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Abstract

With growing number of complex and slender structures worldwide, long-term struc-

tural health monitoring (SHM) has been intensively pursued to retrofit and control

these structures under extreme climatic events. Modern sensing technology including

wireless sensors and high quality data acquisitions have improved the capability of

SHM where a relatively enormous amount of data could be measured remotely and

sent wirelessly for a longer period of time. Unlike wired vibration sensors, wireless

sensors are inexpensive and easier to install with less labour-intensive process, thereby

leading to a significant cost-saving to the infrastructure owner. However, the modern

sensing technology and remote data acquisition has some several limitations due to

their limited bandwidth, time synchronization and inadequate sampling issues. The

large amount of data collected from the structural systems often causes missing data,

network jam or packet loss while transmitting the big data.

In this research, the theory of compressive sampling (CS) is implemented as a

promising data compression technique that can recover undersampled vibration sig-

nals of dynamical systems, thereby reducing overall burden of analyzing big data in

SHM. The l1-norm minimization (LNM) and discrete cosine transform (DCT) are

exploited to perform data compression and enhance data recovery of the compressed

big data. A novel time-frequency blind source separation is integrated with the data

compression technique to evaluate the accuracy of the proposed method in modal

identification. The results of the proposed data compression techniques are verified

using a suite of numerical, experimental and full-scale studies. The results reveal that

xii



DCT could be considered as a powerful data compression tool even for the vibration

data containing damage signatures, low energy modes and low signal-to-noise ratio.
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Chapter 1

Introduction

In this chapter, a brief background of structural health monitoring (SHM) and its

overall importance to monitoring large-scale infrastructure is first introduced. In

SHM, structural condition assessment is undertaken based on a suite of rich mea-

sured vibration data using wired or wireless sensors. The importance of efficient data

collection, acquisition and data transmission are emphasized within the framework of

long-term monitoring of critical structures. Challenges of utilizing big data in SHM

are explored and the potential limitations of existing wireless sensor network are dis-

cussed to develop gap areas of current research. Finally, specific objectives of this

thesis are discussed.

1.1 Structural Health Monitoring

Civil engineering structures are primarily designed to withstand design loads and

resist natural disasters or unusual excitation for a specific design life. These struc-

tures, however, continue to age with time and pose significant safety issues to the

infrastructure owners. Extreme climatic events and adverse weather conditions in

North America contribute further challenges in preventing progressive deterioration

of these structures. In fact, as per the recent infrastructure report card of American

Society of Civil Engineers (ASCE), the overall GPA of American infrastructure is

D+. Therefore, disaster mitigation and infrastructure management has been one of

1
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the main priorities of today’s structural engineering community.

Structural health monitoring (SHM) [1] is considered as a process of monitoring

the performance of a structure to decide whether or not the structure continues to

perform its desired function. The traditional way to monitor civil structures is a

visual inspection where inspectors visually assess the structural members by looking

for any sign of distress. In recent years, vibration sensors have been utilized to

evaluate local and global health conditions of structures by performing necessary data

analysis to extract dynamical properties of the structures. Dynamical characteristics

of civil infrastructures are exposed to deteriorate and change over time due to severe

earthquake, strong winds or other traffic loads. Once the structural parameters are

identified from the measured vibration data, decisions and recommendations can be

appropriately made about repairs and maintenance actions.

Vibration data obtained from civil structures allows damage detection, identifi-

cation of damage location, and may even classifies the damage and predicts future

distress. The process of assessment starts with detecting existing damage, and then

determining the location and severity of damage; thus it is possible to estimate the re-

maining life of the structure. As knowledge of SHM to evaluate local and global health

conditions of structures is insufficiently diffused, infrastructure owners have started

exploring modern sensing techniques (i.e., wireless sensors, mobile sensors and non-

contact devices) that can facilitate long-term monitoring of large-scale structures.
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1.2 Modern Sensing and Big Data

Wireless sensor network (WSN) has recently gained significant attentions in the field

of SHM where various civil structures could be dynamically assessed in ease. This

technology has proven its efficiency in monitoring acceleration and displacement of

large-scale structural systems like bridges, building and dams. Compared to wired

sensors, wireless sensors are inexpensive and easier to install with less labour-intensive

process, thereby leading to significant cost-saving to the infrastructure owners [5]. The

hardware design of wireless sensors is as important as the embedded software design

that operates each wireless sensor within a network. Most existed prototype wireless

sensors recently are passive devices, which only measure the response of structures. In

future, wireless sensors with actuation and signal processing capabilities are expected

to be more powerful to monitor large-scale structures.

In [7], a comparison is studied between two popular wireless sensors, namely

Imote2 and Narada, which are utilized for SHM of existing buildings and other in-

frastructure. They are tested, evaluated, and compared in three different categories;

sensor options, data collection and antenna signal strength. These two wireless sen-

sors, shown in Fig. 1.1, can be attached to a structure to assess its performance by

monitoring displacement, accelerations, temperature, and other loads and responses

in a continuous basis. Imote2 is convenient to use due to its stacking system, as the

stocked boards make it easy to be attached to structures with a little space. On the

other hand, Narada provides a distinct benefit of its ability in using any external

sensors with the system [7] which makes it more versatile. Consequently, the use of

both wireless sensors show a great performance and encouragement to be exploited

in SHM.
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Figure 1.1: Wireless sensing unit of (a) Imote2 and (b) Narada [7]

With increasing trend of long-term monitoring of large-scale structures, the pro-

cessing, transmission and analysis of big data has been a major constraint. In fact,

WSN has shown a serious challenge in data transmission when collecting a large

amount of data using multiple sensors. The use of multiple sensing transducers with

higher sampling frequency produces a large volume of data from each channel which

consequently lead to a major transmission issue in a network [2, 3, 4]. Moreover, WSN

is also associated with pocket loss and missing data due to the limited bandwidth

of wireless sensors. A large amount of data measured from multiple WSNs requires

accurate time synchronization to be synced with same time stamps. Even using wired

sensors, transmission and storage of large data in long-term SHM stipulates massive

computational and data mining capabilities.

A common solution to large data transmission issue is to implement compression

algorithms where the rate of data compression should be sufficiently adequate to

allow accurate data characterization [8]. In the context of SHM applications, data

compression seems to be extremely useful since it can diminish a large volume of data

without losing significant characteristics that are very sensitive to perform SHM. The

process of data collection using wireless sensors is illustrated in Fig. 1.2. In general,

network jam occurs while transmitting the data from the sensing units to the base
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station due to the limited bandwidth of the WSN, thus the observed data renders to

be not useful unless a robust data compression technique is applied to convert the

large amount of data into fewer measurements. Reconstruction process can be then

applied to the compressed signal to represent the desired size of data.

Figure 1.2: Formation of big data in modern sensing network and their potential
challenges

1.3 Data Compression Techniques

Data compression is known as storing data in a way which requires fewer measure-

ments to represent it than its typical form. Data compression uses several compressing

techniques and software solutions to reduce the size of data. It plays a significant role

in terms of solving the issue of transmission quality that causes pocket loss or missing

data. Compressing techniques can handle big data by storing the original information

into fewer measurements and then transmit to the receiver. When the transmission
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of compressed information is successfully completed, it is possible to recover the data

using data reconstruction techniques.

Recent literature includes many works that address the performance of data com-

pression to real structure data. For instance, a study [9] explores principal compo-

nent analysis-based data compression through an experimental study by the electro-

mechanical impedance-based wireless sensing. Principal component analysis is used

to diminish dimensionality and eliminate undesired elements of the raw data obtained

from the macro-fiber composite patch. A big data technique, known as MapReduce,

has been investigated [10] to handle the large volume of data in order to perform

damage diagnosis. The MapReduce technique is implemented with a spark platform

to parallelize the big data efficiently. Compressive sensing (CS) has recently become a

promising technique that can be applied using various methods such as l1-norm min-

imization (LNM). Since most signals of structural systems naturally have a sparse

representation in a basis, CS via LNM exploits the advantage that one can recover

sparse signals from fewer samples [11].

1.4 Literature Review of Data Compression Methods

A recent study [20] focuses on reducing data transmission payloads in WSN for oper-

ational modal analysis of civil structures using two different spectral estimation ap-

proaches which support non-uniform-in-time data sampling at the sub-Nyquist rate.

These two approaches can effectively satisfy transmission bandwidth constraints in

WSN. The first approach takes the advantage of Compressed Sensing (CS) theory

to address sub-Nyquist randomly sampled data while the acceleration signals are

sparsely represented in the frequency domain. The second approach relies on a power

spectrum blind sampling technique, assuming deterministic sub-Nyquist sampling and
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dealing with the acceleration signals as wide-sense stationary stochastic processes re-

gardless of sparsity conditions.

The theory of CS relies on two principles that play a significant role to make this

workable which the signal must be sparse and incoherent. A sparse representation is a

signal in which most of the elements are zero, whereas incoherence extents the relation

between time and frequency to express the idea of having a sparse representation in

the basis, where a compressible signal can be captured effectively through a number of

incoherent measurements. In fact, the large volume of collected data and the number

of sensors attached to the structure can be considerably reduced by the application

of CS [15]. It is possible to lower the sampling frequency and diminish the number of

sensors by applying implicit data reconstruction as desired through CS.

Several researchers have introduced the theory and application of CS which facil-

itates data compression and enhances data reconstruction. There are three different

types of recovery algorithms presented in [11], known as convex optimization algo-

rithms, greedy algorithms and combinatorial algorithms. Moreover, other applica-

tions of CS, namely data separation and recovery of missing data, are exploited to

apply this theory. The potential is to increase the efficiency of data transmission by

applying CS as one technique of data compression, and then achieving accurate re-

construction of compressed signals. CS theory proves that certain signals and images

with sparse and incoherent representation can be recovered from fewer samples or

measurements.

The challenges of transmitting and monitoring a large amount of data in using

wireless sensors has been addressed [12] through l1-magic tool, and then the results

are compared with wavelet and Fourier orthogonal bases and Huffman coding. CS can

exploit the sparsity of mode shapes and recover data from undersampled signals to
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avoid failure in data collection. In addition, several CS recovery schemes, such as least

square with l1-norm regularization, can be interpreted using Bayesian compressive

sensing (BCS) [16]. The BCS reconstruction algorithm utilizes the sparse Bayesian

learning method to deduce probability distribution over the basis coefficient in order

to cease the basis term that is not contributed considerably to the reconstructed

signals. Synthetic spike signals with various sparsity levels have been considered to

apply the BCS proposed algorithms using two real structural systems.

Application of CS through LNM has been performed using two different cases

[18]. Vibration signals obtained from a cantilever beam and a building model are

compressed with a certain ratio and then reconstructed using LNM, where results

prove that this method can facilitate data compression and enhance data recovery.

Furthermore, the application of CS through group sparse optimization has been in-

vestigated using data collected from a bridge by WSN [17]. As measured vibration

signals obtained from several sensors attached to a structure generate same sparse

structure in frequency domain, data can be reconstructed from incomplete measure-

ments by exploiting the development of the group sparse optimization algorithm.

A study [14] has presented the performance of two damage detection and lo-

calization techniques, known as automatic relevance determination and Wiener filter.

Automatic relevance determination uses estimated time-series models from structural

responses whereas Wiener filter utilizes the CS-reconstructed signals. Both methods

have proven effectiveness of CS application in terms of maintaining the significant

characteristics of a signal to represent the original data. Moreover, as testing of civil

structures normally generates a large amount of data, energy consumption can af-

fect the lifetime of wireless sensors which may become a serious issue when using

WSN. However, the theory of CS includes: the sparse representation of the signal,
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the measurement matrix that should satisfy Restricted Isometry Property, and the

reconstruction algorithms [19]. This approach can measure the general robustness of

CS. The application of this theory has ensured accuracy of data reconstruction and

balancing the network energy consumption.

Modeling and harnessing sparse and low-rank data structure has presented [22]

a new paradigm for SHM in terms of dynamics, identification and damage detec-

tion. It is discussed how beneficial is to define sparsity in order to develop system

identification and damage detection. Harnessing sparse and low-rank data structure

can be effectively modelled and processed by using mathematical approaches such as

sparse representation and CS, low-rank decomposition and completion. A research

[13] focuses on the application of modal analysis that may be expressed as an atomic

norm minimization problem to effectively achieve a perfect recovery for mode shapes

and natural frequencies. This method considers five measurement schemes which are:

uniform sampling, synchronous random sampling, asynchronous random sampling,

random temporal compression and random spatial compression. Digital cameras are

cost-effective vision sensors that can continuously monitor and record vibrations of

civil structures by providing data in two dimensions. A study of CS technique [21]

explores efficiency of data transmission and recovery of the large scale image data

in order to diagnosis a structures performance. Results show that it can recover im-

ages accurately, without losing diagnostic quality of structural health, from highly

under-sampled measurements.

CS provides a data loss recovery that can be embedded into smart wireless sen-

sors and increases communication reliability without retransmitting the data, where

another proposed approach aims to save power by reducing communication [28]. The

key idea of CS-based approach is that a transformed signal is transmitted where it
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is produced by projecting the row signal onto a random matrix, instead of trans-

mitting the signal acquired by the sensor. The random matrix is made to meet the

requirements of data recovery where the row signal can be effectively reconstructed

from the received incomplete transformed signal as it is compressible. In addition, a

new data coding and transmission method is proposed [29] to enhance reliability of

WSN utilized in SHM. This proposed method is comprised of two stages: a source

coding stage to compress redundancy and a redundant coding stage to inject artificial

redundancy to enhance transmission reliability. In both studies [28, 29], techniques

are implemented into Imote2 smart sensor platform where the embedded programs

are tested through communication experiments.

Discrete Cosine Transform (DCT) is an orthogonal transform method that has

been widely applied in image/video processing research. Several researchers [30, 31,

32, 33] have studied this method in terms of its efficiency in image/video compres-

sion. Recently, a new method of image compression has been proposed [32] using

DCT which is superior to improve the performance of conventional vector quantiza-

tion algorithm and hybrid DCT-vector quantization technique. Vector quantization

is a lossy image compression technique that has a simple decoding structure and can

provide a high compression ratio in image coding systems. The main idea of mul-

tistage vector quantization is that the whole vector quantization process is carried

out in several successive stages where it can reduce the codebook size and computing

time and render small quantization distortion. Moreover, steerable DCT has been

proposed [33] to rotate pairs of basis vectors in a flexible way, and enables precise

matching of directionality in each image block to achieve improved coding efficiency.

The optimal rotation angles for steerable DCT can be regarded as a solution of a

suitable rate-distortion problem.
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The image/video transmission system has been analyzed to perform compression

by discarding the redundancy in image data. DCT [34] can present source encoder

and decoder; source encoder of the original image starts with transformation via

a quantizer and entropy encoder, and then pass it through the transmission channel

while the source decoder performs the inverse of the same process in order to generate

the reconstructed image. As a result, correlations can be used to predict the pixels

from their neighbouring pixels, and transformation can exploit the fact that the bits

of an individual pixel is considered small compared to large visual contributions of a

pixel that can be estimated when looking at its neighbouring pixels. It is proved that

DCT can decorrelate the image data and efficiently perform compression. However,

there is currently no research that explores DCT in data compression, specially the

bid data associated with SHM.
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1.5 Gap Areas

There has been a significant growth in modern sensing technology to capture good

quality data. However, with increasing demand for long-term monitoring of large-scale

structures, the resulting big data poses significant challenges to the signal processing

and accurate interpretation of the data.

• With increasing sampling frequency and the number of sensing transducers in

a WSN, the large amount of data collected from any structural system often

causes missing data, network jam or pocket loss while transmitting the data,

resulting in poor quality of data.

• Piezoelectric wired sensors are equipped with excellent sensitivity and capable

of utilizing higher sampling frequencies for long-term SHM. However, while

transferring such big data to the central processor, it demands massive data

storage and processing capability.

• Data compression techniques could be valuable to achieve a desired compression

rate. However, accuracy of data reconstruction is very important where quality

of reconstructed data changes when using different rates of data compression.

Several studies have presented the application of various compression techniques

while there is a lack of studies that focus on accurate damage detection using

undersampled data.

• Most of the research of compressed sensing is focussed on image or video-based

data. There has been a limited research on time-histories of vibration data. The

LNM is validated using different simulation models, however its performance

needs to be checked through adequate experimental models and real-life data.
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On the other hand, DCT technique has proven excellent capability in image

compression, however, it is not explored for data compression yet.

• The existing data compression techniques are validated by comparing the time

structure of original and reconstructed data. However, there is a limited research

of evaluating the performance of data compression techniques in identifying

modal parameters of the structures.

• Apart from simulation models, different experimental models with a wide range

of dynamical characteristics are needed to be explored to validate any newly

developed data compression techniques.

1.6 Thesis Objectives

The main objective of this thesis is to develop a robust and faster data compression

technique to analyze big data in SHM. The key objectives are listed corresponding to

the gap areas mentioned above.

• Explore DCT as a potential data compression tool for vibration data.

• Compare the performance of DCT with LNM with a wide range of simulation

and experimental models.

• Ensure an accurate data reconstruction is achieved under a broad range of

compression rates. Since compression ratios play a significant role in terms of

evaluating the performance of data compression techniques, various rates need

to be investigated to check effectiveness and accuracy.
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• Apart from comparing merely time-structure of data, develop a newer system

identification algorithm to evaluate the performance of data compression tech-

niques in identifying modal parameters.

• The proposed data compression and recovery needs to be checked under different

real-life conditions including discrete damage, closely spaced modes, low energy

modes and measurement noise using a wide range of experimental models.

The thesis is outlined as follows. First, a background of various data compression

techniques and the proposed algorithm is presented in Chapter 2. In Chapter

3, the adopted sensing devices are validated using several experimental studies. The

proposed algorithms are then validated using a suite of numerical studies in Chapter

4 followed by several experimental and full-scale studies in Chapter 5. Finally, the

key conclusions of the proposed research are discussed in Chapter 6 followed by the

major research contributions and future work.



Chapter 2

Proposed Method

In this chapter, two different data compression techniques are explored to perform

data compression. Both methods are proposed to be considered as important tools

that can be exploited in data compression for SHM applications. The first method,

namely l1-norm minimization (LNM) technique, is based on classical theory of com-

presses sensing (CS) while Discrete Consine Transform (DCT) has gained significant

attention in the field of image compression. The essential criteria and principles of

both methods are presented to explain the proposed methodology. A newer system

identification (i.e., Time-frequency Blind Source Separation (TFBSS)) is explored

next followed by the formulation of proposed data compression technique using clas-

sical equation of motion of a dynamical system. Apart from time structure of the

original data, the accuracy of proposed data compression technique is then validated

using identified modal parameters of the structures.

2.1 L1-norm Minimization

l1-norm minimization (LNM) [26, 27] refers to determine minimum solution of l1-

norm of an undetermined linear system b = Ax that is comprised of more number

of unknowns than the number of available equations. With the aid of compressed

sensing (CS), this norm achieved sparse solutions to a system of linear equations.

Two important principles are required to achieve the minimum l1-norm solution: (a)

15
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the signal x must be sufficiently sparse and (b) the sensing matrix A is incoherent with

basis under which x can be exactly recovered by calculating the solution of l1-norm

given by following optimization problem [25]:

min
x
‖ x ‖1 subject to b = Ax (2.1)

Using CS theory, it takes the advantage of the fact that most signals have a sparse

representation. For example, biomedical signals (i.e., ECG/EMG signals) are sparse

in time domain whereas the vibration signals are sparse in frequency domain. Using

the N ×N basis matrix ψ, with ψi vectors as columns and the modal response q, the

signal x can be expressed as:

x =
N∑
i=1

ψiqi (2.2)

x = Ψq

where q is the N×1 column vector of selected measurement qi = 〈x, ψi〉 = ψTi x and T

indicates the transpose. Consider the problem of reconstructing as a vector x ∈ RN

from linear measurements y ∈ Rp of x in the undersampled expression in Eq. 2.2.

yp = 〈x, φp〉 (2.3)

y = Φx = ΦΨq = Θq

where p = 1, ...,m in the number of compressed samples and m� N . Φ is the m×N

measurement matrix [18]. Since this signal x is sparse, reconstruction is possible by

solving convex optimization q̂ =‖ q̃ ‖l1=
∑N

i=1 | q̃i | where the objective is to find

best estimated q that yields to LNM [18]:

q̂ =‖ q̃ ‖l1 with an equality constraint of Θq̃ = y (2.4)

Therefore, the reconstructed signal can be expressed as:

xr = Ψq̂ (2.5)
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Primary-dual linear programming algorithm is used in this study with its associated

l1-magic tool. This method takes advantage of the idea that many structural responses

naturally have sparse representation in a basis in the frequency domain.

2.2 Discrete Cosine Transform

The Discrete Cosine Transform (DCT) separates an image or data into specific parts

with respect to the significant features of the signal and transforms a signal or im-

age from spatial domain to the frequency domain. The DCT gives a sparse set of

basis vectors where the principle DCT coefficients that contain fewer measurements

are stored to represent the entire data instead. Each DCT considers N real basis

vectors where components are cosine functions. It de-correlates an image data and

each transformed coefficient is encoded independently without losing compression

efficiencies.

DCT is a linear orthogonal transformation of a signal and it is equivalent to

discrete Fourier transform (DFT) in case of a real and even function. Compared with

DFT, DCT can be performed only using real number. Therefore, DCT is superior to

DFT in computational complexity. After performing DCT, the block can be divided

into 2 sub-bands: low frequency sub-band which contains most of the important visual

parts of the image, and high frequency sub-band which contains details and textures

of the image. Generally speaking, low frequency coefficients are more important than

high frequency coefficients because the values of high frequency coefficients are usually

closed to zero. Of all the DCT coefficients, X(0,0) is called DC coefficient and other

coefficients are called AC coefficients. Due to non-importance of high frequency sub-

band, the high frequency sub-band is usually removed for compression purpose. DCT

has several advantages over signal processing tools [34]: (1) it has the ability to pack
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energy in the lower frequencies for image data. (2) it can reduce the blocking artefact

effect and this effect results from the boundaries between sub-images as they become

visible. The DCT provides a very good compromise between information packing

ability and computational complexity.

In general, DCT depends on the assumption that pixels in images poss a certain

level of correlation with their surrounded pixels, where DCT is considered an orthog-

onal transformation that has been widely used in image/video compression. Conse-

quently, the value of pixels is predicted form their respective neighbouring pixels while

exploiting the level of correlation in a given image. In this way, the transformation is

used to plot correlated spatial data into uncorrelated transformed coefficients. Few

key properties of DCT are presented next [30]:

(a) Decorrelation

Decorrelation of the input signal transforms its representation in which the set of data

values is sparse, thereby leading to compact the information content of the signal into

fewer number of coefficients [35]. The advantage of DCT in image transformation is

the possibility of removing redundancy between neighbouring pixels which leads to

achieve uncorrelated transform coefficients that independently interacts with encod-

ing.

(b) Compaction of Energy

Energy compaction is the ability to pack the energy of the spatial sequence into as

few frequency coefficients as possible which is important for image compression as

only transmission of few coefficients instead of the whole set of pixels is required

if compaction is high. Efficiency of compression scheme can be measured by its
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capability to store input signals into as few measurements as possible which qualifies

the quantizer to discard insignificant coefficients with relatively low amplitude. This

proves that DCT exhibits energy compaction for highly correlated images.

(c) Separability

The advantage of separation can be highly exploited in compression. The recon-

structed outputs can be computed in two separate steps by operations on rows and

columns of images. Therefore, these steps are identically considered for the inverse

DCT determination.

(d) Symmetricity

DCT is characterized by a symmetric matrix, known as the symmetric cosine trans-

form, which makes its covariance matrix more tractable for the symmetric cosine

transform. It reveals that the transformation matrix of rows and columns can be

predetermined offline, and then applied to the image; thus orders of magnitude im-

provement can be presented to assess efficiency.

(e) Orthogonality

As DCT basis functions are orthogonal, the inverse transformation matrix of A is

equal to its transpose i.e. A−1 = AT ; where T donates transpose. Therefore, this

advantage can be exploited in reduction and application of the inverse DCT compu-

tation.

The aim is to decorrelate the pixels of the input image in order to compact the

neighbouring pixels into fewer coefficients while the quantizer reduces the number of

the transformed measurements. Thus it is possible to reduce accuracy of those bits.
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Entropy encoding discards redundancy by removing bit patterns repeated from the

output of the quantizer in order to achieve compression [30], as steps are illustrated

in Fig. 2.1.

Input image

Decorrelation

Quantization

Entropy coding

Output image

Figure 2.1: Flowchart of the DCT [30]

The performance of DCT in image compression can be estimated by applying cri-

teria of compression ratio (CR) and the quality of measurements of the reconstructed

image (PR) [30]. CR is the ratio between the size of the original and compressed

image as:

CR =
n1

n2

(2.6)

Mean Square Error (MSE) measures the rate of distortion in the reconstructed image

through [30]:

MSE =
1

HW

H∑
i=1

W∑
j=1

[X (i, j)− Y (i, j)]2 (2.7)

In brief, DCT has been widely exploited by modern standards of video coding. This

method of transformation aims to decorrelate the image data while each transform

coefficient after decorrelation can be independently used for processing without losing

compression efficiency.

In order to illustrate the DCT method and its data compression, a discrete signal

x is used to generate the DCT coefficients X as illustrated in Fig. 2.2(a) where Fig.

2.2(b) is its DCT coefficients. This is equivalent to the pre-multiplication of x by the
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matrix φ as:

[X] = [φ][x] (2.8)

where the input signal x is an N × 1 vector and X is the N × 1 DCT vector. The

DCT computation is defined as:

X[k] =

√
2

N
Ck

N−1∑
n=0

x[n] cos [
(2n+ 1)kπ

2N
] (2.9)

where the coefficient Ck is given as:

Ck =


1√
2

if k = 0

1 if k > 0

(2.10)

with 0 ≤ (n, k) ≤ N − 1.

The process of image compression using DCT may be described as follows:

• First, the image is broken into blocks of pixels.

• The DCT is applied to each block, working from left to right and top to bottom.

• Each block is compressed using the quantization table.

• The array of compressed blocks that comprise the image is stored in a drastically

reduced amount of space.

The reconstruction of image is performed through decompression which is a pro-

cess that uses the Inverse Discrete Cosine Transform (IDCT). The DCT coefficient

vector X is sparse with the energy of the signal (norm) concentrated on free com-

ponents (k values). Therefore, one can neglect small components in order to obtain

reduction in the data norm. This can be achieved by the threshold function which

equates any DCT coefficient below a certain threshold level to zero. The compressed
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signal can be then reconstructed in the receiver using the IDCT, which is expressed

as [34]:

x [n] =

√
2

N

N−1∑
k=0

CkX [k] cos

[
(2n+ 1)kπ

2N

]
(2.11)

As illustrated in Fig. 2.2, an example shows the application of the proposed DCT

method in data compression using a sine wave signal, where (a) indicates the original

and reconstructed signal respectively, and (b) presents the DCT coefficients stored

into fewer measurements. The threshold level is then appropriately set to discard

samples outside the range that represents redundancy. This example shows how

DCT data compression can maintain the significant features of a signal.
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Figure 2.2: The performance of DCT method in data compression

The flowchart shown in Fig. 2.3 illustrates the process of applying the proposed

method to achieve data compression. It stores all samples into as few DCT variables

as possible, where DCT coefficients of vibration signals decreases the data norm. The

threshold level of any rate means that all measurements with a magnitude placed

below the threshold limit would be considered zero, thus they are not included in

the processing. A lower percentage of threshold results in lower compression. The

compressed signal can be then recovered by using IDCT through Eq. 2.11, where the
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threshold level is appropriately set to discard redundancy before applying IDCT to

reconstruct the signal.

DCT Threshold IDCT Reconstructed signalxi

Figure 2.3: Flowchart of the implementation of DCT

2.3 Time-Frequency Blind Source Separation

Blind source separation (BSS) [36] is recently explored as a potential signal decompo-

sition tool for structural system identification. In this thesis, another form of BSS is

explored using time-frequency (TFBSS) distribution of spatial Wigner-Ville spectrum

(SWVS). The stochastic signals are explicitly assumed as:

x (t) = Aq (t) + d (t) (2.12)

where x (t) = [x1 (t) , ..., xm (t)]T is the vector of measurement, q (t) = [q1 (t) , ..., qn (t)]T

is vector of sources. A is the m×n unknown full-rank mixing matrix as m ≥ n. d(t) is

an independently and identically distributed noise vector, independent of the sources

as:

E
{

d
(
t+

τ

2

)
dH
(
t− τ

2

)}
= δ (τ)σ2Dm. (2.13)

Dm denotes the identity matrix of size m, δ (τ) the Dirac δ function, ·H is conjugate

transpose, and σ2 denotes the unknown variance of the noise. At time t and lag τ ,

the covariance of q(t) is expressed:

Rq (t, τ) = E
{

q
(
t+

τ

2

)
qH
(
t− τ

2

)}
= diag [ρ1 (t, τ) , ..., ρn (t, τ)] . (2.14)

Using the source un-correlation assumption, ρi(t, τ) = E
{
qi
(
t+ τ

2

)
q?i
(
t− τ

2

)}
, i =

1, ..., n, where ·? donates complex conjugate. Using the covariance matrix Rx(t, τ) of
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x(t) is:

Rx (t, τ) = Adiag [ρ1 (t, τ) , ..., ρn (t, τ)] AH + δ (τ)σ2Dm. (2.15)

Rx(t, τ) defines a time-lag representation of the nonstationary signal vector x(t). A

strictly equivalent TF representation of x(t) is obtained via the Fourier transform of

Rx(t, τ) with respect to τ , yielding the spatial Wigner-Ville spectrum S of x(t),

Sx (t, f) =

∫ +∞

−∞
Rx (t, τ) e−j2πfτdτ (2.16)

For a given TF location (t, f), Sx(t, f) is a square matrix of size m whose diagonal

entries contain the auto Wigner-Ville spectra of the observations and nondiagonal

entries contain cross-WignerVille spectra. In the TF plane, it becomes [37]:

Sx (t, f) = ASq (t, f) AH + σ2Dm (2.17)

where Sq(t, f) is a diagonal matrix for any (t, f), since it is Fourier transform of the

diagonal matrix Rq(t, τ).

Let W be an n × m full-rank matrix such that W(AAH)WH = In, where W

represents whitening matrix. Define another matrix U = WA, where U is a unitary

matrix satisfying,

A = WU. (2.18)

U can be derived from the eigen vectors of the following matrix:

Sx (t, f) = USq (t, f) UH (2.19)

Since Sq(t, f) is diagonal for any (t, f), and since U is unitary, U diagonalizes Sx(t, f)

for any (t, f). Once U is estimated, A can be found using Eq. 2.18 and the sources

q are estimated using Eq. 2.12.

In order to illustrate the performance of TFBSS, a simple example involving a

mixture of sine signals is considered using Eq. 2.20 where ω1 = 1.5, ω2 = 2.8 and
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ω3 = 4 Hz. The sine signals are generated using Eq. 2.20 and their corresponding

Fourier spectra are shown in Fig. 2.4. TFBSS is then applied to those signals and

the Fourier spectra of separated modal responses are shown in Fig. 2.5. The results

reveal than TFBSS is capable of separating modal responses very accurately.

A =


7 −3 5

−4 7 −5

3 −5 7




sin(ω1t)

sin(ω2t)

sin(ω3t)

 (2.20)
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Figure 2.4: (a) Time history and (b) Fourier spectra of the mixture of sine signals
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Figure 2.5: (a) Time history and (b) Fourier spectra of modal responses obtained
from the TFBSS

2.4 Proposed Methodology

Consider a linear, classically damped and lumped-mass n degrees-of-freedom (DOF)

structural system, subjected to a wide-band random input force, u(t):

Mẍ(t) + Cẋ(t) + Kx(t) = u(t) (2.21)

where, x(t) is a vector of displacement response at DOFs. M, C and K are mass,

damping and stiffness matrix, respectively. The solution to Eq. 2.21 for any dynam-

ical system can be formulated using the state-space model with following form:

x̄ =

 x1

x2

 (2.22)

˙̄x = Ax + Bu (2.23)

y = Cx̄ + Du (2.24)



27

where A is the state matrix, B is input matrix, C is the output matrix, and D is

transmission matrix. Under broad-band excitation u(t), the resulting solution of Eq.

2.21 can be written in terms of an expansion of vibration modes:

x = Φq (2.25)

where, x and q is the DCT-assisted reconstructed response and modal coordinate

matrix, respectively. Φm×n is the modal transformation matrix. n and m are the

number of modal responses and measurements, respectively. Comparing Eq. 2.25

with Eq. 2.12, we get following from Eq. 2.19:

Sx (t, f) = VSq (t, f) VH (2.26)

Once V is estimated using Eq. 2.26, Φ can be estimated using:

Φ = WV. (2.27)

Once Φ is obtained, q can be found using Eq. 2.25:

q = Φ−1x (2.28)

Once the modal responses are obtained, the modal frequencies and damping can

be successively found. Finally, the flowchart of the proposed method is shown in Fig.

2.6.

Modal Response

Original Dataxi DCT Data Reconstruction

TFBSSTFBSS

Figure 2.6: Flowchart of the proposed method



Chapter 3

Validation of Wireless Sensor Network

In this chapter, the performance of wireless sensor utilized in this thesis is validated

with various other sensor devices to validate their capabilities of monitoring vibration

of low frequency systems. A wireless sensor, namely Narada, is used in this research.

The performance of Narada units are validated through a suite of experimental studies

before employing different data compression techniques with the sensor boards.

3.1 Background

A brief background of Narada sensor is illustrated in the following section.

3.1.1 Narada

The Narada wireless sensing unit is developed by CivionicsTM [6]. It can be attached

to a structure to measure its acceleration. Narada consists of sensing units, sensing

transducers and a base station as shown in Fig. 3.1. A maximum of four channels

can be used per sensing unit, while the base station can wirelessly communicate

with multiple sensing units at the same time. The maximum allowable sampling

frequency is 10,000 Hz whereas the antenna range is considered as 50 m [7]. However,

with increasing number of sensor units, the achievable sampling frequency reduces

significantly along with missing data and packet loss. In order to explore WSN, four

Narada sensors were utilized to conduct these studies.

28
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Figure 3.1: Narada WSN: (a) one sensing transducer attached to a Narada unit, (b)
base station attached to a laptop

3.1.2 Other Sensing Devices

The Trigno wireless system is capable of monitoring accelerations and displacement

of different dynamic systems, especially with higher frequencies. This wireless sensor

as illustrated in Fig. 3.2(a) is equipped with great features for use such as: trans-

mission range of 20 m, signal sampling rate up to 2000 Hz, integrated trixial

accelerometer, self-contained reachable battery lasting a minimum of 7 hours, battery

charge monitoring and status indicator, auto shutoff [23]. Its base station communi-

cates with a computer through a USB link after installing EMGworks software. The

Trigno wireless system has proven its reliability and efficiency to be used for data

collection in SHM even though it is designed for other purposes.

Apart from Trigno, a digital camera is also used for validation purpose. Digital

cameras are cost-effective vision sensors that can continuously monitor and record

vibrations of civil structures by providing data of two dimensions. This high speed

camera, shown in Fig. 3.2(b), is equipped with distinct features that can be exploited

in monitoring the performance of civil structures. As the resolution of high speed

cameras control the rate of sampling frequency, the sampling frequency is selected as
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60 Hz. In order to test the functionality of Narada devices, both Trigno and a high

speed camera were borrowed from Kinesiology laboratory of Lakehead University with

the assistance of Dr. Carlos Zerpa, and the performance of Narada is assessed for

SHM applications.

Figure 3.2: (a) Trigno and (b) high speed camera obtained from the Department of
Kinesiology at Lakehead University
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3.2 Experimental Validation

Figure 3.3: Narada, Trigno and Camera attached to the experimental model

Before implementing data compression techniques, validation studies are first con-

ducted on a 3-DOF experimental model as shown in Fig. 3.3 to check the adequacy

of the Narada sensors. The objective of these experiments is to evaluate the per-

formance of Narada with a well-calibrated high speed camera, and another wireless

sensor, namely Trigno. A single channel sensor is placed at the middle of each floor,

where the sampling frequencies are set to be 200 Hz for Narada, 148 Hz for Trigno and

60 Hz for the camera. With the aid of a control system and shake table, impact and

random forces are subjected to validate capability of monitoring the 3-DOF model.
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Figure 3.4: Time histories of floor responses measured by (a) Narada, (b) Trigno and
(c) camera obtained from the impact force test

The time histories and Fourier spectra of floor responses obtained from the im-

pact test are illustrated respectively in Fig. 3.4 and Fig. 3.5. Similar results are

respectively shown in Fig. 3.6 and Fig. 3.7 under random force excitation. It is clear

that the performance of Narada sensor is equivalent to Trigno for all three structural

modes. It may be noted that camera could not capture higher frequencies due to

its low sampling frequency used in this application, however the first mode is cor-

rectly captured and compared for all three sensors. A summary of frequency analysis

obtained from all tests by Narada, Trigno and the high speed camera is illustrated

in Table 3.1. In brief, Narada, Trigno and the high speed camera have shown great

performance in monitoring low frequency systems. In fact, the Fourier spectra of the

floor measurements prove that the extracted natural frequencies, as shown in Table

3.1, are very similar to the theoretical natural frequencies of the model which are 7,

14 and 24 Hz, respectively. The results prove that the Narada sensors are capable of

measuring vibration data even with low sampling rate and suitable for the proposed

research.
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Figure 3.5: Fourier spectra of floor responses measured by (a) Narada, (b) Trigno
and (c) camera obtained from the impact force test
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Figure 3.6: Time history of floor responses measured by (a) Narada, (b) Trigno and
(c) camera obtained from the random force test
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Figure 3.7: Fourier spectra of floor responses measured by (a) Narada, (b) Trigno
and (c) camera obtained from the random force test

Table 3.1: Summary of frequency analysis obtained from three different sensors under
a wide range of excitation

Type of test Narada Trigno Camera
ωi (Hz) ω1 ω2 ω3 ω1 ω2 ω3 ω1

impact 6.4 13.6 24.1 6.4 12.6 24 6.3
random 6.5 12.9 24 7.2 14.2 24.3 7



Chapter 4

Numerical Studies

This chapter presents the results and discussions of data compression techniques pro-

posed in this thesis using a wide range of numerical models. The proposed data

compression techniques are then validated using the undersampled data and the ac-

curacy of data reconstruction is evaluated through system identification.

Figure 4.1: 4-DOF Model

4.1 4-DOF Model

A 4-DOF mass-spring-damper system as illustrated in Fig. 4.1 [24] is utilized in this

study. A mass of 1 kg and stiffness of k1 = k3 = 7000 N/m and k2 = k4 = 8000 N/m

35
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are used to simulate the model. A random base excitation is subjected to the model

to simulate floor responses. Each floor measurement is simulated for 30 seconds with

a sampling frequency of 50 Hz (i.e., 1500 samples of data). Time histories of floor

responses obtained from the 4-DOF model are shown in Fig. 4.2 which are used to

compare the relative performances of LNM and DCT.
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Figure 4.2: Time histories of floor responses obtained from the 4-DOF model

LNM is first used to compress the data of first and fourth floors using a com-

pression rate of 20% and 50%, respectively. For example, Fig. 4.3 and Fig. 4.4 the

compressed data and reconstructed signal of first floor response whereas Fig. 4.5 and

Fig. 4.6 show similar results of the fourth floor. Data compression of 20% results

in 1200 samples of data out of 1500 data points, while a rate of 50% results in 750

samples. A compression rate of 20% has shown high accuracy of data reconstruction

for both floors as illustrated in Fig. 4.3 and Fig. 4.5, where x(t), y(t) and xr(t) are

original, compressed and reconstructed signals respectively. Reconstructed Fourier

spectrum is almost same as original measurements which indicate a sign of reliable
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recovery of compressed data. However, the performance of LNM with 50% compressed

data reveals lesser accuracy as shown in Fig. 4.4 and Fig. 4.6, respectively.
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Figure 4.3: 20% data compression of first floor response by LNM
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Figure 4.4: 50% data compression of first floor response by LNM
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Figure 4.5: 20% data compression of fourth floor response by LNM
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Figure 4.6: 50% data compression of fourth floor response by LNM
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Figure 4.7: (a) Time histories and (b) Fourier spectrum of floor responses obtained
from reconstructed data using DCT

In order to show its performance in data recovery, DCT is performed with 12%

threshold level of the maximum DCT coefficients in order to discard values below

the level, which is approximately equivalent to 40% data compression. In Fig. 4.7,

time histories and Fourier spectrum of floor response show high accuracy of data

reconstruction. Since the size of a signal includes some notion of its strength, the

mathematical concepts of the norm is used to quantify the observed signals, as the

norm is a function that assigns length or size to each vector. Therefore, the accuracy

of data reconstruction by DCT can be determined by comparing the size of the norm

between the original and reconstructed data. The norm of a data set can be used to

formulate the convex-hull [39] where it is possible to measure the norm for different

sets of data as shown in Fig. 4.8. The data is triangulated to apply the convex-hull in

order to show the norm boundaries of the original and reconstructed data. As shown

in Table 4.1, the boundaries of the original and reconstructed data in each floor signal

reflects the accurate data reconstruction applied by DCT in terms of comparing their
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norm sizes. This numerical study proves that both LNM and DCT may be considered

as a potential data compression tool to improve the capability of handling big data

in SHM applications.
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Figure 4.8: Convex hull of the data norm: (a) original data and (b) reconstructed
data

Table 4.1: Size of the norm of the original and reconstructed data by DCT

Floor # 1 2 3 4
x(t) 23.21 34.74 45.37 51.81
xr(t) 20.91 30.94 42.17 47.13
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Figure 4.9: 10-DOF Model

4.2 10-DOF Model

In this section, a simulation study is performed to validate both methods and compare

their results of a 10-DOF model as illustrated in Fig. 4.9. The lumped mass of each

floor is assumed to be 1 kg, the damping is assumed to be 2% critical in all modes,

and the stiffness of each floor is shown in Fig. 4.9. Both data compression methods

are applied to the time history of each floor as simulated in Fig. 4.10. Fourier spectra

of the simulated floor responses are shown in Fig. 4.11. TFBSS is first employed

on the simulated responses and the resulting Fourier spectra of identified sources are

shown in Fig. 4.12. With mono-component nature of sources, it is clear that TFBSS
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is able to accurately separate modal responses of original data.
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Figure 4.10: Time histories of floor responses obtained from the 10-DOF model
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Figure 4.11: Fourier spectra of floor responses obtained from the 10-DOF model
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Figure 4.12: Fourier spectra of modal responses obtained from TFBSS using the
original data

In order to compare the performance of LNM and DCT, TFBSS is utilized to

conduct modal identification using reconstructed data. The sources of the original

and reconstructed data are then analyzed to compare both proposed methods. LNM

is first performed on data with 10% data compression. The resulting time histories

and Fourier spectra of reconstructed signals are respectively illustrated in Fig. 4.13

and Fig. 4.14. Fourier spectra of identified sources of TFBSS using LNM assisted

reconstructed signals are shown in Fig. 4.15 which reveals significant mode-mixing

in the modal responses. These results also indicate inefficiencies of retaining correct

modal information from the data reconstructed by LNM.
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Figure 4.13: Time histories of floor responses obtained from the reconstructed data
by LNM
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Figure 4.14: Fourier spectra of floor responses obtained from the reconstructed data
by LNM
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Figure 4.15: Fourier spectra of modal responses obtained from TFBSS using the
reconstructed data by LNM

While using DCT, a threshold rate of 12% is adopted to discard up to 40% of

the original data. Time histories and Fourier spectra of the reconstructed signals

using DCT are respectively shown in Fig. 4.16 and Fig. 4.17, while Fourier spectra

of identified sources obtained from DCT assisted reconstructed signals are shown in

Fig. 4.18. From Fig. 4.18, it is clear that all sources resulting from DCT-assisted

reconstructed data are mono-component in nature. Unlike LNM, it is possible to

identify all modal responses from the reconstructed data offered by DCT. Finally,

the identified frequencies of the modal responses obtained from original data and

DCT-assisted reconstructed data are summarized in Table 4.2.
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Figure 4.16: Time histories of floor responses obtained from the reconstructed data
by DCT
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Figure 4.17: Fourier spectra of floor responses obtained from the reconstructed data
by DCT
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Figure 4.18: Fourier spectra of modal responses obtained from TFBSS using the
reconstructed data by DCT

Table 4.2: Identification results of the 10-DOF model using DCT method

ω (Hz) ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10

Actual 0.80 1.79 2.83 3.89 4.96 6.09 7.23 8.46 9.89 11.53
DCT 0.80 1.79 2.83 3.89 4.96 6.09 7.29 8.44 9.89 11.53



Chapter 5

Experimental and Full-scale Validation

In this chapter, the proposed data compression techniques are validated through dif-

ferent experimental models and a full-scale structure. The properties of the experi-

mental models are carefully chosen to reflect true dynamic behavior of civil structures.

These models are subjected to either base excitation or random floor excitation and

the measured data are collected through wireless or wired sensors.

This experimental work includes two lab-scale building models (i.e., model A and

model B) and a cantilever beam, whereas a long-span bridge located in Thunder Bay

is utilized for full-scale validation. Model A is defined as a 3-DOF model with a

height of 80 cm which was developed at Lakehead University. Model B is another

3-DOF model with a height of 2 m and different mass and stiffness distribution that

was developed at IIT Kanpur during the candidate’s internship in India.

5.1 Model A

The masses of this model, shown in Fig. 5.1, from first floor to top floor are 3.2, 1.1

and 0.656 kg, respectively [38]. The two-sided columns are made of aluminium with

a mass of 0.718 kg, and the dimensions are 776.5 mm (height), 107.2 mm (width),

3.08 mm (thickness), and 257.1 mm (height) between floors. The model is placed

on a shake table connected to a modal shaker that can generate random or any pre-

determined forces. As shown in Fig. 5.1, three sensing transducers are placed at each

48
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floor and connected to the sensing unit which wirelessly communicates with Narada

sensors on a computer through the base station. The model is excited by random

shaking for 30 seconds using a control system attached to the modal shaker. Two

different approaches of under-sampling are performed: (a) explicit and (b) implicit.

In explicit mode of undersampling, the data is first sampled with adequate sampling

frequencies and then it is randomly undersampled to form a database for the data

reconstruction. In case of implicit approach, the data is undersampled within the

sensor level which is then reconstructed using the proposed method.

Figure 5.1: Model A

5.1.1 Explicit Data Compression

The data is first collected with a sampling frequency of 200 Hz. The observed data

is used for compression through CS to under-sample the original signals, and then
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these signals are recovered from fewer measurements considering certain rates of data

compression (i.e., 20%, 40% and 60%).
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Figure 5.2: 20% data compression of third floor by LNM
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Figure 5.3: 40% data compression of third floor by LNM
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Figure 5.4: 60% data compression of third floor by LNM

As shown in Fig. 5.2 (a), the observed data is reduced to produce a compressed

signal y(t) that contains 1600 random sampled data points under 20% data com-

pression (i.e. 2000× 0.8 = 1600). The resulting undersampled data is reconstructed

to recover the signal with exactly same number of original samples xr(t). Fourier

spectrum of actual and reconstructed signals are generated and compared to show

the relative efficiency of the proposed data compression technique. Data compressing

of 40% and 60% are also applied to the set of data of the third floor as illustrated

respectively in Fig. 5.3 and Fig. 5.4. It is clear that compression rates of 20% and

40% show reliable data recovery, while in a compression rate of 60% reconstructed

signals seems to be insufficiently accurate.
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Figure 5.5: Time histories of floor responses obtained from (a) original data, (b)
reconstructed data by LNM and (c) reconstructed data by DCT
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Figure 5.6: Fourier spectra of floor responses obtained from (a) original data, (b)
reconstructed data by LNM and (c) reconstructed data by DCT

In order to compare the performance of LNM and DCT, TFBSS is applied on the

original data and the identified modal frequencies are compared with LNM and DCT-

assisted reconstructed data. The plots of original and reconstructed data using both

methods are shown in column (a), (b) and (c) of Fig. 5.5 and Fig. 5.6, respectively.

Fourier spectra of modal responses obtained from the original and reconstructed data
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using TFBSS are plotted in Fig. 5.7. A compression rate of 40% is considered for

LNM, and a threshold level of 12% of the maximum coefficient in DCT is set to be

approximately an equivalent percentage to the 40% data compression. Compared to

the Fourier spectrum of original modal responses shown in Fig. 5.7, both methods

clearly present the modes separately; however, the quality of source separation is

better in DCT as it indicates the three modes, while in LNM it only indicates two

modes.
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Figure 5.7: Fourier spectra of modal responses using TFBSS obtained from (a) orig-
inal data, (b) reconstructed data by LNM and (c) reconstructed data by DCT

5.1.2 Implicit Data Compression

A real case of CS application is considered in this section where the collected data

is assumed to be under-sampled through the wireless sensors. Therefore, only re-

construction process is required to perform data recovery. Two tests with reduced

sampling frequencies (fs), as illustrated in Table 5.1, are conducted using Narada

sensor on Model A, where the model is impacted by a hammer.
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Table 5.1: Details of implicit data compression

Experiments fs (Hz) No. of Samples Duration (sec)
Test 1 50 1250 25
Test 2 100 2500 25
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Figure 5.8: (a) Time history of Test 1, (b) Fourier spectrum of Test 2, (c) Time
history of the reconstructed signal of Test 1 by LNM, and (d) Fourier spectrum of
reconstructed signal of Test 1 by LNM

A single wireless sensor is located at the middle of the third floor to collect data of

Test 1 and Test 2, where the signal of Test 1 is reconstructed with the same number

of samples of Test 2 (i.e., 2500 samples). Fourier spectrum obtained from Test 2

and reconstructed data of Test 1 are generated to compare the performance of data

reconstruction. The objective of this study is to investigate whether it is possible to

set lower sampling frequency for testing and simply apply LNM to reconstruct the

signals as desired. As shown in Fig. 5.8(a), time history of floor response obtained

from Test 1 is already compressed implicitly. The signal is then reconstructed by

LNM as illustrated in 5.8(c). Fourier spectrum obtained from Test 2 (i.e., data

collected with fs = 100 Hz) and the reconstructed signal by LNM are respectively

shown in Fig. 5.8(b) and Fig. 5.8(d) which shows significant promise of LNM in data
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reconstruction. The collected data of Test 1 is now used to apply data compression

through DCT, as shown in Fig. 5.9. The threshold is applied with a rate of 10% of

the maximum DCT energy in order to discard up to 40% of the original data, and

then IDCT is applied for reconstruction. It is clear that data compression using DCT

achieves sufficient rates and accuracy of data compression without losing significant

features of the signals.
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Figure 5.9: Fourier spectrum of floor responses obtained from Test 1 using DCT
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Figure 5.10: Model B

5.2 Model B

Model B is defined as a 3-DOF experimental model that is attached to a modal

shaker, as shown in Fig. 5.10. This model belongs to the laboratory of structural

engineering at IIT Kanpur in India which was tested during the candidate’s research

internship at IIT Kanpur. The servo-hydraulic shake table is supplied with a uni-axial

actuator that can simulate real earthquake motions, and can be utilized for seismic

verification of large-scale structural systems. The shake table platform measuring

is medium sized with 1.2 × 1.8 m, and it is powered by 50 kN - 150 mm MTS

servo-hydraulic actuator which can generate velocities in the range of 1.5 m/s and

acceleration of 5g. The weight of table is 8 kN and maximum payload of 40 kN.

Maximum displacement is 75 mm and frequency range is up to 50 Hz.
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This model has been tested with white noise and ground motions subjected by

the shaker and dynamically monitored using wired sensors with a sampling frequency

of 1000 Hz. Six accelerometers have been placed on both ends of one span of each

floor, as highlighted in Fig. 5.11. The time histories and Fourier spectra of floor

responses are generated from the observed data in order to extract the model’s dy-

namical properties before and after a discrete damage in the model. In this way, the

performance of the proposed data compression is checked with the data containing

damage signature. Two different excitations (i.e., random and base excitation) are

considered.

Figure 5.11: Location of six accelerometers placed on Model B

5.2.1 Baseline (w/o any damage)

The performance of this experimental model before damage is tested with white

noise and ground motions, and then data compression using DCT is applied to the
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observed data obtained from both tests. First, as white noise of 0.05 g is subjected by

the model shaker, time histories and Fourier spectra of floor responses obtained from

the experimental model are respectively presented in Fig. 5.12 and Fig. 5.13. Second,

ground motion test is considered to check the performance of this experimental model

under base excitation. The time histories and Fourier spectra of floor responses

obtained from the model are respectively presented in Fig. 5.14 and Fig. 5.15. The

performance of DCT is illustrated in Fig. 5.16 and Fig. 5.17 for the white noise test,

while Fig. 5.18 and Fig. 5.19 present the data compression through DCT for the

ground motion test.
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Figure 5.12: Time history of floor responses obtained from Model B before damage
(white noise)



59

0 5 10 15 20 25

X
1
(ω

)
0

0.005

0.01

0 5 10 15 20 25

X
2
(ω

)

0

0.005

0.01

0 5 10 15 20 25

X
3
(ω

)

×10-3

0

2

4

6

0 5 10 15 20 25

X
4
(ω

)

×10-3

0

2

4

6

ω (Hz)
0 5 10 15 20 25

X
5
(ω

)

0

0.005

0.01

ω (Hz)
0 5 10 15 20 25

X
6
(ω

)

0

0.005

0.01

Figure 5.13: Fourier spectrum of floor responses obtained from Model B before dam-
age (white noise)
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Figure 5.14: Time history of floor responses obtained from Model B before damage
(ground motions)
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Figure 5.15: Fourier spectrum of floor responses obtained from Model B before dam-
age (ground motions)
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Figure 5.16: Time history of floor responses obtained from the reconstructed data by
DCT (white noise)
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Figure 5.17: Fourier spectrum of floor responses obtained from the reconstructed data
by DCT (white noise)
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Figure 5.18: Time history of floor responses obtained from the reconstructed data by
DCT (ground motions)
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Figure 5.19: Fourier spectrum of floor responses obtained from the reconstructed data
by DCT (ground motions)

As a result, the six signals of floor responses observed from the model with sub-

jected to white noise illustrate the resulting natural frequencies of each signal which

are 2, 7.3 and 16.2 Hz, as indicated in Fig. 5.13, whereas the index of natural fre-

quencies extracted from the time history of each signal of the ground motion test are

2, 7.2 and 16.1 Hz, as shown in Fig. 5.15. The performance of the proposed method

is presented using the observed data from white noise and ground motion testing.

This compression method is applied with a threshold rate of 12% of the maximum

DCT energy considered in each signal in order to discard samples below the threshold

level. This process minimizes the size of the data norm to achieve compression and

then recover the compressed signal through IDCT. Compared to the original data

observed from both tests, it is clear that the reconstructed signals through DCT data

compression have maintained the significant characteristics of the signals, where data

recovery seems satisfactory since the reconstructed Fourier spectra in Fig. 5.17 and

Fig. 5.19 show similar modal frequencies with a slight difference of amplitude. With

these results, it is clear that DCT is able to reflect correct dynamic behaviour of the
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structure in the reconstructed data under both random and ground motion data.

In order to check the efficiency of data compression through DCT, application of

TFBSS is performed to separate the modal frequencies observed from the white noise

test. The objective of TFBSS application is to separate multi-component signals and

represent them as sources of the collected signals where each source produces a single

natural frequency. Therefore, this separation can be exploited to check robustness of

data compression using DCT. A data set of 3 seconds is taken from the time histories

(i.e., from 25 to 28 seconds) of the white noise test shown in Fig. 5.12. Date compres-

sion using DCT is applied with a threshold level of 12% of the maximum DCT energy

to neglect values below the limit, and then IDCT is performed to reconstruct the sig-

nals. Application of TFBSS is performed on the original and reconstructed signals

to extract modal responses whose Fourier spectra are shown in Fig. 5.20. Results

of TFBSS prove that data compression through DCT is reliable and satisfactory due

to accomplishment of compression with accurate data recovery as the reconstructed

data seems very similar to the results of the original data.

0 5 10 15 20 25

Q
1
(ω

)

0

0.5

1

1.5
(a)

0 5 10 15 20 25

Q
2
(ω

)

0

0.5

1

1.5

ω (Hz)
0 5 10 15 20 25

Q
3
(ω

)

0

0.5

1

0 5 10 15 20 25

Q
r
1
(ω

)

0

0.5

1

1.5
(b)

0 5 10 15 20 25

Q
r
2
(ω

)

0

0.5

1

1.5

ω (Hz)
0 5 10 15 20 25

Q
r
3
(ω

)

0

0.5

1

Figure 5.20: Fourier spectra of modal responses using TFBSS obtained from (a)
original data and (b) reconstructed data by DCT
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5.2.2 Effect of Discrete Damage

Figure 5.21: Damage occurs on first level of Model B due to loosening of bolt

In the previous model, damage is artificially initiated near the end of one beam of the

first level, as indicated in Fig. 5.21. In this way, the performance of DCT could be

checked to reconstruct data with damage-induced signature as compared to baseline

model. For white noise test, the time histories and Fourier spectra of floor responses

obtained from each accelerometer located on the model are respectively illustrated in

Fig. 5.22 and Fig. 5.23, while the time histories and Fourier spectra of floor responses

obtained from the ground motion test are respectively shown in Fig. 5.24 and Fig.

5.25. Data compression through DCT is then performed on the data observed from

the white noise test, as shown in Fig. 5.26 and Fig. 5.27, whereas the reconstructed

time histories and their Fourier spectra of floor responses obtained from the ground

motion test are respectively indicated in Fig. 5.28 and Fig. 5.29.
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Figure 5.22: Time history of floor responses obtained from Model B after damage
(white noise)
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Figure 5.23: Fourier spectrum of floor responses obtained from Model B after damage
(white noise)
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Figure 5.24: Time history of floor responses obtained from Model B after damage
(ground motions)
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Figure 5.25: Fourier spectrum of floor responses obtained from Model B after damage
(ground motions)
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Figure 5.26: Time history of floor responses obtained from the reconstructed data by
DCT (white noise)

0 5 10 15 20 25

X
r
1
(ω

)

0

0.005

0.01

0 5 10 15 20 25

X
r
2
(ω

)

0

0.005

0.01

ω (Hz)

0 5 10 15 20 25

X
r
3
(ω

)

×10-3

0

2

4

6

0 5 10 15 20 25

X
r
4
(ω

)

×10-3

0

2

4

6

0 5 10 15 20 25

X
r
5
(ω

)

0

0.005

0.01

ω (Hz)
0 5 10 15 20 25

X
r
6
(ω

)

0

0.005

0.01

Figure 5.27: Fourier spectrum of floor responses obtained from the reconstructed data
by DCT (white noise)
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Figure 5.28: Time history of floor responses obtained from the reconstructed data by
DCT (ground motions)
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Figure 5.29: Fourier spectrum of floor responses obtained from the reconstructed data
by DCT (ground motions)

As a result, the six signals of floor responses observed from the model with sub-

jected white noise illustrate the index of natural frequencies extracted from the time

history of each signal which are 1.9, 7.2 and 16 Hz, as indicated in Fig. 5.23, whereas

the index of natural frequencies extracted from the time history of each signal of the

ground motion test are 1.9, 7.2 and 16 Hz, as shown in Fig. 5.25. The performance
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of the proposed method is presented using the observed data from both tests. DCT

is applied with a threshold rate of 12% of the maximum DCT energy considered in

each signal to discard samples below the threshold level. This process minimizes the

size of the data norm to achieve compression and then recover the compressed signal

through IDCT. Compared to the original data observed from both tests, it is clear

that the reconstructed signals through DCT data compression have maintained the

significant characteristics of the signals, where data recovery seems satisfactory since

the reconstructed Fourier spectra in Fig. 5.27 and Fig. 5.29 show the exact values of

actual natural frequencies with a slight difference of amplitude.

In order to check the efficiency of data compression through DCT, application

of TFBSS is performed to separate the natural frequencies observed from the white

noise test. To perform this application, a sample data of 3 seconds is taken from the

time histories (i.e., from 25 to 28 seconds) of the white noise test shown in Fig. 5.22,

and their Fourier spectra are generated. Date compression using DCT is applied with

a threshold level of 12% of the maximum DCT energy to neglect values below the

limit, and then IDCT is performed to reconstruct the signals. Application of TFBSS

is performed on the original and reconstructed signals to extract modal responses

and represent the natural frequencies separately in Fig. 5.30 where the outputs of the

reconstructed data show almost the exact values as the results of the original data.

Summary of frequency analysis obtained from the original and reconstructed data by

DCT is indicated in Table 5.2 for damaged and undamaged tests. Results of TFBSS

prove that data compression through DCT is a robust technique that can recover the

signals from fewer measurements.
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Figure 5.30: Fourier spectra of modal responses using TFBSS obtained from (a)
original data and (b) reconstructed data by DCT

Table 5.2: Summary of TFBSS results obtained from the original and reconstructed
data by DCT for undamaged and damaged tests

Type of test Baseline With Damage
X(ω) Xr(ω) X(ω) Xr(ω)

ωi (Hz) ω1 ω2 ω3 ω1 ω2 ω3 ω1 ω2 ω3 ω1 ω2 ω3

White noise 2 7.3 16.3 2 7.3 16.3 1.9 7.2 16 1.9 7.2 16
Ground motion 2 7.2 16.1 2 7.2 16.1 1.9 7.2 16 1.9 7.2 16
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5.3 Cantilever Beam

Figure 5.31: Cantilever beam attached with a shaker and accelerometers at IIT Kan-
pur

A 1 m long hexagonal cantilever beam is utilized to perform necessary data processing

in order to determine its natural frequency and exploit the data compression tech-

niques. The testing is performed using wired sensors set with sampling frequency of

1000 Hz under random base excitation. Five wired sensors are installed on the beam

as illustrated in Fig. 5.31 where the signals correspond to the sequence of sensors.

Plots of the time histories and Fourier spectra are generated to present the natural
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frequency of this cantilever beam as shown respectively in Fig. 5.32 and 5.33. In ad-

dition, data compression using DCT is performed on the collected data and presented

in Fig. 5.34 and Fig. 5.35.
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Figure 5.32: Time history of the beam responses under random base excitation
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Figure 5.33: Fourier spectrum of the beam responses under random base excitation
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Figure 5.34: Time history of the beam responses obtained from the reconstructed
data
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Figure 5.35: Fourier spectrum of the beam responses obtained from the reconstructed
data

As a result, the five signals of the beam responses observed from the model with

subjected random force illustrate the index of natural frequencies extracted from the

time history of each signal which are 10, 88, and 270 Hz, as indicated in Fig. 5.33.

The performance of the proposed method is presented using the observed data where
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data compression is applied with a threshold rate of 10% of the maximum DCT

energy considered in each signal in order to neglect values below the threshold level.

This process minimizes the size of the data norm to achieve compression and then

recover the compressed signal through IDCT. Compared to the original data, it is

clear that the reconstructed signals through DCT data compression have maintained

the significant characteristics of the signals, where data recovery seems satisfactory

since the reconstructed Fourier spectra in Fig. 5.34 and Fig. 5.35 show the exact

values of actual natural frequencies.
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Figure 5.36: Fourier spectra of modal responses using TFBSS obtained from (a)
original data and (b) reconstructed data by DCT

In order to check the efficiency of data compression through DCT, application of

TFBSS is performed to separate the observed natural frequencies. To perform this

application, a sample data of 10 seconds is taken from the time histories as shown in

Fig. 5.32 (i.e., from 15 to 18 seconds), and their Fourier spectra are generated. After

data compression by DCT is performed on these signals, TFBSS is then applied to

present the modal responses extracted from the original and reconstructed data in

Fig. 5.36 where the original and reconstructed Fourier spectrum present the exact
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values of 10, 95 and 270 Hz. Results of TFBSS prove that data compression through

DCT is reliable and satisfactory as data compression is achieved with accurate data

recovery.

5.4 Full-scale Study

Figure 5.37: Long-span bridge in Thunder Bay

The Main Street Bridge as shown in Fig. 5.37 is located in Thunder Bay, Canada. It

was built in 1960, its length and width are 288 m and 9 m, respectively. The bridge

is supported by 11 piers and maximum height of these piers is 8 m and the spacing

between piers is 53 m. In order to conduct the serviceability assessment of this bridge,

vibration testing was performed on January 20th, 2017 between 9 am - 12 noon. The

temperature during the test was approximately − 5C◦. Six sensors were placed along

the walkway on the North side of the bridge. Sensors were set up to measure uniaxial

vibration in the vertical direction. The data acquisition (DAQ) system is placed at

the centerline of the bridge and the spacing of the sensors were roughly 10, 100 and

200 feet off either side of the DAQ. Tests were conducted with various numbers of

vehicles crossing the bridge at different speeds (50-60 km/h).
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Collected data of one wired sensor from one test is utilized to validate the proposed

methods, LNM and DCT. This data is used to apply compression in order to check

accuracy of reconstruction with considering several rates of compression. Sampling

frequency is here set to be 200 Hz, and only 5000 samples are used for processing.

Using different rates of compression indicates how reconstruction can be effective

using the LNM and DCT methods.
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Figure 5.38: 20% data compression by LNM
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Figure 5.39: 40% data compression by LNM
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Figure 5.40: 60% data compression by LNM
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Figure 5.41: 70% data compression by LNM
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Figure 5.42: 80% data compression by LNM

The selected rates of 20%, 40%, 60%, 70% and 80% are indicated above respec-

tively in Fig. 5.38, Fig. 5.39, Fig. 5.40, Fig. 5.41 and Fig. 5.42; where x(t) is

original, y(t) is compressed and xr(t) is reconstructed. Reconstructed Fourier spec-

trum is almost same as the actual outputs which indicates a sign of a reliable recovery

technique. High rates of data compression clearly results inaccurate reconstruction

especially when exceeding the rate of 40%, as illustrated in the above plots, because

measurements of under-sampled signals are insufficient to recover the signals. It is

meant to exceed the minimum percentage of compression, set by the Shannon theory,

in order to distinguish the efficiency of different compression rates.
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Figure 5.43: Accuracy of data reconstruction for all selected rates of compression

Index of frequency is summarized in Fig. 5.43 to present the accuracy of identify-

ing modal frequencies as obtained in the Fourier spectra. Except 80% compression,

the compression rate shows better performance under 20% and 40% compression. In

case of 60% and 70% compression, the accuracy of third modal frequency is com-

promised. As such, it is clear that CS is a promising technique that can efficiently

recover signals from fewer measurements. CS through LNM has proven its workabil-

ity of reconstructing sparse signals and potentially avoids the issue of missing data

while transmitting. However, accuracy of data reconstruction has become another

challenge encountering this method. As shown in Fig. 5.43, high rates of compres-

sion result useless reconstruction whereas compressing a low rate of samples ensures

perfect recovery of the compressed signal.
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Figure 5.44: Compression by DCT with 10% threshold level

The performance of the proposed DCT method is presented using observed data

from the bridge in Fig. 5.44 and the signals are then reconstructed through IDCT.

As shown in Fig. 5.45, the Fourier spectra of modal responses using TFBSS are

generated to test the reconstructed data by LNM and DCT, where the values of

natural frequencies are indicated in Table 5.3. The reconstructed data by DCT has

produced the same values of modal responses with some mode mixing but atleast the

reconstructed Fourier spectra seem very similar to the original outputs. However, the

reconstructed data by LNM generates the Fourier spectra of model responses with

significant mode mixing. Results prove that the performance of DCT method is better

than the performance of LNM in data compression even for a real-life structure.
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Figure 5.45: Fourier spectra of modal responses using TFBSS obtained from (a)
original data, (b) reconstructed data by LNM and (c) reconstructed data by DCT

Table 5.3: Identification results using the original and reconstructed data by LNM
and DCT

ωi (Hz) ω1 ω2 ω3

Actual 2.8 7.88 16.36
LNM 2.8 6.01 16.42
DCT 2.8 7.88 16.36



Chapter 6

Conclusions and Future Work

Detailed conclusions of the thesis are provided in this chapter to summarize the

outcome of the proposed research towards solving the big data issue in structural

health monitoring. Finally, several recommendations are made to contribute further

in this area as future research.

6.1 Key Conclusions

• DCT is exploited as a data compression technique that can deal with big data

measured from the structural systems. The performance of DCT is compared

with the LNM under a wide range of simulation and experimental models.

• The results show improved performances of DCT with respect to LNM under

various data compression rates, even up to 60%.

• Apart from comparing merely time-structure of data, a newer system identi-

fication algorithm (i.e., TFBSS), is adopted to perform modal identification

and evaluate the performance of DCT in identifying accurate modal frequencies

from the reconstructed data. With this unique approach, the accuracy of data

reconstruction is verified not only using the time-domain, but also in frequency

domain.

• Simulation results show that the DCT-assisted reconstructed data results in

82
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successful identification of all target modes of a 10-DOF model. On the other

hand, LNM yields significant mode-mixing in the resulting modal responses.

• Both implicit and explicit data compression are performed using wireless sensors

where DCT shows better performance compared to LNM. Wireless sensor-based

implicit data compression proves the capability of DCT’s data reconstruction

in real-time application.

• With the aid of a realistic experimental model, it is shown how DCT is able

to reconstruct data with damage signatures. The TFBSS are then applied and

the results show the identified frequencies accurately represent both undamaged

and damaged structures.

• Even with low energy modes and measurement noise, the DCT-assisted data

compression has been successful in identifying modal frequencies of a long-span

bridge.

6.2 Achievements

• Received Mitacs Gloablink Research Award to conduct relevant research intern-

ship in IIT Kanpur, India.

6.3 Future Work

In this thesis, the proposed research is aimed to handle big data collected from struc-

tural systems. The results show the improved performance of DCT in data recon-

struction containing a wide range of dynamical characteristics including low energy
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modes, measurement noise and damage signatures. Further recommendations are

made to contribute in this area.

• Embed the data compression algorithms within the sensor boards such that

real-time data compression can be achieved during the long-term monitoring

of structure and reduce the amount of big data further. This research will be

employed by collaborating with researchers in Computer Science and Electrical

Engineering departments.

• As data compression through DCT is used with a threshold function, the effect

of signal-to-noise ratio will be considered to automate setting up the threshold

level.

• In case of missing data, the performance of data compression needs to be inves-

tigated. Several numerical studies and experimental research are required to be

pursued to initiate this study.

• More implicit data compression is recommended to be performed for full-scale

structures using wireless sensors.

6.4 Acronyms

Following is the list of all relevant acronyms used in this thesis for the convenience of

the readers.
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Table 6.1: List of acronyms

SHM Structural health monitoring
WSN Wireless sensor network
CS Compressive sensing

LNM L1-norm minimization
DCT Discrete cosine transform
DFT Discrete Fourier transform
IDCT Inverse discrete cosine transform

TFBSS Time-frequency blind source separation
DAQ Data acquisition
DOF Degree-of-freedom
BCS Bayesian compressive sensing
BSS Blind source separation
MSE Mean square error
CR Compression ratio
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Appendix

A brief operating instruction of wireless sensors is presented in this appendix.

A Implementation of Narada Sensors

It is required to install the Narada data acquisition software (from Civionics website)

in a computer as illustrated in Fig. A1(a), to adjust and check the data acquisition of

attached sensors. The data acquisition file shown in Fig. A1 (b) includes important

specifications that can identify testing properties such as: sampling frequency, time

duration, and numbers of sensing units and transducers, where they can be customized

as desired. The approach of implementing Narada system is explained in the following

steps:

1. Position the Narada transducers appropriately on desired locations, and attach

them to the sensing units to wirelessly communicate with the base station that

is connected to a computer within a distance range.

2. Once the software is installed, a list of functions is available to adjust and utilize

the Narada sensor as desired.

3. Identify the quantity and serial number of sensing units and transducers in the

data acquisition file as well as sampling frequency and time duration.

4. Select option 10 from the list of functions shown in Fig. A1 to start collecting

data from the channels. Recording will continue until the pre-determined time

ends.

5. Ensure that testing is successfully completed and data observed from each chan-

nel is saved in a separate file.
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(a) Narada software (b) Data acquisition file

Figure A1: Data acquisition system of Narada sensor

As shown in Fig. A1(b), a sampling frequency of 200 Hz is set to measure data

for 25 seconds which results in 5000 samples of data collection. The number of

sensing units used for testing must be given in row 4 followed by the serial number

of each unit in row 5 (i.e., serial number can be found on the unit). The numbers

of transducers and channels used for testing are identified in the last two lines where

the sequence of rows corresponds to the sequence of units’ serial numbers entered

in the file. For example, the last line in Fig. A1 (b) is written to utilize 3 sensing

transducers attached to channels 0, 1 and 3 of unit number 12.


