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Abstract 

In last few decades, Structural Health Monitoring (SHM) has been an indispensable subject 

in the field of vibration engineering. With the aid of modern sensing technology, SHM has 

garnered significant attention towards diagnosis and risk management of large-scale civil and 

mechanical structures. In SHM, system identification is one of major building blocks through 

which unknown system parameters are extracted from vibration data of the structures. Such 

system information is then utilized to detect the damage instant, severity and extent to 

rehabilitate and prolong the existing health of the structures. In recent years, Blind Source 

Separation (BSS) has become one of the newly emerging advanced signal processing 

techniques for output-only system identification of structures. This is attractive for large 

structures since the input information is not readily available. 

In this work, two new damage detection techniques are proposed integrating a 

special class of BSS known as Second-Order Blind Identification (SOBI); first with the 

Hilbert transform (HT) and second with the time-varying auto-regressive (TVAR) modeling 

to track the change of modal parameters of the structure. The proposed method is validated 

considering discrete damage cases in a suite of numerical studies and experimental models 

followed by a full-scale structure. The results are then compared with Finite Element (FE) 

modeling in case of lab-scale study and with the stochastic subspace identification (SSI) 

method in the case of full-scale structure. The proposed method (SOBI with TVAR) is then 

employed to identify the instantaneous frequencies (IF) of an axially-moving cantilever beam 

simulating the case of progressive damage. Identification of the IFs is also carried out using 

three different algorithms namely the wavelet transform (WT), the Hilbert vibration 

decomposition (HVD), and the HVD plus the TVAR modeling.  
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Chapter 1 

Introduction 
 

1.1  Overview 

Vibration analysis is the key to understand the underlying characteristics (e.g., modal 

parameters) of structural and mechanical systems. The changes in the modal parameters of 

structures under operational or critical events are inevitable and can be considered as damage 

in the system. Failures of large-scale civil infrastructure have significant societal and human 

consequence. Sudden or continuous degradation of these structures is inevitable due to 

varying environmental conditions, man-made excitations or natural hazards. Early detection 

of damage under operational or in-service condition is of paramount importance to avoid 

further risks in life safety and economic losses. In the case of mechanical systems, 

operational changes could also occur for some applications e.g., rotating machines, 

continuous change in robotic arms through prismatic joints, thread lines in textile industries, 

active suspension control in automotive industries and tethered satellite in space exploration. 

Structures or machines whose parameters change can be considered to be time-varying 

systems. Recently structural health monitoring (SHM) has garnered tremendous attention 

towards investigation and rehabilitation of such time-varying systems. Research in SHM has 

focused on developing sophisticated damage detection methods under a wide range of 

challenging situations (Doebling et al., 1996; Carden and Fanning 2004; Yan et al., 2007; 

Megalhaes et al., 2012; Kuwabara et al., 2012; Chao et al., 2014).  This study is motivated to 

develop a damage detection method which is tailored to SHM using the framework of blind 

source separation (BSS) (Kerschen et al., 2007; Sadhu, 2013). The BSS has emerged as new 

and powerful signal processing method for modal identification and in this thesis, it is 

explored as a possible candidate for robust damage detection algorithm. 
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1.2 Literature Review on Time-varying System Identification 

Over last few decades, numerous vibration-based damage detection algorithms have been 

proposed in the literature (Doebling et al., 1996; Carden and Fanning, 2004). These 

researches can be primarily classified into two parts; parametric methods and non-parametric 

methods. Details of both the methods are presented in the following subsections. 

1.2.1 The Parametric Damage Detection Methods 

The parametric damage detection methods estimate the physical parameters (e.g. stiffness or 

masses) of the structure. In Feng et al. (2015), frequency response functions of measured 

structural responses are used to estimate the physical parameters of the structure through 

which damage is detected. Time-series models are also well-known techniques for feature 

extraction from which the change in stiffness is predicted. Many researchers (Bodeux and 

Golinval 2001; Nair et al., 2006; Noh et al., 2009; Hsu et al., 2011; Yao and Pakzad 2012) 

use the auto-regressive (AR) model to approximate the vibration signal then the parameters 

or features of AR model are utilized to identify damage in the structure. Furthermore, other 

methodologies (Kuwabara et al., 2012; Bao et al., 2013) use the statistical information of 

structural responses to estimate the physical parameters and detect any variation. Garcia and 

Trendafilova, (2014), use principal component analysis that is based on cross-correlation 

matrices to identify the inherent parameters of laminar composite beam. Another recent 

method that gains popularity in structural damage detection is the genetic algorithm (GA). 

The GA is considered to be the most powerful search algorithm according to Chen and 

Nagarajaiah, (2011). Consequently, the estimated parameters are then successively compared 

with those from the Finite element (FE) model (Bao et al., 2013; Behmanesh and Moaveni, 

2014). Nevertheless, the need for an accurate FE model and the associated computational 

cost and modeling error in the parametric methods limit their applications towards damage 

detection algorithms. 
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1.2.2 The Non-parametric Damage Detection Methods 

The non-parametric methods overcome the aforementioned limitations by utilizing advanced 

signal processing techniques over the vibration measurements to monitor the condition of a 

structure. In contrast to the parametric damage detection methods, the non-parametric 

methods assume no models about the structural behaviors. This category of methods exploits 

classical time-frequency analysis including wavelet transform (WT) (Yun et al., 2011; Su et 

al., 2014; Dziedziech et al., 2015), empirical mode decomposition (EMD) and Hilbert Huang 

transform (HHT) (Xu and Chen, 2004; Yang et al., 2004; Lin et al., 2005; Kunwar et al., 

2013), synchro-squeezed transform (Amezquita-Sanchez and Adeli, 2014), Hilbert vibration 

decomposition (HVD) (Feldman, 2006; 2011), to identify damage by tracking the global 

information such as time-varying modal parameters (i.e., frequency, damping and mode 

shape). Recently, a newer class of signal processing method called Blind Source Separation 

(BSS) has garnered a significant attention in the field of ambient modal identification 

(Antoni, 2005; Poncelet, 2007; Yang and Nagarajaiah, 2011; Hazra et al., 2012; Sadhu et al., 

2013; Sadhu et al., 2014; Ghahari et al., 2013; Yang and Nagarajaiah, 2014). In this thesis, 

BSS has been expanded further to develop a damage detection method.  

1.3 Blind Source Separation (BSS) 

BSS has been extensively used as a powerful signal decomposition tool in the field of 

acoustic and image processing (Antoni, 2005). Using BSS, a multi-component signal is 

primarily decomposed into its inherent signals (called sources) by utilizing its second-order 

statistics such as auto-correlation functions (Belouchrani et al., 1996) or higher-order 

statistics such as non-Gaussianity (Antoni, 2005). In the previous studies, independent 

component analysis (ICA), a variant of higher-order BSS, is employed towards structural 

damage detection (Zang et al., 2004; Yang and Nagarajaiah, 2011; Chen et al., 2015). 

However, ICA is underscored due to its poor performance associated with higher damping 

and measurement noise. Principal component analysis (PCA) is further explored as fault 
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detection methods with the aid of wavelet transform (Kesavan and Kiremidjian, 2011, 

Tibaduiza et al., 2015). Successively, using auto-correlation functions, second-order blind 

identification (SOBI) is undertaken to conduct damage detection (Sadhu and Hazra, 2013; 

Spiridonakos et al., 2014). In Sadhu and Hazra, (2013), the SOBI method is adopted in 

multiple windows of incoming data to discriminate the effect of damage. However the SOBI 

operation in multiple windows of vibration data becomes computationally expensive and 

insensitive to the lower level of damage. In this thesis, the performance of the SOBI has been 

improved with the aid of time-varying auto-regressive (TVAR) modeling. 

The SOBI method (Belouchrani et al., 1997) is based on the second-order statistics 

(i.e., auto-correlation) and works under the assumption that modal responses are stationary 

and uncorrelated with different spectra. However, when an abrupt change occurs in the 

structure, the vibration response signals would contain the modal information of undamaged 

and damaged states of the structure. Therefore, the modal response becomes non-stationary 

containing mixed-modal responses (MMR). In order to capture the behavior of MMR and 

identify the time-variant modal parameters, time-varying auto-regressive (TVAR) modeling 

is utilized. This novel approach enhances the use of the SOBI method for damage detection 

and can be tailored to the SHM application. The proposed algorithm is explored in 

identifying both discrete and progressive damage based on the output-only measurements. 

Several experimental and full-scale structures are used to validate the proposed method. 

1.4 Objectives 

The main objectives of this thesis are summarized as follow: 

 The first objective of the thesis is to develop a new method for damage detection of 

linear time-varying (LTV) systems.   

 The second objective of the thesis is to demonstrate the proposed method through 

numerical simulations, lab-scale and full-scale structures. 
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 The third objective of the thesis is to identify the instantaneous frequencies (IF) of 

an axially moving cantilever beam using the proposed algorithm. The validity of 

the proposed algorithm will be investigated by numerical simulation. 

 The fourth objective of the thesis is to employ the Wavelet transform (WT) and the 

Hilbert vibration decomposition (HVD) method to identify the IF of the axially 

moving cantilever beam.  

 The fifth objective of the thesis is to identify IF of the axially moving cantilever 

beam by utilizing the HVD plus TVAR method. 

1.5  Thesis Outline 

The following chapters of the thesis are organized as follows:  

 

Chapter 2 presents the theoretical development of the proposed algorithm. The effectiveness 

of the proposed algorithm is validated in the case of an abrupt change in the characteristics of 

the structure with the aid of a numerical example.  

 

Chapter 3 presents the validation of the proposed algorithm using the experimental studies of 

a lab-scale structure and a full-scale structure respectively. Both of the studies contain an 

abrupt change in their modal information. The results obtained from both of the studies are 

compared the parameters obtained using the Finite Element (FE) method and the Stochastic 

Subspace Identification (SSI) method respectively.  

 

Chapter 4 addresses identification of instantaneous frequencies of an axially-moving 

cantilever beam. First the performance of the proposed algorithm is tested using computer 

simulation. Then the three different methods, namely, the WT, the HVD, and the HVD plus 

TVAR modeling, are employed using the experimental responses. 
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Chapter 5 presents the summary and main conclusions of the research. Recommendations for 

future study are also suggested.  
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 Chapter 2 

Damage Detection Based on Blind Source Separation 
 

In this chapter, a novel approach is undertaken to identify and assess the severity of damage 

in deteriorating structures under natural excitations (e.g. wind or earthquake). The proposed 

algorithm is based on the framework of Second-Order Blind Identification (SOBI) 

(Belouchrani et al., 1997). In addition, two different post-processing steps are adopted to find 

damage instant in the structure. The extraction of modal responses is first undertaken using 

the SOBI in both of the proposed algorithms. In one method the Hilbert transform (HT) is 

utilized to identify the damage instant and in the other method the time-varying auto-

regression (TVAR) modeling is employed to find damage instant. The two methods improve 

the implementation of the SOBI method for the classification and identification of linear 

time-varying (LTV) systems.  

The chapter is organized as follows: Section 2.1 presents the proposed algorithm, 

Section 2.2 validates the proposed algorithm using a 5-DOF model, and finally Section 2.3 is 

comprised of summary and conclusions.   

2.1  Proposed Algorithm 

2.1.1  Second-Order Blind Identification (SOBI) 

The basic dynamics of a structure can be considered a linear, classically damped, and 

lumped-parameter sn  degrees-of-freedom system, subjected to an excitation force ( )F t . 

 

 [ ]{ ( )} [ ]{ ( )} [ ]{ ( )} { ( )}M x t C x t K x t F t+ + =    (2.1.1) 

 

where, ( )x t  is a vector of displacement coordinates, M, C and K are the mass, damping and 

stiffness matrices of the system respectively, ( )F t  is the input excitation to the system that is 

assumed to be Gaussian and broadband. The solution to equation (2.1.1) can be written in 

terms of superposition of vibration modes with the following matrix form: 



 

 

8 

 

 { ( )} [ ]{ ( )}x n A s n=  (2.1.2) 

 

where, mx n NÎ ´  is the measurement matrix composed of the sampled components of x , 

ss n NÎ ´  is a matrix of the corresponding modal coordinates, 
m sn nA ´  is the modal 

transformation matrix, and N is the number of data points of the measurements. The columns 

of A matrix are linearly independent and they represent the mode shapes of structure. The 

main objective of SOBI (Belouchrani et al., 1997) is to formulate two covariance matrices 

[ (0)]xR  and [ ( )]xR p  evaluated at the time lag zero and p from the observed measurements, 

then simultaneously diagonalize them in order to find unknown mixing matrix, A. In this 

way, the proposed damage detection method takes advantage of the SOBI method in 

separating the modal responses containing both damaged and undamaged states.  

 

The essence of the SOBI method is as follows, 

 

 
[ (0)] [{ ( )}{ ( )} ] [ ][ (0)][ ]

[ ( )] [{ ( )}{ ( )} ] [ ][ ( )][ ]

T T
x s

T T
x s

R x n x n A R A

R p x n x n p A R p A

= E =

= E - =
  (2.1.3) 

where, 

 [ ( )] [{ ( )}{ ( )} ] [ ]T
sR p s n s n p I= E - =   (2.1.4) 

 

There are three main steps of SOBI: whitening, orthogonalization and unitary transformation. 

The measured responses { ( )}x n are zero-mean, and the whitening is obtained as follows. The 

singular value decomposition is used to diagonalize [ (0)]xR :  

 

 [ (0)] [{ ( )}{ ( )} ] [ ][ ][ ]T T
x x x xR x n x n V Vl= E =   (2.1.5) 
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where [ ]xV  is the eigenvectors matrix and [ ]xl  is the eigenvalue matrix. The whitened 

signals are then computed as shown in equation (2.1.6) and the matrix [ ]Q  is realized as 

whitening matrix.  

 
1
2{ ( )} [ ] [ ] { ( )}

[ ]{ ( )}

T
x xx n V x n

Q x n

l
-

=
=

  (2.1.6) 

 

The reason for whitening is to remove the temporal correlation between the measured 

responses and it is shown in Figure  2.1. 

 [ (0)] [{ ( )}{ ( )} ] [ ]T
xR x n x n I= E =   (2.1.7) 

 

Due to the whitening process [ ( )]xR p  becomes[ ( )]xR p , which is given by:  

 
1

1
[ ( )] [ { ( )}{ ( )} ]

[ ][ ( )][ ]

[ ][ ][ ( )][ ] [ ]

N
T

x
n

T
x

T T
s

R p x n x n p
N

Q R p Q

Q A R p A Q

=

= -

=

=

å
  (2.1.8) 

 

Equation (2.1.8) states that whitened covariance matrix at a particular time-lag can be 

diagonalized; therefore the product [ ][ ]Q A  is realized as unitary matrix and can be 

determined. This process of diagonalization is implemented numerically. During the 

orthogonalization process, the whitened covariance matrix [ ( )]xR p  is diagonalized such that 

eigenvalue decomposition satisfies, 

 

 [ ][ ( )][ ] [ ]T
x x x xV R p V l=   (2.1.9) 
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According to (Belouchrani et al., 1997), the diagonal matrix [ ]xl  should always be the same 

matrix regardless of the lag value p  in [ ( )]xR p  and also eigenvalues be distinct, thus the 

mixing matrix can be estimated by the following equation, 

 

  1[ ] [ ] [ ] [ ][ ] [ ]T
x x x xA Q V V Vl-= =   (2.1.10) 

 

In order to find the unitary matrix [ ][ ]Q A  that diagonalizes the whitened covariance matrix 

[ ( )]xR p  at one or several non-zero time lags, SOBI undertakes an approximate joint 

diagonalization approach based on Givens rotation technique (Belouchrani et al., 1997). 

Consequently, the associated problem becomes to find minimum performance index Á , such 

that unitary diagonalization satisfies [ ] [ ] [ ( )][ ]T
xD V R p V=  (Belouchrani et al., 1997), 

 

 
2

1

( , )
s

p
ij

p i j n

V p D
£ ¹ £

Á = å å   (2.1.11) 

 

where, [ ]V  is the unitary matrix and also the joint approximate diagonalizer for all p-shifted 

covariance (Belouchrani et al., 1997). Therefore, the estimated sources can be obtained once 

the estimated mixing matrix is calculated, 

 

 1{ ( )} [ ] { ( )}s n A x n-=
   (2.1.12) 

 

 And now the estimated sources are spatially uncorrelated as defined by the equation 

below, and the illustration is shown in Figure  2.2.  

 

 [ (0)] [{ ( )}{ ( )} ] [ ]T
sR s n s n I= E =

    (2.1.13) 
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Since the vibration data contains a discrete damage event, each modal response contains 

sources with both undamaged and damaged states (i.e. mixed modal responses (MMR)). In 

order to separate them, the Hilbert Transform (Feldman, 2006) seems to be an ideal choice 

because of its time-varying nature.  

 

 
Figure  2.1: Sources 1( )s t  (blue) and 2( )s t  (red) obtained from the SOBI are temporally 

uncorrelated 
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Figure  2.2: Sources 1( )s t  and 2( )s t  obtained from the SOBI are spatially uncorrelated 

2.1.2 The Hilbert Transform 

After the sources are obtained from the SOBI algorithm, it can be shown that there still exists 

some mode-mixing in each individual source and an acronym used throughout the thesis to 

represent this phenomenon; mixed-modal-response (MMR), which corresponds to 

undamaged and damaged states of the structure. Thus, there is a need to separate the 

undamaged modal source ( )uds t  and damaged modal source ( )ds t  in order to obtain the 

accurate mixing matrices udA  and dA  . Therefore, Hilbert transform is employed to trace the 

change in frequencies of all the MMR. Once the time instant of the change is obtained, the 

separation of damaged and undamaged states can be obtained easily. The Hilbert transform 

(HT) of a signal can be obtained using the following equation: 
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t t
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where, H represents the Hilbert function, which states that any real signal ( )s t  convolves 

with 
1

tp
 resulting in a quadrature signal of the real signal. Because of integral formulation 

the quadrature signal could be obtained by using Cauchy principal value. In other word, from 

equation (2.1.14), one could get the conjugate pair of the observed signal. Consequently, 

adding the initial signal with its counterpart quadrature signal, a complex signal is formed 

that only has the positive spectrum. The combined new signal is known as the analytic signal 

in the literature.  

 ( )( ) ( ) ( ) ( ) j tz t s t iy t A t e q= + =   (2.1.15) 

where, 

 
1

2 2 2( ) [ ( ) ( )]A t s t y t= +   (2.1.16) 

 ( )-1( ) tan
( )

y t
t

s t
q =   (2.1.17) 

To find the instantaneous phase information from equation (2.1.15), it is recognized 

that equation (2.1.17) is a piece-wise function. At a damage instant, this piece-wise function 

might increase or decrease in slope thus taking the time derivative of instantaneous phase 

resulting in instantaneous frequency (IF) as shown in equation (2.1.18).  

 

 
2

( ) 1 ( ) ( )
( ) [ ( ) ( ) ]

( )

d t dy t ds t
t s t y t

dt dt dtA t

q
w = = -   (2.1.18) 

 

The primary idea of the current research is to use the SOBI method which is robust in 

delineating modal responses, but fails in the case of closely spaced modes. The modal 

responses obtained from the SOBI exhibit bi-spectral component (Ann et al., 2013) (i.e. 

MMR), meaning the presence of damage and undamaged states. As a result, the HT is an 

ideal method to detect the change in frequencies of MMRs.  
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There are two drawbacks with the HT (Feldman, 2006). First, the frequency 

resolution decreases when modulated amplitude ( )A t  becomes small, as shown in equation 

(2.1.18), especially in case of free vibration where the transient response ( )A t  converges to 

zero faster specifically in higher modes. The second drawback is the incomplete periodicity 

that is present at the beginning and end of a signal which affects the estimation of IF in 

equation (2.1.18). A simple sinusoidal function with a discrete change in frequency after 

some interval is considered to illustrate the two problems associated with the HT. The first 

drawback is illustrated in the first row of Figure  2.3. The second drawback is illustrated in 

second row of Figure  2.3. These drawbacks make the identification of damage instant 

difficult. Thus, a more sophisticated method to detect the damage instant is needed. 
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Figure  2.3: Drawbacks associated with the Hilbert transform 
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2.1.3  Time-varying Auto-Regressive (TVAR) Modeling 

Once the modal responses are obtained from SOBI, the next step is to identify the damage 

instant. In order to characterize the behavior of MMR sources, the TVAR modeling (Nguyen, 

2009) is adopted here instead of the HT. Such a model tracks the real-time changes of the 

model coefficients revealing the faults in the structures. Let, ( )y n  represents the MMR 

sources, and ( )v n  denotes the zero-mean Gaussian measurement noise with variance 2
vs . 

Then the AR model of order p can be represented as: 

 

 
1

( ) ( ) ( )
p

k
k

y n a y n k v n
=

= - +å   (2.1.19) 

However, because of the non-stationary nature of the MMR sources, recursive 

modeling requires a time-varying approach in which ka  becomes ( )ka t . For this purpose, the 

Kalman filter is utilized to estimate these time-varying coefficients, from the vibration 

measurements (Nguyen, 2009). The following equation is the discrete representation of the 

( )ka t  coefficients and ( )w n  is the process noise with variance 2
ws  and covariance of 

2
w p p wP I s´= . Both noise measurements ( )v n  and ( )w n  are mutually independent and 

uncorrelated.  

 

 ( ) ( 1) ( 1) ( )x n n x n w n= G - - +   (2.1.20) 

 ( ) ( ) ( ) ( )y n C n x n v n= +   (2.1.21) 

 

where, 1 2( ) ( ( ), ( ),..., ( ))Tpx n a n a n a n=  is the unknown state vector. The matrix

( 1) p pn I ´G - =   is assumed to be an identity matrix. ( ) ( ( 1), ..., ( ))C n y n y n p= - -  is the 

observation data with discrete n-step. The Kalman filter has mainly two processes: one is the 
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time update (prediction) and the other is measurement update (correction). At each step the 

Kalman filter equations can be written as (Bodeux and Golinval, 2001; Nguyen, 2009): 

 

 ( | 1) ( 1 | 1)x n n x n n- = - -   (2.1.22) 

 2( | 1) ( 1 | 1)x x wP n n P n n Is- = - - +   (2.1.23) 

 ( | 1) ( ) ( | 1)y n n C n x n n- = -   (2.1.24) 

 2 2( | 1) ( ) ( | 1) ( )Ty x vn n C n P n n C ns s- = - +   (2.1.25) 

and  

 2 1( ) ( | 1) ( ) ( | 1)T
x yK n P n n C n n ns -= - -   (2.1.26) 

 ( | ) ( | 1) ( )[ ( ) ( | 1)]x n n x n n K n y n y n n= - + - -   (2.1.27) 

 ( | ) [ ( ) ( )] ( | 1)x xP n n I K n C n P n n= - -   (2.1.28) 

 

where, ( | 1)x n n -  represents a priori  estimate and its linear combination would result in

( | )x n n  which is a posteriori . The Kalman gain, ( )K n  gives a weightage to the prediction 

error ( ) ( | 1)y n y n n- - , to minimize the state estimation error ( | )x n n  (Nguyen, 2009). 

( | 1)xP n n -  and ( | )xP n n  are the priori  and posteriori  error covariance estimates.  

The details of the proposed method is now illustrated using the flowchart as shown in 

Figure  2.4. Vibration response ( )ix t  is first processed by the SOBI to obtain the MMR 

signals, then TVAR is utilized to extract the time-varying coefficients ( )ia t  through which 

damage instant dt  is detected. Furthermore, all the MMR signals are then segmented using dt  

into undamaged ( )uds t  and damaged ( )ds t  modal responses respectively, and then modal 

parameters of damaged and undamaged states are estimated. 
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Figure  2.4: Flowchart of the proposed method 

 

2.2  Damage-Based Studies: Identification of Damage Instant and Modal Parameters 

In this section, the proposed damage detection algorithm is applied to a 5-storey shear-beam 

structural model (Sadhu, 2013). The governing equations of the system are represented in the 

following state-space model:  

 
{ ( )} [ ]{ ( )} [ ]{ ( )}

{ ( )} [ ]{ ( )}

x t A x t B u t

y t C x t

= +

=


  (2.2.1) 

 

where { ( )}x t 	is the state vector, [ ]A  is referred to as the state matrix, { ( )}u t  represents the 

excitation, and [ ]B  is the input influence matrix, [ ]C  is the observation matrix and { ( )}y t  

represents the system’s output. In this example, the model is excited by Gaussian white noise 

at the base. The state matrix [ ]A  is composed of [ ], [ ]M C-  and [ ]K 	matrices as follows. 

 

 5 5 5 5
1 1

0
[ ] x xIA

M K M C- -

é ù
ê ú= ê ú- -ê úë û

  (2.2.2) 

The mass of each floor is taken as 19.57 kg. The lateral stiffness of five columns is 

assumed to be 14.6, 52.7, 58.3, 58.6 and, 77.2 kN/m, respectively.  The modal damping for 
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all the modes is assumed to be 2%. The resulting natural frequencies of the model are 0.91, 

3.37, 7.1, 10.66 and 12.73 Hz respectively. The mode shapes of the undamaged (UD) 

structure (normalized with respect to first floor) are shown in Figure  2.5. 

 

 

Figure  2.5: Mode shapes of the 5-storey simulation model 

 

To demonstrate the proposed method, the stiffness of each column of the 5-DOF 

model is reduced by 35% at time instant 25dt =  seconds. The overall reduction in stiffness 

subsequently decreases the natural frequencies of each mode of the structure. Figure  2.6 (a) 

shows the Fourier spectra of the observed signal from each floor with measurements up to 

25dt =  seconds that primarily contains the undamaged frequencies. The measurement from 

each floor shows approximately five peaks in frequency domain which corresponds to a 

linear combination of five individual modes. Figure  2.6 (b) shows the Fourier spectra of the 

measurements up to 50 seconds which contain the natural frequencies of both the damaged 

and undamaged structures. Subsequently, five pairs of frequencies (a total of 10 peaks – 5 

peaks from undamaged states and 5 from damaged states) are observed in this data. This data 

is now utilized to conduct the damage detection using the proposed method. 
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Figure  2.6: Fourier spectra of five floor responses of 5-DOF model (a) before and (b) after 

damage 

 

The SOBI algorithm (Belouchrani et al., 1997) is first employed to extract the modal 

responses of the structure. The Fourier spectra of the resulting modal responses are shown in 
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measurements are used in the SOBI method resulting an underdetermined system 

identification problem where the number of measurements is less than the number of target 

modes of interest. However, the SOBI algorithm works only for a fully-determined case or 

over-determined problem (Sadhu 2013). Therefore, it is expected that the SOBI method alone 

cannot separate individual undamaged and damaged frequencies (i.e. 10 frequencies), which 

is also reflected in Figure  2.7 where each modal response contains a pair of damaged and 
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undamaged frequencies of each mode (e.g., 0.71 and 0.91 Hz, and so on). The reduction in 

frequencies represents the damaged frequencies of the building which are 0.71, 2.68, 5.74, 

8.64 and 10.2 Hz respectively. The estimated mixing matrix obtained from equation (2.1.10) 

contains the mixed information of the damaged and the undamaged modal responses and 

such contamination of both the states is referred in this study as mixed-modal-response 

(MMR). As the standard SOBI algorithm is unable to separate damaged and undamaged 

modal responses, the time-varying autoregressive (TVAR) modeling is utilized to address 

this limitation of SOBI.  In what follows, it will be shown how HT and TVAR modeling of 

modal responses will be utilized to detect damage instant and the severity of damage. 

 

Figure  2.7: Fourier spectra of the modal responses of 5-DOF system obtained using SOBI 
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The key idea to separate the undamaged and damaged modal frequencies resulted 

from SOBI would be to track the damage instant. As soon as the damage instant is identified, 

the signal can be separated into two segments containing undamaged and damaged states. A 

popular technique to find instantaneous frequency for a non-stationary signal is Hilbert 

transforms (HT) (Yang et al., 2004). As an initial attempt, HT is first applied to individual 

modal responses. The results are shown in Figure  2.8. In this figure, the sudden reduction of 

frequencies can be seen in all MMRs (i.e. modal responses), however because of relatively 

small difference between udw  and dw , it is somewhat difficult to accurately identify the 

damage instant. Moreover, as mentioned in section 2.1.2 the end effects of HT (Yang et al., 

2004; Xu and Chen, 2004) pullulates further complexities to this problem. Therefore, a more 

robust isolation of damage instant is required to solve this problem. 
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Figure  2.8: Hilbert spectra of all MMRs of 5-DOF system 

 

In order to address the limitations of the HT, the TVAR method is utilized to detect 

damage instant. Since, the MMRs are mono-component in nature; a low model order would 

be sufficient (Sadhu, 2013). Figure  2.9 shows that by taking the first MMR and processing it 

through the TVAR method, the time-dependent coefficients of the TVAR reveal the accurate 

damage instant at 25dt =  seconds. Figure  2.10 shows the TVAR coefficients of all sources 
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be readily detected using the TVAR coefficients. In this study, only the first MMR is utilized 

to detect the damage instant. This confirms the suitability of the TVAR method for damage 

instant detection, and addresses the limitation of the SOBI in delineation of mode-mixing. It 

may be noted that the model order selection for a time series is a mathematically intensive 

exercise. However, since each of the modal responses resulting from the SOBI contains a 

single frequency; relatively low model order (say, 2) can be readily used instead. Such simple 

yet powerful decomposition and modeling tool makes the proposed method amenable 

towards online damage detection scheme for civil engineering structures. 
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Figure  2.9: TVAR modeling of the first MMR of 5-DOF system 

 
Figure  2.10: TVAR modeling of all MMRs of 5-DOF system 
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Table  2.1: Identified frequencies of undamaged and damaged states of 5-DOF model 

Mode # udw  [Hz] dw  [Hz] Severity of damage [%] 

1 0.91 0.71 21.9 

2 3.37 2.68 20.5 

3 7.11 5.74 19.3 

4 10.66 8.64 18.9 

5 12.73 10.2 19.8 

 

 

As soon as the damage instant is identified, the modal responses are divided into 

undamaged and damaged segments. Considering that the mixing matrix from equation 

(2.1.10) is significantly erroneous due to the presence of mode mixing in the sources; the 

SOBI algorithm can be utilized again on the separated modal responses to obtain the correct 

estimation of ˆ
udA  	and ˆ

dA   mixing matrices (i.e., mode shapes) respectively. Figure  2.11 and 

Figure  2.12 show the separated sources of the 5-DOF model for the undamaged and damaged 

states. The detailed modal identification results are finally summarized in Table  2.1 which 

are well matching with their theoretical values. Moreover, the percentage difference in the 

frequencies represents the severity of damage. 
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Figure  2.11: Separated sources ( )uds t   of undamaged states of 5-DOF system 
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Figure  2.12: Separated sources ( )ds t  of damaged states of 5-DOF model 

2.3  Summary 

In this chapter, a new damage instant detection method is presented which is tailored to the 

advanced structural health monitoring. The proposed method overcomes the limitation of 

SOBI in terms of separating the damaged and undamaged state information of the structure 

by employing TVAR algorithm. The HT method was initially attempted to identify the 
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 Chapter 3 

Experimental Studies 
 

This chapter demonstrates the validity of the proposed algorithm considering two lab-scale 

models and UCLA Factor building. The chapter is organized as follows: Section 3.1 presents 

the experimental setup, Section 3.2 presents two lab-scale models in terms of damage cases, 

Section 3.3 presents full-scale study of UCLA Factor building, and the summary and key 

conclusions are presented in Section 3.4. 

3.1  Experimental Setup 

An experimental model is constructed to validate the proposed damage detection method in a 

real-time setting. Figure  3.1 shows the experimental building model and its finite element 

(FE) model used for this study. Three accelerometers with a sensitivity of 1 V/g are attached 

to the individual floors of the structure, and a data acquisition system manufactured by Data 

Translation(R) is used to collect the vibration data subjected to an impulse hammer. The 

masses from top to first floor are 3.2, 1.1 and 0.656 kg, respectively. The two-side columns 

are made of aluminum with a mass of 0.718 kg and the dimensions are 776.5 mm (height) x 

107.2 mm (width) x 3.08 mm (thickness) with 257.1 mm (height) between floors. The FE 

model of this structure is constructed using S-Frame® software. This model can be readily 

utilized to validate the accuracy of the proposed method in the subsequent sections 
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(a) 

 

(b) 

 
Figure  3.1: (a) Actual model and (b) FE model of the 3-DOF experimental setup 

3.2  Damage Cases  

Two realistic cases of damage are employed in this study; one with changes in mass and the 

other with changes in stiffness. Therefore, the 3-DOF model has two baseline systems (say, 

C1 and C2). In the first case (C1), an additional mass of 1.6 kg was added to the top floor 

during the vibration as shown in Figure  3.2 (a). In the second case (C2); a more realistic 

scenario is considered which is changing the stiffness of the structure. To do this, additional 

steel wire bracing connected to the 2nd floor from the red-colored base is used to stiffen the 

structure.  During its vibration, the steel wires were cut suddenly and thereby, the overall 

stiffness of the structures is reduced. This case is analogous to a practical situation where the 

columns of a civil engineering structure get damaged due to earthquake or blast event. The 
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proposed output-only damage detection method is now applied to the vibration data collected 

using the accelerometers. 

(a) 

 

(b) 

 
Figure  3.2: Initiation of damage by adding (a) mass and (b) stiffness 

 

3.2.1 Damage Identification in C1 

Figure  3.3 shows the FFT spectra of the measured signals and their modal responses resulting 

from SOBI. There are three pairs of frequencies existing in the vibration data of each floor. 

Each pair of frequencies corresponds to individual modes of the undamaged and damaged 

states. The contribution of the higher modes in the 3rd floor response is significantly small; 

this is because the mass of the 3rd floor is low compared to the other two floors. First, the 
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SOBI is employed to delineate the modal sources as shown in Figure  3.3 (b). As expected, 

the MMRs can be observed in each resulting modal responses.  

To observe the sudden reduction of frequencies in MMR, the HT is first utilized. 

Consequently, as shown in Figure  3.4, the neighborhood of the damage instant cannot be 

accurately identified using the HT. The damage induced in the structure is approximately 

between 2 to 4 seconds. 

 

  
Figure  3.3: Fourier spectra of (a) the observed signals and (b) MMRs of C1 
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Figure  3.4: HT applied to all MMRs of C1 

 

Now, the modal responses of SOBI are fed into TVAR and the time-varying 

coefficients of the TVAR algorithm detect the damage instant dt  accurately as shown in 

Figure  3.5 and Figure  3.6. The damage occurred in S1 at 3.2dt =  seconds due to increase in 

mass at the top floor level. It is observed that the damage instant could only be detected 

through dominant modes because the difference between the damaged and undamaged 

frequencies of third mode is significantly low. Therefore, 1( )a t  and 2( )a t  of 3( )s t  in 

Figure  3.6 shows insignificant changes. 
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Figure  3.5: TVAR modeling of the first MMR of C1 

 
Figure  3.6: TVAR modeling of all MMRs of C1 
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(a) 

(b) 

Figure  3.7: Separated sources (a) ( )uds t  and (b) ( )ds t of C1 
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Using the information of damage instant, the MMRs are separated and the damaged ( )ds t   

and undamaged ( )uds t  modal responses are extracted to obtain the accurate natural 

frequencies, dw  and udw   and mode shape matrices, ˆ
dA  	and ˆ

udA  respectively. Figure  3.7 (a) 

and (b) show the separated results of both the cases and the modal information such as 

natural frequencies, damping ratios and mode shapes are calculated from herein. 

The modal parameters for both the damaged and undamaged cases are tabulated in 

Table  3.1 along with a compariosn of FE analysis. The prediction of the natural frequencies 

from FE model are within acceptable range to the natural frequencies determined through the 

proposed method. The logorithmic decrement method is employed to estimate damping ratios 

of the undamaged and damaged modal responses. 

 

Table  3.1: Identified w  and x  of ( )uds t  and ( )ds t  of the 3-DOF model under C1 

 Proposed method FE 

Mode 
# 

udw  

[Hz] udx  [%] dw  [Hz] dx  [%] Severity of 
damage [%] 

udw  

[Hz] dw  [Hz] 

1 6.00 6.35 4.81 1.58 19.83 6.32 4.84 

2 23.42 1.12 22.37 0.47 4.48 23.85 23.03 

3 41.76 1.07 41.51 0.64 0.59 40.84 40.36 

 

3.2.2  Damage Identification in C2  

Figure  3.2 (b) shows the model of C2, which is a 3-DOF structure with steel wire bracing as 

depicted in the picture with yellow circles. The data was collected from the healthy state of 

the structure for some moment and then, the steel wires were cut to introduce sudden 

reduction in stiffness. Figure  3.8 (a) and (b) show the Fourier spectra of the measured signals 
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and the resulting modal responses as obtained from the SOBI, respectively. Again, the 

damage instant is hardly distinguishable from the HT analysis as shown in Figure  3.9. Then 

the TVAR algorithm is employed on the modal responses. Figure  3.10 and Figure  3.11 

clearly indicate that the damage occurs at 2dt =  seconds. The resulting modal parameters 

for both damaged and undamaged states of C2 are then extracted as shown in Figure  3.12 and 

are tabulated in Table  3.2. 

 

Table  3.2: Identified w  and x  of ( )uds t  and ( )ds t  of the 3-DOF model under C2 

 Proposed method FE 

Mode 
# 

udw  

[Hz] 
udx  [%] dw  [Hz] dx  [%] Severity of 

damage [%] 

udw  

[Hz] 
dw  [Hz] 

1 6.57 4.46 6.34 3.67 3.50 7.10 6.32 

2 24.94 1.28 23.87 1.13 4.29 24.90 23.85 

3 43.08 0.79 42.62 0.94 1.07 42.80 41.24 
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Figure  3.8: Fourier spectra of (a) the observed signals and (b) MMRs of C2 

 
Figure  3.9: HT applied to all MMRs of C2 
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Figure  3.10: TVAR modeling of the first MMR of C2 

 

 
Figure  3.11: TVAR modeling of all MMRs of C2 
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(a) 

(b) 

Figure  3.12: Separated sources (a) ( )uds t  and (b) ( )ds t  of C2 
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3.3 Full-Scale Study 

In this section, recorded ambient and earthquake-excited responses from the University of 

California, Los Angeles, (UCLA) Doris and Louis Factor building (Kohler et al., 2005) are 

utilized to illustrate the proposed damage detection method. A general elevation and floor 

plan of this building is shown in Figure  3.13 consisting of several centers for the health 

sciences and other biomedical facilities of UCLA. This building is one of the heavily 

instrumented buildings in North America, whose vibration data is made available for 

researchers world-wide through a remote data-base server designed and constructed in the 

late 1970s. The 17-storey building is composed of special moment resisting steel frames 

(SMFs) supported by concrete bell caissons and spread footings. Following the 1994 

Northridge earthquake, the building was instrumented with an array of 72 Kinemetrics FB-11 

uniaxial-accelerometers at the floor levels including the basement and the sub-basement 

levels. Each level has two pairs of orthogonal sensors parallel to the NS and EW directions as 

shown in Figure  3.13 (Sadhu, 2013).  

In this chapter, floor accelerations recorded on September 28, 2004 at 10:15 AM PDT 

are used. Typical measured accelerations at roof and middle floor are plotted in Figure  3.14. 

Sudden jump in the roof acceleration around t = 400 sec indicates the occurrence of the 

Parkfield earthquake. This earthquake, with Mw = 6.0 on the moment magnitude scale 

originated in Parkfield, CA, epi-centered 163 miles from the UCLA. The peak acceleration 

response recorded at the roof of the building was 0.0025 g. Due to the earthquake, there were 

damages in the building for which the natural frequencies of the structure were reduced by 

significant amount (Nayeri et al., 2008). Figure  3.15 shows the Fourier spectra of the 

vibration data and reveals that the most of the energies were concentrated within 5 Hz. Also 

the presence of frequency coupling (i.e., both undamaged and damaged frequencies) is 

anticipated due to the occurrence of Parkfield earthquake. Therefore, this data sets an 

appropriate test bed for the proposed algorithm.  
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Figure  3.14: Vibration measurement of the UCLA Factor building under Parkfield 

earthquake 

 
Figure  3.15: Fourier spectra of the top floor response of the UCLA Factor building 
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Figure  3.16: TVAR modeling of the first MMR of the UCLA Factor building 

 

Once the damage instant is identified, the modal responses are separated for both the 

segments and the natural frequencies of both undamaged and damaged states can be easily 

identified as demonstrated in section 3.1. Similar analysis can be performed in all other 

modal responses and the detailed identification results are shown in Table  3.3. The results are 

also compared with a traditional system identification method, stochastic subspace 

identification (SSI) (Skolnik et al., 2006). It may be noted that SSI is employed on 

undamaged and damaged segments of the raw data separately as soon as the damage instant 

is identified using the proposed method. Furthermore, unlike the proposed method, SSI is a 

computationally intensive method that includes several user interventions including model-
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order selection and stability diagram (Skolnik et al., 2006). It may be observed that the 

results are closely corroborating with the SSI results. With the modal parameters of 

undamaged and damaged states, the severity of damage can be also assessed. 

 

Table  3.3: Identification results of the proposed method from UCLA Factor building 

  Frequency [Hz] Damping [%] 

 SSI Proposed SSI Proposed 

Mode # Directions ( )ud dw w  ( )ud dw w  ( )ud dx x  ( )ud dx x  

1 EW 0.55(0.47) 0.53(0.48) 5.1(4.8) 5.5(4.2) 

2 NS 0.59(0.51) 0.58(0.51) 8.3(4.7) 7.3(4.9) 

3 Tor 0.81(0.68) 0.82(0.69) 10.8(5.8) 10.1(6.2) 

4 EW 1.63 (1.49) 1.65(1.53) 2.1(5.4) 2.4(5.9) 

5 NS 1.79(1.67) 1.77(1.68) 1.4(4.9) 1.7(4.6) 

6 Tor 2.48(2.36) 2.5(2.37) 2.9(7.4) 2.8(7.8) 

7 EW 2.83(2.68) 2.82(2.66) 2.2(4.4) 2.6(4.7) 

8 NS 3.06(2.86) 3.09(2.89) 1.3(4.9) 2.1(4.8) 

9 Tor 4.02(3.83) 4.05(3.89) 2.9(4.6) 2.8(4.9) 

 

3.4  Summary 

In this chapter, the applicability of the proposed damage detection method is validated on the 

vibration data obtained from the two lab-scale damage cases. The modal parameters obtained 

from the proposed algorithm are also compared with the FE model. The proposed algorithm 

is further demonstrated on “real-life” vibration data of the UCLA Factor building. The results 

from the proposed method are in agreement with the SSI method.  
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 Chapter 4 

Identification of Instantaneous Frequencies of an Axially-

Moving Cantilever Beam  
 

In this chapter, identification of instantaneous frequencies (IF) of an axially-moving 

cantilever beam is investigated. The axially-moving cantilever beam is a typical linear time-

varying (LTV) system. Different from the parameters in the systems dealt with in the 

previous chapters, the IFs of this system vary continuously when the beam is moving axially. 

This poses a challenge to identification. First the dynamic model governing the axially-

moving beam is briefly reviewed. Then the algorithm proposed in Chapter 2 is applied to 

identify the IFs. In addition, the other two existing methods, namely the wavelet transform 

(WT) and Hilbert vibration decomposition (HVD), are also employed.  

 The rest of the chapter is organized as follows. Section 4.1 presents an overview of 

the dynamic model for the axially-moving cantilever beam system. Section 4.2 discusses how 

to identify the IFs using the proposed algorithm. Section 4.3 presents computer simulations 

in which the proposed algorithm is used to identify the IFs. Section 4.4 presents the 

experimental setup. Section 4.5 studies the WT to identify the IFs of the axially-moving 

cantilever beam. Section 4.6 discusses the results of the identified IFs using the WT. Section 

4.7 presents the HVD method for the system identification. Section 4.8 presents the identified 

IFs obtained from the HVD method. Section 4.9 presents the identified IFs obtained from the 

HVD plus TVAR method. Finally, section 4.10 contains summary and conclusions. 

 

4.1 Dynamic Model of an Axially-Moving Cantilever Beam 

Figure  4.1 shows a schematic of an axially-moving beam in which ( , )w s t  denotes the lateral 

displacement of the beam. In order to transfer a partial differential equation (PDE) to n  
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ordinary differential equation (ODE) ( , )w s t  is decomposed as

 
1

( , ) ( ) ( ) ( ) ( )
n

i i
i

w s t s q t s tf
=

= =å qF   (4.1.1) 

 
where, ( , )w s t  represents the lateral displacement of axial location s  at time t , n  is the  

number of modes, and ( )iq t  and ( )i sf  are the thi  generalized coordinate and mode shape or 

eigenfunction of the “stationary” cantilever beam. In Deng, (2002), the relation between the 

axial location s  and the length of beam l is related by  

 
 , 0 1s la a= £ £   (4.1.2) 

 

Consequently, the lateral displacement can then be expressed as  

 

 ( , ) ( ) ( )w t ta a= qF   (4.1.3) 
 

 

Figure  4.1: Schematic of axially-moving cantilever beam 

where, 

 1 2 1 2( ) [ ( ) ( ) ( )], ( ) [ ( ) ( ) ( )]Tn nt q t q t q ta f a f a f a= =q F   (4.1.4) 

 

The dynamic model of the beam was developed based on the following assumptions 

(Deng, 2002): 
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 The beam is assumed to be an Euler-Bernoulli beam 

 Axial motion is only function of time 

 Lateral displacement gradients are small 

 The axial rigidity is much higher than the flexural rigidity 

 Axial force is negligible 

 

The simplified ODE governing the lateral motion of the beam subjected to zero 

external force is given as follows,  

 1( ) ( ) ( ) ( ) ( ) nt t t t t ´+ + =q D q K q 0    (4.1.5) 
 

 
2 2

1 1 2 34

2
( ) , ( ) 2n n

l l l l l EI
t t

l m l l m l l ml

g g
´

é ùæ ö æ öê ú÷ ÷ç ç= + = - + + +÷ ÷ç çê ú÷ ÷ç ç÷ ÷è ø è øê úë û
D A I K A A A

    
  (4.1.6) 

 

where, 1A , 2A , and 3
n ńÎA   are constant matrices, the over-dots represent derivative 

with respect to time. EI  is the flexural rigidity of the beam. g  is the damping value per unit 

length of the beam. m   is the mass per unit length of the beam, and 3A  is a diagonal matrix 

or 4 4 4
3 1 2[( ) ( ) ( ) ]nA diag L L Lb b b=  . Equation (4.1.5) can be transformed into a 

state space representation by introducing the following state vector [ ]T T T=x q q   

 ( ) ( ) ( )t t t=x A x   (4.1.7) 
 

where, system matrix ( )tA  is given by 

 

 ( )
( ) ( )
n nt
t t

´
é ù
ê ú= ê ú- -ê úë û

0 I
A

K D
  (4.1.8) 

 



 

 

49 

 

To observe vibration at a particular location or  on the beam using sensors such as strain 

gauge and accelerometer, the output vector ( )ty  which is related to the state vector ( )tx  by 

an output matrix ( )tC  could be constructed as follows. First, lets define 

 1 o
o o o

r
s l r or

l
a= - = -   (4.1.9) 

 

where, or  is measured from the tip of the beam. The output of strain gauge sensor ( )tsgy  is a 

voltage signal proportional to the strain with the system measurement gain sgK .  

  

 
2

( ) ( ) ( ),sg
o

K
t t

l
a¢¢=sgy qF   (4.1.10) 

 

where primes denote partial derivative with respect toa . The output of accelerometer sensor 

( )tay  is a voltage signal proportional to acceleration of the beam with the system 

measurement gain of aK   

 

 
4

( ) (1 ) ( ) ( ) ( ) ( ) ( )a o o o a o
l EI

t K t K t
ml mml

g g
a a a a

éæ ö ù÷çê ú¢ ¢¢¢¢= - - + +÷ç ÷ç ÷ê úè øë û
ay q q


F F F   (4.1.11) 

 

In the numerical and experimental studies, three locations are chosen to observe the 

vibration 1 0.643or =  m for strain gauge sensor which is close at the base near clamp 

boundary and denoted as BSG, 2 0.335or =  m for middle accelerometer sensor (MAC), and 

3 0.001or =  m for tip accelerometer sensor (TAC). The output vector is related to state 

vector by 
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 ( ) ( ) ( )t t t=y C x   (4.1.12) 
 

where, ( )tC  is 3 2n´  time-varying output matrix defined by 

 

 

12 1 3

2 2 2 24

33 3 34
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C




F

F F F

FF F

  (4.1.13) 

 

4.2 Estimation of the Instantaneous Frequencies through the TVAR Modelling 

A well-known technique for estimating the instantaneous frequencies or IF of a nonstationary 

signal is to use the time-varying coefficients ( )ia t  of the TVAR model (Ravi & Rao, 2014; 

Wang & Liu, 2009; Yao & Pakzad, 2012). This approach is slightly more accurate compared 

to the time varying power spectral density estimation process according to Nguyen, (2009). 

Since, in the time varying power spectrum, one has to locate the IF as the largest spectral 

peak location. Thus, by extracting the IF from the TVAR model we can eliminate the process 

of selecting the largest spectral peak.  

The time varying transfer function of the TVAR model can be represented as (Peijun 

et al., 1998), 

 

1

1
( , )

1 ( )
p

i
i

i

H z t

a t z-

=

=

+å
  (4.2.1) 

  
Depending on the model order p , the above equation would have ( ), 1,2, ,iz t i p=   roots 

or poles at each instant t . At each instant, the poles that correspond to the nonstationary 
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signal appear on or near the unit circle and the poles away from the unit circle correspond 

with the noise. Furthermore, in case of real signal, these roots are most likely pairs of 

complex conjugate, therefore one may only need to use one pair of complex conjugate root 

for frequency estimation. Using the poles correspond to the nonstationary signal, we can 

estimate the instantaneous phase 
Im( ( ))

( ) arctan
Re( ( )

i

i

z t
t

z t
f

æ ö÷ç ÷= ç ÷ç ÷çè ø
 and by taking the time 

derivative of ( )tf  , the instantaneous frequency can be calculated as 1
( ) ( )

2

d
f t t

dt
f

p
= . 

4.3 Computer Simulation 

The algorithm developed in Chapter 2 assumes that the parameter change is abrupt such that 

the responses are piece-wise stationary. However, the parameters of the axially-moving beam 

vary continuously when the beam is moving. In order to test whether the proposed algorithm 

is capable of identifying the IFs of the axially-moving beam, a computer simulation is 

conducted. The numerical study is based on the following data: the beam is made of 

aluminum and its cross-sectional dimension is 3.175 mm (thickness) ´ 50.8 mm (width). 

The length density of the beam is m=0.4516 kg/m, the flexural rigidity of the beam is EI= 

9.7148 
2

N

m

é ù
ê ú
ê úë û

, and the damping value per unit length of the beam is 0.1240g =  
2

Ns

m

é ù
ê ú
ê úë û

. Two 

scenarios are considered; beam extension and beam retraction. The beam length varies from 

Lmin= 0.66 [m] to Lmax=1.09 [m] in beam extension and vice versa in beam retraction. The 

first three modes are considered or n=3 for identification. The trapezoidal velocity profile 

shown in Figure  4.2 is used as the axial motion of the beam (Deng, 2002). The fourth-order 

Runge-Kutta method is used to solve equation (4.1.7) with the time step of 0.001 second and 

the whole simulation is run for 9 seconds. The measurement gains of the three sensors are 

chosen as -21 [V], 1 [V/m.s ]sg aK K= =  and the initial conditions are chosen as 
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1 2 3 1 2 3[ (0) (0) (0) (0) (0) (0)]q q q q q q    = [0.5 0.1 0.05 0 0 0]-  for both of the scenarios. 

The initial conditions are chosen in such a way that all three modes are sufficiently excited 

out. 

 
Figure  4.2: Axial motion profile of beam extension and beam retraction scenarios 

 
Beam Extension Scenario 

The vibrations observed at the three locations are shown in Figure  4.3 (a), where 

1 2 3( ), ( ), and ( )x t x t x t  represents vibration signals obtained from BSG, MAC and TAC 

sensor, respectively. Figure  4.3 (b) show, the corresponding FFT spectra of the signals. The 

vibration signal obtained from the BSG sensor has little contribution from the 2nd and 3rd 

modes. Similarly, the vibration signal obtained from the MAC sensor has little contribution 

of the 3rd mode. The vibration observed at the tip is rich in the modal responses. 
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Figure  4.3: Beam extension: (a) responses and (b) their corresponding FFT spectra 

 

Now the SOBI method is utilized to decompose all three vibration signals. The results 

are shown in Figure  4.4. It can be seen from the figure that the SOBI was able to decompose 

the vibration signals into the modal responses. However, the obtained modal responses are 

not exactly unimodal, especially in the second and third modes. It is known that the SOBI 

method works on the statistical properties of a signal assuming that the amplitude and 

frequency do not change over time.  This assumption holds true for stationary signal only. In 

contrast, the acquired vibration signals in this study are fast modulated in amplitude (or 

variance change over time) and in frequency (Sadhu, 2013). Therefore, when the SOBI 
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formulates the covariance matrices, the change in the statistical properties of the 

nonstationary signals are not considered hence resulting in the mixed modal responses 

(MMRs). In other words, the SOBI does a global decomposition as opposed to local one.  

 

Figure  4.4: Beam extension: (a) vibratory mode responses obtained from SOBI and (b) 

their respective FFT spectra 
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this global singular values, the estimated mixing matrix Â is obtained where the contribution 

of other modes at each decomposed mode has been suppressed.   

Next, the IF of each decomposed vibratory mode is estimated by utilizing the TVAR 

method. The model order 2p =  is used for the TVAR method to estimate the MMR 

obtained from the SOBI. The time-varying coefficients 1( )a t  and 2( )a t  of the TVAR method 

are utilized in equation (4.2.1) to estimate the IF. The results are shown in Figure  4.5. In 

Figure  4.5 the black solid line represents the so-called frozen IFs which are calculated by 

(Deng, 2002) 

 
2

1
( ) , 1,2,3

2 ( )
jL EI

f t j
L t A

b

p r

æ ö÷ç ÷ç= =÷ç ÷÷çè ø
  (4.3.1) 

where, 1 1.8751Lb = ,  2 4.6941Lb =  and 3 7.8547Lb = .  

 
Figure  4.5: Beam extension: Comparison of the frozen IFs and IFs estimated by the TVAR 

method 
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From Figure  4.5, it can be seen that for the first and second modes, the estimated IFs fail to 

track the frozen IFs while for the third mode; the estimated IF follows the frozen IF up to 4 

seconds. 

 

Beam Retraction Scenario 

Figure  4.6 shows the responses at the three sensor locations and their corresponding FFT 

spectra. It can be seen that the FFT spectra fail to reveal the varying trend of the IFs. 

Figure  4.7 shows the modal responses decomposed by the SOBI method and their 

corresponding FFT spectra. It can be seen that the SOBI is able to decompose the responses 

into individual modal responses. However, the FFT spectra still fail to reveal the varying 

trends of the IFs. Figure  4.8 compares the frozen IFs and IFs estimated using the coefficients 

of the TVAR model of the modal responses extracted by the SOBI. Again, for the first and 

second modes, the estimated IFs fail to track the frozen values while for the third mode; the 

estimated IF is able to track the frozen IF towards the end of the beam motion.  
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Figure  4.6: Beam retraction: (a) responses and (b) corresponding FFT spectra  
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Figure  4.7: Beam retraction: (a) vibratory mode responses and (b) corresponding FFT spectra 
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Figure  4.8: Beam retraction: comparison of the frozen IFs and IFs estimated by the TVAR 

method 

The above numerical study has shown that the proposed algorithm fails to estimate 

the instantaneous frequencies of the axially-moving beam. In what follows, the other two 

different methods will be applied to identify the IFs using the experimental data.  

4.4 Experimental Setup 

The experimental setup is shown in Figure  4.9. The cantilever beam is made of aluminum 

(6061-T6). A 12 Volt permanent magnet DC motor (DUMORE) is used to move the beam 

axially. The linear length variation of the beam is measured by the angular position of a 

potentiometer which is mounted on top of the pinion shaft. The cross-sectional dimension of 

the beam is 3.175 mm (thickness) ´ 50.8 mm (width). The length of the beam varies from 

0.66 m to 1.09 m. Three sensors are utilized to measure the lateral vibration of the beam; 

BSG, MAC, and TAC sensors (B & K 4393V) at 1 0.643 mor = , 2 0.335 mor =  and 

3 0.001 mor =  respectively. Further information on the experimental setup can be found in 
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Deng (2002). In Deng (2002), the natural frequencies of the first three modes of the beam at 

a constant length L were identified. The following relationships were established  

 

 1 2 31.854 1.866 1.851

2.287 14.53 40.93
, ,

( ) ( ) ( )
d d df f f

L t L t L t
= = =   (4.4.1) 

 

 

 

Figure  4.9: Experimental apparatus  

 

In what follows, the experimental data obtained by Deng, (2002) was used. For each 

testing scenario, 40 sets of data were collected. The best of the 40 sets of data was used in the 

following identification. The best set of data is the one in which the responses are richest in 

the modal information. 
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4.5 The Wavelet Transform (WT) 

The wavelet transform as discussed in Introduction is by far the most powerful method of 

analyzing all types of non-stationary signals (Amezquita-Sanchez & Adeli, 2014; Chen et al., 

2014; Dziedziech et al., 2015; Hazra & Narasimhan, 2010; Su et al., 2014). What makes the 

wavelet analysis robust is its ability to change its window function (also known as wavelet 

basis) both in time and frequency domain, thus allowing it to analyze non-stationary signals 

locally. In other words, wavelet analyzes the energy concentration of non-stationary signal in 

time-frequency domain (Liu, 2007).  

There are many wavelet bases to choose from (e.g., Haar wavelet, Gabor wavelet, 

Daubechies wavelet, Morlet wavelet and many more). These wavelet bases have rapid decay 

characteristics and when correlated with the observed signal under the transformation 

process, relative amount of energy that is present in each component of the observed signal at 

a particular time-frequency is produce. The WT of signal ( )y t  is a linear transformation as 

defined by 

 ,( , ) ( ) ( ) , 0a bW a b y t g t dt a
¥

-¥

= >ò   (4.5.1) 

where, a is a dilation parameter, b  is the translation parameter, and , ( )a bg t  is known as 

mother wavelet defined by 

 ,
1

( )a b
t b

g t g
aa

æ ö- ÷ç= ÷ç ÷÷çè ø
  (4.5.2) 

 

In the above equation the function g  represent the basis for wavelet transform. There 

are mainly two conditions that a basis function needs to satisfy and they are given in equation 

(4.5.3).  

 2

, ,( ) 0, ( )a b a bg t dt g t dt
¥ ¥

-¥ -¥

< ¥=ò ò   (4.5.3) 
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In this study, Morlet wavelet is used as basis function. 

 
2

0/2( ) j ttg t e e w-=   (4.5.4) 
 

 
2

0( ) /2
, ( ) a j b
a bG ae ew w ww - - -=   (4.5.5) 

 

The Morlet wavelet is chosen because of its fast decay and oscillatory nature. The 

center frequency of the function is 0w .  By substituting wavelet basis equation (4.5.4) into 

mother wavelet equation (4.5.2) then transforming the result into Fourier domain, one can 

obtain equation (4.5.5). In order to see how WT analyzes the nonstationary signals, let’s first 

consider a mono-component stationary signal given by  

 

 ( ) cos( )t
dy t Ae ts w f-= +   (4.5.6) 

 

where, A is the constant amplitude, 1d nw w x= -  is the damped natural frequency which 

depends on the natural frequency nw  and damping ratio x , ns xw=  is referred to as 

damping rate, and f  is the phase.  Taking Fourier transforms of ( )y t  and then taking product 

with equation (4.5.5) the wavelet coefficients ( , )W a b  could be obtained which defines the 

map of the signal ( )y t  in three dimensions.  

 
2

0( )
( )2( , )

d

d

a
j t bbW a b aAe e e

w w
ws

-
- +-=   (4.5.7) 

 

The modulus or energy of ( , )W a b  is as follow, 
 

 
2

0( ) /2( , ) dabW a b aAe e w ws - --=   (4.5.8) 
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Taking the derivative of the above equation with respect to scale variable a , reveals 

that the maximum energy is concentrated at 

 

 
( )2

0 0 20
0

2
, as 2

2r
d d

a
w w w

w
w w

+ +
= »    (4.5.9) 

 

Substituting equation (4.5.9) back into equation (4.5.8) results in 

 

 ( , ) b
r rW a b a Ae s-=   (4.5.10) 

 

It is shown that it is possible to track ra which is known as the ridge of wavelet in 

order to extract the damped natural frequency of a signal. Now coming back to nonstationary 

signal, again considering single-DOF response (equation (4.5.11)); analogous to stationary 

signal the WT performs the linear transformation on nonstationary signal as well, but because 

of its localization property equation (4.5.9) gives an approximation of the damped natural 

frequency ( )d tw . Furthermore, In the case of multiple-DOF LTV systems responses can be 

expressed as, 

 ( )

1

( ) ( ) cos( ( ) )k

n
t t

k dk k
k

y t A t e t ts w f-

=

= +å   (4.5.11) 

 

where, 1, 2,k n=   represents modes and n  represents number of modes to consider. By 

applying the WT (equation (4.5.1)), we can achieve a 3D representation of vibration signal. 

Of course, one needs to set the dilation parameter a  in order to cover the frequency range of 

the vibration signal.  
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4.6 Identification of the Instantaneous Frequencies of the Axially-Moving Cantilever 

Beam Using the Wavelet Transform 

All three vibration signals (i.e. BSG, MAC and TAC) are used on the WT in order to identify 

the IFs. The Morlet wavelet centre frequency used is 0 2w p=  rad/s or 0 1f =  Hz. The 

relationship between the dilation parameter a  and frequency kf   

  0
k

k

f
a

dt f
=

⋅
 (4.6.1) 

 

where kf  represents frequency and dt  represent the time step. Moreover, a prior knowledge 

of vibration signals frequency range is needed in order to specify the range for a . Thus from 

the numerical study equation (4.3.1) and also Table  4.1, we know the damped natural 

frequency of all three vibratory modes at two extreme length min 0.66 mL =  and

max 1.09 mL = . Substituting the damped natural frequencies corresponding to minL  and 

maxL  into equation (4.6.1) we can find the start and end value ka  of the dilation parameter 

and choosing an appropriate step size aD . Each of this dilation parameter is translated over 

the entire time domain by b  parameter. Below is the setup of ka  for each vibratory mode. 

 

 Mode 1: 1 100 : 1 : 560a =   

 Mode 2: 2 22 : 0.5 : 90a =   

 Mode 3: 3 7 : 0.1 : 38a =   

First, considering the beam extension scenario, Figure  4.10 shows the results obtained 

from the WT of each vibration signal, in order to show the first three modes the dilation 

parameter range is chosen as 7 : 1 : 560alla =  . It is observed that two ridges are visible and 
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they correspond to the 1st and 2nd vibratory modes. For the third mode the ridge is very small 

compared to the first two modes and it can be observed in the wavelet transform of TAC 

vibration signal. In contrast, during the beam retraction scenario, the ridge of the third mode 

is very dominant compared to the other two modes and it can be seen in Figure  4.11 

especially in the MAC and TAC`s wavelet transforms. It should also be noted that during the 

beam retraction, the vibration observed at MAC and TAC locations also contain the fourth 

mode and it is due to the fact that it is easier to excite higher mode when the beam is 

retracting; it is shown in Figure  4.11. 

As shown in Figure  4.10 and Figure  4.11, the ridge represents the maximum signal 

energy. To find the frequency at which the ridge occurs, the dilation parameter ma  

corresponding to a ridge is found by the following condition 

 

 ( , ) ( , )m kW a b W a b>   (4.6.2) 
 

By tracking the dilation parameter at which the maximum value of ( , )W a b  occurs 

over time we can find the IF using equation (4.6.1). In both of the scenarios, it is important to 

select a vibration signal that contains information from all three vibratory modes. Therefore, 

we choose the TAC vibration signal. Figure  4.12 and Figure  4.13 show the contour plots of 

the wavelet transform for both the scenarios. These figures also compare the IFs identified 

using the condition of equation (4.6.2) and the IFs computed using equation (4.4.1). Based on 

these figures, some observation can be drawn: 
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Beam Extension Scenario: 

1. For the first mode, the identified IF follows the frozen IF well.  

2. For the second mode, the identified IF follows the frozen IF satisfactorily with some 

fluctuations. The fluctuation is due to searching for maximum value of ( , )kW a b  at 

each time instant. Therefore, during the search process the other modes might have 

higher ( , )kW a b  value than the targeted mode; hence at some instant the identified IF 

would jump to the other value.  

3. For the third mode, the identified IF follows the frozen IF somewhat with a 

significant fluctuation.  

 

Beam Retraction Scenario: 

1. For the first mode, the identified IF follows the frozen IF well. 

2. For the second mode, the identified IF follows the frozen IF well in the first 6 

seconds, but in the beginning and after 6 seconds there are lots of jumps. 

3. For the third mode, the identified IF follows the frozen IF well at some intervals but 

fluctuation happens at others. 
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Table  4.1: Comparison between the IFs based on equation (4.3.1) and IFs based on equation 

(4.4.1) 

 Analytic frozen IFs based on 

equation (4.3.1) 

Experimental frozen IFs based on 

equation (4.4.1) 

diw  (Hz) minL = 0.66 (m) maxL = 1.09 (m) minL = 0.66 (m) maxL = 1.09 (m) 

1dw  2.184 5.958 1.948 4.941 

2dw  13.690 37.339 12.370 31.548 

3dw   38.332 104.553 34.979 88.547 

 

It should be noted that the experimental IFs are lower than the analytical ones. This 

discrepancy may be attributed to the fact that the guiding slot fails to emulate an ideal 

clamped end since there is a clearance needed between the beam and the guiding slot (Deng, 

2002). 
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Figure  4.111: Beam retra
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Figure  4.12: Beam extension: (a) Contour plot of ( , )W a b of TAC vibration signal (a) and (b) 

estimated IF from ridges of WT (dash-dot line) and frozen IF (solid) 

(a)

0 2 4 6 8

1(t)
 [H

z]

2

4

6

8

10

0 2 4 6 8

1(t)
 [H

z]

2

3

4

5
(b)

0 2 4 6 8

2(t)
 [H

z]

10

20

30

40

0 2 4 6 8

2(t)
 [H

z]

10

20

30

40

time [s]
0 2 4 6 8

3(t)
 [H

z]

40

60

80

100

120

140

time [s]
0 2 4 6 8

3(t)
 [H

z]

40

60

80

100

120



 

 

71 

 

 

Figure  4.13: Beam retraction: (a) Contour plot of ( , )W a b of TAC vibration signal (a) and (b) 

estimated IF from ridges of WT (dash-dot line) and frozen IF (solid) 
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4.7 The Hilbert Vibration Decomposition (HVD) 

In this section a recently developed technique called Hilbert vibration decomposition (HVD) 

is introduced. The HVD method is developed by Feldman, (2006) for decomposition of the 

multicomponent nonstationary signal. Many other researchers also used this method on their 

respective time variant signals (Ramos et al., 2014; Wang, 2011; Bertha & Golinval, 2014).  

A representation of a nonstationary signal with multicomponent would have such 

form  

 ( )( ) ( )cos ( )k k
k

x t A t t dtw= å ò   (4.7.1) 

 

 where, ( )kA t  and ( )k tw  are the instantaneous amplitude (IA) and instantaneous frequency 

(IF) of the thk  component, respectively and these parameters are considered as slow-varying. 

Each mono-component ( )( )cos ( )k kA t t dtwò  is an intrinsic mode of the original signal with 

wideband spectrum.    

 

4.7.1 Instantaneous Frequency (IF) of the Largest Energy Component 

In order to get the IF, a quadrature signal ( )Hx t   needs to be formed based on using the 

Hilbert Transform (HT). The HT of original signal can be obtained from equation (4.7.2). 

Adding the original signal ( )x t  with its counterpart “quadrature” ( )Hx t  , the analytic signal 

( )z t  could be formed as below 

 1 ( )
( )H

x
x t d

t

t
t

p t

¥

-¥
=

-ò   (4.7.2) 

 ( )( ) ( ) ( ) ( ) i tHz t x t x t A t e f= + =   (4.7.3) 
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From above equation the instantaneous amplitude ( )A t  and instantaneous phase ( )tf  

are obtain as follows, 

 

2 2( ) ( )

( )
( ) arctan

( )

H

H

A t x t x

x t
t

x t
f

= +
æ ö÷ç ÷= ç ÷ç ÷çè ø

  (4.7.4) 

 

Thus taking the derivative of the instantaneous phase with respect to time would give 

instantaneous frequency, 

 
2 2

( ) ( ) ( ) ( )
( ) ( )

( ) ( )
H H

H

x t x t x t x td
t t

dt x t x t
w f

-
= =

+

 
  (4.7.5)

  
 

 In order to understand how the HVD extracts the instantaneous frequency of the 

largest energy component, a symbolic example is used. Suppose the original signal ( )x t  is 

composed of two components, both with modulated amplitude and frequency. Considering 

21( () )A At t>  and 21 (( ) )t tw w>  which implies that ( )1 1( )cos ( )A t t dtwò  has the largest 

energy. Thus the original signal with its analytic representation is given below 

  

 
( ) ( )
1 2

0 0

1 1 2 2

( ) ( )

1 2

( ) ( )cos ( ) ( )cos ( )

( ) ( ) ( )

t t

i t dt i t dt

x t A t t dt A t t dt

z t A t e A t e
w w

w w= +

ò ò
= +

ò ò
  (4.7.6) 

 

By using equation (4.7.4) and equation(4.7.5), the instantaneous parameters of ( )x t  are 

 

 2 2
1 2 1 2 2 1

0

( ) ( ) ( ) 2 ( ) ( )cos( [ ( ) ( )] )
t

A t A t A t A t A t t t dtw w= + + -ò   (4.7.7) 
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ò

ò
  (4.7.8) 

 

The instantaneous amplitude ( )A t  consists of the sum of the squared individual 

component amplitudes, and a rapidly varying oscillating part. The instantaneous frequency 

( )tw  consists of a slowly varying part 1( )tw  and two rapidly varying asymmetrical 

oscillating parts. The third term of the instantaneous frequency is negligible, because the time 

derivatives of 1( )A t  and 2( )A t  are very small. It follows that in order to make 1( ) ( )t tw w=  

the second term must be equal to zero. This is obtained by integrating the rapid oscillatory 

term over the period of the difference frequency 
2 1

2
T

p
w w

=
-

 (Feldman, 2006; 2011).  
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  (4.7.9) 

 

In implementation, a low-pass filter is used to get rid of the second term and leave 

only the frequency 1( )tw .  If there are more than two components present in the original 

signal, the IF would have a complicated form but again the low-pass filtering will extract the 
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only IF of the largest energy component. The next step of the HVD method is to extract the 

envelope of the large energy component and it is described in the following section. 

4.7.2 Envelope of the Largest Energy Component 

Once the instantaneous frequency of the largest energy component is found, the envelope can 

be readily estimated by the synchronous demodulation technique (Ramos et al., 2014). Let 

( )x t  be a sum of k  components with instantaneous phase ( )k tq , 

 
1

( ) ( )cos( ( ) )
N

k k k
k

x t A t t dtw q
=

= +å ò   (4.7.10) 

 
1

( ) ( )sin( ( ) )
N

H k k k
k

x t A t t dtw q
=

= +å ò   (4.7.11) 

 

where, ( )Hx t  is obtained with the Hilbert transform. The synchronous demodulation 

technique is based on using two reference signals that are exactly 90  out of phase with a 

known frequency. Multiplying these reference signals with the initial signal and its 

quadrature counterpart one could extract the largest energy component corresponding to that 

known frequency. For convenience, the two reference signals are selected as ( )1cos ( )t dtwò

and ( )1sin ( )t dtwò .  
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H H
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x t x t t dt

x t x t t dt

x t x t t dt

w

w

w

w
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=
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=

ò
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ò
ò

  (4.7.12) 

 

Then the signal in phase cos( )y t  and quadrature sin( )y t  are obtained using equation 

(4.7.10), equation (4.7.11) and equation (4.7.12), 
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 ( )
cos

cos cos sin

1 1 1
2

( )

( ) ( ) ( )

( )cos( ) ( )cos ( ) ( )

H
N

k k k
k

y t

y t x t x t

A t A t t dt t dtq w w q
=

= +

= + - +å ò ò
  (4.7.13) 

 

 ( )
sin

sin cos sin

1 1 1
2

( )

( ) ( ) ( )

( )sin( ) ( )sin ( ) ( )

H
N

k k k
k

y t

y t x t x t

A t A t t dt t dtq w w q
=

= -

= + - +å ò ò
  (4.7.14) 

 

Let cos( )y t  and sin( )y t  be the obtained signals after above equations are passed 

through a low-pass filter. The analytic signal 1 1 1 1( ) ( )cos( ) ( )sin( )y t A t jA tq q= +  can be 

formed and the largest energy component is obtain as below,  

 

 ( ) ( )2 2

cos sin1( ) ( ) ( )A t y t y t= +   (4.7.15) 

 

 
Figure  4.14: Block diagram of the HVD algorithm (Feldman, 2011) 
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Once 1( )A t  and 1( )tw  are found, they are put together in ( )1 1 1( ) ( )cos ( )x t A t t dtw= ò  

which has cosine base.  Consequently all components get decompose by the HVD method. 

The detail of the HVD method is now illustrated using the flowchart as shown in Figure  4.14. 

Starting the first iteration, the vibration signal or initial signal ( )x t  is processed through HT 

in order to estimate the average IF ( )tw  , and then the average IF gets smooth by a low-pass 

filter to minimize high fluctuation resulting in a dominant IF 1( )tw . After that, the 

synchronous demodulation technique is applied using 1( )tw  and ( )x t  to estimate the 

envelope of the largest energy component 1( )A t . Furthermore, the first component 1( )x t  is 

produced using 1( )tw , and 1( )A t . Then 1( )x t  is subtracted from ( )x t , the whole process 

starts over for the next iteration using the remaining ( )x t  to be decomposed.  

 

4.8 Identification of the Instantaneous Frequencies of the Axially-Moving Beam Using 

the HVD method 

To evaluate the performance of the HVD method, again two motion scenarios are considered; 

beam extension and beam retraction. For the vibratory mode decomposition only the data 

obtained at the base location (from BSG sensor) and the tip location (from TAC sensor) is 

considered for both the scenarios. The vibration signal from middle location (MAC sensor) 

does not have rich modal information compared to tip location. Before applying the HVD 

method two parameters are need to set; the cut-off frequency of the low-pass filter and 

number of components need to extract. According to (Feldman, 2006) the cut-off frequency 

value for the low-pass filter should be as small as possible but not smaller than the frequency 

of the lowest component. Choosing a large value for the cut-off frequency decrease the IF 

resolution and choosing a small value will increase the IF resolution but at the cost of time 

resolution. It should be also noted that the difference between close frequencies should be 
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more than the cut-off frequency value, otherwise the IF result would fluctuate between the 

respective close frequencies of each component.  

In beam extension scenario; the response obtained from the BSG sensor was 

processed by the HVD method to decompose the three vibratory modes. Figure  4.15 shows 

the three decomposed components with their respective envelopes and the IFs. It can be 

observed that after 1 second the contribution from the second and third modes is negligible. 

There are two reasons for it. First, it is difficult to excite the higher modes of the beam when 

the initial beam length is small. Second, as the length of the beam changes from minL  to 

maxL  the stiffness decreases and the mass increases, this also greatly affects the energy of the 

higher modes. Furthermore, it can be seen that the first mode is extracted satisfactorily and 

the IF of the first mode fluctuates around the frozen IF. The second mode is extracted 

properly in the beginning for one second and after that higher fluctuation happens because of 

no energy in the second mode and the same thing holds for the third mode. Next, the TAC 

vibration signal is used. It contains rich dynamical response, because the displacement at the 

free end of the beam is larger; hence the contribution from the higher modes is more 

desirable. By examining Figure  4.16, the first modal response between 0 to 1 seconds 

contains information of the second mode. In the second and third modal responses same 

modal mixing issue exists. This incorrect decomposition issue can be explained by closely 

examining equation equation (4.7.8).  

Equation (4.7.8) can be rewritten in the general form as given below. A new 

parameter is introduced as  1

2

( )
( )

A t
A t

a =  to show the time varying ratio of the two 

instantaneous amplitudes.  
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t
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a
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+ + -
¢
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=

+ + -

ò ò
ò

ò ò

ò
       (4.8.1) 

where, ( ) 2
1 2 1 2 2/AA AA Aa ¢¢ ¢= -  is the time derivative of the time-varying ratio of the two 

instantaneous amplitudes. The above equation of the average IF could further simplified by 

letting ( )2 1
1

2cos ( )dtb a w w
a

= + + -ò . The simplified version of average IF is shown 

below,  


( ) ( )2 1

1 2 2 1 2 1

1 2 3 4

( )1
( ) cos ( ) sin ( )t dt dt

w wa a
w w w w w w w

b ab b ab
¢+

= + + - - -ò ò
  

  

           (4.8.2) 
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Figure  4.15: Beam extension: BSG vibration signal with the corresponding decomposed 

components obtained from the HVD method. The identified IFs (dash-dot) are compared 

with the frozen IFs (solid) 
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Figure  4.16: Beam extension: TAC vibration signal with the corresponding decomposed 

components obtained from the HVD method. The identified IFs (dash-dot) are compared 

with the frozen IFs (solid) 

  

time [s]
0 1 2 3 4 5 6 7 8 9

x TA
C
(t)

 [V
]

-4
-2
0
2
4

Beam Extension

0 2 4 6 8

s 1(t)
, A

1(t)

-4

-2

0

2

4

0 2 4 6
1(t)

  [
H

z]
0

2

4

6

0 2 4 6 8

s 2(t)
, A

2(t)

-0.5

0

0.5

1

1.5

0 2 4 6 8

2(t)
  [

H
z]

20

40

60

80

time [s]
0 2 4 6 8

s 3(t)
, A

3(t)

-0.5

0

0.5

time [s]
0 2 4 6 8

3(t)
  [

H
z]

20

40

60

80



 

 

82 

 

From equation (4.8.2), it is clear that the average IF is dependent on a  (Ramos et al., 

2014), so for better understanding the following cases are considered to analyze both 

scenarios and stating the obvious that the IF of the 1st mode is smaller than the IF of the 2nd 

mode.  

 

Cases for identifying the average IF ( )tw   

1. 1a   and 21 (( ) )t tw w< ; the average IF ( )tw  fluctuates around 1( )tw  

2. 1a >  and 21 (( ) )t tw w< ;  the average IF ( )tw  fluctuates between 1( )tw  and 2( )tw  

3. 1a »  and 21 (( ) )t tw w< ;  the average IF ( )tw  fluctuates around 2( )tw  

4. 1a <  and 21 (( ) )t tw w< ;  the average IF ( )tw  fluctuates around 2( )tw  

 

In the above analyses a vibration signal composed of two components is considered, 

but generalizing it to three or more vibration components, the average IF in equation (4.8.2) 

would have much more complicated form and so as the cases. These cases give an in-depth 

understanding of how the HVD estimates the IF from a vibration signal. It should be noted 

that the HVD method estimates the average IF before extracting the corresponding modal 

responses. Thus, the observations of the results of the HVD method using four vibration 

signals; two from each scenario are as follows,  

 

Beam Extension Scenario:  

 Figure  4.15 shows the HVD results using the BSG signal. 

 

 1st Mode: The HVD is able to extract the modal response of the 1st mode well. The 

identified IF fluctuates about the corresponding frozen IF.  
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 2nd Mode: The HVD is able to extract the modal response of the 2nd mode from 0 to 1 

second. During this interval, the identified IF follows the corresponding frozen IF 

well. However, after that the identified IF is not sensible due to weak information 

about the 2nd mode.  

 

3rd Mode: The extracted modal response of the 3rd mode is unsatisfactory.  

 

Beam Extension Scenario:  

Figure  4.16 shows the HVD results using the TAC signal. 

  

1st Mode: The HVD is able to extract the 1st modal response from 1 to 9 second. 

During this interval, the identified IF follows the corresponding frozen IF well. 

However from 0 to 1 second, the extracted modal response contains information of 

the higher modes. 

 

2nd Mode: The HVD extracts the 2nd modal response unsatisfactorily. Also it can be 

observe from the corresponding identified IF that the extracted modal response is 

somewhat contaminated by the 3rd mode. 

 

3rd Mode: The extracted modal response of the 3rd mode is unsatisfactory.  

 

Beam Retraction Scenario:  

Figure  4.17 shows the HVD results using the BSG signal.  

 

1st Mode: The HVD is able to extract the 1st modal response from 1 to 9 seconds. 

During this interval, the identified IF fluctuates about the corresponding frozen IF.   
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2nd Mode: The HVD is able to extract the 2nd modal response from 1 to 5 seconds. 

During this interval, the identified IF follows the corresponding frozen IF well. 

However, after that the identified IF is not sensible due to weak information about the 

2nd mode.  

 

3rd Mode: The HVD is able to extract the 3rd modal response from 1 to 5 seconds. 

During this interval, the identified IF follows the corresponding frozen IF well. 

However, after that the identified IF is not sensible due to weak information about the 

3rd mode.  

 

Beam Retraction Scenario:  

Figure  4.18 shows the HVD results using the TAC signal.  

 

1st Mode: The HVD is able to extract the 1st modal response from 4 to 9 seconds. 

During this interval, the identified IF fluctuates about the corresponding frozen IF. 

During 0 to 4 seconds, the HVD extracts the higher modes due to their energy level 

being higher than the 1st mode.  

 

2nd Mode: The HVD extracts the 2nd modal response unsatisfactorily except from 4 to 

5 seconds. During this interval, the identified IF follows the corresponding frozen IF 

well.  

 

3rd Mode: The HVD extracts the 3rd modal response from 4 to 5 seconds. However, 

during other time instant the decomposition is unsatisfactory.  
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Figure  4.17: Beam retraction: BSG vibration signal with the corresponding decomposed 

components obtained from the HVD method. The identified IFs (dash-dot) are compared 

with the frozen IFs (solid). 
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Figure  4.18: Beam retraction: TAC vibration signal with the corresponding decomposed 

components obtained from the HVD method. The identified IFs (dash-dot) are compared 

with the frozen IFs (solid) 
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It is important to note that in order for the HVD to work satisfactorily the amplitude 

of the multi-component nonstationary signal should vary slowly because the average IF 

depends also on the time derivative of the amplitude; which is represented by the 3rd term in 

equation (4.7.8). The contribution from this term affects the average IF even after the 

filtering process. Figure  4.15 to Figure  4.18 also show the envelope of all the decomposed 

components of the initial signals (in red). The envelopes of these components are all mixed 

together. Practically it means that the decomposed components are piecewise function of the 

initial signal. The HVD method decomposes the first mode satisfactorily from all four signals 

presented. This is because in all four vibration signals the first mode is mainly dominant. 

Even though, the identification of the first IF follows closely the corresponding frozen IF, the 

frequency resolution is still very low. This is one of the limitations of the HVD method as it 

is stated in (Feldman, 2006; 2011). 

 

4.9 Identification of the Instantaneous Frequencies of the Axially-moving Beam Using 

the HVD Method plus the TVAR Modelling  

The accuracy of the first identified IF could further be improved by employing the TVAR 

method with model order 2p =  to estimate the IF of decomposed first modal response 1( )s t  

obtained from the HVD method. Using the time-varying coefficients ( )ia t  of the TVAR 

method, we can estimate the IF. The TVAR method gives freedom to predict the variance of 

the measurement noise 2
vs  in the initial signal and the variance of the process noise 2

ws  in the 

time-varying parameters of the initial signal. As a result, the accuracy is further improved as 

it is illustrated in Figure  4.19 and Figure  4.20. Further observation can be made by dividing 

the identified IF obtained from the HVD method and the HVD plus TVAR method into three 

intervals. The observations are the same for both of the scenarios and they are stated below,  
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0 to 1 second interval: 

In this interval, we observe the end effects from the HVD method and also from the HVD 

plus TVAR method. In the HVD method the end effects come from the incomplete 

periodicity at the beginning of 1( )s t . And in the HVD plus TVAR method the end effects 

come from the Kalman filter. The identified IF resolution is almost the same for these two 

methods. It should be noted that in Figure  4.20 the identified IF obtained from the HVD plus 

TVAR method is not following the corresponding frozen IF. This is due to the fact that we 

used the decomposed first modal responses obtained from the HVD method. 

 

1 to 8 second interval: 

During this interval, the identified IF obtained by the HVD plus TVAR method follows well 

the corresponding frozen IF compared with the identified IF from the HVD method.  

 

8 to 9 second interval: 

During this interval, the end effects occur again because of the aforementioned issue present 

in both of these methods.  
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Figure  4.19: Beam extension: Comparisons between the IF obtained from the HVD method, 

the IF obtained the HVD plus TVAR method with the corresponding frozen IF. 
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Figure  4.20: Beam retraction: Comparisons between the IF obtained from the HVD method, 

the IF obtained the HVD plus TVAR method with the corresponding frozen IF. 

 

4.10 Summary 

Based on the results presented in this chapter, the following conclusions can be drawn: 

1. The proposed method fails to identify the IFs because the vibration signals are not 

only amplitude modulated but also frequency modulated.  
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2. A better ridge tracking algorithm could be employed to identify the IF of all the 

vibratory mode as presented in (Liu, 2007) 

3. The WT could perform better in tracking the IF, if the modal decomposition is 

achieved first. This could be done by utilizing Wavelet Packet Transform (WPT) 

(Sadhu, 2013). 

4. The HVD would perform better if the energy of all vibratory mode decay slowly also 

considering that the vibration signal is contaminated with high SNR.  

5. A better frequency resolution could be achieved if the HVD method is integrated with 

TVAR modelling for IF identification.  
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 Chapter 5 

Conclusions and Future Works 

5.1  Conclusions 

A novel damage detection technique is proposed using the blind source separation (BSS) 

method integrated with the time-varying auto-regressive (TVAR) modeling. The second-

order blind identification (SOBI) is employed first to decompose the mono-harmonic 

responses from the vibration data where each of the undamaged natural frequencies has an 

abrupt change (i.e., mode-mixing). Then the TVAR modeling is utilized to track the damage 

instant and detect the severity of frequency changes. In this way, the limitation of the SOBI 

method is overcome with the TVAR modeling and frequencies of both the states are 

delineated. Moreover, since each of the modal responses resulting from the SOBI contains 

single frequency, a low model order of the TVAR modeling is sufficient enough to capture 

the dynamics of the modal responses. Therefore, the complexity in selecting an appropriate 

model order of the time-series model is avoided.  

The proposed algorithm is employed to identify both discrete and progressive 

damages based on the output-only measurements. In the case of discrete damage, a numerical 

5-DOF system and two experimental 3-DOF systems are studied. In addition, the earthquake-

excited response of the UCLA Factor building is also presented to corroborate the 

performance of the proposed method with the computationally intensive SSI method. In the 

case of progressive or continuous damage, the proposed algorithm is first employed using 

numerical simulation. And it is observed that the proposed method is not capable of 

identifying the instantaneous frequencies (IF) of the axially-moving cantilever beam. 

Thereafter, the other two existing methods, the wavelet transform (WT) and Hilbert vibration 

decomposition (HVD), are utilized to identify the IFs of the axially-moving cantilever beam.  

These two methods are applied on the experimental data of the axially-moving 

cantilever beam. The WT is able to identify the IFs through a simple ridge detection method. 

The HVD method is able extract the first vibratory modal response with its corresponding IF 

but fail to extract the higher vibratory modes. It is observed that the HVD performs better if 
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the vibration signal is slow-varying in amplitude. The identified IFs obtained from the two 

methods are also compared with the frozen IFs. Even though proper extraction of the first 

modal response is achieved by the HVD, its corresponding identified IF resolution is not very 

accurate. Therefore, the HVD integrated with TVAR modeling is utilized to further improve 

the accuracy of the identified IF since the TVAR model gives freedom to predict the variance 

of the measurement noise in a signal and the variance of the process noise in the time-varying 

parameters of the signal.  

 

5.2  Contributions  

The main contributions of this thesis are listed below. 

a) The SOBI method cannot separate the mixed modal responses; therefore, by 

employing the TVAR modeling, we can overcome this limitation of the SOBI 

method. 

b) The estimation of parameters of vibration signal with the TVAR modeling is 

computationally intensive since it involves relatively higher modal orders. Proper 

selection of model order is crucial in order to obtain minimum estimation error of the 

vibration signal. So, by utilizing the SOBI method first, we can now estimate 

individual components (i.e., modal responses) of the vibration signal with low model 

order. In this way we are eliminating the computational extensive work of selecting 

the proper model order.  

c) The proposed algorithm (i.e., SOBI plus HT) can identify the damage instant if the 

difference between the undamaged and damage frequencies is significant. 

d) The proposed algorithm (i.e., SOBI plus TVAR) can identify the damage instant more 

accurately compare to the HT method.  
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e) Simple ridge tracking method in chapter 4, produces satisfactory results for 

identification of instantaneous frequencies, especially the lower instantaneous 

frequencies of the axially-moving cantilever beam. 

f) The HVD plus the TVAR method results in higher frequency resolution. 

5.3 Future Works 

Further improvement of this research is needed. The following are some of the suggestions, 

 The proposed algorithm is needed to be validated against low SNR value. 

 The present research should be further extended to include the location of damage as 

well as prediction of damage given the existing damage situation at any point of 

interest. 

 The proposed algorithm should be further exploited for the case of underdetermined 

damage detection (e.g., greater number of modes than the number of sensors). 

 Windowing technique of the proposed algorithm should be explored for the case of 

progressive damage. 
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