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Abstract 

This study investigated the effects of selected pretreatments and rigorous optimization of 

osmotic dehydration (OD) of lowbush blueberries using Response Surface Methodology (RSM) 

to produce dehydrated blueberries with high antioxidants content and long shelf life. Fresh wild 

blueberries (WB) were initially pretreated and then subjected to osmotic dehydration before they 

were oven dried to the required level (18g/100g of fresh sample). Microwave pretreated WB had 

shown better moisture loss during osmotic dehydration as compared to other pretreatment methods 

investigated. The highest levels of phenolics, flavonoids, and anthocyanin content of the 

dehydrated WB were found to be 742.61 mg/100 g, 263.12 mg/100 g, and 428.11 mg/100 g dry 

mass respectively, at optimized temperature of 40 °C, for 5 h with 65% (w/w) Brix osmotic 

solution at 1:5 ratio of sample to Brix%. With rigorous optimization of the critical osmotic 

dehydration parameters high level of antioxidants could be retained in the dehydrated product. 

Wild blueberries pretreated in the microwave before osmotic dehydration and oven drying had 

shorter drying time of 5h compared to the control sample and significantly maintained a higher 

rehydration ratio (p<0.05) and lower shrinkage ratio compared to the oven dried control. 

Preliminary mathematical modeling of the process was also carried out to determine the mass 

transfer coefficients of the system. The results suggest that the drying process developed was a 

promising alternative method that decreases drying time, achieves high product quality, uses 

simple process steps for superior drying and retains higher level of antioxidant in the final product. 

 
Keywords: Osmotic dehydration, Antioxidants, Pretreatment, Response Surface Methodology, 
Optimization, rehydration, shrinkage and mathematical modeling  
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Chapter 1 

Introduction and objectives of study 

1.1 Introduction 

All cultivated and wild species of blueberries are native to North America, 

Australia, New Zealand and some South America natives. Lowbush blueberries is another 

name for wild blueberries, while highbush refers to farm grown cultivated blueberry plants 

developed from the wild varieties in the 20th century (AgriFood-Canada, 2011). Canada is 

the largest producer of lowbush blueberries and the second-largest global producer and 

exporter of highbush blueberries. In 2016, Canada produced 132.2 kt of lowbush 

blueberries with a value of C$90.7 million while highbush blueberries yielded 85.8 kt with 

a value of C$170.8 million (Statistics-Canada, 2017). The United States produced 347.7 kt 

of blueberries with a value of approximately US$748 million in 2016 (USDA-NASS, 

2017). Over the last decade, there has been a considerable increase in demand for 

blueberries, especially for the lowbush ones due to their bioactivity, unique flavor and high 

nutritional value (Correia et al., 2017; Dróżdż et al., 2017; Khalid et al., 2017). Lowbush 

blueberries have been reported to show significantly high levels of phenolics, 

anthocyanins, and antioxidant capacity as compared to cultivated blueberries (Correia et 

al., 2017; Del Bo et al., 2016; Mallik &Hamilton, 2017). The health –relevant bioactivity 

of wild blueberries have been widely studied such as depression control, counteract lipid 

accumulation, anti-inflammatory, anti-hypertensive, cognitive, and cardiovascular risk 

factors (Chorfa, et al., 2016; Correia, et al., 2017; Dudonné, et al., 2015; Lee, et al., 2014). 

However, the fresh fruits are highly perishable. The bioactive components of the fruits can 

easily deteriorate when exposed to light, heat, and oxygen (Michalska et al., 2015). Hence, 

drying and processing techniques have been used to stabilize and extend the shelf life of 
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lowbush blueberries and maintain their bioactive properties (Ekezie et al., 2017; Flores et 

al., 2014; Kamiloglu et al., 2016; Struck et al., 2016).  

The selection of suitable and efficient drying system is very vital for food 

preservation due to the heat sensitivity of many products, constituent’s degradation, 

products morphology, etc. Inadequate choice of drying techniques and conditions can lead 

to substandard physical and nutritional properties of the dried food products. The selection 

of a drying technique for a specific food product depends on the following factors: heat 

sensitivity, moisture content, type of feed, drying kinetics, physical structure and 

morphology of the food material, and predetermined product quality (Mannozzi, et al., 

2018; Zhang, et al., 2017). 

Different drying techniques for lowbush and highbush blueberries processing have 

been reported in the literature such as freeze drying (Nemzer, et al., 2018; Ngo, et al., 

2017), microwave-assisted drying (Zielinska & Michalska, 2016), osmotic dehydration 

(Kucner, et al., 2013), combined hot air drying and microwave-assisted drying (Zielinska, 

Sadowski, et al., 2016), individual quick freezing (Beaudry, et al. 2004). Individual quick 

freezing has been reported to be most effective drying technique that retains high amounts 

of bioactive compounds of lowbush blueberries (Beaudry, et al. 2004). However, this 

process is time-consuming and requires high levels of energy making the technique costly 

(Yemmireddy et al., 2013). Although, different drying techniques have been employed to 

dehydrate wild blueberries many of these techniques are slow and energy intensive due to 

the structure of blueberries peel that is covered by a waxy layer which acts as a barrier to 

moisture removal (Alfaro, et al., 2018; Kucner, et al., 2013; Moreno, et al., 2016). The peel 

pretreatments by chemical and physical processes before drying to facilitate moisture 
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removal have shown significant results as well as drying time reduction (Alfaro, et al., 

2018; Rodriguez, et al., 2016; Yuanshan, et al., 2017).  

Osmotic dehydration (OD) has been found to be an effective, simple and 

economical method compared to the traditional techniques for preservation of fruits and 

vegetables (Akharume, et al., 2018; Yadav, et al., 2014). It involves a non-heat process that 

reduces the moisture content and water activity in food, thus prolonging its shelf life. OD 

can offer numerous benefits when used for the preservation of products with high nutrient 

and antioxidant content such as wild blueberries. It causes moisture flow from the product 

into the osmotic solution while osmotic solute is transferred from the solution into the 

product (Dermesonlouoglou, et al., 2018; Zielinska, et al., 2018). It can be employed as a 

pre-treatment at mild temperatures in combination with other preservation techniques to 

improve the quality of final product, reduce energy and/or develop new products (Derossi, 

et al., 2015; Rahman, et al., 2018; Yadav, et al., 2014). The combination of air-drying with 

osmotic dehydration has been widely studied leading to improvements in the quality of the 

product and to energy savings (Dehghannya, et al., 2018; Katsoufi, et al., 2017; Prosapio, 

et al., 2017). 

Recently, the effects of liquid nitrogen pretreatment on the osmotic dehydration and 

quality of cryogenically frozen blueberries (Vaccinium angustifolium Ait.) was 

investigated by Alfaro, et al. (2018). They reported that liquid nitrogen pretreated 

blueberries experienced greater moisture loss and solids gain after osmotic dehydration 

than non-pretreated samples, while similar anthocyanin and total phenolic contents were 

observed in both pretreated and non-pretreated samples. Also, Yu et al. (2018) studied 

biochemical degradation and physical migration of polyphenolic compounds in osmotic 

dehydrated blueberries using the pulsed electric field (PEF) and thermal pretreatments. 
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Biochemical degradation and physical migration of the nutritive compounds from 

blueberries to osmotic solutions were observed during the pretreatments and osmotic 

dehydration. It was further reported that PEF pretreated, and dehydrated fruits showed 

superior appearance to thermally pretreated and control samples. Yu, et al. (2017) also 

attempted pulsed electric fields (PEF) pretreatment on osmotic dehydration of blueberries, 

and its effects on dehydration kinetics, microbiological qualities, and nutritional qualities. 

It was reported that higher rates of water loss and solid gain during osmotic dehydration 

were obtained using PEF pretreatment, while the dehydration time was reduced from 130 

to 48 h. The influence of microwave-assisted drying techniques on the rehydration behavior 

of blueberries (Vaccinium corymbosum L.) was also investigated by Zielinska and 

Markowski (2016). Degradation kinetics of anthocyanins in freeze-dried 

microencapsulates from lowbush blueberries (Vaccinium angustifolium Aiton) extract and 

prediction of shelf-life were studied by Celli et al. (2016). Combinations of hydro-

thermodynamic processing and different drying methods for natural lowbush blueberries 

leather were investigated by Y. Chen et al. (2018). Likewise, Zielinska et al. (2015) 

investigated the freezing/thawing pretreatment and microwave-assisted drying of 

blueberries (Vaccinium corymbosum L.). They reported that freezing/thawing promotes 

high moisture transfer during drying and reduces drying time as compared to drying of 

blueberries without freezing/thawing pretreatment. Rodriguez et al. (2016) evaluated the 

final quality of highbush blueberries after microwave drying by comparing two 

pretreatment techniques (osmotic dehydration and hot air drying). They reported that 

combination of hot air–microwave-drying technique decreased the process time and 

improved drying rate as compared to the osmotic dehydration–microwave technique. The 

waxy skin of blueberries results in low drying rate, a gradual reduction of moisture and a 
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long time of drying (Zielinska & Michalska, 2016).The application of different 

pretreatments before osmotic dehydration or second drying could reduce mechanical 

resistance and increase moisture permeation through the skin.  

However, there is a need for a rigorous optimization of the osmotic dehydration 

parameters such as sucrose concentration (Brix), temperature, Brix to sample ratio and 

treatment time using a response surface methodology (RSM). This  is a useful statistical 

technique which has been applied in research to optimize complex variable processes. 

Multiple regression and correlation analyzes are the mains tools of RSM that are employed 

to assess the effects of two or more independent variables on the dependent parameters (He 

et al., 2016; Jiang et al., 2017). The main advantage of using a response surface 

methodology RSM is that the number of experimental runs required to generate a 

statistically acceptable result can be reduced ( Chen et al., 2018; Ganesan et al., 2018). It 

was also observed that application of the current pretreatment techniques such as radiant 

zone, far infrared radiation, ohmic heating, ultrasound-assisted, PEF, 

electrohydrodynamic, microwave-assisted, etc. have not been well explored on wild 

blueberries processing and limited information is available in the literature on the same. 

Inspite of this, a critical review of the current trends of pretreatment techniques before 

osmotic dehydration of fruits in the literature with special attention to wild blueberries is 

presented in this study. 

The composition of osmotically dehydrated samples such as moisture loss and solid 

gain can be controlled based on information about a mass transfer during osmotic 

dehydration (OD) ( Zielinska, M., & Markowski, M. 2018).Various approaches based on 

Ficks’ second low have been proposed to model the mass transfer kinetics during osmotic 

dehydration (OD) and hot air convetional drying of food products (Horuz et al., 2018; 
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Kumar, et al., 2016; Sareban, M., & Souraki, B. A. 2016; Zielinska, M., & Markowski, M. 

2017). A two parameter mathmatical modle developed by Azuara for describing the mass 

transfer during osmotic dehydration (OD) and hot air convective drying (HACD) of 

agrifood estimating the changing in moisture loss  and solid gain in equilibrium state 

(Azuara, E et al.1992; Zielinska, M., & Markowski, M. 2017) 

To the best of our knowledge, the application of rigorous optimization techniques 

for lowbush blueberries osmotic dehydration has not been reported in literature. The 

optimization of osmotic dehydration variables using RSM to understand the effect of these 

variables on dehydration performance and dried fruit quality in term of antioxidant content 

would provide important information in designing and optimizing a drying method for wild 

blueberries. In addition, there is a general scarcity of research into the effects of emerging 

technologies such as microwave (MW) combined with osmotic dehydration (OD) as 

pretreatment for hot air convective drying (HACD). Knowledge of mass transfer kinetics 

in terms of moisture loss, solids gain, effective moisture diffusivity and effective solids 

diffusivity during OD and HACD of whole wild blueberries, will also help in better 

understanding and scale up of the drying process. 
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1.2 Objectives of this study 

1.2.1 Overall Objective 

The overall objective of this study was to dry wild blueberries by osmotic 

dehydration in order to extend its shelf life and retain its antioxidant properties. 

1.2.2 Specific objectives 

The specific objective of the study were to: 

I: Study the effect of different pretreatment methods on osmotic dehydration of wild 

blueberry and determine the most effective process to achieve low antioxidant loss 

and high moisture loss.   

II: Rigorously optimize the osmotic dehydration process critical parameters using 

Response Surface Methodology (RSM) with the aim of reducing loss of 

antioxidants.  

III: Compare the product obtained by osmotic dehydration method to the conventional 

method in terms of process time, shrinkage and rehydration properties. 

IV: Determine the mass transfer coefficients of the osmotic dehydration and 

conventional drying of wild blueberries by preliminary mathematical modeling. 
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Chapter 2 

Literature review 

2.1 Origin and varieties of blueberries 

Blueberries belong to the family of “Ericaceae,” subfamily of “Vacciniaceae,” 

genus “Vaccinium,” and subgenus “Cyanococcus” ( Powell, et al., 2003; Lyrene, et al., 

2003; Winny, et al., 2011). There are two main categories of blueberries namely lowbush 

blueberries and highbush blueberries. The wildly grown blueberries are called lowbush 

blueberries (wild blueberries) while the cultivated blueberries are called highbush 

blueberries (AgriFood-Canada, 2011; USDA-NASS, 2017). Wild blueberries (Vaccinium 

angustifolium) is a calcifuge shrub that is native to the northeastern North America (Ferrier, 

et al., 2016; Strik, et al., 2005). Cultivation of blueberries was dated back to the beginning 

of the 20th century, when Frederick V. Coville selectively bred northern highbush 

blueberry (Vaccinium corymbosum L.) cultivars (Mainland, 2012; Michalska, et al., 2015). 

Some of the cultivar of blueberries species in the United States and Canada are lowbush 

blueberry (Vaccinium angustifolium L.), northern highbush blueberry (Vaccinium 

corymbosum), southern highbush blueberry (Vaccinium darrowii Camp.), rabbiteye 

blueberries (Vaccinium virgatum Aiton.), Elliott’s blueberry (Vaccinium elliottii Chapm.), 

etc. (Kang, et al., 2015; Li, et al., 2016; Su, et al., 2017). Northern highbush blueberries 

are the most well known species out of the other cultivars due to high fruit quality and low 

temperatures resistance (Michalska, et al., 2015; Winny, et al., 2011). Wild blueberries 

have a lower moisture content, are smaller and are known to have more antioxidant content 

as compared to cultivated blueberries ( Mallik, et al., 2017; Skrovankova, et al., 2015).  

Nowadays, blueberries are cultivated in other parts of the world such as Australia, 

Argentina, New Zealand, Chile, China, Uruguay, and South Africa (Bizabani, et al., 2016; 
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Strik, 2007; Su, et al., 2017). The United States is the largest producer of highbush 

blueberries, while Canada is the second-largest global producer and exporter of highbush 

blueberries. For the wild blueberries, Canada is the largest world producer (AgriFood-

Canada, 2011).  

Blueberries can be consumed fresh but are highly susceptible to deterioration within 

a few days of harvest due to its high-water content (Kucner, et al., 2013; Yu, et al., 2018). 

Immediate preservation of blueberries after harvest is necessary to maintain the bioactive 

content and reduce spoilage of the fruit. In the cold winter of North America, the 

preservation method of blueberries that was passed from the natives to colonists includes 

sun‐drying, freezing, or smoke drying where sufficient sunlight was not available and to 

decrease the reliability over solar energy (Michalska, et al., 2015; Winny, et al., 2011). 

Over the last few decades, more than 50% of blueberries are processed into different 

products such as jams, juices, yoghurts, canned fruits, etc. (Skrovankova, et al., 2015). 

Regardless of the harvesting methods, blueberry fruits are immediately sorted and placed 

in cold storage to reduce fruit dehydration and respiration (Mallik, et al., 2017; Nemzer, et 

al., 2018). Due to the growing demand of blueberries and large production that exceed 

fresh fruit consumption, the processing of blueberries using different pretreatments and 

drying techniques has led to considerable research (Kucner, et al., 2013; Moreno, et al., 

2016; Zielinska, et al., 2015). In this review, challenges wit the pretreatment methods and 

drying techniques as applicable to highbush and lowbush blueberries are examined. 

2.2 Pretreatments and Drying Techniques 

                 Pretreatment of waxy fruits before drying has been shown to improve moisture 

removal and reduce loss of bioactive content of the fruits (Luchese, et al., 2015; Peng, et 

al., 2018; Sunjka, et al., 2004; Tarhan, 2007). In the many combined drying techniques 
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involving OD, fruit pretreatment is recommended. Limited information is available in the 

literature on the application of pretreatment methods for wild blueberries. Pretreatments 

before OD enhances cell membrane permeability which strongly affects the dehydration 

rate (Ramya, et al., 2017). Good membrane permeability ultimately leads to more rapid 

osmotic dehydration. The cellular membrane exerts high resistance to transfer and slows 

down the osmotic dehydration rate (Bialik, et al., 2018; Katsoufi, et al., 2017). This 

phenomenon limits the rate of mass transfer during osmotic dehydration of fruits, 

vegetables, and food (Zielinska, et al., 2018). Hence, it is essential to develop additional 

techniques to enhance mass transfer without adversely affecting the quality.  

Different pretreatment methods have been investigated to improve mass transfer 

during drying of fruits, vegetables. These include blanching (Cesa, et al., 2017; Jaiswal, et 

al., 2012; Wu, et al., 2014; Yonny, et al., 2018), peeling (Pan, et al., 2018), coating (Jung, 

et al., 2015; Kerch, 2015; Sunjka, et al., 2004; Xiao, et al., 2010), freezing or thawing 

(Ando, et al., 2016; Peng, et al., 2018; Zielinska, et al., 2015), high hydrostatic pressure 

(Jung, et al., 2018; Verma, et al., 2014; Welti-Chanes, et al., 2016), pulsed electric field 

(Ade-Omowaye, et al., 2003; Jin, et al., 2017; Puértolas, et al., 2016; Yu, et al., 2018), 

ultrasound (Azoubel, et al., 2015; Horuz, Jaafar, et al., 2017; Luchese, et al., 2015; 

Rodríguez, et al., 2018; Zhao, et al., 2018), ohmic heating (Kaur, et al., 2016; Makroo, et 

al., 2017; Mannozzi, et al., 2018; Moreno, et al., 2016), microwave (García‐Martínez, et 

al., 2018; Sharif, et al., 2018; Tan, et al., 2017), enzymatic treatment (Abdullah, et al., 

2007; Kucner, et al., 2013), etc. Fig. 2.1 shows recent pretreatment methods for food, fruits, 

and vegetables processing. Most of the discussed pretreatment methods have not been well 

investigated on wild blueberries. Thus there is scope for research to identify the best 

pretreatment and drying techniques that befit wild blueberry processing. 
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Before adding the lipase enzyme, the water and fruits are brought to pH 6.5 by adding 0.1 

M NaOH (Kucner, et al., 2013). For papayas, mangoes, and bananas, pretreatment may 

involve dipping the fruit in 0.4 % ascorbic acid or 0.4 % ascorbic acid plus 0.1 per cent 

KMS solution for 30 minutes (Chavan and Amarowicz, 2012).  

Fig. 2.2 shows some conventional drying techniques and some recently developed 

drying techniques for food, fruits, and vegetables processing. The study of suitable drying 

method for a specific food, fruit, and vegetable generally target the following quality 

parameters of the dehydrated product: a) retention of flavor of the dried products (Dulf, et 

al., 2016; Rodriguez, et al., 2016), b) retention of nutrients such as heat-sensitive and 

oxygen-sensitive components (Kamiloglu, et al., 2016; Nowicka, et al., 2015), c) products 

browning inhibition  (Aral, et al., 2016; Nadian, et al., 2015; Wojdyło, et al., 2009), d) 

efficient dried product rehydration, which represents the ability of restoring fresh product 

properties (Horuz, Jaafar, et al., 2017; Seremet, et al., 2016), e) dried product morphology, 

appearance, and texture at macrostructural and microstructural levels (Chu, et al., 2017; 

Monteiro, et al., 2018; Vega-Gálvez, et al., 2015).  

 

 

 

 

 

 
 







Ibtisam Sharif 

31 
 

enhance the desirable product quality (Horuz, Bozkurt, et al., 2017; Horuz, Jaafar, et al., 

2017; Vishwanathan, et al., 2013). Hybrid drying technologies include combinations as 

hot air drying followed by microwave or freeze drying, osmotic dehydration followed by 

hot air drying etc. (Fig. 2.3). Limited information is available in the literature on the 

application of current hybrid drying methods for wild blueberries processing. Recently, 

combined hot air convective drying and microwave-vacuum drying of blueberries 

(Vaccinium corymbosum L.) focusing on drying kinetics and quality characteristics was 

reported by (Zielinska, et al., 2016).  

2.3 Conventional Drying 

Food drying is one of the oldest methods of food preservation. The aim of drying 

is to remove moisture from a food product to prevent the growth of microbes and the 

enzymatic reactions, which cause food spoilage. Drying food is an important way of 

preserving seasonal foods to consume later. Dehydrated foods are also important for 

backpacking, hiking, and camping because they weigh much less than their non-dried 

equivalents and do not require refrigeration. However, traditional methods of dehydration 

such as solar drying, microwave, oven drying, or vacuum tend to reduce the product 

quality. Drying causes loss of color, change of texture, flavor, nutrients and freshness due 

to high temperature used as shown in Table 2.1. Results of experiments show that lowering 

the process temperature has great benefits for improving the quality of dried products 

(Sagar and  Kumar, 2010). 
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Table 2.1: Effects of using conventional drying methods on blueberries and other fruits 
 

 

2.4 Osmotic Dehydration (OD) 

OD is one of most significant complementary pretreatment method and food 

preservation technique in the processing of dehydrated foods (Akbarian, Ghasemkhani, & 

Moayedi, 2014). It is used for the partial removal of moisture from food by immersion in a 

hypertonic solution. The process may involve dehydration of food in two stages. The first 

stage is the removal of moisture from the food using an osmotic agent (osmotic 

concentration), while the second phase involves subsequent dehydration of the food in a 

Fruits 

Initial 
Moisture 
Content 

% 

Methods 
Drying Conditions Moisture Final Product 

References 
 

Temperature Time % Comments 

Aonla 80.74 Oven 
drying 65C 72hrs. 7.07 

A sharp drop in 
the ascorbic acid 

P. S. Kumar, 
et al. (2014); 
Kumari, et al. 

(2018); 
Pragati, et al. 

(2000) 

Bananas 74 Air drying 180-140C 8-11 hrs. 17-20 

Slightly 
browned, the 

flavour differed 
distinctly from 
fresh banana 

Brekke, et al. 
(1966) 

Blueberry 85 Cabinet 
dryer 90 - 50C 5.5 hrs. - 

Reduction of the 
total anthocyanin 

by 49% 

Lohachoompol, 
et al. (2004) 

 

Golden 
berry 82 

Drum 
drying 110C A few 

minutes. - Reduce the 
phenolic content 
(11.12% - 42%), 

lightness 

Tiwari, et al. 
(2013) Oven 

drying 60C 24hrs - 

Peaches 88 Dehydrate 135C 8-12 hrs. - Lack sweetness Hong, et al. 
(2004) 

Pineapples 87 Oven 140F 2X than 
dehydrate - 

Pineapples will 
cook instead of 

dry. 

Kendall, et al. 
(2007) 
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dryer to reduce the moisture content further (Chavan and Amarowicz, 2012). The osmotic 

dehydration step can be done before, or even after the conventional drying process to 

enhance the mass transfer or to shorten the duration of drying time (Akbarian et al., 2014). 

The treatment involves the process of osmosis in which moisture migrates from a solution 

of lower concentration to a high concentration of solutes through a semi-permeable 

membrane. The objective of OD is to lower the water activity of the food materials. Yadav 

and Singh (2014) reported that OD could reduce from 30% to 70% of the food moisture 

content. The stable shelf life and distinctive characteristics of osmotically dehydrated fruits 

allow it to be widely used in cereals, confections, and baked goods (Yu et al., 2017). The 

solutes most commonly used in OD are sugar syrups for fruits such as blueberries. During 

the osmotic dehydration process, moisture flows from the fruits to the sugar syrup (Yadav, 

et al., 2014). Apart from reducing the water content of the fruits, the process also 

simultaneously increases the soluble solids content. The complex cellular structure of the 

fruit acts as the semipermeable membrane. 

A list of on research on osmotic dehydration (OD) on various fruits is given in 

Table 2.2. Although OD results in partial dehydration, the food still retains some water 

activity, which should be removed through other processes such as conventional drying 

(De Mendonça, et al., 2016). The overall process however retains all the beneficial 

compounds like other non- heat processes. OD is a diffusive process, and as such, the 

diffusivities of the moisture and solids are affected by numerous factors discussed in the 

following sections. 
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Table 2.2: Osmotic dehydration of fruits. 

Fruits Osmotic agents and 
concentration 

Temp 
(°C) 

Sample 
to 

solution 
ratio 

 

Agitation Sample 
size (mm) References 

Apple and 
Golden 
delicous 

Dry sugar and syrup 20 – 49 1 to 4 Yes 3 Ponting (1966) 

Invert sugar, 50% 
Sucrose, 55–75% 30 – 60 25 - - Farkas, et al. (1969) 

Sucrose, 70% 50 4 - 3 Contreras, et al. (1981); 
Dixon, et al. (1977) 

Sucrose, 59% RT 5 - 6 to 10 Lerici, et al. (1985) 
Sucrose, 60–75% 40 – 80 26 - 15 to 20 Videv, et al. (1990) 

Sucrose, 70% 50 3 - 13 Sharma, et al. (1991) 

NaCl - - - - Lerici, et al. (1985) 

Apple 

Sucrose 70% 37±2 1:02 - Cubes, 10 
mm3 Allali, et al. (2009) 

Sucrose 25 - 65 % 30 – 50 1:05 - Slices Barat, et al. (2001) 

Sucrose 61. 5% 
(w/v) 30 1:02 Yes 10 mm Khin, et al. (2007) 

Sucrose 34 - 63% 34–66 1:03 Yes Cylindrical 
20x20 mm H. Li, et al. (2006) 

Amla Sucrose 40–50 °B 30 – 50 - - - Singh, et al. (1999) 

Aonla 

Sugar syrup, 50–
708Brix 30–60 1:4–1:8 - - Alam, et al. (2010) 

Sugar syrup, 30-50 
Brix 30–50 1:5–

1:15 - Cubes, 10 
mm3 

Tiroutchelvame, et al. 
(2015) 

Apricot Corn syrup, 81% 49 4 Yes - Ponting (1973) 

Banana 

Sucrose, 60% NK NK - - Hope, et al. (1972) 
Sucrose, 60–80% 49 4 Yes - Ponting (1973) 

Sucrose, 65% 60 NK - - Garcia-Noguera, et al. 
(2010) 
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Table 2.2: (Continued). 

Fruits Osmotic agents and 
concentration 

Temp 
(°C) 

Sample 
to 

solution 
ratio 

 

Agitation 
Sample 

size 
(mm) 

References 

Blueberries 

 
Sucrose, 60Brix 

 
23–25 

 
5 

 
- 

 
- Shi, et al. (2008) 

Sucrose, 60–80% 49 4 Yes - Ponting (1973) 
Sucrose NK - - - Kim and Toledo (1987) 

Sucrose 65% 30 4 Yes - Kucner, et al. (2013) 

Commercial can 
syrup 70% 40 2 Yes - Yu, et al. (2017) 

Cashew 
apple 

Sucrose/corn syrup 
40–60% 30 – 35 - - - P. Azoubel, et al. (2003) 

Cherry Corn syrup/Sucrose, 
70% NK - - - 

Giangiacomo, et al. 
(1987) 

 

Citrus fruit 
Sucrose 60–80% 49 4 Yes - Ponting (1973) 

Sucrose - - - - Mehta, et al. (1984) 
 

Dashehari Sucrose, 70% RT 1 - - Teaotia, et al. (1976) 
 

Dwarf 
cavendish 

Sucrose, 70% 27 – 60 1 to 3 Yes 8 to 10 Bongirwar, et al. (1977) 

Sucrose 40–70 °B 25 – 35 - - - N. Rastogi, et al. (1997) 
Sucrose 55–65 °B - - - - Oliveira, et al. (2006) 

Sucrose + salt 25 – 55 - - - Mercali, et al. (2011) 

Fuji apple Sucrose 50% + NaCl 
10% 27 - - - 

Monnerat, et al. (2010) 
 
 

Giant kew Sucrose 40–70% 20 – 65 10 - 6.5 M. Rahman, et al. (1990) 

 
Sucrose 50–70 °B+ 
0.2% citric acid and 

700 ppm KMS 
60 – 65 - - - Rashmi, et al. (2005) 

Golden 
delicious 

and Jersey 
Mack 

Sucrose, 70% 51 4 - 3 Dixon, et al. (1977) 
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Table 2.2: (Continued). 
 

Fruits 
Osmotic agents 

and 
concentration 

Temp 
(°C) 

Sample 
to 

solution 
ratio 

 

Agitation 
Sample 

size 
(mm) 

References 

Granny 
Smith 

cultivar 

Glucose, 25–
34.6% 30 - - - Nieto, et al. (2004) 

 

Grapes 
 Sucrose 60–80% 49 4 Yes - Ponting (1973) 

Mango green Salt, 25% 29 - - 10 Jackson, et al. (1971) 

Melntosh 

Sucrose, 75% 25 - - - Camirand, et al. (1968) 
Sucrose, 25–50% 23 20 - 3 to 4 

HAWKES, et al. (1978) 
NaCl, 5–10% RT - - - 

Sucrose, 50–70% 30 – 50 4 Yes 10 Conway, et al. (1983) 
 

Peach 

Sucrose 65–80% 49 4 Yes - Ponting (1973) 
Corn 

syrup/Sucrose, 
70% 

NK - - - Giangiacomo, et al. (1987) 

Pineapple 

Sucrose 65–80% 49 4 Yes - Ponting (1973) 
Sucrose,45–65 °B 30 -50 - - - Lombard, et al. (2008) 

Sucrose 30 – 50 - - - L. Ramallo, et al. (2004) 

Sucrose, 60% 30 – 50 - - 0.6 L. A. Ramallo, et al. (2005) 
 

Pomegranate Sucrose 55 °B 40, 50,55, 
60 - - - Bchir, et al. (2012) 

Pumpkin 

Sucrose, 45% 25 - - 15 to 
25 Mayor, et al. (2008) 

Sucrose, 40–60% 27 - - - Garcia, et al. (2007) 

Sucrose + salt - - - - Mayor, et al. (2011) 
 

Red 
delicious 

Sucrose, 70% 70 4 - 15 BOLIN, et al. (1983) 
Sucrose, 30–45% - - - - Mandala, et al. (2005) 
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2.4.1 Quality of raw material 

For osmotic dehydration careful consideration must be made of the raw materials 

used. The maturity and variety of fruits and vegetables used have important roles in 

controlling water loss and solid gain during the osmotic process. Some raw material quality 

factors that influence the osmotic process includes intercellular spaces, the enzymatic 

activity of the fruit, initial insoluble and soluble solids content, tissue compactness etc. In 

many cases, ripe fruits are more suitable for osmotic dehydration than unripe products 

(Chavan, et al., 2012). 

2.4.2 Type of Osmotic Agent 

 The type of osmotic agent used greatly affects the osmotic dehydration process 

(Charles Tortoe, 2010). For fruits and vegetables sucrose, glucose, starch syrup, fructose, 

sorbitol, glycerol, glucose syrup, corn syrup, honey and sodium chloride are the most 

commonly used osmotic agents (Akbarian et al., 2014). . Lactose, maltose, dextrose corn 

starch syrup, polysaccharides and maltodextrin are also used as osmotic agents. Desirable 

characteristics of osmotic agents are that they should be harmless, have good taste and have 

high diffusivity characteristics. Some osmotic agents show better performance than others 

due to their inherent characteristics. For instance, high fructose corn syrup has higher 

diffusivity compared to sucrose. However, sucrose is favored over fructose and is 

considered as the best osmotic agent because it can be recycled a minimum of five times 

without affecting fruit quality even though no new syrup is added (de Oliveira et al., 2017; 

Garcıa-Martınez et al., 2002; Germer et al., 2016).  Also, it imparts acceptable sweet taste 

to the product. Sucrose can reduce browning by preventing the entry of oxygen. Lower 

molecular mass saccharides such as fructose, glucose, and sorbitol favor solid enrichment 



Ibtisam Sharif 

38 
 

instead of water dehydration because they enhance sugar uptake due to the high velocity 

of molecule penetration. Sodium chloride can retard oxidation, stop browning and increase 

the driving force for the drying due to the lowering capacity of the salt. Yadav, et al. (2014) 

indicated that a combination of the different osmotic agent was more effective than only 

one due to a combination of properties of solutes. For instance, a combination of salt and 

sugar osmotic agents can be more effective in dehydration of fruits and vegetables 

(Nishadh, et al., 2014). 

2.4.3 Concentration of osmotic agent 

The concentration of the osmotic solution also has a major influence on the OD 

process. The osmotic solution concentration strongly affects the kinetics of water removal, 

equilibrium of moisture content, and the solid gain. For instance, moisture loss and 

dehydration are enhanced when the molar mass of the solute increases and the 

concentration of the solution is high. The increase of the osmotic solution concentration 

has also been shown to increase the equilibrium concentration and the drying rate 

(Chandra, et al., 2015). Evidence from past studies suggests that the rate of moisture loss 

and solute gain is proportional to the concentration of the osmotic solution. The higher the 

concentration of the osmotic solution, the faster the rate of osmosis. For instance, syrup 

strength in the range of 60 to 70 Brix has been found to be optimum for osmosis (Chavan, 

et al., 2012). Yadav, et al. (2014) reported that optimum osmosis found at approximately 

40 Brix and salt concentration should be around 10% (w/w). According to Telis, et al. 

(2004), a high concentration of sucrose hinders the penetration of sodium chloride in 

tomato if they are used as a combination. Small quantities of salt to the sugar solution could 

increase the osmotic drying force due to its lower molecular weight and higher capability 
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of reducing the water activity (Telis, et al., 2004). Shi, et al. (2008) found that osmotically 

dehydrated blueberries using 60% sugar solution had a low moisture content of 47g 

moisture /100g, while fresh blueberries had 85g moisture/100g. Lohachoompol, et al. 

(2004) demonstrated that osmotically treated blueberries with 60 Brix (w/w) and 1% (w/w) 

of sodium chloride had lower moisture content (33.6% wet basis) than untreated 

blueberries (36.9% wet basis). Partial dehydration of banana by osmosis in 70% sugar 

syrup reduces 50% of its initial weight (Yadav and Singh, 2014). Finally, if salt is used as 

an osmotic agent there is an increase in the loss of moisture content at the end of drying 

because salt uptake influences moisture sorption behavior of the product. However, using 

salt as a combination osmotic agent with sugar will affect and change the taste or the flavor 

of the final products of wild blueberries. 

2.4.4 Osmotic solution ratio 

In OD the sample to solution ratio has to be chosen wisely so that the driving force 

for the removal of the moisture exists till the end of the process. The product mass ratio 

and solution have different effects in the solution of dehydration process. The driving force 

decreased to remove of water when osmotic solutions become dilute. As the dehydration 

progresses, the osmotic solution become increasingly dilute and the driving force for 

further removal of water drops. However, higher ratio of material to osmotic solution (1:10 

to 1:60) can be used to avoid significant dilution of the medium due to uptake of water 

from sample and loss of solute to the sample, and subsequent decrease in the osmotic 

driving force during the osmotic dehydration (Ahmed, et al., 2016; Chavan, et al., 2012; 

Dehghannya, et al., 2018). However, some investigators used a much lower ratio (1:1, 1:3, 

1:4 or 1:5) to monitor the mass transfer by following changes in the concentration of the 
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osmotic solution (Pacheco-Angulo, et al., 2016; Zahoor, et al., 2017). 

2.4.5 Temperature and the immersion time of the osmotic solution 

The temperature and time of the osmotic solution contact with the food to be 

dehydrated also influence the performance of the OD process. According to Chandra, et 

al. (2015), temperature is the most important parameter affecting the kinetics of mass 

transfer during the osmotic dehydration process. The optimum immersion time of OD for 

fruits is about 132 minutes (Yadav, et al., 2014). The initial time is crucial, since mass 

transfer phenomena are rapid and have a significant impact on further progression of the 

osmotic process (Tortoe, 2010). The rate of osmosis increases with increase in 

temperature. However, the osmosis process increases up to a certain optimum temperature 

beyond which the cell membranes are destroyed which results in a slowdown in osmosis 

rate (Chavan, et al., 2012). Above 50˚C, flavor deterioration and enzymatic browning take 

place. These are some of the changes OD tries to prevent, as compared to conventional 

drying. The moisture loss increases as the temperature increases, but a solid gain is less 

affected by temperature. Khan (2012) reported that undesirable changes appeared on the 

blueberries at temperature higher than 50ºC. Kucner, et al. (2013) also detected that the 

temperatures in the range 30 to 50ºC of OD in blueberry does not show any effect on the 

antioxidant content . Temperature at 70ºC led to 30% loss of the phenolic compound after 

2h of dehydration. However, there is no significant influence on the color value of berry 

during OD at high temperature (Stojanovic, et al., 2007). Optimum conditions of time and 

temperature need to be determined for each food product on a case-by-case basis.  
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2.4.6 Agitation of the osmotic solution 

Agitation is one of the key factors in OD, and an adequate level of agitation ensures 

minimization or elimination of liquid-side mass transfer resistance and provides a constant 

driving force (Rastogi, et al., 2015). The use of highly concentrated viscous sugar solutions 

creates significant problems such as floating of food pieces, hampering the contact 

between food material and the osmotic solution and leads to a reduction in the mass 

transfer rates. Thus, to enhance mass transfer and to prevent the formation of a dilute 

solution film around the samples, agitation by shaking or stirring process can be applied 

during osmotic dehydration (Akbarian, et al., 2014; Gupta, et al., 2012; Moreira, et al., 

2007). However, agitation may be difficult and cause damage to the sample. Agitation has 

no effect on osmosis for short process periods. Tortoe, et al. (2009) investigated the effects 

of agitation on mass transfer during osmotic dehydration in plant materials. However, only 

minimal improvement in moisture loss and solids gain is observed following the agitation 

of the osmotic solution. For longer osmosis periods, the agitation of the osmotic solution 

reduces the rate of solid gain. That is due to the indirect effect of high moisture loss 

changing the solute concentration gradient in the food particle surface (Chandra, et al., 

2015). Agitation has no direct impact on solid gain throughout the entire osmotic process 

since an external transfer of the osmotic solute is not limiting (Tortoe, 2010). Dynamic 

infusion (shaking) was found to be more effective than increasing temperature greater than 

50 °C for increasing solid gain of blueberries in sugar infusion resulted in fast and high 

solid gain (Shi, et al., 2008). 
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2.4.7 Convective drying  

After osmotic treatment, the next step in the process is drying where excess moisture 

is removed from the food. OD alone cannot provide longer shelf life and stability to the final 

product. A combination of drying such as osmotic and conventional drying is the best way 

to reduce the energy consumption, increase the throughput and improve quality. The 

combination has been evaluated successfully by many researches and the overview of the 

process is shown in Fig. 2.4. Air-drying is commonly used following OD to produce so 

called semi-candied dried fruits. Several methods of dehydration of osmotically treated 

foods are available. These include convective, freeze, microwave, vacuum or infrared drying 

steps (Ramya, et al., 2017). Beaudry, et al. (2004) compared four drying methods of drying 

(osmo-vacuum, osmo-microwave, osmo-freeze and osmo-convective) and found that the 

drying rate of osmo-vacuum treated cranberries is higher followed by osmo-microwave 

drying process. Moreover, the reduction in pressure causes the expansion and escape of gas 

enclosed in the pores. The pores can be occupied by osmotic solution, thus increasing mass 

transfer rate. Another option is using infrared drying steps, as an energy saving method 

(Wang, et al., 2006). The introduction of infrared heating increases the initial drying rate by 

4 to 5 times for potato and pineapple drying. Shi, et al. (2008) evaluated drying and quality 

characteristics of fresh and sugar-infused blueberries dried with infrared (60, 70, 80 and 90 

C) radiation heating. It was realized that infrared drying produced much firmer texture 

product with much-increased drying efficiency for fresh blueberries and sugar-infused 

blueberries compared to convective air-drying. Increasing the temperature (60–80 C) 

showed the enhancement of drying rate and reduction of drying time without causing 

significant negative on the quality of dried products. 



Ibtisam Sharif 

43 
 

 

Fig. 2.4: Process flow chart for general method of OD (Ramya, et al., 2017). 
 
 
2.5 Comparison between conventional drying and OD 

Many researchers have reported that osmotically treated fruits have great 

advantages compared to conventional drying (Germer, et al., 2014; Prosapio, et al., 2017). 

Firstly, OD has the advantage of minimizing the effects of using temperature on food 

quality such as loss of color and flavor and that it preserves the wholeness of the product. 
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This is because no high temperature is required in the process compared to that used in 

conventional drying. It also increases the products resistance to heat treatment. Secondly, 

flavor and color retention are high when sugar or sugar syrup used as an osmotic agent and 

it also prevents the enzymatic and oxidative browning that occurs during conventional 

drying. Thirdly, the antioxidant activity retention of anthocyanins in berries is higher for 

osmotically treated samples than air-dried ones ( Dermesonlouoglou, et al., 2016). 

Fourthly, removal of acid and absorbance of sugar during the OD by the fruit pieces 

enhance the taste of the product compared to conventionally dried products. OD can also 

improve the texture and rehydration properties of fruit and vegetable. For instance, it helps 

to protect the food from the structural collapse of food that can occur in conventional 

drying. Also, the process is simple and economical as energy requirement is 2-3 times less 

than the conventional drying. When OD is done in conjunction with conventional drying, 

it removes a majority of the water present and retains the quality of the fruit. It also 

improves the food stability during storage due to its low water activity. 

2.6 Optimization of OD parameters using statistical design 

The optimization of drying parameters is very important for heat sensitive food 

materials such as vegetables, fruits, and biological products (Abdullah, et al., 2007; Chen, 

et al., 2018). However, optimization of food, fruits, and vegetable dehydration process is a 

complex problem that demands evaluation of many nonlinear phenomena because of 

multifaceted drying process which involves simultaneous mass and heat transfer in the 

hygroscopic system (Corrêa, et al., 2014; De Mendonça, et al., 2016). The increasing desire 

and awareness for high-quality and shelf-stable dried food products necessitates adequate 

optimization of drying process conditions with the aim to obtain the desire quality of the 
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final product and efficient drying process (Corrêa, et al., 2016; Sharif, et al., 2018). 

Different optimization methods have been employed for food, fruits, and vegetables such 

as: response surface methodology (RSM) (De Mendonça, et al., 2016; Derossi, et al., 

2015), Taguchi orthogonal design (Rajat, et al., 2017), neutral network (Aghbashlo, et al., 

2015), and full factorial design (Wong, et al., 2015). 

2.7 Mathematical modeling and mass transfer 

In osmotic dehydration processes, there is a simultaneous countercurrent mass 

transfer of water from the sample to the hypertonic or osmotic solution and of solute from 

solution into the sample. Mathematical model is a useful important tool for the optimization 

of operating parameters and to predict performance of a drying system (Assis, et al., 2016; 

Bialik, et al., 2018; Kumar, et al., 2016). Many mathematical models, empirical, and semi-

empirical, have been demonstrated to estimate drying processes and properties of food 

products (Castro, et al., 2018; Horuz, et al., 2018). The most frequently used mathematical 

models of the drying of different fruits and vegetables are shown in Table 2.3. Most of 

these models are equally applied to simulate drying curves and predict mass transfer under 

different drying conditions (Assis, et al., 2016; Castro, et al., 2018). In the study of mass 

transfer in the osmotic dehydration of kiwiberry involving experimental and mathematical 

modeling, the authors reported that the Peleg’s equation exhibits better fitting for the 

experimental data from the statistical analysis of the mathematical modeling of the process.  

Mass transfer kinetics and quality attributes of osmo-dehydrated candied pumpkins 

using nutritious sweeteners was investigated by Katsoufi, et al. (2017). An empirical model 

based on a first-order kinetic equation was developed to predict the products’ properties, 

in which the rate constant is a function of the process temperature. Zielinska, et al. (2018) 
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investigated the effect of microwave-vacuum, ultrasonication, and freezing on mass 

transfer kinetics and diffusivity during osmotic dehydration of cranberries. Microwave-

vacuum and OD treatments produced cranberries with the highest values of moisture loss 

and solid gain while Azuara’s and Peleg’s models adequately fitted into the experimental 

data of the OD kinetics of whole cranberries in terms of moisture loss and solid gain. The 

advantage of most of these models is the ability to predict intricate parameter that might 

not easily accessible using conceptual experimental design. They are equally user friendly, 

but their applications are restricted and only valid within the range of drying parameters 

for product during the experiment. All these mass exchanges between the osmotic solution 

and food affect the quality of the dehydrated product such as nutritional value, texture, 

color, and taste.  

Consequently, osmotic processes, diffusion, tissue shrinkage and flux interaction 

should all be considered for a precise explanation of the mass transfer phenomena during 

the osmotic dehydration process (Bera, et al., 2015). Understanding the mass transfer 

process during osmotic dehydration and modeling the kinetics of process has been the focus 

of several research activities. Mass transfer or exchange kinetics during osmotic 

dehydration usually depend on various solution to Fick's law of diffusion.  
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Table 2.3: Mathematical models used in OD. 

 
 

Model name Model Reference 

Page MR = 𝑴𝑪(𝒕)−𝑀𝐶𝑒𝑞
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑴𝑪𝟎−𝑴𝑪𝒆𝒒
 = exp (-k𝑡𝑛) Antonio, et al. (2008); Calín-Sánchez, 

et al. (2015); Nabnean, et al. (2017); 
Olanipekun, et al. (2015); Rudy, et al. 
(2015); Simpson, et al. (2017); 
(Wilton, et al., 2018)  

Herderson and Pabis MR = a exp (−𝑘𝑡) Doymaz (2008); Guzzo da Silva, et al. 
(2015); Hashim, et al. (2014) 

Weibull MR = exp (- (t

β
)α) Fernanda R. Assis, et al. (2017); 

Lemus-Mondaca, et al. (2018); 
Quevedo, et al. (2016); Serment‐
Moreno, et al. (2017)  

Newton MR = exp (- 𝑘𝑡) Kadam, et al. (2004); Nabnean, et al. 
(2017); Rajat, et al. (2017) 

Two-term 𝑀𝑅 =  𝑎exp (−𝑘0𝑡) +
 𝑏exp (−𝑘1𝑡)    

Abbas, et al. (2017); Olanipekun, et al. 
(2015) 

Peleg 𝑀𝑅 =  1 + 𝑡
(𝑎 + 𝑏𝑡)⁄   Fernanda R. Assis, et al. (2017); 

Cheng, et al. (2014); S. Deepika, et al. 
(2017) 

Wang and Singh 𝑀𝑅 =  1 + 𝑎𝑡 + 𝑏𝑡2  Kadam, et al. (2004); Omolola, et al. 
(2014); Rudy, et al. (2015); Şahin, et 
al. (2016) 

Azuara  Fernanda R. Assis, et al. (2017); S. 
Deepika, et al. (2017); Jesus, et al. 
(2017) 

Exponential  𝑀𝑅 =  exp (−𝑘𝑡) Fernanda R Assis, et al. (2016); 
Jorquera-Fontena, et al. (2017) 

Logarithm 𝑀𝑅 =  𝑎exp (−𝑘𝑡) + 𝑐  Afolabi, et al. (2015); M. M. 
Rodríguez, et al. (2015); Rudy, et al. 
(2015) 

Modified Page MR = exp [- (k𝑡)𝑛] Calín-Sánchez, et al. (2015); Cano-
Lamadrid, et al. (2017) 

Modified Henderson 
and Pabis 

 𝑀𝑅 =  𝑎exp (−𝑘𝑡) +
𝑏exp (−𝑔𝑡) + 𝑐exp (−ℎ𝑡)  

Aykın-Dinçer, et al. (2018); 
Thalerngnawachart, et al. (2016) 

Parabolic  𝑀𝑅 =  𝑎 + 𝑏𝑡 + 𝑐𝑡2  Afolabi, et al. (2015); Bi, et al. (2015); 
Manzoor, et al. (2017); Olanipekun, et 
al. (2015) 

Midilli et al. 𝑀𝑅 = 𝑎𝑒𝑥𝑝[−(𝑘𝑡)𝑛] + 𝑏𝑡  Doymaz (2017); Kadam, et al. (2004); 
Martins, et al. (2017); Pérez-Won, et 
al. (2016); Sonmete, et al. (2017) 
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Chapter 3 

Materials and Methods 

3.1 Materials 

The study examined fresh wild blueberries (V.angustifolium) and cultivated 

blueberries (V. corymbosum) fruits obtained from different places that were stored in a 

refrigerator at -18°C until use. Wild blueberries harvested from a forest located in Nipigon, 

in summer 2017, ON, Canada. It had an initial moisture content (MC) of 82.38% of wet 

basis and 17.4% of dry matter. Cultivated blueberries were purchased from a local market 

in Thunder Bay, ON, Canada. Sucrose used to prepare the osmotic solutions was purchased 

from a local market in Thunder Bay, Ontario, Canada. Folin-Ciocalteu reagent, 

Hydrochloric acid (HCL), Sodium carbonate, methanol, Sodium nitrate, Aluminum 

chloride, potassium chloride buffer solution (pH 1.0), Sodium acetate buffer solution (pH 

4.5), and Sodium hydroxide were purchased from Fisher Scientific (Ottawa, ON, Canada). 

Galic acid and catechin use for standard preparation were purchased from Sigma Aldrich 

(Oakville, ON, Canada).  

3.2 Methods 

The berries were thawed to the ambient temperature (room temp 22 °C) for 1 h 

before all experiments. Wild blueberries were subjected to the following processing steps:  

• Pretreatments (PT), osmotic drying (OD) and hot air convective drying (HACD) 

• Osmotic dehydration (OD) and hot air convective drying (HACD) 

• Hot air convective drying by oven (HACD) 

The pretreatments studied included Microwave exposure and Ultrasonication for which a 

Danby products microwave and a Brandson Ultrasonication were used respectively. 
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3.3 Pretreatment of wild blueberries prior to osmotic dehydration 

The waxy skin of blueberries limits the osmotic dehydration by lowering drying 

rate resulting in extended time requirements. In order to speed up the drying process, the 

following four pretreatment techniques were investigated: 

• Immersion in boiling water treatment  

• Ultrasound water-bath treatment 

• Ultrasound probe treatment 

• Microwave treatment 

3.3.1 Boiling water treatment (BW) 

10g of thawed WB (approximately 18 pieces) were placed on sieves and immersed 

into boiling water for 15s. The wild blueberries were then cooled down by immersion in 

cold water. 

3.3.2 Ultrasonic bath treatment (UB) 

For the ultrasound water-bath pretreatment, specified amounts (10g) of thawed WB 

samples were placed in a 250 mL conical flask containing 65% Brix solution resulting in a 

sample to sucrose solution ratio of 1:4. The flask was placed in an ultrasonic water-bath 

(Fisher Scientific Ultrasonic Bath; 5.7 L, vibration frequency of 40 kHz, 110W) for 15 min. 

3.3.3 Ultrasonication probe treatment (US) 

For the ultrasound probe pretreatment, a specific amount (10g) of thawed WB 

samples was placed in a 250 mL conical flasks containing 65% Brix solution at a sample 

ratio of 1:4. The fruit samples in the flask were subjected to ultrasound treatment on Digital 

Sonifier (model 250, Brandson Ultrasonication Corporation, Connecticut, USA) equipped 

with a microtip-tapered probe having a diameter of 3.2 mm diameter. The probe amplitude, 
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cycle, and pulse were set to be 30%, 0.5 per s and 0.5 per s, respectively. Ultrasound 

treatment time was varied to levels of 2, 5, and 10 min for different sets of samples. 

3.3.4 Microwave treatment (MW) 

During microwave pretreatment specified amounts (10g) of thawed WB samples 

were placed into 250 mL conical flasks containing 65% Brix solution at a sample ratio of 

1:4. A kitchen microwave oven (Danby products DMW753BL – 800 W, Guelph, ON, 

Canada) was used to pretreat the samples before OD. The microwave treatment time was 

varied to levels of 30, 45, and 60 s using different sets of samples. All the experiments 

were carried out in triplicate.  

3.4 Osmotic dehydration processes 

Wild blueberries were dehydrated by immersing them in the aqueous osmotic 

solution 65 °Brix (%w/w sucrose sugar) in initial experiments.  The osmotic solution was 

prepared by using commercial sugar and distilled water to give the desired concentration. 

The 65 °Brix solution was made by taking 65g of sucrose and diluted into 35g of distilled 

water (Magwaza & Opara, 2015; Yu et al., 2018). Similar approach was used for 60% and 

70% Brix solution during the optimization experiments. All the solutions were prepared at 

room temperature.  In each OD experiment, 10g of pretreated wild blueberries were placed 

into 40g of osmotic solution in Erlenmeyer flasks to target ratio of 1:4. A similar approach 

was used to obtain target ratios of 1:2 and 1:6 which were used for the optimization 

experiments. The flasks were transferring to an incubator (New Brunswick Innova 44, 

Mississauga, ON, Canada) for agitation (Shaking). The samples were kept in the shaker at 

200 (cycles/min) (Kucner et al., 2013). A cover of poly- film metallic foil was used to 

prevent solution loss by evaporation during the OD process. 
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3.5 Hot air convective drying (HACD) 

Treated and untreated WB were subjected to an oven temperature of 70°C 

(Stojanovic & Silva, 2006; Vega-Gálvez et al., 2012). The samples were placed on the 

middle of the Fisherbrand Isotemp 179L Model Forced-air convection oven (Fisher 

Scientific Co., ON, Canada). The hot air allowed circulating around all sides of the 

samples. The samples were kept in the oven until a final moisture content (MC) of 18 

g/100g of wet samples (Prosapio & Norton, 2017; Shi et al., 2008). Drying time was 

defined as the period between the starting time of heating and time by that samples reach 

the desired moisture content (MC). The dehydrated samples were placed in a desiccator to 

cool down then were stored in Ziploc bags. In order to prevent oxidation, all the packaged 

samples were stored in a dry and cool place until further analyses. 

3.6 Physical characterization measurements 

3.6.1 Moisture content and dry matter content 

The AOAC 934.06 standard method was employed to determine the moisture 

content and dry matter content of the samples (AOAC, 1999). A pre-weighted amount of 

the sample was placed in a drying oven at 70°C for 24 h until sample weight was stabilized. 

The measurement was done in triplicate. 

3.6.2. Calculation of moisture loss and solid gain 

The moisture loss (ML), weight reduction (WR) and solid gain (SG) during OD process 

was determined using following equations 3. 1, 2 and 3 expressed in g/100 g of fresh 

sample (Lech et al., 2018; Nowicka et al., 2015; Rahman M, 2015). 

ML = WR+ SG                                                                                                Eq 3.1                     
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WR = (𝑊𝐼−𝑊)

𝑊𝐼
 × 100                                                                                          Eq 3.2 

SG = (𝑆−𝑆𝑖)

𝑊𝐼
 × 100                                                                                              Eq 3.3 

Where 𝑊, 𝑊𝑖 and 𝑆, 𝑆𝑖 are the current and initial weight of the fruit (g) and solid content 

in the fruit (g) respectively. The solid gain was determined by grinding 3g of the sample 

and 25 ml of distilled water (Moreno et al., 2016; Prosapio & Norton, 2017). A 

refractometer (VEE GEE BX-90) was used to measure the solid gain content (SG) of the 

homogenized solutions of fresh and treated samples at 20°C.  

3.6.3 Shrinkage ratio (SR) 

The diameter and thickness shrinkage ratio (SR) of dried WB was determined by 

using digital calipers. The measurements were conducted 3 times for sample. Based on the 

average diameter the WB sizes were calculated using Eq. 3.4 (Wang et al., 2014). 

Shrinkage ratio % = 𝒅𝟎−𝒅𝒕

𝒅𝟎
   × 100                                                                               Eq 3.4 

Where 𝑑0 (mm) and 𝑑𝑡 (mm)  are the diameter and thickness of fresh and dried WB, 

respectively.  

3.6.4 Rehydration ratio (RR) 

Rehydration ratio (RR) was determined by immersing the dried WB (1g) in 60 ml 

of distilled water in a 100 ml beaker. The rehydration ratio was determined using following 

equations number 3.5 (Dehghannya et al., 2018; Seremet et al., 2016; Stojanovic & Silva, 

2006; Wang et al., 2018). The rehydration was done by two methods: Cold rehydration 

(CR) at room temperature and Hot rehydration (HR) at 50°C. In both methods beakers with 
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dried WB were left for 2, 6, 10,14, 18, 22, 26, 30 minutes, the WB were taken out of the 

water dried thoroughly by paper towels to eliminate the surface water and the weight was 

recorded.  

Rehydration ratio % = 𝑾𝒓

𝑾𝒅
  × 100                                                                     Eq 3.5  

Where 𝑊𝑟 is the weight of the rehydrated WB (g) and 𝑊𝑑  is the weight of the dried WB 

(g) used. Each rehydration experiment was performed in triplicate. 

3.7 Chemical characterization measurements 

The wild blueberries were characterized in term of their antioxidant content by the 

following methods: 

3.7.1 Extraction Process 

After osmotic dehydration, the samples were ground and prepared for further 

analyses. For extraction a 1.0 ± 0.001 g of the ground sample was weighed into centrifuge 

tubes (15 mL). Each tube was then filled to 10 mL with 2% HCL in methanol (w/v) and 

then put in the sonicator bath for 10 min. The mixtures were then centrifuged for 10 min at 

2683xg (4000 rpm), after while the supernatant was transferred to another tube for further 

analysis (de Souza et al., 2014). 

3.7.2 Determination of Phenolic Content 

A standard calibration curve was developed for phenolics content using 99.98% 

pure gallic acid. A stock solution of gallic acid was prepared by weighing 25 mg in a 100 

mL of methanol. Six different concentrations in the range of 10 - 200 µg/mL garlic acid 

were used to build the calibration curve. All calibration concentration points were run in 

duplicate.  
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A 100 µL of the extract obtained from the phenolic extraction was transferred into 

a 2 mL vial followed by 750 µL of Folin–Ciocalteu reagent and kept in the dark for 5 min. 

750 µL of 6% (w/v) of Na2CO3 was then added and kept in the dark for 2 h. The absorbance 

of the solutions was then determined at a wavelength of 765 nm on a spectrophotometer 

(Thermo Scientific, Genesys 10S UV-VIS, Ottawa, ON, Canada) with water as the blank. 

The total phenolic content was expressed as mg of gallic acid equivalent (GAE/100g of 

sample) as determined from the standard curve generated with gallic acid (de Souza et al., 

2014). 

3.7.3 Determination of Flavonoid Content 

From the extract, 100 µL was transferred into a 2 mL vial followed by 400 µL of 

distilled water and 30 µL of 5% Na2NO3.  The mixture was allowed to stand 5 min before 

adding 30 µL of 10% AlCl3. It was then left to stand for another 5 min before adding 200 

µL of 1M NaOH and 240 µL of distilled water. The mixture was then agitated vigorously. 

The absorbance of the solutions was determined at a wavelength of 510 nm on a 

spectrophotometer (Thermo Scientific, Genesys 10S UV-VIS, Ottawa, ON, Canada) with 

distilled water as the blank. Total flavonoid content was expressed as mg of catechin/100g 

of sample using the standard curve generated with catechin (de Souza et al., 2014). 

3.7.4 Determination of Anthocyanin Content 

Two buffer solutions were prepared to enhance the absorbance of anthocyanins in 

the sample using a spectrophotometer. Buffer A was prepared by adjusting 25 m M KCl 

solution to pH 1.0 using HCl while Buffer B was prepared by adjusting 0.4 M sodium 

acetate solution to pH 4.5 using HCl. To determine the anthocyanins content, 100 µL of 

the extract was added to 900 µL of Buffer A in a 2 mL vial. Another 100 µL of the extract 
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was added to 900 µL of Buffer B in a separate 2 mL vial. The mixtures were equilibrated 

for 2 h in the dark. The absorbance of the buffer A solution and sample followed by buffer 

B solution and sample were obtained at 512 nm and 700 nm on a spectrophotometer to 

determine the amount of anthocyanin in the samples (de Souza, et al., 2014; Lee et al., 

2005).  The anthocyanin content was expressed as mg cyanidin-3-glucoside/100g of 

sample using equations 3.6 and 3.7.  

∆𝐴 = (𝐴512𝑛𝑚 − 𝐴700𝑛𝑚)𝑝𝐻1.0 − (𝐴512𝑛𝑚 − 𝐴700𝑛𝑚)𝑝𝐻4.5     Eq 3.6 

𝐴𝑛𝑡ℎ𝑜𝑐𝑦𝑎𝑛𝑖𝑛 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 =
∆𝐴×𝑀𝑊×𝐷𝐹×1000

𝜀×𝑙
       Eq 3.7 

Where, ∆𝐴 = absorbance change, MW = molecular weight of cyaniding-3-glucoside (449.2 
g/mol), Df = dilution factor of the sample, 𝜀 = molecular absorbance extinction coefficient 
of cyaniding-3-glucoside (26900 M-1 cm-1) and 1000 = factor for conversion from g to mg. 

3.8 Optimization of parameters using statistical design  
3.8.1 Osmotic dehydration after microwave pretreatment 

Previously weighed WB collected after the microwave pretreatment process for 30s 

was introduced into osmotic solutions for dehydration. The different parameters studied 

were sugar concentrations (60 %, 65 %, and 70% Brix w/w) under different temperatures 

(30, 40, and 50°C), processing times (2, 5, and 8 h) and sample to osmotic solution ratio 

(1:2, 1:4, and 1:6). Different combinations of the process parameters were maintained as 

per the experimental design (section 3.8.2). The sucrose solution and the WB were taken 

in 250 ml Erlenmeyer flasks and placed in a temperature, time and agitation-controlled 

incubator shaker (New Brunswick Innova 44, Mississauga, ON, Canada). The Erlenmeyer 

flasks were wrapped in parafilm during the experiments. An agitation speed of 200 rpm 

was maintained for all the experiments as this is considered sufficient for such system 
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(Kucner et al., 2013). At the end of each run, determined according to the experimental 

design explained in the result section, the flasks containing the sample were withdrawn 

from the incubator shaker. The WB samples were taken out from the osmotic medium, 

washed for 30 s with distilled water on a rubber mesh, and gently wiped with an absorbent 

paper and then weighed using an analytical balance (Sartorius-Secura, Goettingen, 

Germany) with an accuracy of ±0.0001 g. The water loss during OD process was 

determined according to the expression for weight reduction and SG (section 3.6.2). The 

phenolics, flavonoid, and anthocyanins content were measured to evaluate the antioxidants 

content of WB after osmotic dehydration (section 3.7). All the experiments were done in 

duplicate and the average value was taken for all the calculations. 

3.8.2. Experimental Design and Statistical Analysis 

Four parameters namely, temperature (X1), treatment time (X2), sucrose 

concentration (X3), and sample to sucrose solution ratio (X4) were selected as the most 

important (de Mendonça, et al., 2016; Yu, et al., 2017). RSM was used to determine the 

number of runs and levels at which experiments were to be carried out. The central 

composite design (CCD) with four variables at three levels (Table 3.1) was employed to 

study responses in terms of antioxidants content. The results of the experiments were used 

to determine the optimum combination of the variables for the best OD conditions. This is 

a face centered design whereby the star points are at the center of each face of the factorial 

space (α = ± 1). This type of CCD requires three levels of each factor. The dependent 

variables were phenolics content, flavonoid, and anthocyanins. 

 

 



Ibtisam Sharif 

57 
 

Table 3.1: Experimental design levels of actual and coded values for the OD process 

Independent parameters                                 Coded levels of parameters 

  -1 0 1 

Temperature (°C) X1 30 40 50 

Time (h) X2 2 5 8 

Brix (%) X3 60 65 70 

Sample: Brix (w/w) X4 1:2 1:4 1:6 
 

The complete design generated 30 experiments (Tn = 2f + 2f + K = 24 + 2*4 + 6 = 30) as 

shown in Table 3.2. Tn represents the total number of experiments, f represents the number 

of independent variables, and K represents the number of center point runs. The center 

point runs provide a mean for estimating the experimental error and a measure of lack of 

fit. Coded values represent the natural values of each variable (Table 3.2). The second order 

polynomial model (Eq. 3.8) was fitted to the data. Three models of the following form were 

developed to relate three responses (Y): phenolics content, flavonoid, and anthocyanins to 

four process variables (x): 

𝑌 = 𝑎0 + ∑ 𝑎𝑖𝑋𝑖 +4
𝑖=1 ∑ 𝑎𝑖𝑖𝑋𝑖

24
𝑖=1 + ∑ .3

𝑖 ∑ 𝑎𝑖𝑗𝑋𝑖𝑋𝑗
4
𝑗=𝑖+1      Eq 3.8 

Where a0, ai, aii, and aij are constant regression coefficients; x is the coded independent 

factor. A mathematical model was developed for each of the responses using multiple 

linear regression analysis which involves linear, quadratic, and interaction terms of the 

independent factors. The significant levels of the factors in the model were determined 

using analysis of variance (ANOVA) for each response. The degree of confidence of the 
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data was estimated using student’s t-test to determine the probability level to be less than 

5%. The model’s accuracy was checked by coefficient of determination (R2) and root mean 

square error (RMSE). A good model was expected to have a large predicted R2 and  

a low RMSE. 

Table 3.2: CCD in coded forms of process variables for osmotic dehydration WB. 

Run Coded parameter values 
Temperature Time Brix Sample ratio 

X1 X2 X3 X4 
1 1 -1 -1 -1 
2 1 1 -1 1 
3 0 0 0 0 
4 -1 1 1 -1 
5 -1 1 -1 -1 
6 0 0 1 0 
7 -1 -1 -1 1 
8 0 0 0 1 
9 1 0 0 0 
10 1 -1 1 1 
11 0 0 0 0 
12 -1 1 1 1 
13 0 -1 0 0 
14 0 0 0 0 
15 -1 -1 -1 -1 
16 1 -1 -1 1 
17 1 -1 1 -1 
18 1 1 1 1 
19 1 1 1 -1 
20 0 0 0 0 
21 -1 0 0 0 
22 0 1 0 0 
23 0 0 0 0 
24 -1 -1 1 1 
25 -1 1 -1 1 
26 0 0 -1 0 
27 -1 -1 1 -1 
28 1 1 -1 -1 
29 0 0 0 -1 
30 0 0 0 0 
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3.8.3 Determination of optimum condition 

The simultaneous optimization of the multiple responses was obtained using JMP® 

(Statistical Analysis Systems, Version 13.4, SAS Institute Inc., Cary, NC, USA) to 

determine an optimum condition of the variables for maximizing phenolics content, 

flavonoids content and anthocyanins content. The optimum value for each factor was 

depicted using the desirability function method (Amami et al., 2017). The desirability 

function transforms response variable into a 0 to 1 scale. The transformed response, 

represented as di, can have many different shapes. A zero response represents a completely 

undesirable response, and a response of one represents the most desirable response. The 

overall desirability (D) combines di of several responses using geometric mean for 

simultaneous optimization of the responses (Eq. 4.9)  

𝐷 = √(𝑑1 ∗  𝑑2 ∗ 𝑑3 ∗ … ∗ 𝑑𝑛)𝑛         Eq 3.9 

 3.9 Mass transfer modeling in WB 

The dehydration steps (OD and HACD) of the optimal process to obtained dried 

WB were repeated three times and their mass transfer kinetics were evaluated. For OD 

moisture loss (ML) and solid gain (SG) were determined every 30 minutes. For HACD 

(ML) was determined every five minutes in the first 30 min, every 15 minutes until 2h, and 

every 30 minutes until the end of process. As the experimental conditions did not reached 

the equilibrium in mass transfer, Azuara’s model (Souraki et al., 2012; Zielinska, M., & 

Markowski, M. 2018) was used to estimate the moisture loss (ML) (for both dehydration 

steps) and solid gain (SG) (for OD) when equilibrium was reached with the following 

equations: 
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𝑀𝐿𝑡= 𝑎𝑡 (𝑀𝐿𝑒)

1+𝑎𝑡
                                                                                                             Eq 3.10                                                                                                                      

𝑆𝐺𝑡 = 𝑎𝑡 (𝑆𝐺𝑒)

1+𝑎𝑡
                                                                                                              Eq 3.11      

Where (𝑀𝐿𝑡 ), (𝑀𝐿𝑒) and (𝑆𝐺𝑡 ) and (𝑆𝐺𝑒) are the moisture loss or solid gain fractions 

(g/100g of fresh sample) at time (t) and time of equilibrium, (a) is the model’s rate constant 

(𝑚𝑖𝑛−1) and (t) is time (min). 

3.9.1 Diffusivity approach 

The Fick’s second law model of diffusion is used in order to predict and describe 

the moisture and solute diffusivity with the time during dehydration processes and it is used 

for OD and HACD (Horuz et al., 2018; Sareban, M., & Souraki, B. A. 2016; Zielinska, M., 

& Markowski, M. 2017). Crank’s (1975) solution for Fick’s second low of diffusion was 

used to determine the moisture (for both dehydration steps) and solid diffusivity (for OD) 

as showed bellow: 

MR= 𝑀𝑡− 𝑀𝑒

𝑀0− 𝑀𝑒
=  

6

𝜋2  ∑ . exp (−𝑖2 𝜋2𝐷𝑒𝑚  
𝑡

𝑟2)  ∞
𝑖=0                                                         Eq 3.12   

SR = 𝑆𝑡−𝑆𝑒

𝑆0−𝑆𝑒
=  

6

𝜋2  ∑ . exp (−𝑖2 𝜋2𝐷𝑒𝑠  
𝑡

𝑟2)  ∞
𝑖=0                                                             Eq 3.13 

Where (MR) and (SR) are the average of moisture and solid content ratio of WB over 

dehydration time, respectively. (M0, S0), (Me, Se) and (𝑀𝑡, 𝑆𝑡) represent the moisture and 

the solid concentrations initially, at equilibrium and at any time. (𝐷𝑒𝑚) and (𝐷𝑒𝑠) are 

effective diffusivities of moisture and solute, respectively (𝑚2 𝑠−1). 
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The change in moisture and solute concentrations were calculated based on the following 

assumptions: 

• The wild blueberries are considered as a sphere (mass transfer in three dimensions). 

• Initial moisture and solute concentration in the WB are uniform. 

• The moisture diffusion from WB and sugar diffusion into WB are the only transfers 

considered in OD, and the moisture diffusion from WB is the only transfer 

considered in HACD; other mass transfers are neglected.  

• Solute concentration is equal at the center of a sphere. 

• Moisture and sugar concentration are equal on the surface. 

• The ratio of solution mass to WB mass in OD is sufficient to prevent alterations in 

the solution concentration. 

• Shrinkage is neglected. 

• Apparent diffusion is constant. 

For ML (for OD and HACD) and SG (for OD) the equations were numerically solved using 

Crank’s method with eleven terms eq.3 (12-13). By fitting the model to experimental 

values, the apparent diffusivity value for ML (for OD an HACD) and SG (for OD) were 

obtained 

3.9.2 Equilibrium approach 

The two main methods used to predict mass transfer during dehydration processes 

are the diffusion approach (Fick’s second law solution) and the equilibrium approach. For 

equilibrium approach, the moisture and solid mass transfer coefficients in WB were 

calculated as described in the literature (Souraki et al., 2012) using the following equations: 
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−
𝑑𝑀

𝑑𝑡
= 𝑘𝑚(𝑀 − 𝑀𝑒)                                                                                                  Eq 3.14  

𝑑𝑆

𝑑𝑡
= 𝑘𝑠(𝑆 − 𝑆𝑒)                                                                                                         Eq 3.15 

Where ( 𝑘𝑚)  and (𝑘𝑠)  are the moisture and the solid mass transfer coefficients, 

respectively. 

The change in moisture and solute concentrations were calculated based on the 

following assumptions: 

• All substances are well mixed in the product, except for near the interface. 

• Changes in concentration are limited to the region near the interface. 

3.9.3 Model’s fitting 

The math model’s goodness of fit to the experimental data was determined based 

on the values of the root mean square error (RMSE), determination coefficient (𝑅2) and 

relative mean error (RME) were calculated for the equilibrium conditions. Apparent 

diffusivities and mass transfer coefficient estimations were calculated as the following 

equations (Horuz et al., 2018; Sareban & Souraki, 2016; Vallespir, F et al., 2018): 

RMSE  = √
∑ (𝑥𝑒𝑥𝑝

𝑖  − 𝑥𝑝𝑟𝑒
𝑖 ).2𝑁

𝑖=1

𝑁
                                                                         Eq 3.16 

RME (%) = 100 
∑ .

𝑥𝑒𝑥𝑝
𝑖 −𝑥𝑝𝑟𝑒

𝑖

𝑥𝑒𝑥𝑝
𝑖

𝑁
𝑖=1

𝑁
                                                                       Eq 3.17 

Where 𝑥𝑒𝑥𝑝
𝑖  is experimental value, 𝑥𝑝𝑟𝑒

𝑖  is predicted value and N is the number of 

repartitions. The model has to achieve the highest and closest possible linear regression 

coefficient (𝑅2) of the unit (1.0) and lower than 10% for the relative mean error (RME). 
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Chapter 4 

Results and discussion 

4.1 Initial characterization of blueberries 

The wild blueberries used in this study were harvested from a forest located in 

Nipigon. The berries obtained from the food market were from cultivated sources. Initial 

chemical characterization of fresh blueberries was carried out. WB contain higher content 

of antioxidant compounds than BB (Table 4.1). The phenolic, flavonoid and anthocyanin 

content of WB were higher than the cultivated blueberries by 236%, 253% and 228% 

respectively. These results are showing the differences between WB and BB and 

emphasizes and confirms the importance of WB. Similar results were reported by Ketata 

et al. (2013), who found that the total antioxidant compounds of WB such as phenolics and 

anthocyanins were higher than BB by 39% and 64% respectively. The difference in the 

antioxidant compound between species could be due to variety, environmental conditions, 

stage of maturity, methods and time of harvest and duration and conditions of storage 

(Marjanovic-Balaban et al., 2012; Mallik & Hamilton, 2017; Michalska & Grzegorz, 2015; 

Skrovankova et al., 2015).There have been attempts to improve the antioxidant content of 

cultivated blueberries with some success. The rich sources of antioxidant in these products 

are important health food supplements (Mallik & Hamilton, 2017). The possibility of 

drying the products to extend self-life without loss of antioxidant is the major aim of this 

study. 
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Table 4.1: Initial characterization of fresh wild blueberries and blueberries. 

Initial characterization Blueberry Wild blueberry 

MC (g /100g) 85.2 82.4 

Dry matter content (%w/w) 14.8 17.4 

Sugar (Brix) 3.2 2.1 

Phenolics  (mg/100g of d.m).𝒂 414.9 1394.7 

Flavonoids (mg/100g of d.m).𝒃 126.6 445.1 

Anthocyanins (mg/100g of d.m).𝒄 195.4 640.4 

.𝒂 Expressed as galic acid equivalent. 

.𝒃 Expressed as catechin equivalent. 

.𝒄 Expressed as cyanidin-3-glucoside equivalent (ε = 26,900). 
 

4.2 Effect of pretreatments before OD on WB water loss, solid gain and antioxidants 

content 

Drying is one of the most important processes used for preservation of food 

(Perussello et al., 2014). The reduction of moisture content and water activity prevent the 

deterioration of food. The use of wild blueberries as a component of breakfast cereals 

would require it to have low moisture content. The removal of moisture would have to be 

done without loss of antioxidants. OD has been proven to remove moisture content by 

utilization a higher gradient of sugar concentration as the dehydration agent. In most 

reports further dehydration to level that remove microbial contamination require heat 

treatment.  

Initial experiments were done with the fresh wild blueberries by immersing them 

in high concentration sugar syrups. However, there was very little removal of water from 

the fruit. We decided to use four types of pretreatment before. These included; boiling 
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water treatment, ultrasonic bath treatment, ultrasonication probe treatment and microwave 

treatment. 

Fig. 4.1 shows the influence of pretreatments (immersion in boiling water, 

ultrasonic water-bath, ultrasonic probe, and microwave) and OD on the moisture loss, solid 

gain and antioxidants content of WB. It should be noted that the microwave and ultrasonic 

pretreatments were done in 65% Brix solution as our initial hot water pretreatment 

experiments showed considerable antioxidants loss as discussed later. This has also been 

reported in previous works (Moreno, et al., 2016; Nikkhah, et al., 2007), and hence it was 

decided to use Brix solutions of appropriate concentration that would limit the loss of 

antioxidants. Changes in the moisture content of WB samples due to pretreatments were 

shown in Fig. 4.1A. The moisture loss for WB samples pretreated with microwave for 60 

s was observed to be the highest (37.71 g/100g fresh fruit) of all the pretreatment 

techniques. Ultrasonic probe treatment for 10 min led to a significant moisture loss (33.72 

g/100g fresh fruit). All the three levels of microwave pretreatments (30 to 60 seconds) 

showed a similar effect on the moisture loss during the OD process (Fig. 4.1A). In 

comparison to the control (OD without pretreatment), improved water migration out of the 

samples was observed in all the pretreatment techniques employed in this study. The 

significant improvement in water loss due to pretreatment was investigated using the 

Student's t-test at a 95% level of confidence. The test was carried out to compare the results 

of the osmotic dehydration experiments with and without pretreatment. The moisture loss 

by osmotic dehydration alone without any pretreatment was significantly different 

(p<0.05) from all the samples resulted from pretreatment with subsequent osmotic 

dehydration. Although highest moisture loss was obtained at 60s of  



A

B

C
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microwave pretreatment, there was no significant difference (p>0.05) among the three 

different treatment durations of microwave pretreatment. Similar results were reported in 

the studies conducted by Kucner, et al. (2013) on the influence of selected osmotic 

dehydration and pretreatment parameters on dry matter and polyphenol content in highbush 

blueberry fruits.  

With ultrasonic probe pretreatment, a significant difference (p<0.05) was observed 

among the three levels of the treatment time (2-10 min). The moisture loss is directly 

proportional to the ultrasonic probe treatment time. Beyond 10 min of treatment time, the 

complete absolute disintegration of the WB to form fruit juice was observed. Dry matter 

migration from the fruits to the osmotic solution increased with treatment time for the 

ultrasonic probe pretreatment. In conclusion, pretreatments had been proven to enhanced 

moisture loss during the OD process.  

It is evident from Fig.4.1B that the increase in time and temperature enhanced solid 

gain (SG). Microwave pretreatment for 60 s at 90°C presented the highest after OD 

compare with microwave pretreatments for 30 s (72°C) and 45s (77°C). However, there 

was no significant difference (p>0.05) among the three levels of treatment time of 

microwave pretreatment. High temperature modifies the tissue characteristics favouring 

impregnation phenomena and thus increase SG (Chavan & Amarowicz, 2012). Similar 

results were obtained by using ultrasonic probe pretreatment for 2 m (54°C), 5 m (63°C), 

10 m (90°C) and immersion in boiling water for 15 s at  (100°C). For ultrasonic probe 

pretreatment SG, a significant difference of  (p<0.05) was observed among the three levels 

of the treatment time The lowest uptake solid obtained using the ultrasonic bath for 15m at 

room temperature. Moreover, during the OD (without pretreatment) increased mass 
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transfer of SG with high concentration is possible to membrane swelling effect, which 

might increase the cell membrane permeability and the low molecular weight of the 

osmotic agent (Akbarian et al., 2014; Prosapio & Norton, 2017). The results of SG obtained 

during OD with or without pretreatment are reasonable. However, a major challenge was 

to reduce the loss of the antioxidants content as much as possible.  

In comparison to the control (OD without pretreatment), significant difference 

(p<0.05) in the antioxidants content (phenolics, flavonoids, and anthocyanin) of the 

pretreated WB measured on dry matter basis were observed (Fig. 4.1C). Microwave 

pretreatment for 30s showed the highest quantity of phenolics, flavonoids, and anthocyanin 

contents after OD process. Although more moisture loss was obtained with 60 s of 

microwave pretreatment (Fig. 4.1C), significant amount of the antioxidants accompanied 

the mass transfer of moisture from the fruit tissue into the osmotic agent. Effect of only 

microwave pretreatment without five hours of OD was investigated to confirm that the 

significant difference in antioxidants’ content was due to microwave alone. The results 

show tha microwave pretreatment facilitated the water loss during the OD treatment of the 

sample, because greater moisture loss was achieved during the OD period and the 

antioxidants content of the samples were retained to in a large degree during the OD 

process. Higher moisture loss and higher dry matter content during OD process with a 

corresponding increase in the antioxidants in dry matter of the sample per equivalent 

weight of the fresh sample was obtained (Fig. 4.1C). However, further moisture removal 

by evaporation after OD is necessary to reach a final MC (18% wet basis) for achievement 

of shelf stability (microbiologically) (Grabowski, et al., 2007). Then study the effects of 

hot air convective drying (HACD) on the antioxidants content of the final products. Based 
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on these results it was decided that the best pretreatment for the wild blueberry was 30s of 

microwave as it results in sufficient moisture loss and had limited loss of antioxidants.  

4.3 Effect of hot air convective drying on the total antioxidant content of the final 

product of WB 

As mentioned earlier, OD does not reduce moisture content to levels that prevent 

spoilage. Hence, the partially OD dried WB samples had to be dried by convective air-

drying in an oven. The total phenolic content (TPC), total flavonoids content (TFC) and 

anthocyanin content of WB, the control only oven dried (without OD and pretreatments) 

and pretreatment samples processed at 40°C by osmotic treatment (65 °Brix, 5h, 1:4) 

followed by drying the samples in an oven at 70°C are shown in Fig. 4.2. TPC, TFC and 

anthocyanin content of fresh WB were 1394.661 mg/100g of d.m, 445.076 mg/100g of d.m 

and 640.440 mg/100g of d.m respectively. The samples subjected to oven drying at 70°C 

showed reduced antioxidant content of WB compared with the fresh sample. However, in 

general, OD improves the retention of the antioxidant content of WB compared with the 

oven dried. In the oven dried sample, TPC, TFC and anthocyanin content decreased to be 

473.679 mg/100g of d.m, 125.000 mg/100g of d.m and 211.742 mg/100g of d.m 

respectively. The composition of the antioxidant content in all the samples including the 

control, changed with different pretreatment techniques used. TPC of microwave 

pretreatment for 30s followed by OD then hot air convective drying (HACD) was the 

highest (Fig. 4.2A). Similar results were obtained for TFC and anthocyanin (Fig. 4.2B and 

C). Using the ultrasonic probe showed a considerable loss of the antioxidants and the 

lowest amount of TPC, TFC and anthocyanin were obtained after 
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 10min. For the ultrasonic bath treatment, the antioxidant content was little higher than the 

control because the ML during the pretreatment was low which take almost the same time 

to dry as the control without any pretreatments. The antioxidant content of boiling water, 

also showed decreases, likely due to the high temperature used during the pretreatment. 

The loss of the antioxidant content in the hot air convective drying (HACD) is possibly due 

to thermal instability which led to fruit cell damage or enzymatic oxidation especially 

during the pretreatments step (Tiwari, Hasan, & Islam, 2013). In a combined pretreatment 

using ohmic heating and pulsed vacuum, the treated samples retained more polyphenols 

after drying as compared to untreated samples (Moreno et al., 2016). Based on the results 

of our experiments summarized in Table 4.2, the optimum condition for pretreatment was 

found to be 30s microwave for all the samples before the OD process and subsequent oven 

drying. 
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Table 4.2: Impact of dehydration and drying process on total phenolic content (TPC), total flavonoids content (TFC) and anthocyanin 
content of WB. 
 

Treatment 

After Pretreatments After OD After Air-drying 
TPC                                                        

(mg /100g 
of d.m) 

TFC                                                      
(mg c/100g 

of d.m) 

Anthocyanins                
(mg/100g of 

d.m) 

TPC                                        
(mg/100g of 

d.m) 

TFC                                   
(mg /100g 

of d.m) 

Anthocyanins      
(mg/100g of 

d.m) 

TPC                                        
(mg/100g 
of d.m) 

TFC                                   
(mg 100g 
of d.m) 

Anthocyanins      
(mg/100g of 

d.m) 

Oven − − − − − − 473.7 125.0 211.7 

OD (5) − − − 605.1 229.2 333.0 514.6 165.6 274.7 

Boling Water 
15s − − − 582.9 191.8 335.8 459.0 105.6 180.3 

Ultrasonic bath 
15m − − − 525.8 143.1 302.0 494.0 116.7 208.7 

Microwave 30s 
(without OD) 529.242 194.444 332.493 − − − 423.6 155.8 200.1 

Microwave 30s − − − 805.7 274.2 552.7 782.9 279.4 434.2 

Microwave 45s − − − 755.0 262.3 520.8 646.3 138.9 320.6 

Microwave 60s − − − 702.3 158.6 430.4 628.9 132.2 292.2 

Ultrasonic 2m − − − 556.3 228.5 341.9 494.0 147.8 280.5 

Ultrasonic 5m − − − 548.1 173.7 261.7 264.4 139.4 100.2 

Ultrasonic 10m − − − 349.2 140.9 170.9 233.5 76.1 93.2 
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4.4 Optimization experiments 

Following optimization of the pretreatment conditions it was decided to optimum 

the parameters which control osmotic dehydration. These included; temperature (X1), time 

(X2), Brix (X3) and sample to Brix ratio (X4). The range of these parameters was chosen 

based on a review of initial experiments and results available in literature for osmotically 

dehydrated fruits and vegetables. In order to reduce the number of experiments required an 

RSM experimental design procedure was carried out.  The results of the experiments under 

conditions suggested by the RSM are given in Table 4.3. 

4.4.1 Experimental data analysis 

Multiple regression tests were carried out on the experimental results of the 

dependent variables (phenolics content, flavonoids content, and anthocyanin content) are 

shown coded experiment points in Table 4.3. The regression coefficients for the three 

models generated and the ANOVA of the proposed model are shown in Table 4.4 The 

mathematical equation in terms of coded factors for OD of microwave pretreated WB on 

phenolics content, flavonoid content, and anthocyanin content model are shown in Eqs 4 

(1–3), respectively. 

𝑌 = 726.29 –  30.06𝑋2 +  24.61𝑋3 + 36.38𝑋4 + 28.24𝑋1𝑋2 + 32.09𝑋1𝑋3213.62𝑋1𝑋   Eq 4.1 

𝑌 = 262.02 –  31.33𝑋2 +  18.98𝑋3 + 24.79𝑋1𝑋2 − 141.54𝑋1𝑋1         Eq 4.2 

𝑌 = 406 –  25.55𝑋2 +  29.14𝑋3 + 40.88𝑋4 + 25.7𝑋1𝑋2 + 29.78𝑋1𝑋3 − 199.9𝑋1𝑋1      Eq 4.3 

Where X1, X2, X3 and X4 are temperature, time, Brix and sample to Brix ratio, 

respectively. The quadratic model in coded units showed the role of every variable and 

their interactions in independent variables at the level of confidence of 95% using student’s 

t-test.  
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Table 4.3: CCD in coded forms of process variables and values of experimental data of 
response variables for osmotic dehydrated WB 
 

 
 
 
 
 
 
 

Run 

Coded parameter values Antioxidant content Temperature Time Brix Sample ratio 
X1 X2 X3 X4 Phenolics 

(Gallic acid eq.) 
Flavonoids  

(Catechin eq.) 
Anthocyanin 

(C3G eq.) 
1 1 -1 -1 -1 493.460 76.389 173.000 
2 1 1 -1 1 543.810 93.333 243.136 
3 0 0 0 0 757.460 280.000 437.511 
4 -1 1 1 -1 483.302 73.889 183.688 
5 -1 1 -1 -1 499.365 85.278 199.719 
6 0 0 1 0 782.857 226.111 442.520 
7 -1 -1 -1 1 701.905 205.278 401.608 
8 0 0 0 1 711.429 220.833 412.462 
9 1 0 0 0 435.873 67.222 135.595 
10 1 -1 1 1 673.333 202.500 373.387 
11 0 0 0 0 811.429 282.778 471.743 
12 -1 1 1 1 520.794 92.500 220.425 
13 0 -1 0 0 690.794 279.444 391.589 
14 0 0 0 0 752.698 278.333 452.540 
15 -1 -1 -1 -1 588.254 108.611 228.441 
16 1 -1 -1 1 528.730 91.667 228.441 
17 1 -1 1 -1 534.286 90.556 234.452 
18 1 1 1 1 630.476 120.000 331.306 
19 1 1 1 -1 588.254 106.389 288.557 
20 0 0 0 0 751.111 285.556 410.793 
21 -1 0 0 0 514.444 92.778 214.414 
22 0 1 0 0 681.270 132.778 381.403 
23 0 0 0 0 759.048 286.667 418.307 
24 -1 -1 1 1 657.460 128.056 358.024 
25 -1 1 -1 1 488.381 83.056 188.363 
26 0 0 -1 0 692.381 151.389 352.680 
27 -1 -1 1 -1 535.873 164.167 235.120 
28 1 1 -1 -1 427.429 68.056 127.579 
29 0 0 0 -1 651.111 126.944 350.677 
30 0 0 0 0 751.111 288.333 431.666 
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Table 4.4: Model parameter estimates: (A) Phenolics content (B) Flavonoids content (C) 
Anthocyanin content where the independent variables X1, X2, X3 and X4 are 
temperature, time, Brix and sample to Brix ratio respectively. 
  
 

 

 
 

  
 
 
 
 
 
 

 

 

 

 

Parameter Estimate Std Error t Ratio Prob>|t| 
Intercept 262.02245 10.80974 24.24 <.0001* 

X1 -13.02472 8.20229 -1.59 0.1332 
X2 -31.32706 8.20229 -3.82 0.0017* 
X3 18.981389 8.20229 2.31 0.0352* 
X4 14.074056 8.20229 1.72 0.1068 

X1*X2 24.791688 8.699842 2.85 0.0122* 
X1*X3 9.2361875 8.699842 1.06 0.3052 
X2*X3 -5.069438 8.699842 -0.58 0.5687 
X1*X4 11.180563 8.699842 1.29 0.2182 
X2*X4 0.9026875 8.699842 0.10 0.9187 
X3*X4 -3.402813 8.699842 -0.39 0.7012 
X1*X1 -141.5449 21.61948 -6.55 <.0001* 
X2*X2 40.955105 21.61948 1.89 0.0776 
X3*X3 5.9551053 21.61948 0.28 0.7867 
X4*X4 -23.76689 21.61948 -1.10 0.2890 

Parameter Estimate Std Error t Ratio Prob>|t| 
Intercept 726.29462 14.85319 48.90 <.0001* 

X1 -7.4515 11.27041 -0.66 0.5185 
X2 -30.05633 11.27041 -2.67 0.0176* 
X3 24.606667 11.27041 2.18 0.0453* 
X4 36.388 11.27041 3.23 0.0056* 

X1*X2 28.238125 11.95407 2.36 0.0321* 
X1*X3 32.08725 11.95407 2.68 0.0170* 
X2*X3 10.952375 11.95407 0.92 0.3741 
X1*X4 4.448375 11.95407 0.37 0.7150 
X2*X4 -14.02775 11.95407 -1.17 0.2589 
X3*X4 5.376875 11.95407 0.45 0.6593 
X1*X1 -213.6212 29.70639 -7.19 <.0001* 
X2*X2 -2.747746 29.70639 -0.09 0.9275 
X3*X3 48.839254 29.70639 1.64 0.1210 
X4*X4 -7.509746 29.70639 -0.25 0.8039 

Parameter Estimate Std Error t Ratio Prob>|t| 
Intercept 405.99679 13.50834 30.06 <.0001* 

X1 -5.241611 10.24995 -0.51 0.6165 
X2 -25.54922 10.24995 -2.49 0.0249* 
X3 29.139556 10.24995 2.84 0.0123* 
X4 40.884389 10.24995 3.99 0.0012* 

X1*X2 25.7685 10.87172 2.37 0.0316* 
X1*X3 29.77625 10.87172 2.74 0.0152* 
X2*X3 5.980375 10.87172 0.55 0.5904 
X1*X4 1.951875 10.87172 0.18 0.8599 
X2*X4 -19.1725 10.87172 -1.76 0.0982 
X3*X4 0.53225 10.87172 0.05 0.9616 
X1*X1 -199.8957 27.01668 -7.40 <.0001* 
X2*X2 11.595754 27.01668 0.43 0.6739 
X3*X3 22.699754 27.01668 0.84 0.4140 
X4*X4 6.6692544 27.01668 0.25 0.8084 

A B 

C 
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Table 4.4A represents the regression coefficient, and ANOVA of phenolics content 

experimental data analysis. The significant effect of each of the factors based on the 

phenolics content of WB are depicted in the Table 4.4A.  All the linear terms significantly 

influenced (p<0.05) the amount of phenolics content of WB during OD except the process 

temperature. The linear effects related to OD treatment time and sucrose concentration for 

the decrease in water activity have been reported for the osmotic dehydrated pumpkin 

(Pinzi et al., 2010) and yacon slices (de Mendonça et al., 2016). Food stability and shelf 

life of food products usually increase with a decrease in water activity. Although osmotic 

processes promote the reduction, the effect of temperature on the OD process might not 

significantly influence the phenolics content for the range of temperature investigated in 

this study. Kucner, et al. (2013) had earlier reported that higher temperatures lead to 

substantial losses of phenolic compounds in the dehydrated material (30 % after 2 h of 

dehydration at 70 °C). The temperature range employed in this study was taken such that 

it limits significant loss of antioxidants. The quadratic effect of temperature was found to 

significantly influence (p<0.05) the phenolics content of WB during the OD process. Other 

factors quadratic effect had no significant influence on the samples phenolics content after 

OD process. In the investigattion of effect of ultrasound- assisted osmotic dehydration 

pretretment on the on the convective drying of strawberry, the authors reported that only 

the quadratic term of ultrasonic osmotic dehydration and temperature has significant effect 

on water loss and weight reduction (Amami et al., 2017). De Mendonça et al. (2016) 

studied the optimization of osmotic dehydration of yacon slices and reported a significant 

quadratic effect of treatment time of osmotic dehydrated assisted ultrasound on the solid 

gain.  
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Table 4.4B shows the significant effect of each of the independent variables on the 

flavonoids content of WB during OD process. Treatment time and Brix% were found to 

significantly influence (p<0.05) the flavonoids content of WB, while the temperature and 

sample ratio to osmotic agent were not significant. Although the linear effect of 

temperature was observed to be insignificant on flavonoids content, the quadratic effect of 

temperature was found to significantly influence (p<0.05) the flavonoids content of WB 

during the OD process. Similar results as phenolic content were obtained for flavonoids 

content for temperature. For anthocyanin content, the significant effect of each of the 

independent variables on its variation in WB during the OD process was examined (Table 

4.4C). All the linear terms were found to significantly influence (p<0.05) the anthocyanin 

content of WB except the process temperature. Although the linear effect of temperature 

was observed to be insignificant on anthocyanins content during, the quadratic term of 

temperature was found to significantly influence (p<0.05) the anthocyanin content of WB 

during the OD process. Other factors quadratic terms had no significant influence on the 

samples anthoocyanin content during the OD process.  

4.4.2 Roles of process parameters on OD of WB 

Further analysis to verify the order of significant effect of each independent 

variable and their interactions on the phenolic, flavonoid, and anthocyanin contents of WB 

are shown in Table 4.5. This technique using Log Worth and p-values helps to prioritize 

and focus resources visually. The output shows the significant influence of each variable 

on the response in decreasing hierarchy. As shown in Table 4.5A, the most significant 

parameter for phenolics content of the osmotic dehydrated WB was the quadratic effect of 

temperature. 
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Table 4.5: Parametric effect summary estimates: (A) Phenolics content (B) Flavonoids 
content (C) Anthocyanin content where X1, X2, X3 and X4 are temperature, time, Brix 
and sample to Brix ratio respectively.  
 
  
  

 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

Source LogWorth  PValue  

X1*X1 5.506  0.00000  
X4 2.250  0.00562  
X1*X3 1.770  0.01699  
X2 1.755  0.01759  
X1*X2 1.493  0.03211  
X3 1.344  0.04532 ^ 
X3*X3 0.917  0.12095  
X2*X4 0.587  0.25890  
X2*X3 0.427  0.37406  
X1 0.285  0.51854 ^ 
X3*X4 0.181  0.65929  
X1*X4 0.146  0.71501  
X4*X4 0.095  0.80386  
X2*X2 0.033  0.92753  
 

Source LogWorth  PValue  

X1*X1 5.653  0.00000  

X4 2.926  0.00119  

X3 1.909  0.01234  

X1*X3 1.817  0.01522  

X2 1.604  0.02487  

X1*X2 1.500  0.03161  

X2*X4 1.008  0.09817  

X3*X3 0.383  0.41398  

X2*X3 0.229  0.59036  

X1 0.210  0.61653 ^ 

X2*X2 0.171  0.67387  

X4*X4 0.092  0.80837  

X1*X4 0.066  0.85992  

X3*X4 0.017  0.96160  

 

Source LogWorth  PValue  

X1*X1 5.034  0.00001  

X2 2.776  0.00168  

X1*X2 1.915  0.01217  

X3 1.453  0.03525  

X2*X2 1.110  0.07762  

X4 0.972  0.10676  

X1 0.876  0.13315 ^ 

X1*X4 0.661  0.21823  

X4*X4 0.539  0.28896  

X1*X3 0.515  0.30519  

X2*X3 0.245  0.56875  

X3*X4 0.154  0.70120  

X3*X3 0.104  0.78673  

X2*X4 0.037  0.91874  

 

A B 

C 
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The linear effect of sample ratio to osmotic agent was the second most important 

parameter followed by the interaction between process temperature and Brix% for the 

phenolics content of WB. Linear effect of OD time was the fourth most significant 

parameter and then the interaction between process temperature and OD time in that 

decreasing hierarchy for the remaining linear and quadratic terms (Table 4.5A). Different 

patterns of significant effects of the linear, interactions, and quadratic terms were observed 

for the other two dependent responses (flavonoids and anthocyanin contents) of the osmotic 

dehydrated WB (Tables 4.5B and C). The quadratic effect of temperature was also 

observed as most significant parameter for both flavonoids and anthocyanin contents of 

WB, but other parameters varied accordingly between both responses. As can be seen 

(Table 4.5B), the second most significant parameter for flavonoids content was the linear 

effect of the OD time followed by the interaction between temperature and OD time.  

On the other hand, the second most significant parameter for anthocyanin content 

was the linear effect of sample ratio to osmotic agent concentration followed by the linear 

effect of Brix% (Table 4.5C). The flavonoids content of WB was also affected by the 

quadratic effect of OD time (5th position). This term was ranked as the least significant 

parameter for phenolics content (Table 4.5A) and 11th position for anthocyanin content of 

WB (Table 4.5C). The linear effects of OD time and Brix% on all independent variables 

were found to be highly significant. Similar findings were reported for the effect of 

ultrasound-assisted osmotic dehydration pretreatment on the convective drying of 

strawberry by Amami, et al. (2017). The authors reported that only the quadratic term of 

ultrasonic osmotic dehydration time and temperature has significant effect on water loss 

and weight reduction. They also reported that temperature had significant negative effect 
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on water loss and weight reduction in quadratic term.  

We demonstrated showed only the quadratic term of temperature had significant 

effect on phenolics, flavonoids, and anthocyanin content of WB at 5% level. The 

temperature also had significant negative effect on all the dependent variables in quadratic 

term. The result indicated that temperature could act as a limiting factor due to disruption 

of cell membranes which could lead to loss of selectivity of osmotic agent with an increase 

of the permeability of the cell wall for solute uptake (He, et al., 2016). The interaction 

between OD time and Brix% was the least significant parameter for flavonoid content, 

while the interaction between Brix% and sample ratio to Brix % was the least significant 

for anthocyanin content of WB. These results reveal that the OD processing parameters 

could be used to improve a specific antioxidant content of WB during processing. This 

approach could be employed industrially during OD of WB. 

4.4.3 Optima model fitness 

The accuracy of the linear fit of the experimental data for the phenolic, flavonoid, 

and anthocyanin contents was shown by their model estimation parameters (Fig. 4.3). The 

model parameters such as coefficient of determination (R2), root mean square error 

(RMSE), and p-value were used to justify the model reliability. The predictability of the 

regression models was adequate, statistically significant (p-value<0.0001) with satisfactory 

coefficients of determination (R2 > 90%). These parameters are good indicators that the 

models can adequately predict response variable behavior. ANOVA for phenolics content, 

flavonoids content, and anthocyanin content showed that the second-order polynomial 

model (Eqs. 4(1-3)) was adequate to represent the actual relationship between the 

dependent and independent variables, with a high value of coefficient of determination (R2 
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the interactive effects of two factors at a time. These figures provide useful information 

about the behavior of the system within the experimental design. The response surface plots 

for phenolics content of osmotically dehydrated WB are shown in Fig 4.4(A-F), for 

significant factor interaction resulted from the ANOVA (Table 4.4A). The interaction 

between temperature and OD time showed a maximum effect on the phenolics content of 

dehydrated WB (Fig. 4.4(A). These two factors showed significant influence on the 

phenolics content of WB maximization which might due to the mass transfer of water 

enhanced by combine effect of temperature and OD time. A similar pattern was observed 

in interaction between temperature and Brix%, and temperature and sample ratio to Brix% 

on the phenolics content of WB as shown in Figs. 4.4(B and C). A possible decrease in the 

viscosity of the osmotic solution and reduction in the external resistance to mass transfer 

at WB surface might yield better water transfer responsible for this observation (Ahmed, 

et al., 2016; Amami, et al., 2017). The interaction between OD time and Brix% showed a 

minimum impact on the phenolics content of the dehydrated WB (Fig. 4.4D), while the 

interaction between OD time and sample ratio to Brix% showed increased phenolics 

content (Fig. 4.4E). A minimum impact on phenolics content of WB was also observed 

based on the interaction between Brix% and sample ratio to Brix%, while the highest peak 

of their interaction tends toward the sample ratio to Brix% variable (Fig. 4.4F). The 

response surface plots for flavonoids content of osmotic dehydration WB are shown in Fig 

4.5 (A-B). The interaction between temperature and OD time, temperature and Brix% , and 

temperature and sample ratio to Brix% showed a maximum effect on the flavonoids content 

of dehydrated WB (Fig. 4.5(A, B, and C). 



Ibtisam Sharif 

83 
 

      

Fig. 4.4: Influence of process variables on phenolics content (A) Process temperature and 
OD time (B) Process temperature and Brix% (C) Process temperature and Sample ratio to 
Brix% (D) OD time and Brix% (E) OD time and Sample ratio to Brix% (F) Brix% and 
Sample ratio to Brix%. 
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Fig. 4.5: Influence of process variables on flavonoid content (A) Process temperature and 
OD time (B) Process temperature and Brix% (C) Process temperature and Sample ratio 
Brix% (D) OD time and Brix% (E) OD time and Sample ratio to Brix% (F) Brix% and 
Sample ratio to Brix%. 
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Fig.4.6: Influence of process variables on anthocyanin content (A) Process temperature 
and OD time (B) Process temperature and Brix% (C) Process temperature and Sample ratio 
to Brix% (D) OD time and Brix% (E) OD time and Sample ratio to Brix% (F) Brix% and 
Sample ratio to Brix%. 
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The synergy effect of the two factors showed significant influence on the flavonoids 

content of WB maximization which might due to the mass transfer of water enhanced by 

the combined effects of the factors. The interaction between OD time and Brix% showed 

a minimum impact on the flavonoids content of the dehydrated WB (Fig. 4.5D), while the 

interaction between OD time and sample ratio to Brix% showed increased flavonoids 

content (Fig. 4.5E). A minimum impact on flavonoids content of WB was also observed 

based on the interaction between Brix% and sample ratio to Brix% while the highest peak 

of their interaction tends toward the sample ratio to Brix% variable (Fig. 4.5F). Similar 

results were observed for anthocyanin content of WB (Fig 4.6 (A-F)). The only exception 

was the interaction between Brix% and sample ratio to Brix% which showed a maximum 

effect on the flavonoids content of WB. 

4.4.4 Optimization and model validation 

The desirability function method described in the materials and methods section 

was employed to analyze the process parameters concerning the dependent variables 

(phenolics content, flavonoids content, and anthocyanin content) optimization. The desired 

levels for each of the operational conditions (temperature, OD time, Brix% and sample 

ratio to Brix%) was selected within the range defined by (Kucner, et al., 2013), while the 

dependent variables were defined as maximum. Each of the dependent variables was 

analyzed separately. Fresh WB was the control sample with the initial phenolic, flavonoid, 

and anthocyanin content estimated as 1394.7, 445.1 and 640.4 (mg/100g of d.m), 

respectively. The optimum value of phenolics content of the dehydrated WB was 742.61 

mg/100g d.m of WB at a process temperature of 40°C (Fig. 4.5A), OD time of 5 h, Brix of 

65% (w/w), and sample ratio to Brix% of 1:5. The increase in temperature from 40 to 50°C 
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showed a drastic decline in the phenolics content of WB. This is likely due to increasing 

of the permeability of the cell wall which might lead to migration of antioxidant to the 

osmotic solution and possibility of solute uptake (De Mendonça, et al., 2016). The 

prediction proved reliable as judged by the desirability of the predicted values of 0.75. 

Robustness of model is judge based on how close the desirability value is to 1.0, the closer 

the better the predictability of the model.  

A gradual decrease in phenolics content of WB was observed with increase in OD 

time. For flavonoids content, the optimum value of the dehydrated WB was 263.12 

mg/100g d.m of WB at a process temperature of 40°C (Fig. 4.7B), OD time of 5 h, Brix of 

65% (w/w), and sample ratio to Brix% of 1:5. The independent variables showed similar 

effects as compared to phenolics content of WB with desirability value of 0.60. A similar 

trend of optimum processing parameters was observed for anthocyanin content of the 

dehydrated WB. The optimum value of the anthocyanin content of the dehydrated WB was 

428.11 mg/100g d.m of WB at a process temperature of 40°C (Fig. 4.7C), OD time of 5 h, 

Brix of 65% (w/w), and sample ratio to Brix% of 1:5. The desirability of the predicted 

values was estimated as 0.81. Thus, the combination of coded values of X1, X2, X3, and 

X4 at 0, 0, 0, and 0.5, respectively produced the best antioxidants result and therefore 

presents the optimum condition except for the possible effect of interactions between the 

factors. The regression model was validated by performing the experiments at the optimum 

predicted conditions. The confirmatory experiments were performed in triplicate and the 

results were compared with the predicted dependent variables. The resulting phenolics 

content of trial 1 to trial 3 were 725.8, 751.5, and 745.35 mg /100g d.m, respectively.  
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270.25, 267.55, and 258.54-mg/100g d.m, respectively. The same approach was used for 

anthocyanin content for trial1, trial2, and trial3 determined as 420.60, 431.23, and 425.80 

mg/100g d.m, respectively. The results from the confirmatory experiments agreed with the 

predicted values of phenolic, flavonoid, and anthocyanin contents. Based in these results 

the optimum condition of OD were 40°C, 65 Brix, 1:5 sample to Brix ratio and 5h. Theses 

conditions were used before optimization of the oven drying procedure.  

4.5 Drying time of optimum condition compared to hot air-drying 

Drying is one of the most energy-intensive unit operations in the process industries. 

In a drying process, a significant amount of energy is needed to remove water. Any method 

for WB drying, that maintains its quality and decreases the drying time by reducing the 

moisture content (MC) faster is of considerable interest.  

Fig. 4.8 shows MC versus drying time for the oven drying (control) and 

pretreatment sample by MW for the 30s and optimum OD condition (40°C, 65 Brix, 1:5 

sample to Brix ratio and 5h followed by hot air convective drying (HACD). All the samples 

were dried to the final MC of 18g/100g of w.b). Using MW as a pretreatment followed by 

OD (at optimum condition) then HACD as a final step of drying process results in a 

significant reduction in drying time compared with the control (only oven) by 5h as that 

presented in Fig. 4.8. Similar results have been reported by Zielinska & Markowski, (2016) 

when they applied the MW to their process of drying BB. Our results indicate that the use 

of microwave and OD shorten the energy intensive oven drying process time of WB in 

comparison with deploying the hot air convective drying only. 
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Fig. 4.8: Drying time of Microwave pretreatment (30s) and OD (40°C, 65 Brix, 1:5, 5h) 
followed by air-drying at 70°C of WB comparison with air-drying at 70°C without 
treatments. 
 

This result is due to the advantage of the MW drying arising from the volumetric heating 

and internal generation. Heating from the interior of a fruit product leads to the buildup of 

an internal vapor pressure that drives the water out of the product (Feng et al., 2012). That 

is the evident that MW pretreatment (30s) period OD followed by HACD results in a 

significant reduction in drying time and maintaining a high antioxidants content of WB. 

WB final product dried by microwave foe 30s followed by OD (Optimum condition) then 

oven has been kept in a cold and dry place more than six months without getting spoiled. 

4.6 Shrinkage ratio (SR) of dried WB 

The high-quality products in the market require dehydrated fruits or vegetables that 

maintain a high level of nutritional and organoleptic properties of the initial fresh product. 

(Mayor, L., & Sereno, A. M. 2004). Shrinkage is the most important physical change to 

measure due to the negative consequence in the quality of the dehydrated product such as 
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product included breakfast cereals. This is a measure of the ability of dried product to take 

up moisture when required. This gives the food good texture when consumed. Dried WB 

by hot air convective drying HACD only and MW (30s) then OD (40°C, 65 Brix, 1:5, 5h) 

followed by hot air convective drying HACD were rehydrated at room temperature (CR) 

and at 50°C (HR) are shown in Fig. 4.8. The rehydration ratio in CR and HR conditions 

are necessary to predict the behavior of WB when rehydrated for a particular application 

where they will be soaked in water or milk. Dehydration at room temperature is especially 

important for the dried WB that will be used in cereals. The rehydration of dried WB was 

plotted based on laboratory measurements of changes in WB mass with soaking time. In 

comparison with HACD and MWOD followed by HACD at 70°C led to higher rehydration 

ratio of WB with increasing the soaking time. When the dried WB is placed in water to 

rehydrate, the cell walls absorb water due to the natural elasticity of the cellular structure. 

Then the cells returned to their original shape by drawing water into inner cavities. 

However, hot air convective drying (HACD) only usually destroys the cell structure (Sagar 

& Suresh Kumar, 2010). 

The rehydration ratio of dried WB by MWODHACD at room temperature (22°C) 

and 50°C had the highest rehydration ratio compared with dried WB without any treatments 

as that shown in (Fig. 4.10). A similar result has been reported by Dehghannya Dehghannya 

et al.,(2018) using osmotic dehydration as pretreatment followed by microwave then hot  
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Fig. 4.10: Comparison of rehydration ratio in cold rehydration (CR), Hot rehydration 
(HR) at 50°C of WB dried by HACD and MWODHACD. 
 
 
air convective drying to dry quince fruit characterized by the highest rehydration ratio   

compared with hot air convective drying (HACD) only. Statistically significant differences 

(p<0.05) in the rehydration-dried samples were started after 6 min of soaking in CR and 

HR. In the cause of MWODHACD the amount of solid uptake during the OD stage 

decreased the rehydration process, whereas, in the HACD could be to the cell damaged that 

caused the hardness. In general, the rehydration ratio of dried WB increased with increasing 

the rehydration time and shown better behaviour when it used to rehydrate with HR. A 

high rate of reconstitution could be beneficial for dried WB added to breakfast cereals that 

are consumed with milk. We show that dry WB intended for breakfast cereals should be 

dried by MWODHACD.  

4.8 Mathematical modeling of dehydrated and drying WB 

Mathematical modeling of the drying processes is considered an essential step in 

the scale up of drying technology (Horuz et al., 2018). Mathematical models are used for 
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designing new or improving existing drying systems and control of the process. The WB 

osmotic dehydration optimum condition determined a process temperature of 40°C, 

concentration of 65% °Brix, samples to solution ratio of 1:5 and time of 5h. In samples 

treated with optimum condition of the moisture loss (ML) (for OD and HACD) and solid 

gain (SG) (for OD) were analyzed as a function of time (Fig 4.11). These data were used 

for mathematical modeling to obtain a better insight and understanding of the process. 

 

Fig. 4.11. Azuara’s model prediction of moisture loss (ML) and solid gain (SG) of wild 
blueberry (WB) osmotic dehydration (OD). 
4.8.1 Mathematical modeling of OD 

The equilibrium state of moisture loss (ML) and solid gain (SG) prediction were 

made by fitting the date from Azuara’s model (Equation 3.10 + 3.11) to the experimental 

data are given in Table 4.6. Nonlinear regression was applied in order to determine the 

parameter of the model. The low error (RME lower than 5%) and high determination 

coefficient (R2 higher than 0.95) indicate that Azuara’s model was appropriate to predict 

ML and SG at the equilibrium condition. The value of 𝑀𝐿𝑒 was 39.02g/100 g of fresh 

sample and the experimental value of ML after 5h of dehydration by using OD was 
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30.86g/100 g of fresh sample. In our study, equilibrium moisture loss MLe was not reached 

in whole WB under the optimum condition. The experimental value of SG after 5h was 

3.04g/100g of fresh sample, while the value of SGe was 3.31g/100g of fresh sample. The 

Azuara’s parameter a (min-1) shows that the sugar impregnation happened faster than the 

moisture loss, as can be observed in Fig 4.11. This figure shows that the rate of water loss 

and solid gain (slope of the plots) increased with time. This could be due the effect of 

sucrose (osmotic agent) concentration, serving as the driving force of the solution. Similar 

result were reported by Zielinska, M., & Markowski, M. (2018), who found that, using 

MW as pretreatment before OD had the most significant and greatest effect on mass 

transfer (ML and SG) of cranberries. 

 
Table 4.6: Moisture loss (ML) and Solid gain (SG) at equilibrium state of wild blueberries 
osmotic dehydration (OD) estimated by Azuara’s model 

  
ML SG 

a (min-1) 0.009 0.051 

Eq (g/100g of fresh sample) 39.02 3.31 

MWOD (g/100g of fresh sample) 30.86 3.04 

R2 0.9572 0.9573 

RMSE (g/100g) 0.81 0.067 
RME (%) 3.547 1.946 

 

*𝑀𝐿𝑡= 𝑎𝑡 (𝑀𝐿𝑒)

1+𝑎𝑡
; 𝑆𝐺𝑡  = 𝑎𝑡 (𝑆𝐺𝑒)

1+𝑎𝑡
; a (min-1) = Azuara’s model parameter; Eq = equilibrium 

condition; MW OD = Optimal condition of wild blueberry osmotic dehydration after 5 

hours; RMSE  = √
∑ (𝑥𝑒𝑥𝑝

𝑖  − 𝑥𝑝𝑟𝑒
𝑖 ).2𝑁

𝑖=1

𝑁
; RME (%) = 100 

∑ .
𝑥𝑒𝑥𝑝

𝑖 −𝑥𝑝𝑟𝑒
𝑖

𝑥𝑒𝑥𝑝
𝑖

𝑁
𝑖=1

𝑁
. 

Diffusion coefficient (Deff) is one of the significant factors in drying processing. 

This parameter describes all possible mechanisms of moisture and solid movements in 
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fruits or vegetables. Diffusion coefficient (Deff) is describing by Fick’s second law. In this 

study, Fick’s law was successfully used (low error and high determinations coefficient) to 

predict the apparent diffusivity of moisture (Dem ) and solids (Des) during WB OD (Table 

4.7). The higher moisture diffusivity (Dem) 0.86 × 1010 for water than solids 0.69 × 1010 

indicates a higher moisture loss than solid gain, as it was showed by the equilibrium 

conditions. In addition, the moisture and solid ratios for WB OD showed that the solid gain 

in the optimal treatment was closer to the equilibrium condition than moisture loss (Fig 

4.12).  

 

Table 4.7: Moisture loss (ML) and Solid gain (SG) diffusivity of osmotic dehydration 
(OD) of wild blueberries (WB) determined by Fick’s second low. 
 

 Moisture diffusivity Solid diffusivity 

Dff × 1010   [m2 s-1] 0.86 0.69 

R2 0.95 0.93 
RMSE (m2 s-1) 0.02 0.02 

RME (%) 5.48 6.52 

*MR= 𝑀𝑡− 𝑀𝑒

𝑀0− 𝑀𝑒
=  

6

𝜋2  ∑ . exp (−𝑖2 𝜋2𝐷𝑒𝑚  
𝑡

𝑟2)∞
𝑖=0 ; SR= 𝑆𝑡−𝑆𝑒

𝑆0−𝑆𝑒
=

 
6

𝜋2  ∑ . exp (−𝑖2 𝜋2𝐷𝑒𝑠  
𝑡

𝑟2)  ∞
𝑖=0  Dff = apparent diffusivity; RMSE  = √

∑ (𝑥𝑒𝑥𝑝
𝑖  − 𝑥𝑝𝑟𝑒

𝑖 ).2𝑁
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𝑁
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RME (%) = 100 
∑ .

𝑥𝑒𝑥𝑝
𝑖 −𝑥𝑝𝑟𝑒

𝑖

𝑥𝑒𝑥𝑝
𝑖

𝑁
𝑖=1

𝑁
. 



Ibtisam Sharif 

97 
 

 

Fig. 4.12: Fick’s law prediction of moisture ratio and solid mass transfer for osmotic 
dehydration (OD) of wild blueberry (WB). 
 

The moisture and solid mass transfer during WB OD were evaluated using the 

equilibrium approach. The mass transfer coefficients (k) showed that the solid 

incorporation happened faster than the moisture loss (Table 4.8), in accord with the 

diffusion approach. The data also reflect that the moisture loss was higher than the solid 

gain (Fig. 4.13). Further studies have to be carried out in order to make use of these mass 

transfer data for scale up of the process. 

Table 4.8: Moisture loss (ML) and Solid gain (SG) mass transfer coefficient (R2) of OD 
wild blueberries (WB) osmotic dehydration (OD) by equilibrium approach. 
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* −
𝑑𝑀

𝑑𝑡
= 𝑘𝑚(𝑀 − 𝑀𝑒) ; 𝑑𝑆

𝑑𝑡
= 𝑘𝑠(𝑆 − 𝑆𝑒) ; k (s-1)= mass transfer coefficient; RMSE= 

√
∑ (𝑥𝑒𝑥𝑝

𝑖  − 𝑥𝑝𝑟𝑒𝑑
𝑖 ).2𝑁
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𝑁
; RME (%) = 100 

∑ .
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Fig. 4.13. Moisture and solid mass transfer in osmotic dehydration (OD) of wild blueberry 
(WB) by equilibrium approach. 

4.8.2 Mathematical modeling of HACD 

Wild blueberries (WB) that were osmotically dehydrated were subjected to hot air 

convective drying (HACD) at 70°C. Fick’s second law solved by Crank’s method and the 

engineering equilibrium approach were applied to the data. The modeling was performed 

considering the same conditions as for the OD, except that the moisture diffusion from WB 

was only mass transfer related.  The experimental data of hot air convective drying 

(HACD) of WB after MWOD were measured until the desirable moisture content point 

(18g/100g of w.b) of the final product. The rate of dehydration as a function of time was 

determined. 

The average behavior of the drying rate during drying by hot air convective drying 
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distinct drying rate periods. The first phase, known as period zero or increasing drying rate, 

presents an increase in the drying rate. This happens because the drying material 

temperature is increasing from room temperature to the drying temperature. This is a very 

short period and difficult to detected in food. The second drying rate period, known as the 

constant rate period, presents a constant drying rate. This period is characterized by rapidly 

diffusion of water from the inside of the material to its surface, being able to maintain the 

moisture content at the surface almost constant. The third drying rate period, known as the 

decreasing rate period, presents decreasing drying rates. In this period the surface moisture 

content of the material decreases, because the moisture is remove from the surface faster 

than the moisture from inside diffuses to the surface. This change in moisture gradient 

between the material surface and the drying air causes the drying rate to decrease until 

reaching zero at the equilibrium condition, where there is no more significant mass transfer 

under the experimental conditions (Tadini et al., 2016). The absence of increasing and 

constant drying rate periods in this work can be attributed to the OD step performed before 

the HACD, that it was efficient to remove the moisture that can easily diffuse to the surface 

of the WB. 



Ibtisam Sharif 

100 
 

 

Fig. 4.14. Drying rate of Wild blueberries during hot air convective drying (HACD) after 
osmotic dehydration treatment. 
 

The equilibrium state of moisture loss (ML) predicted and estimated by fitting the 

data from Azuara’s model to the experimental data is given in Table 4.9. RME lower than 

10% and high determination coefficient R2 (higher than 0.99) indicate that Azuara’s model 

was appropriate to predict ML at the equilibrium condition. The experimental value of ML 
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be seen in the Fig 4.15. 
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Table 4.9: Moisture loss (ML) at equilibrium state of wild blueberries hot air convective 
drying (HACD) after osmotic dehydration OD estimated by Azuara’s model. 
 

ML 

a (min-1) 0.08242 

Eq (g/100g of fresh sample) 70.93 

WB HACD  (g/100g of fresh sample) 67.04 

R2 0.99820 

RMSE (g/100g) 2.99157 
RME (%) 5.4944 

*𝑀𝐿𝑡= 𝑎𝑡 (𝑀𝐿𝑒)

1+𝑎𝑡
; a (min-1) = Azuara’s model parameter; Eq = equilibrium condition; WB = 

Hot air convective dried wild blueberries pretreated with microwave by 30s and osmotic 

dehydration optimal condition by 5h; RMSE  = √
∑ (𝑥𝑒𝑥𝑝

𝑖  − 𝑥𝑝𝑟𝑒
𝑖 ).2𝑁

𝑖=1

𝑁
; RME (%) = 100 

∑ .
𝑥𝑒𝑥𝑝
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𝑖
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Fig. 4.15: Azuara’s model prediction of moisture loss (ML) of wild blueberry (WB) hot air 
convective drying (HACD) after osmotic dehydration (OD). 
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Effective moisture diffusivity represents the overall transport property of moisture 

in WB during drying. In order to determine effective moisture diffusion (Dem) of WB, Eq. 

(3.12) was used. The experimental data was used to estimate the moisture effective 

diffusivity in WB during HACD after MWOD. Fick’s law was successfully used (low error 

and high determinations coefficient) to predict the apparent diffusivity of moisture (Dem) 

during WB HACD (Table 4.10). Beigi. (2016) & Torki-Harchegani, et al. (2016) indicated 

that Deff values of convective dried lemon and apple at 70°C were 8.11×10-11, and 1.08×10-

9 m2/s, respectively. The low moisture diffusivity in this study can be attributed to the 

presence of sucrose in the tissue and surface of WB that result in resistance against moisture 

removal. This result was in line with findings of (Dehghannya, et al., 2018). The moisture 

ratio shows that the HACD condition used was close to the equilibrium condition (Fig 

4.16). 

Table 4.10: Moisture loss (ML) diffusivity of hot air convective drying (HACD) after 
osmotic dehydration (OD) of wild blueberries (WB) determined by Fick’s second law. 

 Moisture D 

Dff × 1010   [m2 s-1] 0.13 

R2 0.9354 
RMSE (m2 s-1) 0.0475 

RME (%) 7.8000 

*MR= 𝑀𝑡− 𝑀𝑒

𝑀0− 𝑀𝑒
=  

6

𝜋2  ∑ . exp (−𝑖2 𝜋2𝐷𝑒𝑚  
𝑡

𝑟2)∞
𝑖=0 ; Dff = apparent diffusivity; RMSE  = 

√
∑ (𝑥𝑒𝑥𝑝

𝑖  − 𝑥𝑝𝑟𝑒𝑑
𝑖 ).2𝑁

𝑖=1

𝑁
; RME (%) = 100 

∑ .
𝑥𝑒𝑥𝑝

𝑖 −𝑥𝑝𝑟𝑒𝑑
𝑖

𝑥𝑒𝑥𝑝
𝑖

𝑁
𝑖=1

𝑁
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Fig. 4.16: Fick’s law prediction of moisture and solid mass transfer for hot air convective 

drying after osmotic dehydration (OD) of wild blueberry (WB). 

The diffusivity approach uses Fick’s second law to model the data of mass transfer 
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is an engineering approach based on the mass transfer coefficient (k). The mass transfer 

coefficient (k) presents in Table 4.11, while Fig 4.17 shows that the predicted mass transfer 
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k (s-1) 0.00032 
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Fig. 4.17: Moisture mass transfer in hot air convective drying (HACD) of wild blueberry 
(WB) after osmotic dehydration (OD) by equilibrium approach. 
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Chapter 5 

Conclusions and future work 
5.1 Conclusions 

The main conclusion that can be drawn from this study is that inclusion of the 

osmotic dehydration process in the drying of the wild blueberries results in much better 

retention of the antioxidants in the resultant product.  

Initial studies without any pre-treatment resulted in very low moisture removal. 

Subsequently, a number of pre-treatment methods were attempted. This included 

immersion in boiling water, ultrasound water bath treatment, ultrasound probe treatment 

and microwave treatment. The amount of moisture removed and antioxidant retained were 

used as the basis for the selection of best pre-treatment method for all subsequent studies. 

Microwave pre-treatment for 30s followed by osmotic treatment at 40°C, with 65 Brix, 1:4 

sample to osmotic solution over 5h was found to be the best method and resulted in 

moisture removal and antioxidant levels to 30% moisture loss and total phenolics levels of  

805.8 mg/100 g, flavonoids 274.3 mg/100 g and 552.7 mg/100 g dry mass after osmotic 

dehydration and 782.9 mg/100 dry matter of phenolics, 279.5 mg/100dry matter flavonoids 

and  434.2 g/100g dry matter anthocyanin content after followed by oven drying to 18% 

water content. 

There is a number of parameters which effects the extent of osmotic dehydration 

for fruits such as wild blueberries used in this study. These include temperature, exposure 

time, Brix % and sample to Brix ratio (w/w). In order to determine the optimum conditions, 

it was decided to use experimental design followed by rigorous optimization using 

Response Surface Methodology (RSM). A polynomial model which best fit the results of 

the 30 experiments carried out as per the statistical design was used to find the best 
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conditions for moisture removal and antioxidant retention.  Simultaneous optimizations of 

the multiple responses were carried out. Based on these methods the best conditions for 

osmotic dehydration of wild blueberries were found to be 30s, 40°C, 65 Brix, 1:5, 5h. 

Besides moisture removal and retention of the antioxidants, inclusion of osmotic 

dehydration also led to a five-hour reduction of oven drying time. Some additional 

characteristics of the dried wild blueberries were also determined. These include shrinkage 

and rehydration of the wild blueberries which showed a statistically significantly (p<0.05) 

lower shrinkage ratio (31.84%) compared with hot air convective drying method (the 

control) shrinkage ratio (44.62%). A high rate of rehydration within minutes of mixing 

after using optimum condition for treated and microwave pretreatment can be beneficial 

for dried WB added to breakfast cereals that consumed with milk.  

Finally, based on time profiles of water dehydration and solid content time profile 

data, mathematical modeling of the system was carried out with the aim of determining of 

equilibrium conditions and the mass transfer coefficients. Mass transfer modeling using 

Azuara model predicts moisture loss and solid gain values at equilibrium state revealing a 

good correlation of experimental values with the model (due to the R2 values greater than 

0.94 and less then10% for the relative mean error RME).  

5.2 Future scope: 

In order to test for the practical use of these dried fruits in products like breakfast 

cereals some additional work may have to be done. This will include testing the texture of 

the product after rehydration in milk; the softness and mouth feel of the product. Panel tests 

may also be done to determine the consumer acceptability of the same. 
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