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II 

Abstract 
 

 

 

 A pulsed ytterbium-doped fiber laser is proposed and developed. A length of 

samarium-doped fiber was inserted into the laser cavity to induce passive Q-switching. 

The laser oscillated in the continuous wave, Q-switched mode-locked or Q-switched 

regime depending on adjustment of the intracavity polarization controller and the pump 

power. Q-switched pulses with a pulse energy of ~7.5 nJ and duration of ~70 ns were 

obtained at a pump power of ~1500 mW, corresponding to a peak output power of ~106 

mW at an average power of 2 mW. The low output power was attributed to the low 

coupling efficiency of pump radiation into the cavity and the high cavity losses. All 

results were obtained at room temperature. 
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Chapter 1 

Introduction 

 

1.1: Introduction 

 Laser technology has reached a high level of maturity and has taken a prominent 

position over the course of its 50 year history. Lasers are now used in everything from 

household tools for leveling and distance measurement to particle accelerators and 

experimental fusion reactors [2;3]. Fiber lasers are one type of laser that has gone through 

intense development in the last two decades. Fiber lasers are compact, reliable and 

environmentally stable compared to their bulk counterparts and are commercially 

available. Despite the progress already made by fiber lasers, there is still much room for 

the development of new lasers intended for specific applications. 

 The objective of the proposed thesis is to design a fiber laser in the 1.1 µm 

spectral region using an ytterbium-doped fiber as a gain medium. We will also 

explore the possibility of operating the laser in the continuous wave (CW) and 

pulsed regimes. Finally, we will discuss the possible application of the proposed 

laser in sensing.   
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The present chapter will describe different types of lasers and their working 

principles. 

 

1.2: Lasers 

 “LASER” is an acronym for “light amplification by stimulated emission of 

radiation”. A laser is a device that takes advantage of the phenomenon of stimulated 

emission to generate a beam of intense, temporally and spatially coherent optical 

radiation. Schawlow and Townes first proposed the laser in 1958, and Theodore Maiman 

constructed the first solid-state ruby laser soon after [4;5].  

A laser in its simplest form comprises two main parts: a gain medium in which 

the signal radiation is amplified via stimulated emission, and a resonant cavity within 

which the gain medium is placed to provide feedback of radiation into the medium so that 

signal amplification can continue as long as pumping is maintained [6].  Figure 1.1 shows 

a schematic diagram of a typical laser system. 

 

 

Figure 1.1: A basic laser oscillator. 

 

 When an electromagnetic wave with frequency � travelling along the x-axis and 

polarized along the z-axis is incident on an atom in the ground state, the oscillating 
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electric field of the EM wave can induce an electronic transition to an excited state, with 

the atom absorbing energy 0ω�=− ab EE  (figure 1.2 a). The probability of this transition 

is [7]: 
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 If another photon of the same frequency interacts with the same atom while it is 

still in the excited state, it can induce a transition back to the ground state (figure 1.2 c). 

This transition occurs with the same probability as the excitation from the ground state 

and leads to the emission of two photons of energy 0ω�  with the same phase and 

polarization. The above phenomenon is known as stimulated emission. 

 

 
Figure 1.2: a) Absorption of a photon with energy h�0 inducing a transition from the ground state 

“a” to the excited state “b”. b) Spontaneous emission of a photon resulting in a transition from the 

excited state to the ground state. c) Stimulated emission. 

 

 

 

 In order for stimulated emission to dominate over absorption, population 

inversion is required, which is achieved by pumping the amplifying medium [6]. 

Pumping is carried out by transferring energy to the amplifying medium in order to 
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induce transitions to the excited state. Population inversion is achieved when a greater 

number of atoms occupy the excited state than the ground state. 

 Another important element for laser oscillation is a resonant cavity to direct the 

signal radiation through the amplifying medium repeatedly, allowing a high intensity 

wave to build up within the cavity (figure 1.1). In order for a given frequency to oscillate 

within an optical cavity it must experience a zero net phase change on each cavity round 

trip. This is known as the resonant phase condition and is written as [8]: 
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Where c is the speed of light in a vacuum, n is the effective refractive index inside the 

cavity, Lcavity is the cavity length and m is an integer. The spacing between resonant 

frequencies is called the free spectral range (FSR) of the cavity and is denoted by ��FSR. 

Another important cavity parameter is the finesse, defined as the ratio of the FSR to the 

linewidth of the resonant peaks (FWHM:Full width at half maximum) [9]: 
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 The above expression neglects cavity losses other than transmission through the 

cavity mirrors. It is clear that a high finesse can be achieved with high mirror reflectivity 

and low cavity losses. However, the linewidth also exhibits an inverse dependence on the 



5 

FSR. Therefore, at a constant finesse, there is a trade-off between having a large FSR and 

a narrow linewidth.  

 Lasers with different gain media such as gas, dye and semiconductor materials 

have been developed. Lasers may furthermore be classified in the wavelength domain as 

single-wavelength [10] or multi-wavelength [11] and in the time domain as continuous or 

pulsed mode [12]. 

 

1.3: Optical Fibers 

An optical fiber is a coaxial cylindrical dielectric waveguide designed to transmit 

EM waves at optical frequencies [13]. Optical fibers were first proposed and produced by 

K.C. Kao and G.A. Hockham in 1966 [14]. Since this development, refinements in fiber 

design and fabrication processes have led to the production of fibers with low dispersion 

and losses (0.2 dB/km), and optical fibers now hold a prominent place as the backbone of 

communication systems. 

The material of choice for most telecommunications-grade optical fibers is fused 

(amorphous) silica glass. A glass becomes a viscous fluid above the glass transition 

temperature with its viscosity decreasing continuously as the temperature is further 

increased [15]. This property makes glasses ideal for drawing into thin fibers of arbitrary 

and controllable thickness when heated to temperatures at which they become soft and 

ductile. The resulting fibers are extremely durable, with tensile strengths as high as steel 

wires of the same diameter, and are resistant to degradation by most chemicals at ambient 

temperatures [16]. Most importantly for communication, pure silica is highly transparent 
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at optical frequencies, allowing transmission distances of tens of kilometers at a 

wavelength band centered at ~1.55�m [17].  

Optical fibers in their most simple form consist of a cylindrical glass core 

surrounded by a coaxial cylindrical cladding made of glass of slightly lower refractive 

index. The complete glass fiber is then coated with a protective polymer jacket. Fibers in 

which the core and cladding refractive indices have no radial dependence are called step 

index fibers (figure 1.3). 

 

 
 

 

 
 

 
Figure 1.3: (a) Left: Structure of a single-clad optical fiber. Right: Refractive index profile of a step-

index fiber. (b) Confinement of light within the fiber core by total internal reflection. 

 
 

 

Light is confined within the core of a step index fiber by means of total internal 

reflection at the core-cladding interface. Light rays incident on the fiber end face within a 

certain angle known as the acceptance angle will couple into the fiber (figure 1.3). The 

(a) 

(b) 
 

n 
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maximum angle of incidence “�max” for coupling to the fiber is related to the core and 

cladding refractive indices [13]: 

 

   ( ) 2/12
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1max,0sin nnn −=θ     (1.3.1) 

The quantity nsin�0,max quantifies the light accepting capability of a fiber and is 

known as the numerical aperture. 

The above ray optics description does not give an accurate picture of light 

propagation within an optical fiber. In general a dielectric waveguide supports a number 

of transverse modes [13]. Each of these modes corresponds to a solution of Maxwell’s 

equations in cylindrical coordinates subject to boundary conditions at the core-cladding 

interface [18]. Maxwell’s equations in an isotropic non-conducting dielectric medium in 

the absence of currents and free charges are written as follows [8]: 
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One can obtain wave equations by combining equations 1.3.2 (a) to (d), and each solution 

of this equation represents a unique transverse electric and magnetic field distribution of 

the propagating waves. The solution of the wave equations take the form [13]: 
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The order of a transverse mode corresponds to the number of zeros in the optical 

field profile [18]. For the strongest waveguiding, it is advantageous to limit the 

propagating light to a single zero-order mode. The number of transverse modes is 

quantified by the so-called normalized frequency, or “V-number” [9]: 

 

   ( ) 2/12

2

2

10 nnakV −=      (1.3.4) 

 

Where a is the core radius of the fiber. The fundamental, lowest order transverse mode 

exists for all values of V, and the first higher order mode appears for V>2.405 [9]. This is 

known as the cut-off condition for single mode propagation in fibers. A single mode fiber 

may be produced by choosing values of a, n1 and n2 that fulfill the cut-off condition at a 

given wavelength (V<2.405). A single-mode fiber operating at 1.55 µm has lower 

attenuation, and is free from intermodal dispersion. Using a single-mode fiber thus allows 

the integrity of an optical signal to be maintained over a much longer distance [13]. For 

these reasons, single mode fibers have become the backbone of modern communication 

networks. 

1.4: Rare-Earth-Doped Fibers 

 The properties of optical fibers can be altered significantly by introducing 

impurities (dopants) into the glass from which the fiber is fabricated. One of the most 

important dopants is rare-earth ions. The rare earths comprise two rows of the periodic 

table: the lanthanides and actinides, of which only the lanthanides (row six) are used as 

dopants. They usually exist within a glass or crystal as a triply ionized cation, displacing 

an ion of the same charge in the host medium [19]. Erbium (Er), ytterbium (Yb), 
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neodymium (Nd), thulium (Tm), praseodymium (Pr), holmium (Ho) and samarium (Sm) 

have all been used as dopants in optical fibers, but Yb and Er have by far found the most 

widespread technological application. 

Lanthanide ions are attractive as gain media due to their large selection of 

absorptive and luminescent transitions between sublevels of their partially filled 4f shell 

[20]. Although the intra-4f transitions are forbidden by parity selection rules, their 

probabilities become non-zero in a host due to the effect of the field applied by the ions 

in the surrounding glass or crystal matrix [21]. The resulting transition probability for an 

atom with valence electron configuration 4 f 
N
 between states with quantum numbers S, L 

and J and  S’, L’ and J’  and wavefunctions �i and �f is calculated as [22]: 
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 Where H is the electric dipole Hamiltonian, which is expressed in the form of a 

rank k tensor and � is a degeneracy factor. The low probability for luminescent transitions 

leads to long excited state lifetimes in most rare earth ions, allowing a large amount of 

energy to be stored within the doped medium, leading to a high gain [23]. It is possible to 

construct pulsed lasers using doped fibers by releasing the stored energy in a single high-

energy pulse. This technique is known as Q-switching and is discussed in section 1.10. 

 An unpumped length of doped fiber can exhibit an intensity dependent absorption 

at the transition wavelengths of the dopant ions. As the incident intensity increases the 

number of dopant ions in the ground state decreases, leading to a decrease in the amount 

of light absorbed by the dopants in the fiber. Media that display an intensity dependent 
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absorption are known as saturable absorbers, and are discussed in detail in the next 

chapter. 

 In this work, an ytterbium-doped fiber is chosen as the gain medium for a laser 

oscillating in the 1.1 µm wavelength band by virtue of its broad emission spectrum in that 

region [24], and an unpumped samarium doped fiber is chosen to provide the saturable 

absorption effect. 

 

1.5: Fiber Lasers 

 A fiber laser is essentially a laser oscillator in which a section of rare earth doped 

fiber serves as the gain medium. Fiber lasers possess several advantages over other solid 

state laser designs: first, the laser cavity may be constructed by fusion splicing fibers 

together, bypassing the careful and skilled alignment required in open air cavities. 

Second, the confinement of the lasing light within the fiber core results in a near-

diffraction limited beam [25]. Third, the cylindrical symmetry of fiber waveguides 

enables efficient interaction between the pump beam and the active medium. Finally, the 

extremely high surface area to volume ratio of optical fibers allows excess heat produced 

within the fiber to be easily dissipated so that problems of thermally-induced damage and 

beam distortion due to thermal lensing (beam focusing due to thermally-induced changes 

in refractive index) that occur in bulk lasers are avoided [26]. These advantages make 

fiber lasers ideal candidates for application in inexpensive, versatile and durable 

instruments.  

 Optical feedback to the gain medium in a fiber laser may be provided by a wide 

variety of optical cavity geometries. This allows a resonator type to be chosen to best 
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provide the desired laser characteristics (power, longitudinal-mode-structure, pulsed or 

cw operation, etc.) for any given application. A fiber cavity may exist in two basic 

configurations: the linear configuration (Fabry-Perot) and the ring configuration. A linear 

cavity is formed by inserting the gain fiber between two reflectors, most commonly fiber 

Bragg gratings (Section 2.4) [27]. Ring cavities are constructed using either a fused fiber 

coupler [28;29], or an optical circulator and reflector (figure 1.4 b) [30]. A linear laser 

cavity tends to suffer from an effect called spatial hole burning effect, due to the 

interference between counter-propagating signal waves. The gain is preferentially 

saturated in the antinodes of the resulting standing wave at the primary lasing frequency, 

leading to a gain in the unsaturated regions (nodes) for weaker cavity modes, and 

possible multimode oscillation of the laser [31]. Spatial hole burning is absent in ring 

cavities due to unidirectional propagation of waves in the cavity. Despite this advantage, 

ring cavities typically contain components having extra lengths of fiber, and the bending 

radii of the cavity fibers must be large to avoid bend losses [32]. This makes minimizing 

the length of such cavities more difficult, so longitudinal mode spacing is usually shorter. 

One also usually encounters more difficulty stabilizing ring cavities against 

environmental fluctuations such as vibration and temperature [25]. 

 

 
 

 

 
(a) 
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Figure 1.4: Fiber laser cavity configurations: (a) Basic linear fiber laser cavity, the first reflector (R1) 

has a low reflectivity at the pump wavelength to allow for end-pumping. The output reflector (R2) 

has a lower reflectivity than R1 at the laser wavelength. (b) Left: Basic fiber ring laser formed by 

splicing a pumped gain fiber between an input and output of a fused fiber coupler. Right: Fiber ring 

laser formed from a fiber circulator (CIR) and a fiber Bragg grating reflector (FBG). 

 

 

 

 A greater degree of control may be exerted over the longitudinal mode structure 

of a laser resonator by employing coupled-cavity type designs. Combining two linear 

cavities of different lengths [33] or a ring cavity and a short linear cavity [30] results in a 

modulation in the longitudinal mode spectrum of the lower FSR cavity by the higher FSR 

cavity, limiting the overall number of longitudinal modes present in the laser output. This 

is a highly effective method for achieving single frequency oscillation in a fiber laser 

[10]. 

 Pump energy is typically delivered to the gain fiber by means of a fiber-coupled 

semiconductor diode laser. The dopant ions may either be excited by unidirectional 

pumping (figure 1.5 a), or bidirectional pumping (figure 1.5 b). A bidirectional pumping 

scheme typically allows for greater pump-to-signal conversion efficiency and therefore 

higher output power [34].  

 

(b) 



13 

 
 

Figure 1.5: Fiber laser pumping schemes: (a) Unidirectional pumping (b) Bidirectional pumping. 

 

Fiber lasers may be operated in continuous or pulsed regimes, and they are ideal 

for pulsed operation for several reasons. The extremely wide emission spectra of doped 

fibers allows for the amplification of pulses that are both short and wavelength-tunable 

[35]. A mode-locked fiber resonator may be constructed by splicing together optical 

components based on optical fiber technologies which reduce cost, alignment sensitivity 

and reliability over lasers based on bulk optical components. In this thesis, we study the 

operation of an ytterbium-doped fiber laser in both the pulsed and continuous wave 

regimes.  

1.6: Dispersion 

 The speed of light propagation in a medium is dependent on its wavelength. For 

an optical pulse, consisting of multiple frequencies, the unequal propagation speed of 

each frequency component can lead to broadening of the pulse in the time domain. The 

propagation constant of a wave is defined as: 
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 Expanding equation 1.6.1 about the central frequency �0:  

 

 ( ) ( ) ( ) ( ) ...
6

1

2

1
)( 03

3
2

02

2

00 +−+−+−+= ωω
ω

β
ωω

ω

β
ωω

ω

β
ωβωβ

d

d

d

d

d

d
 (1.6.2) 

 

The second order term in this expansion describes the pulse spreading due to the 

delay between each frequency (group delay) and is called the group velocity dispersion 

(GVD) parameter [13]. The group velocity is defined as the inverse of the derivative of 

the propagation constant with respect to angular frequency: 
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Where �g is the group delay acquired per unit length. The broadened pulse 

duration following propagation in a dispersive medium may now be written in terms of 

the bandwidth and propagation distance: 
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 Another form of dispersion that can take place in optical fibers is called 

waveguide dispersion, which arises from the fact that a portion of the radiation in an 

optical fiber propagates in the cladding. The radiation in the lower index cladding travels 

at a faster speed than in the core, leading to further broadening of the pulse [13]. 

Although material and waveguide dispersion are intricately related, they may be 

calculated to a good approximation by considering each effect independently [36]. The 

total dispersion may then be found as the sum of the material and waveguide dispersion. 

By assuming the core and cladding indices to be wavelength independent the pulse 

spreading due to waveguide dispersion can be shown to be [13]: 
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The normalized propagation constant b and the parameter � are defined as: 
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 The dispersion described here is assumed to take place within a single-mode fiber 

and is referred as intramodal dispersion. Since the fiber laser cavity presented in this 

thesis is constructed from single mode fibers, it is only necessary to consider intramodal 

dispersion. 
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1.7: Self Phase Modulation 

 Within certain materials, or at high enough field strengths, it is possible for an 

induced polarization to exhibit a nonlinear dependence on the magnitude of the applied 

field. Under such conditions, the polarization is related to the applied field by [37]: 

 

   [ ]...: )3()2()1(

0 +++⋅= EEEEEEP
���

�
����

χχχε    (1.7.1) 

 

 Here �
(j)

 is a tensor value of rank j and represents the j
th

 order susceptibility. The 

second order nonlinear term vanishes for media consisting of symmetric molecules such 

as SiO2, therefore, its contribution to nonlinear effects in fibers is zero. Frequency-

independent changes in refractive index called the Kerr effect arise from the third order 

nonlinearity. The nonlinear refractive index is written as [9]: 
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Where n2 is a constant known as the nonlinear index. One important consequence of the 

Kerr effect is self-phase modulation (SPM). The nonlinear phase-shift due to SPM 

imparted on a pulse field envelope A(z,t) after a propagation distance z may be written as 

[37]: 
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The direct relation between the nonlinear phase shift and |A(0,T)|
2
 means that the 

high intensity portions of the propagating pulse undergo a larger phase shift than the 

lower intensity parts. The resulting temporally varying phase in turn leads to a shift of the 

instantaneous frequency across the pulse profile, while leaving the temporal profile A(0,t) 

unchanged [37]. This can be seen mathematically by considering the example of a 

Gaussian pulse: 
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Here zeff represents an effective distance adjusted for the linear loss within the 

medium [37]. The instantaneous frequency �(T) is red-shifted (negative chirp) for 

negative values of T in front of the pulse center and blue-shifted (positive chirp) at the 

rear of the pulse. The frequency shifting at the temporal edges of the pulse translates to 

the generation of new frequency components at the edges of the pulse spectrum. 

Therefore, the SPM acts to spectrally broaden the pulse. Figure 1.6 shows the spectrum 

of an initially unchirped 100 ps Gaussian pulse after experiencing SPM due to 

propagation within a single mode silica fiber (n2~2.6�10
-20

 m
2
/W [38]). 
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Figure 1.6: Self phase modulation-induced spectrum broadening of an initially unchirped 10W, 100 

ps pulse following propagation through 1 km of single mode fiber (n2~3�10
-20

 m
2
/W, 8 �m core 

diameter, numerical aperture of 0.1). 

 

 

Figure 1.6 shows that despite the relatively small value of n2 for fused silica, SPM 

can have a considerable effect on a pulse of high enough intensity after propagation 

through a sufficient distance of fiber. Since pulses circulating within a pulsed fiber laser 

can have broad frequency bandwidths at peak powers of many watts, SPM is an 

extremely important effect to consider when designing a pulsed laser [35;39]. 

 

1.8: Mode-Locking 

 When multiple waves of different, evenly spaced frequencies are superimposed 

with a fixed phase relationship, they will interfere to form a single high amplitude pulse 

at values of time when the maxima of each wave occurs simultaneously [6]. This 

phenomenon is known as mode-locking, and results in the laser output being a periodic 

train of pulses. Figure 1.7 shows the temporal profile of 200 superimposed sine waves 

with a fixed phase compared with the same frequency components superimposed with the 

addition of a random phase. While irregular peaks in amplitude are present in the random 
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phase case, in the fixed phase case a single high amplitude peak is formed. The temporal 

width of these peaks is related to the inverse of the frequency range spanned by the 

superimposed modes and their repetition rate is equal to the frequency spacing between 

the modes [6]. This illustrates the fundamental concept behind mode-locking. The main 

challenge is in forcing the fixed phase relationship between the oscillating modes: this 

may be done either through the action of an externally controlled modulator (active 

mode-locking) or by a passive element such as a saturable absorber (SA) [40]. The 

present discussion will focus on passive mode-locking. 

 

 
 

Figure 1.7: Temporal profile resulting from the summation of a Gaussian distribution of sine waves 

with frequencies equally spaced by 10 MHz spanning a frequency range of 2 GHz with:  a) No 

relative phases,  b) Random phase between 0 and 2� radians added to each wave. 

(a) 

(b) 
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1.9: Passive Mode-Locking 

It is possible to convert the irregular fluctuations in amplitude (beating) of 

superimposed cavity modes into a single pulse by introducing an element with an 

intensity-dependent loss (saturable absorber) [41]. The SA induces a net loss on the low-

intensity fluctuations that cannot saturate its absorption, while allowing a net gain for 

those with a high enough intensity to cause saturation. After many round-trips, the net 

loss leads to attenuation of the low-intensity beats, while the highest intensity beat is 

amplified into a pulse with high peak intensity.  The steady state mode-locking condition 

is reached when the pulse energy and duration remains approximately constant after each 

round-trip [40]. 

 

 
 

Figure 1.8: Formation of a mode-locked laser pulse from initial intensity fluctuations in a cavity 

containing a saturable absorber. The number of round-trips increases going downward.  
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Amplitude modulation by a saturable absorber is necessary to initiate and stabilize 

passive mode-locking, but the combined effects of Kerr nonlinearity and GVD can have 

significant effects on the circulating field pattern over many round-trips (especially in 

fibers). The spectral broadening due to SPM combined with the temporal broadening due 

to GVD can eventually lead a circulating pulse to break up into a quasi-continuous 

radiation pattern, preventing stable mode-locking [42]. The effect of saturable absorbers, 

SPM and GVD within a fiber laser cavity in the pulsed regime is discussed in more detail 

in the next chapter. 

 

1.10: Q-Switching 

 Pulses may also be extracted from a laser cavity through a modulation of the 

resonator quality or “Q-factor”. The Q-factor is defined as the ratio of the stored signal 

energy to the energy dissipated within the resonator per round-trip [6]: 

    

l
T

E

E
Q

RT

dissipated

stored

1
0

0

ω

ω

=

×
=

               (1.10.1) 

 Where �0 is the central resonant frequency, TRT is the resonator round-trip time, 

and l is the total intracavity losses. The oscillation within a low Q cavity is more strongly 

damped than in a high Q cavity. Therefore if the quality factor of a laser resonator is 

deliberately held at a low value by increasing cavity losses while the pump power 

remains constant then the laser oscillation and output will be suppressed. While the 

output is suppressed the upper level population increases and pump energy is stored in 

the gain medium. If the losses are then abruptly decreased for a short time, the stored 
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energy is released as the gain medium relaxes and is extracted from the cavity in the form 

of a pulse. Once the cavity loss returns to its initial large value, laser oscillation is again 

suppressed and the pulse ends. 

 The cavity loss modulation necessary to generate a Q-switched pulse may be 

induced by an active device such as an electro-optic [43] or acousto-optic [44] modulator. 

Another commonly employed method for active Q-switching for fiber lasers is to tune the 

reflected wavelength of a cavity-forming fiber Bragg grating on-and-off resonance with 

the other cavity grating. Since the cavity losses are related to the overlap between the 

reflection bands of the cavity forming reflectors, oscillation is suppressed in the off-

resonance case [45]. It is also possible for a laser cavity to be passively Q-switched by a 

saturable absorber. The present study focuses on passive Q-switching.  

 

1.11: Passive Q-Switching 

Q-switching of a laser oscillator may be induced passively by introducing a 

saturable absorber into the cavity [46]. The passive Q-switching process as pump energy 

is stored in the gain medium in the form of an increasing excited state population [6]. As 

this is occurring, signal output from the laser remains quenched by the unsaturated 

saturable absorber. The excited state population within the saturable absorber eventually 

reaches a high enough value for it to become transparent to the signal radiation, at which 

time the stored energy in the gain medium is released over the course of one or more 

cavity round-trips. The pulse ends as the stored energy is dissipated and the saturable 

absorber relaxes, and the process repeats. Figure 1.9 shows how the gain, loss, and signal 
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power change with time in both an actively Q-switched and passively Q-switched laser 

[6]. 

 

 

 

Figure 1.9: Total losses, gain and output power as functions of time in a) An actively Q-switched laser 

and b) A passively Q-switched laser. In the active case the active device abruptly reduces the cavity 

loss to allow the dissipation of a pulse, while in the passive case the saturable absorber is gradually 

bleached and then recovers over the course of the pulse cycle. 

 

For the above to occur, it is necessary for the saturable absorber to saturate more 

quickly than the gain medium. This condition can be expressed mathematically as [47]: 

(a) 

(b) 
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 Where 	0 and g0 are the small-signal SA absorption and gain medium gain 

coefficients, respectively, 
SA and 
g are the absorption and emission cross-sections of the 

SA and gain medium, LSA and Lg are the lengths of the SA and gain medium, and Ag and 

ASA are the effective mode areas within the gain medium and SA. The constant � is known 

as the inversion reduction factor and is equal to 2 for three-level media [48]. 

 A laser cavity containing a saturable absorber may operate in a simultaneously 

mode-locked and Q-switched regime. In this case, mode-locked pulses form at the start of 

the longer Q-switched “giant pulse”, and the stored energy in the gain medium is 

dissipated by the shorter mode-locked pulses [49]. This leads to a series of pulse “bursts”, 

consisting of mode-locked pulses repeating at the fundamental cavity frequency (or one 

of its harmonics) modulated by a longer Q-switched envelope (figure 1.12).  
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Figure 1.10: Comparison of a) CW mode-locked  b) Q-switched and c) Q-switched mode-locked laser 

outputs. 
 

Q-switched mode-locking (QML) allows for the generation of mode-locked 

pulses with much higher peak powers than in continuous-wave mode-locked lasers [50]. 

However, since the duration of the Q-switched envelope typically encompasses too few 

round-trip times for the mode-locked pulses to reach the steady state, their pulse duration 

and energy are often irreproducible from one pulse bunch to the next [51]. Steps are 

usually taken to avoid such “Q-switching instabilities” in mode-locked lasers for this 

reason. QML can be reasonably stable if the mode-locked pulses are not modulated to 

zero amplitude between each Q-switched pulse, since they do not grow from noise at the 

start of each burst. QML is typically observed in solid state lasers with gain media having 

long upper state lifetimes on the order of microseconds to milliseconds, since in these 

(a) (b) 

(c) 
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systems the gain medium is unable to relax and adjust itself to changes in signal power 

that occur within one round-trip transit time or less [49]. An experimental study of Q-

switched mode-locking in an ytterbium-doped fiber laser is described in the next chapter. 

 

1.12: Organization of the Thesis 

 Chapter 2 describes an ytterbium-doped fiber laser emitting at 1064 nm. The 

effect of the samarium-doped fiber as a saturable absorber, pump power, and polarization 

state of the wave inside the cavity on the laser oscillation has been explored. The laser 

can operate in the continuous wave (CW), Q-switched mode-locked (QML) and 

continuous wave Q switched regimes.  

 Chapter 3 describes potential applications of the developed laser in sensing 

making use of gold nanorods as an intermediary. Relevant background information and 

early experimental results on the interaction of light-nanoparticle are discussed. 

Chapter 4 summarizes the work.  

 

 

 

 

 

 

 



27 

 

 

Chapter 2 

An Ytterbium-doped Fiber Laser 

  

2.1: Introduction 

 Fiber laser technology is a promising alternative to other laser technologies by 

virtue of its performance and compactness. Erbium-doped fiber lasers emitting at 1.55 

�m have become very important in optical communications. Advancements in the 

development of pump sources, pumping techniques and doped fiber fabrication have 

enabled high power, cladding-pumped, ytterbium-doped fiber lasers to generate peak 

powers in excess of 1 megawatt [52]. Pulses with durations of only tens of femtoseconds 

have been obtained directly from passively mode-locked fiber lasers, equaling many 

solid-state bulk mode-locked lasers [53]. 

 Ytterbium-doped fiber lasers emitting near 1 �m are particularly attractive for 

applications in medicine [54]. The bulk lasers that are currently used in medicine  are 

costly and require precise optical alignment [55]. A device based on fiber laser 

technology could present a more cost-effective and robust alternative. In addition, the 

wide gain spectrum (more than 100 nm) of ytterbium-doped fiber allows for wide 
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tunability of the laser emission wavelength, allowing a larger range of wavelengths to be 

exploited for the desired application. 

 In this chapter, we demonstrate an ytterbium-doped fiber laser operating in both 

the continuous wave (CW) and pulsed regimes. The cavity design is proposed, and the 

principles of operation of each of its components are described. A theoretical study of 

pulse formation in fiber lasers is presented. Finally, we show experimentally oscillation 

of the ytterbium-doped fiber laser in the CW, Q-switched mode-locked and Q-switched 

regimes.  

 

2.2: Experimental Set-up 

 A schematic diagram of the fiber laser is shown in figure 2.1. One end of the laser 

resonator is terminated with a high reflecting (99.74% reflectance) fiber Bragg grating 

(FBG1) and the laser output is coupled out of the cavity through a lower reflecting 

(79.01%) fiber Bragg grating (FBG2) at the other end. Both FBGs have a Bragg 

wavelength of approximately 1064 nm and a reflection bandwidth of approximately 0.2 

nm. A 2.5 m length of double-clad ytterbium-doped fiber (DCYDF, CorActive DCF-YB-

8/128-P-FA) serves as the active medium. The gain fiber is pumped by a high power 

diode laser module emitting up to 25 watts of power at 976 nm.  Pump radiation is 

coupled to the gain fiber via a multimode fused fiber coupler (MMFC). A fiber 

polarization controller (PC) is inserted to control the polarization of the wave in the 

cavity. An unpumped, samarium doped, single-mode fiber (SmDF, CorActive SM119) of 

length ~ 30 cm is spliced between the PC and FBG2 to act as a saturable absorber (SA). 

A polarization independent optical isolator (OI) was placed at each cavity output to 
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prevent Fresnel reflections from the fiber ends from re-entering the laser resonator. The 

total estimated cavity length is ~14 m. 

 

 
 

Figure 2.1: Schematic diagram of the fiber laser. 

  

The laser output from the high reflecting FBG1 output end was monitored using 

an optical spectrum analyzer (OSA) with 1.25 GHz resolution, and the output from FBG2 

was monitored with both an optical power meter, and a high speed InGaAs photo-

detector (PD) with a maximum rise/fall time of 100 ps and an oscilloscope. The PD 

enabled us to measure the temporal profile of the laser output on a short time scale, 

allowing its transition between continuous-wave and pulsed operation to be observed. 

 

2.3: Double-Clad Ytterbium-Doped Fiber 

 A double-clad, ytterbium-doped fiber (DCYDF) acts as the gain medium in our 

fiber laser. A cross-section of the DCYDF is shown in figure 2.2: it consists of a circular 

core (8 �m diameter) made of silica glass doped with trivalent ytterbium ions (Yb
3+

) 

surrounded by a 128 �m wide octagon-shaped silica inner cladding. The inner cladding is 

enclosed by a circular outer cladding.  
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Figure 2.2: Cross-section and refractive index profile of a double-clad fiber with an octagonal inner 

cladding [56]. 

 

The double-clad geometry increases the coupling efficiency of the pump radiation 

into the fiber and thus improves the laser output power. An inexpensive multimode pump 

laser with high output power may therefore be used as a pump source [57] In these 

cladding-pumped lasers the pump radiation propagates within both the cladding and core, 

being absorbed by the dopant ions in the core. The signal radiation generated by 

stimulated emission from the dopant ions, however, remains confined within the core and 

is coupled out of the laser as a near-diffraction limited beam in a single transverse mode 

[56]. In this way, the highly divergent and low brightness pump radiation from the pump 

laser is converted to a high quality beam at the signal wavelength. Improvements in 

available pump power and fiber fabrication have enabled the CW output power from a 
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single ytterbium-doped fiber laser to be scaled all the way up to 10 kW [56] and pulsed 

ytterbium-doped fibers with megawatt peak power have been reported [52]. 

The Yb
3+

 ion possesses a number of emission transitions within the 950 – 1100 

nm wavelength range. Furthermore, the homogeneous and inhomogeneous broadening of 

these transitions within a glass host leads to a wide and continuous emission spectrum in 

the 1 micron band [58] (figure 2.3). . 

 

 
Figure 2.3: Absorption (dashed) and emission (solid) spectra of ytterbium-doped phosphosilicate 

glass fiber (obtained from CorActive Canada). 

  

The broadened absorption and emission transitions that make up the above 

spectrum occur between sublevels of the ground and first excited states of Yb
3+

 whose 

degeneracy has been lifted due to the Stark effect. The electronic configuration of triply-

ionized ytterbium is [Xe] 4f
13

. This gives the following values for the orbital, spin and 

total angular momentum quantum numbers: 
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 Applying Hund’s rules gives the term symbols 
2
F7/2 for the ground state and 

2
F5/2 

for the excited state [7]. In the absence of an external perturbation, each of these states 

further consists of 2J+1 degenerate (equal energy) angular momentum states, 

corresponding to the allowed values of mj. The degeneracy of these states may be lifted 

through the application of an external electric field, turning each set of degenerate states 

into a manifold of Stark levels. The external field polarizes the atom and then interacts 

with the resulting dipole moment according to the interaction potential EV
��

⋅−= µint  [59]. 

Since the interaction is dependent on only the magnitude of mj, each manifold will then 

consist of J+½ Stark levels. For the case of Yb
3+

, this means that the 
2
F7/2 ground state 

manifold is split into four Stark levels and the 
2
F5/2 excited state is split into three Stark 

levels. It has been shown that absorption transitions between each of these manifolds 

occur from the lowest energy ground state Stark level, terminating on each of the three 

excited state Stark levels (figure 2.4) [60;61], while the fluorescence transitions begin at 

the lowest energy 
2
F5/2 Stark level and terminate on each of the 

2
F7/2 Stark levels. These 

three absorption lines and four emission lines are then homogeneously and 

inhomogenously broadened due to their presence in an amorphous glass host, forming 

continuous absorption and emission spectra (figure 2.3). 
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Figure 2.4: Stark levels and absorption and fluorescence transitions for Yb

3+
. The transitions are 

labeled on the terminating energy level with the absorbed or emitted photon wavelength. Values for 

the absorbed or emitted wavelengths obtained from [61]. 

  

The field applied to the Yb
3+

 ions is highly dependent on the glass host 

composition as well as any co-dopants and their concentrations. It is therefore possible to 

control both the transition wavelengths as well as the transition strengths to a large degree 

by altering these properties [62]. A large number of ytterbium-doped glasses are now 

available commercially in both bulk and fiber form. The gain fiber in our laser is drawn 

from ytterbium-doped phosphosilicate glass (CorActive Canada). 

 

2.4: Fiber Bragg Gratings 

 Permanent modifications in the refractive index of crystals and glasses are known 

to occur upon exposure to high energy radiation [63]. By spatially varying such refractive 

index changes along the length of an optical fiber, it is possible to produce a device 

capable of reflecting light propagating within the core. These devices, which are known 

as fiber Bragg gratings (FBGs) are now widely available and have found extensive 

application in communication and sensing of strain and temperature. The fabrication of 

high performance FBGs has also been critical to the development of improved fiber 

lasers. 
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 The refractive index of a material is dependent upon a variety of factors including 

temperature, material density, phase (crystalline or amorphous), and the molar 

refractivity. Irradiation by light of a suitable frequency and intensity can modify these 

properties by causing the formation of colour centers (vacancy defects in the material 

lattice) or densification [64]. These alterations are widely accepted to occur by means of 

two-photon absorption at visible frequencies followed by dissipation of the absorbed 

energy into the glass matrix. Excitation through single-photon absorption is also possible 

at ultraviolet frequencies [65], decreasing the irradiance and exposure time necessary to 

induce a permanent refractive index change. 

 Bragg reflection gratings may be produced by spatially modulating the induced 

refractive index change. This is achieved by setting up an interference pattern within the 

fiber core. Prolonged exposure to the interference pattern leads to perturbations of the 

refractive index at the interference maxima, the magnitudes of which are dependent on 

the intensity and wavelength of the interfering beams, the exposure time and the fiber 

core composition [64]. The resulting refractive index grating reflects light within a 

narrow range of frequencies through successive scattering events at each index change. 

 

 
Figure 2.5: Schematic diagram of a fiber Bragg grating. �: grating period, neff: effective core index. 
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 The wavelength of maximum reflection (Bragg wavelength) from the index 

grating is dependent on the period of the refractive index perturbation � and the effective 

modal index neff in the fiber core: 

 

     effB nΛ=λ 2     (2.4.1) 

 

 The strength of the grating, or the reflectivity, depends primarily on the amplitude 

of the index perturbation and the grating length. In a single mode fiber, the reflectivity at 

the Bragg wavelength is related to these, as well as the fiber parameters, as follows 

[9;66]: 
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Where L is the grating length, �n is the magnitude of the index perturbation and 
 is the 

modal overlap factor. Even an extremely weak refractive index perturbation can produce 

a grating of high reflectivity when the multiple reflections are compounded over the 

entire grating length: for �n = 0.0001 and 
 = 1, a reflectivity of 90% is calculated from 

equation 2.4.2. Because they can be fabricated with an arbitrary reflectivity at any 

wavelength, FBGs are ideal for application as fiber laser cavity reflectors. 
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2.5: Polarization Controllers 

A method for controlling the polarization state of light propagating within a fiber 

is vital for achieving optimal CW or pulsed laser operation, given its fundamental 

importance in phenomena such as interference taking place within a laser cavity. Due to 

their amorphous nature, glasses such as fused silica are optically isotropic and possess no 

natural birefringence. Therefore, to produce the birefringence necessary to alter and 

control the polarization of a wave propagating within a silica fiber, an optical anisotropy 

must be imposed by some means [67]. This may be done by deforming the circular core 

cross-section so that it becomes elliptical in shape, or through the application of external 

electric or magnetic fields [68]. Birefringent fibers can also be produced by introducing 

elliptical or circular shaped stress elements on opposite sides of the core (see figure 2.6). 

These fibers, known as PANDA fibers, have achieved the highest birefringence and 

lowest loss with minimal changes in the polarization state of propagating light over long 

transmission distances [69]. 

 

     
 

   

 
Figure 2.6: Methods of inducing birefringence in fibers a) Elliptical core fiber. b) External field. c) 

PANDA type fiber. 

  

(a) (b) (c) 
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A birefringence may also be induced within the core of a standard single-mode 

fiber through bending and twisting [70;71]. Bending the fiber results in a longitudinal 

stress that is compressive on the side facing the center of curvature and tensile on the 

opposite side of central axis of the fiber (figure 2.7). This stress gradient results in a 

lateral stress in the radial direction being exerted on the inner layers by the outer layers 

[70]. The lateral stress produces the core birefringence. 

 

 

Figure 2.7: Schematic diagram of a bent fiber. R: radius of curvature measured from the center of 

curvature to the neutral axis, r: radius of the fiber, �x: stress in the x-direction, �y: stress in the y-

direction.  

 

The total stress is calculated by integrating the stress applied to an infinitesimal 

section of the fiber across the entire cross-section. The non-uniform strain (physical 

deformation) of the core is then found from the stresses in the x and y-directions, which 

induces a shift in the permittivity of the core in each direction via the photoelastic effect 

[67]. The refractive index change along each direction and therefore the fiber 
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birefringence may then be related straightforwardly to the elastic constants and bending 

radius of the fiber [71]: 
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The birefringence �n, although small, will cause light propagating through 

sufficiently long lengths of bent fiber to incur a considerable phase delay between its x 

and y polarized components. This phase delay allows each of the fiber loops to act as a 

fractional waveplate, depending on the length of bent fiber. A quarter wave plate is 

constructed by choosing a loop radius “R” and a number of loops “N” such that the total 

delay is equal to �/2, and a half wave plate for a total delay of �: 
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 By suitably combining quarter and half-wave plates, and carefully adjusting these 

plates, it is possible to convert any given input polarization state into an arbitrary output 

state. Combining a quarter-wave plate, half-wave plate and a second quarter-wave plate 

in series enables such control over polarization: the two quarter-wave plates facilitate 

control over the ellipticity of the output polarization, while the half-wave plate allows for 

rotation of the polarization through an arbitrary angle [71]. This wave-plate combination 

may be straightforwardly implemented in fiber form by combining three rotatable drums 
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in series. Fiber is wound around each drum an appropriate number of times in order to 

induce a phase retardance of �/2 in the first loop, � in the second loop and �/2 again in the 

third loop, effectively producing a �/4, �/2, �/4 sequence of birefringent wave-plates [71]. 

The orientation angle of each plate may furthermore be adjusted by changing the angle of 

each drum with respect to the vertical (figure 2.8). 

 

 
 

Figure 2.8: Schematic diagram of a fiber Polarization controller. 

  

A fiber polarization controller of the above described type is incorporated into our 

laser cavity to control the polarization of the waves circulating within the cavity. 

 

2.6: Saturable Absorbers 

 It is possible for light to experience an intensity-dependent transmission through 

or reflection from a medium by exciting atomic or molecular transitions or other 

nonlinearities. Such media are known as saturable absorbers (SAs). Bulk crystals [72], 
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semiconductor mirrors [73], dyes [74] and doped fibers [75] have all found application as 

real SAs taking advantage of resonant absorption.  

 Saturation occurs as an increasing number of absorbing atoms or molecules 

within the SA medium are excited to an upper level by incident signal photons. As the 

signal intensity and therefore the upper state population increases, the probability of a 

photon interacting with an absorber in the ground state decreases, leading to a reduced 

absorption coefficient within the medium. The saturation intensity is defined as the signal 

intensity that reduces the absorption coefficient to half its small signal value [6]: 
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στ

ν
=      (2.6.1) 

 

 The effects that may take place within a saturable absorber when subjected to EM 

radiation, as well as the properties of the Samarium-doped fiber that functions as a 

saturable absorber within our laser are discussed in this section. 

 

2.6.1: Pulse Shaping in Saturable Absorbers 

 A temporally varying optical field will experience a temporally varying 

absorption when it propagates through a saturable absorber (SA). Under the assumption 

of uniform saturation along the propagation direction, the change in the absorption 

coefficient due to saturation when a SA is subjected to an optical field A(t) may be 

described by a rate equation [76]: 
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 Where q0 is the initial, unsaturated absorption exponent. If A(t) describes the 

temporal profile of an optical pulse, the solution of equation 2.6.2 may be used to obtain 

the profile following transmission through the SA. In general, a SA tends to shorten a 

pulse and alter its shape. This occurs because the lower intensity portions at the 

beginning and end of the pulse experience a higher loss and are thus more strongly 

absorbed than the pulse center, which is able to saturate the absorption. The manner in 

which the pulse profile changes following transmission is also dependent to a large 

degree on the length of the recovery time �a of the absorber [77]. An important distinction 

may be drawn between fast saturable absorbers in which the relaxation time is much 

shorter than the pulse duration, and slow absorbers where �a is comparable to or much 

longer than the pulse duration. For the fast case, the fact that �a is negligible compared 

with the time interval under consideration means that the time-dependence of q may be 

described by the steady state solution of equation 2.6.2: 
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 For a slow absorber, �a is allowed to approach infinity in equation 2.6.2, resulting 

in a saturation dependent on the total integrated pulse energy [78]: 
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 Figure 2.9 compares the temporal profiles of a 10 ps with a peak power of 100Psat 

pulse following transmission through both slow and fast saturable absorbers with small-

signal transmission T0=exp(-q0) of 10%. These plots show the differing saturation effects 

that can take place in fast and slow absorbers at high peak powers. While the fast 

absorber shortens the pulse by evenly attenuating both pulse wings (due to its ability to 

recover instantaneously), the slow absorber is bleached by the pulse front and 

subsequently unable to recover before the rest of the pulse passes. As a result, the pulse 

front is very strongly absorbed while the end of the pulse is left almost unchanged. This 

leads to both a reduction in pulsewidth and a temporal shift of the peak [77]. 

 

 

 

 

 
 (a) 
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Figure 2.9: Action of saturable absorbers on a 10 ps pulse with P0=100Psat. a) Fast absorber b) Slow 

absorber.  

  

The pulse shaping action of a saturable absorber is also highly dependent on the 

peak power of the pulse [6]. If the power is too low no saturation and therefore no pulse 

shaping may take place, while if the power is too high, then the entire pulse profile 

bleaches the saturable absorber and there is also no pulse shaping. This means that for a 

given value of q0 there exists an optimum input peak power for the strongest pulse 

shaping. 

 The above described pulse-shaping effects performed by a saturable absorber are 

essential for both the formation and stabilization of mode-locked pulses within a laser 

resonator[40]. The absorber serves to both induce a negative net gain for noise preceding 

and following the circulating pulse and shorten the pulse to balance pulse broadening 

effects such as dispersion [41]. Figure 2.10 shows the gain and loss for a cavity 

containing a saturable absorber as functions of time following the passage of a pulse. For 

the case of both a fast and slow saturable absorber, the pulse opens a net gain “window” 

which closes after the absorber recovers [79]. To prevent the break-up of the pulse into an 

(b) 
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unstable radiation pattern due to the growth of ASE noise within the post-pulse gain 

window, the window must be sufficiently short in comparison to the pulse duration. 

Numerical studies have shown that pulses can be stabilized by absorbers with a recovery 

time as much as an order of magnitude longer than their duration [76]. This is due to the 

temporal delay undergone by a pulse propagating within a cavity with a slow SA: each 

round-trip, the delayed pulse is able to incorporate the trailing radiation that developed 

within the gain window. A numerical study on the effect of SA properties on pulsed 

oscillation of an ytterbium-doped fiber laser is detailed in section 2.8. 

 

 
 

 
 

Figure 2.10: Gain, loss and pulse power as functions of time for a) A fast saturable absorber; the gain 

is saturated at its steady state value. b) A slow saturable absorber [77]. 

(a) 

(b) 
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2.6.2: Transient Gratings in Saturable Absorbers 

In addition to its role in starting and sustaining passive mode locking and Q-

switching, a saturable absorber can support the formation of dynamic reflection gratings 

when it is host to counter-propagating, interfering EM waves [80]. The standing wave 

pattern formed by the interfering waves leads to spatial variation in light intensity, which 

in turn leads to a non-uniform excitation of the dopant ions. The resonant absorption by 

dopant ions within the interference pattern maxima modifies the imaginary portion of the 

complex susceptibility of the medium, which subsequently leads to a change in the real 

susceptibility (and therefore refractive index) due to the intrinsic link between the two as 

described by the Kramers-Kronig relations [81;82]. As a result, a periodic refractive 

index variation develops within the absorber medium which acts as a resonant reflection 

grating by the same mechanism as the permanently written FBGs described in section 

2.4. The Bragg wavelength of this grating is equal to the wavelength of the counter-

propagating writing beams, and its reflectivity is dependent upon the intensity of the 

writing beams, the length of the absorbing medium, and the concentration of the 

absorbers within the medium [83]. 

 The formation of the dynamic grating and reflection of light from it may be 

understood as a type of four wave mixing process, in which two counter-propagating 

pump waves interfere to form the dynamic grating and subsequently interact with a third 

signal wave. The interaction of the pump and signal waves in turn generates a fourth 

wave, which propagates in the opposite direction of the original signal wave [84]. Each of 

these waves with frequency �p,s and wavenumber kp,s may be written as [85]: 
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Where the subscripts p and s denote pump and signal waves, and the superscripts 

(+) and (-) denote forward and backward propagating waves, and � is the relative phase 

between the pump and signal waves. The interference of the pump waves first sets up a 

standing wave field distribution along the z-direction, which induces a spatially varying 

polarization within the medium, modifying its susceptibility [6]. The intensity-dependent 

susceptibility can be approximated as �’’(�,z)= �’’(�)-I(z)/Isat for low writing beam 

intensities [6].  Substituting this and equations 2.6.5 into the standard wave equation 

allows a set of coupled wave equations to be derived for the forward and backward 

propagating pump and signal waves. For the pump waves in a medium with unsaturated 

absorption coefficient 	0, these take the form: 
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 For the signal waves, the coupled equations describe both the interaction between 

the forward and backward propagating waves as well as their interaction with the index 

grating written by the pump waves: 
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 Where �k=ks-kp is the difference between the wavenumbers of the pump and 

signal waves. Solving equations 2.6.10 and 2.6.11 with the boundary conditions 

As
(+)

(0)=1 and As
(-)

(L)=0 gives the forward and backward propagating signal wave 

amplitudes as a function of distance z along the saturable absorber [86]: 
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 With these expressions, we can finally obtain the reflectivity of the transient 

grating: 
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 Equation 2.6.14 describes the dependence of the transient grating reflectivity on 

the signal wavelength, writing beam intensity, saturable absorber length, and absorption 

coefficient (dopant concentration) of the saturable absorber. This enables the reflectivity 

to be plotted and optimized with respect to each variable [86]. Figure 2.11 shows the 

reflection spectrum and plots of reflectance as functions of saturable absorber length and 

absorption coefficient for an average writing beam power equal to 0.3Psat, assuming no 

initial relative phase � between the signal and writing waves. Figures 2.11 b) and c) show 

asymptotic behaviour with respect to the SA length and absorption coefficient. This is 

expected in both cases due to saturation at constant writing power; increasing the length 

or absorption coefficient at constant power beyond the saturated value does not yield an 

increased reflectivity. 

 

 
 (a) 
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Figure 2.11: Reflectance plots for a transient grating at a writing wave power equal to 0.3Psat. a) 

Reflection spectrum. b) Reflectance as a function of saturable absorber length. c) Reflectance as a 

function of absorption coefficient. 

 

 The reflection bandwidth also exhibits a dependence on the above described 

parameters. It is inversely related to the saturable absorber length, and also varies slightly 

with writing power and absorption coefficient.  The bandwidth is expressed analytically 

as [85]: 
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2.6.3: Samarium-Doped Fiber as Saturable Absorber 

In our laser, a length of unpumped single mode silica fiber doped with trivalent 

samarium (Sm
3+

) functions as a saturable absorber. The attractiveness of Sm
3+

 as a 

saturable absorber for a laser cavity may be seen from an examination of its ground state 

electron configuration, which is [Xe] 4f
5
. The five unpaired electrons result in a large 

number of possible states that are closely separated in energy (figure 2.12). The diversity 

of states enables a large number of possible excitation transitions, giving rise to a 

spectrum consisting of distinguishable broadened absorption lines when Sm
3+

 is placed 

within a glass host (figure 2.13). 

 

 
 

Figure 2.12: Energy level diagram of Sm
3+

 (adapted from [87]). 
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Figure 2.13: Absorption spectrum of Sm

3+
 in silica glass fiber (obtained from CorActive Canada). 

  

As is evident from figure 2.13, the energy levels of the Sm
3+

 are separated by 

energy gaps of less than 2000 cm
-1

. It has been shown that non-radiative processes 

dominate when relaxation from energy levels spaced this close occurs [88]. These 

relaxations are mediated via the emission of phonons with energy equal to the gap 

between the adjacent energy levels. When an ion is excited to a high-energy (from 
6
H5/2 

to 
6
F11/2, for example) state via photon absorption it will relax back to the ground state via 

the emission of multiple phonons, transitioning between each level separating the ground 

and excited state and emitting a phonon at each step. Since a single phonon relaxation 

event can take place on a time scale of picoseconds to hundreds of picoseconds, the 

relaxation time for Sm
3+

 from the excited state is expected to be 1 ns or less [87]. One 

study measured a switching time of less than 5 ns for a 10 ns pulse launched into a length 

of Samarium-doped fiber (SmDF). It was noted by the authors of this study that the 
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accuracy of their measurement was limited by the available instruments and that the true 

response time should be lower than this value [87]. 

 Using the cross-section data and the fiber parameters obtained from the 

manufacturer, the saturation energy and power of the saturable absorber fiber may be 

estimated. At the laser operating wavelength of 1064 nm, the absorption cross-section is 

0.261 pm
2
. The 6.5 �m core diameter and numerical aperture of 0.14 give a mode-field 

radius of 3.33 �m, and the overlap factor between the mode-field area and the total Sm
3+

 

doped area is 0.425686. Using these values, and a 5 ns relaxation time, the saturation 

energy and power of the saturable absorber are calculated to be: 
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 Given the relaxation time of ~1.35 ms for Yb
3+

 in phosphosilicate glass, emission 

cross-section of ~0.105 pm
2
 and core area of ~50 �m

2
 we may also calculate the 

saturation energy and power of the gain medium at the signal frequency: 
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 The condition 1.11.1 (Section 1.9) for passive Q-switching can be rewritten in 

terms of the gain and SA saturation energies as: 
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 The dependence of the left side of relation 2.6.18 on Eg/ESA means that ESA 

compares favourably with the gain saturation energy for achieving Q-switched operation. 

Q-switching in fiber lasers using doped fiber saturable absorbers is an established 

technique for producing high energy nanosecond to microsecond duration pulses [75]. 

Samarium-doped fibers in particular have been used as a passive Q-switching element for 

both ytterbium-doped fiber lasers oscillating at ~1064 nm [89] and erbium-doped fiber 

lasers oscillating at ~1550 nm [90]. These lasers have produced pulses with durations of 

~650 ns and ~450 ns, respectively. A Q-switched fiber laser with a samarium-doped fiber 

saturable absorber has also been demonstrated using a two-core, double-clad ytterbium 

doped gain fiber. The two core geometry serves to induce a birefringence within the gain 

fiber and maintain the polarization of the laser output [91]. In this work a length of 

single-mode samarium-doped fiber is inserted into the laser cavity to induce passive Q-

switching. The Q-switched mode of operation is detailed in section 2.9. 

The high saturation power of the samarium-doped fiber saturable absorber means 

that the transient grating response of the SmDF described earlier is extremely weak for 
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practical values of intracavity power; a peak reflectance of less than 0.1% is calculated 

from equation 2.6.14 for a writing power of 100 W. Despite this, it is well known that 

even small back-reflections can have a considerable effect on the output spectrum of a 

laser oscillator [92]. Transient grating effects are thus expected to influence the observed 

spectrum of our laser when it oscillates in the continuous wave regime. 

 

2.7: Passive Resonator 

 A linear Fabry-Perot laser resonator has been chosen in this study. The cavity is 

formed between the high-reflecting FBG1 and the lower-reflecting output coupler FBG2. 

A schematic diagram of a linear Fabry-Perot cavity is shown in figure 2.14.  

 
 

 
Figure 2.14: Schematic diagram of a linear Fabry-Perot (FP) cavity. Ein: incident field. Eref: reflected 

field. Etrans: transmitted field. 

 

Waves entering the cavity at one end will experience a frequency-dependent 

reflection or transmission. Frequencies which incur a total phase of 2� in a single round-

trip are in resonance with the cavity and are transmitted, while frequencies that 

experience a round-trip phase of � are anti-resonant and are reflected. The frequency-

dependent transmission and reflection may be written as [9]:  

 

R1 R2 
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In addition to the main cavity formed between the two FBGs, a second and third 

sub-cavity can be present during laser oscillation due to the dynamic reflection grating 

written by counter-propagating waves within the SA [84]. These cavities are enclosed by 

the transient grating within the SA and each of the FBGs, and their lengths are equal to 

the total length of fiber spliced between the ends of the SA and each reflector (figure 2.15 

a). The sub-cavity formed between the transient grating and FBG2 may be treated as a 

mirror with a complex reflectivity equal to the field reflection function of a FP cavity 

formed by mirrors with reflectivity rSA and r2 (figure 2.15 b). The reflectivity function of 

the complete compound cavity may then be determined as that of a cavity enclosed by 

FBG1 and the effective mirror. 

 

 
 

Figure 2.15: Sub-cavities formed by the FBGs and the saturable absorber transient grating: a) 

Cavity with FBGs and transient grating. b) Resonator in which cavity 2 is represented as an effective 

mirror. 
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The reflectivity and transmission of the effective mirror are: 
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Equations 2.7.3 and 2.7.4 may be substituted into the expression for the 

transmission through a Fabry-Perot cavity in order to obtain the intensity transmitted 

through the compound cavity: 
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 Minimizing the denominator of equation 2.7.5 yields the following two phase 

conditions for optimum transmission through the cavity: 
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In addition, optimum transmission at each resonant peak requires that both 

conditions 2.7.6 are satisfied at the same frequency: 
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 If  L2 is set to be small compared to L1, then m<<n, and condition 2.7.7 can be 

reduced to the following simple condition for optimal overlap between the transmission 

maxima of each cavity: 
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 Figure 2.16 shows the longitudinal mode structure for the passive, compound 

cavity. It can be seen that the transmission spectrum of the low FSR, higher finesse cavity 

is modulated by the reflection spectrum of the higher-FSR, low finesse cavity formed by 

the transient grating and FBG2. This serves to reject a large number of the low-FSR 

cavity longitudinal modes. 
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Figure 2.16: Longitudinal mode structure of the cavity with a transient grating that is written by 

strong waves at each individual wavelength. L1=12m, L2=0.4m, LSA=1m. 

  

The above described modulation of the longitudinal mode structure is only 

expected to take place during CW operation of the laser. Although it has been shown that 

dynamic gratings may be recorded in doped fibers by counter-propagating, interfering 

pulses [93], this may only occur if there are multiple pulses travelling in the cavity that 

can interfere with each other, or if a pulse is long enough to be reflected from a cavity 

end reflector and then interfere with itself. Because of this fact, we expect the laser to 

operate in either a CW state in which the longitudinal mode structure is influenced by the 

transient grating in the saturable absorber, or in a separate Q-switched mode-locked or Q-

switched state. These distinct regimes of operation, as well as the conditions for 

transitioning between them, are discussed in section 2.9. 

 The close separation of the low-FSR cavity modes means that a very large 

number of longitudinal modes may oscillate within the reflection bandwidth of the FBGs. 

With proper adjustment of the conditions within the laser cavity, it is possible to force a 
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fixed phase between these modes to produce a short passively mode-locked pulse. The 

pulsed regime of a laser oscillator is discussed in detail next. 

 

2.8: Pulse Formation in Ytterbium-Doped Fiber Lasers: Theory 

2.8.1: Background 

 A series of numerical simulations were performed to understand the effect of the 

intracavity fiber length, gain, loss and the saturable absorber characteristics on mode-

locked pulse formation and propagation in an ytterbium-doped laser. Each of the effects 

considered in the simulations are discussed here. 

 The oscillating radiation in a mode-locked laser cavity is influenced by the 

amplifying medium, the saturable absorber medium, group velocity dispersion (GVD), 

self phase modulation (SPM) due to Kerr nonlinearity and a frequency bandwidth-

limiting element over the course of each round-trip. The bandwidth limitation could be 

imposed by the finite width of the active medium gain spectrum, or through another 

spectral filter such as a cavity mirror with a frequency-dependent reflection. It is also 

possible for additional anomalous dispersion to be present in the cavity. Chirped fiber 

Bragg gratings [1], sections of microstructured fiber [94] and grating pairs [95] are some 

of the techniques used to introduce anomalous dispersion. If each effect can be 

considered to have a small effect on a pulse per cavity round-trip, then the pulse 

evolution may be described by the so-called master equation of mode-locking [40]: 
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Where t is a short-term time variable describing the pulse profile on a time scale 

on the order of the pulse duration and T is a long term time describing the evolution of 

the pulse across many cavity round-trips. TR represents the cavity round-trip time, D is 

the group velocity dispersion and Dg,f is the “filter dispersion” arising from either the gain 

bandwidth or some other bandwidth limiting element. The non-linear phase-shift due to 

Kerr nonlinearity per round-trip is represented by �. Finally, g and q are the saturated 

gain and loss (respectively) and l represents the other nonsaturable cavity losses. The 

master equation considers each effect to act on the field profile A(T,t) simultaneously, 

describing its evolution according to the long term time T. The steady state pulse profile 

is the solution to equation 2.8.1 that remains unchanged with T [40]. Equation 2.8.1 was 

first developed by H. A. Haus to describe mode-locking by fast saturable absorbers 

analytically [96]. Analytical descriptions of mode-locking by slow saturable absorbers 

[78] and artificial saturable absorbers utilizing Kerr nonlinearity followed [97]. These 

models were originally developed in the context of conventional bulk or dye lasers in 

which the assumption of simultaneous and weak shaping of a pulse by each effect is valid 

[40]. However, large fluctuations in the pulse profile can occur in fiber lasers with long 

cavity lengths due to their higher dispersion and nonlinearity [42], limiting the 

applicability of previously developed analytical models. A numerical approach is chosen 

for this reason. 
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 We first consider the effect of saturable absorption. In our own laser cavity, the 

saturable absorption is provided by a length of samarium doped fiber, with a nanosecond-

order recovery time [87]. A SA with nanosecond recovery time can act as a slow absorber 

for sub-nanosecond pulses, while for pulses of nanosecond or greater duration the slow 

absorber approximation (equation 2.6.4) may not be accurate. Therefore, the exact 

solution of equation 2.6.2 is employed to model the saturable absorption in the 

simulation: 
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The above expression is numerically integrated via the trapezoidal rule within the 

simulation to obtain the saturated absorption coefficient as a function of time. The pulse 

profile following transmission through the saturable absorber is then calculated as 

)(),(),(' tqetTAtTA −≈ .  

The next pulse-shaping mechanism considered in the simulation is the combined 

effect of self-phase modulation induced by the Kerr nonlinearity and group velocity 

dispersion. While in conventional mode-locked solid state lasers the intracavity radiation 

propagates mostly in free space, in a fiber cavity it propagates within either pure or doped 

silica. This medium possesses values of both group velocity dispersion and nonlinear 

index that are non-negligible in comparison with free space. Therefore, both GVD and 
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Kerr nonlinearity can modify both the temporal profile and frequency spectrum of a pulse 

over many resonator round-trips. 

 The temporal broadening due to GVD is incorporated into the numerical 

simulation by means of the following (considering GVD separately from SPM) [37]: 
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Taking the Fourier transform allows the above to be straightforwardly solved for 

the pulse envelope ),(
~

ωzA  in the frequency domain, so the pulse after a propagation 

distance z is: 
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One may then obtain the broadened pulse envelope in the time domain by 

applying the inverse Fourier Transform to equation 2.8.4. Figure 2.17 shows dispersion-

broadened pulses following propagation distances of z=10 and 50 km. 
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Figure 2.17: Initial 100 ps Gaussian pulse and broadened pulses following propagation within 10 km 

and 50 km of a medium with GVD coefficient 20 ps
2
/km. 

 

 

 

 The nonlinear phase-shifts acquired by the propagating pulse due to Kerr 

nonlinearity and its resulting modification to the pulse spectrum are also 

straightforwardly incorporated into the simulation. In the absence of GVD, a pulse 

envelope propagates within a Kerr medium according to: 
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 When both these effects act simultaneously on a pulse, the combination of 

broadening in the time domain due to dispersion and broadening in the frequency domain 
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due to SPM combine to alter both the frequency and temporal profile after sufficient 

propagation distance. The pulse first becomes parabolic in shape before becoming 

rectangular, with oscillations on the pulse edges (figure 2.18). These oscillations are the 

result of the phenomenon of optical wave breaking [37]. As the pulse propagates through 

the fiber, the SPM imposes a red-shift for the leading edge of the pulse. These red-shifted 

frequency components travel at a faster speed than the unshifted light due to the material 

dispersion in the fiber (assuming normal dispersion) and overtake unshifted light closer to 

the tail of the pulse. The opposite occurs at the trailing pulse edge. As a result, the pulse 

tails will contain widely-separated frequencies which mix and produce new frequencies 

related to their frequency difference [98]. This wave-mixing generates both side-lobes in 

the frequency spectrum (visible in figure 2.18 d) as well as interference fringes at the 

pulse edges in the time domain (figure 2.18 c). 

 

 
 

(a) 

(b) 
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Figure 2.18: Temporal and spectral profiles of a 100 ps, 40 W peak power input pulse after 

undergoing both SPM and GVD in a single mode fiber. a,b) Temporal profile and spectrum following 

propagation through 200 m of fiber. c,d) Temporal profile and spectrum after 500 m. 

  

The final effect to be considered in the laser modeling is that of spectral filtering. 

This can occur due to any element placed within the cavity that exhibits a frequency-

dependent response within a finite frequency bandwidth. Such an element could be a gain 

medium with a finite emission linewidth, a bandpass filter with a resonant transmission, 

or a cavity mirror with a resonant reflection. Because of the extremely broad gain 

spectrum of ytterbium-doped fiber, the main bandwidth limiting elements in the linear 

laser cavity considered in this study are the reflectors that form the laser cavity. The 

frequency-dependent reflection from the cavity mirrors is modeled as a Lorentzian filter 

[1]: 

(c) 

(d) 
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 The above described effects were incorporated into a single numerical model to 

simulate the evolution of a pulse within a mode-locked laser cavity. The details of the 

simulation and the results are presented next. 

  

2.8.2: Numerical Simulation 

The split-step Fourier method was employed to simulate pulse evolution in the 

laser cavity in order to determine the conditions necessary for stable mode-locking [37]. 

The program calculates the linear effects of linear loss, group velocity dispersion and 

spectral filtering in the frequency domain according to equation 2.8.4 and equation 2.8.7, 

and the nonlinear effects of gain, saturable absorption and SPM in the time domain 

according to equation 2.8.2 and equation 2.8.6. A single simulation step is considered to 

be a single cavity round trip. The pulse is subjected to GVD and linear loss in the 

frequency domain in the first half-step, followed by gain, saturable absorption and SPM 

for a full step after transforming to the time domain. GVD and linear loss is applied for 

the second half step after again transforming to the frequency domain. Anomalous 

dispersion and spectral filtering at the output coupler are applied as lumped elements 

before passing the resulting pulse profile through the next round trip. The program 

iterates through the chosen number of round-trips. To simplify the calculations, the effect 
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of Q-switching was not included in this set of simulations, and the gain is assumed to 

saturate at a steady state value according to the average intracavity power: 
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This method is similar to the symmetrized split-step Fourier method described in 

[37]. The initial input pulse is considered to represent the intensity fluctuations present in 

the cavity as pumping is initiated due to mode beating [41]. The mode-locking is deemed 

to be stable and self-starting if the simulation converges to a single pulse that remains 

unchanged after a large number of round-trips. If the pulse breaks up into an unstable 

radiation pattern, it is concluded that stable mode-locking will not occur under the given 

conditions. 

The simulation described here is based on those previously detailed in the 

literature [1;76;77;99]. Therefore, to test the efficacy of the program, a simulation was 

performed with a fast saturable absorber and identical cavity parameters as in [1] (see 

figure 2.19 for comparison), with the simulation yielding nearly identical radiation 

patterns under both the stable and unstable mode-locking conditions detailed in the 

reference. Therefore, the numerical method was deemed to be correct. Furthermore, to 

test the implementation of the slow saturable absorber model (equation 2.8.2), 
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simulations were performed under the same conditions as those considered with the fast 

saturable absorber for the slow absorber case with relaxation times ranging from a few to 

tens of picoseconds. As expected based on previous studies [77], the simulation still 

converged to a slightly longer pulse for short enough relaxation times (figure 2.20). 

Unlike in the fast absorber case, however, the pulse experiences a temporal shift before 

the steady state is reached, as expected from the discussion on slow and fast absorbers 

above. 

 

 

 

 

 
 

 

 

 

 

 

 

 

(a) 
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Figure 2.19: Simulated pulse evolution in a mode-locked Yb-doped fiber laser: a) Simulations 

performed in [1] with the addition of -4.77 ps
2
 of dispersion compensation (above) and with no 

disperson compensation (below). b) Simulated pulse evolution produced using our simulation under 

identical conditions. With the addition of anomalous dispersion, the simulation converges to a 4.5 ps 

pulse. 

 

 

 
 

(b) 

(a) 
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Figure 2.20: Simulated pulse evolutions for cavity parameters identical to those in figure 5, but for a 

slow saturable absorber of equal saturation power. a) 10 ps recovery time. b) 40 ps recovery time. c) 

120 ps recovery time, showing instability due to the insufficient recovery of the saturable absorber. 

 

  

As can be seen in figure 2.20, with increasing recovery time, low intensity trailing 

pulses begin to develop during the first iterations of the program. If the recovery time is 

short enough, they are gradually attenuated and are not present in the final radiation 

pattern. However, at recovery times greater than approximately 100 ps, the trailing pulse 

is not attenuated and is still present in the final output. This observation is consistent with 

previous numerical studies in the literature [76]. 

(b) 

(c) 
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 Fiber lasers emitting short pulses have traditionally relied on either soliton pulse 

shaping, in which the positive nonlinear phase shifts acting on the propagating pulse are 

balanced by the negative fiber GVD at the operating wavelength [77] or on the use of a 

dispersion map, in which the positive GVD of the cavity fibers is balanced by an 

additional negative dispersion added into the cavity [100]. Because of the positive value 

of the GVD in silica fibers at wavelengths below approximately 1300 nm [13] soliton 

mode-locking cannot occur in ytterbium-doped fiber lasers oscillating near 1 �m such as 

the one developed in this thesis. Researchers have traditionally relied on dispersion 

compensation to obtain short pulses from ytterbium-doped fiber lasers for this reason. 

Nonetheless, it has been shown that stable, short optical pulses can form within a fiber 

laser cavity oscillating in the normal dispersion region for silica fiber without the addition 

of anomalous negative dispersion [39]. Pulse shortening and stabilization in these lasers 

is achieved through both strong spectral filtering and saturable absorption. Over the 

course of one cavity round-trip, the pulse is broadened in the time domain due to GVD, 

and acquires a chirp following amplification in the gain medium because of SPM at the 

increased peak power [101]. Finally, the pulse is shortened in the time domain through 

amplitude modulation in the saturable absorber, and the spectral filter eliminates the 

frequency lobes in the pulse spectrum, thereby preventing pulse break-up due to optical 

wave breaking from occurring. 

Numerical simulations show that these types of lasers tend to evolve toward a 

stable pulse with a temporal duration largely dictated by the intracavity dispersion [39]. 

In addition, the selected spectral filter bandwidth and the spectral broadening due to the 

SPM can further broaden or shorten the pulse, with the pulsing becoming unstable for 
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excessive SPM or too narrow or too wide filter bandwidth. It was found that after 

adjusting the dispersion by increasing the total cavity fiber length, the simulation evolved 

toward a 850 ps duration pulse that could be stabilized by a slow saturable absorber with 

nanosecond recovery time (figure 2.21 a).  

 

 

 

Figure 2.21: Simulated pulse evolutions in an ytterbium-doped fiber laser cavity of length 120 m with 

only normal dispersion. Spectral filter bandwidth: 5 nm, output mirror reflectivity: 79%, 

unsaturated gain factor: 1.684, unsaturated SA transmission: 90%. a) Convergence to a stable ~850 

ps pulse when the SA saturation energy is set at 3 nJ with a 1 ns recovery time. b) Pulse break-up 

when the SA saturation energy is increased to 10 �J. 

(b) 

(a) 
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To see the effect of the SA saturation energy on the pulse stabilization, the 

saturation energy was increased from 3 nJ to the approximate value of the saturation 

energy for our own samarium-doped fiber saturable absorber of ~10 �J. Under these 

conditions, pulse break-up occurred before a steady state was reached (figure 2.21 b). At 

this value of the saturation energy, the SA behaves as a linear loss due to negligible 

saturation by the pulse with nanojoule-order energy and uniformly attenuated the entire 

pulse profile. Therefore, no pulse shaping occurs upon transmission through the SA. 

These results lead us to predict that the samarium-doped fiber saturable absorber cannot 

stabilize short steady-state mode-locked pulses through this mechanism. 

It has been shown that a laser cavity that cannot support steady-state continuous 

wave mode-locking may still support transient Q-switched mode-locking [102;103]. The 

mode-locked pulses initiate from mode-beating as lasing initiates from spontaneous 

emission at the start of the Q-switching envelope [44]. The mode-locked pulses are 

sustained until the stored energy is dissipated since the Q-switching cycle does not 

encompass enough cavity round-trips for the pulses to break up into a continuous 

radiation pattern. Theoretical modeling of Q-switched mode-locking is complex and will 

not be described here. An experimental study on Q-switched mode-locked and Q-

switched operation of the developed laser is presented next. 

 

2.9: Experimental Results and Analysis 

The pump radiation was launched into the fiber laser cavity by means of a 976 nm 

fiber pigtailed, diode laser module. Figure 2.22 shows the launched power as a function 

of laser diode current.  
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Figure 2.22: Pump laser characterization. 

 

 

Continuous wave (CW) laser oscillation was observed as the pump current was 

increased above ~0.9 A corresponding to a launched pump power of ~600 mW. The high 

threshold for lasing is due to both the presence of the saturable absorber in the cavity and 

other intracavity losses, including a low coupling efficiency between the MMFC and the 

gain fiber, and the large number of mode area mismatched splices made while 

constructing the laser cavity. A scan of the laser emission line obtained using an optical 

spectrum analyzer (OSA) of resolution 1.25 GHz is shown in figure 2.23. The low 

resolution of the OSA prevented this instrument from being used to observe the 

individual longitudinal modes of the laser. To study the longitudinal mode structure 

during CW oscillation we used a scanning Fabry-Perot spectrum analyzer (SFPSA) with 

an 8 GHz FSR and 27 MHz resolution. The higher resolution of the SFPSA allowed it to 

resolve the individual longitudinal modes of the laser within a small portion of the ~60 

GHz line profile measured by the OSA (figure 2.24). The SFPSA scan resolved ~24 laser 

cavity modes (figure 2.24, bottom). 
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Figure 2.23: Output of the laser at a pump current setting of 1.0 A acquired using the Optical 

spectrum analyzer. 

 

 

 
 

Figure 2.24: SPFSA scan of the laser during CW oscillation showing multiple longitudinal modes. 
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To determine the conditions for transitioning between CW and pulsed laser 

oscillation, we monitored the temporal profile of the laser output using a high speed 

InGaAs photo-detector (PD) with a maximum rise/fall time of 100 ps. The signal from 

the PD was measured using a 1 GHz digital oscilloscope. When the PC plates were 

suitably adjusted at low power, the CW oscillation gave way to a train of short, closely 

spaced pulses modulated by an envelope of ~91 ns duration (figure 2.25). This operation 

regime of the laser resembles the self mode-locked pulsing observed in other Q-switched 

fiber lasers [44]. The self mode-locked pulse trains were extremely stable at low pump 

power, with the repetition rate, duration and amplitude being very reliably reproduced 

from one Q-switched burst to the next.  

 
Figure 2.25: Output of the laser obtained using the PD and oscilloscope at a pump current setting of 

1.0 A.  
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An expanded view of the mode-locked pulses is shown in figure 2.26. The mode-

locked pulse duration and period were measured to be ~1.7 ns and~3.3 ns respectively. 

The measured mode-locked repetition rate of ~300 MHz is equal to almost exactly 20 

times the estimated fundamental cavity repetition rate of c/2nLcavity~15 MHz. This 

suggests that the observed short duration pulses underneath the Q-switched envelope are 

attributable to harmonic mode-locking [104-106] Periodic modulation of a Q-switched 

pulse profile has been also attributed to beating between different cavity modes at the 

detector [107]. However, the periodicity, consistent duration and high depth of 

modulation of the observed pulses are not consistent with such mode-beating. 

Furthermore, the Fourier transform of the oscilloscope signal shows a single peak at the 

measured mode-locked repetition rate (figure 2.27), consistent with mode-locking rather 

than mode-beating. 

 
 

Figure 2.26: Expanded view of the mode-locked pulse train obtained using the PD and oscilloscope at 

a pump power of ~750 mW. 
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Figure 2.27: Fourier Transform of the Q-switched mode-locked laser output. 

 

 

There are several indications that another mechanism besides the samarium-doped 

fiber saturable absorber is responsible for the observed mode-locked pulses. First, the 

theoretical studies presented in sections 2.7 and 2.8 suggest that the samarium-doped 

fiber possesses a saturation energy that is too high to provide the proper pulse shaping to 

stabilize mode-locked pulses [77]. Also, the nanosecond recovery time of Sm
3+

 is likely 

too long for the saturable absorber to recover fully between each of the high repetition 

rate mode-locked pulses. The presence of the polarization controller as a polarizing 

element within the cavity and the importance of its adjustment for achieving passive 

mode-locking means that the mode-locking is likely attributable to nonlinear polarization 

evolution (NPE) [108]. In this form of mode-locking, a circulating pulse acquires an 

elliptical polarization following transmission through a wave-plate combination such as 

the PC present within our cavity. The x and y-polarization components then propagate 

through a length of Kerr medium and undergo both linear and nonlinear phase delays due 

to birefringence, self phase modulation and their interaction with the other polarization 
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component (cross phase modulation) [109]. The total phase delay for each polarization 

component is written as [109]: 

 

  ( ) LAAkn yxxx 23/2
22

2
	


�

�


�

��
�

��
� ++β=Φ             (2.9.1 a) 

  ( ) LAAkn xyyy 23/2
22

2
	


�

�


�

��
�

��
� ++β=Φ                      (2.9.1 b) 

 

Where �x,y represents the propagation constants along each polarization direction, Ax,y is 

the field amplitude of each polarization component and L is the propagation distance 

within the Kerr medium. The intensity dependence of the relative phase delays between 

the polarization components leads to higher intensity light undergoing a larger rotation of 

its polarization ellipse within the Kerr medium than low intensity light [40]. If the light 

waves are then superimposed with waves exiting the PC following transmission through 

the Kerr medium, the intensity-dependent polarization rotation is translated to an 

intensity-dependent interference between the waves with non-rotated and rotated 

polarization [108]. The superposition leads to the non-rotated, low-intensity waves 

undergoing a higher amplitude modulation then the rotated, high-intensity waves, 

effectively producing an artificial saturable absorption.  Due to the instantaneous 

response of the Kerr nonlinearity, the artificial saturable absorber produced through NPE 

shapes pulses in a similar way as the fast saturable absorbers discussed in section 2.6 

[97]. 

 The mode-locked laser oscillation at a harmonic frequency can be explainable by 

the NPE mechanism. Both the modulation depth and the saturation energy of the artificial 
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fast saturable absorber are known to be highly sensitive to adjustment of the polarizing 

element [108;110]. Adjustments of the PC can therefore yield a saturation energy that is 

too low in comparison with the intra cavity energy to stabilize a single pulse. Under these 

conditions the oscillation of multiple, evenly spaced pulses is energetically favorable, 

leading to harmonic mode-locking [110;111]. 

 As can be seen in figure 2.25, a full modulation to zero intensity was not achieved 

between the mode-locked pulses. It was found that the modulation depth of the mode-

locked pulses was highly dependent on the position of the PC plates. This is most likely 

due to the sensitivity of the saturation power and modulation depth of the NPE artificial 

saturable absorber to the adjustment of the polarizing element [108]. However, the 

modulation depth of QML pulses is also well-known to be dependent on the strength of 

the Q-switching [102]. Weaker Q-switching leads to a longer rise-time for the Q-

switched envelope, enabling the mode-locked pulses to reach a steady state with fuller 

modulation [112]. In the case of passive Q-switching, the strength of the Q-switching can 

be reduced by reducing the pump power or increasing the ratio of non-saturable to 

saturable losses (i.e. reducing the Q-factor of the cavity) [6;112;113]. The most 

straightforward way to lower the Q-factor of the cavity and improve the mode-locking 

contrast is to reduce the reflectivity of the output coupler mirror [114]. A lower Q-factor 

cavity can also improve the modulation of the mode-locked pulses by suppressing the 

CW background which makes up the signal observed below the mode-locked pulses [40]. 

These alterations can improve the modulation of the mode-locked pulses at the expense 

of poorer continuous-wave Q-switched operation. 
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At a pump power of ~1500 mW, and with further adjustment of the PC plates, the 

laser emitted a train of individual Q-switched pulses of ~70 ns duration at a repetition 

rate of ~270 kHz. The average power at this pump power was measured to be 2 mW, 

which is divided by the repetition rate to obtain an estimated pulse energy of ~7.5 nJ. 

This gives an estimated peak power of Epulse/�duration~106 mW. An oscilloscope trace of 

the Q-switched pulse train is shown in figure 2.28 a). We did not investigate the 

oscillation of the laser at pump current levels above 2.1 A in order to avoid damage to our 

cavity components and instruments from the high peak power of the Q-switched pulses. 

The measured Q-switched pulse duration is only slightly longer than our 

estimated cavity round-trip time of 2nL/c~68 ns. In addition, the Q-switched pulses are 

shorter than the Q-switched mode-locked envelopes observed at lower power and at 

different PC positions. These two observations suggest that the conditions for optimum 

Q-switching are fulfilled at this pump power level and polarization state [115]. At lower 

pump power the small-signal gain and stored energy within the gain medium is lower, 

leading to a slower saturation of the samarium-doped fiber at the beginning of the Q-

switched pulse. The weaker passive Q-switching under these conditions leads to a slower 

build-up of the Q-switched pulse, enabling the mode-locked pulses to evolve from noise 

at the start of the Q-switched envelope [44;102]. Because the stored energy in the gain 

medium is dissipated by a series of lower energy short duration mode-locked pulses 

rather than a single Q-switched pulse, the length of the Q-switching envelope is 

increased. At the increased pump power and different PC position, the small signal gain 

and stored energy becomes high enough to rapidly saturate the SA, enabling the Q-

switched pulse to build up in an almost instantaneous fashion [6;115]. The rapid increase 
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in amplitude observed at the start of the individual Q-switched pulse in figures 2.29 b) 

supports this explanation.  

 

 
 

 
 

 
Figure 2.28: Output of the laser in the Q-switching regime measured using the PD and oscilloscope at 

a pump current setting of 1.8 A. a) Q-switched pulse train. b) Single Q-switched Pulse. 

(a) 

(b) 
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For giant pulses such as the ones described above to form in a laser cavity 

containing a saturable absorber, it is necessary for the SA to saturate quickly as the 

energy stored within the gain medium is released [6]. This requires the gain saturation 

energy to be large in comparison to the SA saturation energy, in addition to sufficient 

pumping in the gain medium. The usual approach to fulfilling this requirement is to select 

a saturable absorber with an absorption cross-section much larger than the emission 

cross-section of the gain medium [116]. However, the roughly 3 to 1 ratio of our SA 

cross-section to gain cross-section (based on data from the fiber manufacturers) is much 

smaller than the required value of ~20 given in numerical studies of fiber lasers Q-

switched with fiber saturable absorbers [115]. The good Q-switching performance seen in 

our laser despite this can be explained by the mismatch in mode field areas between the 

gain and saturable absorber fibers. Since the saturation energy is directly proportional to 

the effective mode area of the fiber (see eq. 2.6.18) the smaller mode area in the 6.5 �m 

core SA fiber decreases its saturation energy in relation to that of the 8.2 �m core double-

clad gain fiber. This focusing effect within the SA fiber allows it to be quickly bleached 

at the start of the Q-switched pulse [117], leading to rapid depletion of the stored energy 

in the gain medium and the short giant pulses observed here. 

 

2.10: Conclusion 

 We have demonstrated an ytterbium-doped fiber laser with both continuous wave 

and pulsed output at 1064 �m. Q-switched operation was achieved by inserting a length 

of samarium doped fiber into the laser cavity to act as a saturable absorber passive Q-

switch. The laser oscillated in the continuous wave, Q-switched mode-locked and Q-
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switched regimes depending on the pump power and the setting of the PC plates. At low 

power the laser emitted Q-switched mode-locked pulses with duration of approximately 

1.7 ns at a repetition rate of ~300 MHz when the PC plates were properly adjusted. The 

mode-locking was attributed to nonlinear polarization evolution. At high pump power we 

obtained ~70 ns Q-switched pulses with an average power of 2 mW. The pulse energy 

and peak power were estimated to be ~7.5 nJ and ~106 mW near the threshold for Q-

switching. 
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Chapter 3 

Potential application of the Developed 

Laser 
 

 

3.1: Introduction 

 Nanometer-scale noble metal (gold, silver, platinum) particles and colloidal 

solutions of these metals have been known for centuries. Stained glass windows owe their 

colour to metal nanoparticles lodged within the glass, and gold and silver particle 

solutions have been produced since ancient times. It was not until recently that the unique 

optical properties of nanoscale metal particles were explained, and that their true 

potential applications came to light. Noble metal nanostructures have already found 

applications in cancer treatment [118], chemical and biological sensing [119], Raman 

spectroscopy [120] and as contrast agents in Optical coherence tomography (OCT)  

[121]. 

The optical properties of matter are highly dependent on both its composition and 

surroundings. By passing optical radiation through a sample and measuring the resultant 

transmitted, scattered and back-reflected signal, it is possible to gain information about its 
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composition and properties (figure 3.1). By monitoring these optical signals as a function 

of time, it is also possible to detect changes in these characteristics [121]. This is the 

basic principle behind all spectroscopic and imaging techniques [119;120;122]. 

 

 
Figure 3.1: Interaction of a sample with optical radiation and the resulting measurable signals. 

 

 

 

 The metal nanostructures discussed in this chapter possess strong optical 

scattering and absorption characteristics. Making use of these particles in spectroscopy 

can therefore allow for an improvement in sensitivity through an increase in the 

measurable optical signal [123]. This property makes them ideal for applications in 

sensing [119].  

 In this chapter, we describe the theory of scattering of electromagnetic waves by 

nanoparticles and the results of preliminary experiments with gold nanorods will be 

presented.  
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3.2: Localized Surface Plasmon Resonance 

 The differences between the optical properties of dielectrics and metals are easily 

observable. These properties arise from their electronic structure [124]. Solid transition 

metals possess large numbers of delocalized electrons within their partly filled d orbitals 

which are free to move about the bulk of the material. The highly mobile charges within 

metals are responsible for their conductive properties and their response to 

electromagnetic radiation [125]. 

The optical properties of a material can be understood by considering the response 

of the free electrons to an applied oscillating electric field. The external field induces a 

polarization (net displacement of charge) in the metal or dielectric. The polarization is 

related to the applied field by a parameter called the susceptibility: 
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The susceptibility is represented by the symbol �. The effect of this polarization is 

included in the so-called electric displacement field: 
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Where � represents the dielectric function, which is characteristic of the material. It 

quantifies the response of the free electrons to the external field, and in the case of an 
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oscillating field, it will exhibit strong frequency dependence. The dielectric function of a 

classical free electron metal in an external field oscillating at a frequency “�” is  [126]: 
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Where �p
2
=ne

2
/m�0 is the plasma frequency. The frequency-dependent optical response 

of metals arises from the � dependence of the complex dielectric function (equation 

3.2.3). This can be seen by considering the basic dispersion relation for electromagnetic 

waves: 
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When �<�p, � and the wave-vector K is complex, and the wave is damped in space. 

Within this frequency range, EM waves do not propagate within metals and are either 

absorbed or reflected [124]. The significance of the plasma frequency may further be 

seen by considering the case of negligible damping where 2

2

1)(
ω

ω
ωε p−= . Substituting 

this into equation 3.2.4, we get the dispersion relation for a transverse EM wave in a 

plasma: 

 

     2222
Kcp =− ωω     (3.2.6) 
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Equation 3.2.5 shows that the wavevector is real for frequencies above �p. This 

corresponds to the transparency region for metals. Finally, for the case of �=�p, the 

dielectric function and also the wavevector is equal to zero. At this frequency the free 

electrons undergo a longitudinal oscillation known as a volume Plasmon within the bulk 

of the metal [126]. 

 The longitudinal nature of volume plasmons means that they must be excited by 

electron scattering rather than optical photons [124]. Despite this, it is still possible for an 

EM wave to directly excite a transverse charge oscillation in a metal by coupling to the 

electrons in a sub-wavelength sized metal protrusion or particle [126]. The excitation of a 

surface Plasmon on a sub-wavelength metal structure is called localized surface Plasmon 

resonance (LSPR). 

 

 

Figure 3.2: Excitation of a localized surface Plasmon by an incident EM wave [118]. 

  

The excitation of LSPR by EM waves gives rise to the unique optical properties 

of nanometer-sized metal particles in comparison to their bulk counterparts [127]. An 

understanding of the difference between the plasma oscillation within bulk metals and 
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sub-wavelength metal particles may be gained by considering the case of a sphere within 

a uniform electric field. This assumption is justified for particles with a diameter much 

smaller than the wavelength of the exciting wave, since in this case the optical field does 

not vary across the volume of the particle. The polarization of a sphere subjected to a 

field E0 in free space is [124]: 
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 Returning to the free-electron model discussed above, we have for the 

susceptibility �=-ne
2
/m�

2
. Substituting this into equation 3.2.8 gives a maximum 

polarization at 3pLSP ωω = . Thus the surface Plasmon frequency for a nanoscale 

diameter metal particle is red-shifted with respect to that of a bulk metal. The result given 

here is independent of particle size, however, the localized surface Plasmon (LSP) 

frequency of real particles exhibits a small size dependence. This is attributable to 

scattering events at the particle surface in small particles and damping and dephasing of 

the plasma oscillation at large sizes approaching the wavelength of the exciting EM wave 

[128].  

 The LSP frequency is also highly dependent on the external dielectric 

environment of the nanoparticle. If the free-space dielectric constant in equation 3.2.8 is 

replaced with an arbitrary dielectric constant �2, the LSP frequency 

becomes 221 εωω += pLSP . Given the relation �2=n2
2
 between the external dielectric 

constant and refractive index, it is clear that the LSP frequency will red-shift as the 
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external refractive index increases. This property is well studied [127], and has already 

been exploited for sensing applications to measure changes in the chemical environment 

of nanoparticles [119]. 

 When excited by an EM wave at the LSP frequency, a nanoparticle can act as a 

scatterer and absorber with an interaction cross-section equal to many times its physical 

cross-section. The scattering and absorption cross-sections of a spherical particle can be 

shown to be [126]: 
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The scattering and absorption cross-sections scale with a
6
 and a

3
. It is therefore 

clearly possible for these cross-sections to be larger than the physical area �a
2
 when the 

LSPR condition is fulfilled. Under these conditions the local fields are greatly enhanced 

due to the LSP oscillation, it is therefore possible for the scattered or absorbed energy 

flux to be greater than the incident flux, increasing the effective scattering or absorption 

cross-section of the particle. This explains the strong extinction (sum of absorption and 

scattering) observed for nanoparticles excited at their LSPR frequency. 
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3.3: Particles with Tunable LSPR: Nanorods 

 It was shown in the previous section that the LSPR frequency of uniform, 

spherical nanoparticles may be shifted only a small amount by changing the particle size. 

This limited tunability leaves the near-IR wavelength band around 1 �m out of reach of 

the optical response of homogeneous spherical nanoparticles. However, for in-vivo 

biological applications, it is advantageous for nanoparticles to have an extinction 

maximum between 900 and 1100 nm [118;129] because of the low optical density of soft 

tissue components at these wavelengths [130]. The issue of limited LSPR tunability in 

homogeneous spherical particles can be overcome either by lifting their homogeneity of 

composition[131] or by altering their spherical symmetry [132]. 

It is possible to achieve large shifts in the LSPR frequency by elongating a 

nanoparticle to form a cylindrical nanorod [133]. A nanorod supports two surface 

Plasmon modes: a transverse mode along the short axis of the rod, and a longitudinal 

mode along the long axis of the rod as shown in figure 3.3 a) [134]. Since the 

longitudinal mode is forced to oscillate at a frequency corresponding to a node at each 

nanoparticle end, the longitudinal LSPR frequency red-shifts with increasing rod length 

when the diameter is kept constant (figure 3.3 b). The extinction spectrum of nanorods 

may be approximated analytically through an extension of the theory of scattering by 

spheres describing scattering by ellipsoids (Gans theory) [135] or calculated numerically 

using either a method called the discrete dipole approximation [134] or the finite 

difference time domain method.  
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Figure 3.3: a) Longitudinal (left) and transverse (right) Plasmon modes of a nanorod. b) Red-shift of 

the fundamental longitudinal Plasmon mode with increasing length.  

 

 

 Synthesis of gold nanorods begins with gold nanospheres as a starting point, in 

the presence of a cationic surfactant called Cetyl trimethylammonium bromide (CTAB). 

The process begins with the formation of facets on the particles corresponding to the [1 1 

0] and [1 0 0] planes of the gold FCC crystal structure [136]. Due to the lower binding 

energy of the CTAB head group to the [1 1 0] facet, these facets become coated with 

surfactant, preventing reduction of gold cations onto these surfaces. Therefore, growth of 

solid gold only occurs along the exposed [1 0 0] facets, resulting in the one dimensional 

growth of nanorods in the [1 0 0] direction [137]. In addition, because the hydrocarbon 

(a) 

(b) 
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chain portion of CTAB is hydrophobic, and the cationic head group is hydrophilic, the 

surfactant will form a positively charged bilayer on the sides of the nanorod with the head 

groups facing outward and the hydrocarbon chains facing inward. The CTAB thus 

functions to facilitate the growth of the rods as well as to keep them in suspension by 

means of coulomb repulsion [138]. The positively-charged bilayer also allows negatively 

charged molecules to be electro-statically adsorbed onto the particle surface (figure 3.4). 

The resulting modification to the local dielectric environment of the nanoparticle can 

shift the LSPR frequency. This may be exploited to conjugate nanorods with certain 

antibodies when placed in a basic (pH above 7.0) solution, or to detect a certain analyte in 

basic solution by monitoring the extinction spectrum of suspended nanorods [139;140]. 

Adsorption onto a nanoparticle surface may also take place via chemisorption in which a 

molecule covalently bonds to the surface, or through physisorption, where the molecule is 

attracted to the nanoparticle by the Van der Waals force [141]. Because of the 

comparative weakness of Van der Waals interactions, the former adsorption process is 

typically much weaker than both chemisorption and electrostatic adsorption. 

 
 

Figure 3.4: Electrostatic adsorption. A molecule in a basic solution with a pH above the isoelectric 

point acquires a net negative charge, resulting in an electrostatic attraction to the positively charged 

bilayer on the nanorod surface [139]. 

Nanorod 

Hydrocarbon 
Chain 

Negatively 
charged 
molecule 

Basic Solution 
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3.4: Experimental Methods, Results and Discussion 

 Experiments were performed using a commercially available solution of gold 

nanorods suspended by CTAB. The approximate axial diameter of the nanorods was 10 

nm and the length was 67 nm giving an aspect ratio of 6.7 and a longitudinal LSPR 

extinction maximum of 1060 nm according to information provided by the manufacturer. 

The particle concentration was 4.1*10
11

 particles/mL (0.03 mg Au/mL) and the CTAB 

concentration was <0.1% by mass. The extinction spectrum of the nanorod solution as 

provided was first acquired using a UV-VIS-NIR spectrophotometer (Varian Cary 50). 

Figure 3.5 shows the extinction spectrum with both the smaller amplitude transverse LSP 

peak at ~515 nm and the larger amplitude longitudinal LSP peak at ~1083 nm being 

clearly visible. We note that although the instrument outputs data as absorbance vs. 

wavelength, this figure is simply calculated using the ratio of throughput light intensity to 

input light intensity. Since neither the scattered nor the absorbed radiation is likely to be 

detected following transmission of the signal through the sample, the output from the 

spectrophotometer is assumed to represent the extinction spectrum of the sample. 

 
 

Figure 3.5: Extinction spectrum of the nanorod solution. 
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 The low sensitivity and resolution, limited scanning range and insufficient light 

source brightness of the commercial instruments used in this study limited the obtainable 

results. Although commercial diode lasers are available with emission wavelengths 

within our region of interest, their stability and linewidth are limited without external 

stabilization. Diode lasers may be stabilized using either an external grating [142] or 

resonant cavity [143], but the brightness of these lasers is limited. 

 The laser developed in chapter 2 can potentially overcome these limitations. The 

nanoparticle surface effects can be further increased by the high peak power at low 

average power of our laser when operating in the pulsed mode. The enhanced inelastic 

scattering from molecules adsorbed onto the surface of nanorods excited on-resonance 

may be exploited for applications in sensing [144].  

 

3.5: Conclusions 

 In this chapter we presented an early theoretical and experimental study on the 

interaction of gold nanoparticles and infrared radiation. The extinction spectra of gold 

nanorod samples in the aqueous state were measured. The optical measurements we were 

able to acquire were limited by the commercial instruments and diode laser used in our 

experiments.  
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Chapter 4 

 

Summary 

 

 In this thesis, we presented study of ytterbium-doped fiber lasers and their 

applications. An ytterbium-doped fiber laser oscillating at 1064 nm was presented in 

chapter 2. The pulsed operation of this laser was investigated theoretically and 

experimentally. A series of numerical simulations on pulse formation in ytterbium-doped 

fiber lasers as well as experimental results with the developed laser were presented. The 

laser oscillated in the continuous wave, Q-switched mode-locked or Q-switched regimes 

depending on the pump power and adjustment of the intracavity polarization controller. 

Harmonic mode-locked pulses with a repetition rate of ~300 MHz and duration of ~1.7 ns 

were obtained. Q-switched pulses with duration of ~70 ns and ~7.5 nJ pulse energy were 

observed at a pump power of ~1500 mW. The Q-switching behaviour of the laser was 

attributed to the presence of the samarium-doped fiber saturable absorber in the cavity 
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while nonlinear polarization evolution was proposed as the mechanism for the passive 

mode-locking. 

 The applications of near-infrared lasers and gold nanoparticles in sensing were 

described in chapter 3. Early experimental results with gold nanorod samples using 

existing commercial instruments were presented. 
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