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ABSTRACT 
The wastewaters produced from different industries contain fine and charged suspended particles 

and other impurities. Today, the removal of these colloidal particles from the wastewater has 

become a serious challenge for industry. Flocculation of the fine particles using polymers 

followed by settling is a popular technique in industry. Synthetic flocculants have been used in 

wastewater treatment systems, which are not biodegradable and eco-friendly. Therefore, natural 

based flocculants have been attracting wide interest of researchers because they are of 

biodegradable and are environmentally friendly.   

In this study, kraft lignin derived from black liquor of kraft pulping process, was copolymerized 

with acrylamide (AM) and (2-methacryloyloxyethyl) trimethyl ammonium chloride (DMC) in an 

aqueous solution in the presence of as an initiator potassium persulfate (K2S2O8) to produce a 

water-soluble lignin-based copolymer. The influence of the reaction conditions on the charge 

density and solubility of resultant lignin copolymers were investigated. The resultant lignin 

copolymer was characterized by Fourier transform infrared (FTIR) spectrophotometry, nuclear 

magnetic resonance (HNMR), thermogravimetric analyzer (TGA), molecular weight and 

elemental analyses.  

The applications of the resultant copolymer as a flocculant in kaolin and bentonite suspensions 

were systematically assessed. The flocculation studies allowed for correlating the polymer 

characteristics, namely the charge density and molecular weight, with its adsorption affinity as 

well as the zeta potential and relative turbidity of kaolin and bentonite suspensions. This study 

showed that a highly charged cationic lignin adsorbed more than low charged ones, and an 

increase in the molecular weight of cationic lignin enhanced its adsorption. Thus, cationic 

flocculants with higher molecular weights and charge densities were more effective in reducing 

the turbidity of clay suspensions.  

One of the important findings of this work was that both polymer bridging and charge 

neutralization mechanisms facilitated the destabilizing of the colloidal particles to form flocs. An 

improved reflocculation ability of cationic polymers was observed as the molecular weight and 

charge density of the polymers increased. The flocculation studies also confirmed that the 
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flocculation efficiency of these cationic lignin polymers depended on the adsorbed amount of 

polymer on kaolin and bentonite particles, but not on the unadsorbed amount present in the 

suspensions.  

In this study, the flocs size and structure of cationic lignin in kaolin suspension was determined 

by a focused beam reflectance measurement (FBRM) and the results were correlated with flocs 

properties obtained by small-angle laser light scattering technology (SALLS). The results 

showed that the flocs produced were larger and more porous as the polymer's charge density and 

molecular weight increased. Also, the flocs strength decreased as the flocs size increased. A 

strong correlation between the size of flocs and sedimentation behavior of kaolin suspension was 

established by a vertical scan analyzer. The results demonstrated that the maximum rate of 

settling increased with the increase in floc size. 

The effect of solution pH and salt concentration on the dispersant performance of anionic kraft 

lignin in kaolin suspensions was also studied. The adsorbed anionic kraft lignin on kaolin 

particles induced electrostatic repulsion between the particles at a more basic pH and thereby 

improved the dispersibility of suspensions. The results showed that the adsorption of lignin 

polymers decreased with pH increase, but increased with ionic strength increase.  

In this study, the mechanism of self-assembly of kraft lignin-based polymers in aqueous 

solutions was investigated using dynamic light scattering (DLS) and the results were correlated 

with conformation and viscoelastic properties of the adsorbed polymer layers on particles via  

Quartz crystal microbalance with dissipation (QCM-D) analysis. The results showed that a 

higher molecular weight lignin polymer was adsorbed in a greater quantity, and that more mass 

interacted as the molecular weight increased.  

The results in this work provided insights into the fundamental understanding of the flocculation, 

dispersion and self-assembly behavior of kraft lignin-based polymers in various systems. These 

results can help establish the criteria for selecting and developing kraft lignin based flocculants 

or dispersants for altered applications. The results of this thesis contributed to knowledge on the 

chemical modification and characterization of lignin products and to the fundamentals associated 

with the performance analysis of flocculation and dispersion systems.
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Chapter 1: Introduction 

1.1 Overview  
The growing resource crisis and environmental pollutions remain serious concerns in the world 

(Robinson and Chong, 2014). Heavy metal ions, aromatic compounds and dyes are often found 

in the wastewater as a result of industrial discharges. They are the common contaminants of 

wastewater and many of them are known to be toxic and/or carcinogenic (Razali and Ariffin, 

2015a; Wang et al., 2016). The complex structure, poor biodegradability and toxicity of these 

pollutants provide great challenges for their remediations. The separation of dissolved and 

suspended particles from various wastewater effluents has become a matter of interests, and 

significant efforts have been put into the development of efficient and cost-effective treatment 

methods.  

Currently, some of the wastewater treatment methods, for example, adsorption, oxidation, 

membrane filtration, are not remarkably effective when dealing with significant stable harmful 

pollutants in effluents. In contrast, flocculation process is recognized as one of the most widely 

used methods for treating wastewater effluents because it is proved as an efficient and economic 

process (Nasser and James, 2006; Liimatainen et al., 2011).   

Previously, inorganic and organic flocculants have been used in treating municipal, 

papermaking, and mining effluents (Ye et al, 2003; Ahmad et al., 2005; Yu et al., 2010). These 

flocculants could be cationic, neutral, and anionic. Inorganic flocculants, such as alum, ferric 

chloride, were not very attractive to use because of their large volume requirement, pH 

sensitivity, and inefficiency in treating some wastewater effluents (Wang et al., 2016). On the 

other hand, a wide range of flocculants have been developed to improve the flocculation process 

in wastewater treatment including synthetic and natural organic flocculants.  

In recent years, many synthetic organic flocculants such as acrylamide, diallyldimethyl 

ammonium chloride (DADMAC) and polyacrylic acid have gained widespread use in several 

industrial applications. Although these water soluble synthetic polymers find wide applications 

as flocculants, their usage is debatable because of the potential public health hazard they introduce 

to wastewater (Ye et al., 2003; Bratby et al., 2006).  
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To address these issues of synthetic flocculants, new environmentally friendly and effective 

flocculants should be generated. Natural organic flocculants are toxin free, eco-friendly, and 

effective at low dosage (Singh et al., 2000; Wang et al., 2013). For many years, biopolymer-

based flocculants, such as guar gum, chitosan, starch and cellulose, have been researched for 

their potential use in industry (Singh et al., 2000; Wang et al., 2013; Ben et al., 2011, Zou et al., 

2011; Razali et al., 2015b). However, the use of these polymers for other applications in food 

and fermentation processes, pharmaceutical, cosmetics, agricultural and papermaking industries 

limited their availability for use as flocculants (Pelton, 1986; Wang et al., 2011).  

In this context, kraft lignin appears to be a promising candidate for flocculant productions. 

However, kraft lignin has a limited solubility due to its phenylpropane-based structure 

(Sableviciene et al., 2005; Zakzeski et al., 2010). In addition, kraft lignin does not have sufficient 

functionality to be used as flocculants for wastewater effluents. To enhance the flocculation 

affinity of kraft lignin, cationic groups, such as the quaternary ammonium, can be introduced to 

kraft lignin, via polymerization techniques to produce inexpensive, nontoxic, and biodegradable 

cationic polymers to be used as suitable flocculants for wastewater systems (Ahvazi, et al., 

2011). 

 To control and optimize the flocculation process, it is important to understand the flocculation 

mechanism. However, details underlying the mechanism for removal of impurities or 

contaminants from wastewater with natural flocculants are not fully understood. Several 

flocculation mechanisms, such as charge neutralization, bridging and electrostatic patch, have 

been proposed to explain the destabilization of colloidal suspensions by polymers and the 

mechanism of flocs formation (Razali et al., 2011). These mechanisms are crucially dependent 

on the adsorption of flocculants on particles suspended in wastewater. If there is an affinity 

between polymer segments and a particle surface, the adsorption of polymers may occur. 

Adsorption of polymers onto the particles’ surface may occur via electrostatic interaction or 

hydrogen bonding (Gregory, 1990; Szyguła et al., 2009; Petzold et al., 2003). The extent of 

adsorption and configuration of the adsorbed polymers not only depends on the polymer 

characteristics (e.g., molecular weight, charge density) but also on the properties of the colloidal 

systems (Gregory, 1990). For example, the pH of colloidal suspensions containing clay 

influences both the net surface charge density of clay particles, polymer functional groups and 
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adsorption mechanism of polymers on clay surfaces. Similarly, the adsorption of polymers on the 

surfaces of clay particles is strongly dependent on ionic strength of the colloidal systems (Chen, 

1998). These factors have a great influence on the efficiency of flocculants used in the systems. 

However, other factors, such as particle size, particle density, and liquid density, also exert 

considerable influence on the tendency of fine particles to disperse, flocculate and settle. These 

factors have potential influence on the formation of flocs and the structural properties of the flocs 

produced during the dispersion and flocculation process. Since the behavior of kraft lignin-based 

polymers as flocculants and dispersants have not been understood, their interactions with 

components of colloidal systems have not been evaluated.  

The main goal of this dissertation was to develop a method to synthesize kraft lignin-based 

flocculants or dispersants, which would be renewable, biodegradable, and non-toxic with 

performance comparable to the commercial ones. In this chapter (chapter 1), a brief summary of 

the subsequent chapters in this thesis is provided. Furthermore, the objectives of this research work 

are also presented. 

Chapter 2 provides a brief introduction to the flocculation process described in literature related 

to the current studies. Literature review is structured into sections discussing the background 

information related to the nature of flocculant (e.g., composition, charge density, molecular 

weight, etc.) and the properties of flocculants used in wastewater treatment systems. The second 

section discusses various methods used in literature and in this study to evaluate the properties of 

lignin based polymers as well as flocculant and dispersion analyses. 

Chapter 3 discusses the copolymerization of lignin, acrylamide (AM) and (2-methacryloyloxyethyl) 

trimethyl ammonium chloride (DMC) to produce kraft lignin-AM-DMC (KAD) copolymers. The 

obtained results in this chapter can be used to optimize the reaction conditions in order to attain 

the targeted properties. Also, lignin copolymers were characterized to confirm their properties. 

Charge density and solubility parameters of the copolymers were determined. The production of 

homopolymers of PDMC and PAM were also illustrated. Furthermore, the activation energies of 

copolymer and homopolymers were assessed.  

Chapter 4 deals with the use of orthogonal experimental design for determining the optimum 

conditions to produce kraft lignin-based copolymers. The grafted samples were prepared via 
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copolymerization, in which the factors studied were the reaction temperature, reaction time, pH, 

initiator concentration, and monomer concentrations. The potential impact of these factors on the 

charge density and lignin solubility of produced copolymer were evaluated using the orthogonal 

design method. The variance trend was discrepant for the two responses (charge density and 

solubility). Statistical analysis of the model was performed with the statistical assessment for 

analysis of variance (ANOVA). The regression analysis of the results of the orthogonal 

experiments was performed and validated. 

Chapter 5 provides discussion on the use of lignin copolymers with two different molecular 

weights, but with a similar charge density, as flocculants for simulated kaolin and bentonite 

suspensions. The adsorption, zeta potential and relative turbidity analysis were then assessed. The 

influence of pH on the copolymer adsorption and turbidity removal of kaolin and bentonite 

suspension was evaluated.  

Chapter 6 illustrates the behavior of two lignin copolymers, with the same molecular weights but 

different charge densities, as flocculants for kaolin and bentonite suspensions. The adsorption, zeta 

potential and flocculation analyses were performed to determine the effectiveness of the 

copolymers. The impact of the copolymers in changing the particle size distributions of kaolin and 

bentonite particles was identified. The flocculation and reflocculation of the particles were studied 

in order to reveal the flocculation mechanism.  

Chapter 7 discusses the polymerization of kraft lignin and 2-[(methacryloyloxy) ethyl] 

trimethylammonium chloride (DMC) to produce cationic kraft lignin–DMC polymer. The 

flocculation behavior of suspension systems containing cationic polymers with different molecular 

weights and charge densities was studied to obtain the information about flocculation kinetics and 

flocs characteristics. In this chapter, focused beam reflectance measurement (FBRM), vertical scan 

analyzer and photometric dispersion analysis (PDA) were used to study the floc structure, size and 

their settling behavior. The fractal dimension of the flocs was measured by a small-angle light 

scattering technology (SALLS) and used for characterizing the compaction of flocs. Furthermore, 

correlations were developed between the adsorption of cationic polymers on the kaolin particles 

and the zeta potential of the kaolin suspensions.  
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Chapter 8 describes the polymerization of kraft lignin and acrylamide to produce kraft lignin-

acrylamide dispersants with different molecular weights and charge densities for kaolin 

suspensions. The adsorption, zeta potential and turbidity analyses were then performed on kaolin 

suspension at varied pH. The impact of various physiochemical properties, such as ionic strength, 

particle size and suspension pH, on the adsorption capacity of the polymers were then evaluated. 

The surface tension and contact angle studies of modified and unmodified lignin were performed 

at different pHs. The impact of shear rate on the stability of kaolin dispersion was evaluated. 

Chapter 9 describes the self-assembly of kraft lignin-acrylamide polymers. The effect of 

molecular weight of the polymers on aggregation at different salt concentrations in aqueous 

solutions was investigated. Particle aggregation was studied using a vertical scan analyzer and 

dynamic light scattering (DLS) techniques. Quartz crystal microbalance with dissipation (QCM-

D) measurement was utilized to study the viscoelastic and self- assembly behavior of the polymers. 

Chapter 10 states the overall conclusions and recommendations for future work.  

 

1.2 Objectives 

The objectives of this study are to: 

1. synthesize and characterize kraft lignin-AM-DMC copolymers via free radical 

polymerization in aqueous solutions; 

2. determine the main reaction factors that impact the production and properties of kraft 

lignin-AM-DMC copolymers; 

3. assess how the molecular weight of kraft lignin-AM-DMC influence the flocculation of 

kaolin and bentonite suspensions; 

4. investigate how the charge density of kraft lignin-AM-DMC impact the flocculation of 

kaolin and bentonite suspension; 

5. synthesize and characterize kraft lignin-DMC as flocculant for kaolin and bentonite 

suspensions; 

6. synthesize and characterize kraft lignin-AM as a dispersant for kaolin suspensions; and 

7. investigate the self-assembly behavior of kraft lignin-AM polymer in aqueous solution. 
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Chapter 2: Literature review 

2.1 Introduction 
This literature review is to provide a fundamental knowledge related to kaolin and bentonite 

particles, polymers' properties, and impact of solution properties on the stability of clay particles. 

In addition, physicochemical properties of clay, clay particle interaction, type of polymer clay 

interaction and adsorption of polymers on clay surfaces under various reaction conditions are 

addressed in this chapter. Systematic studies conducted in the literature on the modification of 

natural polymers using different methods in treating wastewater are also presented. The 

modification of kraft lignin to produce cationic flocculants using different methods employed in 

the literature are also discussed.  

A pool of advanced techniques, such as gel permeation chromatography (GPC), nuclear 

magnetic resonance (NMR) spectroscopy, Brunauer-Emmett-Teller (BET) surface area analyzer, 

zeta potential analyzer, scanning electron microscopy (SEM), thermo gravimetric analyzer, 

particle charge detector, photometric dispersion analyzer, X-ray diffractometer (XRD), particle 

size analyzer, static light scattering analyzer (TURBISCAN), focused beam reflectance 

measurement (FBRM), Quartz crystal microbalance with dissipation (QCM-D), dynamic light 

scattering (DLS) and LUMiSizer are utilized in this work to meet the objectives, and their 

fundamentals are discussed. 

2.2 Background 
2.2.1 Colloidal suspensions  
In colloidal systems, the moving particles can collide with each other due to Brownian motion. 

Colloids, due to the effect of surface properties such as surface charge, can exist as stable 

dispersions. They are, therefore, more sensitive to surface phenomena than to gravitational 

forces. Colloidal particles can form suspensions, which are highly stable over time. Such 

suspensions include solid, liquid or gas, gels, aerosols, emulsions, and foams. The stability of a 

colloid suspension depends on the equilibrium between two types of opposing forces; Van der 

Waals’ and an electrostatic interaction force. In aqueous media, hydrophobic colloidal particles 

are generally negatively charged (for example, clay-water systems), where they form stable 

suspensions because their surface charge is the same and they repel each other. The surface of 
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the electrically charged particle is at a different potential from the solvent medium. The potential 

difference between the shear plane and the solution is called the zeta potential. When this 

potential difference reduces to zero or close to zero, the particles tend to agglomerate under the 

influence of the Van der Waals’ forces and the colloidal suspension becomes destabilized. This 

phenomenon of colloidal systems is proposed and developed by DLVO (Derjaguin-Landau-

Vervey-Overbeek) theory. To remove the colloidal materials from suspension, altering the 

surface properties of the particles to make the fine particles to settle rapidly are considered. 

Kaolin is the main clay mineral present in many industrial processes, such as the mining, 

mineral, painting, ceramics, pharmaceutical and dye industries. Bentonite has great potential to 

be utilized in most industrial applications due to its large surface areas and swelling property to 

form viscous water suspensions for stabilizing emulsions, bonding and plasticizing. For this 

reason, it is important to gain an understanding of the interactions between the colloidal particles 

to endure better colloidal stability.  

 
2.2.2 Properties of kaolin  
Kaolin is a white and soft powder mainly composed of fine-grained plate-like particles. Kaolin 

as found in nature usually contains varying amounts of other minerals, such as muscovite, quartz, 

feldspar, and anatase. The primary industrial application of kaolin is in papermaking as a coating 

and paper filler. Due to the white color, fine particle size and plate-like structure, kaolin is 

suitable as the pigment for paint, ceramic raw material, functional filler, extender, cosmetic, food 

additive, and adhesives.  

Table 2.1. Chemical and mineral compositions of kaolin (Konduri and Fatehi, 2017) 

Chemical compositions Mineral compositions 

Element wt.% Calculated 

oxides 

wt.% Mineral wt.% 

O 49.88   kaolinite 34 

Al 21.54 Al2O3 40.71 Dickite 29 

Si 25.94 SiO2 55.49 Narcite 28 
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Ti 0.65 TiO2 1.09 Tridymite 4 

Fe 0.51 FeO2 0.66 Hematite 2 

Cu 0.60 CuO 0.75 Magnetite 2 

Mn 0.33 MnO 0.61   

P 0.18 P2O5 0.42   

Na 0.21 Na2O8 0.28   

 

The chemical compositions of the kaolin samples are shown in Table 2.1. The clay consists 

overwhelmingly of SiO2 and Al2O3, which are the main components of the mineral kaolinite 

(Atesok et al., 1998; Chen et al., 2007). Kaoline has a 1:1 hydrated aluminosilicate structure 

(Al2Si2O5 (OH) 4) with chemical compositions (39.8% alumina, 46.3% silica, 13.9% water) 

consisting of stacked pairs of tetrahedral silica sheets and octahedral alumina sheets. Each pair of 

sheets is bound together through common oxygen atoms, and successive pairs are held together 

by hydrogen bonding between silica–oxygen and aluminum-hydroxyl groups. Hence, the 

resulting crystal contains a silica face of SiO2 tetrahedral, an alumina face carrying AlOH 

groups, and edges that carry both SiOH and AlOH sites. The surfaces of kaolin are believed to 

carry a constant negative charge due to the isomorphous substitution of Si4+ by Al3+ in silica 

layer, whereas the positive charge on the alumina face and on the edges is due to the protonation/ 

deprotonation of exposed hydroxyl groups (White, 1987). The model structure of kaolin is 

shown in Figure 2.1 (Tombac and Szekeres, 2006). Kaolin crystal has a molecular weight of 

258,071 g/mol, and its diameter is reported in the range of 0.2–10 μm, with thickness of 0.7 nm, 

and density of 2.6 g/cm3 (Atesok et al., 1998; Chen et al., 2007).   



12 
  

 
 
Figure 2.1. Model structure of kaolin (Tombac and Szekeres, 2006) 

2.2.3 Properties of bentonite 
Bentonite is an important commercial mineral mainly composed of smectite group of clay 

minerals. It has a wide application in drilling mud, drilling gel, the metal casting industry, 

detergents, fungicides, sprays, cleansers, polishes, ceramic, paper, cosmetics and medicines. 
Bentonite clay is primarily composed of montmorillonite 2:1 hydrous aluminosilicate mineral with 

an overall negative charge. Bentonite has a large surface area, high cation exchange capacity, 

chemical and mechanical stability and a layered structure that predisposes it as a good adsorbent 

(Ravi et al., 2013; Karnland et al., 2006). 

The main constituent of bentonite is montmorillonite, composed of units made up of two silica 

tetrahedral sheets with a central alumina octahedral sheet (Figure 2.2). Each platelet consists of 

three sandwich-arranged layers: a central octahedral alumina (Al2O3) layer and two tetrahedral 

silica (SiO2) layers. The silicon ion and the aluminum ion often undergo isomorphous 

substitutions by low valence metals, such as magnesium and iron. In turn, these substitutions 
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lead to a charge imbalance, compensated by exchangeable cations with water molecules bound 

together by ion-dipole forces. These ions, with no more place inside the structure, migrate to the 

external silica layers and are the main causes of hydration in the crystal lattice (Karnland et al., 

2006). 

Bentonite clay consists of 65-75 % montmorillonite, 10-14 % quartz, 5-9 % feldspars, 2-4 % 

mica, 3-5 % carbonates and chlorite, and 1-3 % heavy metals. The chemical composition of 

bentonite is 61-65 % SiO2, 22-25 % Al2O3 , 1-7 % Fe2O3, 1-2 % MgO, 0-0.6 % CaO, 0-1% 

Na2O, and 0-3% K2O  (Pusch and Karnland, 1983). Previously, bentonite surface’s charge 

density (-9.0 µg/g) and particle size (5.8 µm) were reported to be greater than kaolin’s surface 

area (-6.3 µg/.g) and particle size (5.8 µm) (Wang et al., 2016). The high negative charge density 

of bentonite indicates the presence of a greater number of oxide anions in montmorillonite 

structure (Schmidt and Lagaly, 1999). 
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Figure 2.2. Schematic illustration of montmorillonite mineral layers and water molecules 

(Hofmann et al., 1933). 

2.2.4 Colloidal properties of clay suspensions 
The interaction of cationic polymers with clays in an aqueous medium is of fundamental 

importance in controlling the colloidal stability in a variety of applications, such as soil 

stabilization, paper, nanocomposite manufacturing, the mining industry, wastewater treatment, 

and mud preparations for drilling oil wall (Shirazi et al., 2003; Chibowski et al., 2009). As 

discussed above, kaolin and bentonite have a complicated surface chemistry because of the 

heterogeneity of the charged edges and faces. However, the addition of polymers alters the 

surface properties of the colloids via electrostatic interaction (Solberg and Wagberg, 2003; 

Chena et al., 2007) to promote destabilization. Flocculation of the fine negatively charged 

particles using cationic polymers followed by sedimentation is a crucial phenomenon in 

determining the efficiency of industrial separation processes (Wang et al., 2016). 
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2.2.5 Flocculant or dispersant for mineral suspensions 
Polymeric materials used as flocculants are mostly water-soluble, and play a crucial role in water 

treatment process. With respect to charge, polymers can be characterized by their ionic nature, 

which can be anionic, cationic and nonionic. Acrylamide is a water-soluble polymer and can be 

produced in its anionic form (Mabire et al., 1984; Audebert, 1988; Fang et al., 2010; Wang and 

Wang et al., 2011). In addition, polymers that are produced using 2-(methacryloyloxy) ethyl] 

trimethyl ammonium chloride (DMC) cationic monomer contain quaternary ammonium groups that 

distribute positive charges along the macromolecular backbone (Pal et al., 2006). Cationic 

functional groups can strongly interact with suspended, negatively charged particles and hence 

are useful in many applications, including wastewater treatment. The modification of natural 

polysaccharides by copolymerizing the DMC with or without acrylamide has been widely 

applied in the treatment of negatively charged particles in various industrial effluents (Table 2.2). 

In this regard, lignin based flocculants can be produced and used as flocculants. Interaction of 

modified polymer with clay particles leads to flocculation through polymer bridging, polymer 

patching, and charge neutralization or combination of these mechanisms (Yu et al., 2006; Wang 

et al., 2009; Ghimici et al., 2010; Li et al., 2011). These flocculation mechanisms depend on key 

parameters, such as the charge density and molecular weight of polymers, which greatly 

influence the adsorption and conformation of the polymers on particle surface (Gill and 

Herrington, 1987; Zhu et al., 2009; Wong et al., 2006). Therefore, the interaction of lignin-based 

flocculants with clay suspension should be studied to understand the mechanisms of flocculation. 

Table 2.2. Represents various flocculant and their applications 

Cationic flocculant Type of wastewater References 

Xylan-g-METAC Kaolin and bentonite clay 
suspensions Wang et al., 2016 

Xylan-g-METAC Azo dye Wang et al., 2015 

Chitosan-g-DMC Pulp mill wastewater Wang et al., 2009 

Chitosan-g-AM-DMC Waste water treatment plant Wang et al., 2011 

Chitosan-g-PAM-DMC Pulp mill wastewater Wang et al., 2012 
Carboxymethyl chitosan-
PDMC Dye contaminated suspension Yang et al., 2014 
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Starch-AM-DMC Waste drilling fluid Zou et al., 2011 

Starch-AM-DMC Pulp mill effluent Wang et al., 2011 

Starch-g-DMC Kaolin suspension Wang et al., 2013 

Sludge Lignin-g-DMC Humic acid (HA) solution Li et al., 2015 

Xanthan-PAM Mine waste water Ghorai et al., 2013 

Amylopectin-PAM Kaolin suspension Rath and Singh, 1997 

Amylose-g-PAM Mine wastewater Karmakar and  Singh,1998 

Chitosan-g-PAM Natural water Zhang et al., 2010 

Sludge Lignin-g-PAM Dye wastewater Fang et al., 2010 

Sludge Lignin -g- PAM Pulp and papermaking sludge Rong et al., 2013 

Starch-g-PAM Silica suspension/Wastewater Fanta et al., 1972;  
Mishra et al., 2013 

Cellulose-g- PAM Kaolin suspension Okieimen, 2003;  
Machida et al., 1971 

Chitosan-g-PAM Kaolin suspension 
Wang et al., 2013, 
Wang et al., 2008;  
Yuan et al., 2010 

 
 
The large variety of chemical being used as dispersants includes inorganic or low molecular weight 

organic salts and polymers (Farrokhpay et al., 2006). The polymeric dispersants may be nonionic, 

anionic, cationic or amphoteric (Zhou et al., 2007, Hsu et al., 2016). Anionic polymers are the 

most efficient dispersants because they increase the surface charges of particles, and therefore keep 

the clay particles separated, dispersed, or stabilized (Gan et al., 2013). The main purpose of adding 

a dispersant is to minimize the particle-particle interaction by enhancing electrostatic or steric 

repulsion. Electrostatic stabilization induces electrostatic repulsive forces and is effective in 

keeping the clay particles dispersed in aqueous media (Zhou et al., 2007). Physicochemical factors, 

such as dispersant dosage, surface tension of the dispersants at solid/liquid interface, and the nature 

of the functional groups in the dispersants, play key roles in imparting the dispersion strength to a 

dispersant (Farrokhpay et al., 2006). 
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The effectiveness of polymeric dispersants is correlated with adsorption characteristics of the 

dispersant on the particles. These polymeric dispersants can adsorb to the clay particles’ surface 

via hydrogen bonding, hydrophobic interaction, and affect the stability of clay particles 

(Farrokhpay et al., 2006). The adsorption of dispersants at solid/liquid interface depends on the 

many factors, such as surface characteristics of the particles, polymer charge density, polymer 

molecular weight and compositions of the dispersion medium. The effectiveness of a dispersant 

may also vary with the pH and ionic strength of the dispersion medium (Zhou et al., 2007). 

Therefore, it is essential to study the adsorption of polymeric dispersants on clay under varied 

process conditions. Dispersants have a wide range of applications in industry (Table 2.3).  

However, the current industrially used dispersants are oil-based, which are environmentally 

hazardous. On the other hand, polymers such as cellulose, starch, and guar gum are modified and 

used as dispersants for clay suspensions (Pawlik et al., 2003). However, a wide range of industrial 

usage of these polymers limited their availability as dispersants. To overcome the shortfall of these 

bio-based polymers, karft lignin-based dispersants can potentially be produced and serve for this 

purpose. 

Table 2.3. Examples of various dispersants and their applications 

Dispersant Application References 

Calcium lignosulfonate Cement  Ouyang et al., 2006 

Alkali lignin Coal–water slurry Zhou et al., 2007 

Sulfonated lignin Dye Qin et al., 2015 
Sugar cane baggase- 
lignosulfonates  Pesticide formulations Li and Ge, 2011 

Lignosulfonates  Coal water slurry Qin et al., 2016 

Carboxymethylated lignin Graphite suspension Gan et al., 2013 

Partially hydrolyzed 
polyacrylamide 

 

Oil sand ores 

 

Li et al., 2008 

Humic acid Coal–water slurries Pawlik, 2005 

Sodium polymethacrylate Iron oxide (Hematite) Nsib, 2006 
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Polyacrylamide Paint Farrokhpay et al., 
2006 

Acrylamide copolymers Ceramic slurries (BaTiO3) Hsu et al., 2016 

Styrene-acrylic acid Coal water mixture Yoshihara, 1999 

Sodium polyacrylate Kaolin Xiumei et al., 2017 

 
2.2.6 Lignin 
Lignin is one of the three major polymeric components found in the cell walls of higher order 

plants. Along with the other two major components, cellulose and hemicellulose, lignin forms a 

highly efficient composite system that is synthesized entirely from carbon, oxygen, hydrogen, 

and energy from the sun. Lignin's role in this composite is to act as a matrix material that binds 

the plant polysaccharide microfibrils and fibers, thereby imparting the strength and rigidity to the 

plant stem necessary for vertical growth (Kirk, 1971; Vanholme et al., 2010; Baurhoo et al., 

2008; Saake and Lehnen, 2012). Lignin also performs other biological functions; helping protect 

plants from biological attack and assisting in water transport by sealing plant cell walls against 

water leaks. Although the total lignin content varies widely from plant to plant, it is estimated 

that a total of 30% of the organic carbon in plant biomass worldwide is contained in lignin 

(Mansfield et al., 1999; Ververis et al., 2004; Mohan et al., 2004; Lora, 2008). 

2.2.7 Structure of lignin 
Lignin has a complicated structure as its composition is dependent on various factors, such as the 

species of hardwood and softwood, the growing conditions of the trees, and the processing 

conditions of extracting/producing lignin from wood species. Softwood plant species have more 

lignin than hardwood species (Azadi et al., 2013). Softwood contains 26-32% (spruce approx. 

27%) and hardwood contains 20-26% (birch approx. 22%) of lignin. Around 70% of softwood 

(spruce) lignin and 60% of hardwood (birch) lignin are found in the secondary cell wall 

(Sjöström, 1993). In addition, lignin differs from other natural biopolymers (cellulose, chitin) by 

its unique chemical characteristics and the presence of aromatic heteropolymers instead of 

glucose units (Feofilova and Mysyakina, 2016; Wang et al., 2013).  

This complicated structure of lignin produced by oxidative coupling of three main 

phenylpropanoid building blocks subunits, the so-called monolignols, namely p-coumaryl, 
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coniferyl, and sinapyl (Figure 2.3). Correspondingly, upon oxidative polymerization, each 

monolignol produces p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) residues in the 

polymer. These phenyl propane units in lignin molecule differ by the quantity and nature of the 

substitutes in aromatic rings. Lignins of different plants (softwood and hardwood) can 

considerably differ in the ratio of these phenyl propene subunits. In particular, the major 

components of the lignin of coniferous wood are G unit with trace amounts of S and small 

amount of H units; whereas, hardwood lignin is composed of a near equal amounts of S and G 

units with a traces of H units.  

 
 
Figure 2.3. The three building blocks of lignin (Feofilova and Mysyakina, 2016) 

The commonly recognized chemical structure of lignin is exhibited in Figure 2.4. It is observable 

that ether bonds, marked in circles, are most susceptible for chemical attacking during chemical 

conversion processes (Wang et al., 2013). The phenylpropane units are joined together both with 

C-O-C (ether) and C-C linkages; the ether linkage is the dominant type, accounting for about two 

thirds of the total linkages (Sjöström, 1993). Figure 2.5 illustrates some of the common types of 

linkage found in lignin and their approximate proportion are summarized in Table 2.4.  
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Figure 2.4. The chemical structure of lignin (Wang et al., 2013). 
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Figure 2.5. Common linkages between phenylpropane units in lignin (Sjostrom, 1981). 
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Table 2.4. The approximate percentages of linkages connecting the phenylpropane units in lignin 

(Sjostrom, 1993). 

Linkage type  Dimer structure Softwood (%) Hardwood (%) 

β-O-4 Arylglycerol-β-aryl-ether 50 60 

α-O-4 Noncyclicbenzyl aryl ether 2-8 7 

β-5 Phenylcoumaran 9-12 6 

5-5 Biphenyl 10-11 5 

4-O-5 Diarylether 4 7 

β-1 1,2 –Diarylpropane 7 7 

β-β Linked through side chain 2 3 
 
 
The main functional groups of lignin, such as aliphatic hydroxyl, phenolic hydroxyl, carbonyl, 

methoxyl groups, and some terminal aldehyde groups are important for the reactivity of the 

lignin. The number of functional groups present in lignin is illustrated in Table 2.5. The 

hydroxide group situated at para position on all three of the different subunits (p-coumaryl, 

coniferyl and sinapyl) is of great interest for lignin modification, which provides many changes 

in lignin properties (e.g., solubility) when reacted with reagents in chemical reactions 

(Chudakov, 1961; Gellerstedt and Lindfors, 1984). 

 
Table 2.5. Functional groups in lignin (per 100 C6-C3 units) (Sjostrom, 1993). 

Functional group  Softwood lignin   Hardwood lignin 

Methoxyl 92–97 139–158 

Phenolic hydroxyl 15–30 10–15 

Benzyl alcohol 30–40 40–50 

Carbonyl 10–15 - 
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2.2.8 Lignin production 
Industrially, lignin is mainly produced as a by-product in the pulping industry, which generates 

between 40 to 50 million tons of lignin a year as a mostly non commercialized waste product 

(Sahoo et al., 2011). This huge amount of lignin, however, has not received much attention yet. 

Only 2 % of the produced lignin has been used commercially and the remaining part of lignin is 

burned as a solid fuel to supply energy for the pulping process and to recover the inorganic 

chemicals used in the kraft process (Varanasi et al., 2013). In order to meet the goal to replace 

30% of fossil fuels by biofuels by 2030, about 225 million tons of lignin as a byproduct of 

fermentation processes would be generated (Sahoo et al., 2011). In addition, lignin is produced 

and dissolved in black liquor in the kraft pulping process when wood is pulped to cellulose 

fibers. The invention of the LignoBoost process has enabled the large-scale purification of lignin 

from the black liquor, so that the lignin becomes available for downstream applications.  

Despite some promising avenues of research into lignin utilization, the highly variable and 

complex nature of lignin have allowed only limited success so far in developing lignin-based 

products from a laboratory scale to an industrial scale. However, by developing a better 

understanding of lignin molecule and by continuing research on its utilization, lignin's potential 

as a renewable and widely available raw material for value-added product generation can be 

unlocked (Meister, 2012; Varanasi et al., 2013). 

However, the low reactivity of kraft lignin limits its chemical modification, owing to the aryl 

ether linkages cleavage, the disappearance of the reactive functional groups and condensation of 

polyphenyl propene units during kraft pulping process (Zakzeski et al., 2010). Hydrophobicity 

and low molecular weight are the two main factors influencing the application of kraft lignin 

(Ahvazi et al., 2011). Therefore, this research work focuses on the chemical modification of kraft 

lignin through graft copolymerization to improve its solubility in aqueous solutions. 

2.2.9 Modification of lignin 
The numerous sites on the lignin backbone offer many opportunities for different modification 

reactions (Tripathy and Ranjan, 2006). In order to take advantage of this characteristic, choosing 

the modification reactions that would tailor lignin properties for a certain application is crucial. 
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Different types of modification have been proposed to increase lignin's chemical reactivity, 

reduce the brittleness of lignin-derived polymers, increase its solubility in aqueous solution, and 

improve the ease of processing lignin (Meister, 2012). The phenolic OH groups of these phenyl 

propene subunits of kraft lignin present the most reactive sites for any reaction. However, the β-

O-4 aryl ether linkages and others interconnecting bonds create significant steric hindrance or 

occupy these reactive sites, which leads to limited reactivity of kraft lignin for modification. 

Therefore, depending on the application, a lignin molecule can be modified via copolymerization 

reaction to make it more reactive (Dilling and Samaranayake, 1999; Lin, 1985; Turunen et al., 

2003; Matsushita and Yasuda, 2005; Hashem et al., 2007; Chen et al., 2010; Wang and Xie, 

2010; Yue et al., 2011; Huang et al., 2012; Kong et al., 2015).   

2.2.10 Free radical copolymerization 
Many pathways have been reported to synthesize copolymers via polymerization. Previous 

studies attempted copolymerization reactions through chemo-enzymes (Mai et al., 2000), 

irradiation (Jamaliah et al., 2013), UV radiation (Liliana et al., 2009), and mechanical activation 

(Zuqiang et al., 2009) to produce copolymers for different applications. 

Free radical copolymerization is considered as the simplest, economical, efficient and 

appropriate method for industrial purposes (Fang et al., 2010; Mohamad et al., 2010). This 

research work focused on free radical copolymerization of kraft lignin with a suitable cationic or 

nonionic monomer and offers an effective approach to increase the solubility, molecular weight 

and the charge density of kraft lignin without adversely affecting its molecular structure.  

The copolymerization mechanism uses a chemical free radical initiator (e.g. ceric ammonium 

nitrate, potassium per sulfate or hydrogen peroxide) to generate free radical sites on the 

backbone polymer, where the monomer of the graft is linked to form a graft chain. It is crucial to 

choose an initiator system that would lead to maximum grafting efficiencies with minimum or no 

homopolymer formation (Liliana et al., 2009; Mohamad et al., 2010; Da Silva et al., 2010; Wang 

et al., 2016).  

Kraft lignin-based copolymers can be synthesized by copolymerization of either one- or two-

monomers. In recent years, based on one-monomer polymerization reaction, cationic DMC 

monomer or nonionic AM monomer has been copolymerized onto starch, xylan, chitosan, and 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Fang%20R%5BAuthor%5D&cauthor=true&cauthor_uid=20576562
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soda lignin in attempts to produce bio-based flocculants and dispersant to treat wastewater 

(Wang et al., 2016, 2009, 2013; Hsu et al., 2016; Abrar et al., 2011; Ram et al., 2014; Yue et al., 

2008; Shen et al., 2006; Yu et al., 2008; Chen et al., 1986; Hongyan et al., 2013). However, the 

produced polymers had small molecular weights and charge densities.  

The flocculation in many applications requires high charge densities and molecular weights. 

Based on two-monomers polymerization reaction, the bio-based flocculants of acrylamide and 

cationic DMC monomers are the most common copolymers having high molecular weight and 

higher charge density (Duygu et al., 2002). To treat the pulp and papermaking sludge, chitosan-

poly (acrylamide- methacrylatoethyl trimethyl ammonium chloride) copolymer was produced by 

grafting acrylamide and methacrylatoethyl trimethyl ammonium chloride (DMC) onto chitosan 

(Ben et al., 2010). Starch-based cationic copolymer flocculants were also prepared via 

copolymerization of 2-trimethylammonium ethyl methacrylate chloride (DMC) and acrylamide 

(AM) on starch backbone for high density waste drilling mud (Wang et al., 2010). In this 

dissertation, we studied the free-radical copolymerization of kraft lignin and one or two 

monomers. 

2.2.11 Free radical copolymerization of lignin with two monomers 
The copolymerization of lignin with acrylamide (AM) and methacrylatoethyl trimethyl 

ammonium chloride (DMC) as raw material is carried out following a free radicle 

copolymerization mechanism to produce lignin-based copolymers (Hasan and Fatehi, 2018a). In 

this reaction, potassium per sulfate acts as an initiator in an aqueous solution. Sulfate radicles 

produced by potassium per sulfate in the reaction medium lead to the propagation of the 

copolymers by attacking hydroxyl group (OH) of lignin and double bonds of acrylamide and 

DMC to have them engaged in the copolymerization reaction. Copolymers of lignin-AM, lignin-

DMC and DMC-AM may be produced in the reaction medium (Figure 2.6 a). The addition of 

AM will introduce functional groups to lignin, which could improve the chain length and 

bridging ability of the copolymers efficiently. The grafting of DMC increases the cationic 

content of the lignin copolymers. On the other hand, the DMC and AM can participate in side 

reactions to produce homopolymers of PDMC and PAM (Figure 2.6 b). Ideally no homopolymer 

reactions should occur in this reaction, which is difficult to avoid and is considered as a 

drawback of this method. 
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Figure 2.6. Copolymerization reaction of a) lignin, b) homopolymers (Hasan and Fatehi, 2018a). 

 

2.2.12 Free radical polymerization of lignin with one monomer 
The lignin polymers with different characteristics can be synthesized in similar fashion by using 

DMC cationic monomer as a raw material. The polymerization of kraft lignin and 2-

[(methacryloyloxy) ethyl] trimethylammonium chloride (DMC) was carried out in this work 

following a free radicle polymerization mechanism to produce kraft lignin- DMC polymers with 

the possibility of homopolymerization of DMC to produce homopolymers (PDMC) as a by-

product (Hasan and Fatehi, 2018). A general scheme corresponding to this reaction and the 

resulting kraft-lignin polymer structure obtained are shown in Figure 2.7. 
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Figure 2.7. Mechanism of the polymerization reaction of lignin and DMC (Hasan and Fatehi, 

2018b). 

Similarly, the polymerization of lignin and acrylamide was carried out in order to prepare water 

soluble lignin-acrylamide polymers (Hasan and Fathi, 2018; Rong et al., 2013). In this reaction, 

potassium per sulfate acts as an initiator in an aqueous solution. As illustrated in Figure 2.8, 

sulfate radicles in the reaction medium converts lignin to phenoxy radicals and the radicals serve 

as reaction sites on the lignin backbone for the polymerization. These free radical sites then react 

with AM monomers to form the lignin polymers. Also, sulfate radicals can initiate the 

homopolymerization of AM, resulting in polyacrylamide (PAM) as a by-product. 
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Figure 2.8. Polymerization of kraft lignin and acrylamide (Hasan and Fatehi, 2018b). 

2.2.13 Kraft lignin application 
Previously, lignin-acrylamide polymer, which was produced by reacting lignin originated from 

the sludge of a pulping process and acrylamide, was capable of removing 52% of turbidity from 

aluminum sulfate or poly aluminum chloride suspensions (Rong et al., 2013).The graft 

polymerization of enzymatically hydrolyzed (EH) lignin with acrylamide (AM) in an aqueous 

solution led to the production of a product that was able to remove 85% of azo-dyes from dye 

wastewater (Fang et al., 2009). Soda lignin-acrylamide polymers have been investigated as 

thinning agents for drilling mud (Ibrahim et al., 2006) and paper strength additives (Wang et al., 

2016). In addition, sludge lignin has previously been used as a raw material to produce nonionic 

and cationic lignin based polymers (Mittal et al., 2014; Li et al., 2015a; 2015b; 2015c). In 

addition, kraft lignin has been industrially utilized in thermoplastic polymers, binder and resins, 

absorbent films and carbon fibers (Suhas et al., 2007; Jonsson et al., 2008; Holladay et al., 2007; 

Cruz et al., 2001; Reti et al., 2008; Kelley et al., 1989; Liu and Li, 2006). However, the 
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production of kraft lignin-based polymers as flocculants and dispersants was not studied 

fundamentally previously and was in fact one task of this PhD work. 

 

2.3 Fundamentals   

2.3.1 Polymer adsorption 
The adsorption of cationic polymers on negatively charged clay particles’ surface modify the 

surface properties of the particles, and hence the interparticle forces between the particles. The 

polymer adsorption characteristics and surface charge density of clay particles play important 

roles in determining the interparticle forces and magnitude of adsorption. The interaction with 

clay particles is a complex process due to simultaneous electrostatic forces, hydrogen bonding, 

and other forces. Therefore, understanding the relative significance of each of these phenomena 

is crucial for the explanation of the adsorption of polymers on clay particles. The interaction of 

cationic polymers with clay particles and their effect on adsorption also depends on the ionic 

strength, pH, charge density and molecular weight (Morris et al., 2002; Mekhamer et al., 2009; 

Farrokhpay et al., 2004; Nurmi et al., 2006). Studies have shown that polymer adsorption is 

promoted by increasing the salt concentration (Shirazi et al., 2003; Chibowski et al., 2009).  

2.3.2 Effect of charge density and molecular weight 
It has been reported that charge density is important in determining the magnitude of adsorption, 

and hence the predominant flocculation mechanism (Kam and Gregory, 1999; Rasteiro et al., 

2015; Nurmi et al., 2006; Miranda et al., 2008). Previous studies showed that if the molecular 

weight of polymers is high and their charge density is low, the polymers conform on the clay 

particle surface in the manner shown in Figure 2.9. This conformation on particle surface is 

considered as tail and loop that can extend to the solution and interact with other particles to 

form bridging bonds (Morris et al., 2002; Mekhamer et al., 2009; Farrokhpay et al., 2004). It is 

generally believed that, the conformation of the adsorbed polymer depends greatly on its charges 

(Nurmi et al., 2006; Bratby et al., 2006). The adsorption of low charged polymers is based on tail 

and loop; as the charge density of polymers increases, the bridging capability of the polymers 

reduces because there is a tendency for the polymer chains to adopt a flatter configuration on the 

particle surface (Figure 2.9) (Nurmi et al., 2004).   
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In the same vein, low molecular weight flocculants have greater tendency to develop only charge 

neutralization mechanisms with particles (Yan et al., 2004; Zhou et al., 2006). Higher molecular 

weight flocculants developing bridging and charge neutralization facilitate the settlement of 

particles (Yan et al., 2004). It was reported that higher molecular weight polymers generated 

larger and stronger flocs with faster settling rates (Zhou et al., 2006). Molecular weight of the 

polymers is the dominant factor determining the floc strength and the size distribution of flocs 

(Miranda et al., 2008). Thus, a better understanding of the effect of the charge density and 

molecular weight of polymers on their flocculation and dispersion performance may lead to the 

development of more efficient flocculants and dispersants.  

 
Figure 2.9. Adsorption configuration with low and high charged cationic polymers on a particle 

surface (Roberts, 2011). 

2.3.3 Effect of ionic strength 
Among the aforementioned factors, there is also an important one which concerns the potential 

impact of the solution ionic strength due to the presence of dissolved ions, simple or multivalent 

electrolyte (salt) in the solution. Polymer conformation in solution is significantly affected by 

salt concentration and thus the flocculation phenomenon (Shirazi, et al., 2003; Chibowski, et al., 

2003). The presence of same charges on the polymer backbone lead to mutual charge repulsion 
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and cause the polymer chains to expand. Indeed, salt is expected to screen the electrostatic 

repulsive forces between the charged particles in solution and thus via short-range van der Waals 

interactions to promote the rate of particle flocculation. At high ionic strength, these charged 

sites become shielded and force the polymer to fold and adopt a smaller hydrodynamic volume 

(Miranda et al., 2008). These effects manifest themselves in the flocculation mechanism.  

2.3.4 Effect of pH 
As described previously, the surface of clay particles possesses both negative and positive 

charges, and the amount of respective charges varies with pH. The significance of the charges 

depends on the degree of ionization of the polymers’ functional groups (Razali et al., 2015b). 

The extent of ionization itself depends on the pH of the medium. It has been reported that the pH 

of the solution has a direct impact on the behavior of the polymer’s chains (Razali et al., 2015b). 

Adjusting the pH of the solution allows the clay suspension to be precipitated, which may 

directly interfere with flocculation. Hydrolysis, and therefore the ionic charge of the polymers 

depends on the pH (Jarvis et al., 2005). These changes will impact the adsorption of polymers on 

the surfaces, accordingly, the polymer activity and the mechanism. Consequently, it is crucial to 

investigate the adsorption behavior of polymers on clay particles at different pHs (Jarvis et al., 

2005; Yoon and Deng, 2004).  

2.3.5 Effect of particle size 
The size of flocs depends on the polymer adsorption and the extent of flocculation (Yu et al., 

2006; Zhou et al., 2006). The suspended negatively charged particles in clay suspension are 

aggregated into larger size flocs after the addition of cationic flocculants, and then these flocs 

can be effectively removed via filtration or sedimentation (Zhou et al., 2006). In suspensions, the 

size of particles depend on their aggregation behavior. As described in sections 2.3.2, the charge 

density and molecular weight of cationic polymers would impact the size of clay flocs, which in turn 

affects the stability of clay suspensions. In general, the size of clay particle increases with the 

increase in molecular weight and charge density of polymers (Zhou et al., 2006; Yu et al., 2006). 

This is likely possible because higher molecular weight polymers help the chain of polymers to 

adsorb onto several particles simultaneously by hydrogen bonding via bridging, which results in 

larger flocs (Wang et al., 2016).  
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Furthermore, as flocs become larger, its growth is usually prohibited by the disruptive forces 

created in turbulent environments resulting in floc breakage (Thill et al., 2001). Nevertheless, 

these broken flocs partially re-flocculate when the shear forces decrease (Chen et al., 1998). In 

order to achieve the higher removal efficiency, generally larger flocs are preferred as compared 

to smaller ones (Zhou et al., 2006). The floc strength is dependent on the inter particle bonding 

of colloid particles in the aggregates. The aggregate size and its strength are directly related to 

the floc structure, and they determine whether the flocs are suitable for a particular flocculation 

process. The formation of large flocs facilitates separation of solid particles from the suspension 

by means of sedimentation and the formation of open flocs facilitates their removal by filtration 

(Thill et al., 2001). Fractal dimension indicating floc compactness is considered as an essential 

parameter to describe the floc structure, which is influenced by the polymer’s molecular weight, 

charge density, and types of colloidal suspension (Jin et al., 2014). In this thesis, the effects of 

charge density and molecular weight of lignin-based polymers on the size of flocs formed via 

interacting lignin polymers and clay particles are comprehensively studied. 

2.3.6 Relative turbidity 
The flocculation efficiency is evaluated by parameters, such as turbidity removal, because it is 

directly related to the industrial separation process and wastewater. It has been observed that 

cationic flocculants should be more effective than nonionic flocculants in dealing with negatively 

charged clay particles in reducing the turbidity in colloidal suspension. The compositional 

characteristics of the polymer-based flocculants including functional groups, charge density, and 

molecular weight of the polymers, are considered to be among the main factors affecting the 

flocculation efficiency. In addition, the relative turbidity of clay suspensions increases 

(dispersion) or decreases (aggregation) depending on the pH of the medium and charge of the 

polymers (Liimatainen et al., 2009; Shaw, 1992). The influence of shear after cationic flocculant 

addition on the relative turbidity of clay suspension is reported in literature (Wang et al., 2016; 

Jarvis et al., 2005). The shear force can break flocs (Thill et al., 2001; Hunter, 1993). 

Flocculation properties (settling rate, sediment thickness, supernatant clarity) of clay suspensions 

have been studied in the presence of cationic polymer. In addition, turbidity of suspensions 

depends on the size of particles. This process is characterized by parameters, settling velocity, 
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size and compactness of flocs for instance. Thus, it is worth investigating the effect of polymer 

characteristics on the relative turbidity of clay suspensions. 

2.3.7 Zeta potential 
The particles in a colloidal suspension usually carry an electrical charge. The charge on colloidal 

particles can arise from a number of different sources, e.g., dissociation of acidic or basic groups 

on the particle surface, and adsorption of a charged polymers from solution. Zeta potential is a 

function of the surface charge of the particle, any adsorbed layer at the interface, the nature and 

composition of the surrounding suspension medium (Chorom and Rengasamy, 1995; Salopek et 

al., 1992). It depends on the properties of liquid as well as properties of the surface. The 

development of a net charge at the particle’s surface affects the distribution of ions in the 

surrounding interfacial region, resulting in an increased concentration of counter ions close to the 

surface. An increase in the concentration of the counter ions close to the surface results in the 

formation of an electrical double layer. The liquid layer surrounding the particle consists of two 

parts, i.e., an inner region (stern layer) where each particle is surrounded by oppositely charged 

ions, and is strongly bound; and an outer (diffuse) region, where ions move freely and become 

weaker and weaker and eventually decay to zero. Within the diffuse layer, there is a notional 

boundary (slip plane), inside which the ions and particles form a stable entity. When a particle 

moves in voltage field (electrophoresis), ions within the boundary move with it. Those ions 

beyond the boundary stay with the bulk solution. The potential at the boundary of the stern plane 

and the diffuse (shear) plane is known as the zeta potential (Figure 2.10). The thickness of this 

layer depends on the type and concentration of ions in solutions.  

Zeta potential of particles is a good indicator of the magnitude of the interaction between 

colloidal particles, and it is commonly measured to assess the stability of colloidal systems. The 

change in clay’s surface charge density as a result of cationic polymer adsorption has been 

observed as a change in zeta potential (Wang et al., 2016). Generally, the higher the value of 

absolute zeta potential, the stronger the repulsion, the more stable the system would be. The zeta 

potential of solution varies with the pH of the solution. For example, in the acidic colloidal 

dispersion (high concentration of H+ ions in the solution), the adsorption of H+ ions on kaolinite 

particles will compress the diffuse electrical double layer resulting in lower zeta potential values. 

Under alkaline conditions (high concentration of OH- in the solution), the adsorption of OH- ions 
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on kaolinite water interface results a large diffuse double layer having a higher zeta potential 

value (Huang et al., 2016). Zeta potential technique has been conveniently applied to control the 

stability of the dispersions in many industries, such as the mining (Petroff et al., 1993), clay and 

drilling fluid (Lameirasa et al., 2008), ceramics (Schmut et al., 1964), and wastewater treatment 

and papermaking (Wang et al., 2016). 

 
 
 

 

Figure 2.10. Schematic of the electrical double layer that surrounds a particle in an aqueous 

medium and the position of the slipping plane. The zeta potential is the electrical potential at the 

slipping plane (Kaszuba et al., 2010). 

 

http://www.sciencedirect.com/science/article/pii/S0920410516302789
https://www.sciencedirect.com/science/article/pii/092777579380329D#!
http://pubs.acs.org/author/Schmut%2C+Rudolf.
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2.3.8 Effect of polymer characteristics on relative turbidity of clay suspensions  
As stated in the literature, the addition of cationic polymers introduces more positive charges on 

the clay particles causing them to destabilize the negatively charged particles upon adsorption 

(Thill et al., 2001). This phenomenon results in sedimentation of particles from the suspensions, 

and reduces the turbidity of clay suspensions, as a result (Zhu et al., 2011; Farrokhpay et al., 

2004). As described in section 2.2.9.2, the adsorption of the polymers on the surface of clay 

samples depends on the charge density and molecular weight of the polymers. To produce a 

novel flocculant, it is important to study the effect of charge density and molecular weight of 

kraft lignin based polymers on the relative turbidity of clay suspensions. 

2.3.9 Effect of polymer characteristics on stability of clay suspensions 
The stability of clay suspensions is crucial in the mining and mineral industries to achieve 

products with desired performance. However, suspended clay particles pose a major challenge 

due to their high concentrations (Schmidt and Lagaly, 1999; Wang et al., 2016). It is important to 

study the settling or stability characteristics of clay suspensions in the presence of kraft lignin 

based polymers in order to design effective flocculant. There are no reports on the effect of 

charge density and molecular weight of kraft lignin based polymers on the settling behavior of 

clay suspensions, which is one of the objectives of this thesis work. 

2.4 Methodology 
2.4.1 Charge density analysis  
Charge density of the polymers were determined via colloidal titration using a particle 

charge detector (PCD). In this method, a solution or a cationic modified lignin is neutralized with 

an oppositely charged standard polymer solution potassium polyvinylsulfate (PVSK) using a 

Mütek PCD 03 particle charge analyzer. The titration is based on their interaction to form the 

complexes that are stoichiometric with respect to charge of polymers (Huang et al., 2013; Ma, 

2011). A back titration method is applied to measure the surface charge density of clay (Lou et 

al., 2013). In this analysis, PVSK and PDADMAC solutions are employed as standard solutions 

since their interactions with the charges of clay particles are stoichiometrically controlled (Peng 

et al., 2011). The PDADMAC standard solution, which has an opposite charge density than that 

of clay particles, is added to colloidal suspensions to adsorb on the clay surface. After mixing 
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and filtering, the concentration of PVSK or PDADMAC solution is determined by the PCD, and 

is compared with the concentration of PVSK or PDADMAC in the control solutions (i.e. the 

solutions with no clay). The difference between the concentration of polymers in the filtrate and 

in its control solutions provides the surface charge density of clay particles (Lou et al., 2013), as 

the difference is due to the adsorption of PVSK or PDADMAC polymers on the surface of the 

clay particles.  

The carboxylate groups generated during modification of lignin is determined by using 

potentiometric titration method as described in the literature (Peng et al., 2011; Gunther, 2014).   

Peng and coauthors (2011) reported that potentiometric titration is a reliable method to determine 

the concentrations of charged groups present in the unmodified and modified polymers. 

2.4.2 Methods to characterize modified polymers 
Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful and widely used 

techniques in chemical research for investigating structures and dynamics of molecules. The 

method is based on spectral lines of different atomic nuclei that are excited when a strong 

magnetic field and a radiofrequency transmitter are applied (Lou et al., 2013; Hong et al., 2016). 

These excited nuclei absorb some energy and subsequently release energy as the nuclei relax 

back to their original states. The released energy can be scanned and expressed as chemical 

shifts, and considered as fingerprints of chemical structures. This relaxation time of the nuclei 

depends on the surrounding chemical groups and occurs differently depending on the type of 

chemical groups (Griffiths and Haseth, 1986). 

FTIR spectrometers (Fourier transform infrared spectrometer) is a simple, rapid and sensitive 

method applied in organic synthesis, polymer science, petrochemical engineering, 

pharmaceutical industry and food analysis (Konduri et al., 2017; Kim et al., 2004). It is an easy 

way to identify the presence of functional groups of polymers. In this analysis, infrared radiation 

is passed through a sample. Some of the infrared radiation is absorbed by the sample and some of 

it is passed through (transmitted). An infrared spectrum represents a fingerprint of a sample with 

absorption peaks, which corresponds to the frequencies of vibrations between the bonds of the 

atoms making up the material. Since each different material is a unique combination of atoms, no 

two compounds produce the exact same infrared spectrum. Therefore, infrared spectroscopy can 

result in a positive identification (qualitative analysis) of different materials. In addition, the size 
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of the peaks in the spectrum is a direct indication of the amount of material present. Infrared is 

an excellent tool for quantitative analysis with modern software algorithms (Kim et al., 2004). 

The FTIR spectrophotometer operates on a principle called Fourier transform (Kim et al., 2004); 

whose formula can be seen in Equation 2.1. 

F(ω) = ∫ 𝑓(𝑥)𝑒𝑖𝑥𝜔∞

∞
         (2.1) 

The reverse Fourier transform is  

F(x) = 1

2π
 ∫ 𝑓(𝜔)𝑒

+∞

−∞
iωxdx     (2.2) 

where ω is angular frequency (1/s) and x is the optical path difference. F (ω) is the spectrum and 

f(x) is called the interferogram. In this study, lignin based polymers were studied by FTIR to 

elucidate the difference in functional groups between unmodified and modified lignin. 

Thermo gravimetric analyzer (TGA) is a technique in which the mass of a substance is 

monitored by gradually raising the temperature of a sample in a furnace as its weight is measured 

on an analytical balance that remains outside of the furnace (Heinze et al., 2005; Daniel and 

Musil, 2013). In TGA assessment, mass loss is observed as a function of temperature and/or time 

as the sample is subjected to a controlled temperature change in a controlled atmosphere. The 

weight of the sample is plotted against temperature or time to depict thermal transitions in the 

material, such as loss of solvent in polymers, water in inorganic materials, and decomposition of 

the material (Solberg and Wagberg, 2003). In this study, the TGA analysis of dried polymeric 

samples (lignin) were conducted. The difference of the mass of the polymers during this process 

is measured using micro-thermal balance. A mass loss indicates the degradation of polymers at a 

specific temperature (Thompson, 2008). 

Elemental analyzer is a technique employed in determining the elemental compositions of 

polymers (Das et al., 2013; Forster and Schmidt, 1990). This method is used extensively for the 

determination of carbon, hydrogen, sulphur and nitogen elements of different samples across a 

wide range of applications, including pharmaceuticals, polymers, food and chemicals. Based on 

classical Pregl-Dumas method, the combustion process in pure oxygen and high temperature 

(furnace at 1000o C) environment, carbon is converted to carbon dioxide; hydrogen to water; 

nitrogen to nitrogen gas, and sulphur to sulphur dioxide. If other elements, such as chlorine, are 
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present, they will also be converted to combustion products, such as hydrogen chloride. Eluted 

gases are sent to the detector where electrical signals processed by the software to provide 

percentages of nitrogen, carbon, hydrogen, and sulfur contained in the sample (Forster and 

Schmidt, 1990). Unmodified and modified lignin were combusted to determine the elemental 

compositions. 

Dynamic light scattering (DLS) technique has been applied extensively for characterization of 

particles or molecules, which have been dispersed or dissolved in a liquid (Murphy, 1997; Rodd 

et al., 2000; Kostanski et al., 2004; Feng et al., 2015). The Brownian motion of particles or 

molecules in suspension causes laser light to be scattered at different intensities. Analysis of these 

intensity fluctuations yields the velocity of the Brownian motion. Due to the fact that large 

molecules or particles move slower than small molecules, a defined correlation function is 

generated. From the correlation function, the diffusion coefficient (D) of the molecules can be 

calculated by fitting the data. Finally the hydrodynamic radius (Rh) of the particles and molecules 

can be calculated using the Stokes-Einstein relationship according to equation 2.3 (Feng et al., 

2015). 

RH = 𝐾𝑇

6𝜋𝑛𝐷
       (2.3) 

where D is the diffusion coefficient, RH is radius (nm), k is Boltzmann constant, T is temperature 

(°C), and η is solvent viscosity (Pa. s). 

In this thesis, the hydrodynamic of lignin based polymers were determined in the presence of NaCl 

salt. The addition of salt prevents the aggregation of polymers by neutralizing their functional 

groups. After mixing, the polymer solutions are filtered and the filtrates containing polymer are 

subjected to the hydrodynamic size analysis using DLS. 

Gel permeation chromatography (GPC) is a widely used technique for determining the molecular 

weights and molecular weight distribution of the polymers (Heinze and Koschella, 2005, Lu et al., 

2002). When a sample is injected in the apparatus, the polymer molecules are separated with 

respect to their effective size. Separation occurs in columns with porous packings. The choice of 

columns depends upon the solvent and range of molecular weights.  
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In this analysis, a sample containing different polymeric molecules is introduced into a solvent 

flowing through the column. As the dissolved polymer molecules flow through the porous beads, 

they can diffuse into the internal gel to an extent depending on their size and the pore-size 

distribution of the gel. The principle of measurement is elution of components with mobile phase 

through the stationary phase. As the larger molecules cannot enter the pores of the GPC column, 

they pass quickly through the column and exit. Smaller molecules can enter some pores and they 

elute slower. In this arrangement, the different molecular species are eluted from the column in 

order of their molecular size as distinguished from their molecular weight. The elution behavior 

of sample produces reliable and reproducible chromatograms, which represents the time taken for 

a molecule of particular size (a fraction) to elute from column (retention time). The concentration 

of polymer molecules in each eluting fraction can be monitored by means of a polymer-sensitive 

detector, such as refractive, infrared or ultraviolet. 

Moreover, a correlation can be made between size and molecular weight by plotting a graph 

between log molecular weight (M) and retention time for standard samples, and this correlation 

can be used for determining the molecular weight distribution of polymers. For a more precise 

determination of molecular weight of polymers, the chromatogram is divided into several 

equidistant slices. The weight average molecular weight (Mw), number average molecular weight 

(Mn) and polydispersity index (PDI) are calculated following equations 2.4, 2.5 and 2.6 (Kostanski, 

et al., 2004; Striegel et al., 2009).  
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where N refers to the number of polymer chains, having molecular weight of M, and wi 

corresponds to weight fraction distribution. The ratio of Mw over Mn provides information about 
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the distribution of the chain lengths, which is denoted as polydispersity index (PDI). The number 

or weight fraction distribution (Ni or Mi) can be obtained from the concentration of molecules 

measured by the viscometer and refractive index detectors associated with GPC. In this work, 

polymer samples (lignin) were dissolved in sodium nitrate salt solution, which was the mobile 

phase of the GPC system used in this work. After dissolving, the polymer solutions were filtered 

and the filtrates were subjected to molecular weight analysis. The molecular weight and 

polydispersity of the polymers were assessed using GPC, equipped with viscometer and refractive 

index detectors. 

Tensiometer can be used to determine the wettability of polymers by measuring the contact angle 

of water on solid surfaces (Grundke et al., 1996; Kwok and Neumann, 2000; Rogers, 2005). 

Contact angle, θ, is a quantitative measure of the wetting of a solid by a liquid. Contact angle is 

the interior angle formed by the sample being used and the tangent to the drop interface at the 

apparent intersection of all three interfaces. This intersection is called the contact line. Figure 2.11 

shows the tangent line and contact angle of a liquid drop on a surface. More specifically, a contact 

angle less than 90° indicates that wetting of the surface is favorable, and the fluid will spread over 

a large area on the surface; while, the contact angles greater than 90° generally means that wetting 

of the surface is unfavorable so the fluid will minimize its contact with the surface and form a 

compact liquid droplet. For example, complete wetting occurs when the contact angle is 0°, as the 

droplet spread completely (Yuan et al., 2013). 

 

Figure 2.11. Illustration of contact angles formed by sessile liquid drops on a smooth 

homogeneous solid surface (Yuan et al., 2013). 
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Historically, a static contact angle on a flat surface is defined by the Young Equation (2.7). 

Theoretically, the contact angle is a distinctive property of a given solid-liquid system under 

specific conditions (Loginov et al., 2008). As described by Young in 1805, the contact angle of a 

liquid droplet on an ideal solid surface is defined as the mechanical equilibrium of the droplet 

balanced by the action of three interfacial tensions as represented in Equation 2.7 (Rogers, 2005). 

𝛾𝑙𝜐 𝑐𝑜𝑠𝜃𝑌 = 𝛾𝑠𝜐 − 𝛾𝑠𝑙      (2.7) 

where, γlv, γsv, and γsl represent the liquid-vapor, solid-vapor, and solid-liquid interfacial tensions, 

respectively, and θY is the contact angle in degrees (°).  

In this thesis, polymers (lignin) or clay samples were coated on microscopic glass slides using a 

spin coater under controlled conditions in nitrogen atmosphere. After coating, the slides were 

wetted with required volume of water droplets by the sessile drop technique, and the wettability 

of the polymers or clay samples were determined by contact angle and interfacial measurements 

using an optical tensiometer.  

2.4.3 Clay properties 
Brunauer-Emmett-Teller (BET) instrument determines the specific surface area (m²/g) of clay 

samples (Tombac and Szekeres, 2006; Howang and Barron, 2011). The volume of gas adsorbed 

to the surface of the particles is measured at the boiling point of nitrogen. The amount of adsorbed 

gas is correlated to the total surface area of the particles including pores in the surface. The specific 

surface area of a sample is determined by physical adsorption of a gas on the surface of the solid 

particle and by calculating the amount of adsorbate gas corresponding to a monomolecular layer 

on the surface of the particle. Physical adsorption results from relatively weak forces (van der 

Waals forces) between the adsorbate gas molecules and the adsorbent surface area of the particle. 

The determination is usually carried out at the temperature of liquid nitrogen. The amount of gas 

adsorbed can be measured by a volumetric or continuous flow procedure. In this method, a 

monolayer adsorption of the gas is determined on the surface, from which the surface area is 

measured by the BET equation (Equation 2.8) (Cartula and Sabio, 1991; Hussein et al., 1996). 
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where P (Pa) and P0 (Pa) are the equilibrium and the saturation pressure of the gas at the 

temperature of adsorption, representivley, v (mL) is the gas adsorption amount (for example, in 

volume units), and vm (mL) is the amount of gas adsorbed in a monolayer form on the surface and 

c is the BET constant.  

By plotting 
)( 0 ppV

p

a 
 against

0p
p

, the BET plot can be obtained. The intercept and slope of the 

BET plot can be identified, from which Vm and c can be calculated.  

The total surface area (BET) of the solid can be calculated from Equation 2.9. 
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                                    (2.9) 

where L is the Avogadro constant and σg is the cross-section area of the adsorbed gas molecules 

(σg for nitrogen is 0.162 nm2).  

Scanning electron microscopy (SEM) in tandem with energy dispersive X-ray spectroscopy 

(EDX) was used to determine the chemical composition of kaolin (Tombac and Szekeres, 2006; 

Wu et al., 2012; Vie et al., 2007). In this thesis, the clay samples were initially mixed in acetone 

under ultrasonic vibrations to disperse the particles and allowed to dry. After drying, the samples 

were coated with carbon under vacuum using carbon coating technique and analyzed using SEM-

EDX technique. In EDX Analysis, the particles (specimen) is bombarded with an electron beam 

inside the scanning electron microscope. The bombarded electron beam collides with the electrons 

of specimen’s atoms and moves the electrons present in the inner shell of atoms to the outer shell. 

In this process, the void generated in the lower shell is occupied by a higher-energy electron from 

an outer shell of specimen atom by releasing energy in the form of X-rays. Furthermore, the atom 

of every element in the particles releases X-rays with unique amounts of energy in the transferring 

process. Thus, by measuring the amounts of energy present in the X-rays released by the sample 

in electron beam bombardment, the identity of the atom can be established (Zhou et al., 2016; 

Zhu, et al., 2012).   

According to the literature, X-ray diffractometer (XRD) is described as a powerful tool in assessing 

the mineral compositions of substances (Penkavova et al., 2015; Hu, 2002; Roh, 1995). In this 

analysis, the samples were dried to remove any moisture and loaded on the spinner of the XRD 
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and scanned for mineral compositions. The three-dimensional structure of crystalline materials, 

such as clay minerals, is defined by regular, repeating planes of atoms that form a crystal lattice. 

When an X-ray beam interacts with these planes of atoms, one part of the beam is transmitted, one 

part is absorbed by the sample, one part is refracted and scattered, and another part is diffracted. 

Diffraction of an X-ray beam by a crystalline solid produces spectra, and furthermore each mineral 

diffracts the X-ray beam differently, depending on what atoms present in the crystal lattice and 

how they are arranged. When an X-ray beam hits the clay sample and is diffracted, the distances 

(d-spacings) between the planes of the atoms that constitute the sample can be measured by 

applying Bragg's Law using Equation 2.10 (Mishra et al., 2002; Peng-wei et al., 2008) 

nλ =2d sinθ       (2.10)  

where the integer n is the order of the diffracted beam, 𝜆 is the wavelength of the incident X-ray 

beam in nm, d is the distance between adjacent planes of atoms (the d-spacings) in nm, and θ is 

the angle of incidence of the X-ray beam in degrees (°).  

The configuration of an XRD unit is aimed to perform this measurement. The distinctive set of d-

spacings generated in a typical X-ray scan provides a unique feature of the mineral or minerals 

present in the clay sample. When properly interpreted, by comparison with standard reference 

patterns and measurements, minerals present in the clay sample can be identified. 

2.4.4 Properties of clay suspensions 
The zeta potential is an important parameter to evaluate the colloidal stability of a system. As 

described in literature, zeta potential, which is also referred to as electrokinetic potential of 

particles in the suspension, can be measured by zeta potential analyzer. This technique includes an 

electrophoresis principle. When an electric field is applied across an electrolyte solution, charged 

particles suspended in the electrolyte are attracted towards the electrode of opposite charges, while 

viscous forces acting on the particles tend to oppose this movement. However, when an 

equilibrium is reached between these two opposing forces, the particles move with constant 

velocity. This velocity of the particle is also referred to as electrophoretic mobility. Based on this 

principle, the zeta potential of particles can be measured by the Smoluchowski equation (Equation 

2.11) (Riddick, 1961; Araki et al., 1992).  
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UE = 2Ɛ𝑧𝑓(𝑘𝑎)

3ƞ
       (2.11) 

 

where z is zeta potential (mV), UE is electrophoretic mobility (m/s), Ɛ is dielectric constant, ƞ is 

viscosity of suspension (mPa.s) and f (ka) is Smoluchowski constant (either 1 or 1.5). In this study, 

the zeta potential of clay suspensions in the presence or absence of lignin-based polymers was 

determined at a constant electric filed. 

Relative turbidity is one of the important criteria used for studying the stability of colloidal 

suspensions (He and Fatehi, 2015). Colloidal particles in the suspensions possess charges on their 

surfaces, which may result in dispersion (due to more repulsion forces) or aggregation (due to 

more aggregation forces) of the particles. If the repulsion forces between the particles dominate, 

the particles tend to repel each other and be more distributed within the system, which is 

accompanied by an increase in the relative turbidity. On the other hand, if the repulsion forces 

diminish, the particles tend to aggregate and settle, which results in decreased relative turbidity of 

the colloidal suspensions. As described elsewhere, a dynamic drainage jar (DDJ) equipped with 

photometric dispersion analyzer (PDA) is widely employed to analyze the dispersion of colloidal 

suspensions via measuring the relative turbidity of colloidal suspensions. PDA is a fibre-optical 

monitor that measures the fluctuation in the intensity of light transmitted through a flowing 

suspension. The fluctuations in the intensity of light were quantified in terms of direct current (DC) 

voltage signals (Petzold et al., 2006). In this analysis, distilled water was transferred to DDJ and 

circulated from DDJ to PDA for a required period of time and the corresponding DC voltage values 

were recorded. Later, clay suspension in the presence or absence of polymers (lignin or xylan) was 

added to DDJ and allowed for passing through PDA. The change in DC voltage signals were 

recorded and used further to calculate the relative turbidity of clay suspensions by Equation 2.12.  

Relative turbidity, 𝜏𝑟 = 𝜏𝑓

𝜏𝑖
=  

𝑙𝑛(
𝑉0

𝑉𝑓
)

𝑙𝑛(
𝑉0

𝑉𝑖
)
     (2.12)     

where τf is denoted as the final suspension turbidity, and τi is denoted as initial suspension turbidity, 

V0 is initial base DC voltage, Vi stands for unflocculated suspension DC voltage, and Vf is final 

suspension DC voltage. 
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In laser diffraction instrument, particle size distributions were calculated by the scattering pattern 

of a clay suspension (Loginov et al., 2008; Nonrorv, 1997; Zhang et al., 2014). In this technique, 

an intense laser beam of fixed wavelength passes through the clay sample and a series of detectors 

to measure the light pattern produces over a wide range of angles. The Mie theory was considered 

to calculate the particle size distributions from light scattering data. It interprets the scattering 

intensities for all the particles with different sizes and transparencies based on Equation 2.13 

(Zhang et al., 2014). 

 

I = 2𝜋𝑟𝑁𝑚

𝜆
      (2.13) 

In this equation, I is denoted the intensity of incident light, r is the radius of the particles (nm), Nm 

is the refractive index of the medium and 𝜆 is the wavelength of incident light (nm). 

The fractal dimensions (structure) of the flocs were determined by small-angle laser light 

scattering technology (SALLS) (De Boer and Weerd, 1987; Waite et al., 2001; Tang et al., 2002; 

Jarvis et al., 2008). In this experiment, the incident light was directed onto a sample containing 

the particles/flocs and then the light was scattered at different angles with respect to the incident 

direction. The intensity of the lights scattered at the angles of 0.01° and 40.6° is a function of the 

scattering vector (Q) (Teixeira, 1988; Bushell et al., 2002). This vector is defined as the difference 

between the incident and scattered wave vectors of the radiation light in the medium (i.e., water). 

The magnitude of the wave vector can be approximated following equation 2.14: 

 

𝑄 =
4𝜋𝑛 sin(𝜃/2)

λ
          (2.14) 

where, n is the refractive of the medium (i.e., n=1.33 as deionized water is used), θ is the 

scattered angle (from 0.01° to 40.6°), and λ is the wavelength of radiation (633 nm).  

 

It has been shown that for a mass fractal aggregate that satisfies the conditions for 

the Rayleigh-Gans-Debye (RGD) theory, Equation 2.14 can be used to correlate the scattered 

light intensity (I) with the scattering wave vector (Q) (Farias et al., 1996). Therefore, Equation 

2.15 is classically used to determine the mass fractal dimension from the negative slope of the 

linear region of the log-log plot of I vs Q. 
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𝐼 ∝ 𝑄−𝐷𝑓       (2.15)  

In this equation, Df is fractal dimension of the flocs (Jarvis et al., 2008). 

In addition, the stability of kaolin suspensions in the presence and absence of lignin polymer was 

determined using a vertical scan analyzer, Formulation, France as described in the literature (Ryan 

and Gschwend, 1994; Senoussi et al., 2016). In this analysis, kaolin or clay suspensions with 

required concentration were prepared under aqueous conditions in the presence or absence of 

polymers (lignin). The suspensions were transferred to vial and the analysis was performed by 

allowing light beams pass through a clay dispersion. The light passes through a transmission zone 

of the samples, while it cannot pass throughout the sediment zone of the samples. Two 

synchronous optical sensors receive light transmitted through the sample (180° from the incident 

light, transmission sensor) and light backscattered by the sample (45° from the incident radiation, 

backscattering detector). The higher transmission zone implies less stable kaolin dispersions due 

to the sedimentation of particles. These transmittance and backscattering signals were recorded as 

a percentage of transmittance signals in regard to that of the reference chemical, silicon oil. 

The transmission and backscattering data was used for determining the destabilization index (DSI) 

and average particle diameter using the turbisoft software by equations 2.16 and 2.17 (Senoussi et 

al., 2016). 

DSI = Ʃi 
Ʃℎ |𝑠𝑐𝑎𝑛𝑖 (ℎ)− 𝑠𝑐𝑎𝑛𝑖−1 (ℎ)|

𝐻
       (2.16) 

where scani (h) and scani-1 (h) are the transmission signals for two consecutive time intervals at a 

given height and H is the total height of the sample.  

Correlation between the particle migration velocity and the properties of the suspensions can be 

determined using Equation 2.17. 

V (𝛷, d) = |ƿ𝑝− ƿc|𝑔𝑑2

18𝑣ƿ𝑐
 ×  

[1−𝛷]

[1+ 
4.6 𝛷

(1−𝛷)2]
      (2.17) 

where V is the particle migration velocity (µm/min), ƿc is the continuous phase density (g/mL), ƿp 

is the particle density (g/mL), d is the particle mean diameter (µm), v is the continuous phase 
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dynamic viscosity (mPa.s), and 𝛷 is the volume fraction of dispersed particles (i.e., kaolin 

particles) in %.  

The size of kaolin particles in the dispersed state (i.e. not settled) and their volume fractions can 

be obtained based on the backscattering data collected. Based on the Mie theory, the backscattering 

data measured by the instrument can be expressed as a function of photo transport mean free path, 

I* in Equation 2.18. 

 

BS = 1

√𝐼∗         (2.18) 

 

In addition, the photo transport mean free path, I* (µm), could be obtained via following Equation 

2.19: 

 

I* (d, θ) = 2𝑑

3𝜃 (1−𝑔)𝑄𝑠
      (2.19) 

 

where, d is the particle mean diameter (µm), θ is the particle volume fraction (%), g and Qs are the 

dimensionless scattering efficiency factors, depending on the particle diameter (d), wave length of 

light (λ) in nm, refractive index of dispersed kaolin particles (np), and the refractive index of 

continuous phase (nf). In this work, the refractive indices of kaolin particles and water were 

considered to be 1.54 and 1.33, respectively. According to Eqs. 2.18 and 2.19, backscattering data 

is directly dependent on the particle mean diameter, d, and their volume fraction, θ (Sarwar et al., 

2012). By providing refractive indices of kaolin and water, the turbisoft 2.1 software associated 

with the instrument would generate a correlation between the size of kaolin particles and their 

volume fraction in the dispersion from the backscattering data.  

Recently, the number of optical techniques available to monitor the flocculation behavior in 

industrial separation processes has been expanded by employing non-imaging scanning laser 

microscopy, also called focused beam reflectance measurement, FBRM. This methodology allows 

for studying and optimizing the flocculation and coagulation processes (determination of 

mechanism and floc properties, selecting the optimal flocculant, dosage and conditions) in a faster 

and more efficient way (Thapa et al., 2009; Zhu et al., 2011; Senaputra et al., 2013; Klein et al., 



49 
  

2013). The FBRM measurement principle is based on backscattering light using a probe where a 

revolving laser beam is projected through a sapphire window. The beam is highly focused just 

outside the window surface and rotates in order to perform measurements in a circular path. As 

particles pass by the window surface, the focused beam intersects the edge of a particle as 

illustrated in Figure 2.12. The particle then begins to backscatter laser light until the focused beam 

reaches the opposite edge of the particle. The backscattered light is collected by FBRM optics and 

converted into an electronic signal. Particle backscattering time is multiplied by scan speed 

resulting in a chord length, which is a straight line between any two points on the edge of a particle. 

During a specified measurement time, recorded chord lengths are displayed in the form of chord 

length distribution (CLD). Thousands of chord length measurements are collected per second, 

producing a histogram in which the number of the observed counts is sorted in several chord length 

bins over the range 0.5 to 1000 or 2000 µm. From the data, total counts, counts in specific size 

regions (population), mean chord length, and other statistical parameters can be calculated and 

analyzed using the FBRM software (Clain et al., 2015). This machine was used for studying the 

flocculation performance of lignin polymers in clay suspensions. 
 

 

Figure 2.12. FBRM chord length measurement (from Mettler Toledo, USA). 

Quartz crystal microbalance with dissipation (QCM-D) technique was widely applied in the field 

of biological and non-biological systems (polymers, polymer-brushes, electro-polymerization) 

(Nomura and Minemura, 1980; Duner et al., 2013; McNamara and Blanford, 2013). The 
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viscoelastic properties of the polymer in liquid have studied extensively by QCM-D to allow for 

real-time analysis of polymer adsorption and/or interactions on various surfaces (Dixon, 2008).  

QCM-D measures the resonance frequency (f) of a quartz crystal at its fundamental resonance 

frequency recorded at 5 MHz with sensitivity constant (C) of 0.177 mg/m2 Hz and at several 

overtones. The quartz crystal sensor is a thin piezoelectric plate with gold coated on each side as 

electrodes. When AC voltage is applied to crystal causing the sensor crystal to oscillate at its 

specific resonance frequency. The resonance frequency of a crystal is dependent to its mass. The 

principle of the QCM-D is that any mass of polymers added or removed lead to change in 

resonance frequency f (Duner et al., 2013). The equation that correlates frequency change (f) 

and mass change (m) is named Sauerbrey equation, where negative frequency shift related to the 

mass increase: 

 

Δm = − 
𝐶𝛥𝐹

𝑛
             (2.20) 

 

where C is the mass sensitivity constant that depends on the crystal properties (17.7 ng/ Hz ×cm2) 

for a 5 MHz quartz crystal sensor and n is the overtone number (1, 3, 5, 7, 9, 11, and 13), which is 

the natural resonance or vibration frequency of QCM-D system. However, the Sauerbrey relation 

is only applicable for rigid and evenly distributed thin adsorbed films that do not exhibit energy 

losses during oscillation. A way to determine the validity of the Sauerbrey equation is to look at 

the viscoelastic properties of the adsorbed layer through the change in dissipation energy of the 

adsorbed layer. More viscoelastic material leads to the higher dissipation (energy release) 

(Czandema and LU, 1984; Rodahl et al., 1995). The dissipation of sensors’ energy, D, which 

results from adsorption of a viscous or loose layer, is also measured (Rodahl et al., 1995). This 

dissipation energy is given by equation 2.21: 

 

D = 𝐸𝑑

2𝜋𝐸𝑠
            (2.21) 

 

where Ed is the energy dissipated during one oscillation and Es is the energy stored in the 

oscillating system. Thus, changes in adsorbed mass of, for example, a rigid polymer provide a 
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change in frequency, but for viscoelastic polymers, there is a change both in frequency and 

dissipation. This instrument was used for studying the self-assembly of lignin based polymers. 

The LUMiSizer is an analytical centrifuge that uses the principle of centrifugal separation analysis 

to measure particle size, demixing, and consolidation. It combines a centrifuge with an optics 

system (NIR or blue light source and a linear high resolution detector) to monitor the concentration 

profile over the entire length of a sample, while it is being subjected to centrifugation using STEP-

technology (space and time resolved extinction profiles technology). A light source sends parallel 

NIR-light (𝜆 of 880 nm), which is passed through the sample cells lying on the rotor. The 

distribution of local transmission is recorded over the entire sample length by a CCD-line detector. 

Finally, space and time resolved transmission profiles are obtained, from which the integral value 

indicates the sedimentation progress with time (Chang and Liao, 2016). This instrument was used 

for determining the dispersion affinity of lignin polymers in clay suspension. 

 
Figure 2.13. Principle of STEP-Technology (from LUM-Gmbh). 
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Chapter 3: Synthesis and characterization of lignin- poly 

(acrylamide) - poly (2-methacryloyloxyethyl) trimethyl 

ammonium chloride copolymer 

3.1 Abstract 
In this work, two monomers, acrylamide (AM) and (2-methacryloyloxyethyl) trimethyl 

ammonium chloride (DMC) were copolymerized from kraft lignin (KL) in an aqueous suspension, 

initiated by free radical copolymerization in the presence of potassium persulfate. The impact of 

copolymerization conditions on the charge density and molecular weight of the copolymers was 

investigated. The molecular weight and mass balance analyses confirmed that the homopolymer 

(polyDMC (PDMC) and polyAM (PAM)) and undesired copolymer (AM-DMC) productions 

dominated as the time, initiator and DMC dosage increased more than the optimum values. The 

activation energy of the polymerization of KL and AM (43.02 kJ mol-1), KL and DMC (21.99 kJ 

mol-1), AM (14.54 kJ mol-1), DMC (10.34 kJ mol-1), and AM and DMC (18.13 kJ mol-1) was 

determined. Proton nuclear magnetic resonance (1H-NMR), Fourier transform infrared 

spectroscopy (FTIR), thermogravimetric analysis, and elemental analysis confirmed the 

production of KL-AM-DMC copolymer.   

3.2 Introduction 
Lignin is the second most abundant biopolymer in the world after cellulose and its content in wood 

varies from 20 wt. % to 30 wt. % (Kuhire et al., 2017; Bernardini et al., 2015; Ma et al., 2016). It 

is mainly produced as a by-product in kraft pulping process (i.e., the dominant pulping process in 

the world) (Windt et al., 2009), where the spent liquor (i.e., black liquor) from the pulping process 

is combusted to recover the pulping chemicals, and its lignin is utilized as a fuel source (Voitl et 

al., 2010). However, kraft lignin has potential to be converted to value-added products. In recent 

years, kraft lignin has attracted much attention for its potential use in green material productions 

because of its renewability, nontoxicity, and biodegradability (Gooselink et al., 2014). The 

utilization of kraft lignin in the production of value-added products contributes to considerable 

economic and environmental benefits (Levasseur et al., 2011). However, the low reactivity of kraft 

lignin limits its chemical modifications and thus its commercial use (Zakzeski et al., 2010). 
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Several methods are common for wastewater treatments, among which coagulation–flocculation 

process is one of the most popular one because of its economic feasibility and effectiveness (Sing 

et al., 2014). Although high molecular weight acrylamide based polymers are extensively used as 

flocculants for various wastewater systems (Junren et al., 2013), they are reported to have 

biodegradation, environmental and economic issues. The copolymerization of acrylamide (AM) 

with anionic and cationic monomers was investigated for producing efficient flocculants for 

wastewater treatments (Fanghui et al., 2014; Duygu et al., 2002; Jamshidi et al., 2014; Wang et 

al., 2012). In one study, a cationic monomer, 2-[(methacryloyloxy) ethyl] trimethylammonium 

chloride (DMC), was copolymerized with acrylamide and the resultant copolymer was used as a 

flocculant for dye removals from wastewater (Shen et al., 2006). Polyamine, 

polydiallyldimethylammoniumchloride (PDADMAC), and the copolymer of acrylamide and 2-

[(methacryloyloxy) ethyl] trimethylammonium chloride (AM-DMC) were also reported as 

effective cationic flocculants for removing color from wastewater (Yue et al., 2008; Abdollahi et 

al., 2011). However, these polymers were not very environmentally friendly. The production of an 

environmentally friendly, cationic, water soluble and high molecular weight flocculant is a 

challenging task (Ben et al., 2011). In the past, various green copolymers were produced for this 

purpose. In one study, chitosan-AM-DMC with the charge density of 1.02 meq g-1 was produced 

and used as a flocculant for treating papermaking wastewater, which resulted in 84.3% lignin 

removal, 80.1% chemical oxygen demand (COD) removal, and 93.9% water recovery (Ben et al., 

2011). In another study, starch-based copolymer (starch-PAM- PDMC) was used as a flocculant 

for pulp mill wastewater treatment, which led to turbidity and lignin removals of 95.7 % and 83.4 

%, respectively, along with 72.7% of water recovery efficiency(Wang et al., 2001). In another 

study, a starch-AM-DMC flocculant was produced for treating wastes of drilling mud, and its 

application led to the reduction in water content of the drilling mud from 50 % to 27.6 % (Fanghui 

et al., 2010). The demand for green flocculants utilized in various wastewater and industrial 

effluent applications is expected to rise over the next few years. Despite the acceptable efficiency 

of cationic starch-based flocculants, the industrial applications of starch-based polymers may be 

restricted as it is a main food resource (Lee et al., 2014; Sriroth et al., 2013). On the other hand, 

lignin is a non-food source and available abundantly, which can be used for the production of cost 

effective and efficient cationic flocculants. 
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Kraft lignin can be modified to produce various chemicals used in the paper, mining, textile, and 

wastewater systems. Lignin can be catatonically modified to produce asphalt emulsifiers, cationic 

surfactants, flocculants, and strength additives for composites (Meister, 2002; Savy et al., 2014; 

Silva et al., 2009). Previously, different modification pathways, such as amination (Mannich 

reaction) and grafting were proposed to increase lignin’s chemical reactivity and solubility in 

organic solvents (Xueyu et al., 2014; Maziero et al., 2012). In one report, lignin-acrylamide 

copolymer was produced by reacting lignin, originated from the sludge of a pulping process, and 

acrylamide, where the copolymer was capable of removing 52 % of turbidity from aluminum 

sulfate or poly aluminum chloride suspensions (Rong et al., 2013). In another study, the graft 

copolymerization of enzymatically hydrolyzed (EH) lignin with acrylamide (AM) was 

investigated in an aqueous solution, and the product was able to remove 85% of azo-dyes from 

dye wastewater when the dosage of the copolymer was 200 mg L-1 (Fang et al., 2009). 

However, the production of kraft lignin-based copolymer with cationic charges in aqueous 

environments was rarely reported in the past, which is a more cost-effective and non-toxic method 

for lignin copolymer production. The novelties of this work were the i) production of water soluble 

kraft lignin based copolymer via free radical copolymerization of kraft lignin, AM and DMC, and 

ii) investigation on the impact of the modification conditions on the solubility and charge density 

of the copolymer. In this work, the produced copolymer was analyzed by means of Fourier-

transform infrared (FTIR), thermogravimetric analysis (TGA), 1H-NMR and an elemental 

analyzer. To understand the kinetics of the copolymerization reaction, the activation energy (Ea) 

of the copolymers (AM-DMC, KL-AM, KL-DMC) and homopolymers (PAM, PDMC) were also 

determined.  

3.3 Materials and Methods 

3.3.1 Materials 
Softwood kraft lignin (KL) was produced via LignoForceTM technology of FPInnovations in 

Thunder Bay, ON (Kouisni et al., 2012). The molecular weight (Mw) of this lignin sample was 

reported to be 17,900 g mol-1 (Kong et al., 2015). (2-methacryloyloxyethyl) trimethyl ammonium 

chloride (DMC), 80 wt. % in water, acrylamide (AM) with 99.0 % purity, potassium persulfate, 

K2S2O8 (analytical grades), and trimethylsilyl propanoic acid were all obtained from Sigma-

Aldrich company. Cellulose acetate dialysis membrane with the molecular weight cut off of 1,000 
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g mol-1 was obtained from Spectrum Labs Inc., USA. Potassium polyvinyl sulfate (PVSK) was 

provided by Wako Pure Chem. Ltd. Japan and was diluted to 0.005 M prior to use. Ethanol (95 

vol. %) was received from Fisher Scientific company. All chemicals were applied without further 

purification.  

3.3.2 Copolymerization of AM and DMC from kraft lignin 
First, 2 g of KL was dissolved in 40 mL of deionized water in a 250 mL three neck round bottom 

glass flask while stirring at 300 rpm. Predetermined quantities of AM and DMC were added to the 

flask and stirred at 300 rpm for 5 min. The reaction solution was continuously purged with nitrogen 

at room temperature for 30 min to remove any residual oxygen. Subsequently, potassium persulfate 

was added as an initiator to the system and the reaction solution purged for another 5 min. The 

copolymerization of KL, AM, and DMC was processed by placing the flask in a preheated water 

bath after adjusting the pH of the medium. The copolymerization reaction of KL, AM, and DMC 

was conducted at different pHs (2-10), temperatures (50 °C- 90 °C), times (2 h – 6 h), initiator 

dosages (0.036 mmol – 0.22 mmol), 0.011 mol of KL, 0.028 mol of AM, and 0.024 mol of DMC. 

In another set of experiments, the copolymer of AM and DMC was prepared under the reaction 

conditions of pH 4, temperatures range of 40 °C and 80 °C, 2 h, initiator dosage of 0.11 mmol, 

0.028 mol of AM, and 0.024 mol of DMC. The copolymer of KL-AM was synthesized at pH 4, 

temperature range of 50 °C and 90 °C, 2 h, initiator dosage of 0.11 mmol and 0.028 mol of AM. 

Similarly, the copolymer of KL and DMC was prepared under the reaction conditions of pH 4, 

temperature range of 50 °C and 90 °C, 2 h, initiator dosage of 0.11 mmol and 0.024 mol of DMC. 

In addition, the homopolymers of PDMC and PAM were produced under the reaction conditions 

of pH 4, temperature range of 40 °C to 80 °C, 3 h, initiator dosage of 0.11 mmol, 0.024 moles of 

DMC and 0.028 moles of AM. All experiments were repeated three times, and the average 

data is presented via error bars in this work. 

3.3.3 Polymer purification and mass balance 
Once the required reaction conditions attained, the flask containing the reaction solutions was 

submerged in cold tap water for 20 min. The solutions were then mixed with 95% ethanol in order 

to separate the lignin-based copolymers (KL-AM-DMC) from the rest of the reaction media. 

Ethanol precipitation was carried out for separating AM and DMC monomers from chitosan-AM-

DMC copolymer in the past (Wang et al., 2012; Ben et al., 2012). By adding ethanol to the reaction 
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media, the solutions became suspensions. The suspensions were centrifuged at 3500 rpm for 10 

min to collect the agglomerated copolymers (e.g., KL-AM-DMC). In this case, the homopolymers 

(i.e., PAM, PDMC), copolymer of AM-DMC and unreacted monomers (i.e., AM, DMC) would 

remain in the supernatants. These supernatants were dialyzed with membrane for 2 days, while 

changing water of dialysis every 12 h, which removed the unreacted monomers from the 

hydrolyzed samples. The dried (at 105 °C) samples collected at this step were considered as 

homopolymers of PAM and PDMC and copolymer of AM-DMC. H-NMR analysis was conducted 

on these samples to determine the properties of PAM, PDMC, and AM-DMC. Also, the amounts 

of KL, KL-DMC, KL-AM and KL-AM-DMC in the supernatants were determined using UV/vis 

spectrophotometer, Gensys S10, at 280 nm, via considering a calibration curve made for KL at 

predetermined concentrations. 

On the other hand, the precipitates of ethanol treatment were remixed with ethanol (95 %v) for 5 

min. Then, the mixtures were centrifuged at 3500 rpm for 10 min and this process was repeated 3 

times. The supernatants of last cycle of ethanol treatment were collected for identifying if any AM-

DMC, PDMC or PAM was remained in the precipitates (with the help of H-NMR analysis). The 

collected precipitates of ethanol treatment were also collected and dialyzed with membrane for 2 

days, while changing the water of dialysis every 12 h. The samples were dried at 105 °C and 

considered as final copolymer products containing KL-AM-DMC, KL-DMC and KL-AM. The 

dried mass was considered for determining the yield of copolymer products. 

The aforementioned purification method was repeated to obtain the copolymers of KL-DMC, and 

KL-AM via copolymerization reactions of KL with DMC and AM, respectively. It should be stated 

that the entire purification process was repeated for the products of homopolymerization reactions 

of AM and DMC separately, but no precipitates were obtained via ethanol treatment and thus the 

analysis for these homopolymers was based on assessing only the supernatants. In the 

copolymerization of three component systems of KL, AM and DMC, it was not possible to 

distinguish KL-AM, KL-DMC and KL-AM-DMC as there was no procedure to separate KL-AM, 

KL-DMC and KL-AM-DMC. 

Also, the yield of homopolymers and copolymers were determined by considering the dried mass 

of homopolymer products and copolymer products after dialysis, and the total mass of monomers 

used in the reactions. As unreacted monomers were removed via dialysis, it was not possible to 
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determine the mass of unreacted monomers directly. Therefore, the mass of unreacted monomers 

was determined via developing a mass balance for all monomers used in the reactions and the mass 

of copolymers and homopolymers collected after dialysis and drying, and this analysis helped 

determine the yield of unreacted monomers.   

3.3.4 Activation energy analysis 
In different sets of experiment, the copolymerization of KL-AM, KL-DMC, AM-DMC and the 

homopolymerization of AM or DMC were conducted under the reaction conditions described 

previously, but at the temperature range of 40 °C to 90 °C and the time interval of 15 to 120 min. 

Then, the steps described previously were followed to purify the homopolymer or copolymer 

products. The activation energy (Ea) was determined according to the procedure stated in previous 

studies via considering Arrhenius equation, as well as the reaction yield, temperature and time of 

the reactions (Taghizadeh and Khosravy, 2003; Goel et al., 2009; Gupta et al., 2002; Ge et al., 

1997; Leowandowska et al., 2007; Bi and Zhang, 2012) 

3.3.5 Solubility and charge density determination  
To measure the solubility of the copolymer products, 0.2 g of copolymer of KL-AM-DMC was 

suspended in 20 mL of deionized water by stirring at 100 rpm and 30 °C for 1 h in a water bath 

shaker (Innova 3100, Brunswick Scientific, Edison, NJ, USA). Then, the suspensions were 

centrifuged at 1000 rpm for 5 min. The supernatants were collected and used for analyzing the 

charge density and solubility of KL-AM-DMC. The concentration of copolymers in the 

supernatants was determined by drying the supernatants at 105 °C, and the solubility was 

determined based on equation 3.1: 

                  Solubility (wt. %) =   Mass of dissolved lignin in supernatants

Initial mass of lignin
 × 100        (3.1) 

The charge density of KL-AM-DMC was measured by a particle charge detector, Mütek PCD 04 

titrator (Herrsching, Germany) with a PVSK solution (0.0050 M) following equation 3.2. Three 

repeats were carried out, and the average values were reported in this work. 

                      Charge density (meq g−1) =
Volume of PVSK×concentration of PVSK

Mass of lignin in the titrator
           (3.2) 
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3.3.6 Molecular weight analysis 
About 5 mg sample of dried KL-AM-DMC copolymer was dissolved in 10 mL of 5.0 wt. % acetic 

acid solution by stirring at 600 rpm for 48 h and 35 °C. The solution was then filtered with a 13 

mm diameter nylon filter (pore size 0.2 µm) and the filtered solutions were used for molecular 

weight analysis. The molecular weight analysis of the samples was carried out using Malvern, 

GPCmax VE2001 Module, Viscotek system with viscometer and RI detectors. PolyAnalytic 

columns were used, and 5.0 wt. % acetic acid was used as solvent and eluent with the flow rate of 

0.7 mL min-1. The column temperature was set to 35 °C. Poly ethylene oxide was used as a standard 

in this system. The molecular weights of PAM, PDMC, and AM-DMC were also determined as 

stated above. 

3.3.7 Elemental analysis 
The elemental analysis was performed for KL and KL-AM-DMC copolymers using an elemental 

analyzer, Elementar Vario EL Cube, by the combustion method (Jahan et al., 2012). The samples 

were first dried in an oven at 105 °C overnight to remove any moisture prior to analysis. 

Approximately, 2 mg of dried samples were transferred into the carousel chamber of the elemental 

analyzer and combusted at 1200 °C to reduce the generated gasses to analyze carbon, hydrogen 

and nitrogen contents of the samples. The oxygen content of the samples was determined by 

developing a mass balance for carbon, hydrogen, sulfur, nitrogen, and oxygen, assuming no 

inorganic impurities existed in the KL and KL-AM-DMC products. 

3.3.8 Fourier transform infrared (FTIR) 
The Fourier transform infrared spectroscopy (FTIR) analysis was conducted for confirming the 

copolymerization. The samples were dried in an oven at 105 °C overnight and 0.05 g of the sample 

was used for analysis using a Bruker Tensor 37 (Germany) ATR accessory FTIR instrument. The 

spectra were recorded in a transmittance mode in the range of 600 cm-1 and 4000 cm-1 with a 4 cm-

1 resolution via collecting 32 scans per sample. 

3.3.9 Thermogravimetric analysis (TGA) 
Thermogravimetric analysis was performed using a TGA (TGA i1000 Series System) to 

investigate the change in the thermal behavior of KL and KL-AM-DMC. The samples were dried 

in the oven at 105 °C overnight prior to testing. The analysis was carried out in nitrogen at a steady 
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flow rate of 100 mL min-1. Each sample (7.5 mg) was heated from room temperature to 800 °C at 

the rate of 5°C min-1. 

3.3.10 1H-NMR analysis   
Sixty milligrams of the dried samples were dissolved in D2O at a 40-50 g L-1 concentration and 

stirred for 30 min. Then, 30 mg of TSP was used as an internal reference standard in the NMR 

analysis. The NMR spectra of the samples were recorded using an INOVA-500 MHz instrument 

(Varian, USA) with a 45° pulse and relaxation delay time of 1.0 s. This analysis was repeated to 

determine the properties of PAM and PDMC in the dried supernatants, KL-AM, KL-DMC and 

KL-AM-DMC in the precipitates. In another set of experiments, 60 mg of dried precipitate and 

dried supernatant of the reaction (after dialysis), which was performed under the conditions of 2 

h, 0.11 mmol of initiator, 0.011 mol of KL, 0.028 mol of AM, 0.024 of DMC, pH 4.0 and 80 °C, 

were dissolved in D2O at a 40-50 g L-1 containing 30 mg of TSP, and their NMR spectra were 

recorded.  

3.3.11 SEM analysis 
Scanning electron microscopy (SEM) images of KL and KL-AM-DMC were taken by Hitachi SU-

70 Field emission SEM in tandem with Oxford Xmax energy dispersive X-ray spectroscopy 

(EDX). The powder forms of the samples were mounted on double side carbon tapes on the 

specimen stubs and coated with gold. The voltage was 5 kV and the images were taken at a 

magnification of 10000. 

3.4 Results and Discussion 

3.4.1 Reaction mechanism 
Figure 3.1 shows the reaction scheme of KL, AM, and DMC. In the reaction mixture, K2S2O8 

generates two sulfite radical anions by thermal decomposition. These sulfite radicals lead to the 

propagation of the copolymer by attacking hydroxyl group (OH) of KL and double bonds of 

acrylamide and DMC to have them engaged in the copolymerization reaction (Figure 3.1a). On 

the other hand, the DMC and AM can participate in side reactions to produce homopolymers of 

PDMC and PAM (Figure 3.1b). Both copolymerization and homopolymerization are affected 

bythe reaction conditions (Rong et al., 2013; Kong et al., 2015). This radical polymerization may        
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lead to the generation of random products, such as copolymers of KL-AM, KL-DMC and AM-

DMC. 

 

 

Figure 3.1. Copolymerization reaction of KL, DMC and AM; (a) copolymers of KL-AM-DMC, 

AM-DMC, KL-AM, KL-DMC, (b) homopolymers of PDMC and PAM. 
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3.4.2 Activation energy analysis  
The activation energies of homopolymers and copolymers obtained following the procedure stated 

in the methodology section and listed in Table 3.1. It is evident that the Ea of KL-AM and KL-

DMC were 43.02 kJ mol-1 and 21.99 kJ mol-1, respectively. These results were close to those 

reported for starch-AM (48.16 kJ mol-1) and 2-hydroxyethylmethacrylate-co-[2-

(methacryloyloxy) ethyl] trimethylammonium chloride (HEMA-MAETC) polyelectrolyte 

hydrogels (26.84 kJ mol-1) (Taghizadeh and Khosravy, 2003; Goel et al., 2009). In another study, 

the Ea of cellulose-ethyl acrylate copolymerization was 28.9 kJ mol-1(Gupta et al., 2002). The Ea 

of AM-DMC was 18.13 kJ mol-1, which is close to the reported value (16.9 kJ mol-1) for AM-

DMC in another study (Ge et al., 1997). The Ea of PAM was 14.54 kJ mol-1, which is close to that 

reported elsewhere (12.5 kJ mol-1) (Leowandowska, 2007). The Ea value of 10.34 kJ mol-1 was 

obtained for PDMC. The results indicated that the Ea of KL-AM, KL-DMC were greater than those 

of PAM, PDMC and AM-DMC, which implied that the homopolmerization reactions were favored 

and required less energy than KL-AM, KL-DMC and AM-DMC to proceed (Bi et al., 2012; Jahan 

et al., 2012). 

Table 3.1. Activation energy of copolymers or homopolymers   

Polymer Temperature, 
(°C) 

Time, 
min R2 Ea (kJ mol-1) 

KL-AM 50-90 15-120 0.93 43.02 

KL-DMC 50-90 15-120 0.96 21.99 

AM-DMC 40-80 15-120 0.88 18.13 

PAM 40-80 15 -120 0.96 14.54 

PDMC 40-80 15-120 0.99 10.34 

 

3.4.3 Effect of pH 
The charge density and solubility of KL-AM-DMC as functions of reaction pH are presented in 

Figure 3.2. The charge density of KL-AM-DMC was constant between pH 2 and 3. At pH 4, the 

charge density and solubility of KL-AM-DMC reached the highest values of 1.76 meq g-1 and 50 

wt. %, respectively. The decrease in the charge density may be ascribed to the decomposition of 
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quaternary ammonium group of DMC under alkaline conditions at a higher pH. It was stated in 

the literature that the quaternary ammonium group of DMC could be attacked by hydroxyl ion, 

which could convert quaternary ammonium groups into tertiary ammonium groups and this might 

result in a charge density decrease (Wang et al., 2015; Komkova et al., 2004). 

 

Figure 3.2. The effect of pH on the solubility and charge density of KL-AM-DMC. The reaction 

conditions were the initiator dosage of 0.11 mmol, 80 °C, 2 h, 0.011 mol of KL, 0.024 mol of 

DMC, 0.028 mol of AM. 

3.4.4 Reaction temperature  
The charge density and solubility of KL-AM-DMC are presented as functions of reaction 

temperature in Figure 3.3. As can be seen, they reached the maximum at 80 °C. The increase in 

the temperature improved the efficiency of the reaction as more radicals transferred to the polymer 

backbone (Thakur et al., 2010). However, the higher temperature of 90 °C probably hydrolyzed 

the products or facilitated the homopolymerization of DMC or AM or the copolymerization of 

AM-DMC (Sabhapondit et al., 2010), which in turn led to charge density and solubility reductions. 

It was reported in the past that the amide group attached to polyacrylamide could be hydrolyzed at 

80–90 °C (Jamshidi et al., 2014; Sabhapondit et al., 2010) 
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Figure 3.3. The effect of temperature on the solubility and charge density of KL-AM-DMC. The 

reaction conditions were initiator dosage of 0.11 mmol, pH 4.0, 2 h, 0.011 mol of KL, 0.024 mol 

of DMC, and 0.028 mol of AM. 

3.4.5 Reaction time 
The charge density and solubility of KL-AM-DMC are depicted as functions of time in Figure 3.4. 

The optimum reaction time was found to be 2 h that generated the KL-AM-DMC product with 50 

wt. % solubility and 1.76 meq g-1 charge density. With increase in the reaction time from 2 h to 6 

h, the charge density of KL-AM-DMC was reduced from 1.76 meq g-1 to 0.31 meq g-1, and the 

solubility of the product decreased from 50 wt. % to 9.0 wt. %, respectively, which could be due 

to the progress in PAM, PDMC or AM-DMC production.  
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Figure 3.4. The effect of reaction time on the charge density and solubility of KL-AM-DMC. 

The reaction conditions were pH 4.0, initiator dosage of 0.11 mmol, 80 °C, 0.011 mol of KL, 

0.024 mol of DMC, 0.028 mol of AM. 

Table 3.2 lists the reaction conditions and the properties of the homopolymer or copolymer 

products produced under different conditions. By extending the reaction time of KL-AM-DMC, 

AM-DMC, PAM, and PDMC production 1) the monomer yield (KL, AM, DMC) in reaction media 

decreased in the copolymerization reactions and was undetectable in the homopolymerization 

reactions, 2) the molecular weight, charge density, and/or nitrogen content of homopolymers as 

well as those of AM-DMC increased significantly, implying that the progress in side reactions 

hampered the progress in the KL-AM-DMC production. Figure 3.5 shows the response of light 

scattering detector of the GPC instrument as a function of retention time of polymers of sample 1 

and sample 8 produced under different reaction conditions in Table 3.2. It is seen that sample 1 

and sample 8 have a similar retention time and thus molecular weight. The broader peak of sample 

8 than sample 1 implies that the KL-AM-DMC had a wider molecular weight distribution than 

sample 1.  
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Figure 3.5. Response of light scattering detector of GPC as a function of retention time of 

polymers in GPC column for determining the molecular weight of KL-AM-DMC, and 

homopolymers (PAM, DMC) after purification. 
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Table 3.2.  Reaction conditions and properties of the products in the reaction media  

 

ND: not detec  NA: Not available

Name Sample ID Time, h 
Initiator 
,mmol Lignin,mol AM, mol DMC, mol N% 

Charge 
density 
,meq/g Mw, g/mol 

Yield of 
copolymer
s in 
precipitate
s 
, wt.% 

Yield of 
homopoly
mers and 
AM-DMC 
in 
supernatan
ts  
, wt.% 

Yield of 
Unreactive 
monomer  
 , wt.% 

Yield of 
copolymer
s in 
Supernatan
ts, wt.% 

PDMC 1 0.5 0.11 - - 0.024 - 3.86 103, 287 NA 72 ND NA 
2 3 0.11 - - 0.024 - 4.43 114,162 NA 85 ND NA 

PAM 3 0.5 0.11 - 0.028 - 17.33 - 383,661 NA 70 ND 
NA 

4 3 0.11 - 0.028 - 18.69 - 438,752 NA 90 ND 
NA 

AM-DMC 5 0.5 0.11 - 0.028 0.024 - 1.8 112,194 NA 79 ND NA 

6 3 0.11 - 0.028 0.024 - 2.4 143,257 NA 84 ND NA 

KL-AM-
DMC 

7 2h 0.11 0.011 0.028 0.0048 - 0.44 70,740 78 16 2.3 3.14 

8 2h 0.11 0.011 0.028 0.024 - 1.76 117,882 80 15 0.87 3.88 

9 2h 0.11 0.011 0.028 0.038 - 0.86 133,779 36 50 2.7 10.4 

KL-AM-
DMC 

10 2h 0.036 0.011 0.028 0.024 - 0.35 153,766 66 28 2.9 2.15 

11 2h 0.22 0.011 0.028 0.024 - 0.37 86,122 50 47 0.32 2.6 

KL-AM-
DMC 

12 0.5h 0.11 0.011 0.028 0.024 - 1.55 462,352 65 32 0.4 2.5 

13 6h 0.11 0.011 0.028 0.024 - 0.31 54,896 53 44 0.21 2.21 

KL-AM-
DMC 

14 2h 0.11 0.011 0.007 0.024 - 2.08 123,878 - - - ND 

15 2h 0.11 0.011 0.056 0.024 - 1.01 522,021 - - - ND 
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The results in Table 3.2 confirmed that, under optimal reaction conditions (2 h, 0.11 mmol of 

initiator, 0.011 mol of KL, 0.028 mol of AM, 0.024 of DMC, pH 4.0 and 80 °C), the yield of KL-

AM-DMC in precipitates, homopolymers (PAM, PDMC) and copolymer (KL-AM, KL-DMC, 

KL-AM-DMC) in supernatants as well as unreacted monomers were 80 %, 15 %, 3.88 %, and 

0.87 %, respectively. Although the presence of homopolymers (PAM, PDMC) and copolymers 

(AM-DMC) in the supernatant was confirmed by 1HNMR analysis of dialyzed supernatant, it was 

not possible to differentiate these polymers to identify the exact yield of each one. Furthermore, 
1HNMR confirmed the absence of the peaks for AM, DMC and KL in the supernatant of final 

ethanol washing of the precipitates, confirming the absence of homopolymers and AM-DMC in 

the precipitates of KL-AM-DMC, KL-DMC and KL-AM.  

3.4.6 Effect of initiator concentration 
The impact of initiator concentration on the KL-AM-DMC copolymerization was depicted in 

Figure 3.6. The charge density and solubility increased from 0.35 to 1.76 meq g-1 and from 11 % 

to 50 % with an increase in the initiator concentration to 0.11 mmol, respectively. However, as the 

concentration of the initiator further increased, the charge density and solubility decreased. The 

results in Table 3.2 show that, by increasing the initiator concentration in the KL-AM-DMC 

copolymerization reaction, the molecular weight and copolymer yield of KL-AM-DMC as well as 

the amount of unreacted monomers decreased, while the homopolymer yield increased. Hence, at 

the initiator dosage of more than 0.11 mmol, the reaction rate of KL-AM-DMC decreased, while 

that of homopolymers increased. It was reported in the literature that the molecular weight of 

polymers in the polymerization reaction inversely depended on the initiator concentration, and the 

higher initiator dosages resulted in a lower molecular weight, which in turn would reduce the 

copolymerization yield (Zohuriaan et al., 2005; Sadeghi et al., 2012). This may be attributed to the 

fact that the higher initiator dosages result in side-chain reactions of monomers that facilitate 

homopolymerization and cause the chain terminations of KL-AM-DMC (Thakur and Singha, 

2010). 
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Figure 3.6. The effect of initiator concentration on the charge density and solubility of KL-AM-

DMC. The reaction conditions were pH 4.0, 80 °C, 2 h, 0.011 mol of KL, 0.024 mol of DMC, 

0.028 mol of AM. 

3.4.7 Effect of DMC dosages  
The impact of DMC on the copolymerization of KL-AM-DMC was investigated in Figure 3.7. 

The charge density and solubility of KL-AM-DMC was significantly increased by increasing the 

DMC amount in the reaction from 0.2 to 0.9 mol mol-1. By adding more DMC to the reaction 

mixture, the produced copolymer would have a higher percentage of DMC monomers (i.e., 

cationic hydrophilic monomer), and in turn the product would have a higher charge density and 

solubility. However, at a DMC concentration that was higher than 0.6 mol mol-1, the charge density 

and solubility decreased as the contents of KL and AM decreased. This is due to the fact that the 

reaction mixture would have less AM and lignin radicals compared with DMC, which would 

significantly hamper the copolymerization of KL-AM-DMC, as a result. Therefore, the reaction 

would have an excess amount of unreacted DMC monomers, which may improve the 

homopolymerization of PDMC (Junren et al., 2013; Rong et al., 2013). The results in Table 3.2 
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also show that the increase in the DMC dosage from 0.0048 to 0.038 wt. % (corresponds 0.2 to 

0.9 mol mol-1) led to a remarkable increase in the homopolymerization of PDMC (i.e., 16 to 50 

%). However, the molecular weight of KL-AM-DMC insignificantly increased, and the yield of 

KL-AM-DMC reduced when the DMC dosage was increased. At the dosage of 0.9 mol mol-1, 

most of the unreacted DMC monomers converted to homopolymers of PDMC (Table 3.2).  

 

Figure 3.7.  The effect of DMC/KL-AM molar ratio on the charge density and solubility of KL-

AM-DMC. The reaction conditions were initiator dosage of 0.11 mmol, pH 4.0, 80 °C, 0.011 

mol of KL, 0.028 mol of AM, 0.2-0.9 mol mol-1 of DMC/KL-AM. 

3.4.8 Effect of acrylamide dosages  
Figure 3.8 shows the impact of acrylamide dosage on the charge density and solubility of KL-AM-

DMC. It is seen that KL-AM–DMC had a charge density of 1.76 meq g-1 and solubility of 50 wt. 

% at 0.011 mole of KL, 0.028 mole of AM, and 0.024 mole of DMC. The solubility of copolymer 

increased with the increase in AM from 0.2 to 1.5 mole ratio. However, the charge density dropped 

by increasing the AM ratio because a higher dosage of AM would facilitate more bridging of KL 

and DMC monomers, which would promote water solubility of KL-AM-DMC but reduce the 
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charge density of KL-AM-DMC, as AM did not carry a cationic charge density. Further increase 

in AM dosage (beyond 1.5 mole ratio) would trigger the homopolymerization of AM. The higher 

AM concentration would enhance the probability of AM chain extension instead of grafting onto 

KL. Table 3.2 shows that the molecular weight of KL-AM-DMC was significantly increased by 

increasing the dosage of AM from 0.007 to 0.056 wt. % (corresponds to 0.2 and 1.5 mole mole-1).  

 

Figure 3.8. The effect of AM/KL-DMC molar ratio on the charge density and solubility of KL-

AM-DMC. The reaction conditions were initiator concentration of 0.11 mmol, pH 4.0, 80 °C, 

0.011 mol of KL, 0.024 mol of DMC. 

3.4.9 FTIR analysis 
The FTIR spectra of KL and KL-AM-DMC are shown in Figure 3.9. The sample produced under 

the optimal conditions of 0.011 moles of KL, 0.024 moles of DMC, 0.028 moles of AM, 80°C, 2 

h and the initiator dosage of 0.11 mmol was selected as the best sample. The broad band around 

3400 cm-1 was assigned to the O-H stretching absorption in the phenolic and aliphatic compounds 

of KL (Sun et al., 2010). The C-H vibration absorption band of the aromatic ring appeared at 1590 

cm-1, 1510 cm-1, and 1448 cm-1, which represent the existence of the aromatic skeletal structure in 

KL and KL-AM-DMC (Xu et al., 2008) The bands at 1448 cm-1 and 1421 cm-1 are assigned to 

methoxyl groups (Mansouri et al., 2011). The absorbance bands at 1261 cm-1 and 1140 cm-1 are 
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assigned to the C-O and C-H stretch of guaiacyl unit (Mansouri and Salvado, 2006; Zhou et al., 

2010). 

Furthermore, in spectrum of KL-AM-DMC, a broad band at 3400–3100 cm-1 corresponds to O-H 

stretching in the phenolic and aliphatic compounds in modified lignin. A considerable decrease in 

the absorption intensities in this band for modified kraft lignin have been observed previously 

(Konduri et al., 2015). The KL-AM-DMC spectrum indicated an absorption peak at 3327 cm-1, 

which was due to the stretching vibrations for –NH2 bond in amide groups and C–O in ester groups. 

A strong adsorption peak at 1670 cm-1 is related to carbonyl group (NH2 -C-O of amide group) in 

AM (Zhou et al., 2010). The bands indicated at 1475 and 952 cm-1 belong to the carbonyl (C=O) 

of ester groups and the methyl groups (-N-CH3) of the ammonium in the quaternary ammonium 

group of DMC, respectively (Fanghui et al., 2010; Wang et al., 2012; Mansouri et al., 2011). The 

absorption peaks at 1450 cm-1 and 2930 cm-1 originated from –CH3 and –CH2 groups of ammonium 

in DMC (Fanghui et al., 2010; Shang et al., 2009; He et al., 2007). These spectra demonstrated 

that both DMC and AM were successfully participated in the copolymerization of KL, AM and 

DMC. 

 

Figure 3.9.  FTIR spectra of KL and KL-AM-DMC. 
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3.4.10 Elemental analysis 
The elemental contents of KL and KL-AM-DMC are presented in Table 3.3. The results depict 

that KL originally had 0.03 wt. % of nitrogen; whereas, its nitrogen content increased to 7.02 wt. % 

in the KL-AM-DMC copolymer. The DMC contains one nitrogen atom in its quaternary 

ammonium group, thus the increase in the nitrogen content in KL-AM-DMC confirmed the 

copolymerization of KL, AM, and DMC. The overall nitrogen content of KL-AM-DMC can be 

attributed to the nitrogen elements of DMC and AM. Based on the charge density and nitrogen 

content of the KL-AM-DMC, the contributions of KL, AM, and DMC in the products were 

determined and the results showed that KL-AM-DMC had 40 wt. % KL, 36.5 wt. % DMC, and 

the rest was AM. Also, the hydrogen and oxygen contents of KL-AM-DMC were higher than those 

of KL, which was due to the high hydrogen content of DMC and AM monomers.  

Furthermore, based on the elemental compositions of KL (Table 3.3), those of DMC and AM 

participating in the reaction, as well as the proportion of AM, DMC, and KL in the KL-AM-DMC, 

the theoretical elemental compositions of KL-AM-DMC can be determined. The theoretical 

carbon, hydrogen, oxygen, and nitrogen contents of KL-AM-DMC were determined to be 55.7 

wt.%, 7.2 wt. %, 27.2 %, and 7.4%, respectively. These results are close to the experimental results 

obtained for KL-AM-DMC in Table 3.3. 

Table 3.3.  Elemental analysis of KL and KL-AM-DMC 

Sample KL KL-AM-DMC 

Nitrogen wt. % 0.03 7.02 

Carbon wt.% 54.63 55.22 

Hydrogen wt.% 4.60 7.77 

Oxygen wt.% 38.63 28.03 

Sulfur wt.% 2.10 1.96 

DMC wt.% 0 36.5 

AM wt.% 0 23.5 

KL wt.% 100 40 

Formula C9H9.10O3.25N0.00S0.129 C9H15.21O4.32N0.98S0.11 
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3.4.11 Thermal decomposition analysis 
The thermal behavior of KL and KL-AM-DMC copolymers are shown in Figure 3.10. The initial 

weight loss of KL (below 200 °C) is probably attributed to the loss of adsorbed and bound water. 

The changes in the thermal behavior of KL are presented by two peaks at 288 °C and 322 °C, 

where the results showed that 60 wt. % of KL remained as ash. In addition, it is observable that 

part of KL-AM-DMC copolymer remained as ash after incinerating at 668 °C. It is also seen in 

this figure that temperatures for the weight loss of KL-AM-DMC were at 280 °C, 351°C, and 399 

°C. This investigation indicates that the grafting of the AM and DMC onto the KL backbone varied 

the thermal stability of KL-AM-DMC. 
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Figure 3.10.  Weight loss and weight loss rate of KL, KL-AM-DMC copolymers. 

3.4.12 1H-NMR 
The dried and dialyzed precipitates and the supernatants of the reaction products yielded under the 

conditions of 2h, 0.11 mmol of initiator, 0.011 mol of KL, 0.028 mol of AM, 0.024 of DMC, pH 

4.0 and 80 °C, were analyzed by NMR and presented in Figure 3.11. As shown, in KL spectrum 

(i.e., raw material) the peak at 8.5 ppm is attributed to unsubstituted phenolic protons; at 7.42–5.99 

ppm is attributed to aromatic protons; at 4.5–3.05 ppm is attributed to protons in methoxyl groups 

of lignin; at 3.6- 3.2 ppm is assigned to the methylene protons in β-β structure; and at 3.3-1.75 

ppm is assigned to the aliphatic protons in lignin (Sun et al., 2010; Mansouri et al., 2011). Peaks 

appeared at 4.7 ppm is assigned to the solvent of D2O.  

In case of KL-AM-DMC (i.e., dried and dialyzed precipitates), the methenyl (-CH-) and methylene 

–CH2- connected to the amide group in AM, as is evidenced by the peaks around 1.05 to 1.3 ppm, 

respectively (Abdollahi et al., 2011; Yang et al., 2010; Chen et al., 2006). The peak of –N+(CH3)3 

was observed at 3.3 ppm. The methylene groups connected to the ammonium group and ester 

carbon were detected at 3.4 - 3.8 ppm (Abdollahi et al., 2011). In addition, the methyl (-CH3-) 

group connected to ammonium group in DMC was shown by the peak at 0.8 ppm. The small peak 

for KL segment was also presented at 7.2 ppm spectrum of KL-AM-DMC copolymer (Sun et al., 
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2010; Mansouri et al., 2011). These peaks indicated that both AM and DMC participated in the 

copolymerization of KL, AM, and DMC (Abdollahi et al., 2011; Chen et al., 2006). 

In the case of dried and dialyzed homopolymers (PAM and PDMC) as well as AM-DMC in 

supernatants, few new peaks were revealed between 1-2 ppm and 4-6 ppm. These peaks also 

confirmed the presence of homopolymers in the supernatant. The peaks at 3.7 and 4.3 ppm 

confirmed the presence of AM-DMC copolymer in the supernatant (Abdollahi et al., 2011). 

 

Figure 3.11. 1H-NMR spectrum of (A) KL, (B) precipitates (KL-AM-DMC, KL-DMC and KL-

AM) and (C) homopolymers of PAM, PDMC and copolymer of AM-DMC produced under 
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optimized conditions of 2h, initiator 0.11 mmol, KL 0.011 mol, AM 0.028 mol, DMC 0.024, pH 

4.0, temperature 80 °C.  

3.4.13 SEM assessment 
The SEM images of KL and KL-AM-DMC were shown in Figure 3.12. As can be seen, the 

surfaces of KL and KL-AM-DMC were significantly different, that is to say KL particles were 

larger and smooth. After the copolymerization reaction, it appears that KL-AM-DMC had a rough 

and porous surface. 

 

   (a)                     (b) 

Figure 3.12.  SEM images of (a) KL and (b) KL-AM-DMC polymers 

3.5 Conclusions 
In this work, KL was copolymerized with AM and DMC in order to produce cationic 

copolymerized kraft lignin based product. The optimal conditions were pH 4.0, initiator 

concentration of 0.11 mmol, 80 °C, 2 h, 0.011 mol of KL, 0.024 mol of DMC, 0.028 mol of AM, 

which generated KL-AM-DMC with the charge density of 1.76 meq g-1 and Mw of 118 kg mol-1.  

The activation energy of KL-DMC, KL-AM, and AM-DMC were 21.99, 43.03, and 18.13 kJ mol-

1, while that of PAM and PDMC were 14.54 and 10.34 kJ mol-1, respectively. The increase in 
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temperature improved the charge density and solubility of the copolymer, beyond optimum 

temperature the homopolymerization of PAM and PDMC dominated. The maximum charge 

density and solubility were obtained at 2 h of reaction, but further extension of reaction time 

declined the charge density and solubility of the copolymer due to the formation of homopolymers 

(PAM, PDMC). The increase in the initiator dosage beyond the optimum led to the progress in 

homopolymerization reaction. The copolymerization of KL, AM, and DMC was successfully 

confirmed by 1H NMR, FTIR, TGA and elemental analyses. The TGA analysis depicted that the 

grafting of AM and DMC onto the KL greatly altered the thermal stability of KL. The elemental 

analysis also confirmed that the nitrogen, hydrogen, and oxygen contents of KL were increased 

via copolymerization with AM and DMC. 
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Chapter 4: Optimization of kraft lignin-p (AM) –p (DMC) 

production following Taguchi method 

4.1 Abstract 
Lignin produced in the kraft pulping process is insoluble in water at neutral pH, which limits its 

application in industry. In this chapter, kraft lignin (KL) was copolymerized with acrylamide 

(AM) and (2-methacryloyloxyethyl) trimethyl ammonium chloride (DMC) in an aqueous 

solution to produce a water soluble lignin- P (AM)-P (DMC) copolymer. Reaction time, 

temperature, pH, and monomers concentrations were optimized using Taguchi L16 (orthogonal 

array) design to get maximum charge density and solubility of kraft lignin. The optimal reaction 

conditions for KAD copolymer were as follows: 0.011 mol of KL, 0.014 mol of AM, 0.024 mol 

of DMC, pH 3, 3 h and 80 °C.  At optimized conditions, lignin- P (AM)-P (DMC) copolymer 

showed charge density of 2.13 meq/g with solubility of 56% in an aqueous solution. The 

copolymers were well characterized by Thermogravimetric analysis (TGA). Analysis of variance 

(ANOVA) revealed that the reaction temperature and reaction pH were the most influential 

factors in maximizing the charge density and solubility of lignin copolymer, respectively.   

 

4.2 Introduction 
The gradual depletion of fossil resources and the environmental pollutions are getting even more 

serious throughout the world. Great attention has been paid to the development of sustainable 

technologies based on renewable raw materials (Fang et al., 2009; Kumar et al., 2009). Lignin is 

the most abundant aromatic sustainable polymer in nature after cellulose (Pouteau et al., 2003). 

Kraft lignin is produced via acidification of black liquor that is generated in the kraft pulping 

process (Lora and Glasser, 2002). The industrial applications of kraft lignin are limited due to its 

poor water solubility (Sun et al., 2001), whose improvement can widen its application in 

flocculent, dispersants, painting, oil, pulp and paper, as a biodegradable substitution for current 

petroleum based polymers (Fang et al., 2010; Kong et al., 2015).  

Inorganic salts (Alum, FeCl3) or synthetic acrylamide polymers (PAM) have been used 

extensively to treat industrial wastewater. However, many of the inorganic salts and synthetic 

polymers are considered carcinogenic (Miranda et al., 2013). In this context, kraft lignin is not 
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currently consumed effectively, and therefore, can be modified to produce cationic lignin 

copolymers for wastewater treatment.  

A well-established and most effective technique to tailor new and desired properties of lignin is 

copolymerization. The copolymerization of lignin using various monomers, such as N,N-

dimethyldiallyl ammonium chloride (DADMAC), N,N′-methylenebisacrylamide, methyl  

methacrylate, acrylamide, vinyl acetate or vinyl acetate via free radical polymerization were also 

studied (Agarwal et al., 2013; Lu et al., 2004; Ren et al., 2008; Feng et al., 2011; Dacunha et al., 

1993; Panesar et al., 2013). Various reaction parameters such as the temperature, time, pH, etc., 

have been reported to influence the lignin copolymerization reaction, and hence the properties of 

the resultant copolymer. The increase in reaction time and temperature might increase polymer's 

charge density (Konduri et al., 2015). The pH of reaction mixture may also affect the solubility of 

the resultant copolymer (Kong et al., 2015). Therefore, it is highly necessary to optimize the 

copolymerization process to obtain a copolymer with high charge density and solubility. 

Therefore, the impacts of time, temperature, pH, and monomer concentrations on the 

copolymerization acrylamide and (2-methacryloyloxyethyl) trimethyl ammonium chloride (DMC) 

onto kraft lignin in an aqueous medium requires investigation and are the objectives of this study.  

 
Taguchi orthogonal array design uses a special set of predefined arrays to study a maximal 

number of factors at selected levels with a minimal set of experiments (Rafizadeh et al., 2005). It 

allows for investigating the influence of individual factors involved in the study and finally 

calculating the performance at the optimum levels obtained (Taguchi, 1987; Montgomery, 2013). 

This methodology is applied in many areas such as environmental sciences, agricultural sciences, 

medicine, and biotechnology (Daneshvar et al., 2007; Du Plessis and de Villiers, 2007; Tasirin et 

al., 2007). 

The main novelty of this work was the production of cationic kraft lignin via copolymerization.   

 In this context, the influence of reaction parameters on the preparation of cationic lignin from 

softwood kraft lignin using acrylamide and DMC in aqueous solution were studied in order to 

obtain cationic kraft lignin with a high charge density and solubility. The characterization of the 

synthesized copolymer was examined by TGA.  
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4.3 Materials and Methods 

4.3.1 Materials 
Softwood kraft lignin (KL) was produced via LignoForceTM technology of FPInnovations in 

Thunder Bay, ON (Kouisni et al., 2012). (2-methacryloyloxyethyl) trimethyl ammonium chloride 

(DMC) 80 wt. % in water, acrylamide (AM) with 99.0 % purity, potassium persulfate, K2S2O8 

(analytical grades), and trimethylsilyl propanoic acid were all obtained from Sigma-Aldrich 

company. Cellulose acetate dialysis membrane with the molecular weight cut off of 1,000 g/mol 

was obtained from Spectrum Labs. Inc., USA. Potassium polyvinyl sulfate (PVSK) was provided 

by Wako Pure Chem. Ltd. Japan, it and was diluted to 0.005 M prior to use. Ethanol (95 vol. %) 

was received from Fisher Scientific company. All chemicals were applied without further 

purification.  

4.3.2 Copolymerization of lignin 
First, 2 g of KL was dissolved in 40 mL of deionized water in a 250 mL three neck round bottom 

glass flask while stirring at 300 rpm. Predetermined quantities of AM and DMC were added to 

the flask and stirred at 300 rpm for 5 min. The reaction solution was continuously purged with 

nitrogen at room temperature for 30 min to remove any residual oxygen. Subsequently, 

potassium persulfate was added as an initiator to the system and the reaction solution purged for 

another 5 min. The copolymerization of KL, AM, and DMC was processed by placing the flask 

in a preheated water bath after adjusting the pH of the medium. The reaction was allowed to 

proceed for different time intervals under nitrogen. The copolymerization was repeated under 

varying reaction conditions including varying time (2, 3, 4 and 5 h), temperature (60, 70, 80 and 

90 °C), pH (2, 3, 4 and 5), DMC concentration (0.009, 0.014, 0.019 and 0.024 moles), and AM 

concentration (0.014, 0.028, 0.042 and 0.056 moles). Upon reaction completion, the flask 

containing the reaction solutions was submerged in cold tap water for 20 min. The solution was 

then mixed with ethanol in order to separate the lignin based copolymers (KL-AM-DMC) from 

the rest of the reaction medium. Ethanol precipitation was carried out for separating AM and 

DMC monomers from chitosan-AM-DMC copolymer in the past (Wang et al., 2012; Ben et al., 

2011). By adding ethanol to the reaction medium, the solution reactions became suspension. 

Then, the suspension was centrifuged at 3500 rpm for 10 min using a Sorvall ST 16 laboratory 

centrifuge (Thermo Fisher) in order to separate copolymers from the suspension. This 
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precipitation/centrifugation process was performed three times to remove KL-AM-DMC from 

the suspension. After centrifugation, the precipitated copolymers were mixed with 200 mL 

deionized water and the pH of the solution was adjusted to 7.0. The samples were dialyzed using 

the dialysis membrane for 48 h in order to remove other impurities (e.g., inorganic salts and 

monomers) from the copolymer solutions. The deionized water used for dialysis was changed 

every 12 h for 2 days. After dialysis, the solution containing the copolymer (KL-AM-DMC) was 

dried at 105 °C, and the dried samples were kept for further analysis. This copolymer is denoted 

as KAD, while unmodified kraft lignin is denoted as KL in this work. 

4.3.3 Experimental design  
To optimize the experimental conditions, Taguchi orthogonal test was designed to observe the 

impact of reaction parameters on the charge density and solubility of KAD copolymer. On the 

basis of Taguchi orthogonal design L16 (45), a total of 16 runs were conducted to determine the 

optimum conditions for producing KAD with the maximum charge density and solubility. The 

experimental conditions conducted in the orthogonal design and responses are listed in Table 4.1.  

The factors and their levels were time of reaction (2, 3, 4 and 5 h), temperature of reaction (60, 

70, 80 and 90 °C), DMC concentration (0.009, 0.014, 0.019 and 0.024 moles), AM concentration 

(0.014, 0.028, 0.042 and 0.056 moles), and pH (2, 3, 4 and 5). The experiments were repeated 

three times, and the average values were reported in this work.  
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Table 4.1. The Taguchi orthogonal parameters and levels (L16) and the responses. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

4.3.4 Model fitting and statistical analysis 
The experimental data were analyzed using the statistical software Design Expert version 8.0.7.1 

(STAT-EASE Inc., Minneapolis, USA). An optimum condition of grafting percentage was 

performed based on three main steps, which were analysis of variance (ANOVA), a regression 

analysis, and plotting of experimental responses. 

The model for producing the maximum charge density and solubility of kraft lignin-AM-DMC is 

presented in Eq. (4.1). The number of terms in the models depends on the main effects and their 

degree of freedom.  

Run 
Temp., 

°C 
Time, 

h 
AM, 
mol 

DMC, 
mol pH 

Charge 
density, 
meq/g 

Solubilit
y, wt.% 

1 80 5 0.028 0.009 4 0.5 8 

2 90 3 0.042 0.009 5 0.12 42 

3 80 2 0.042 0.024 3 1.43 59 

4 70 3 0.014 0.024 4 1.37 56 

5 90 5 0.014 0.019 3 1.15 50 

6 90 4 0.028 0.024 2 1.05 45 

7 60 5 0.056 0.024 5 -0.65 43 

8 70 5 0.042 0.014 2 0 49 

9 60 3 0.028 0.014 3 1.15 45 

10 60 2 0.014 0.009 2 -1.41 60 

11 70 2 0.028 0.019 5 -1.2 29 

12 80 3 0.056 0.019 2 1.60 50 

13 70 4 0.056 0.009 3 0.42 34 

14 60 4 0.042 0.019 4 0.38 10 

15 90 2 0.056 0.014 4 0.68 30 

16 80 4 0.014 0.014 5 1.29 53 

Optimum 80 3 0.014 0.024 3 2.13 56 
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Y = b0+ b1A[1] + b2A[2] + b3A[3] + b4B[1] + b5B[2] + b6B[3] +b7C[1] + b8C[2] + b9C[3] + 

b10D[1] + b11D[2] + b12D[3] +b13E[1] + b14E[2] + b15E[3]. . . . . . (4.1) 

This model provides the best fitting to the experimental data points. In this equation, Y is the 

charge density or solubility of KAD, b0 is the intercept, b1 represents the model coefficients, 

while factor A, B, C, D, and E represent time, temperature, DMC concentration, AM 

concentration, and pH of the reactions, respectively. The analysis provides the best estimates for 

b0 and b1. The numbers in brackets represent first, second and third levels of each primary factor. 

4.3.5 Solubility and charge density determination  
To measure the solubility of the KAD, 0.2 g of the copolymer was added in 20 mL of deionized 

water by stirring at 100 rpm and 30 °C for 1 h in a water bath shaker (Innova 3100, Brunswick 

Scientific, Edison, NJ, USA). Then, the suspensions were centrifuged at 1000 rpm for 5 min. The 

supernatants were collected and used for analyzing the charge density and solubility of the 

copolymer. The concentration of copolymers in the supernatants was determined by drying the 

supernatants at 105 °C, and the solubility was determined based on the concentration of KAD in 

the supernatants and the initial concentration of KAD in solutions. The charge density of the 

copolymers was measured by a particle charge detector, Mütek PCD 04 titrator (Herrsching, 

Germany) with a PVSK solution (0.0050 M) (Wang et al., 2016). Three repeats were carried out, 

and the average values were reported. 

4.3.6 Thermogravimetric analysis (TGA) 
Thermogravimetric analysis was performed using a TGA (TGA i1000 Series System) to 

investigate the change in the thermal behavior of KL and KL-AM-DMC. The samples were dried 

in the oven at 105 °C overnight prior to testing. The analysis was carried out in nitrogen at a steady 

flow rate of 100 mL/min. Each sample (7.5 mg) was heated from room temperature to 800 °C at 

the rate of 5 °C/min. 

                       
4.4 Results and Discussion 

4.4.1 Reaction mechanism 
Figure 4.1 shows the reaction scheme of KL, AM, and DMC. In the reaction mixture, thermal 

decomposition of K2S2O8 generates two sulfite radical anions by thermal decomposition. These 
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sulfite radicals lead to the propagation of the copolymer by attacking hydroxyl group (OH) of KL 

and double bonds of acrylamide and DMC to have them engaged in the copolymerization reaction 

(Figure 4.1a). On the other hand, the DMC and AM can participate in side reactions to produce 

homopolymers of PDMC and PAM (Figure 4.1b). Both copolymerization and 

homopolymerization are affected by the reaction conditions. 

 

 

 

Figure 4.1. Mechanism of the copolymerization reaction (a) Copolymers of KL-AM-DMC (b) 

Homopolymers of PDMC and PAM 
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4.4.2 Thermogravimetric (TGA) analysis 
Figure 4.2 shows the results of TGA analysis for KL and KL-AM-DMC polymers. KL 

decomposed continuously above 200 °C and was completely degraded around 600 °C.  The weight 

loss at a temperature lower than 200 °C in Figure 4.2 is attributed to the evaporation of water 

(Yang et al., 2014). The weight loss rate of kraft lignin shows two peak at 288 °C and 322 °C, and 

the results showed that 60 wt. % of KL remained as ash. The weight loss peaks of KL-AM-DMC 

were at 237 °C, 334 °C, and 470 °C. Compared with degradation behavior of KL at 288 °C, KL-

AM-DMC exhibited a lower degradation temperature (235 °C). On the other hand, the degradation 

peak of KL at 322 °C was found to be lower than that for KL-AM-DMC. These results showed 

that the grafting of the AM and DMC onto the KL backbone varied the thermal stability of KL-

AM-DMC. 
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Figure 4.2. Weight loss and weight loss rate of KL, KL-AM-DMC copolymers. 
 

4.4.3 Analysis of variance (ANOVA)   
The ANOVA statistical analysis is carried out to inquire the statistical significance of the 

experimental factors impacting the responses (charge density and solubility). This was attained 

by comparing the mean square with the estimate of the experimental error at specific confidence 

levels (Cl). Table 4.2 shows the predicted data generated by the models, F-test, and the 

regression coefficients for the analysis (R2). F-test was used to check which factor has a 

significant effect on the charge density and solubility of KAD copolymer (Bi et al., 2009). F-test 

represents the ratio of the mean square error to the residual error.  When the F-value is high, the 

process parameters have pronounced effects on the charge and solubility of KAD copolymers. 
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The results confirmed that the level of significance of reaction conditions on the charge density 

decreases in the order of Temperature > Time > pH > DMC > AM.  On the other hand, following 

the magnitude of F-value for solubility, the influence of reaction conditions on solubility 

decreases in the order of pH > AM > DMC > Time > Temperature. The optimal reaction 

conditions for KAD copolymer were as follows: 0.011 mol of KL, 0.014 mol of AM, 0.024 mol 

of DMC, pH 3, 3 h, and 80 °C. The maximum charge density (2.13meq/g) and solubility (56 wt. 

%) was achieved under the optimized synthetic conditions.  

 

Table 4.2. ANOVA analysis for charge density and solubility of cationic lignin 
Factor Sum of squares Mean Square F-Value 

 

Charge 

density, 

meq/g 

Solubility, 

wt.% 

Charge 

density, 

meq/g Solubility, wt.% Charge density, meq/g Solubility, wt.% 

Model 12.81 3536.75 1.07 294.73 30.95 54.62 

Temperature, 

°C 

4.33 16.19 1.44 5.40 41.90 0.018 

Time, h 3.39 533.19 1.13 177.73 32.78 32.94 

DMC, mol 2.08 642.69 0.69 214.23 20.09 39.70 

pH 3.0 1450.19 1.0 483.40 29.04 89.59 

AM, mol 0.10 910.69 0.034 303.56 0.032 56.26 

Standard deviation Coefficient of variation,% R2 Predicted R2 Adjusted R2 

Charge 

density,  

meq/g 

Solubility, 

wt.% 

Charge 

density, 

meq/g 

Solubility, 

wt.% 

Charge 

density, 

meq/g 

Solubility, 

wt.% 

Charge 

density, 

meq/g 

Solubility, 

wt.% 

Charge 

density, 

meq/g 

Solubility, 

wt.% 

0.19 2.32 37.7 5.67 0.9946 0.9954 0.7721 0.8704 0.9599 0.9772 

 

The smaller values of standard deviation (SD) and coefficient of variation (CV) for the charge 

density (0.19 and 37.70 meq/g) and solubility (2.32 and 5.67 %) reveal that the experimental 

results obtained are reliable (Zhang et al., 2011). The reliability of results was further confirmed 
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by the regression coefficients (R2) values for the charge density (0.994 meq/g) and solubility 

(0.995 %). Both predicted R2 and adjusted R2 determined how well the model fitted into the 

experimental data. The former assumes all the independent variables impacted the dependent 

variables, and the latter considers only the independent variables affected the dependent variable 

(Kosikova et al., 2000). The predicted R2 values of the charge density and solubility were found 

to be in agreement with adjusted R2 values. The regression analysis was employed to fit the 

experimental data (Table 4.1) into the first order polynomial equation Eq. (4.1) using Taguchi 

orthogonal model. The results obtained were shown in Table 4.3.  

Table 4.3. Model coefficients estimated by regression analysis. 

Charge density, meq/g Solubility, wt.% 

Term 

Coefficient 

Estimate 

Standard 

Error 

95% Cl 

Low 

95% 

Cl 

High 

Coefficient 

Estimate 

Standard 

Error 

95% 

Cl 

Low 

95% 

Cl 

High 

Intercept 0.49 0.046 0.34 0.64 40.94 0.58 39.09 42.79 

A[1] -0.63 0.080 -0.88 -0.37 3.56 1.01 0.36 6.76 

A[2] -0.34 0.080 -0.60 -0.089 7.31 1.01 4.11 10.51 

A[3] 0.71 0.080 0.46 0.97 -7.44 1.01 -10.64 -4.24 

B[1] -0.62 0.080 -0.87 -0.36 11.81 1.01 8.61 15.01 

B[2] 0.57 0.080 0.31 0.82 -9.19 1.01 -12.30 -5.99 

B[3] 0.29 0.080 0.037 0.55 -0.94 1.01 -4.14 2.26 

D[1] -0.59 0.080 -0.84 -0.33 -4.94 1.01 -8.14 -1.74 

D[2] 0.29 0.080 0.032 0.54 1.31 1.01 -1.89 4.51 

D[3] -0.010 0.080 -0.27 0.25 -6.19 1.01 -9.39 -2.99 

E[1] -0.18 0.080 -0.44 0.073 10.06 1.01 6.86 13.26 

E[2] 0.55 0.080 0.29 0.80 6.06 1.01 2.86 9.26 
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E[3] 0.24 0.080 0.016 0.50 -14.94 1.01 -18.14 -11.74 

 

The small standard errors of regression indicated that the experimental data well fitted into the 

first order polynomial equation. The coefficient values predicted for the terms also found to be in 

the 95% confidence interval (CI) range. These results suggested that the models can be used to 

predict the charge density and solubility of lignin polymer. ANOVA analysis confirmed that the 

temperature and pH were the major factors for charge density and solubility responses, 

respectively. To confirm that the models can adequately predict the charge density and solubility 

of the resultant lignin copolymer, the predicted charge density and solubility results were plotted 

against the experimental results in Figure 4.3. As can be seen, the predicted results were in good 

agreement with the experimental data (Sasmal et al., 2011).  
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Figure 4.3. Relationship between the predicted values and experimental values for (a) charge 

density and (b) solubility based on Taguchi orthogonal design. 

4.5 Conclusions 
The copolymerization of AM and DMC with lignin was conducted to produce kraft lignin-AM-

DMC polymer and its characterization has been done using TGA. The reaction conditions of 

kraft lignin-AM-DMC were optimized by Taguchi method. The optimal reaction conditions for 

KAD copolymer were as follows: 0.011 mol of KL, 0.014 mol of AM, 0.024 mol of DMC, pH 3, 

3 h and 80 °C. The higher charge density (2.13meq/g) and solubility (56 wt. %) was obtained 

under the optimized synthetic conditions. The ANOVA was carried out to inquire the statistical 

significance of the process parameters impacting the response. It was found that the predicted 

charge density and solubility was in a very good agreement with the experimental data. 
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Chapter 5: The effect of KL-AM-DMC molecular weight on 

the flocculation of clay suspensions 

5.1 Abstract 
Currently, kraft lignin is burned in the recovery cycle of the kraft pulping process; whereas, it 

can be extracted and modified to produce value-added products. In this work, kraft lignin (KL) 

was copolymerized with acrylamide (AM) and 2-[(methacryloyloxy) ethyl] trimethylammonium 

chloride (DMC) to produce cationic flocculants. Copolymers with two different molecular 

weights of 168, 200 g/mol (KAD-1) and 103, 000 g/mol (KAD-2), but with a similar charge 

density of 1.15 meq/g, were selected and their flocculation efficiency in two different clay 

suspensions was investigated. The adsorption and turbidity removal of clay suspension in the 

presence of the copolymer were found to be dependent on the pH of the suspension. At 8 mg/g 

dosage, KAD-1 adsorbed more than KAD-2 as it was larger and thus developing more bridging 

with clay particles. The size of kaolin particles increased from 4.7 to 16.3 and 15.1 μm, and that 

of bentonite particles increased from 6.1 to 18.97 and 15.35 μm via having 8 mg/g of KAD-1 and 

KAD-2 copolymers in the clay suspensions, respectively. The adsorption, zeta potential, and 

flocculation analyses confirmed that KAD-1 was a more effective flocculant. The effect of shear 

rate on KAD polymers revealed polymer bridging and electrostatic patch flocculation 

mechanisms.   
5.2 Introduction  
Today, the effluents produced in industrial processes contain a wide range of toxic materials; 

metals and other undesirable compounds, which are considered as main sources of 

environmental pollutions. Hence, the removal of these hazardous materials from the effluents has 

become a serious challenge for industry. In the past, a number of technologies were employed to 

remove the colloidal particles from wastewater including membrane filtration, adsorption, 

coagulation, biological, and electrolytic processes. Nevertheless, flocculation is an effective 

alternative for the removal of suspended and dissolved solids, colloids and organic matters 

present in industrial wastewater (Lee et al., 2014). 
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In the past few years, there has been increased interests in modifying biomaterials including 

starch, chitosan, cellulose and other natural materials to develop environmentally friendly 

flocculants for removing contaminants found in wastewater effluents (Sirvio et al., 2011; Ben et 

al., 2011; Wang et al., 2010). Cationic polymers are effective flocculants to treat the negatively 

charged particles present in effluents. Previous studies demonstrated that acrylamide (AM) and 

2-[(methacryloyloxy) ethyl] trimethylammonium chloride (DMC) are two comonomers for 

rendering polysaccharides flocculants for treating wastewater (Abdollahi et al., 2011). In the 

past, the copolymer of chitosan-AM-DMC at a dosage of 1 mg/L was reported to reduce the 

turbidity of a clay suspension by 90 % (Wang et al., 2012), while the same copolymer at the 

dosage of 8 mg/L reported to reduce the turbidity of wastewater effluent by 95 % (Ben et al., 

2011). In a similar work, starch-AM-DMC copolymer was used to concentrate a drilling mud 

suspension with the water content decrease from 35 % to 21.34 % when polymer at 0.3 wt. % 

dosage was used (Zou et al., 2011). In another study, 23 mg/L of starch-AM-DMC reduced the 

turbidity of a pulp mill effluent by 95.7 % (Wang et al., 2011).  

Today, the consumption of starch and chitosan based food has been increased due to the 

population growth. In addition, cellulose is used as a platform material for producing other 

value-added materials, chemicals, and biofuels. As these materials, e.g., starch, chitosan and 

cellulose are heavily used for other purposes worldwide, their usage in producing new chemicals 

may not be an excellent option in future. Interestingly, other under-utilized chemicals such as 

lignin can be used for this purpose. Lignin is a natural polymer that currently has a very limited 

industrial use and is available in a large quantity (Pouteauet al., 2010; Zakzeski et al., 2010). 

However, it can be modified to produce environmentally friendly flocculants to treat paper, 

mining, textile, and wastewater systems. In one report, lignin-AM copolymer removed 52 % of 

turbidity from aluminum sulfate or poly aluminum chloride suspensions (Rong et al., 2013). In 

another investigation, the copolymer of hydrolysis lignin and AM removed 85 % of azo-dyes 

from dye wastewater when the dosage of the copolymer was 200 mg/L (Fang et al., 2009). 

However, lignin-AM copolymer is uncharged and thus may not be very effective for wastewater 

treatment. Previously, lignin was catatonically modified by introducing quaternary ammonium 

group to produce asphalt emulsifiers, cationic surfactants, and strength additives for composites 

(Meister, 2002; Silva et al., 2009; Zhang et al., 2013; Du et al., 2014). However, the production 

of lignin-AM-DMC as a flocculant for treating kaolin and bentonite suspensions has not been 
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reported. Therefore, the first objective of this work was to study the flocculation behavior of 

lignin-AM-DMC in these suspensions. 

It is well-known that the properties of polymers impact their adsorption performance on surfaces 

(Tekin et al., 2006; Razali et al., 2011). In one study, an increase in the cationic charge of 

cationic polyacrylamide from 10 to 50 mol % increased the turbidity removal of a clay 

suspension by 90 % (Chen, 1998). The adsorbed polymers may neutralize and bridge the 

particles, and thus facilitate their settlement. However, unadsorbed polymers would also affect 

the chemistry of the suspension systems, which may affect the attraction/repulsion force 

developed between particles and thus their settlement. However, it is unclear if the adsorbed or 

unadsorbed polymers would impact the flocculation performance of a polymer. The effect of 

molecular weights and charge densities on the flocculation performance have been investigated 

previously (Zhu et al., 2009; Gill and Herrington, 1987). In one study, the flocculation 

performance of polydiallyldimethylammonium chloride (PDADMAC) in pulping effluents was 

reported to improve by 92 % when its molecular weight increased from 8.5×104 to 15.7×104 

g/mol (Razali et al., 2011). In another study, when the molecular weight of cationic 

polyacrylamide increased from low to high, the flocculation performance of particles in the 

effluent of a pulp and paper mill was improved from 63 % to 95 % (Wong et al., 2006). Lignin-

based copolymers are different from synthetic polymers, however, the impact of the properties of 

lignin based copolymers on their flocculation performance was not studied earlier. The second 

objective of the present study was to investigate the flocculation efficiencies of cationic lignin-

AM-DMC polymers with different molecular weights in a clay suspension. 

In our previous chapter, the production of kraft lignin-AM-DMC was investigated (Hasan and 

Fatehi, 2018). In this study, kraft lignin-AM-DMC copolymers with the same charge densities 

but two different molecular weights were produced, and their flocculation behavior was 

investigated in kaolin and bentonite suspensions for the first time.  

5.3 Materials and Methods 

5.3.1 Materials 
Softwood kraft lignin was produced via LignoForceTM technology of FPInnovations in Thunder 

Bay, ON (Kouisni et al., 2012). 2-[(methacryloyloxy) ethyl] trimethylammonium chloride 
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(DMC) (80 % in water), acrylamide (99.0 %), potassium persulfate (K2S2O8) (analytical grades), 

kaolin and bentonite were obtained from Sigma-Aldrich company. Cellulose acetate dialysis 

membrane (molecular weight cut off of 1,000 g/mol) was supplied by Spectrum Labs. Inc., USA. 

Polydiallyldimethylammonium chloride (PDADMAC) was obtained from Sigma Aldrich 

Company and diluted to 0.005 M prior to use. Potassium polyvinyl sulfate (PVSK) was provided 

by Wako Pure Chem. Ltd. Japan. All the chemicals were applied without further purification. 

Moreover, Ethanol (95 vol. %) was received from Fisher Scientific company. 

5.3.2 Lignin-AM-DMC production and purification 
Kraft lignin-AM-DMC copolymers were synthesized in 250 mL three-neck glass flasks under the 

reaction conditions listed in Table 5.1. After the reactions, the flasks were submerged in cold tap 

water for 20 min. Then, ethanol (95 vol. %) was mixed with the reaction media in order to 

precipitate the lignin-based copolymers from the system. Previously, ethanol precipitation was 

carried out for separating chitosan-AM-DMC copolymer from homopolymers (PAM, PDMC) 

and monomers (AM, DMC) in reaction media (Ben et al., 2011; Wang et al., 2012; He et al., 

2007). By adding ethanol to the reaction media, the solution reactions became suspensions. The 

suspensions were then centrifuged at 3500 rpm for 10 min using a Sorvall ST 16 laboratory 

centrifuge (Thermo Fisher) in order to separate copolymers from the suspensions. This 

precipitation/centrifugation process was repeated three times so that purified lignin-AM-DMC 

was obtained. After centrifugation, the precipitated copolymers were mixed with 200 mL of 

deionized water and the pH of the solution was adjusted to 7. The samples were dialyzed using 

the dialysis membrane for 48 h in order to remove other impurities (e.g. inorganic salts and 

monomers) from the copolymer solutions. The deionized water used for dialysis was changed 

every 12 h for 2 days. After dialysis, the solution containing the copolymer was dried at 105 °C, 

and the dried samples were kept for flocculation studies. This copolymer is denoted as KAD, 

while unmodified kraft lignin is denoted as KL in this work. 

5.3.3 Solubility and charge density determination  
To measure the solubility of lignin-AM-DMC copolymers, 0.2 g of the copolymers was added to 

20 mL of deionized water by stirring at 100 rpm and 30 °C for 1 h in a water bath shaker (Innova 

3100, Brunswick Scientific, Edison, NJ, USA). Then, the suspensions were centrifuged at 1000 

rpm for 5 min. The supernatants were collected and used for analyzing the charge density and 
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solubility of the copolymer. The concentration of the copolymers in the supernatants was 

determined by drying the supernatants at 105 °C, and the solubility was determined based on the 

concentration of lignin in the supernatants and the initial concentration of lignin. The charge 

density of the copolymers was measured by a particle charge detector, Mütek PCD 04 titrator 

(Herrsching, Germany) with a PVSK solution (0.0050 M) following equation 5.1 [26]:  

 

                      Charge density(
meq

g
) =

Volume of PVSK (mL)×concentration of PVSK(
mol

L
)

Mass of lignin (g)
           (5.1) 

 

Three repeats were carried out, and the average values were reported. The surface charge density 

analysis of bentonite and kaolin clay particles was determined via a back titration method using a 

particle charge detector (Mütek PCD-04, Germany). Approximately, 0.2 g of clay was suspended 

in 50 mL of PDADMAC (0.005M) solution and the suspensions were incubated at 30 °C for 2 h 

at 150 rpm. After the incubation, the samples were filtered using Whatman#1 filter membranes 

and the filtrates were titrated against the PVSK (0.0055 M) solution. Similarly, the titration 

analysis was conducted for the control sample (i.e. the PDADMAC solution with no clay 

addition), and the difference was considered for quantifying the surface charge density of the 

clay particles. 

5.3.4 Molecular weight analysis 
About 5 mg sample of dried KAD copolymers was dissolved in 10 mL of 5.0 wt. % acetic acid 

solution by stirring at 600 rpm for 48 h and 35 °C, then the solutions were filtered with a 13 mm 

diameter nylon filter (pore size 0.2 µm). The filtered solutions were used for the molecular 

weight analysis, which was carried out using Malvern, GPCmax VE2001 Module + Viscotek 

system with viscometer and RI detectors. In this analysis, PolyAnalytic columns were used, and 

a 5.0 wt. % acetic acid was used as a solvent and eluent with the flow rate of 0.7 mL/min. The 

column temperature was set to 35 °C. Poly ethylene oxide was used as standard polymers for 

calibration of this system. 
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5.3.5 Elemental analysis 
The elemental analysis of the samples was performed for KL and KAD copolymers using an 

elemental analyzer, Elementar Vario EL Cube, by the combustion method (Jahan et al., 2012). 

The samples were first dried in an oven at 105 °C overnight to remove any moisture prior to 

analysis. Approximately, 2 mg of dried samples were transferred into the carousel chamber of 

the elemental analyzer and combusted at 1200 °C to reduce the generated gasses to analyze 

carbon, hydrogen, oxygen, and nitrogen contents of the samples. 

5.3.6 Surface area analysis of clay particles 
The surface area of bentonite and kaolin particles was determined by using Quantachrome 

surface area analyzer, a Nova2200e instrument. In this experiment, the samples were initially 

dried in an oven at 105 °C overnight, and approximately 0.05 g of sample was pretreated for 4 h 

at 250 °C prior to analysis. The specific surface area of the samples was then analyzed according 

to Brunauer-Emmett-Teller (BET) method via adsorption-desorption isotherms using nitrogen 

gas at -180 °C within relative pressure range of 0.01 to 0.99 (Oveissi and Fatehi, 2014). 

5.3.7 Particle size distribution analysis 
The size distribution of bentonite and kaolin particles was analyzed using a MasterSizer 

2000 particle size analyzer (Malvern Instruments), which was equipped with a light scattering 

detector. In this study, 1.0 g of clay suspension (20 g/L) was added to 50 mL of deionized water 

or 50 mL of KL or KAD solution containing the copolymers with the dosage of 8 mg/g (based on 

clay) and stirred at 300 rpm and room temperature for 2 h. After stirring, the samples were 

analyzed for their particle size distribution. 

5.3.8 Adsorption studies 
In this set of experiments, different amounts (0.5 to 64 mg/g based on clay) of KL or KAD were 

added to 50 mL of clay suspensions (0.4 g/L) in order to study the adsorption of KL or KAD on 

clay particles. The suspensions were stirred at 300 rpm for 2 h at room temperature. Afterward, 

the suspensions were centrifuged for 15 min at 3500 rpm and then the concentrations of KAD 

remaining in the supernatants were determined by UV/Vis spectrophotometer (Genesys 10S 

UV–vis, Thermo FisherScientific, USA) at a wavelength of 205 nm. The impact of pH on the 

adsorption of KAD on clay particles was also studied. The pH of the suspensions (ranging 2 to 
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12) was adjusted with 0.1 M NaOH solution or H2SO4. Three repeats were carried out, and the 

average values were reported in the study. 

5.3.9 Impact of KL or KAD on clay removal 
In this set of experiments, different amounts of KL or KAD were mixed with 50 mL of clay 

suspensions (0.4 g/L) at 30 °C for 2 h. After mixing, clay suspensions were allowed to settle for 

1 h. A 10 mL sample was collected from the upper half of the suspension before and after the 

settlement period and dried in an oven at 105 °C overnight. The concentration of clay particles in 

the samples was determined, which helped measure the removal of clay from the suspensions by 

developing a mass balance. This analysis was repeated at different copolymer dosages (0.5-64 

mg/g based on clay) and pHs (2-12). The pH of the clay suspension was adjusted by using 0.1 M 

NaOH. Three repeats were carried out, and the mean values were reported in the study. 

5.3.10 Zeta potential analysis 
The zeta potential of the clay suspensions was characterized by using a compact automatic zeta 

potential analyzer (Laval labs Inc). In this study, 1 g of clay suspension (20 g/L) was added to 50 

mL of deionized water and stirred at 300 rpm for 2 h and room temperature, and its zeta potential 

was then measured in a 1.0 mM KCL aqueous solution. The pH of the clay suspensions was 

adjusted by using 0.1 M NaOH or H2SO4. All the measurements were carried out at room 

temperature with a constant electric field (8.4 V/cm). Three repeats were carried out for the zeta 

potential measurement and the mean value was reported.  

5.3.11 Flocculation analysis 
The efficiency of the flocculation was determined using a photometric dispersion analyzer 

(PDA 3000, Rank Brothers Ltd) connected to a dynamic drainage jar (DDJ) fitted with a 70 mm 

mesh screen (Fatehi et al., 2013). The flocculation performance of the clay suspension was 

measured from the variation in the direct current (DC) voltage of the PDA instrument. In this 

study, 500 mL of distilled water was first added into the DDJ container and circulated from the 

DDJ to the PDA through a 3 mm plastic tube until a steady flow rate of 20 mL/min was 

achieved. The flow rate was regulated by a peristaltic pump throughout the experiment. Then, 10 

mL of a 20 g/L clay suspension was added into DDJ (to make a 0.4 g/L clay concentration in 

DDJ) while stirring at 300 rpm. This caused a decrease in the initial base DC voltage (V0) to a 
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new DC voltage (Vi) in PDA analysis. After 100 s, optimal dosage amount of 8 mg/g (based on 

clay) of KL or KAD was maintained in the DDJ. The increase in DC voltage was represented as 

the DC voltage (Vf) of the final suspension. The effects of copolymer dosage and pH of the clay 

suspensions on the flocculation were studied. The pH of the clay suspensions adjusted by using 

0.1 M NaOH or H2SO4. The relative turbidity of the clay suspensions was measured using 

equation 5.2 (Wang et al., 2009). 

Relative turbidity, 𝜏r = 𝜏𝑓

𝜏𝑖
=  

𝑙𝑛(
𝑉0

𝑉𝑓
)

𝑙𝑛(
𝑉0

𝑉𝑖
)
                                  (5.2) 

 

where τf is denoted as the final suspension turbidity, and τi is denoted as the initial suspension 
turbidity. 

To study the strength of the clay flocs after copolymer addition, 10 mL of a 20 g/L clay 

suspension was added into DDJ (to make a 0.4 g/L clay concentration in the DDJ) while stirring 

at 300 rpm. After 100 s, KL or KAD was added to the DDJ. After 500 s and forming flocs, the 

shear rate was increased from 300 to 3000 rpm and maintained for another 100 s, during which 

the flocs would break. Subsequently, the shear rate was decreased to 300 rpm and maintained for 

another 500 s which might help the reflocculation of the broken small flocs. This process was 

repeated twice to study the flocculation behavior of the clay suspensions in the presence of KAD. 

The degree of breakage and reflocculation was represented by flocculation index (FI), which is 

the ratio of the mean square root (RMS) of the voltage that flocculation occurs to the direct (DC) 

voltage of the PDA instrument. The flocculation index was used as an indication of flocculation 

and breakage of clay particles in the suspensions in the past (Wang et al., 2012; Yu et al., 2013; 

Ramphal and Sibiya, 2014). All the experiments were performed in triplicates, and the mean 

values were reported in the study. 

5.4 Results and Discussion 

5.4.1 Properties of KAD 
Figure 5.1 shows the reaction scheme of KL, AM and DMC. In this copolymerization reaction, 

K2S2O8 is used as an initiator for the free radical copolymerization. The details of reaction 

mechanisms of KL, AM and DMC were discussed in the previous chapter (Hasan and Fatehi, 

2018), where the AM and DMC would attach to the phenolic hydroxide group. 



128 
 

 

Figure 5.1. The copolymerization reaction of KL, DMC and AM for KAD production. 

The properties of KAD are listed in Table 5.1. The reaction conditions were controlled so that 

two copolymers with a similar charge density but different molecular weights, were produced 

(Table 5.1). The increase in the nitrogen content confirmed the grafting of AM and DMC onto 

lignin backbone, which ultimately increased the molecular weight of KADs (compared to 

unmodified KL) (Wang et al., 2013). KAD-1 had more nitrogen and higher molecular weight 

than KAD-2, confirming that the copolymerization was more extensively conducted for KAD-1 

than KAD-2. The similar charge densities of the two copolymers confirmed that both had very 

similar DMC content, as DMC was the only components that contributed to a cationic charge 

density of the copolymers.  

Table 5.1. Reaction conditions and properties of KADs 

Conditions KL KAD-1 KAD-2 

Temperature, °C - 60 90 

Time, h - 3 5 

KL, mol - 0.011 0.011 

AM, mol - 0.028 0.014 

DMC, mol - 0.014 0.019 

pH - 3 3 

Charge density, meq/g - 0.2 1.15 1.15 

Solubility, wt.% 5 45 50 

Mw, g/mol 17, 890 168,200 103,000 
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Mn, g/mol 5,150 117,400 82,000 

Mw/Mn 3.473 1.432 1.256 

Nitrogen, wt.% 0.03 5.12 4.49 

5.4.2 Characterization of bentonite and kaolin clay 
Table 5.2 presents the properties of kaolin and bentonite particles. The surface charge density of 

bentonite was more negative, which might be related to the montmorillonite layer structure of 

bentonite due to a greater percentage of oxide anions on the bentonite surface (Schmidt and 

Lagaly, 1999). Although, bentonite particles were larger, they had a smaller surface area and 

pore volume compared to kaolin particles.  

Table 5.2. Properties of clays 

Sample 
Surface 

Charge, µeq/g 
Particle 
Size, µm 

BET Surface 
Area, m2/g 

Total Pore 

Volume, cm3/g 

Kaolin -5.5 4.7 55.64 0.027 

Bentonite -9.4 6.1 20.12 0.012 

 

5.4.3 Adsorption of polymers 
The influence of KAD adsorption on clay particles as a function of copolymer dosage and pH is 

shown in Figure 5.2. As seen (Figure 5.2a), the KAD-1 and KAD-2 reached the saturation 

adsorption levels of 1.4 and 1.25 mg/g on kaolin and 1.08 and 0.99 mg/g on bentonite, 

respectively. KAD would interact with kaolin and bentonite particles through electrostatic charge 

interaction and thus adsorb on particles (Chen 1998; Solberg and Wagberg, 2003; Chen et al., 

2007). The results also showed that KAD-1 adsorbed more than KAD-2 on particles. Although 

KADs had a similar charge density, KAD-1 had a higher molecular weight, which resulted in 

higher adsorption as compared to KAD-2 (Chen, 1998; Tian and Xie, 2008). The higher 

molecular weight of KAD-1 may indicate that KAD-1 had a longer chains and therefore higher 

chance for tail and loop configuration on particles upon adsorption, which would in turn promote 

polymer bridging. For effective bridging, the length of polymer chains should be sufficiently 

long that allows for extending from one particle surface to another (Pala et al., 2011). Previously, 
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it was reported that increasing molecular weight (1.4 x104 to 2.49 x 106 g/mol) would enhance 

the adsorption of cationic guar gum on bentonite surface (Levy et al., 1995). In addition, the 

slightly lower adsorption of KADs on bentonite may be due to its smaller surface area and larger 

particle size (Wang et al., 2016). Meanwhile, KL had marginal adsorption on kaolin and 

bentonite particles. Figure 5.2b shows that under strong acidic conditions (e.g. pH 2) the 

adsorption was limited; but it was enhanced at neutral or basic pHs, and the increase was more 

pronounced for KAD-1 than KAD-2. In one study, an increase in pH from 5.5 to 10 increased the 

adsorption of cationic polyacrylamide on clay from 15 to 75 mg/g at 25 °C temperature (Tekin et 

al., 2005). 

Based on the results obtained from the adsorption analysis (Figure 5.2a) and considering the 

charge density of KADs, it was possible to theoretically calculate the change in the surface 

charge density of kaolin and bentonite particles after KAD adsorption. Figure 5. 2c shows the 

impact of the adsorbed KL and KAD on the theoretical surface charge density of kaolin and 

bentonite particles. This figure revealed that the overall surface charge density of kaolin and 

bentonite particles did not reach neutralization even after reaching the saturation level of 

adsorption. These findings indicated that KAD partly covered the surface of the clay particles; 

whereas, unadsorbed KAD was still available in the suspensions for adsorption. Therefore, the 

adsorption layer of KAD onto the clay particles was not evenly distributed, and theoretically, a 

part of particles contained anionic charges after saturation adsorption.   

http://www.sciencedirect.com/science/article/pii/0927775794030728
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Figure 5.2. a) Adsorption of KL and KAD on kaolin and bentonite as a function of copolymer 

dosage, b) adsorption of KL and KAD on kaolin and bentonite particles as a function of pH c) 

theoretical surface charge density of kaolin and bentonite clay particles as a function of adsorbed 

KAD conducted under the conditions of pH 7, 25 °C, 2 h and 0.4 g/L clay concentration. 

5.4.4 Particle size distribution  
Figure 5.3 presents the particle size distribution of kaolin and bentonite particles at optimal 

dosage in the presence and absence of KL or KAD. The size of untreated kaolin and bentonite 

clay particles were originally 4.7 and 6.1 μm, respectively. Both KAD-1 and KAD-2 increased 

the size of kaolin particles from 4.7 to 16.3 and 15.1 μm, respectively. Furthermore, the size of 

the bentonite particles was increased to 18.97 and 15.53 µm in the presence of KAD-1 and 

KAD-2, respectively. In the past, the size of clay particles increased from 0.1 to 100 μm via 

treating with 0.8 mg/L of PDADMAC (with the molecular weight of 1.2 × 106 g/mol) in a clay 

suspension (Yu et al., 2006). In another study, the addition of 4 mg/g of polyacrylamide (with the 

molecular weight of 1.3 × 106 g/mol) increased the size of the clay particles from 9 to 28 μm at 

the clay concentration of 20 g/L and pH 5.8 (Zhou and Franks, 2006). 
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The larger increase in the size of the clay particles treated with KAD-1 could be attributed to the 

adsorption and bridging of particles with this larger polymer in the suspension. As studied 

previously, with the increase in the molecular weight of polymers, their adsorption on the clay 

particle increased, which facilitated the bridging mechanism (Zhu et al., 2009). The small peaks 

in the size range of 100-500 µm in Figure 5.3 may be indicative of flocs of coagulated particles 

(Ghimici et al., 2010). 
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Figure 5.3. Particle size distribution of a) kaolin and b) bentonite particles in the presence and 

absence of KL or KAD conducted under the conditions of pH 7, 2 h, 8 mg/g of copolymer 

dosage, 25 °C and 0.4 g/L of clay concentration. 

5.4.5 Influence of dosage on zeta potential 
Figure 5.4 shows the effect of dosage of KAD on the zeta potential of kaolin and bentonite 

suspensions. The zeta potential of the suspensions was negative, but it increased substantially 

with an increase in cationic KAD dosage, which is due to the adsorption of KAD on the 

particles. As reported previously, the zeta potential of clay suspension was increased from -37.5 

to +42.1 mV when the dosage of PDADMAC was increased from 0.16 to 3.2 mg/g in the clay 

suspension (Petzold et al., 2003). In another report, the zeta potential of a bentonite suspension 

was increased from -30.0 to +30.5 mV at 0.25 mg/g of polyethyleneimine dosage (Alemdar et 

al., 2005). Although KADs had similar charge densities, the higher adsorption of KAD-1 led to 

more positive zeta potential for both kaolin and bentonite suspensions. Untreated KL was not 

able to significantly affect the zeta potential of the clay suspension due to its insignificant 

adsorption capacity (not shown).  
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Figure 5.4. Zeta potential of kaolin and bentonite particles in the presence of KAD as a function 

of copolymer dosage conducted under the conditions of pH 7, 2 h, 25 °C, and 0.4 g/L of clay 

concentration. 

Figure 5.5 shows the zeta potential of the suspensions as a function of theoretical charge density 

of clay particles. The zeta potential of untreated kaolin particles was -35 mV, when its surface 

charge density was -5.5 μeq/g. Interestingly, the surface charge density and zeta potential of 

particles for both KADs had a similar trend, regardless of the clay type. The zeta potential of 

kaolin particles became positive, but that of bentonite remained negative, via increasing the 

surface charge density of the particles (i.e., via adsorbing more KADs).  

The adsorption of KAD led to neutralization and reversal of some of the charged sites on the 

surface of the particles. As the negative theoretical surface charge density of particles implies 

that not all anionic charges were neutralized or reached by KADs, the overall theoretical surface 

charge density of the particles remained negative. In other words, the interaction of charges on 

the clay particles and KAD was not one to one. The positive zeta potential of kaolin suspension 

suggested that the diffuse double layer of kaolin was overall positive after adsorption even when 
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there were still some sites on kaolin with no KAD adsorption. However, negative zeta potential 

of bentonite particles showed that the adsorption of KAD did not reverse the potential of diffuse 

double layer for bentonite particles.   

 

Figure 5.5. Zeta potential of kaolin and bentonite suspensions as a function of the theoretical 

surface charge density of particles, under the conditions of pH 7, 2 h, 25 °C and 0.4 g/L of clay 

concentration. 

5.4.6 Influence of KAD on relative turbidity 
The influence of KAD on relative turbidity and removal of kaolin and bentonite particles from 

the suspensions were presented in Figure 5.6. The relative turbidity of the clay suspensions 

decreased by increasing the concentration of KAD in suspensions. As can be seen, the minimum 

turbidity values for KAD-1 (0.62) and KAD-2 (0.68) were achieved at the dosage of 8 mg/g. 

These results were in agreement with the maximum adsorption of KADs on kaolin particles. By 

increasing the dosage to 8 mg/g in kaolin suspension, KAD-1 and KAD-2 caused 76.2 and 68.4 

wt. % removals, respectively. Similarly, the minimum relative turbidity values for KAD-1 (0.41) 

and KAD-2 (0.47) for bentonite suspension was obtained at the concentration of 8 mg/g. The 

removal of bentonite particles for KAD-1 and KAD-2 were found to be 86.7 and 76.8 wt. %, 
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respectively, at 8 mg/g of dosage. A higher dosage of KAD-1 and KAD-2 did not affect the 

relative turbidity and removals of the suspensions' particles.  

The higher efficiency of KAD-1 than KAD-2 in relative turbidity reduction and removal of clay 

particles was due to its higher adsorption (Figure 5.2a) and molecular weight (Pala et al., 2011; 

Chen, 1998; Wan et al., 2007). It was reported that the molecular weight of polymers had a 

critical role in bridging particles, and thus minimizing the turbidity of colloidal suspensions 

(Wong et al., 2006; Hocking et al., 1999; Divakaran and Pillai, 2001). In one research work, the 

flocculation performance of cationic guar gum polymers in a bentonite suspension was improved 

by reducing its turbidity from 50 to 5 NTU at a dosage of 5 ppm when molecular weight of the 

polymers increased from 1.4x104 to 2.49x106 g/mol (Levy, 1995). 

The higher removal of bentonite particles was ascribed to the larger size of bentonite particles, 

which were easier to be removed than kaolin particles. In one study, with changes in the cationic 

xylan-2- (methacryloyloxy) ethyl] trimethylammonium chloride (DMC) dosages, from 0.25 to 8 

mg/L and to 0.41 mg/L, the relative turbidity of the bentonite and kaolin suspension was 

decreased from 0.98 to 0.07 and 0.41, respectively (Besra et al., 2002). In another study, with an 

increase in the cationic pullulan dosage from 2 to 8 mg/L, the removal of clay was increased 

from 10 to 90 % (Wang, 2016). Unmodified lignin (KL) neither affected the relative turbidity, 

nor removed the particles from suspensions, which was due to the limited adsorption of KL on 

particles (not shown). The impact of pH on the relative turbidity (Figure 5.6c) and the removal of 

clay (Figure 5.6d) from the suspensions were also studied. The relative turbidity of kaolin and 

bentonite suspensions was decreased as pH increased. As these results indicated, with the 

increase in pH from 2 to 8, the relative turbidity of kaolin and bentonite suspensions was reduced 

to 0.48 and 0.28 via removing 80 and 88.5 wt. % of clay particles in the presence of KAD-1 

polymer, respectively. 

Furthermore, the results in Figure 5.6 revealed that, with the increase in the pH of the 

suspension, the overall negative charges of the clay suspensions increased, which resulted in 

more adsorption of KAD-1 via electrostatic interactions on clay particles (Figure 5.2b), and 

caused the relative turbidity to decrease (Chen, 1998).  
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Figures 5.6. Influence of KAD dosage on the relative turbidity of a) kaolin and bentonite b) the 

removal of kaolin and bentonite particles from suspensions c) influence of pH on the relative 

turbidity of kaolin and bentonite suspension and d) removal of kaolin and bentonite from the 

suspensions in the presence of KAD, conducted under the conditions of 300 rpm, 2 h, 25 °C, and 

0.4 g/L of clay concentration. 
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Figure 5.7 demonstrates the effect of adsorbed KAD amount on the relative turbidity of kaolin 

and bentonite suspensions. By increasing the adsorption of KAD on particles, the relative 

turbidity of suspensions dropped more significantly. Compared with KAD-2, a reduction in 

relative turbidity was slightly higher for KAD-1; this may be attributed to the higher molecular 

weight of KAD-1 that facilitated the bridging and flocculation of the particles in the suspension. 

Furthermore, KAD-1 adsorbed slightly more than KAD-2 (Figure 5.2a), and thus a lower relative 

turbidity was obtained for KAD-1 than KAD-2 for both kaolin and bentonite particles (Figure 

5.6a). Also, the relative turbidity of bentonite suspension was lower than that of kaolin 

suspension, which indirectly implied a higher efficiency of KADs in bentonite suspension and 

this was ascribed to the larger size of bentonite particles than kaolin as explained earlier (Table 

5.2).  

Point “S” on Figure 5.7a shows the saturation level of KAD adsorption on particles. These points 

showed that, by adding more KADs to the suspensions, more unadsorbed KADs would remain 

after reaching the saturated level of adsorption. The results in Figure 5.7a for point “S” shows 

that the relative turbidity of the suspensions was not affected when more unadsorbed KADs were 

available in the suspensions, which was indeed affected only by the adsorbed KADs.  

Based on the results obtained from the adsorption analysis (Figure 5.2a), and the charge density 

of KADs, it was possible to calculate the total charges introduced on the surface of kaolin and 

bentonite particles after KAD adsorption. Figure 5.7b depicts the impact of charges introduced to 

the particles via adsorbing KAD on the relative turbidity of the suspensions. It was seen that 

KADs showed a similar trend, regardless of KAD type. However, as KAD-1 introduced more 

charges to the particles, the relative turbidity was reduced more significantly. In addition, the 

introduction of charges to bentonite particles was more effective than to kaolin in terms of 

reducing its relative turbidity. As stated earlier, the larger size of bentonite particles was the 

reason for its more readily flocculation and thus relative turbidity reduction.  
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Figure 5.7. a) Effect of KAD dosage on the relative turbidity of kaolin and bentonite 

suspensions, b) effect of total charges introduced to particles on the relative turbidity of kaolin 

and bentonite suspensions, under the conditions of pH 7, 2 h, 25 °C and 0.4 g/L of clay 

concentrations. 
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To determine the flocculation mechanism of KAD in kaolin and bentonite suspensions, the relative 

turbidity of kaolin and bentonite suspensions was plotted as a function of zeta potential in Figure 

5.8. In the case of kaolin suspension, the relative turbidity of the suspension gradually decreased 

when the zeta potential increased to positive values. In the case of bentonite suspension, the 

relative turbidity of the suspension dropped significantly when the zeta potential was still negative. 

Furthermore, slightly better results were obtained for KAD-1 than KAD-2. From these results, it 

is implied that 1) neutralization was a minor factor in flocculating kaolin particles as flocculation 

occurred more significantly at a higher positive zeta potential; 2) charge neutralization was a major 

factor in flocculating bentonite particles as flocculation was significantly improved via 

neutralizing the bentonite suspension.  

 

 

 

Figure 5. 8. Effect of zeta potential of kaolin and bentonite suspensions on the relative turbidity 

of clay suspensions conducted under the conditions of pH 7, 2 h, 25 °C and 0.4 g/L of clay 

concentration. 
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5.4.7 Influence of KAD on floc strength and recoverability 
Figure 5.9 presents the formation, breakage, and reformation of flocs generated in kaolin and 

bentonite suspensions as a function of time in the presence of KAD. To investigate the impact of 

shear rate on the floc formation and breakage, different shear rates were applied to the formed 

flocs. The results of floc formation and breakage depicted that the flocculation index (FI) values 

of kaolin suspension reached plateau at 300 rpm in the presence of KAD, indicating a steady-

state floc formation and representing a dynamic balance between floc growth and breakage 

(Liimatainen et al., 2009). When KAD was added, it neutralized and/or bridged the particles. 

Generally, the FI of the suspensions was reduced in the process of reducing and enhancing the 

shear rates. When the shear rate increased to 3000 rpm and maintained for 100 s, there was a 

rapid reduction in FI as a result of floc breakage. By increasing the shear rate, the particles could 

be disintegrated. The high shear rate would break the bridges between the particles; 

consequently, a part of the partly detached KADs from neighboring particles would reconfigure 

on one particle and KADs would lose their overall bridging affinity. The flocculation of particle 

would occur through charge neutralization and patch mechanism when reflocculated at a low 

shear rate, as the KADs can no longer perform bridging. In other words, the shear rate changes 

would impact the bridging performance of KAD and may introduce a patch mechanism for 

reflocculation (Yukselena and Gregory, 2004). 

It is apparent in Figure 5.9a that the reflocculation of flocs was significant, but new plateaus 

were achieved when the shear rate was reduced for both KAD-1 and KAD-2. The results showed 

that the strength of flocs and the FI values for the re-grown flocs were larger for KAD-1 than 

KAD-2, which could be due to the higher molecular weight and thus ability of KAD-1 in 

bridging kaolin particles (Yu et al., 2011). Compared with kaolin suspension, bentonite 

suspension had a lower FI, indicating slower flocculation and weaker flocs. In addition, the FI 

values after refloccuation were lower for bentonite than for kaolin, indicating that these flocs 

were weaker than those formed by kaolin. Previously, the influence of shear on flocculating a 

clay suspension by 0.13 mg/g PDADMAC showed a decrease in the FI from 3.0 to 0.8, when the 

shear rate was increased from 50 to 400 rpm and FI increased again to 2.5 when shear rate 

decreased to 50 rpm (Hocking et al., 1999).  

 



144 
 

 

 

Figure 5.9. Flocculation index of a) kaolin and b) bentonite suspensions as a function of time 

conducted under the conditions of 8 mg/g KAD, 25 °C, and 0.4 g/L of clay concentration. 
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5.5 Conclusions 
The adsorption capacity of KAD-1 and KAD-2 on kaolin particles (1.40 and 1.25 mg/g) was 
higher than that on bentonite (1.08 and 0.99 mg/g), and the adsorption of KAD-1 was higher at 
neutral or alkaline pH. The zeta potential of the kaolin suspensions increased significantly from -
35.3 to 38.9 and 33.7 mV due to the adsorption of KAD-1 and KAD-2; while the zeta potential 
of bentonite particles increased slightly from -33.08 to -8.8 and – 7.9 mV due to the low 
adsorption of KAD-1 and KAD-2, respectively. A more significant change in the zeta potential 
of kaolin was due to the adsorption of more KAD on kaolin particles. KAD-1 was more effective 
than KAD-2 in flocculating kaolin and bentonite particles. However, the relative turbidity of 
bentonite reduced more significantly than kaolin as its particles were larger, which made it more 
affected by KADs.  It was also observed that charge neutralization was the main factor in 
flocculating bentonite particles; whereas, polymer patching and/or bridging were the main 
factors for kaolin flocculation. The flocs of kaolin were stronger than those of bentonite, which 
were broken more easily by shear rates. KAD-1 was also induced the flocs with a higher strength 
than did KAD-2.  
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Chapter 6: Flocculation of clay suspension with kraft lignin-

AM-DMC polymers 

6.1 Abstract 
Lignin produced in the kraft pulping process is insoluble in water at neutral pH, which limits its 

application in industry. In this chapter kraft lignin (KL) was copolymerized with acrylamide (AM) 

and (2-methacryloyloxyethyl) trimethyl ammonium chloride (DMC) in an aqueous solution to 

produce a water-soluble lignin-based copolymer. Two cationic KAD polymers with the same 

molecular weights and different charge densities were produced and used as flocculants. KAD1 

with a higher charge density showed a higher adsorption on kaolin (2.58 mg/g) and bentonite 

particles (1.83 mg/g) at 4 mg/g (based on clay) adsorption experiment. Furthermore, KAD1 

changed the zeta potential and turbidity of the clay suspensions more effectively than KAD2 did, 

which was attributed to its higher charge density. The size of kaolin particles was increased from 

4.7 to 22.3 and 16.2 μm, and that of bentonite particles increased from 6.1 to 31.9 and 19.8 μm at 

4 mg/g of KAD concentration in the clay suspensions, respectively. In addition, the interfacial 

tension between KAD1 and kaolin and between KAD1 and bentonite reduced from 12.3 mN/m to 

5.8 mN/m and 9.5 mN/m to 5.2 mN/m, respectively. Moreover, KAD1 produced stronger flocs 

and showed high regrowth ability at different shear rates.  

 
6.2 Introduction 
In recent years, fast industrialization along with unrestrained use and exploitation of natural 

resources have led to a significant increase in industrial effluent production, which makes the 

treatment of wastewater effluents a challenging issue (Razali et al., 2011). Amongst numerous 

solid–liquid separation processes, flocculation is an efficient and cost-effective method for 

wastewater treatment in many industrial processes, such as pulp and paper, mining and mineral 

processes (Wang et al., 2016; Nasser and James, 2006). Synthetic polymeric flocculants have been 

used for treating industrial wastes for years. However, these flocculants and their derivatives pose 

a number of environmental problems because some of these flocculants are non-biodegradable and 

some may be hazardous to human (Liimatainen et al., 2011; Razali et al., 2015; Xie et al., 2007).  

Taking in to account the above-mentioned issues, the incentives for producing green flocculants 

are high in industry. Natural products can be rendered flocculant via chemical modifications. 
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Previous studies demonstrated that acrylamide (AM) and 2-[(methacryloyloxy) ethyl] 

trimethylammonium chloride (DMC) are the two most explored and utilized monomers to produce 

polysaccharide based flocculants for treating effluents (Ye et al., 2003; Abdollahi et al., 2011). In 

addition, the modification of chitosan (Wang et al., 2010; Ben et al., 2011), starch (Lu et al., 2004; 

Razali et al., 2015) and cellulose (Wang et al., 2011) were reported for flocculant productions. As 

starch, chitosan and cellulose are heavily consumed in other industries (e.g., food, paper, 

medicine), they may have limited availability to be used for flocculant production (Wang, et al., 

2016). On the other hand, lignin is a natural polymer that has currently limited industrial use 

(Pouteau et al., 2003; Zakzeski et al., 2010) but available in a large quantity. Therefore, the first 

objective of this work was to produce kraft lignin based flocculant via copolymerizing with water 

soluble AM and DMC monomers. 

The adsorption of polymers on particles has been comprehensively studied in the past (Gregory 

and Barany, 2011; Wang et al., 2016). The magnitude of polymers adsorption on the particles 

would also be affected by the charge density of the polymers (Wang et al., 2016).  It was stated 

that polymers with a higher charge density develop flattened configuration, while those with lower 

charge density develop tail and loop configurations, when adsorbed on surfaces (Nurmi et al., 

2016). Also, the charge density of cationic polymers is considered as a key factor in determining 

their effectiveness as flocculants on mineral particles such as clay particle surface (Gregory and 

Barany, 2011; Nurmi et al., 2016; Miranda et al., 2008; Chen and Ovenden, 1998). The second 

objective of this study was to investigate how the charge density of lignin based flocculant would 

impact its flocculation performance.  

This is the first attempt to produce kraft lignin based cationic polymers in an aqueous system for 

a flocculant application. To understand how this copolymer would act as a flocculant, a 

fundamental study of the adsorption behavior of this copolymer on the particle surface as well as 

investigating the zeta potential and flocculation efficiency of the copolymer in suspension systems 

were conducted in detail. The main focus of this work was to determine how kraft lignin based 

flocculant, with a similar molecular weight but varying charge densities, would function as 

flocculants in kaolin and bentonite suspension systems.  
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6.3 Materials and Methods 

6.3.1 Materials 
Softwood kraft lignin was produced via LignoForceTM technology of FPInnovations in Thunder 

Bay, ON (Kouisni et al., 2012). (2-methacryloyloxyethyl) trimethyl ammonium chloride (DMC) 

(80% in water), acrylamide (99.0 %), potassium persulfate (K2S2O8) (analytical grades), kaolin 

and bentonite were obtained from Sigma-Aldrich company. Cellulose acetate dialysis membrane 

(molecular weight cut off of 1,000 g/mol) was obtained from Spectrum Labs. Inc., USA. Poly 

diallyl dimethyl ammonium chloride (PDADMAC) was obtained from Sigma Aldrich Company 

and diluted to 0.005 M prior to use. Potassium polyvinyl sulfate (PVSK) was provided by Wako 

Pure Chem. Ltd. Japan. All the chemicals were used without further purification. Ethanol (95 vol. 

%) was received from Fisher Scientific company.  

6.3.2 Lignin-AM-DMC production and purification 
Kraft lignin-AM-DMC copolymers were synthesized in 250 mL three-neck glass flasks under the 

reaction conditions listed in Table 6.1. After the reactions, the flasks were submerged in cold tap 

water for 20 min. Then, ethanol (95 vol. %) was mixed with the reaction media in order to 

precipitate the lignin based copolymers from the reaction systems. Previously, ethanol 

precipitation was carried out for separating chitosan-AM-DMC copolymer from reaction media 

containing homopolymers (PAM, PDMC) and monomers (AM, DMC) (Wang et al., 2012; Ben et 

al., 2011). By adding ethanol to the reaction media, the solution reactions became suspension. The 

suspensions were centrifuged at 3500 rpm for 10 min in order to collect the precipitated 

copolymers (KL-AM-DMC) and remove the homopolymers (PAM, PDMC) and unreacted 

monomers (AM, DMC) present in the supernatants. In the next step, a 95 % ethanol was added to 

the collected precipitates after centrifuge, and it was gently mixed with the precipitates. These 

suspensions were centrifuged again to once again precipitate the produced KL-AM-DMC, and the 

supernatants containing homopolymers or monomers were removed. This step was repeated three 

times. Subsequently, the precipitated copolymers were mixed with 200 mL of deionized water and 

the pH of the solution was adjusted to 7.0 ± 0.2. 

 The samples were dialyzed using a membrane dialysis for 48 h in order to remove other impurities 

(e.g., inorganic salts and unreacted monomers) from the copolymer solutions. The deionized water 
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used for dialysis was changed every 12 h for 2 days. After dialysis, the solutions containing the 

copolymer were dried at 105 °C, and the dried samples were kept for flocculation studies. This 

copolymer was denoted as KAD, while unmodified kraft lignin was denoted as KL in this work. 

6.3.3 Solubility and charge density determination  
To measure the solubility of the KAD, 0.2 g of the copolymers were added to 20 mL of deionized 

water by stirring at 100 rpm and 30 °C for 1 h in a water bath shaker (Innova 3100, Brunswick 

Scientific, Edison, NJ, USA). Then, the suspensions were centrifuged at 1000 rpm for 5 min. The 

supernatants were collected and used for analyzing the charge density and solubility of the 

copolymers. The concentration of copolymers in the supernatants was determined by drying the 

supernatants at 105 °C, and the solubility was determined based on the concentration of KAD in 

the supernatants and the initial concentration of KAD in solutions. The charge density of the 

copolymers was measured by a particle charge detector, Mütek PCD 04 titrator (Herrsching, 

Germany) with a standard PVSK solution (0.0050 M) (Wang et al., 2016). 

The surface charge density of bentonite and kaolin particles was determined via back titration 

method with a Mutek, PCD 04, particle charge detector (Germany). Approximately, 0.2 g of clay 

was suspended in 50 mL of PDADMAC (0.005M) solution and the suspensions were incubated at 

30 °C for 2 h at 150 rpm. After the incubation, the samples were filtered using Whatman#1 and 

the filtrates were titrated against PVSK (0.0055 M) solution. Similarly, the titration analysis was 

conducted for the control sample (i.e., PDADMAC solution with no clay addition), and the 

difference in the concentration of PDADMAC in the control and actual samples was considered 

for quantifying the surface charge density of clay particles. Three repeats were carried out, and the 

average values were reported. 

6.3.4 Molecular weight analysis 
About 5 mg of dried KAD copolymer was dissolved in 10 mL of 5.0 wt. % acetic acid solution by 

stirring at 600 rpm for 48 h and 35 °C, and then the solutions were filtered with a 13 mm diameter 

nylon filter (pore size 0.2 µm). The filtered solutions were used for the molecular weight analysis, 

which was carried out using Malvern, GPCmax VE2001 Module + Viscotek system with 

viscometer and UV detectors. In this analysis, PolyAnalytic columns were used, and a 5.0 wt. % 

acetic acid was used as a solvent and eluent with the flow rate of 0.7 mL/min. The column 
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temperature was set to 35 °C. Poly ethylene oxide was used as standard polymers for calibration 

of this system. 

 

6.3.5 Elemental analysis 
The elemental analysis of the samples was performed for KL and KAD copolymers using an 

elemental analyzer, Elementar Vario EL Cube, by the combustion method (Jahan et al., 2012).  

The samples were first dried in an oven at 105 °C overnight to remove any moisture prior to 

analysis. Approximately, 2 mg of the dried samples were transferred into the carousel chamber of 

the elemental analyzer and combusted at 1200 °C to reduce the generated gasses to analyze carbon, 

hydrogen, oxygen, and nitrogen contents of the samples. 

6.3.6 Surface area analysis of clay particles 
The surface area of bentonite and kaolin particles was determined by using surface area analyzer, 

Quantachrome, Nova2200e instrument. In this experiment, the samples were initially dried in the 

oven at 105 °C overnight, and approximately 0.05 g of sample was pretreated for 4 h at 250 °C 

prior to analysis. The specific surface area of the samples was then analyzed according to 

Brunauer-Emmett-Teller (BET) method via adsorption-desorption isotherms using nitrogen gas at 

-180 °C within relative pressure range of 0.01 to 0.99 (Oveissi and Fatehi, 2014). 

6.3.7 Particle size analysis 
The size distribution of bentonite and kaolin particles was analyzed using a MasterSizer 

2000 particle size analyzer (Malvern Instruments), which was equipped with a light scattering 

detector. In this study, 1.0 g of clay suspension (20 g/L) was added to 50 mL of deionized water 

or 50 mL of KL or KAD solution containing polymers at the dosage of 4 mg/g (based on clay) and 

stirred at 300 rpm and room temperature for 2 h. After stirring, the samples were analyzed for their 

particle size distribution. 

6.3.8 Adsorption studies 
In this set of experiments, different amounts of KL or KAD (from 0.25 to 32 mg/g, based on the 

clay) were added to 50 mL of clay suspensions (0.4 g/L) in order to study the adsorption of KL or 

KAD on the clay particles. The suspensions were stirred at 300 rpm for 2 h at room temperature. 

Afterward, they were centrifuged for 15 min at 3500 rpm and then the concentrations of KAD 
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remaining in the supernatants were determined by UV/Vis spectrophotometer (Genesys 10S UV–

vis, Thermo FisherScientific, USA) at a wavelength of 205 nm. The impact of pH was also studied 

on the adsorption of KAD on clay particles. The pH of the suspensions (ranging 2 to 12) was 

adjusted with 0.1 M NaOH solution or H2SO4. Three repeats were carried out, and the average 

values were reported in the study. 

6.3.9 Impact of KL or KAD on clay removal 
In this set of experiments, different amounts of KL or KAD were mixed with 50 mL of clay 

suspensions (0.4 g/L) at 30 °C for 2 h. After mixing, clay suspensions were allowed to settle for 1 

h. A 10 mL sample was collected from the upper half of the suspension before and after the 

settlement and dried in an oven at 105 °C overnight. The concentration of clay particles in the 

samples was determined, which helped measure the removal of clay from suspensions by 

developing a mass balance. This analysis was repeated at different polymer dosages (0.25-32 mg/g 

based on clay) and pHs (2-12). The pH of the clay suspension adjusted by using 0.1 M NaOH. 

Three repeats were carried out, and the average values were reported in the study. 

6.3.10 Zeta potential analysis 
The zeta potential of clay suspensions was characterized by a NanoBrook Zeta PALS (Brookhaven 

Instruments Corp, USA). In this study, 1 g of clay suspension (20 g/L) was added to 50 mL of 

deionized water and stirred at 300 rpm for 2 h and room temperature, then its zeta potential was 

measured in a 1.0 mM KCl aqueous solution. The pH of the clay suspensions was adjusted by 

using 0.1 M NaOH or H2SO4. All the measurements were carried out at room temperature at a 

constant electric field (8.4 V/cm). Three repeats were carried out for zeta potential measurement 

and the mean value was reported.  

6.3.11 Flocculation analysis 
The efficiency of the flocculation was determined using a photometric dispersion analyzer 

(PDA 3000, Rank Brothers Ltd) connected to a dynamic drainage jar (DDJ) fitted with a 70 mm 

mesh screen (Wang et al., 2016). The flocculation performance of the clay suspension was 

measured from the variation in the direct current (DC) voltage of the PDA instrument. In this 

study, 500 mL of distilled water was first added into the DDJ container and circulated from the 

DDJ to the PDA through a 3 mm plastic tube until a steady flow rate of 20 mL/min was achieved. 



157 
 

The flow rate was regulated by a peristaltic pump throughout the experiment. Then, 10 mL of a 20 

g/L clay suspension was added into DDJ (to make a 0.4 g/L clay concentration in DDJ) while 

stirring at 300 rpm. This caused a decrease in the initial base DC voltage (V0) to a new DC voltage 

(Vi) in the PDA analyzer. After 100 s, 4 mg/g dosage (based on clay) of KL or KAD was 

maintained in the DDJ. The increase in DC voltage was represented as the DC voltage of the final 

suspension (Vf). The effects of KAD dosage and pH of the clay suspensions on the flocculation 

were also studied. The pH of the clay suspensions adjusted by using 0.1 M NaOH or H2SO4. The 

relative turbidity of the clay suspensions was measured using equation 6.1 (Wang et al., 2009). 

 

Relative turbidity, 𝜏r = 𝜏𝑓

𝜏𝑖
=  

𝑙𝑛(
𝑉0

𝑉𝑓
)

𝑙𝑛(
𝑉0

𝑉𝑖
)
                                  (6.1) 

 
where τf is denoted as the final suspension turbidity, and τi is denoted as the initial suspension 
turbidity. 
 
To study the strength of clay flocs after copolymer addition, 10 mL of a 20 g/L clay suspension 

was added into DDJ (to make a 0.4 g/L clay concentration in the DDJ) while stirring at 300 rpm. 

After 100 s, KL or KAD was added to the DDJ. After 500 s and forming flocs, the shear rate in 

the DDJ was increased from 300 to 3000 rpm and maintained for 100 s, during which flocs would 

break. Subsequently, the shear rate was decreased to 300 rpm and maintained for another 500 s, 

which might help in the regrowth of broken flocs. This process was repeated twice to study the 

flocculation behavior of clay suspensions in the presence of KAD. The degree of breakage and 

regrowth was presented by flocculation index (FI), which is the ratio of the root-mean- square 

(RMS) and direct current (DC) of the PDA instrument. The flocculation index was used as an 

indication of flocculation and breakage of clay particles in the suspensions in the past (Wang et 

al., 2008; Yu et al., 2010; Ramphal and Sibiya, 2014). All the experiments were performed in 

triplicates, and the mean values were reported in the study. 

Previously, it was demonstrated that the floc breakage or floc regrowth can be evaluated 

quantitatively in order to study the strength and regrowth ability of the broken flocs (Alfano, 1998; 

Alfano et al., 1999; Blanco et al., 2002; Blanco et al., 2001). The relationship between the floc 

breakage (Tbr) at 3000 rpm (equation 6.2, 6.3) and regrowth (Tgr) at 300 rpm (equation 6.4, 6.5) 

for KAD in kaolin and bentonite suspensions were also developed: 
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𝑌 =  𝐶0 + 𝐴. 𝑒−𝑡/𝑇𝑏𝑟               (6.2) 
 
 

𝑌 = 𝐴. 𝑒−𝐵.𝑡                              (6.3) 
 

𝑌 =  𝐶∞ − 𝐾. 𝑒−𝑡/𝑇𝑔𝑟              (6.4) 
 
𝑌 = 𝐾. 𝑒−𝑆.𝑡                              (6.5) 
 
where A and K are pre-exponential factor, C0 and C∞ are numerical constants, Tbr and Tgr are the 

floc breakage and regrowth, Y is the mean floc size. By correlating equations (2) and (3), (4) and 

(5), B = 1/Tbr and S = 1/Tgr are obtained. The parameters Tbr and Tgr obtained are shown in Table 

6.3. 

6.3.12 Surface and interface tension analysis. 
The surface tension of KAD polymers was measured using a tensiometer (Attension sigma 700), 

equipped with platinum loop (Ponnusamy et al., 2012). In this set of experiments, KAD with a 

lower charge density (KAD1) was added at different concentrations (2 to 32 mg/g) to deionized 

water (25 mL) and mixed for 1 h at 300 rpm and 30 °C. After mixing, 20 mL of KAD solution was 

transferred to glass container for surface tension analysis. Based on the input parameters (ring 

dimension, density of the sample and temperature), the surface tension of the samples was 

determined by the instrument. The surface tension of KAD1 and KAD2 solutions was measured 

for 3 min and each measurement was replicated 10 times within the time frame. The platinum loop 

was cleaned with ethanol and deionized water between each test. All the measurements were 

carried out at 25 °C and pH 7. 

An optical tensiometer instrument, Theta lite (Biolin Scientific, Finland) equipped with camera 

was used to determine the wettability of kaolin samples (20 g/L). After mixing, 2 mL of each clay 

sample was coated on glass slides using a spin coater, WS-650 (Laurell Technologies Corp) under 

vacuum with 60 psi pressure at 250 rpm and 60 s. The contact angle of water droplet with kaolin 

and bentonite samples coated on the slides was measured by sessile drop method using an optical 

tensiometer (Cipriano et al., 2005). Approximately, 5 µL of water droplet was placed on the coated 

slides and the contact angles between droplets and the kaolin samples coated on slides were 

determined. In another set of experiments, a droplet (5 µL) of KAD1 or KAD2 solution was placed 

on the kaolin coated slides and the contact angle between the KAD1 or KAD2 droplet and kaolin 
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coated slides was measured as described above. Three replicates were performed for each 

experiment and average values were reported. 

The surface tension of kaolin was analyzed using the tensiometer’s OneAttension software via 

Zisman equation (Eq. 6.6) (Zhu et al., 2010). 

Cos θ = 1 + b (γsv −  γlv)                         (6.6) 

where γlv and γsv represent the surface tension of liquid (KAD1 or KAD2 solution) vapor and solid 

(kaolin) vapor in mN/m, θ represents contact angle between liquid and solid in degrees (°).  

The interfacial tension between kaolin and KAD1 or KAD2 droplet was determined by using 

Young equation (Eq. 6.7) 

𝛾𝑙𝜐 𝑐𝑜𝑠𝜃 = 𝛾𝑠𝜐 − 𝛾𝑠𝑙                            (6.7) 

 

where γlv, γsv and γsl represent the tensions of liquid vapor, solid vapor and solid liquid, 

respectively. The aforementioned procedures for contact angle, surface tension and interface 

tension analysis were repeated for bentonite, as well. 

6.4 Results and Discussion 
6.4.1 Properties of KAD 
The copolymerization of KL from AM and DMC was carried out in an aqueous solution via free 

radical polymerization using potassium persulfate as an initiator (Figure 6.1). The details of 

reaction mechanisms of KL, AM and DMC were discussed in the previous chapter (Hasan and 

Fatehi, 2018).  In this copolymerization reaction, the AM and DMC would attach to the phenolic 

hydroxide group of KL. 
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Figure 6.1. The copolymerization reaction of KL, DMC, and AM for KAD production. 

Table 6.1 lists the reaction conditions and properties of the copolymers. Under controlled reaction 

conditions, the copolymers with varying charge densities of 1.3 and 2.1 meq/g but with a similar 

molecular weight of 185 kg/mol were produced. It is evident that the amount of nitrogen, charge 

density, and molecular weight increased in the KAD as compared to KL, confirming the grafting 

of AM and DMC onto lignin backbone (Wang et al., 2013).  KAD1 had a higher nitrogen content 

and charge density than did KAD2, confirming that the copolymerization was accelerated more 

greatly for KAD1 than KAD2. The proportion of DMC, AM and KL in the KAD was presented in 

Table 6.1. The proportion of DMC was determined by the charge density analysis since a charge 

of +1 meq/g equals to 1 mmol/g of DMC in KAD, as only DMC contributes to the charge density 

of KAD. The proportion of AM and DMC in the KAD was measured by considering the total 

amount of nitrogen in KAD polymer. Finally, the proportion of KL in KAD was determined by 

developing a mass balance for the copolymer via considering the proportions of DMC and AM in 

the copolymer. As can be seen, KAD1 was composed of higher DMC content (44.2 %) as 

compared to KAD2 (26.79 %).  
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Table 6.1. Reaction conditions and properties of KADs 

Conditions               KL                                 KAD1             KAD2 

Temperature, °C - 80 80 

Time, h - 3 4 

KL, mol - 0.011 0.011 

AM, mol - 0.014 0.014 

DMC, mol - 0.024 0.014 

pH - 3 5 

Charge density, meq/g - 0.2 2.13 1.29 

Solubility, wt.% 5 56 53 

MW, g/mol 17, 890 185,900 185, 500 

Mn, g/mol 5,150 128,500 135,700 

Mw/Mn 3.473 1.442 1.367 

Nitrogen, % 0.03 6.01 3.12 

KL, % - 40.2 66.51 

AM, % - 15.55 6.69 

DMC, % - 44.2 26.79 

 

6.4.2 Kaolin and bentonite characteristics 
Table 6.2 presents the properties of kaolin and bentonite particles. Bentonite mainly composed of 

two negatively charged silicon oxide and one positive charge aluminum oxide surfaces along with 

traces of other clay materials. Therefore, bentonite naturally possesses a negative charge due to 

the prevalence of the negatively charged oxide anions (Asselman and Garnier, 2000; Schmidt and 

Lagaly, 1999). Bentonite particles were larger with smaller surface area and pore volume than 

kaolin particles. However, kaolin contains one parallel layer of silicon dioxide and aluminum oxide 

sheets. It is apparent that kaolin particles possess a small net negative surface charge. 
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Table 6.2. Properties of clays 

Sample 
Surface charge 
density, µeq/g 

Particle size, 
µm 

BET surface area, 
m2/g 

Total pore volume, 
cm3/g 

Kaolin -5.5 4.7 55.64 0.027 

Bentonite -9.4 6.1 20.12 0.012 
 

6.4.3 Adsorption of polymers  
Figure 6.2 shows the adsorption of KAD on clay particles as a function of KAD dosage and pH. It 

was observed that the adsorbed amount was increased with increasing the polymer charge density, 

implying the important role of electrostatic interaction in the adsorption process (Piana et al., 

1987). As observed, the adsorption of cationic KAD1 and KAD2 onto kaolin particles approached 

a plateau at 4 mg/g (based on clay) dosage and the maximum polymer adsorptions were 2.58 and 

2.11 mg/g, respectively. In case of bentonite, the adsorption for KAD1 and KAD2 was 1.83 and 

1.63 mg/g, respectively. The lower adsorption capacity of bentonite than kaolin can be attributed 

to its smaller surface area and larger particle size (Asselman and Garnier, 2000; Wang et al., 2016). 

Meanwhile, KL had marginal adsorption on kaolin and bentonite particles. As indicated in Figure 

6.2a, the adsorption behavior of a polymer onto clay particles is dependent on its charge density. 

The data presented here is consistent with previous findings in that increasing the charge density 

(10% to 35%) of a cationic poly acrylamide would enhance its adsorption from 1.5 to 3.4 mg/g in 

kaolinite suspension (Nasser and James, 2006). Wang et al. (2016) compared the flocculation 

efficiency of cationic polymers and reported that an increase in the charge density of cationic xylan 

(1.8 to 2.4 meq/g) enhanced its adsorption onto kaolin (3.1 and 4.6 mg/g) and bentonite (0.73 and 

0.85 mg/g) particles. Similarly, the investigation of Barany et al. (2011) demonstrated that an 

increase in the charge density of cationic polymer (5 to 80 mol %) promoted the polymer 

adsorption onto kaolin (4 to 10 mg/g) and bentonite (8 to 16 mg/g) particles. Figure 6.2 also shows 

that the adsorption of KAD on kaolin and bentonite clay particles increased with the increase in 

the pH, indicating favorable adsorption in alkaline medium. Besra et al. (2002) illustrated that an 

increase in the pH of kaolin suspension from 2 to 10 led to an increase in the cationic 

polyacrylamide adsorption on clay from 1.09 to 1.98 mg/g at 2 mg/g of polymer dosage in the clay 

suspension. These findings also suggested that after polymer adsorption, the surface charge density 

of clay particles might change from negative to positive depending on the amount of polymer 
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adsorbed. The results obtained from the adsorption (Figure 6.2a), and the charge density of KADs 

facilitated the theoretical determination of a change in the surface charge density of kaolin and 

bentonite particles after KAD adsorption. Figure 6.2c shows the impact of the adsorbed KL and 

KADs on the theoretical surface charge density of kaolin and bentonite particles. The surface 

charge density of unmodified clay particles was experimentally determined as described in section 

6.4.2; however, it was not possible to experimentally measure the surface charge density of the 

particles after KAD adsorption. As observed, the negative charges of kaolin and bentonite particles 

were not neutralized by a positively charged KAD segment even at the saturation level of 

adsorption. These results confirmed that KAD polymers were not able to fully cover the surface 

of clay particles because the adsorption sites might become inaccessible to KAD, even though 

unadsorbed KAD was still available in the suspensions.  
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Figure 6.2. a) Adsorption of KL and KAD on kaolin and bentonite as a function of polymer 

dosage, b) adsorption of KL and KAD on kaolin and bentonite particles as a function of pH, c) 

theoretical surface charge density of kaolin and bentonite clay particles as a function of adsorbed 

KAD (conducted under the conditions of pH 7, 25 °C, 2 h and 0.4 g/L clay concentration). 
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6.4.4 Surface tension and interfacial tension analysis 
Figure 6.3 shows the impact of KAD concentration on the surface tension of water. The surface 

tension of water in the absence of KAD was found to be 72.8 mN/m (Szymczyk and Jańczuk, 

2011). It can be seen that the surface tension of water decreased to 65 and 67 mN/m via adding 32 

mg/g KAD1 and KAD2 in the suspension, respectively. The KAD copolymer possesses a number 

of functional groups, such as quaternary ammonium, carbonyl, phenolic hydroxyl, and amide, 

which could alter the interactions developed between the water molecules and thus reducing the 

surface tension of water (Szymczyk and Jańczuk, 2011). The higher reduction in the surface 

tension of water caused by the KAD1compared to KAD2 can be attributed to its higher charge 

density; consequently, more interaction with water molecule would occur that impacts the surface 

tension. It is worth mentioning that, the surface tension of kaolin (γsv) (55 mN/m) was found to be 

greater than bentonite’s (47 mN/m). 

The interfacial tension between clay and water droplet was reduced with the addition of KAD 

(Figure 6.3). As observed, the interfacial tension between kaolin and water (12.35 mN/m) was 

decreased to 5.8 and 7.1 mN/m for KAD1 and KAD2, respectively, at 32 mg/g KAD concentration. 

This observation is in agreement with the significant reduction in contact angle of water (57°) for 

KAD1 (45°) and KAD 2 (47°) on the kaolin coated surfaces. On the contrary, the interfacial tension 

between water and bentonite (9.5 mN/m) was decreased to 5.2 and 6.6 mN/m for KAD1 and 

KAD2, respectively. However, no significant change in surface tension and interfacial tension 

between water and clay samples was observed in the presence of unmodified KL (not shown).  

A smaller contact angle indicated more adhesion of liquid on solid surface (Somasundaran and 

Zhang, 2006). Evidently, adhesion (wettability) of KAD onto kaolin and bentonite surfaces 

increased with increasing the polymer concentration to 32 mg/g. As can be seen, the wetting 

behavior of KAD1 was better than KAD 2. This is because of higher charge density of KAD 1, 

which leads to enhanced electrostatic interaction with clay particles. As a result, the highest 

wettability (i.e., maximum drop in contact angle) of clay was achieved by KAD1, indicating that 

the decrease in the interfacial tension and contact angle was most likely associated with its 

increased adsorption onto the clay surface (Figure 6.2) (Somasundaran and Zhang, 2006). In 

addition, a decrease in KAD contact angle and interfacial tension was greater on kaolin than 
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bentonite surface because KAD polymers tend to adsorb less on the bentonite particles due to its 

smaller surface area (Table 6.2).  

  

 

Figure 6.3. Effect of a) KAD1 concentration and b) KAD2 concentration on surface tension and 

interfacial tension of kaolin and bentonite particle under the conditions of pH 7 and 25 °C.  
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6.4.5 Particle size distribution  
The volume fraction of particles in the presence and absence of KL or KAD at the dosage of 4 

mg/g as a function of particle diameter is shown in Figure 6.4. The sizes of untreated kaolin and 

bentonite particles were 4.7 and 6.1 μm, respectively. Both KAD1 and KAD2 increased the size 

of kaolin particles from 4.7 to 22.3 and 16.2 μm, respectively. Furthermore, the size of the 

bentonite particles was increased to 31.9 and 19.8 µm in the presence of KAD1 and KAD2, 

respectively. The particle size was larger for the KAD1. As discussed previously, KAD1 exhibited 

more adsorption that led to a multilayer deposition of KAD1 on the particles and contributes to 

their larger sizes. Moreover, the small peaks seen in the figure demonstrate that some particles 

may be involved in inter-particle association to form flocs of coagulated particles (Ghimici et al, 

2010). Wickramasinghe et al. (2002) observed that an increase in the charge density of cationic 

polyacrylamide led to an increase in the particle size for yeast suspension. 
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Figure 6.4. Particle size distribution of a) kaolin and b) bentonite particles in the presence and 

absence of KL or KAD conducted under the conditions of pH 7, 4 mg/g of polymer dosage, 

25 °C and 0.4 g/L of clay concentration. 

6.4.6 Influence of dosage on zeta potential 
Figure 6.5 shows the effect of dosage of KAD on the zeta potential of kaolin and bentonite 

suspensions. The zeta potential of clay particles increased with increasing KAD dosages, 

indicating that the electrostatic attraction between the positively charged polymers and negative 

surface sites of the particle neutralized the surface charge of clay particles partly (Nasser and 

James, 2006). Changes in the zeta potential were more pronounced for KAD1 with the higher 

charge density as the zeta potential value reached +40 mV, while it reached 30 mV for KAD2 in 

the kaolin system. These results indicate the accumulation of higher amount of cationic charges in 

the diffused layer in the case of highly charged KAD1 sample (Gregory and Barany, 2011). Similar 

behavior was observed for bentonite particles, but the overall zeta potential remained anionic after 

adsorption of KADs. Untreated KL was not able to change the zeta potential of the clay suspension 

due to its insignificance adsorption (not shown). In one study, the zeta potential of cationic polymer 
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in bentonite suspension was reported to increase from -20 mV to +40 mV and +60 mV when its 

charge density increased from 5 to 35 mol % (Barany et al., 2010). 

 

Figure 6.5. Zeta potential of kaolin and bentonite particles in the presence of KAD as a function 

of polymer dosage conducted under the conditions of pH 7, 2 h, 25 °C, and 0.4 g/L of clay 

concentration. 

To understand if the zeta potential of clay particles is impacted by the overall surface charges of 

clay particles, the zeta potential of the suspensions was plotted as a function of theoretical surface 

charge density of clay particles (Figure 6.2c). In the absence of KADs, the zeta potential of the 

untreated kaolin suspension and the surface charge density of particles were -35 mV and -5.5 

μeq/g, while those of bentonite were -33.5 mV and -9.4 μeq/g, respectively. Interestingly, both 

KADs impacted the zeta potential and surface charge density of particles in a similar fashion. After 

adsorption, the surface charge density of kaolin particles became positive and that of bentonite 

remained negative. As the surface charge density of kaolin theoretically remained negative but its 

zeta potential became positive, it is inferred that 1) a full surface coverage of KAD on kaolin 

particle was not required for a positive zeta potential, 2) adsorption of KAD on particles was such 

that it affected positively the potential of the diffused double layer of particles.  
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Contrarily, the negative zeta potential of bentonite particles indicated that the diffuse layer 

remained negatively charged due to less adsorption of KAD onto bentonite particles. As can be 

seen in Figure 6.6, KAD1 showed more pronounced zeta potential changes than did KAD2. This 

is due to the higher adsorption of KAD1, which could result in a higher surface charge density of 

the particles via charge neutralization and reversal of some of the charged sites on the surface of 

the particles. The negative theoretical surface charge density of particles indicated that the surface 

coverage provided by KADs was relatively small; thus, the overall theoretical surface charge 

density of the particles remained negative. This analysis provides evidence that the clay particles 

and KAD interaction was not based on stoichiometrical charge interaction. 

 

 
 

Figure 6.6. Zeta potential of kaolin and bentonite suspensions as a function of the theoretical 

surface charge density of particles, which was conducted under the conditions of pH 7, 2 h, 

25 °C and 0.4 g/L of clay concentration. 
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6.4.7 Influence of KAD on relative turbidity 
The influence of KAD on the relative turbidity and removal of kaolin and bentonite particles from 

the suspensions were presented in Figure 6.7. The relative turbidity of the clay suspensions 

decreased by increasing the concentration of KAD in suspensions. As can be seen, the minimum 

relative turbidity values for KAD1 (0.53) and KAD2 (0.61) were achieved at the dosage of 4 mg/g. 

By increasing the dosage to 4 mg/g in kaolin suspension, KAD1 and KAD2 led to 76.9 and 71.2 

wt. % of clay removals, respectively. Similarly, the minimum relative turbidity values for KAD1 

(0.20) and KAD2 (0.32) for bentonite suspension was obtained at 4 mg/g concentration. The 

removal of bentonite particles for KAD1 and KAD2 were found to be 96.2 and 84.6 wt. %, 

respectively (Figure 6.7b). These results were in agreement with their adsorption studies on kaolin 

and bentonite particles. Interestingly, a higher removal was obtained for bentonite particles than 

kaolin particles, which is possibly due to the large size of bentonite particles that could be removed 

more easily from the suspensions (Table 6.2 and Figure 6.4). It is also observable that the KAD1 

induced a lower relative turbidity and more removal from the suspension systems, which could be 

attributed to its higher adsorption (Figure 6.2). Unmodified lignin (KL) did not affect the relative 

turbidity and removal of particles from the suspensions, which was due to its limited adsorption 

on particles (not shown). Chen (1998) showed that an increase in the cationic group of 

polyacrylamide from 10 to 50 mol % led to an increase in the turbidity removal of a clay suspension 

by 90 %. In one study, an increase in the charge density of cationic polyvinyl alcohol from 0.28 to 

0.55 meq/g, led to 30 % clay removal at 3.0 wt. % polymer dosage (Sang and Xiao, 2008). In 

another report, the flocculation performance of polyacrylamide in palm oil mill effluents was 

reported to be improved by 98% when its cationic charge density increased from 9.6 to 97 % 

(Ariffin et al., 2005). 

The effect of pH on the relative turbidity and removal of clay particles from the kaolin and 

bentonite suspensions was illustrated in Figure 6.7c. As pH increased from 2 to 10, the removal of 

bentonite (96.8 %) increased dramatically, while that of kaolin particles was 81.25 %. As discussed 

previously, a higher removal was achieved by bentonite because of its smaller surface area and 

larger particle size. Furthermore, these results suggested that, a higher suspension pH generated a 

higher overall negative charge on the clay particles, which resulted in more adsorption of KAD1 
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via electrostatic interactions on clay particles (Figure 6.2b) and a more pronounced reduction in 

the relative turbidity.  
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Figures 6.7. Influence of KAD dosage on the relative turbidity of a) kaolin and bentonite, b) the 

removal of kaolin and bentonite particles from suspensions, c) influence of pH on the relative 

turbidity and removal of kaolin and bentonite suspensions in the presence of KAD, under the 

conditions of 300 rpm, 2 h, 25 °C, and 0.4 g/L of clay concentration. 

The effect of adsorbed KAD and the influence of the surface charge density of the particles on the 

relative turbidity of the suspensions are shows in Figure 6.8. At the same adsorption amount of 

KAD, a smaller relative turbidity was obtained for KAD1 than KAD2, which is due to the higher 

charge density and thus more effectiveness of KAD1 than KAD2 in flocculating particles. Thus, 

the higher adsorption affinity of KAD1 than KAD2 (Figure 6.2a) for kaolin and bentonite 

suspensions could be the reason for its more efficient flocculating performance (Figure 6.7a). 

However, due to larger size of bentonite particles (Table 6.2), the relative turbidity of bentonite 

suspension decreased more sharply than did that of kaolin. The points (S) in Figure 6.8a represent 

the saturation adsorption of KADs on particles. In this case, by adding more KADs to the 

suspensions, more unadsorbed KADs would remain in the suspensions (Figure 6.2). As the relative 

turbidity of the suspensions did not change for different KAD addition at this dosage, it can be 

claimed that the amount of adsorbed KAD played a crucial role in the relative turbidity of the 

particles, and unadsorbed KAD did not affect the relative turbidity of the suspensions.  
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Interestingly, the results in Figure 6.8b revealed that the surface charge density of the particles was 

a crucial factor in determining the relative turbidity of the particles, regardless of the charge density 

of KADs. To reach a certain level of surface charge density for particles, KAD2 was required to 

adsorb more than KAD1 as it had a lower charge density. However, the adsorption amount seems 

to only impact the overall adsorption of KADs and thereby affecting the surface charge density of 

particles (at a higher level of polymer adsorption), which remarkably affected the turbidity of the 

suspensions. At the same level of polymer adsorption, KAD1 was more effective as it introduced 

more charges to the surface of particles. Also, the influence of surface charges on the bentonite 

particles was more profound than on kaolin for reducing its relative turbidity.  
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Figure 6.8. a) Effect of KAD adsorption amount on the relative turbidity of kaolin and bentonite 

suspensions, b) effect of the theoretical surface charges of the particles on the relative turbidity 

of kaolin and bentonite suspensions, under the conditions of pH 7, 2 h, 25 °C and 0.4 g/L of clay 

concentrations. 

The flocculation mechanism of KAD in kaolin and bentonite suspensions can be predicted by 

plotting the relative turbidity of kaolin and bentonite suspensions as a function of zeta potential in 

Figure 6.9. In the case of kaolin suspension, the relative turbidity dropped gradually as the zeta 

potential of the suspensions was reversed. In contrast, the relative turbidity of bentonite suspension 

dropped more dramatically with a change in the zeta potential (even though the zeta potential was 

not reversed). Based on the results, it may be claimed that the charge neutralization was not a main 

factor for flocculation and the removal of kaolin particles, but it was for bentonite particles.   
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Figure 6.9. Effect of zeta potential of kaolin and bentonite suspensions on the relative turbidity 

of clay suspensions under the conditions of pH 7, 2 h, 25 °C and 0.4 g/L of clay concentration. 

6.4.8 Influence of KAD on floc strength and recoverability 
The variations in the FI of the suspension systems as a function of time were shown in Figure 6.10. 

The results show that the FI of kaolin suspension reached 1.4 at 300 rpm in the presence of KAD. 

This indicates the steady state floc growth, which depends on the dynamic balance between floc 

strength and the effective shear rate (Liimatainen et al., 2004). After adding KAD, both charge 

neutralization and bridging promote the aggregation of flocs. When the shear rate was enhanced 

to 3000 rpm, there was a rapid reduction in FI of the suspensions due to floc breakage. When the 

low shear rate was restored, floc regrowth occurred only to a limited extent. In order to analyze 

the floc breakage (Tbr) and regrowth (Tgr), the floc strength and recovery of KAD polymers were 

calculated based on Eq. (6.3) and Eq. (6.5), respectively. As reported in Table 6.3, the higher value 

of Tbr was obtained for KAD1 than for KAD2 at 3000 rpm in kaolin and bentonite systems, 

implying higher strength and resistance of the flocs for KAD1 system (Blanco et al., 2002). Since 
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regrowth takes place at 300 rpm, Tgr can be used as a means of determining the efficiency and the 

extent of regrowth. As can be seen at the 300 rpm, flocs formed via adding KAD1 achieved a more 

efficient regrowth compared to those formed via adding KAD2, indicating more efficient and a 

relatively faster regrowth capability. This phenomenon may be attributed to their aggregation 

mechanism. It was reported in the literature that polymer bridging is shear sensitive and 

nonrecoverable (Blanco et al., 2002). As the flocs are broken, the bridging polymer may undergo 

scission, and subsequently, a part of the partly detached KADs would reconfigure on the particles 

surface and lose their bridging affinity (Chen, 1998). However, polymer patching is less sensitive 

to shear and readily reforms the flocs (Gray and Ritchie, 2002). The results confirmed that KAD1 

formed stronger flocs with a better regrowth efficiency. As stated earlier, polymers with a higher 

charge density tend to adsorb more strongly on the surface of particles and develop more flattened 

configuration. However, polymers with a lower charge density tend to develop tail and loop 

configuration promoting bridging. Therefore, stronger charge neutralization and polymer patching 

might be the reason for better performance of KAD1 than KAD2 (Zhu et al., 2009; Yukselena and 

Gregory, 2004).   

 

Table 6.3. The floc breakage and regrowth of KADs under shear  

 
 
 
 

 

 

On the other hand, as bentonite particles were larger than kaolin, KADs were generally weaker in 

patching or bridging them as the FI of bentonite system was lower than that of kaolin’s and they 

were more sensitive to shear rates. Hence, flocs formed in bentonite suspension were weak and 

soft. However, the neutralization of their overall charges was helpful in their regrowth but not as 

much the flocs regrowth for kaolin systems. This was confirmed by lower floc breakage (Tbr) and 

regrowth (Tgr) values obtained for the bentonite system than for the kaolin system (Table 6.3). 

 
 

  Sample Tbr  Tgr  Tbr Tgr 
Shear rate 
(rpm)  3000 300 3000 300 

Kaolin KAD1 153 123 136 93 
KAD2 84 73 70 57 

Bentonite KAD1 90 75 59 33 
KAD2 77 60 55 27 
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Figure 6.10. a) Flocculation index of a) kaolin and b) bentonite suspensions as a function of time 

conducted under the conditions of 8 mg/g KAD, 25 °C, and 0.4 g/L of clay concentration. 
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6.5 Conclusions 
The interfacial tension between water and kaolin was reduced from 12.3 mN/m to 5.8 mN/m or 

7.2 mN/m via adsorbing KAD1 or KAD2, indicating an increase in the wettability of the particles. 

Surface tension and contact angle results suggested an improved wettability of clay particles with 

increased adsorption of KAD1 or KAD2. The present study showed that the adsorption of KAD1 

and KAD2 on kaolin particles (2.58 and 2.11 mg/g) was higher than that on bentonite (1.83 and 

1.63 mg/g, respectively). The adsorption of KAD1 became more favorable by increasing pH. The 

zeta potential of the kaolin suspensions increased significantly from -35.3 to 39.3 and 30.1 mV 

due to the adsorption of KAD1 and KAD2; while, the zeta potential of bentonite particles was 

increased slightly from -33.5 to -7.8 and – 11.6 mV due to the low adsorption of KAD1 and KAD2, 

respectively. The more significant change in the zeta potential of kaolin was due to the higher 

adsorption of KAD on kaolin particles. KAD1 was more effective than KAD2 in flocculating 

kaolin and bentonite particles. However, the relative turbidity of bentonite was reduced more 

significantly than kaolin as its particles were larger, and thus more substantially affected by KADs. 

The relative turbidity of the particles was significantly affected by the overall charges introduced 

on the particles. It was observed that charge neutralization was the main factor in flocculating 

bentonite particles; whereas, polymer patching and/or bridging were the main factors for kaolin 

flocculation. The flocs formed by kaolin were stronger and showed better recovery than bentonite. 

KAD1 was also induced flocs with a higher strength than did KAD2.  
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Chapter 7: Impact of kraft lignin-based flocculants on the 

flocculation and sedimentation behaviour of kaolin 

suspensions 

7.1 Abstract 
Currently, kraft lignin is burned in the recovery cycle of the kraft pulping process; but it can be 

extracted and modified to produce value-added products. In this work, kraft lignin (KL) was 

polymerized with 2-[(methacryloyloxy) ethyl] trimethylammonium chloride (DMC) to produce 

cationic water soluble polymers. Five polymers of different molecular weights and charge 

densities were produced and their flocculation efficiency in kaolin suspensions was investigated.  

The adsorption, zeta potential and flocculation results confirmed that the polymer with the 

highest charge density and molecular weight (KLD5) was a more effective flocculant than other 

polymers. The structure and size of flocs formed via interaction of kaolin and KLD were 

determined by a focused beam reflectance measurement (FBRM). Furthermore, 8 and 32 mg/g of 

KLD5 addition to the kaolin suspension increased the chord length of particles from 53.12 to 

65.3 µm, respectively. Sedimentation studies conducted under gravitational force (vertical scan 

analyzer) and centrifugal force (Lumisizer analytical centrifuge) revealed that KLD5 was more 

effective in flocculating the kaolin particles. The sediment compactness of KLDs decreased by 

increasing the settling velocity. For instance, at 32 mg/g dosage, the sediment compactness of 

KLD5 was found to be to 10.85 g/L with settling velocity of 173.40 mm/h. Under centrifugal 

forces, KLD5 generated the highest settling velocity (684 mm/h) and floc size (15.45 µm) at 32 

mg/g of polymer concentration. The results showed that, the fractional dimension of KLD flocs, 

Df, ranging from 1.82 to 1.35, indicates the formation of porous floc in interaction of KLD and 

kaolin.  

7.2 Introduction 
Industrial wastewater contains a wide range of toxic inorganic and organic matters (e.g., heavy 

metals, suspended particles, and aromatic molecules) imposing environmental pollutions (Pal et 

al., 2011; Fang et al., 2010). Flocculation processes have been used for treating wastewater for 

decades. Since most naturally occurring colloids are predominantly negatively charged, the 



186 
 

addition of cationic polymers is an effective means to isolate suspended particles from 

wastewater effluents (Ghimici et al., 2010; Petrak et al., 2015).  

Synthetic organic polymers, such as cationic polyacrylamide (PAM) and poly 

diallyldimethylammonium chloride (PDADMAC), have been extensively applied as flocculants 

in wastewater of mineral processing and papermaking operations (Sun et al., 2015; Zhu et al., 

2009; Yu et al., 2006; Yan et al., 2004; Solberg and Wagberg, 2003). These polymers reported to 

form larger and stronger flocs with acceptable settling performance, thus allowing their effective 

removal (Yang et al., 2016). Despite their wide range of applications, they are non-

biodegradable, expensive and sometime cause health hazards (Pal et al., 2011; Yang et al., 2016).  

Recently, considerable attention has been paid to producing environmentally friendly polymers 

due to their biodegradability and renewability (You et al., 2009). Natural polymers such as 

starch, chitosan, and cellulose, have been widely applied as flocculants in wastewater treatments 

(Tian and Xie, 2008). In addition, cationic polysaccharides, such as chitosan (Wang et al., , 

2009), cellulose (Gao et al., 2016; Sirvio et al., 2011), and starch were produced and used as 

flocculants in different wastewater effluents (Li et al., 2015a; Yu et al., 2009; Wei et al., 2008; 

Pal et al., 2005). These polymers have a wide range of applications and are food source for 

human. Therefore, their usage as flocculants may not be very appealing. Despite its vast 

production, lignin has been an under-utilized product of the pulping industry. The first objective 

of this work was to produce cationic lignin polymers via polymerizing lignin and (2-

methacryloyloxyethyl) trimethyl ammonium chloride (DMC) to be used as a flocculant for 

wastewater effluents.  

 
When flocculants adsorb on particles, they change the physicochemical properties of the 

particles, which leads to their agglomeration following altered mechanisms (Yan et al, 2004; Yu 

et al, 2006; Li et al., 2006; Ghimici et al., 2010). Numerous investigations have demonstrated 

that flocs formed through bridging of particles can be settled readily (Gregory and Barany, 2011; 

Abraham et al., 2001; Rapp et al., 2015; Johnson et al., 2016, Du et al., 2010; Yukselen and 

Gregory, 2004), while flocs formed via charge neutralization and patching are more difficult to 

sediment (Gregory, 1988; Yu et al., 2006; Gregory and Barany, 2011; Wiśniewska et al., 2012). 

As it is unclear how lignin-based polymers would agglomerate particles, the second objective of 

this work was to investigate how the charge density and molecular weight of lignin-based 
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polymers impact the formation and settling of agglomerated kaolin flocs.  In flocculation 

process, the settling behaviour of flocs can be related to its size and fractal dimension (Df) (Li et 

al., 2015b). Previous reports stated that Df played a crucial role in determining the density and 

porosity of the flocs (Vahedi and Gorczyca, 2012; Rong et al., 2013b; Spicer et al., 1998). Larger 

flocs reported to have less compact and more porous structures compared to the smaller ones 

(Dyer and Manning, 1999; Li et al., 2015b). Flocs with the Df of 3 were considered compact, 

whereas flocs with a Df close to 1 were reported to have loose, stringy, and voluminous 

structures (Adachi et al., 2012; Li et al., 2015c; Bowers et al., 2017).  Also, porous aggregates 

have larger hydrodynamic radius than highly dense solid particles of the same mass. The third 

objective of this study was to determine the Df of flocs formed via interacting cationic lignin 

polymers and relate it to the properties of cationic lignin polymers. 

Furthermore, it was reported that the floc size, density, and porosity impact the settling 

performance of flocs (Kumar et al., 2010; Lapointe and Barbeau, 2016; Li et al., 2015c; Sun et 

al., 2015; Zhu et al, 2009; Bushell et al., 2002). The structure of the flocs may experience two 

possible consequences that impact their settling behaviour significantly: 1) the non-spherical 

shape of flocs, which may increase the drag when settled and 2) the porosity of flocs that 

increases permeability and thus reduces the drag force for settling. Therefore, knowledge of floc 

structure can play significant role in understanding the settling performance of flocs (Tang et al., 

2002; Bushell et al., 2002; Chuah et al., 2015). Johnson et al. (1996) demonstrated that porosity 

and permeability significantly increase the settling velocity of flocs. Winterwerp and Kesteren 

(2004) concluded that flocs may be treated as sufficiently impermeable to neglect the effects of 

flow through the floc on settling velocity. The fourth objective of this work was to determine the 

fractal dimension of flocs and correlate them to flocs settling performance. 

In this study, kraft lignin-based polymers were produced via free radical polymerization of DMC 

and lignin. The flocculation behaviour of the polymers (KLD) with different molecular weights 

and charge densities was investigated in a kaolin suspension for the first time. The main novelty 

of this work was the correlations developed among the properties of lignin-based polymers, their 

flocculants performance, floc properties, and settlement under different conditions using 

advanced tools.  
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7.3 Materials and Methods 

7.3.1 Materials 
Softwood kraft lignin was produced via LignoForceTM technology of FPInnovations in Thunder 

Bay, ON (Kouisni et al., 2012). 2-[(methacryloyloxy) ethyl] trimethylammonium chloride 

(DMC) (80% in water), potassium persulfate (K2S2O8) (analytical grades) and kaolin were 

obtained from Sigma-Aldrich company. Polydiallyldimethylammonium chloride (PDADMAC) 

with the molecular weight (Mw) of 100,000–200,000 g/mol was obtained from Sigma Aldrich 

Company and diluted to 0.005 M prior to use. Potassium polyvinyl sulfate (PVSK) with a Mw of 

100,000–200,000 g/mol (97.7% esterified) was provided by Wako Pure Chem. Ltd. Japan. All 

chemicals were applied without further purification. Moreover, ethanol (95 vol. %) was received 

from Fisher Scientific company. Silicon oil and tetrafluoroethylene were received from 

formulation and used as standard chemicals for transmission and backscattering detectors of a 

vertical scan analyzer, respectively. 

7.3.2 Lignin-DMC production and purification 
Kraft lignin- DMC polymers were synthesized in 250 mL three-neck glass flasks under the 

reaction conditions illustrated in Table 7.1. After the reactions, the flasks were submerged in cold 

tap water for 20 min. Then, ethanol (80 vol. % in water) was mixed with the reaction media to 

precipitate the lignin-based polymers from the system (Wang et al., 2015). By adding ethanol to 

the reaction media, the solution reactions became suspensions. The suspension was centrifuged 

at 3500 rpm for 10 min in order to collect the precipitated copolymer (KL-DMC) and remove the 

homopolymer (PDMC) and unreacted monomers (DMC) present in the supernatant. After 

collection of the precipitates, they were mixed with ethanol (80 %v) for 5 min. Then, the 

mixtures were centrifuged again, and this process was repeated 3 times and the final product is 

considered lignin polymer, KLD. Subsequently, the precipitated KLD polymers were mixed with 

200 mL of deionized water and the pH of the solution was adjusted to 7.0 ± 0.2 prior to use. 

After centrifugation, the solution containing the lignin-DMC polymer was dried at 105 °C, and 

the dried samples were kept for flocculation studies. This lignin-DMC polymer is denoted as 

KLD, while unmodified kraft lignin is denoted as KL in this work. 
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7.3.3 Solubility and charge density determination  
To measure the solubility of the KLD products, 0.2 g of the polymers were added to 20 mL of 

deionized water by stirring at 100 rpm and 30 °C for 1 h in a water bath shaker (Innova 3100, 

Brunswick Scientific, Edison, NJ, USA). Then, the suspensions were centrifuged at 1000 rpm for 

5 min. The supernatants were collected and used for analyzing the charge density and solubility of 

the polymer. The concentration of polymers in the supernatants was determined by drying the 

supernatants at 105 °C, and the solubility was determined based on the concentration of KLD in 

the supernatants and the initial concentration of polymers. The charge density of the polymers was 

measured by a particle charge detector, Mütek PCD 04 titrator (Herrsching, Germany) with a 

PVSK solution (0.0050 M) (Wang et al., 2015). The reported data in this experiment is the average 

of three repetitions. 

7.3.4 Molecular weight analysis 
About 5 mg sample of dried KLD polymers was dissolved in 10 mL of 5.0 wt. % acetic acid 

solution by stirring at 600 rpm for 48 h and 35°C, then the solutions were filtered with a 13 mm 

diameter nylon filters (pore size 0.2 µm). The filtered solutions were used for molecular weight 

analysis, which was carried out using a Malvern, GPCmax VE2001 Module + Viscotek system 

with viscometer and UV detectors. In this analysis, PolyAnalytic columns were used, and a 5.0 

wt. % acetic acid was used as a solvent and eluent with the flow rate of 0.7 mL/min. The column 

temperature was set to 35 °C. Poly ethylene oxide was used as standard polymer for calibration 

of the system. 

7.3.5 Elemental analysis 
The elemental analysis of the samples was performed for KL and KLD polymers using an 

elemental analyzer, Elementar Vario EL Cube, by the combustion method (Jahan et al., 2012).  

The samples were first dried in an oven at 105 °C overnight to remove any moisture prior to 

analysis. Approximately, 2 mg of the dried samples were transferred into the carousel chamber 

of the elemental analyzer and combusted at 1200 °C to reduce the generated gasses for analyzing 

carbon, hydrogen, oxygen, and nitrogen contents of the samples. 
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7.3.6 Particle size analysis 
The hydrodynamic diameter of kaolin particles and flocs of KLD/kaolin was analyzed using a 

MasterSizer 2000 particle size analyzer (Malvern Instruments). In this study, 1.0 g of clay 

suspension (20 g/L) was added to 50 mL of deionized water or 50 mL of KL or KLD solution so 

that KL or KLD dosage in the system remained at 8 and 32 mg/g dosage (based on kaolin). The 

system was stirred at 300 rpm and room temperature for 2 h. After stirring, the samples were 

analyzed for their particle size distribution. The measurement was conducted at the wavelength 

of 633 nm with red laser light, and the hydrodynamic diameter (dh) of the particles was 

determined. The mean value dh was determined as the average median value of three parallel 

measurements. 

7.3.7 Adsorption studies 
In this set of experiments, different amounts of KL or KLD were added to 50 mL of kaolin (clay) 

suspensions (0.4 g/L) to make 1 to 128 mg/g dosage of KL or KLD in clay suspensions for 

studying the adsorption of KL or KLD on clay particles. The suspensions were stirred at 300 rpm 

for 1 h at room temperature. Afterward, the suspensions were centrifuged for 15 min at 3500 rpm 

and then the concentrations of the KLD remained in the supernatants were determined by a 

UV/Vis spectrophotometer (Genesys 10S UV/vis, Thermo FisherScientific, USA) at the 

wavelength of 205 nm. The impact of pH was also studied on the adsorption of KLD on clay 

particles. The pH of the suspensions (ranging 2 to 12) was adjusted with 0.1 M NaOH solution or 

H2SO4 prior to adsorption experiments, and the steps indicated above were followed accordingly. 

Three repeats were carried out, and the average values were reported in the study. 

7.3.8 Zeta potential analysis 
The zeta potential of clay suspensions was characterized by a NanoBrook Zeta PALS 

(Brookhaven Instruments Corp, USA). In this study, 1 g of clay suspension (20 g/L) was added 

to 50 mL of deionized water and stirred at 300 rpm for 1 h and room temperature. Then, its zeta 

potential was measured in a 1.0 m M KCl aqueous solution. The pH of the clay suspensions was 

adjusted by using 0.1 M NaOH or H2SO4. All the measurements were carried out at room 

temperature with a constant electric field (8.4 V/cm). Three repeats were carried out for zeta 

potential measurement and the mean value was reported.  
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7.3.9 Flocculation analysis 
In this experiment, the relative turbidity of the suspension was determined using a photometric 

dispersion analyzer (PDA 3000, Rank Brothers Ltd) connected to a dynamic drainage jar (DDJ) 

fitted with a 200-mesh screen (Wang et al., 2016). The variation in direct current (DC) voltage of 

the PDA instrument is an indicator of the average transmitted light intensity of the suspension 

passing through the PDA (Yu et al., 2010). In this study, 500 mL of distilled water was first 

added to the DDJ container and circulated from the DDJ to the PDA through a 3 mm plastic tube 

(Tygon, R-3603) until a steady flow rate of 20 mL/min was achieved. The flow rate was 

regulated by a peristaltic pump throughout the experiment. Then, 10 mL of a 20 g/L clay 

suspension was added into the DDJ (to make a 0.4 g/L clay concentration in DDJ) while stirring 

at 300 rpm. This caused a decrease from the initial base DC voltage (V0) to a new DC voltage 

(Vi) in the PDA analyzer. After 100 s, KL and KLD were added to the DDJ to make a dosage 

between 1 and 128 mg/g KL or KLD based on clay. The increase in the DC voltage was 

represented as the DC voltage (Vf) of the final suspension. The effects of KLD dosage on the 

flocculation were studied. The relative turbidity of the clay suspensions was measured using 

equation 7.1 (Wang et al., 2009). 

Relative turbidity, 𝜏r = 𝜏𝑓

𝜏𝑖
=  

𝑙𝑛(
𝑉0

𝑉𝑓
)

𝑙𝑛(
𝑉0

𝑉𝑖
)
                                  (7.1) 

 
where τf denoted the final suspension turbidity, and τi represented the initial suspension turbidity. 

All the experiments were performed in triplicates, and the mean values were reported in the 

study. 

7.3.10 Flocculation analysis under dynamic conditions 
The change in the size of kaolin and KLD/kaolin flocs was assessed in a real-time scenario using 

a focused beam reflectance measurement (FBRM, Mettler-Toledo E25). FBRM uses a focused 

beam laser light that scans across particles passing in front of the probe window to measure a 

chord length of the flocs. This distribution of the size depends on the shape, size, and 

concentration of the particles (Negro et al., 2006). The chord length distribution was acquired 

directly by using 90 log-channels over the range of 1 and 1000 µm using IC-FBRM software 

(Fatehi et al., 2016). Each particle’s chord length is defined as a count and thus the counts of 

chord length in a specific channel can represent the number of particles with a similar chord 
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length in that particular channel. The counts of particles with different chord lengths were 

expressed as chord length distribution. In this set of experiments, 500 mL of distilled water was 

first added to the container. Then, 10 mL of a 20 g/L clay suspension was added (to make a 0.4 

g/L clay concentration) while stirring at 300 rpm. The laser probe with a diameter of 25 mm was 

immersed in a suspension, the beam was rotated around the axis of the probe at a scan speed of 2 

m/s with the scan diameter of 5 mm (Boxall et al., 2011) The focal point was set to -20 μm (as 

default), and the scan duration was set at 3 s (Boxall et al., 2011). This experiment was 

conducted for the suspensions containing KLD with the dosages of 8 mg/g and 32 mg/g based on 

dried weight of clay particles in the suspensions.  

7.3.11 Gravitational sedimentation analysis 
The flocculation and sedimentation performance of kaolin particles under static conditions in the 

absence or presence of KLD were assessed by a vertical scan analyzer, Turbiscan (Lab Expert, 

Formulaction). In this analysis, different dosages of KLD were added to the kaolin suspension. 

After stirring at 300 rpm for 2 min, 20 mL suspensions were added to the cylindrical glass cells 

for further analysis. Electro luminescent diode light at 880 nm scanned the cell from bottom to 

top at 40 µm height interval. The scanning process was conducted every 25s and the experiment 

lasted for 1 h (He et al., 2016). For each scan, a transmission detector received the light 

transmitted through the sample at 180° from the incident light, and a backscattering sensor 

received the light backscattered by the sample at 45° from the incident, the data was shown as 

transmission and backscattering data as a function of the height of sample (Mengual et al., 1999; 

Jarvis et al., 2005), which were used for evaluating the settling efficiency and calculating the 

sediment thickness and settling velocity. 

Particles of different sizes produced by KLD would settle at different rates when flocculated. 

This settlement would clear the top part of the sample. The variations in transmission and 

backscattering data, collected from the top and bottom parts of the sample after settling for 1 h, 

were considered for evaluating the efficiency of KLD in flocculating kaolin suspensions.  

The compactness of the sediment was determined as the ratio of the mass to volume for the 

settled flocs after 1 h of settling. In this set of experiments, samples were collected from the top 

part of the suspension before and after 1 h of treating with KLD, and dried in the oven at 105 °C 

overnight. The concentrations of clay in these samples were determined, which facilitated the 
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identification of settled mass after 1 h. In this analysis, the settling velocity of the flocs was 

determined as the rate of sediment thickness growth with respect to time (Waite et al., 2001).   

The hydrodynamic diameter of the suspended particles in the system (dh, s) was determined by 

the transmission data from top layer and the mean volume fraction of particles after settling for 1 

h, obtained from Turbiscan software based on Lambert-Beer law (equations 7.2 and 7.3). 

                                                    T(𝑙, 𝑟𝑖) = 𝑇0𝑒−
2𝑟𝑖

𝑙                    (7.2) 

                                                          𝑙(𝑑ℎ,𝑠, 𝜙𝑠) =
2𝑑ℎ,𝑠

3𝜙𝑠𝑄𝑠
                (7.3) 

where ri is the internal radius of the measurement cell, l is photo mean free path, T0 is the 

transmittance of continuous phase (i.e., water), and T is the transmittance of suspension (i.e., 

kaolin suspension) (Mengual et al., 1999; He et al., 2016). Therefore, the transmission data 

collected by the instrument directly depended on the mean hydrodynamic diameter of the 

suspended particles, dh, s, and their volume fraction, ϕs. This study helped develop a relationship 

between the diameter of particles in the solutions and their volume fractions in the solution. 

7.3.12 Centrifugal sedimentation analysis. 
Sedimentation velocities of kaolin and KLD/kaolin flocs were measured by an analytical 

centrifugation analyzer, Lumisizer (LUM GmbH, Germany). This instrument determines the 

settling of flocs under different centrifugal forces by measuring near infra-red light transmission 

(880 nm) of the suspension as a function of time and position over the entire sample length, 

simultaneously (Erramreddy et al., 2017). In each measurement, 1 ml of a 0.4 g/L clay 

suspension was transferred into the cell of the instrument, centrifuged at different revolutions 

(200, 400, 800, 1600, and 3200 rpm) for 5 min, and the transmission data was collected after 

every 1s during this test (300 profiles). Measurements were performed at 25 °C and a light factor 

of 1. This experiment was conducted for the suspensions containing KLD/kaolin at the dosages 

of 8 mg/g and 32 mg/g based on dried weight of clay particles in the suspensions. Kaolin sample 

(0.4 g/L) was also used as a blank (without polymer). The relative centrifugal force (RCF) was 

calculated using equation 7.4, where r is the radius of centrifuge in mm. 
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    RCF= (𝑅𝑃𝑀

1000
)

2
𝑟 x 1.18       (7.4) 

 

The transmission profiles of the samples were recorded as a function of the length of the cell and 

centrifugation time by the SEPView software. For each run at different RCF (6, 23, 94,375,1500 

× g), the thickness of sedimentation layer in the cell was plotted as a function of time, the slope 

of which led to the sedimentation velocity (mm/h) of the particles at a RCF. By plotting the 

sedimentation velocity against RCF and extrapolating to one (1) RCF, which is equivalent to 

earth gravitation, an estimation of settling rate of KLD was identified.  

Under the aforementioned experimental conditions, the size distribution of flocs was determined. 

The constant position analysis was used to determine volume-average particle diameters (Detloff 

et al., 2007). In each measurement, three positions (approximately 115.0 120.0, 125.0 mm) 

within the detection region (105-130 mm) were chosen to ensure that the results of the analysis 

were representative for all measurements. 

7.3.13 Fractal dimension measurement 
Fractal dimension (Df), which describes the structural properties of flocs, could be used to 

determine the compactness of an aggregate, with porous aggregates having a low fractal 

dimension and more compact ones having a higher fractal dimension. The fractal dimension, Df, 

of the flocs was measured by small-angle light scattering technology (SALLS) with Malvern 

Mastersizer 2000 and used to characterise compaction of flocs (Jarvis et al., 2005; Rong et al., 

2013b). A detailed description of the determination of floc's Df using SALLS is explained 

elsewhere (Jarvis et al., 2008; Waite et al., 2001; Tang et al., 2002).  In this experiment, a beam 

of light was directed onto a sample containing the flocs and then the beam was scattered at 

different angles with respect to the incident direction. The intensities (I) of the light scattered at 

the angles of 0.01° and 40.6° are functions of the scattering vector (Q) (Waite et al., 2002; Rong 

et al., 2013a), which can be defined by following equation 7.5: 

𝑄 =
4𝜋𝑛 sin(𝜃/2)

λ
             (7.5) 
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where, n is the refractive of the fluid, θ is the scattered angle (from 0.01° to 40.6°), and λ is the 

wavelength of radiation (633 nm). Based on the Rayleigh-Gans-Debye (RGD) scattering theory, 

scattering vector and light intensity are related according to equation 7.6: 

𝐼 ∝ 𝑄−𝐷𝑓                    (7.6)  

In this equation, Df is the fractal dimension of the flocs and has value between 1 and 3 in a three-

dimensional space (Zhou et al., 2006; Jarvis et al., 2008). 

7.4 Results and Discussion 
3.1. Polymerization  
The polymerization of kraft lignin and DMC was carried out following a free radicle 

polymerization mechanism. In the reaction mixture, potassium per sulfate generated two sulfite 

radical anions by thermal decomposition (scheme 7.1a). The sulfite radicals attacked the 

hydroxyl group (OH) of KL to form phenoxy radicles. These phenoxy radicals then react with 

double bonds of DMC to have them engaged in the polymerization reaction to produce KLD 

polymers (scheme 7.1b). On the other hand, sulfate radicals can initiate the homopolymerization 

of DMC to produce homopolymers (PDMC) as a by-product (scheme 7.1c). 
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Scheme 7.1. Mechanism of the polymerization reaction of KL and DMC (a) thermal 

decomposition of potassium per sulfate, (b) polymers of KLD, and (c) homopolymers of PDMC. 

7.4.1 Properties of KLD 
The reaction conditions and properties of KLD polymers produced via free radical 

polymerization of KL and DMC are listed in Table 7.1. Under the experimental conditions 

studied, the polymers with varying charge densities and molecular weights were synthesized. It 

is evident that the nitrogen content, charge density, and molecular weight increased, confirming 

the grafting of DMC onto lignin backbone (Wang et al., 2013). The results also showed that 

varied DMC amount was responsible for different nitrogen contents, charge densities, and 

molecular weights of KLD polymer. In addition, the cationic charge densities of five KLDs were 

theoretically calculated from the nitrogen content, since quaternary ammonium group contained 

1.0 meq charge density, theoretical charge densities were close to that of experimental value 

listed in Table 7.1. 
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Table 7.1. Reaction conditions and properties of KL and KLDs 

Conditions     KL KLD1 KLD2 KLD3 KLD4 KLD5 

DMC, mol       - 0.009 0.009 0.014 0.019 0.024 

KL, mol       - 0.027 0.016 0.011 0.011 0.022 

pH       - 3 4 5 3 4 

Temperature, °C       - 80 90 90 70 80 

Time, h       - 4 5 4 5 3 
Experimental 
charge density, 
meq/g -0.2 0.74 1.52 2.5 2.93 3.66 
Theoratical 
charge density, 
meq/g 0.021 0.70 1.47 2.41 2.86 3.60 

Nitrogen, wt.% 0.03 0.98 2.05 3.40 3.97 5.05 

Solubility, wt.% 5 39 40 42 56 66 

Mw, g/mol 17,800 30,300 50,700 81,900 109,100 162,600 

Mn, g/mol 5,100 22,700 35,400 56,200 70,600 96, 200 

Mw/Mn 3.49 1.33 1.43 1.46 1.54 1.69 
 

7.4.2 Adsorption of KLD on kaolin 
Figure 7.1 shows the adsorption behaviour of KL or KLD on the surface of kaolin particles as a 

function of polymer dosage at pH 7. The adsorption increased as the charge density and 

molecular weight raised. This phenomenon may be attributed to electrostatic interaction between 

cationic KLD and negatively charged clay particles (Zhou et al., 2006; Sang and Xiao, 2008). 

Previous studies demonstrated that the adsorption of cationic polymers increased with increasing 

their charge density (Wickramasinghe et al., 2002; Zhou at al., 2008). Wang et al. (2016) 

articulated that an increase in the charge density of cationic xylan from 1.8 to 2.4 meq/g 
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enhanced the adsorption of cationic polymer from 3.1 to 4.6 mg/g onto kaolin particles at a 16 

mg/L of polymer dosage. In another study, with increasing the concentration of cationic starch 

from 30 to 260 g/L in a clay suspension, the adsorption of cationic starch on the clay surface 

increased from 2 to 18 mg/g (Chen et al., 2007). It can be claimed that, KL had a limited 

adsorption on kaolin particles.   

 

Figure 7.1. Adsorption of KL and KLD on kaolin particle as a function of polymer dosage, 

conducted under the conditions of pH 7, 25 °C, 1 h and 0.4 g/L clay concentration 

7.4.3 Dynamic flocculation  
Figure 7.2 shows the relative turbidity of kaolin suspensions as a function of their zeta potential. 

It is seen that, by increasing the dosage of KLD, the zeta potential became more positive, and the 

maximum zeta was obtained for KLD5. Also, the relative turbidity of the suspension reduced as 

the dosage increased, and the minimum relative turbidity was obtained for KLD5. Interestingly, 

the results confirmed that the charge density of KLD played an important role in altering the zeta 

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100 120 140

Am
ou

nt
  a

ds
or

be
d,

 m
g/

g

Polymer dosages in clay suspension, mg/g

KL KLD1 KLD2
KLD3 KLD4 KLD5



199 
 

potential and relative turbidity of the suspension, and these changes are attributed to positive 

effect of charge density on the adsorption of KLDs on clay particles.  

 

 

 

 

Figure 7.2. Effect of zeta potential on the relative turbidity of kaolin suspensions, conducted 

under the conditions of pH 7, 1h, 25 °C, and 0.4 g/L of kaolin concentration. 

Based on the results obtained from the adsorption analysis (Figure 7.1), and the charge density of 

KLDs, it was possible to calculate the total charges introduced on the surface of kaolin particles 

after KLD adsorption. Figure 7.3 showed the influence of charges introduced to the particles via 

adsorbing KLD on the relative turbidity of the suspensions. As observed, KLD5 introduced more 

charges onto kaolin particles as compared to the other KLDs, and hence they reduced the relative 

turbidity more significantly (Figure 7.2). In addition, the last points on each curve represents the 
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relative turbidity of clay suspensions at the maximum adsorption amount (i.e., saturation 

adsorption) that was achieved in Figure 7.1. These points (“S” points in Figure 7.3) indicated 

that, by adding more KLDs to the suspensions, more of unadsorbed KLDs would remain after 

reaching the saturated level of adsorption. These results confirmed that the amount of the 

adsorbed KLD (and not the amount of unadsorbed KLD in suspensions) played a major role in 

the relative turbidity of clay suspension. Among the cationic polyacrylamides that Ariffin and 

coworkers (2005) studied in the flocculation of palm oil mill effluent, the flocculant with the 

molecular weight of 1.5x10-6 g/mol was the most effective one in turbidity removal.  

 

  
 

Figure 7.3. Effect of total charges introduced to particles on the relative turbidity of kaolin 

suspensions conducted under the conditions of pH 7, 1 h, 25 °C and 0.4 g/L of clay 

concentration. 

7.4.4 Floc size measurement 
The size distribution of flocculated kaolin particles was shown in Figure 7.4 for two different 

dosages of 8 and 32 mg/g KLD in clay suspension. The addition of KLD to the kaolin suspension 

widened the size distribution of particles in the suspension, while reducing their counts. This 
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phenomenon was observed by Miranada et al. (2008) in flocculation analysis of cationic 

polyacrylamides. These results were in agreement with the findings of Thapa et al. (2009), where 

high molecular weight and charge density polyacrylamide polymers were more effective than the 

low charged and low molecular weight ones in reducing the particle’s counts in sludge 

flocculation process. 

The results also confirmed that KLD5 widened the size distribution (and reduced the counts of 

flocs) more greatly than did other KLDs. The dosage of KLDs did not change the chord length of 

the flocs formed via treating with KLD1 and KLD2, but other KLDs increased the chord length 

at a higher dosage. In particular, the average chord length of KLD5 was 53 µm at 8 mg/g of 

dosage, while that was 65 µm at 32 mg/g. These results confirmed that higher molecular KLDs 

enhanced the flocculation efficiency and thus aggregation of the clay suspension (Gao et al., 

2002; Wang et al., 2014).  
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Figure 7.4. Chord length distribution of flocs formed at dosage of (a) 8 mg/g and (b) 32 mg/g 

conducted under the conditions of pH 7, 25 °C and 0.4 g/L of kaolin concentration. 

7.4.5 Flocculation of kaolin under non-stirring conditions 
The volume fraction of flocs in the suspension was plotted as a function of their hydrodynamic 

diameter (dh) in Figure 7.5. As observed, the flocculation of kaolin particles by KLD increased 

the average particle size. In the absence of any polymer, the size of the kaolin particle was 4.7 

µm. The higher molecular weight and charge density KLD5 achieved the maximum floc size. As 

shown in Figure 7.5, the floc size of KLD5 grew to 16.85 and 19.12 µm at 8 and 32 mg/g, 

respectively, after being treated with KLD at 8 and 32 mg/g of dosage. These results are in 

agreement with those reported in Figure 7.3. It was reported (Wickramasinghe et al., 2002) that 

increasing the polymer’s charge density and molecular weight led to an increase in the floc size. 

In addition, these results indicated that increasing the KLDs dosage enhanced the floc growth, as 

well (Zhou and Franks, 2006).  
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Figure 7.5. The floc size distribution of kaolin particles in the presence and absence of KLD at 

dosage of 8 and 32 mg/g, conducted under the conditions of pH 7, 25 °C and 0.4 g/L of kaolin 

concentration. 

 
The impact of KLD on the transmission (%) of kaolin suspensions is shown in Figure 7.6. In the 

absence of KLD, the transmission of kaolin particles was the lowest (5.67 %) of all studied 

systems. After addition of KLD, the particles in the kaolin sample started to settle, which made a 

clear and transparent layer on top of the sample, and this increased the transmission of the 

samples. The increase in the transmission was more obvious for 32 mg/g dosage than 8 mg/g 

dosage (Figure 7.6). For example, the addition of KLD5 exhibited large sedimentation with 

fastest transmission increase to 35.20 and 62.91% at 8 and 32 mg/g of dosages, respectively. 

This improved settling behaviour of kaolin suspension may largely be attributed to the higher 
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adsorption of KLD5 onto clay particles as well as its higher charge density and molecular weight 

(Figure 7.1).  

 

 

 

Figure 7.6. Transmission intensity of kaolin suspension (top layer) at the dosage of (a) 8 mg/g 

and (b) 32 mg/g, as a function of time, conducted under the conditions of 0.4 g/L clay at pH 7, 

25 °C and 1h.  
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The settling velocity and the compactness of sediments after 1 h of settling in the absence and 

presence of KLD are listed in Table 7.2. The settling velocity is inversely related to the 

compactness of KLD. The smaller the settling velocity, the larger the compactness would be. 

Kaolin particles had the highest sediment compactness (42.76 g/L) and the lowest settling 

velocity (15.3 mm/h). At 8 mg/g of dosage, the sediment compactness decreased from 37.73 to 

14.18 g/L; whereas, settling velocity increased from 17.2 to 130.7 mm/h for KLD1 to KLD5, 

respectively. A similar trend was observed for 32 mg/g dosage, but generally the compactness 

was smaller and settling velocity was faster. These results confirmed that the compactness of the 

settled flocs decreased with increasing the molecular weight of KLD. High molecular weight 

KLDs bridged the kaolin particles to form large porous flocs containing water that reduced its 

compactness. The formation of loose flocs via bridging mechanism is well documented in the 

flocculation of cement, kaolin, and hematite in the past (Gaudreault et. al., 2015; Negro et al., 

2006; Zhu et al., 2009). The faster settling velocity of KLD5 (173.4 mm/h) confirmed that the 

flocs of higher molecular weight KLD were larger than lower molecular weight ones (Figures 4 

and 5), and they had the fastest settling velocity (Zhu et al., 2009).  

Table 7.2.  Settling velocity and compactness of settled flocs after settling in 1 h of experiment 

  Blank KLD1 KLD2 KLD3 KLD4 KLD5 

Dosage 
(mg/g) 

 8 32 8 32 8 32 8 32 8 32 

Sediment 
compactness 
( g/L) 

42.76 37.73 35.01 33.99 30.78 26.19 20.59 18.15 13.93 14.18 10.85 

Settling 
velocity 
 (mm/h) 

15.3 17.2 18.6 32.4 37.4 53.3 75.2 88.4 120.5 130.7 173.4 

 

7.4.6 Size of suspended flocs  
The hydrodynamic diameter of kaolin particles was determined in the absence and presence of 

KLD in Figure 7.7. The dh, s was approximately 0.19 µm for the suspended kaolin particles. For 

the samples treated with KLDs, the dh, s was insignificantly different from that of kaolin particles, 

indicating that the size of suspended particles did not remarkably change after treating with 

KLD, and the formed large flocs were probably settled. On the other hand, there was a slight 
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increase in the size of the suspended particles as the size of KLD increased in the system. These 

results are in agreement with those reported in Figure 7.5. As these larger flocs were loosely 

bounded with KLD, they had a relatively low compactness, which led to their suspension along 

with smaller flocs. 

 

 

 

Figure 7.7. The size of suspended particles in the presence and absence of KLD conducted under 

the conditions of 0.4 g/L clay at pH 7, 25 °C and 1 h.  

7.4.7 Sedimentation behavior under accelerated gravitation 
The sedimentation velocities of KLDs at various RCFs are summarized in Figure 7.8 for two 

different dosages of 8 and 32 mg/g KLD in kaolin suspension. A typical linear regression 

behaviour has been found from kaolin particles as a function of RCF in Figure 8. This 

phenomenon was observed by Lerche (2002) in the stability analysis study of latex suspensions 

in the accelerated stability analysis. Generally, flocculants agglomerate particles and thus there is 

a change from a monodisperse to polydisperse system (Growney et al., 2015). As can be seen, 

the trend of sedimentation velocity was similar for all of the KLD at 8 mg/g and 32 mg/g 

dosages, but a more dramatic increase in sedimentation velocity was observed for the KLD5 than 

other KLDs with accelerating centrifugation. These results are in agreement with the results 

obtained in Table 7.2. The sedimentation velocity increased with increasing radial distance due 
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to the increase in centrifugal force (Detloff and Lerche, 2008). A study suggested that particles 

tend to move with varying orientation during centrifugal sedimentation (Chang and Liao, 2016). 

The higher settling rate of KLD induced flocs could be due to their orientation in parallel to the 

centrifugal direction at a high RCF (Lerche, 2002; Detloff and Lerche, 2008). Because of the 

polydispersity of the flocs, the flow resistance of KLD/kaolin particles was different from that of 

a spherical particle. Thus, the drag force experienced by the flocs was smaller and the settling 

velocity became faster when flocs were oriented parallel to the flow field. Similar phenomena 

were reported by Chang and Liao (2016) in measuring the sedimentation velocities of titanium 

oxide (TiO2) nanoparticle under centrifugal forces. Thus, these results indicated that the KLD 

flocs in the suspension under centrifugal force did not settle uniformly. This study also 

confirmed that the rate of floc sedimentation in a kaolin suspension mainly depended on the 

particle size and density.  
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Figure 7.8. Sedimentation velocity of the KLD in kaolin suspension at the dosage of (a) 8 mg/g 

and (b) 32 mg/g as a function of RCF values conducted under the conditions of 0.4 g/L clay at 

25 °C, pH 7 and 5 min.  

The volume-weighted particle size distribution of the flocs was identified by analyzing the time 

evolution of the transmission at a fixed position and the results are shown in Figure 7.9. In the 

absence of KLD, kaolin particle size in stable dispersion was 4.7 µm. The addition of KLD led to 

the formation of larger particles that could settle faster, which are in good agreement with data 

reported in Figures 7.5 and 7.9. As observed, the particle size increased from KLD1 to KLD5 by 

increasing the centrifugal force. Claverie et al. (2013) reported that the particle size of silica 

dispersions increased with polymer concentration as well as increasing its molecular weight. 
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Figure 7.9. Particle size distributions obtained via centrifugation analysis in the presence or 

absence of KLDs at the dosage of (a) and 8 mg/g (b) 32 mg/g as a function of RCF values; under 

the conditions of 0.4 g/L clay at 25 °C, pH 7, and 5 min.  
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7.4.8 Fractal dimension of flocs 

Figure 7.10 depicts the log–log plot of I against Q for the KLD/kaolin flocs. To demonstrate the 

structure of flocs, slopes of the curves in Figure 7.10 were calculated following equation 7.6, and 

the results of Df are listed in Table 7.3. The slopes of the curves for the kaolin and lower 

molecular weight KLDs were high and close, suggesting a more compact floc for these samples 

than for the higher molecular weight KLDs. 
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Figure 7. 10. The log–log plot of I as a function of Q at the KLD dosage: (a) 8.0 mg/g, (b) 32 

mg/g. 

For each KLD, a logarithmic equation was used to obtain the best fit to the experimental results 

(R2) and Df values. Df obtained for kaolin was 1.91. The addition of KLDs showed a decrease in 

the Df of flocs from 1.82 to 1.35, where the minimum R2 obtained was 0.9 for these equations, 

which indicated that the equations fitted reasonably well into the experimental results (Yu et al., 

2006; Li et al., 2015c). The Df obtained were consistent with the values (1.3- 2.7) obtained in the 

literature for different materials (e.g., polystyrene latex, kaolin, aluminum oxide, quartz) under 

varied flocculants and flocculation conditions (Vahedi and Gorczyca, 2011). By considering the 

results in Figure 7.8 as well as in Tables 7.2 and 7.3, it can be concluded that the flocs with 

larger Df and higher compactness had slower sedimentation velocity. Oppositely, flocs with a 

smaller Df had looser structure and more sedimentation velocity (Das and Somasundaran, 2003; 

Das et al., 2009; Bushell et al., 2002).   
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Table 7.3. Equations fitting the logarithm relationship between scattered light, I, and scattering   

vector, Q, obtained from Figure 7.10. 

Dosage Sample I ~ 𝑄 Df R2 
 Kaolin 

 

1.919 0.903 
 KLD1 

 

1.822 0.908 

8 mg/g KLD2 
 

1.775 0.919 
 KLD3 

 

1.688 0.906 
 KLD4 

 

1.559 0.931 

  KLD5 
 

1.383 0.902 

 KLD1 
 

1.809 0.913 
 KLD2 

 

1.736 0.918 

32 mg/g KLD3 
 

1.637 0.919 
 KLD4 

 

1.488 0.926 

  KLD5  1.351 0.918 
 

 
7.5 Conclusions 
The efficiency of KLD5 was higher than that of other KLDs in flocculating kaolin particles due 

to its higher adsorption as well as charge density and molecular weight. The relative turbidity of 

the suspension dropped more quickly and its zeta potential increased more dramatically with 

KLD5 than other KLD as it adsorbed more than other KLDs on kaolin particles. Generally, a 

more dramatic turbidity drop, larger particle size, lower compactness, smaller fractal dimension, 

and higher sedimentation velocity were obtained at a higher dosage of KLD and for larger KLD 

(than the smaller ones). By increasing KLD dosage, the adsorption of KLD increased and the 

maximum adsorption of 2.5 mg/g was achieved by KLD5 at 32 mg/g KLD concentration. By 

adding 32 mg/g of KLD, having the charge density of 3.66 meq/g and molecular weight of 

162,600 g/mol, the minimum relative turbidity of 0.19 for kaolin suspensions was achieved. The 

destabilization of kaolin particles increased with KLD dosage. The sedimentation studies under 

gravitational force demonstrated that the compactness of KLD flocs decreased, while the settling 

velocity increased progressively with increasing concentration as well as increasing the 

I=722.34𝑄−1.919 

I=644.11𝑄−1.822 

I=406.36𝑄−1.775 

 I=364.9𝑄−1.688 

I=318.48𝑄−1.559 

 I=207.8𝑄−1.383 

I=424.08𝑄−1.809 

I=581.92𝑄−1.736 

 I=344.08𝑄−1.637 

 I=189.25𝑄−1.488 

  I=109.48𝑄−1.351 
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molecular weight. By increasing the centrifugal force, the size of the flocs and the settling 

velocity were increased regardless of the KAD properties. Also, the sedimentation velocities of 

KLD5 induced flocs were 536 mm/h and 684 mm/h, while the floc sizes increased to 11.87 µm 

and 15.45 µm at 8 and 32 mg/g of dosages, respectively. Addition of KLD resulted in change 

from monodisperse to polydisperse settling due to agglomeration/flocculation of kaolin particles 

by KLD. The fractal dimension, Df, of the flocs ranged between 1.82 and 1.35. At a higher KLD 

concentration (32mg/g), the flocs formed by KLD5 were larger and had more porous structure 

(Df of 1.35), while those formed by KLD1 were smaller and more compact (Df of 1.80). Based 

on the relationship between the settling velocity and the floc size, as well as the flocs' fractal 

dimension, it is confirmed that floc porosity, in addition to floc size affected the settling behavior 

of the flocs.  
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Chapter 8: Stability of kaolin dispersion in the presence of 

lignin-acrylamide polymers 

8.1 Abstract 
Dispersion of kaolin in aqueous systems is important in many industries including ceramics, 

chemicals, pharmaceutical and paints. In this work, kraft lignin-acrylamide (KAM) polymers 

were produced via polymerizing kraft lignin and acrylamide (AM) monomer with different molar 

masses and charge densities, and they were used for stabilizing kaolin dispersion at varied pHs. 

The surface tension and contact angle studies demonstrated that KAM improved the surface 

hydrophilicity of kaolin mineral particles. Among KAM polymers (KAM-1, KAM-2 and KAM-

3), KAM-3 with the highest molar mass (Mw) of 97,000 g/mol and charge density of -2.1 meq/g 

had the highest adsorption of 2.16 mg/g onto kaolin mineral particles. It was also found that 

KAM adsorption on kaolin mineral particles was pH dependent with KAM adsorption decreasing 

with increasing pH from 4 to 10. Generally, increasing ionic strength enhanced the adsorption of 

KAM on kaolin mineral particles. Salt reduced electrostatic repulsion between the anionic KAM 

polymers and the negatively charged kaolin mineral particles and facilitated the adsorption. 

Relationship between zeta potential and relative turbidity of kaolin dispersion was developed at 

different levels of KAM adsorption. KAM (especially KAM-3) increased the volume fraction of 

kaolin mineral particles in the dispersion. It also improved the stability of kaolin dispersion, and 

the impact was more noticeable at pH 10. Treating the dispersion with KAM was more effective 

than mechanical stirring in stabilizing kaolin mineral particles.   

8.2 Introduction 
The stabilization of aqueous kaolin dispersion is critical in the production of cosmetics, 

ceramics, paints, coating formulas and construction materials in order to obtain stable and 

homogenous colloidal systems (Brady et al., 1996 ). Dispersants have been widely used in the 

stabilization of kaolin mineral particles via inducing electrostatic/steric repulsion forces between 

particles (Yuan et al., 1998; Boisvert et al., 2001). As kaolin minerals carry slightly negative 

charges, anionic polymers are normally the most efficient dispersants for kaolin dispersion (Das 

and Somasundaran, 2001; Konduri and Fatehi, 2017).  
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The properties of dispersants play key roles in stabilization of dispersion systems. In the past, the 

utilization of carboxyl containing synthetic polymers, e.g., polyacrylamide (PAM), for 

stabilizing kaolin dispersion was reported (Agnes et al., 1981; Nabzar et al., 1987; Pefferkorn et 

al., 1987; Lee and Somasundaran, 1989; Morris et al., 2002; Nsib et al., 2006; Kim and 

Palomino, 2009; Aso et al., 2013; He and Fatehi, 2015; Konduri et al., 2015). However, synthetic 

polymers may be expensive and environmentally unfriendly. Recently, reports were made 

available on the modification of lignin, which is a natural polymer extracted from wood via 

mainly pulping processes, to produce semi-synthetic polymers with cationic and anionic charge 

densities (He and Fatehi, 2015; Couch et al., 2016; He et al., 2016, 2017; Konduri and Fatehi, 

2017). The polymerization of lignin and acrylamide can lead to a polymer with more 

environmentally friendly features than PAM. As this polymer had a negative charge density, it 

would function as a dispersant for kaolin dispersion. In this regard, lignin-acrylamide polymers 

with different molar masses and/or charge densities can be produced. These polymers have 

different physical and chemical characteristics than synthetic polymers, which may impact their 

dispersion performance (Pefferkorn et al., 1987; Rong et al., 2013a, 2013b). The first objective 

of this work is to study the impact of lignin-acrylamide (KAM) polymer as a dispersant for 

kaolin dispersion. 

The behavior of kaolin mineral particles in the dispersion is strongly affected by the chemistry of 

the dispersion, such as dispersion pH and salt concentration (Nsib et al., 2006; Chibowski et al., 

2009). Variations in pH were also reported to alter the adsorption of polymers onto kaolin 

mineral particles (Atesok et al., 1988). Similarly, salt significantly affected the interaction of 

particles in dispersions, and thus the interaction and performance of dispersants in dispersion 

systems (Shirazi et al., 2003; Chibowski et al., 2009; Mishra et al., 2014). The second objective 

of this work is to investigate how pH and salt in kaolin dispersion impact the performance of 

lignin-acrylamide polymer as a dispersant. 

The main novelty of this study is the investigation of the dispersion performance of kraft lignin-

acrylamide polymer in kaolin dispersion at different pHs and salt concentrations. The correlations 

between KAM adsorption on kaolin mineral particles, and the changes induced by KAM on the 

zeta potential, relative turbidity, particle size and stability of kaolin minerals in dispersion are 

established for the first time. 
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8.3 Materials and Methods 

8.3.1 Materials 
Softwood kraft lignin (KL) was produced via LignoForceTM technology of FPInnovations in 

Thunder Bay, ON (Kouisni et al., 2012). Acrylamide, AM (99.0 wt. %), potassium persulfate 

(K2S2O8) (analytical grades), potassium hydroxide, para-hydroxybenzoic acid, hydrochloric acid 

(0.1 M), NaNO3, NaOH, H2SO4 (98%), KCl, NaCl (all analytical grades) and kaolin were all 

obtained from Sigma-Aldrich company. Cellulose acetate dialysis membrane (molar mass cut off 

of 1,000 g/mol) was obtained from Spectrum Labs. Inc., USA. All chemicals were used without 

further purification. Ethanol (95 vol.%) was received from Fisher Scientific company. Potassium 

polyvinyl sulfate (PVSK) was provided by Wako Pure Chem. Ltd. Japan. Polydiallyldimethyl 

ammonium chloride (PDADMAC) with the molar mass of 100,000–200,000 g/mol was obtained 

from Sigma Aldrich company and diluted to 0.005 M prior to use. 

8.3.2 Polymerization of lignin 
The free radical polymerization of KL was carried out in a 250 mL three-neck round-bottom glass 

flask under the reaction conditions listed in Table 8.1. First, a required amount of KL was dissolved 

in 40 mL of deionized water while stirring at 300 rpm. Predetermined quantities of AM were added 

to the flask and stirred for 30 min. The pH of the solution was adjusted using 0.1 M sulfuric acid. 

The reaction solution was continuously purged with nitrogen to remove any residual oxygen at 

room temperature for 30 min. Subsequently, potassium persulfate was added as an initiator to the 

system and the reaction solution was purged for another 5 min. The polymerization was processed 

by placing the flask in a preheated water bath after adjusting the pH of the system. The reaction 

was allowed to proceed for the desired time intervals under a continuous nitrogen supply. These 

reaction conditions generated lignin-acrylamide polymers with a high molar mass, charge density 

and solubility in a previous study (Wang et al., 2016a).  

After completion of reaction, the solution was cooled to room temperature by immersing the 

flask in tap water for 20 min. The kraft lignin-acrylamide polymer was precipitated by adjusting 

the solution pH to 1.5 using sulfuric acid. Then, the sample was centrifuged at 3500 rpm for 10 

min using a Sorvall ST 16 laboratory centrifuge (Thermo Fisher) in order to separate the lignin 

polymers from homopolymers (polyacrylamide, PAM) and unreacted acrylamide monomers. 
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This precipitation/centrifugation process was repeated three times and then the lignin-acrylamide 

polymers were collected. Then, the precipitated lignin polymers were mixed with 200 mL of 

deionized water. After adjusting the pH of the solution to 7.0 using a 1M NaOH solution, the 

samples were dialyzed using the dialysis membrane for 48 h in order to remove impurities (e.g., 

inorganic salts and monomers) from the polymer solutions. The deionized water used for dialysis 

was changed every 12 h for 2 days. After dialysis, the solution containing lignin-acrylamide 

samples were dried at 105°C, and the dried samples were kept for further analysis. This lignin 

polymer is denoted as KAM, while unmodified kraft lignin is denoted as KL in this work. All 

experiments were repeated three times, and the average data and error bars are presented 

in this work. 
Table 8.1. Reaction conditions and properties of KAM 

Conditions KL KAM-1 KAM-2 KAM-3 

Temperature, °C - 90±0.02 60±0.03 80±0.02 

Time, h  - 5±0.03 2±0.03 2±0.02 

KL, mol  - 0.016±0.01 0.011±0.01 0.016±0.01 

AM, mol  - 0.014±0.01 0.014±0.01 0.042±0.01 

pH  - 4±0.2 2±0.2 5±0.22 

Initiator, mmol - 0.11±0.01 0.11±0.01 0.11±0.01 

Anionic charge density, 
meq/g 0.21±0.03 0.82±0.03 1.37±0.05 2.1±0.02 

COOH content, mmol/g 0.14±0.01 0.63±0.02 1.1±0.03 1.78±0.04 

Solubility, g/L 0.5±0.04 4.5±0.1 4.5±0.1 4.7±0.09 

Mw, g/mol 17, 890±11.54 24, 590±10.34 50215±11.76 96992±10.23 

Mn, g/mol 5150±5.77 23129±9.77 28741±8.55 69716±10.35 

Nitrogen, wt.% 0.03±0.01 1.57±0.03 3.8±0.05 6.2±0.05 

 

8.3.3 Specific surface area analysis of kaolin 
The specific surface area of kaolin was determined by using Quantachrome surface area 

analyzer, a Nova 2200e instrument, USA. In this experiment, the samples were initially dried in 

an oven at 105 °C overnight, and approximately 0.05 g of sample was pretreated for 4 h at 250 
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°C prior to analysis. The specific surface area of the samples was then determined according to 

Brunauer-Emmett-Teller (BET) method via adsorption-desorption isotherms using nitrogen gas 

at -180°C in the relative pressure range of 0.01 and 0.99 (Oveissi and Fatehi, 2014). 

8.3.4 Chemical analysis of kaolin 
The chemical composition of kaolin was determined using scanning electron microscopy (SEM), 

Hitachi Su-70, with energy dispersive X-ray spectroscopy (EDX) (Senoussi et al., 2016). In this 

set of experiments, 0.2 g of kaolin was dispersed in 20 mL of acetone under ultrasonic vibrations 

for 5 min and allowed to air dry for 24 h. After drying, the sample was coated with carbon using 

Edward Auto 306 system (Edward International Corp, UK) under vacuum (3 × 10−5 mbar) for 10 

min prior to SEM analysis. 

X ray diffractometry (XRD) analysis was carried out to determine the compositions of the 

samples and their distribution using spinning stage PANalytical X'pert-PRO diffractometer 

(XRD), PW1050–3710 with a Cu Kα (λ = 1.5405 Å) radiation source (Senoussi et al., 2016). A 

0.5 g of kaolin samples were air dried and transferred onto the spinner of XRD. The XRD scan 

of kaolin was performed in a continuous mode from 6 to 97° with a 0.026° step size and a scan 

speed of 0.164 (°/Sec) for total scan time of 9 min. The chemical compositions were identified 

by analyzing the positions of the peaks using the X'pert High Score software package supplied 

with the instrument (Mcintosh et al., 2015). The loss on ignition (LOI) of kaolin was determined 

via following TAPPI T413 method by incinerating the kaolin at 900 °C for 8 h (Santisteban et 

al., 2004). All experiments were repeated three times and the average values were reported.  

8.3.5 Solubility and charge density determinations  
To measure the solubility of the KAM products, 0.2 g of KAM was added to 20 mL of deionized 

water by stirring at 100 rpm and 30 °C for 1 h in a water bath shaker (Innova 3100, Brunswick 

Scientific, Edison, NJ, USA). Then, the dispersions were centrifuged at 1000 rpm for 5 min. The 

supernatants were collected and used for analyzing the charge density and solubility of the 

polymers. The concentration of the polymers in the supernatants was determined by drying the 

supernatants at 105 °C, and the solubility was determined based on the concentration of the 

polymers in the supernatants and the initial amount of the polymer (0.2 g). The charge density of 

the polymers was measured by a particle charge detector, Mütek PCD 04 titrator (Herrsching, 

Germany) with a PDADMAC solution (0.0050 M) following the method established earlier 
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(Wang et al., 2016a, 2016b). Three repeats were carried out, and the average values were 

reported.  

The surface charge density analysis of the particles was performed via following a back-titration 

method with a Mutek, PCD 04, particle charge detector (Germany). Approximately, 0.2 g of 

kaolin was suspended in 50 mL of PDADMAC (0.005M) solution and the dispersion was 

incubated at 30 °C for 1 h and 150 rpm. After the incubation, the samples were filtered using 

Whatman#1 filter membranes and the filtrates were titrated against PVSK (0.0055 M) solution. 

Similarly, the titration analysis was conducted for the control sample (i.e., PDADMAC solution 

with no kaolin addition), and the difference was considered for quantifying the surface charge 

density of kaolin mineral particles. 

8.3.6 Carboxylate group analysis 
The carboxylate groups of KL and KAM were measured using an automatic potentiometric 

titrator, 785 Titrino. In this analysis, 0.06 g of lignin samples were placed in a 250 mL beaker 

and then 1 mL of potassium hydroxide (0.8 M) was added. Afterward, 0.02 g of para-

hydroxybenzoic acid were added as internal standard to the solution and subsequently 100 mL of 

deionized water were added. The solution was stirred for 30 min to ensure proper mixing. In 

addition, control samples were prepared by mixing 0.02 g of para-hydroxybenzoic acid, 1 mL of 

0.8 M potassium hydroxide solution and 100 mL of deionized water in beakers. After 

completion, the prepared solutions were titrated with a 0.1 M HCl standard solution. In the 

titration experiment, the last three endpoints appeared in sequence of pH drop of the sample 

solutions were noted as 𝑉1
′, 𝑉2

′ and 𝑉3
′, respectively. The corresponding three endpoints in the 

titration curve of blank sample were specified as V1, V2 and V3, respectively. The carboxylate 

contents of samples were calculated according to Equation (8.1): 

 

 Carboxylate group   (𝑚𝑚𝑜𝑙

𝑔
) =  

∁
𝐻𝐶𝑙[(𝑉3

′ − 𝑉2
′ )− (𝑉3 −𝑉2) ] 

𝑚
          (8.1) 

 

where CHCl is the concentration of HCl solution (0.1 mmol/L) as titrant, and m is the mass (g) of 

the sample. V2 and V3 are the volumes (mL) of HCl solution used for the two endpoints in the 
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blank titration. V′2 and V′3 are the volumes (mL) of HCl solution, used for the two endpoints in 

sample titration, respectively. The reported data in this chapter is the average of three repetitions. 

8.3.7 Molar mass analysis 
About 5 mg sample of dried KAM polymer was dissolved in 10 mL of 5.0 wt.% acetic acid 

solution by stirring at 600 rpm for 48 h and 35 °C, and then the solution was filtered with a 13 

mm diameter nylon filter (pore size 0.2 µm). The filtered solutions were used for the molar mass 

analysis, which was carried out using a gel permeation chromatography (GPC) (Viscotek 

GPCmax, Malvern, UK) with viscometer and UV detectors. PolyAnalytic, A206 and A203 

columns were set at operating temperature of 35 °C. 0.1M of NaNO3 solution was used as 

solvent and eluent with the flow rate of 0.7 mL/min. Polyethylene oxide was used as standard for 

calibrating the GPC instrument. All experiments were repeated three times and the average 

values were reported.  

8.3.8 Elemental analysis 
The elemental analysis was performed for KL and KAM polymers using an elemental analyzer, 

Elementar Vario EL Cube, following the combustion method (Jahan et al., 2012). The samples 

were first dried in an oven at 105 °C overnight to remove any moisture prior to analysis. 

Approximately, 2 mg of dried samples were transferred into the carousel chamber of the 

elemental analyzer and combusted at 1200 °C to reduce the generated gasses to analyze carbon, 

hydrogen, oxygen and nitrogen contents of the samples. The report values in this chapter are the 

average of three repetitions. 

8.3.9 Hydrodynamic diameter assessment of KL and KAM in aqueous 

solutions 
The hydrodynamic diameter (Hy) of the KL and KAM polymers was measured using a static 

light scattering analyzer (BI-200SM Brookhaven Instruments Corp., USA). The light source was 

a power solid state laser with a maximum power of 35 mW and a wavelength of 637 nm. The 

scattering angle was set at 90°. In this set of experiments, 0.5 g/L of KL and KAM polymer 

samples were prepared in 0.01 M NaCl solution and stirred for 30 min at pH 4, 7, and 10. The 

samples were kept at room temperature for 24 h to reach equilibrium (Kong et al., 2015). In 

another set of experiments, 0.5 g/L of KAM polymer samples at different salt concentrations 
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(0.1-1M NaCl) were prepared and stirred for 30 min at pH 7. The pH of the solution was 

adjusted using 0.1 M sulfuric acid. Each test was performed for 2 min. Subsequently, 20 mL of 

the sample solutions were filtered with a 0.22 μm disposable syringe filters and kept in glass 

bottles. The hydrodynamic diameter of the samples was analyzed by the light scattering 

instrument. All measurements were carried out in triplicate. 

8.3.10 Contact angle and surface tension determination  
KL and KAM polymers were coated on glass slides using a spin coater. In this set of 

experiments, KAM solution (16 mg/g based on kaolin) was added to deionized water (25 mL) 

and stirred for 1 h at 300 rpm and 30°C. The pH of the solution was adjusted to 4, 7 and 10 using 

0.1 M NaOH or 0.1 M H2SO4. 2 mL of KL and KAM solutions were dropped on the glass slide 

located in the chamber of a spin coater (Model WS-650, Laurell Technologies Corp., USA), 

while rotating at 200 rpm. This rotation was continued for 30 sec, then increased to 250 rpm and 

continued for another 30 sec. In this process, the system was continuously purged with N2 gas at 

60 psi (Ponnusamy et al., 2012). Once the KAM coated slides were dried at room temperature, 

drops (5 μL) of water were placed at different locations of the KAM coated glass slide and the 

contact angles of the droplets and the surface were identified after 20 sec using an optical 

tensiometer (Theta Lite, Biolin scientific, Finland) at 25 C. The contact angle of each droplet 

was determined as a mean value of measurements on 3 different spots on the glass slides. 

The surface tension of KAM solutions was measured using an Attention Surface tensiometer 

(Biolin, model # Sigma 700) via the du Nouy ring method. In this set of experiments, 20 mL of 

previously made KAM solution at a 10 g/L concentration was transferred to glass containers for 

surface tension determination. This test was performed by placing the ring in the liquor and then 

pulling the ring upward through the surface of the liquid slowly. The distance between the 

immersed ring and liquid surface was maintained to ensure a clean break of the meniscus on the 

immersed platinum–iridium ring. The radius of the ring was given by the manufacturer as 9.545 

mm and the radius of the cross-section of wire was 0.185 mm. The platinum loop was cleaned 

with ethanol and deionized water between each test. The surface tension of KAM solutions was 

measured, and each measurement was replicated 10 times to ascertain the reproducibility of the 

results. All the measurements were carried out at 25 °C and pH 4, 7 and 10. The reported data in 

this chapter is the average of three repetitions. 
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8.3.11 Hydrodynamic size determination of kaolin  
The size distribution of kaolin at varying pH (4, 7, and 10) was analyzed using a particle size 

analyzer, MasterSizer 3000 (Malvern Instruments). In this study, 1.0 g of clay dispersion (20 

g/L) was added to 50 mL of deionized water or 50 mL of KAM solution containing the polymers 

at the dosage of 16 mg/g (based on clay) and stirred at 300 rpm and room temperature for 1 h. 

After stirring, the particle size distribution of the samples was analyzed. The pH of the 

suspensions was adjusted with 0.1 M NaOH solution or H2SO4. The range of hydrodynamic 

diameter distributions of minerals and flocs in kaolin and kaolin/KAM dispersions was assessed 

using this machine, and the results were considered for correlating the particle size distribution 

and volume fractions of minerals and flocs in the section 8.3.14. The reported data in this chapter 

is the average of three repetitions. 

8.3.12 Adsorption studies 
The adsorption of KL or KAM on kaolin at varying pHs (4, 7 and 10) and dosages (2 – 128 mg/g 

based on kaolin) was studied. In this set of experiments, varied dosages (2 to128 mg/g on kaolin) 

of KL or KAM were added to the kaolin dispersion (0.4 g/L) at a desired pH and stirred at 300 

rpm and 25°C for 1 h. The pH of the kaolin dispersion was adjusted to 4, 7 and 10 using 0.1 M 

NaOH or 0.1 M H2SO4. After adsorption process, the samples were centrifuged for 15 min at 

3500 rpm and then the concentrations of KAM remaining in the supernatants were determined by 

UV/Vis spectrophotometer (Genesys 10S UV–vis, Thermo FisherScientific, USA) at a 

wavelength of 205 nm. To determine the salt impact, the optimal dosage of 16 mg/g (based on 

kaolin) of KL or KAM was maintained in the kaolin dispersion (0.4 g/L) at different salt 

concentrations (0.1-1 M NaCl), and the aforementioned analysis was repeated. All the 

experiments were performed in triplicates and the average values were reported in the study.   

8.3.13 Zeta potential analysis 
The zeta potential of kaolin was determined using a NanoBrook Zeta PALS (Brookhaven 

Instruments Corp, USA). In this study, different dosages (2 to 128 mg/g based on kaolin) of KL 

or KAM polymers were prepared in 50 mL of kaolin dispersion (0.4 g/L) at pH 4, 7 and 10 and 

stirred at 300 rpm and 25°C for 1 h. After mixing, their zeta potential was measured in a 1.0 mM 

KCl aqueous solution. All the measurements were carried out at room temperature with a 
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constant electric field (8.4 V/cm). The experiments were carried out three times and the average 

values were reported in this study. 

8.3.14 Dispersion analysis under dynamic conditions 
Dispersant performance of KAM in kaolin dispersions was assessed using a photometric 

dispersion analyzer (PDA 3000, Rank Brothers Ltd) that was connected to a dynamic drainage 

jar (DDJ) with a 70 mm mesh screen (Fatehi et al., 2013). In this set of experiments, 490 mL of 

distilled water was first added into the DDJ container and circulated from the DDJ to the PDA 

through a 3 mm plastic tube until a steady flow rate of 20 mL/min was achieved. The flow rate 

was regulated by a peristaltic pump throughout the experiment. Then, 10 mL of a 20 g/L kaolin 

dispersion was added into DDJ (to make a 0.4 g/L kaolin concentration) at varying shearing rates 

(between 50 and 500 rpm). In another set of experiments, the optimal dosage of 16 mg/g (based 

on kaolin) of KL or KAM was maintained in the DDJ at varying shear rates of 50 to 500 rpm. 

This caused a decrease in the initial base DC voltage (V0) to a new DC voltage (Vi). After 100 s, 

varying dosages of KL or KAM (2 to 128 mg/g of kaolin) were added into DDJ containing 500 

mL of the kaolin dispersion (0.4 g/L) at 300 rpm. The increase in DC voltage was represented as 

the DC voltage (Vf) of the final dispersion. All of the tests were carried out at three different pH 

of 4, 7 and 10 of kaolin dispersion, which was controlled by adding 0.1 M NaOH or 0.1 M 

H2SO4. The reported data in this chapter is the average of three repetitions. 

The relative turbidity of the kaolin dispersion was measured using equation 8.2 (Wang et al., 

2009): 

Relative turbidity, 𝜏r = 𝜏𝑓

𝜏𝑖
=  

𝑙𝑛(
𝑉0

𝑉𝑓
)

𝑙𝑛(
𝑉0

𝑉𝑖
)
                                  (8.2) 

 

where τf is denoted as the final dispersion turbidity, and τi is denoted as initial dispersion 

turbidity. 

8.3.15 Dispersion analysis under static conditions 
The stability of the kaolin dispersion in the presence and absence of KAM was investigated 

using a vertical scan analyzer, Turbiscan Lab Expert, Formulaction, France. This method has 

been used for studying the stability of waste and mineral dispersion (Vie et al., 2007; Jamrozik et 

al., 2014; He et al., 2016). In one set of experiments, kaolin dispersions (0.4 g/L) with altered pH 
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of 4, 7 and 10 were prepared in the presence (dosages of 2 to 128 mg/g based on kaolin) or 

absence of KAM. Then, 20 mL of the dispersion was transferred to the cylindrical tube of the 

instrument and subjected to analysis for 1 h.  The dispersions were vertically scanned at 880 nm 

wavelength every 2 sec at 30 ºC and the results were analyzed using Turbisoft 2.1 software.  

In this equipment, two synchronous optical sensors receive light that is transmitted through and 

light that is backscattered by the sample. One sensor is placed at an angle of 180° relative to the 

incident light beam and measures the transmitted light intensity and the other is placed at an 

angle of 45° to the light source to measure the backscattered light intensity. The backscattering 

signals generated by the sample were compared with that of the standard silicon oil, which was 

used for calibrating the instrument (Mengual et al., 1999). 

The backscattering (BS) intensity of incident light is measured by determining the mean free 

path of photons (l∗) through the medium (Breitung et al., 2011). The backscattering data can be 

obtained for concentrated dispersions as a function of photo transport mean free path, I* 

(Breitung et al., 2011) in equation 8.3: 

BS = 1

√𝐼∗         (8.3) 

 

In addition, the photo transport mean free path, I*, can be obtained via following equation 8.4. 

I* (d, θ) = 2𝑑

3𝜃 (1−𝑔)𝑄𝑠
      (8.4) 

 

where d is the particle mean diameter, θ is the particle volume fraction, g and Qs are the 

scattering efficiency factors, which depend on the particle diameter (d), wave length of light (λ), 

refractive index of suspended kaolin minerals particles (np) and the refractive index of 

continuous phase (nf). In this work, the computation was based on the refractive indices of kaolin 

mineral particles (1.54) and water (1.33) in the sample (He et al., 2016). 

According to Eqs. 8.3 and 8.4, the intensity of backscattering light depends on the particle mean 

diameter, d, and their volume fraction, θ (Celia et al., 2009). Information about the diameter of 

kaolin minerals can facilitate the determination of the volume fraction of the particles. The 

hydrodynamic size distribution of kaolin (ranging 0.06 and 18.7 µm) was measured as stated in 
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section 8.3.11 and the hydrodynamic size distribution of kaolin/KAM dispersion was in the 

range of 0.08 and 29.7 µm. These ranges were considered for identifying the volume fraction of 

the minerals using equation 8.4 in the dispersion analysis.  The reported data in this chapter is the 

average of three repetitions. 

8.4 Results and Discussion 

8.4.1 Characterization of kaolin minerals  
Table 8.2 lists the properties of kaolin. The average particle size and specific surface area of 

kaolin were 4.7 μm and 55.65 m2/g, respectively. The surface charge density of kaolin was – 5.5 

µeq/g, and this charge is attributed to the presence of oxide anions on their surface (Loginov et 

al., 2008). The chemical analysis of kaolin (Table 8.2) revealed the significant presence of Al2O3 

(34.92 wt.%) and SiO2 (49.12 wt.%), as well as the loss of ignition was 13.6 wt.%. Furthermore, 

the loss of ignition for kaolin was 13.6 wt.%.  XRD showed that kaolin contains kaolinite (85 

wt.%) as a major mineral constituent along with small amount of dickite (6 wt.%), narcite (2 

wt.%), quartz (4 wt.%) and hematite (2 wt.%). 

 
Table 8.2. Chemical compositions of kaolin  

Oxides  Al2O3 SiO2 Na2O K2O TiO2 Fe2O3 LOI* 

Wt.% 34.92±0.03 49.12±0.02 0.49±0.01 0.68±0.01 0.60±0.01 0.71±0.01 13.6±0.01 

 

8.4.2 Polymerization of KAM 
The polymerization of kraft lignin and AM was carried out following a free radical 

polymerization mechanism. In this reaction, potassium per sulfate acts as an initiator in an 

aqueous solution. As illustrated in scheme 8.1a, potassium per sulfate initially produce sulfate 

radicles in the reaction medium, which converts lignin to phenoxy radicals and the radicals serve 

as a reaction site on the lignin backbone for the polymerization. These free radical sites then 

react with AM monomers to form KAM polymers (scheme 8.1b). Also, sulfate radicals can 

initiate the homopolymerization of AM, resulting in polyacrylamide (PAM) as a by-product 

(scheme 8.1c). 
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Scheme 8.1. Copolymerization of kraft lignin and acrylamide.  

8.4.3 Properties of KAM 
The KL and AM was synthetized to produce KAM with different molar masses but a similar 

solubility (Table 8.1). The increase in the nitrogen content confirmed the grafting of AM onto the 

lignin backbone, which was well aligned with the change in the molar mass of KAM-1, KAM-2 

and KAM-3. An increment in the molar mass average (Mw) was observed for KAM-1 (Mw of 24, 

590 g/mol), KAM-2 (Mw of 50, 215 g/mol) and KAM-3 (Mw of 96, 992 g/mol). A similar trend 

was observed for number average molar mass (Mn) in Table 8.1.  The solubility of unmodified KL 

was found to be 0.5 g/L, whereas KAM-1, KAM-2 and KAM-3 were approximately 4.5 g/L 

soluble in water. It is also seen that the anionic charge densities and carboxylate groups on the 

KAM backbone increased with increasing its molar mass.  

Also, KAM-3, which was produced under the reaction conditions of 80°C, 2 h, 0.016 mol of KL, 

0.042 mol of AM and pH 5, had the highest molar mass and nitrogen content among all (Table 

8.1). It is seen that the temperature of 80°C was more effective than other temperatures in 

generating KAM with a high molar mass and charge density. Apparently, a more acidic reaction 
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environment and longer reaction time (5 h) hampered the progress of the polymerization reaction 

and generated a polymer with a smaller molecular mass and charge density (Naguib, 2002; Fang 

et al., 2009).  

8.4.4 Contact angle and surface tension 
The variations in the contact angle (°) and surface tension (mN/m) of water on the slides coated 

with KL/KAM are listed in Table 8.3. The contact angle of water droplet on the glass slide was 

21°. As observed, water droplet created a larger contact angle with the slide coated with KL, 

suggesting the hydrophobic nature of lignin polymer. After coating the slides with KAM, the 

slide’s surface became more hydrophilic, and a smaller contact angle was observed for the water 

droplet on the surface. It can be seen that, KAM significantly reduced the surface tension of 

water (72.75 mN/m). This result can be correlated well with the contact angle results, suggesting 

an increase in wettability of the surface when KAM was used. 

By increasing the charge density of KAM, the contact angle and surface tension of the KAM 

coated slides were reduced, implying that KAM-3 made the surface of glass slide more 

hydrophilic than did other KAMs. The wettability of KAM could be significantly influenced by 

the interactions of water molecules with hydrophilic group originated from -CONH2, -COO, -OH 

groups of KAM (Carmes et al., 2011; Yang et al., 2007) at the slide surface. The attraction force 

developed between water molecules and KAM became more significant than between water 

molecules themselves due to the presence of hydrophilic functional groups of KAM. As a result, 

water molecules started to spread on the glass slides coated with KAM. It is also seen that the 

surface tension and contact angle was lower at a higher pH for all samples.  

Table 8.3. Contact angle and surface tension results 

  pH 4 pH 7            pH 10 

Poly
mer 

Contact  
angle (°) 

Surface tension 
(mN/m) 

Contact 
angle (° ) 

Surface tension 
(mN/m) 

Contact 
angle (° ) 

Surface tension 
(mN/m) 

KL 32.15±0.03 65.6±0.07 30.51±0.09 59.35±0.5 28.33±0.02 57.1±0.05 

KAM
-1 21.43±0.09 63.29±0.07 20.46±0.06 58.23±0.07 19.34±0.03 56.2±0.05 

KAM
-2 19.34±0.05 62.74±0.09 15.34±0.06 56.35±0.06 14.66±0.05 52.13±0.01 

KAM
-3 15.71±0.08 62.13±0.06 14.46±0.08 55.1±0.05 13.7±0.1 51.6±0.1 
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8.4.5 Adsorption analysis 

Figure 8.1 shows the adsorption of KAM on kaolin as a function of KAM dosage at pH 4, 7 and 

10. As can be seen, KAM adsorption increased to saturation as the dosages of KAM was 

enhanced. It is implied that the higher molar mass of KAM-3 formed a large number of hydrogen 

bonds between kaolin minerals and polymer chains, which enhanced its adsorption on kaolin 

mineral particles as compared to KAM-1 and KAM-2.  

At pH 4, KAM-3 (2.16 mg/g), KAM-2 (1.92 mg/g) and KAM-1 (1.82 mg/g) achieved the 

maximum adsorption at 16 mg/g of polymer dosage (based on kaolin). At a pH higher than 

kaolin minerals’ isoelectric point (i.e. pH of 2.2) (Besra et al., 2002), the surface charge density 

of kaolin minerals reported to be negative due to the deprotonation of its aluminol groups 

(Pefferkorn et al., 1987). On the other hand, KAM polymer has more protonated carboxylate 

group (-COOH) than deprotonated (-COO) at pH 4 (pK of 4.7). Hence, its driving force for 

adsorption on kaolin minerals is predominated by hydrogen bonding and not by electrostatic 

charge interaction at pH 4 (Pefferkorn, 1999; Mpofu et al., 2005). The results shown in Figure 

8.1 are in agreement with the findings of other researchers (Chibowski and Knipa, 2000; 

Wisniewska, 2010). In one study, the adsorption of polyvinyl pyrrolidone on kaolin was 

decreased by 14.0 wt.% with an increase in the pH from 2 to 10 (Bhatti et al., 2012). 

Table 8.4 lists the hydrodynamic diameter (Hy) of KAM at different pHs. It is seen that Hy of 

KAM was generally smaller at lower pH values. At a low pH, KAM polymer carries less ionized 

functional groups, thus weak repulsive forces created within KAM segments triggering the 

polymer chains to coil (Das et al., 2013). In one study, the hydrodynamic diameter of anionic 

polyacrylamide in alumina dispersion reported to be increased from 19.5 to 25.1 nm with the pH 

increase from 3 to 9 (Wisniewska and Urban, 2015a). Hence, the smaller size of KAM at pH 4 

(Table 8.4) enhanced its adsorption as the smaller KAM occupied less specific surface area and 

thus more of these polymers could adsorb on the surface (Chibowski et al., 2009). This trend is 

consistent with the finding of Wisniewska et al. (2015b) stating that the adsorption of anionic 

PAM on the alumina surface decreased with the pH increase from 3 to 9. Ma and Bruckard 

(2010) also reported that starch adsorption on kaolin mineral particles was pH dependent in that 

its adsorption decreased with increasing pH from 7 to 10.5.  
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Table 8.4. Hydrodynamic diameter (nm) of KL and KAM in 0.01 M NaCl solution 

Polymer pH 4 pH 7 pH 10 

KL 8±0.10 9.5±0.11 10.5±0.05 

KAM-1 33.5±0.11 49.7±0.10 58.2±0.10 

KAM-2 37.63±0.11 59.3±0.11 68.9±0.05 

KAM-3 40.69±0.09 73.12±0.10 85.3±11 

 

At pH >4, the carboxylate group of KAM would be deprotonated, which improves its hydrogen 

bonding capability (Farrokhpay et al., 2004; Mekhamer et al., 2009). However, the higher 

charges of KAM would induce higher repulsion between the adsorbed KAM and approaching 

KAM from the medium for adsorption on the kaolin minerals’ surface.   

At pH > 10, KAM polymer is fully ionized due to the deprotonation of carboxylate and 

phenolate groups. The anionic charges on the KAM causes the polymer chain to be more 

stretched due to intramolecular electrostatic repulsion leading to an extended Hy (Table 8.4). 

Also, strong repulsion force is developed between adsorbed KAM on the surface and 

approaching KAM from the medium to the surface. Therefore, the larger Hy and stronger 

repulsion force were probably the reason for the lower adsorption of KAM at pH greater than 4. 

In addition, hydroxyl ions in the dispersion may also compete with KAM to adsorb on kaolin 

mineral particles at a high pH. Therefore, the larger hydrodynamic size, stronger repulsion force 

and competition with hydroxyl ions were probably the primary factors for the lower adsorption 

of KAM under alkaline pH on kaolin mineral particles (Figure 8.1).   
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Figure 8.1. Adsorption of KL/KAM on the surface of kaolin as a function of KAM dosage; under 

the conditions of 0.4 g/L kaolin, 25°C and 1 h. 

In order to gain a greater insight into the relationship between adsorption and the size of KAM, 

the hydrodynamic diameter of the KAM was determined as a function of salt concentration at pH 

7 in Figure 8.2. It is observed that the higher NaCl concentration led to the smaller 

hydrodynamic diameter, which is in agreement with previous results (Mishra et al., 2014). The 

decrease in the hydrodynamic diameter is most likely attributed to the reduction in the repulsion 

force between the anionic charged groups within the KAM structure due to counterion screening 

induced by salts (Yoshikawa and Lewis, 2008). In the past, NaCl reduced the electrostatic 

repulsion between the –COOˉ groups of PAM and induced PAM with a collapsed coil shape 

structure (Chen et al., 2012). In another research (Yoshikawa and Lewis, 2008), the 

hydrodynamic diameter of polyacrylic acid was decreased from 4 to 2.7 nm with salinating the 

solution. Among the three KAM polymers, the extent of hydrodynamic size reduction for KAM-

3 (228 to 34 nm) found to be the greatest as compared to other KAM. These findings revealed 

that with increasing ionic strength, the higher molar mass polymers had a more compact coiled 

conformation and less electrostatic intersegment repulsion. Thus, the salt concentration had 
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possibly more pronounced impact in reducing the hydrodynamic size of this polymer segment 

(KAM-3). 

 

Figure 8.2. Effect of NaCl concentration (0.1-1M) on the Hy of KAM, conducted under the 

conditions at pH 7, 25 °C in aqueous solution. 

 

Adsorption of KL and KAM on kaolin at different ionic strengths was assessed in Figure 8.3. As 

observed, the adsorption capacity of KAM increased with increasing NaCl concentration and 

decreasing pH. These results are in agreement with the findings in the literature (Morris et al, 

2002; Ali and Mahmud, 2015). NaCl could screen the repulsive forces between charges on KAM 

segments and reduce the Hy of KAM (Table 8.2 and Figure 8.2). This implies that at a high salt 

concentration, KAM polymer becomes more compact, and thus requires smaller specific surface 

area to be adsorbed on the particle’s surface. In addition, NaCl can screen the repulsive forces 

developed between the adsorbed KAM and approaching KAM segments facilitating the 

adsorption of KAM on the particles via developing hydrogen bonds. Morris et al. (2002) also 

observed that the adsorption of anionic polyacrylamide onto talc increased at high ionic strength 

or low pH. In another research, the adsorption capacity of PAM on sepiolite was enhanced from 

151.5 to 188.7 mg/g with increasing NaCl concentration from 0.001 to 0.1M (Tekin et al., 2006).  
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Figure 8.3. Effect of NaCl concentration on the adsorption of KL/KAM on kaolin, conducted 

under the conditions of 16 mg/g of dosage, 0.4 g/L kaolinite, 25 °C and 1 h. 

8.4.6 Zeta potential analysis 
Figure 8.4 shows the zeta potential of kaolin mineral particles at pH 4, 7 and 10 as a function of 

the adsorbed KAM. It is observable that the zeta potential of the kaolin dispersion was negative 

over the entire pH range after KAM adsorption. Moreover, an increase in the adsorption reduced 

the zeta potential of the dispersion regardless of their pH. This reduction is attributed to 

adsorption of KAM on kaolin mineral particles (Figure 8.1), which increased the overall negative 

charges of the double layer of kaolin mineral particles (Mpofu et al., 2003).  

The results also suggest that the zeta potential of the kaolin dispersion was reduced more 

significantly as the adsorption of KAM increased. Due to its higher charge density, KAM-3 was 

more effective in the zeta potential change at any adsorption level and pH (Figure 8.4). KL did 

not affect the zeta potential of kaolin dispersion at any pH, and thus not shown in the figure. The 

last points on each curve (point “S” in Figure 8.4) represents the zeta potential of kaolin mineral 

particles at the maximum adsorption amount (i.e., saturation adsorption in Figure 8.1). For these 

points, the adsorption amount on kaolin was similar, but the unadsorbed KAM were still 

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1 1.2

Po
ly

m
er

 a
ds

or
pt

io
n,

 m
g/

g

Salt concentration, M

KAM-1 KAM-2 KAM-3 KL

(c) pH 10



243 
 

available in the dispersion for adsorption (Figure 8.1). These results provide evidence that the 

presence of unadsorbed KAM in the kaolin dispersion was inconsequential for affecting the zeta 

potential of the kaolin dispersion.  

Generally, the zeta potential of kaolin dispersion dropped less via KAM adsorption at pH 4 than 

other pH because carboxylate groups of KAM polymers were protonated at this pH. At pH 10, 

the phenolate groups of lignin in KAM was deprotonated in addition to carboxylate groups, 

which would induce extra negative charge on the surface of kaolin mineral particles upon 

adsorption, and this results in a more negative zeta potential change. In one research (Cerrutti et 

al., 2012) on the stabilization of alumina dispersion using carboxymethyl lignin, the zeta 

potential of the dispersion was reduced from 20 to -60 mV at the polymer dosage of 0.2 wt.% 

and pH 10. 

 

Figure 8.4. Effect of adsorbed amount of KAM on the zeta potential of kaolin (conducted under 

the conditions of 0.4 g/L kaolin, 25°C and 1 h). 
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8.4.7 Dispersion under dynamic conditions 
The effect of KAM dosage on the relative turbidity of kaolin dispersion at pH 4, 7 and 10 is 

shown in Figure 8.5. KL did not change the relative turbidity of the dispersion at any pH (not 

shown). The results showed that KAM-3 increased the relative turbidity of the kaolin dispersion 

the most at any pH studied, which is related to 1) its higher adsorption on kaolin mineral 

particles (Figure 8.1) and 2) the higher zeta potential of particles (Figure 8.4). As explained 

earlier, the carboxylate and phenolate groups of KAM are dissociated under alkaline conditions, 

and thus they repel each other more significantly. Upon adsorption, as they had a larger Hy and 

more repulsion intensity, they were probably able to repel particles to a farther distance and 

larger extent. In addition, the variation in the relative turbidity at different pHs is in harmony 

with the surface tension and contact angle results in Table 8.3. KAM-3 reduced the surface 

tension of water and improved the hydrophilicity of kaolin mineral particles the most (improving 

its interaction with water). Therefore, the modified kaolin minerals with KAM-3 had more 

tendency to interact with other modified kaolin mineral particles, which promoted their repulsion 

(i.e., increase in relative turbidity).  
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A better comprehension of the interaction mechanism between kaolin mineral particles and 

KAM under varied pHs can be revealed by assessing the correlation between the zeta potential 

and the relative turbidity of the kaolin dispersion (Wang et al., 2016b). To determine the 

stabilization mechanism of KAM in kaolin dispersion, the relative turbidity of kaolin dispersion 

was plotted against their zeta potential in Figure 8.6. A similar relative turbidity could be 

obtained at different zeta potentials; hence the zeta potential was not the only indicator of the 

changes in relative turbidity and stability of the dispersion. The last points (point “S” in Figure 

8.6) on each curve exhibited the relative turbidity of kaolin dispersion corresponding to the 

maximum adsorption and minimum zeta potential (as indicated in Figures 8.1 and 8.4). When 

KAM adsorption reached plateau, the zeta potential and relative turbidity of kaolin dispersion 

attained constant values, indicating that the unadsorbed KAM did not contribute to relative 

turbidity of the dispersion.   

 

Figure 8.6. Effect of zeta potential on the relative turbidity of kaolin (conducted under the 

conditions of 0.4 g/L kaolin, 25 °C and 1 h). 
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8.4.8 Dispersion under static conditions  
As KAM-3 was more effective than other KAM, the dispersion study under static conditions was 

conducted only using this polymer. The impact of KAM-3 dosage on the backscattering intensity 

of kaolin dispersion at different pH was shown in Figure 8.7. In the absence of KAM-3, the 

backscattering intensity of kaolin mineral particles was lower at pH 4 (5.5%) than pH 7 (26.5%) 

and 10 (29.3%), which is due to the settlement of particles as a results of weak electrostatic 

repulsion force between the kaolin mineral particles at a low pH (corresponding to a low zeta 

potential in Figure 8.4). In the presence of KAM-3, the kaolin dispersion showed an increase in 

backscattering intensity with dosages, and the increase was more pronounced at pH 10 than other 

pHs. As discussed above, the adsorption of KAM-3 reduced the zeta potential of the dispersion 

(i.e., elevated electrostatic repulsion force between particles) and surface tension of water more 

greatly at pH 10 than other pHs, which stabilized the dispersion at pH 10 more greatly. Similar 

behaviors were observed in another study when backscattering of chromium (III) oxide particles 

reached to a maximum level (55%) at pH 9 in the presence of polyacrylamide (Wisniewska et al., 

2016). 

 

Figure 8.7. Backscattering intensity of kaolin dispersion as a function of KAM dosage, which 

was conducted under the conditions of 0.4 g/L kaolinite at 25 °C and 1h.  
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Figure 8.8 presents the size of the particles and their volume fraction in the dispersion at varying 

pH (4, 7 and 10) and 16 mg/g KAM dosage (based on kaolin). In the absence of KAM, the 

particles settled with negligible volume fraction in the dispersion at pH 4. The volume fraction of 

particles in the range of 0.1 to 8 µm increased in the kaolin dispersion at pH 7 and 10, which is 

attributed to the stronger electrostatic repulsion between the particles (larger negative zeta 

potential in Figure 8.4) that stabilized the particles, as explained earlier. The KL addition slightly 

increased the volume fraction as compared to kaolin at any pH. With increasing KAM’s molar 

mass, the volume fraction of particles increased in the dispersion. The particles with the size of 4 

µm had the highest volume fraction in the kaolin dispersion. This phenomenon showed that the 

particles that could remain suspended in the dispersion were probably those in the size range of 

0.1 and 7 µm. Those with larger sizes than 7 µm were most likely settled, regardless of the KAM 

molar mass and pH of the dispersion.  
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Figure 8.8. Size of particles in the presence or absence of KAM, conducted under the conditions 

of 16 mg/g of KAM dosage, 0.4 g/L kaolin at 25 °C and 1 h.  
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8.4.9 Effect of shear on kaolin dispersion 
The effect of shear rates on the relative turbidity of the KAM-3 and kaolin dispersion was 

investigated in Figure 8.9. It is apparent that the share rate affected the efficiency of KAM-3 at a 

higher pH more effectively. As can be seen, there is an optimum shear rate for better dispersion 

performance (300 rpm). At a lower shear rate (<300 rpm), the dispersion tended to depend on the 

shear rate (Nsib et al., 2006). Upon addition of KAM, the relative turbidity of kaolin dispersion 

was increased to 1.40, but it was 1.15 in the absence of KAM at 300 rpm. KL insignificantly 

affected the relative turbidity of kaolin dispersion. This observation indicates that KAM-3 played 

a critical role in stabilizing the kaolin dispersion at any shear rates, and its impact was greater 

than that of shear rate alone.  

 

 

Figure 8.9. Effect of shear rate on the relative turbidity of kaolin dispersion in the presence of 

KAM at varied pH; under the conditions of 16 mg/g of dosage, 0.4 g/L kaolin at 25 °C and 1 h.  
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8.5 Conclusions 
KAM proved to be an efficient dispersant in a wide pH range, and its efficiency was better under 

alkaline environment. The stability of kaolin dispersion with KAM was also confirmed by the 

increases in the backscattering light intensity and volume fraction of kaolin mineral particles in 

the suspended state. In addition, KAM addition (i.e., a chemical treatment) was more effective 

than the shear rate (i.e., a mechanical treatment) in improving the stability of kaolin dispersion. 

Overall, KAM-3 with higher charge density and molar mass was more effective than other KAM 

in improving the stability of kaolin dispersion.  
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Chapter 9: Self-assembly of kraft lignin-acrylamide 

polymers 

9.1 Abstract 
Lignin has long been obtained as a by-product of the pulping industry but has rather low added-

value applications. The production of lignin polymers has shown pathways to produce water 

soluble products to be used as flocculants and dispersants. However, these lignin-based polymers 

may interact with each other and form large flocs that could reduce their efficiency in interacting 

with other colloidal particles. This study aims at evaluating the self-assembly of kraft lignin-

acrylamide polymers in aqueous environments under different salt concentrations. The present 

study revealed a significant self-assembly of lignin polymers with time in the presence or 

absence of salt. The sedimentation studies showed that the higher molecular weight lignin 

polymer had a higher tendency for aggregation. Quartz crystal microbalance with dissipation 

(QCM-D) was used for studying the self-assembly behavior of lignin polymers with different 

molecular weights. These results suggested that lignin polymer with the higher molecular weight 

of 96, 992 g/mol had a higher tendency to self-assemble by forming a loose and thick layer as 

compared to that with a lower molecular weight. Also, salt disrupted the self-assembly of lignin 

polymers greatly. 

9.2 Introduction 
In the past few decades, self-assembly of particles has been focus of research (James et al., 

2014). The potential of polymers to self-organize in solutions at specific conditions is a very 

attractive phenomenon, which can be exploited to produce a wide range of nano- and mesoscopic 

structures with different chemical compositions, shapes and functionalities (Lehn, 1995; 

Whitesides and Grzyboski, 2002; Hartgerink et al., 2001). These self-assembled particles can 

have applications in many fields, such as chemical separations, biomedical, catalysis, drug 

delivery, and sensors (Zhang, 2012; James et al., 2014).  

Industrial nanoparticles, especially those made of metal, semiconductors, and synthetic 

compounds constitute a tiny portion but significant pollution source that can pose adverse 

environmental hazard (Buzea et al., 2007). Thus, increased attention has been paid to the 
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development of self-assembled nanoparticles obtained from natural renewable resources due to 

their inherent biodegradability and biocompatibility. Among these systems, the use of natural 

polysaccharides in developing nanoparticles has significantly increased (Zhang et al., 2011; 

Aumelas et al., 2007; Leonard et al., 2003). In one study, the aqueous self-assembly of the 

cellulose modified with chlorosulfuric acid was investigated using transmission electron 

microscopy (TEM) and dynamic laser scattering (DLS), and the results showed that the modified 

cellulose was capable of forming polymeric micelles in water with an average particle diameter 

ranging from 20 to 67 nm (Cheng et al., 2008). In another study, cellulose was catatonically 

modified with (2-hydroxypropyl trimethylammonium chloride (HPTAC) and self-organized into 

cationic micelles in distilled water with the average hydrodynamic radius of 320 - 430 nm (Song 

et al., 2011). In another investigation by Zhang and coworkers (2007) self-assembled 

nanoparticles based on oleoyl-chitosan with a mean diameter of 255.3 nm were produced. 

Although self-assembly would reduce the effectiveness and functionality of some polymers in 

solutions (Qian et al., 2014), the concept of self-assembly would be used to eliminate polymers 

from some systems (Salentinig and Schubert, 2017).   

Today, starch, chitosan, and cellulose are heavily used for other purposes worldwide, and their 

usage in producing new chemicals may not be an excellent option in future. Interestingly, other 

under-utilized chemicals, such as lignin, can be used for this purpose. Lignin is a natural polymer 

that currently has a very limited industrial use and available in a large quantity (Pouteauet al., 

2003; Zakzeski et al., 2010). The production of environmentally friendly lignin-based 

nanoparticles has been reported recently (Frangville et al., 2012; Gilca et al., 2015; Lievonen et 

al., 2016; Wurm and Weiss, 2014; Yiamsawas et al., 2014; Salentinig and Schubert, 2017). 

Lignin itself has tendency for agglomeration in solvents (Xiong et al., 2017). Frangville et al. 

(2012) reported the formation of nanoparticles by acidifying ethylene glycol solution containing 

lignin. In another work, the addition of water to acetylated wheat alkali lignin dissolved in 

tetrahydrofuran (THF) resulted in the formation of solid nano sized colloidal spheres (Qian et al., 

2014). The formation of sulfate lignin colloids was also exploited by Jiang et al. (2013) to 

produce lignin nanoparticles used for reinforcing natural rubber composites. However, it is not 

clear how modified semi natural large lignin polymers can participate in a self-assembly process. 

In the past, the production of semi natural kraft lignin polymers via polymerizing kraft lignin, as 

acrylamide, was reported (Wang et al., 2016). It was stated that the product can be used as 
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strength additives in papermaking, as well as flocculants and dispersants in the chemical industry 

(Rong et al., 2013; Wang et al., 2016; Fang et al., 2009). Despite promising performance, its self-

aggregation may generate nano-particles that have limited functionality. The first objective of 

this work was to study the self-assembly behavior of kraft lignin- acrylamide polymer in aqueous 

solutions.  

The mechanism of self-assembly of various polymeric materials have been studied in colloidal 

systems (Beysens and Narayanan, 1999; Tomilov et al., 2013; Cates and Tailleur, 2013; 

Furukawa and Tanaka, 2010). Charged polymers contain various functional groups such as 

carboxylic acid, hydroxyl groups, and amine. These groups can also interact with each other as a 

result of steric, electrostatic forces, van der Waals forces, hydrogen bonding, and π-π interactions 

to agglomerate in clusters (Palberg, 1997; James et al., 2014; Wang et al., 2016). In aqueous 

solutions, polymers may lose their functionality upon self-assembly as they form large clusters. 

Another objective of this work was to identify the mechanism of self-assembly of lignin-

acrylamide polymers in solutions. 

The molecular weight and charge density of the polymers and the concentration of ionic species 

present in solutions influence the self-assembly of the polymers in aqueous solutions (Macakova 

et al., 2007). For example, Fan and co-workers (2010) investigated a series of water-soluble 

triblock polymers of poly (ethylene oxide), and reported that the number of micelle aggregates 

increased with polymer’s molecular weight. The presence of salt can also affect self-assembly of 

polymers (Ozbas et al., 2004). For instance, Caplan et al. (2000) showed that self-assembly of 

oligopeptide was remarkably influenced by the ionic strength of the solution. Another objective 

of this study was to investigate how the molecular weight of lignin-acrylamide polymers affects 

its aggregation behavior in various degrees of salinity.  

In our previous chapter, we reported the production of kraft lignin – acrylamide (KAM) 

polymers (Hasan and Fatehi, 2018.). In this study, the self-assembly of KAM polymers in 

aqueous solutions was investigated in the presence or absence of salt and the colloidal stability of 

the system containing KAM was analyzed by a vertical scan analyzer. Also, Quartz crystal 

microbalance with dissipation (QCM-D) was employed to investigate the adsorption 

characteristics and self-assembly of KAM polymers. 
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9.3 Materials and Methods 

9.3.1 Materials 
Softwood kraft lignin was produced via LignoForceTM technology of FPInnovations in Thunder 

Bay, ON (Kouisni et al., 2012). Acrylamide (99.0 %), potassium persulfate (K2S2O8) (analytical 

grades NaOH, H2SO4 98%) and NaCl (all analytical grades) were all obtained from Sigma-

Aldrich company. Cellulose acetate dialysis membrane (molar mass cut off of 1,000 g/mol) was 

obtained from Spectrum Labs. Inc., USA. All chemicals were applied without further 

purification. Ethanol (95 vol. %) was received from Fisher Scientific company. 

Polydiallyldimethyl ammonium chloride (PDADMAC) with the molar mass of 100,000–200,000 

g/mol was obtained from Sigma Aldrich Company and diluted to 0.005 M prior to use. 

9.3.2 Polymerization of lignin 
The free radical polymerization of KL was carried out in a 250 mL three-neck round-bottom 

glass flask under the reaction conditions listed in Table 9.1. First, a required amount of KL was 

dissolved in 40 mL of deionized water while stirring at 300 rpm. Predetermined quantities of AM 

were added to the flask and stirred for 30 min. The pH of the solution was adjusted using 0.1 M 

sulfuric acid. The reaction solution was continuously purged with nitrogen to remove any 

residual oxygen at room temperature for 30 min. Subsequently, potassium persulfate was added 

as an initiator to the system and the reaction solution was purged for another 5 min. The 

polymerization was processed by placing the flask in a preheated water bath after adjusting the 

pH of the system. The reaction was allowed to proceed for the desired time intervals under a 

continuous nitrogen supply. After the completion of the reaction, the solution was cooled to 

room temperature by immersing the flask in tap water for 20 min. The kraft lignin-acrylamide 

polymer was precipitated by adjusting the solution pH to 1.5 using sulfuric acid. Then, the 

sample was centrifuged at 3500 rpm for 10 min using a Sorvall ST 16 laboratory centrifuge 

(Thermo Fisher) in order to separate lignin-acrylamide polymers from homopolymers 

(polyacrylamide, PAM) and unreacted acrylamide monomers. This precipitation/centrifugation 

process was repeated three times, and the lignin-acrylamide polymers were then collected. The 

precipitated lignin-acrylamide polymers were mixed with 200 mL of deionized water. After 

adjusting the pH of the solution to 7.0 using a 1M NaOH solution, the sample was dialyzed using 

the dialysis membrane for 48 h in order to remove impurities (e.g. inorganic salts and monomers) 
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from the polymer solution. The deionized water used for dialysis was changed every 12 h for 2 

days. After dialysis, the solution containing lignin-acrylamide (lignin-AM) polymer was dried at 

105 °C, and the dried sample was kept for further analysis. The procedure stated above was 

repeated under different conditions stated in Table 9.1 to form lignin polymers with different 

properties. This lignin-acrylamide polymer is denoted as KAM, while unmodified kraft lignin is 

denoted as KL in this work. 

 

9.3.3 Solubility and charge density determination  
To measure the solubility of the KAM, 0.2 g of the lignin polymers was added to 20 mL of 

deionized water by stirring at 100 rpm and 30 °C for 1 h in a water bath shaker (Innova 3100, 

Brunswick Scientific, Edison, NJ, USA). Then, the samples were centrifuged at 1000 rpm for 5 

min. The supernatants were collected and used for analyzing the charge density and solubility of 

the polymers. The concentration of the polymers in the supernatants was determined by drying the 

supernatants at 105 °C, and its solubility was determined based on the concentration of the 

polymers in the supernatants and the initial amount of the polymer (0.2 g). The charge density of 

the polymers was measured by a particle charge detector, Mütek PCD 04 titrator (Herrsching, 

Germany) with a PDADMAC solution (0.0050 M) as stated previously (Wang et al., 2015). Three 

repeats were carried out, and the average values were reported.  

9.3.4 Molecular weight analysis 
About 5 mg sample of dried KAM polymers were dissolved in 10 mL of 5.0 wt.% acetic acid 

solution by stirring at 600 rpm for 48 h and 35 °C, and the solution was then filtered with a 13 

mm diameter nylon filter (pore size 0.2 µm). The filtered solutions were used for molecular 

weight analysis, which was carried out using GPC, ViscotekGPCmax, Malvern, UK, with 

viscometer and UV detectors. PolyAnalytic, A206 and A203 columns were used, and a 0.1 M of 

NaNO3 solution was used as solvent and eluent with the flow rate of 0.7 mL/min. The column 

temperature was set to 35 °C. Poly ethylene oxide was used as standard in GPC analysis. 
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9.3.5 Elemental analysis 
The elemental analysis was performed for KL and KAM polymers using an elemental analyzer, 

Elementar Vario EL Cube, following the combustion method (Jahan et al., 2012). The samples 

were first dried in an oven at 105 °C overnight to remove any moisture prior to analysis. 

Approximately, 2 mg of dried samples were transferred into the carousel chamber of the 

elemental analyzer and combusted at 1200 °C to reduce the generated gasses to analyze carbon, 

hydrogen, oxygen and nitrogen contents of the samples. 

9.3.6 Zeta potential analysis 
The zeta potential analysis of kaolin particles was determined using a NanoBrook Zeta PALS 

(Brookhaven Instruments Corp, USA). In this study, 0.5 g/L of KAM polymers were prepared in 

the absence and presence of NaCl (0.2 M) and stirred at 300 rpm and 25 °C for 30 min at pH 7. 

After mixing, their zeta potential measurements were carried out at room temperature at a constant 

electric field (8.4 V/cm). The experiments were carried out three times and the average values 

were reported in this study. 

9.3.7 Hydrodynamic diameter  
The hydrodynamic radius of KAM polymers was measured using a static light scattering 

analyzer (BI-200SM Brookhaven Instruments Corp., USA). The light source was a power solid 

state laser with a maximum power of 35 mW and a wavelength of 637 nm. The scattering angle 

was set at 90°. In this set of experiments, 0.5 g/L of KAM polymers were prepared in the 

absence and presence (0.2 M) of NaCl and stirred for 30 min at pH 7. The samples were kept at 

room temperature for 24 h to reach equilibrium (Kong et al, 2015). Subsequently, 20 mL of the 

polymer solutions were filtered with a 0.22 μm disposable syringe filters and kept in glass 

bottles. The samples were gently shaken prior to measurement. The self-assembly of KAM 

particles in aqueous solutions was analyzed at desired time intervals. The measurements were 

conducted in triplicate. The pH of the solution was adjusted using 0.1 M sulfuric acid.  
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9.3.8 Sedimentation analysis  
The sedimentation of KAM aqueous solution was assessed using a vertical scan analyzer, 

Turbiscan Lab Expert, Formulaction, France. This method has been applied for studying the 

stability of waste and mineral dispersions (Jamrozik et al., 2014, Vie et al., 2007). In this analysis, 

two synchronous optical sensors receive the light transmitted through and the light that is 

backscattered by the sample. One sensor is placed at an angle of 180° relative to the incident light 

beam and measures the transmitted light, while the other is placed at an angle of 45° to the light 

source to measure backscattering intensity. The backscattering signals generated by the sample 

were compared with the standard silicon oil, which was used for calibrating the instrument 

(Mengual et al., 1999). In this experiment, KAM solutions (0.5 g/L) were sonicated in an 

ultrasound bath (25 kHz) for 15 min at 25 °C, and then transferred to a 20 mL cylindrical tube to 

analyze for 12 min. The samples were vertically scanned at 880 nm wavelength every 2 sec at 30 

ºC and the results were measured using Turbisoft 2.1 software. 

Based on the data collected, the destabilization kinetics of the samples was determined using 

Turbisoft 2.1 software, which provides evidence for settling of particles in the sample cells. 

Equation 9.1 presents the formula for determining the destabilization index of KAM in the 

samples: 

Destablization index = ∑ ∑ ǀ ℎ 𝑠𝑐𝑎𝑛𝑖(ℎ)−𝑠𝑐𝑎𝑛𝑖−1 (ℎ)ǀ

𝐻𝑖                   (9.1) 

 

where scani (h) and scani-1(h) are the transmission signals for two consecutive time intervals at a 

given height and H is the total height of the sample. The sediment thickness at the bottom of the 

cells was obtained based on the backscattering data received from the precipitated layer at the 

bottom of the cells. 

 

9.3.9 QCM-D measurements 
The self-assembly of lignin polymers was assessed by a Quartz crystalline microbalance with 

dissipation (QCM)-D. The principle of this instrument was comprehensively discussed elsewhere 

(Rodahl et al., 1995; Alagha et al., 2013). The quartz crystal resonator with a fundamental 

resonant frequency of 5 MHz was mounted in a fluid cell with one side exposed to the solution. 
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The cell was mounted on a Peltier element, which provided an accurate temperature control 

(±0.02 °C). Experiments were run at 23 °C and pH 7. The changes in frequency and dissipation 

were measured simultaneously at the resonance frequency of 5MHz and at the overtones of 5, 

15, 25, 35, 45, 55, and 75 MHz. To analyze the self-assembly of KAM, the gold QCM sensors 

were coated with KAM solutions (0.05g/L) using a spin coater for 2 min at 1000 rpm and then 

gently dried with nitrogen gas. The adsorption of KAM on the sensors coated with the same 

KAM polymers was studied at 23 °C with a flow rate of 0.1 ml/min for 15 min. Afterword, the 

sensor layers were rinsed with excess of Milli-Q water for 20 min. In another set of experiments, 

the above-mentioned analysis was repeated in the presence of 0.2 M NaCl solution.  

In a QCM-D system, the dissipation of sensors’s energy, D, which results from the adsorption of 

a viscous or loose layer, was also measured (Long et al., 2013). This dissipation energy is given 

by Equation 9.2: 

D = 𝐸𝑑

2𝜋𝐸𝑠
                                (9.2) 

 

where Ed is the energy dissipated during one oscillation and Es is the energy stored in the 

oscillating system. The voltage applied to the QCM is suspended and the decay of the amplitude 

of the crystal is measured as a function of time. In case of very rigid polymer, no change in 

dissipation will be observed as a function of adsorption. However, for an adsorbed viscoelastic 

layer, the energy dissipated through the adsorbed layer will increase with time. Therefore, by 

observing the change in dissipation (D), a qualitative measure of the relative stiffness or 

conformation of an adsorbed layer may be determined. Based on Voight model, provided by Q-

tools software in the QCM-D instrument, it is possible to determine the viscous and shear 

modulus components of the adsorbed layer (Alagha et al., 2013). Voight model was used for 

determining the adsorption of KAM. The frequency and dissipation energy loss were considered 

in the modeling analysis, while the adsorbed layer was assumed to be uniform in both thickness 

and density. In this work, third overtone (15 MHz) was used to interpret the adsorption results 

due to its stable response (Saarinen et al., 2009).  
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9.4 Results and Discussion 

9.4.1 Properties of KAM 
The KL and AM were synthetized to produce KAM with different molecular weights (Table 

9.1). The increase in the nitrogen content confirmed the grafting of AM onto the lignin 

backbone, which was well aligned with the change in the molecular weight of KAM1and KAM2. 

The solubility of unmodified KL was found to be 0.05 g/L; whereas, KAM1and KAM2 were 

approximately 4.5 g/L soluble in water. It is also seen that the anionic charge densities of the 

KAM backbone increased with increasing its molecular weight.  

 
Table 9.1. Reaction conditions and properties of KAMs 

Conditions KL KAM1 KAM2 

Temperature, °C - 90 80 

Time, h  - 5 2 

KL, mol  - 0.016 0.016 

AM, mol  - 0.014 0.042 

pH  - 4 5 

Initiator, mmol - 0.11 0.11 
Anionic charge 
density, meq/g 0.21 0.82 2.10 

Solubility, g/L 0.05 4.5 4.7 

Mw, g/mol 17, 890 24, 590 96,992 

Mn, g/mol 5,150 23,129 69,716 

Nitrogen, % 0.03 1.57 6.2 
 

9.4.2 Hydrodynamic diameter of KAM 
The change in the hydrodynamic diameter of KAM polymer in the presence or absence of salt in 

aqueous solution is shown in Figure 9.1 as a function of time at pH 7. As observed, the 

hydrodynamic diameter of KAM increased gradually with time, regardless of salt. This time 

dependence evolution of the hydrodynamic diameter revealed that individual polymers 

agglomerated in the aqueous solution and generated larger clusters, regardless of salt. The 
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clusters of KAM2 were larger (240 to 386 nm) than those of KAM1 (120 to 249 nm). The larger 

polymers may be engaged in hydrogen bonding more greatly than the smaller ones due to their 

more carboxylate and hydroxyl groups. Therefore, polymers with the high molecular weight 

(e.g., KAM2) has generally higher tendency to aggregate, leading to the formation of large 

clusters.  

Salts are known to screen charges of electrolytes, reduce their interactions and self-assembly of 

the charged polymers. The hydrodynamic size of KAM1 and KAM2 polymers were smaller in 

the presence of salt than its absence (Figure 9.1b). This smaller hydrodynamic size for KAM1 

and KAM2 is generally attributed to their reduced interactions. Another reason for the decrease 

in the hydrodynamic diameter of KAM can be the reduction in the repulsion force between the 

anionic charged groups within the KAM structures due to counterion screening (Yoshikawa and 

Lewis, 2008). Previously, NaCl in aan queous solution reduced the electrostatic repulsion 

between the –COOˉ groups of PAM and generated the PAM with a collapsed coil structure 

(Chen et al., 2012; Mishra et al, 2014). By elapsing time, KAM2 seemed to have more growth in 

the hydrodynamic size as compared to KAM1. This noticeable increase in hydrodynamic size is 

ascribed to its higher molecular weight and thus higher affinity for agglomeration.  
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Figure 9.1. Effect of time on the hydrodynamic diameter of KAM at (a) no salt, (b) 0.2M NaCl; 

conducted under the conditions at pH 7, 25 °C in aqueous solution. 
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9.4.3 Sedimentation analysis 
Figure 9.2 shows the destabilization index of KAM as a function of time. It is observable that the 

destablization index of the samples increased more significantly for KAM2 and the change was 

more dramatic in the presence of salt. Figure 9.3 shows the thickness of the precipitated KAM 

agglomerates as a function of time. Clearly, the particles generated a thicker sediment in the 

presence of salt. Considering the Hy of the particles and their sedimentation (Figures 9.1 and 

9.3), it can be understood that the self-assembly of KAM was more intense in the absence of salt, 

but the formed clusters were stable in the solution. In the presence of salt, although smaller flocs 

were formed, they precipitated from the system remarkably. The carboxylate (–COOˉ) groups on 

the backbone of KAM polymer increased the overall negative charge density of KAM (Table 

9.1); inducing more repulsion between the large KAM polymers and their clusters and thus 

hampered the sedimentation of the particles. This is in agreement with the higher negative zeta 

potential value of KAM solution in the absence of salt (Table 9.3). 
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Figure 9.2. Destabilization of KAM polymers as function of time in the (a) absence and b) 

presence of 0.2M NaCl salt at pH 7 and 25 °C.  
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Figure 9.3. Effect of time on the settling of KAM in the presence of (a) no salt and (b) 0.2M 

NaCl salt; conducted under the conditions of pH 7, 25 °C in aqueous solution. 

9.4.4 Adsorption kinetics 

The adsorption behavior of KAM polymers on the coated QCM sensor is shown as a function of 

time in the absence and presence of salt (0.2 M NaCl concentration) in Figure 9.4. The decrease 

in the frequency reflects the adsorption of KAM, and the increase in the dissipation reveals the 

increase in the viscoelasticity of the adsorbed KAM layer. Slightly higher values of dissipation 

and lower frequency were obtained for KAM2 (6.5, -18.8 MHz) than for KAM1 (6.0, -29.5 

MHz), which indicates more adsorption mass and creation of a soft and more viscoelastic film 

for KAM2. As KAM2 had more charged groups and molecular weight, it interacted more 

dramatically with the adsorbed KAM2 (Salmi et al., 2009). The higher adsorbed mass and 

thickness of KAM2 (80 mg/m2, 30 nm) than those of KAM1 (65 mg/m2, 18 nm) supported the 

stronger interaction and self-assembly of KAM, and the relative results can be found in Figure 

9.1 (Merta et al., 2004; Long et al., 2013).    
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Generally, the dissipation and frequency were smaller for KAM2 (3.6, -8.3 MHz) and KAM1 

(2.18, -7.19 MHz) in the presence of salt than its absence (Figure 9.4). These results indicated 

that the interaction of KAM was hampered in the presence of salt. This was accompanied by the 

decrease in the adsorption and thickness for KAM2 (45 mg/m2, 21 nm) and KAM1 (23 mg/m2, 

10 nm) in the presence of salt (Table 9.2). Although the adsorption of KAMs was lower in the 

presence of salt, the interaction of KAM was sufficiently high for self- assembly of KAM, as 

evidenced in Figures 9.1 and 9.4. As the viscoelastic properties of KAM2 were higher than 

KAM1 in the absence and presence of salt, it can be concluded that KAM2 generated a looser 

structure upon self-assembling (Morris et al, 2002; Ali and Mahmud, 2015). In the presence of 

salt, more coiled conformation could be generated due to the reduced repulsion between the 

charged polymer segments. Therefore, more KAM molecules can fit onto the surface, causing 

the change in frequency and dissipation to increase. 

After the adsorption reached a saturation plateau, rinsing with water resulted in a desorption, that 

is the removal of adsorbed mass and reduction in dissipation. This desorption was attributed to 

the weak binding of KAM particles in the presence of strong electrostatic repulsion between the 

negatively charged KAM polymer and the negatively charged KAM polymers coated surface 

(Alagha et al., 2013). A sudden spike in the dissipation was associated with a strong drop in 

frequency; implying an increase in mass adsorption at the experimental time of 25 min (Figure 

9.4a). This increase was due to the replacement and adsorption of water on KAM adsorbed layer. 

In other words, rinsing of the system with water led to desorption of a part of adsorbed KAM, 

and swelling of the remaining adsorbed KAM. This behavior was observed in a study on the 

adsorption of SiO2-nanoparticles on Hexamethyldisiloxane (HMDSO) oxygen plasma and 

related to capillary force increase as rinsing with water induced the growth of capillary force 

(Torun et al., 2014). On the other hand, the KAM in the presence of salt exhibited a much 

smooth layer with a linear increase in dissipation with no transitional sharp dissipation signal; 

indicating a drop in the capillary growth and contact force between the particles (Torun et al., 

2014). 
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Figure 9.4.  Frequency and dissipation of KAM as function of time in aqueous solution with (a, 

b) no NaCl, (b, c) 0.2 M NaCl; using Voigt model under the conditions of f0 =5 MHz, overtone 

15 MHz. 
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Table 9.2. Parameters used for evaluation of KAM adsorption 

  
NaCl 

concentration 
(M) 

Mass, 
mg/m2 

Thickness, 
nm 

KAM1 0 65 18 
0.2 23 10 

KAM2 
0 80 30 

0.2 45 21 
   

 
 
 
 
Table 9.3. The zeta potential of KAM polymers in solutions 

          Polymer 
NaCl concentration 
(mol/L) Zeta potential (mV) 

KAM1 
0 -12 

0.2 -4 

KAM2 
0 -20 

0.2 -16 
 
 
 
9.5 Conclusions 
The self-assembly of kraft lignin-acrylamide polymers aqueous solutions was studied in this 

work. It was demonstrated that the self-assembly of the polymer was enhanced with time. The 

larger KAM2 was aggregated more effectively than the smaller KAM1, both in the absence 

(240-386 nm) and presence of salt (35-165 nm). The sediment of KAM was more intense in the 

presence of salt than its absence due to charge screening effect of salt. In addition, the clusters 

made of KAM2 had faster settling and generated thicker sediment either in the presence or 

absence of salt. The Voigt model was applied to explore the viscoelastic properties of KAM 

polymer layer adsorbed on the coated KAM surface. It was discovered that KAM2 generated 

more viscoelastic layer than did KAM1, which implied that KAM2 generated more loose and 

porous structure. Therefore, the self-assembly of KAM2 was more intense than KAM1 in the 

presence and absence of salt, and the clusters of KAM2 had more loose and porous structures. 

Despite lower tendency for aggregation, salt facilitated the settlement of the formed aggregates. 
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Chapter 10: Conclusions and recommendations for future 

work 

10.1 Conclusions 
The graft copolymer was synthesized by graft copolymerization of kraft lignin, acrylamide (AM) 

and (2-methacryloyloxyethyl) trimethyl ammonium chloride (DMC). The properties of the 

copolymers were characterized by means of NMR, FTIR, elemental, charge density, and 

molecular weight analyses as well as TGA. The effects of the reaction conditions on the graft 

copolymerization were investigated via considering one factor at a time approach. The 

copolymers with the optimal reaction conditions were produced at an initiator dosage of 0.11 

mmol, 2 h of reaction, pH 4.0, 80 °C, and AM/DMC/KL molar ratio of 0.028 /0.024/0.011. The 

charge density and solubility of the resulting copolymer (KAD) were 1.76 meq/g and 50 wt. %, 

respectively, with a solubility in 10 g/L solution. 

The factors influencing the charge density and solubility of KAD copolymers, such as monomer 

concentration, reaction temperature, time, and pH were systematically investigated using the 

orthogonal experiment design (i.e., multifactor at a time). The optimal reaction conditions for 

KAD copolymer production were 0.011 mol of KL, 0.014 mol of AM, 0.024 mol of DMC, pH 3, 

3 h, and 80 °C, which are slightly different from the conditions obtained via considering one-

factor-at-a- time approach. Under optimized conditions, the copolymer had a charge density of 

2.13 meq/g and solubility of 56% in a 10 g/L aqueous solution.  

The KAD copolymers with different charge densities and similar molecular weights were 

synthesized via copolymerizing kraft lignin, AM and DMC, under different conditions. It was 

observed that the charge density of KAD significantly affected the performance of KAD in the 

flocculation of kaolin and bentonite suspensions in that the higher charged copolymer flocculated 

the clay suspensions more effectively. It was revealed that the higher charged KAD adsorbed 

more than the lower charged one, influencing the flocculation efficiency. KAD1 with a higher 

charge density showed a higher adsorption on kaolin (2.58 mg/g) and bentonite particles (1.83 

mg/g) at 4 mg/g of dosage. The use of higher charge density KAD resulted in higher optimum 

removal rates, larger flocs, in general clearer supernatants (after polymer treatment). This study 
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showed that by adding 4 mg/g of higher molecular KAD1, having the charge density of 2.13 

meq/g and molecular weight of 185,900 g/mol, the maximum relative turbidity of 0.53 and 0.2 

was achieved for kaolin and bentonite suspensions, respectively.  

The KAD copolymers with different molecular weights, but with similar charge densities, were 

produced and their effectiveness as flocculants for clay suspensions was investigated. It was 

noticed that the KAD with a higher molecular weight had a higher adsorption on clay particles 

than the one with smaller molecular weight due to its bridging capacity that generated larger and 

bulkier flocs. The higher molecular KAD reached the higher adsorption of 1.4 and 1.08 mg/g at 

very low dosage of 8 mg/g on kaolin and bentonite, respectively. The flocculation properties of 

kaolin and bentonite suspensions depended on the KAD dosage and pH, and also varied with the 

adsorbed amount of KAD on kaolin and bentonite suspensions. The growth, breakage, and re-

growth of the flocs generated from the kaolin and bentonite suspensions were assessed for two 

different KADs. This study showed that higher molecular weight KAD was able to produce 

stronger flocs with better recovery factors (i.e., the regrowth after breakage) in the kaolin 

suspension than bentonite suspension due to polymer bridging and electrostatic patch effects.  

 
Kraft lignin was polymerized with DMC to produce kraft lignin-DMC (KLD). The effects of 

molecular weight and charge density of KLDs on their adsorption and flocculation performance 

were evaluated. The flocculation of kaolin particles was promoted by higher molecular weight 

lignin polymer. Generally, the low molecular weight ones acted as flocculants via mainly charge 

neutralization, while those with higher molecular weights acted as flocculants via bridging 

mechanism. Also, the higher molecular weight polymers generated larger flocs with a higher 

settling rates; while the low molecular weight ones induced flocs with more compact structure. 

Moreover, the separation behavior in centrifugal field of initially monodisperse kaolin in 

aqueous solutions was investigated and compared with the results generated by the vertical size 

analyzer for all of the KLDs. The addition of KLD resulted in change from monodisperse to 

polydisperse settling due to agglomeration/flocculation. The results showed that the measured 

KLD sedimentation velocities via the analytical centrifugation were different from the highly 

dense spherical particles predicted by the Stokes’ law.  

The polymerization of kraft lignin and acrylamide (AM) was conducted to produce kraft lignin-

acrylamide (KAM) polymers with different molecular weights and charge densities. The results 
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showed that the KAM's dosage, molar mass, and charge density had great impacts on the 

stabilization of clay particles at different pHs. The presence of NaCl salts had a significant effect 

on polymer adsorption and stability of clay suspension. Increasing the salt concentration 

enhanced the adsorption. The pH increase reduced the adsorption level but increased the relative 

turbidity of clay suspension. The surface tension and contact angle studies demonstrated that the 

wettability of KAM polymer increased by increasing the pH of the solution. Kinetic studies also 

confirmed the effect of both charge density and molecular weight of KAM on kaolin dispersions. 

KAM was found to be more effective in stabilizing kaolin dispersions than just a shear rate 

increase.  

Dynamic light scattering method was employed to monitor the self-assembly of kraft lignin-

acrylamide (KAM) in solutions to understand the kinetics of growth, aggregation, and surface 

interactions of fine particles. The KAM with a larger molecular weight had more tendency for 

self-aggregation, which led to a larger self-assembly of KAM process. A larger hydrodynamic 

size of 240-386 nm was observed for the higher molecular weight KAM in the absence of salt, 

while in the presence of salt its hydrodynamic size reduced to 35-165 nm. In addition, KAM 

particles showed greater settling behavior in the presence or absence of salt. Moreover, quartz 

crystal microbalance with dissipation (QCM-D) was employed to monitor the self-assembly 

behavior of the adsorbed KAM onto the solid surface coated with KAM. The investigation of the 

KAM film formation using QCM-D supported the stronger interaction and self-assembly with 

higher molecular weight KAM. The viscoelastic properties of KAM found to be higher for KAM 

with larger size in the absence and presence of salt.  

It was discovered that kraft lignin can be successfully modified via copolymerization of cationic 

and nonionic monomers in aqouous systems to produce flocculants and dispersants for 

wastewater treatment. This study proved that the molecular weight and charge density of lignin-

based polymers has great impacts on their flocculation performance. This study also confirmed 

that the flocculant characteristics greatly affect the properties of induced flocs and their settling 

performance. Moreover, this study demonstrated that the effectiveness of the lignin-based 

polymers as dispersants and flocculants as well as their self assembly behavior, was greatly 

influenced by their solution characteristics.  
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10.2 Future work 
The structure of lignin polymers should be discovered in detail. The impact of reaction 

parameters on the structure of the lignin polymers should also be investigated. The present work 

has focused mainly on the flocculation of kaolin and bentonite suspensions via using lignin 

polymers. The changes in the molecular weight and charge density of cationic lignin polymers 

and their influence on the clay suspension’s stability were also investigated. To gain further 

knowledge, the flocculation kinetic and floc's characteristics in different mineral suspensions 

should be studied. Correlations between the characteristics of lignin polymers and their 

performance should be studied more comprehensively and for lignin polymers generated with 

different charged monomers. Furthermore, the filtration and sedimentation efficiencies of 

flocculation and dispersion systems containing lignin polymers should be evaluated in detail. 
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Chapter 11: Appendix  

11.1 Optimized production of kraft lignin-p (DMC) via Taguchi 

method 
 
 

A. 1. The Taguchi orthogonal parameters and levels (L16) and the responses. 
 

 

 

Run Temp, °C Time, h 
DMC, 
mol pH KL, mol 

Charge, 
meq/g 

Solubility, 
wt.% 

1 90 3 0.0193 2 0.0277 2.45 56 

2 80 3 0.0241 4 0.0111 3.19 67 

3 70 2 0.0144 4 0.0277 -0.84 30 

4 60 2 0.0096 2 0.0111 -0.36 42 

5 60 3 0.0144 3 0.0166 -0.66 48 

6 70 3 0.0096 5 0.0222 -0.98 22 

7 70 5 0.0193 3 0.0111 2.93 56 

8 70 4 0.0241 2 0.0166 2.83 44 

9 90 2 0.0241 3 0.0222 2.58 38 

10 60 4 0.0193 4 0.0222 1.25 30 

11 90 5 0.0096 4 0.0166 1.52 40 

12 90 4 0.0144 5 0.0111 2.5 42 

13 80 5 0.0144 2 0.0222 2.46 28 

14 80 2 0.0193 5 0.0166 2.51 41 

15 80 4 0.0096 3 0.0277 0.74 30 

16 60 5 0.0241 5 0.0277 -0.93 40 

Optimum 80 3 0.0243 4 0.0222 3.66 66 
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A. 2. ANOVA analysis for charge density and solubility of cationic KLD 
Factor Sum of squares Mean Square F-Value 

 

Charge 

density, 

meq/g 

Solubility, 

wt.% 

Charge 

density, 

meq/g Solubility, wt.% Charge density, meq/g Solubility, wt.% 

Model 34.12 1895.75 3.79 157.98 5.28 10.37 

Temperature, 

°C 

1.64 16.19 0.58 5.40 0.19 0.018 

Time, h 2876.5 73.69 4.1 24.56 35.29 1.61 

DMC, mol 12.1 408.69 1.49 136.23 5.57 8.95 

pH 12.57 153.69 0.86 419.90 0.23 3.36 

KL, mol 4.44 1259.70 1.50 15.23 2.02 27.57 

Standard deviation Coefficient of variation,% R2 Predicted R2 Adjusted R2 

Charge 

density, meq/g 

Solubility, 

wt.% 

Charge 

density, 

meq/g 

Solubility, 

wt.% 

Charge 

density, 

meq/g 

Solubility, 

wt.% 

Charge 

density, 

meq/g 

Solubility, 

wt.% 

Charge 

density, 

meq/g 

Solubility, 

wt.% 

0.85 3.90 62.47 9.93 0.887 0.9754 0.71 0.3304 0.2199 0.8872 

 

A. 3. Model coefficients estimated by regression analysis. 

Charge density, meq/g Solubility, wt.% 

Term Coefficient 
Estimate 

Standard 95% Cl 95% Cl Coefficient 
Estimate 

Standard 95% Cl   95% Cl 

Error Low High Error Low High 

Intercept 1.35625 0.2124032 0.8365182 1.8759818 39.3125 0.9756141 36.207658 42.417342 

A[1] -1.59375 0.3678931 -2.493951 -0.693548 -1.3125 1.6898132 -6.690244 4.0652446 

A[2] -0.29875 0.3678931 -1.198951 0.6014519 2.4375 1.6898132 -2.940244 7.8152446 

A[3] 0.86875 0.3678931 -0.031451 1.7689519 -2.8125 1.6898132 -8.190244 2.5652446 

B[1] -1.18625 0.3678931 -2.086451 -0.286048 -5.8125 1.6898132 -11.19024 -0.434755 
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B[2] -0.41875 0.3678931 -1.318951 0.4814519 -2.3125 1.6898132 -7.690244 3.0652446 

B[3] 1.04875 0.3678931 0.1485481 1.9489519 0.1875 1.6898132 -5.190244 5.5652446 

D[1] 0.65125 0.3678931 -0.248951 1.5514519 -3.3125 1.6898132 -8.690244 2.0652446 

D[2] 0.19125 0.3678931 -0.708951 1.0914519 3.6875 1.6898132 -1.690244 9.0652446 

D[3] 0.65125 0.3678931 -0.928951 0.8714519 2.4375 1.6898132 -2.940244 7.8152446 

E[1] 0.19125 0.3989911 -0.714379 1.2382126 12.4375 1.6898132 7.0597554 17.815245 

E[2] -0.02875 0.4074723 -0.698238 1.2958594 4.1875 1.6898132 -1.190244 9.5652446 

E[3] -0.02875 0.4159536 -0.682097 1.3535063 -9.8125 1.6898132 -15.19024 -4.434755 
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A. 1. Relationship between the predicted values and experimental values for (a) charge density 

and (b) solubility based on Taguchi orthogonal design. 
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11.2 Optimized production of kraft lignin-p (AM) via Taguchi 

method 
 

A. 4. The Taguchi orthogonal parameters and levels (L16) and the responses. 

RUN 
Temp, 

°C 
 

Time, h pH   
AM, 
mol 

KL, 
mol 

Solubility, 
g/L N % 

1 60 4 4 0.042 0.022 8.8 2.63 

2 70 5 3 0.042 0.011 5.5 4.85 

3 60 2 2 0.014 0.011 4.5 3.8 

4 90 5 4 0.014 0.016 4.5 1.57 

5 90 3 2 0.042 0.027 5.3 2.24 

6 80 5 2 0.028 0.022 4.7 2.16 

7 80 4 3 0.014 0.027 6.9 1.18 

8 90 4 5 0.028 0.011 7.5 2.9 

9 70 4 2 0.056 0.016 9.3 4.72 

10 60 5 5 0.056 0.027 5.5 2.52 

11 60 3 3 0.028 0.016 5.6 1.73 

12 70 3 5 0.014 0.022 5.5 1.2 

13 90 2 3 0.056 0.022 3.4 3.56 

14 70 2 4 0.028 0.027 6.6 1.44 

15 80 3 4 0.056 0.011 6.9 4.6 

16 80 2 5 0.028 0.016 3.9 4.3 

Optimum 80 2 5 0.042 0.016 4.7 6.2 
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A. 5. ANOVA analysis for nitrogen content and solubility of KAM 
Factor Sum of squares Mean Square F-Value 

 

Solubility, 

g/L N % 

Solubility, 

g/L N % Solubility, g/L N % 

Model 38.095 33.79 3.176 2.82 11.67 18.37 

Temperature, 

°C 
6.335 2.43 2.11 0.81 7.77 5.22 

Time, h 28.765 4.44 9.58 1.48 35.29 9.57 

AM, mol 14.65 15.09 0.48 5.03 1.8 32.49 

pH 1.53 11.83 0.51 3.94 1.88 25.48 

KL, mol 4.49 9.7 1.5 5.23 0.12 7.57 

Standard deviation Coefficient of variation, % R2 Predicted R2 Adjusted R2 

Solubility, g/L N % 

Solubility, 

g/L N % 

Solubility, 

g/L N % 

Solubility, 

g/L N % 

Solubility, 

g/L N % 

0.521 0.39 8.95 13.28 0.97 0.9854 0.97 0.9804 0.8999 0.9372 

 

A. 6. Model coefficients estimated by regression analysis. 

Solubility, g/L N % 

Term Coefficient 
Estimate 

Standard 95% Cl 95% Cl Coefficient 
Estimate 

Standard 95% Cl   95% Cl 

Error Low High Error Low High 

Intercept 5.85 0.13 5.4.1031 6.296863 2.9625 0.0983669 2.6494524 3.2755476 

A[1] 0.275 0.23 -0.4432576 0.9325769 -0.2925 0.1703764 -0.8347143 0.2497143 

A[2] 0.9 0.23 0.1817423 1.682577 0.09 0.1703764 -0.4522143 0.6322143 

A[3] -0.525 0.23 -1.232577 0.935769 0.5975 0.1703764 0.0552857 1.1397143 

B[1] -1.025 0.23 -1.7432577 -0.374231 0.7875 0.1703764 0.2452857 1.3297143 

B[2] -0.5 0.23 -1.282577 0.225769 -0.52 0.1703764 -1.0622143 0.0222143 

B[3] 0.23 0.23 1.517423 3.082577 -0.4375 0.1703764 -0.9797143 0.1047143 

D[1] -0.475 0.23 -1.132577 0.2325769 -0.6925 0.1703764 -1.2347143 -0.1502857 
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D[2] 0.275 0.23 -0.4325769 0.9325769 -1.2125 0.1703764 -1.7547143 -0.6702857 

D[3] 0.25 0.23 -0.4825769 0.9825769 1.0175 0.1703764 0.4752857 1.5597143 

E[1] 0.125 0.23 - 0.5325769 0.8325769 0.7425 0.1703764 0.2002857 1.2847143 

E[2] -0.475 0.23 -1.132577 0.2325769 0.925 0.1703764 0.3827857 1.4672143 

E[3] 0.375 0.23 -0.325769 1.032577 -0.55 0.1703764 -1.0922143 -0.0077857 
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A. 2. Relationship between the predicted values and experimental values for (a) solubility and (b) 

nitrogen based on Taguchi orthogonal design. 

 

 


