

GHG = Greenhouse Gas 

IBI = International Biochar Initiative, USA 

IEA = International Energy Agency, an autonomous intergovernmental organization 

established in the framework of the Organization for Economic Co-operation and 

Development (OECD) in 1974 in the wake of the 1973 oil crisis. 

IRENA = International Renewable Energy Agency 

LAC = Land application cost 

LCC = Total life cycle cost  

LCCA= Life cycle cost assessment  

MNRF = Ministry of Natural Resources and Forestry, Ontario, Canada 

MOECC = Ministry of Environment and Climate Change, Ontario, Canada 

MSC = Machine and setup cost  
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MWh = Megawatt hour 

NPV = Net Present Value.  It is the difference between the present value of total 

revenue (cash inflows) and the present value of total cost (cash outflows) discounted 

for the entire investment period.  

NREL = National Renewable Energy Laboratory of USA 

NWO = Northwestern Ontario. A big section of Province of Ontario covering about 52 

million ha area 

OPG = Ontario Power Generation, a crown corporation owned by Province of Ontario. 

PC = Pyrolysis cost  

Pers. Comm. = Personal communication 

ROI = Return on investment. It is the most common profitability ratio of a project which 

is usually expressed as a percentage of net profit and is typically used for financial 

decisions, to compare the efficiency of different investments. 

SimaPro® = A LCA software developed by Pre Consultants, the Netherlands. 

SPC = Storage and processing cost  

TC = Transportation cost  

WPAC = Wood Pellet Association of Canada 
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CHAPTER 5 BIOENERGY, BIOCHAR AND SUSTAINABILITY: A SYNTHESIS 
 

Krishnahari Homagain* 

* Lakehead University, Faculty of Natural Resources Management, 955 Oliver Road, 
Thunder Bay, Ontario, Canada P7B 5E1 

 

THESIS SUMMARY  

 Biochar is ranked as one of the ten technologies to save the planet (Goodall 

2010) and one of the 20 top green tech ideas of 2010 (TIME 2010). Biochar's well 

documented benefits of climate change mitigation, soil amendment, waste 

management, mine site reclamation and energy generation have been widely 

advocated by many researchers and scientists such as Gaia1 theorist James Lovelock 

(Lovelock 2009) and NASA’s James Hansen (Hansen et al. 2008). Despite of relatively 

short spanned research and practice history, biochar supporting institutions have 

evolved to promote its science, action-research and application in many parts of the 

world. For example, the International Biochar Initiative (IBI) was formed in 2006 with a 

mission to support the generation, review and dissemination of information on all 

aspects of biochar (IBI 2011).  

Subsequent centers of biochar research have then evolved over the last decade, 

notably in Cornell University USA, the University of Zurich Switzerland, the UK Biochar 

Research Centre at Edinburgh University UK, Canadian Biochar Initiative in Canada, 

National Initiative for Biochar Research, Australia, etc. In general, the interest behind 

                                                 
1 Gaia principle proposes that all organisms and their inorganic surroundings on Earth are closely integrated to form a single and 

self-regulating complex system, maintaining the conditions for life on the planet 
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biochar in the developed world is a result of its inherent appeal as a natural carbon 

sequestration technology that avoids the technological risks of other complex and 

expensive carbon capture and storage methods. 

 However, despite its theoretical charm, biochar requires a massive expansion to 

sequester volumes of carbon significant on the global scale. Several lines of debate are 

ongoing on current outbreak of activities and concerned observers and 

environmentalists are calling for greater caution before accelerating the scaling process. 

For example, George Monbiot launched a strong challenge to the idea that biochar can 

be produced on a global scale without resultant negative impacts on biodiversity and 

food systems (Monbiot 2009) in contrast to claims made by biochar academics (Woolf 

et al. 2010). Moreover, many NGOs warn that these risks will be further intensified if 

biochar becomes accepted for voluntary carbon market credits (Mainville 2011; Action 

Aid 2012; Biofuel Watch 2012).  

Many initiatives to acquire carbon credit entitlement are ongoing (Biochar 

Protocol 2012). Despite carbon markets being a contentious topic since their inception 

(Lehmann 2010), it is broadly accepted that significant carbon finance (approximately 

US$48/ton) will be required to scale biochar production to any meaningful size in 

developed countries (Lehmann 2007) like USA, UK, Australia and Canada. However, 

initial efforts to channelize a methodology for biochar achieve a Voluntary Verified 

Carbon Standard (VCS) have failed (VCS 2011).  

More recently IBI submitted a request to American Carbon Registry (ACR) to list 

the Methodology for Emissions Reductions from Biochar. However, ACR reached the 

conclusion that there was insufficient scientific evidence to support the Test Method for 
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Estimating Biochar Carbon Stability (IBI 2015). One critical bottleneck is that a 

scientifically accepted system to measure carbon sequestered by biochar in the soil has 

yet to be validated in wider landscape. Long term research is essential in this regard. 

 Even in the absence of significant investment or carbon market finance, large-

scale biochar production may continue in developed countries as an alternate carbon 

capture strategy. However, the story is very different in the developing world. In this 

context the scalability of biochar depends less on big industry turning a profit but relies 

on small farmers using biochar for its soil amendment and subsequent yield-increasing 

properties. Nevertheless, two important questions surround the concept of scaling 

biochar through smallholder farmer usage in developing countries. Firstly, will biochar 

produce significant yield increases to warrant its purchase and/or production by 

farmers? Secondly, can small farmers sustainably source sufficient quantities of biochar 

without increasing deforestation or emitting powerful greenhouse gases commonly 

associated with biochar creation in the developing world (Pennise et al. 2001)? This 

chapter summarizes the current research state of biochar, its life cycle environmental 

impacts on micro and macro level, economic aspects and overall sustainability of the 

system.  

On the basis of overall biochar-based bioenergy review (Chapter 2), life cycle 

assessment of its production and land application (Chapter 3) and life cycle cost and 

economic analysis (Chapter 4) this synthesis (Chapter 5) summarizes the trends and 

development of bioenergy sector with respect to production and commercialization 

potential of biochar for its potential land application. 
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SPECIFIC CONCLUSIONS  

1. Northwestern Ontario (Canada) has a sustainable and sufficient supply of woody 

biomass that can be used to produce biochar based bioenergy for household and 

industrial purposes. While several biochar based bioenergy plants are operating 

around the world, the switch to biomass based energy is relatively recent in 

Northwestern Ontario with the Atikokan Generating Station's conversion to 

biomass representing a new era in large scale forest based feedstock 

requirements. Current demand of biomass feedstock (including AGS) can be 

easily supplied and new entrants to the biomass bioenergy system will initially 

have a high availability. The late entrants in the system, depending on the 

location of the plant, may have to rely on low availability of biomass feedstock. 

However, AGS having the highest availability of biomass can run the current 

plant sustainably.  

2. If biochar and bioenergy are co-produced, they will serve two immediate 

functions: i) to provide an alternative to fossil fuel energy and ii) to sequester 

stable carbon for longer periods of time. Biomass may be sourced from either 

harvesting waste or underutilized species. The former is usually piled at roadside 

and if not burned in situ used for fuel, its presence can inhibit regeneration for 

long periods of time. The “slash piles” can also pose a fire hazard. Harvesting of 

underutilized species or extension of harvesting to include coarse woody debris 

(CWD) has raised concerns about reduced soil nutrient inputs thereby altering 

forest site productivity. CWD also contribute to the structure, microhabitat 

diversity, and nutrient cycling of forests. In the current forest management plans 
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in the region, there are no provisions of harvesting underutilized trees and any of 

the harvest residues. With enough demand from industry side, plans can allocate 

to harvest the underutilized especially hardwoods and larch species as part of 

sustainable management within the available allowable harvest. Further, most of 

the piles of harvest residue left in the roadside can be recommended to utilize to 

produce bioenergy. There need to be a clear direction on how much CWD need 

to be retained in the harvest area so that portion of leftover in the cut block can 

also be collected. 

3. Utilization of forest biomass may warrant an improvement in regional biofibre 

harvesting policy. Replacing fossil fuels with biomass for power generation would 

certainly change the regional ecosystem carbon budget through transportation, 

collection, processing, and pyrolysis of biomass, and possibly, land application of 

biochar. Ontario's current biofibre harvest policy [Forest Biofibre – Allocation and 

Use Policy FOR 03 02 01] (MNR 2013) supports the utilization of woody biomass 

from its approved management plan. But most of the allocations are already 

contracted to sustainable license holders which may limit the feedstock acquiring 

ability for new companies. These policies need to be improved to accommodate 

the need of new industries in future. 

4. A comprehensive life cycle analysis of the biochar-based bioenergy production 

from raw material collection to biochar application within a defined system 

boundary in Northwestern Ontario found that i) biomass collection, transportation 

and pyrolysis processes are most energy intensive and account for about 75% of 

the total GHG emissions of the system; ii) the net energy of the biochar-based 
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bioenergy system is negative but it can reduce GHG emissions with land 

application of biochar; iii) biochar-based bioenergy can have some adverse 

impact on human health but it significantly reduces the impact of climate change 

by improving ecosystem quality and reducing the dependence on non-renewable 

resources; and iv) pyrolysis and land application of biochar have most promising 

positive environmental impacts as compared to conventional coal based power 

generation system, if biomass availability is high.  Despite negligible human 

health issue, the net energy consumption of the system is negative and it 

reduces the GHG emission significantly. Therefore, it is recommended that there 

need to be more advancement in worker's safety and transportation and pyrolysis 

system developed in the future should be fuel efficient (Is that what you mean?). 

Hauling roads needs to be improved which reduces transportation sectors GHG 

emission and energy consumption. Use of bioelectricity to replace fossil fuel 

based energy also needs to be promoted. 

5. Life cycle cost and economic assessment of biochar-based bioenergy production 

and biochar land application within the biochar-based bioenergy production 

system boundary revealed that: (i) pyrolysis process costs about 36% of the total 

cost, and has the highest share of cost in the production system; (ii) feedstock 

collection cost is 12%, which is higher than transportation cost (9%); (iii) land 

application cost (14%) is higher than feedstock collection and transportation cost; 

and (iv) both land application scenarios (with low and high feedstock availability) 

are economically viable with 12 and 13 years of break-even time, when CO2 

sequestration is credited at least CAD 60 per tonne of CO2e. Pyrolysis process is 
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still expensive. Future modifications and advancement in the power plant 

technology and wider application (more demand) will offset some of the cost in 

this sector. Overall, the system is financially viable within a 25-year plant life 

cycle if carbon prices are kept at least to $60 per tonne. Current Ontario's cap 

and trade and climate change policy supports this idea but needs more 

clarification on biochar's side. As Canadian Food Inspection Agency recently 

approved the use of biochar on land, Ontario may also need to subsidize the 

carbon permanently sequestered by biochar-based bioenergy and its land 

application.  

 

GENERAL CONCLUSIONS 

 Ontario government recently released its long-awaited Climate Change Action 

Plan, which calls for up to $8.3 billion in government spending on climate change 

initiatives from 2016 to 2020 (MOECC 2016). In line with the goal of achieving 

sustainability  through its cap-and-trade system in the natural resource management 

sector, this Action Plan is intended to support the province's goal of reducing 

greenhouse gas emissions to 15% below 1990 levels by 2020, 37% by 2030, and 80% 

by 2050 (MOECC 2016). The term “sustainability” was introduced into the political (as 

well as public) discussion by the United Nation's World Commission on Environmental 

and Development (UNCED) in the well-cited report, Our Common Future (Brundtland 

Commission 1987). This document has projected the responsibility of humankind 

toward the future generations with an elegant definition that has had far-reaching 

acceptance from around the world including governments, NGOs, as well as private 
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organizations. The document also states “Sustainable development should meet the 

needs of present generation without compromising the ability of future generations to 

meet their own needs”.  

Although this impressive claim was not easy to operationalize, it has been very 

successful in environmental politics as well as in resource mobilization. Indeed, the 

United Nations declared sustainability as the guiding principle for the 21st century at the 

World Conference in Rio de Janeiro and promoted a concrete action plan, Agenda 21 

(United Nations Environment Program)  (UNEP 1992). The confirmation of this concept 

introduced the life cycle aspect (of what?) in 2002 in Johannesburg South Africa. 

Furthermore, the joint UNEP–SETAC (the Society of Environmental Toxicology and 

Chemistry) Life Cycle Initiative was started just prior to the Johannesburg forum 

(Klopffer 2003). This initiative aims at a global promotion and use of life cycle thinking, 

life cycle assessment (LCA), and life cycle management (LCM) which is still a major 

UN-IPCC agenda after its Paris endorsement with a new target of limiting the global 

mean temperature increase at 1.50C above pre-industrial level (UN COP 2015).  

 Achieving sustainability will require its quantification, the identification of 

appropriate and valid indicators, as well as associated thresholds in the long run. How 

this is achieved will be the topic of debate. However, there is widespread belief that 

sustainability will involve an economic axis that will require life cycle costing. The 

standard model which is well accepted universally often referred to as a 3-pillar 

interpretation of sustainability. Fundamentally, it states that environmental, economic, 

and social aspects must have to be adjusted and checked against each another.  

Sustainable Assessment = LCA + LCC + SLCA 
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 Here, LCA is the environmental life cycle assessment, LCC stands for 

environmental life cycle costing and SLCA stands for societal life cycle assessment. 

This thesis was not intended to cover the SLCA part. There are some prerequisites that 

have to be fulfilled in using the above equation. Among these, the consistency of the 

system boundaries of the three assessments is the most important. This means that all 

3 pillars of sustainability assessment should use the same life cycle inventory scenario. 

Klopffer (2003) has explained why sustainability assessment methods (ELCC and 

SLCA) have to be life cycle because trade-offs between pillars can be recognized and 

compensated. So the life cycle thinking is the prerequisite of any sound sustainability 

assessment. It does not make any sense at all to improve (environmentally, 

economically, socially) one part of the system in one country or region in one step of the 

life cycle or in one environmental compartment if this “improvement” has negative 

consequences for other parts of the system which may outweigh the advantages 

achieved. Furthermore, the problems shall not be shifted into the future which may 

create an intergenerational justice issue (Brundtland Commission 1987). Life cycle 

thinking or approach alone is not enough in most cases. In order to estimate the 

magnitude of the trade-offs between resource sustainability and development, which are 

always contentious, assessment tolls instruments (like LCA) have to be as quantitative 

as possible with sufficient local (regional) data. Since we are living in a global economy, 

the system boundaries used in the methods must also be global in the long run. But 

within this thesis context, we used a local Northwestern Ontario context which can 

further be scaled up based on its assumptions and life cycle inventory data availability. 
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SIGNIFICANCE OF THE STUDY 

 This is a unique study of its kind in Northwestern Ontario. The environmental 

impact assessment results developed through this study will help in reinforcing the 

confidence of industry partners in promoting biochar-based bioenergy and use of 

biochar as soil amendment in Northwestern Ontario. This study within the scope of its 

system boundary and study assumptions concludes that biochar-based bioenergy is 

environmentally sustainable and economically viable. This can be replicated in other 

regions or scaled up with incorporation of socio economic study in the future. This can 

serve to develop a life cycle database inventory of the region as Canada lacks its own 

Life Cycle Inventory database. With local database, future life cycle assessment studies 

will never rely on other regional databases. 
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