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Abstract 

Logging residues can retain important nutrients for tree growth after biomass 

harvesting. However, increasing the harvest intensity may decrease soil nutrient stores 

stocks and affect biomass productivity. Using 2207 observations from 51 published 

studies and 2207 observations in boreal, temperate and tropical forests, we assessed 

how soil carbon (C) and macronutrients (N, P, K, Ca, Mg) of regenerating stands 

respond to increasing harvest intensity from double slash (DS) to stem-only 

harvesting (SOH) to whole-tree harvesting (WTH).  

 Our meta-analysis reveals that forest harvesting has diverse effects on soil C, 

N and P, depending on elements, stocks vs. concentrations, soil layer, and harvesting 

intensity. We found that compared with SOH, WTH reduced carbon C and nitrogen N 

stocks in the forest floor, but not in the mineral soil, and had similarly negative effects 

on the concentrations of phosphorus P in the forest floor and mineral soil; DS had 

stronger positive effects on Magnesium concentrations in mineral soil compares to 

SOH.  

Keywords: boreal forest; harvest intensity; harvest residue management; soil 

carbon stock; soil nitrogen stock; soil type; subtropical forest; temperate; tropical 

forest. 
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INTRODUCTION 

 

  Due to the low commercial value, logging residues such as coarse and fine 

woody debris, unusable tops and branches, and cull trees are usually left on site after 

logging operations. (Farve and Napper, 2009). These residues decompose and release 

nutrients into the soil or the atmosphere, serving an integral role in nutrient cycling 

(Fontaine et al. , 2003). Organic matter (OM) derived from woody resides can directly 

affect a site’s soil productivity by becoming a primary source of nutrients for 

vegetation growth. In addition, OM can improve soil productivity by supporting C 

cycling and sequestration, N availability, gas exchange, water availability, and 

biological diversity (Jurgensen et al., 1997).  Finally, OM increases aeration, cation 

exchange capacity, soil aggregation, buffers soil pH changes and provides food and 

habitat for soil meso- and microfauna (Shepherd et al., 2002). 

 In the last 20 years, there has been a great number of research studies on the 

impact of residue management on soil C and nutrients in forests. Many studies found 

increasing biomass removal can reduce soil carbon (C) stocks and concentrations, 

with C reduction more pronounced in the forest floor than mineral soil layer (Nave et 

al. 2010; Achat et al. 2015b; Clarke et al. 2015). A synthesis report by Thiffault et al. 

(2011), using a vote-counting method to contrast WTH with SOH, shows that fewer 

studies reported negative effects than no effects on soil C and nitrogen (N) stocks and 

concentrations and N cycling in both forest floor and mineral soil. Also, most studies 
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found increased N leaching and reduced soil phosphorus (P) and exchangeable cations 

from increasing biomass removal than no effects. These syntheses confirm that 

biomass harvesting may have negative effects on forest soils. However, divergent 

evidence from previous analyses indicates that the impacts of biomass harvesting on 

soil C and nutrients may also be dependent on harvest intensity, stand condition, 

climate zone, time since harvesting, nature of nutrient cycling, soil layer, etc.  

  To assess how soil carbon (C) and macronutrients (N, P, potassium (K) 

calcium (Ca), and magnesium (Mg)) of regenerating stands respond to increasing 

harvest intensity, we therefore grouped harvesting treatments into three categories: 

Stem-only harvesting (SOH), including both cut-to-length and tree-length harvesting; 

Whole-tree harvesting (WTH), SOH plus collection of primary residues generated 

from harvesting including tree tops, branches and/or leaves; Double slash harvesting 

(DS), Whole-tree harvesting plus double the amount of logging residues left on the 

site. This review collects relevant studies from boreal, temperate and tropical forests 

to presents a meta-analysis of their published experimental data. In this meta-analysis, 

we assess the impact of WTH and DS on soil C and nutrient stocks and concentrations 

in both forest floor and mineral soil. 
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METHODS 

 

Data Collection 

  We searched Web of Science database for relevant peer-reviewed publications 

reporting on the impacts of biomass harvesting on forest ecosystems, specifically 

impacts on soil nutrients. Since the aim of the study is to assess the impact of biomass 

harvesting compared to stem-only harvesting, we selected studies that contrasted 

stem-only harvest against whole-tree harvesting (WTH) and double slash harvesting 

(DS). 

  For each study selected for analysis, we extracted data of the stocks and 

concentrations of soil C and macronutrients including N, P, K, Ca, and Mg in both 

forest floor and mineral soil layers. Results were reported graphically, using 

WebPlotDigitizer (http://arohatgi.info/WebPlotDigitizer/) to digitally extract data 

from figures. From original studies, we also obtained geographical locations, forest 

type (conifer, deciduous and mixed-wood), and soil type, biome (boreal, temperate, 

tropical, and subtropical) and time since harvesting (years). When a study reported a 

range value for time since harvesting, the midpoint of each ranged was used to 

represent the interval. Metadata collected by Thiffault et al. (2011) were kindly made 

available by the authors and were included in our dataset. 
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Figure 1: The global distribution of study sites included in the meta-analysis 

 

Classification of harvest intensity 

  Although all possible types of biomass harvesting are individually of interest, 

sufficient experimental evidence does not exist to accurately examine impacts along 

the full gradient of harvesting intensities. We therefore grouped harvesting treatments 

into three categories: Stem-only harvesting (SOH), including both cut-to-length and 

tree-length harvesting; Whole-tree harvesting (WTH), SOH plus collection of primary 

residues generated from harvesting including tree tops, branches and/or leaves; 

Double slash harvesting (DS), Whole-tree harvesting plus double the amount of 

logging residues left on the site. 
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Data analysis 

  To examine the impacts of WTH and DS on soil C, nutrients, productivity and 

species diversity of post-harvest regenerating stands, we computed the natural log-

transformed response ratio (lnRR) as the “effect size”, which improves its statistical 

behavior in meta-analyses (Hedges et al. 1999

  ctct XXXXRR lnln/lnln 

): 

           (1) 

tXwhere 

cX

 is the mean value observed for the variable of interest in WTH or DS and 

 is mean value observed for the variable of interest in SOH.  

Effect size estimates and subsequent inferences in meta-analysis may depend 

on how individual observations are weighted (Mueller et al. 2012; Ma & Chen 2016). 

Following previous work (Mueller et al. 2012; Pittelkow et al. 2015; Ma & Chen 2016), we 

weighted studies by replications rather than by sampling variance, since the latter was 

not reported for a significant number of studies included in our database. Moreover, 

weightings based on sampling variances could assign extreme importance to a few 

individual observations, and consequently average lnRR would be largely determined 

a small number of studies (Pittelkow et al. 2015; Ma & Chen 2016). The weight of each 

observation i

ct

ct
i

nn

nn
w






 in our dataset was calculated as:  

                   (2) 

where nt and nc

tX

 are the numbers of replications corresponding each mean value 

observed in WTH or DS (
cX) and SOH ( ). We also weighted all observations 
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equally (wi = 1). The results from two alternative weighting methods were 

qualitatively similar. We focus on reporting the results based on the weighting by 

replications.  

  We examined how the variations in harvest intensity (WTH and DS) on soil C 

and nutrients in both the forest floor and mineral soil layers. Since our data set was 

not sufficiently large to test all treatment combination levels among our categorical 

explanatory variables, we only tested the effects of harvest intensity. From fitted 

models, we derived 95% confidence intervals (CIs). When the 95% CIs does not 

cover zero, lnRR is significantly (α = 0.05) different from zero. All statistical analyses 

were conducted with R. 
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RESULTS 

 

Impacts of harvest intensity on soil carbon and nutrient concentrations and 

stocks 

  The impacts of biomass harvesting were dependent on harvest intensity and 

soil layer. Compared with SOH, WTH reduced C and N stocks and concentration in 

the forest floor, but not in the mineral soil (Fig. 2). There were similarly negative or 

marginally negative effects of WTH on Ca stocks and Ca concentration in both forest 

floor and mineral soil layers. Potassium and Mg stocks and K concentration were only 

reduced by WHT in mineral soil, while the concentrations of P were only reduced by 

WHT in forest floor. Compared with SOH, DS demonstrated no negative effect to all 

soil nutrients in both forest floor and mineral soil layer. And it increased the 

Magnesium stock in mineral soil layer. 
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Figure 2: Effect size (lnRR) of harvesting on soil parameters as a function of harvest 

intensity by soil layer. Harvesting intensity included stem-only harvesting (SOH), 

whole-tree harvesting (WTH) and double slash harvesting (DS).  
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DISCUSSION 

 

 We found that whole tree harvesting had generally greater negative effects on 

soil C and macronutrients in the forest floor compares to mineral soil layer. The C, N 

and P concentrations were decreased in the forest floor and unaffected by harvesting 

in the mineral soil by WTH. The forest floor is more susceptible to be influenced by 

increasing harvest intensity. We also found high negative effects of increasing harvest 

intensity on soil Ca concentration and stocks in both forest floor and mineral soil. 

This finding suggests that using WTH instead of SO could increase the negative 

effects of biomass harvesting on soil C and macronutrients. Our results of the negative 

effects of WTH on soil C and nutrients are qualitatively similar with the results of 

previous analyses (Thiffault et al. 2011; Achat et al. 2015a). The increased reduction 

of forest floor C stocks with increasing harvest intensity is expected because 

additional removal of logging residues directly reduces the inputs of tree tops, 

branches and/or leaves into the forest floor (Nave et al. 2010). Increasing harvest 

intensity also reduced P concentration in forest floor, but not C, N and P concentration 

and stocks in in the mineral soil.  
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CONCLUSION AND FUTURE DIRECTIONS 

 

  Our analysis showed that 1) soil C and nutrients are generally reduced by 

biomass harvesting, and the extent of impacts on soil C and nutrient stocks and 

concentrations increases with amount of biomass removal, 2) the impacts of whole-

tree harvesting on C and N stocks are stronger in the forest floor than in the mineral 

soil, but both forest floor and mineral soil experience similarly negative impacts in Ca 

cation stocks and concentrations; 3) DS had stronger positive effects on Magnesium 

concentrations in mineral soil compares to SOH. 

  Our results clearly demonstrate that soil C will be reduced by biomass 

harvesting. This result is no surprise. We note that increased forest biomass utilization 

could be a critical society decision to reduce the use of or reliance on fossil energy 

(Fargione et al. 2008), and could contribute to lessen rising atmospheric CO2 (IPCC 

2013). Our findings of reduced soil nutrients (stocks and concentrations) associated 

with biomass harvesting concur with our expectations that more nutrient-rich tissues 

removed would yield less in-situ nutrients. However, we recommend (i) future efforts 

be focused on plant available nutrients; (ii) future studies shall consider comparing 

biomass harvesting versus wildfire on soil productivity since northern forests have 

evolved with adaptation to stand replacing disturbances, in particular wildfire, and 

soil nutrients recover rapidly following fire (Hume et al. 2016); (iii) our meta-data 

reflect findings from experimental sites. The number of observation is still limited and 
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errors might exist during the process of data collection. It remains unsolved how 

experimentally conducted whole-tree harvesting compares with those done at forest 

operation. We concur with the previous speculations (Riffell et al. 2011) that the 

extent of biomass removal may be less in operational harvesting than experimental 

harvesting.  

  There is growing interest in the use of forest logging residues and non-

merchantable biomass for bioenergy production. Greater utilization of residues can 

partially replace the use of fossil fuels, reducing longer-term greenhouse gas 

emissions and diversify a country’s energy portfolio (Roach and Berch, 2014; Ter-

Mikaelian et al., 2015). However, energy diversification and economic development 

should not compromise ecological sustainability (Lattimore et al., 2009), so we 

suggestion to use a low to medium harvest intensity like stem only harvest in the 

future logging residue management.  
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Appendix 1. List of studies included in the meta-analysis. (*1- Plant height, 2- [C], 3-

[K], 4-[Ca], 5[Mg], 6-[N], 7-[P], 8-C, 9-N, 10- above ground biomass, 11-seedling survival, 12-basal 

area, 13-density of understory plants, 14-species richness, 15, species evenness, 16-Shannon’s 

diversity, 17-Ca, 18-K, 19-P, 20-Mg, 21-pH, 22-BS, 23-diameter, 24-DBH, 25-volume, 26-Al3+, 27-H+, 

28-CEC.) 

Reference Locatio

n  

Latitud

e 

Longitud

e 

Biome Stand 

type 

Time 

since 

harvestin

g (year) 

Variabl

e 

include

d * 

Ares et al. 

(2007) 

USA 46.72 -123.42 Temperat

e 

conifer 1 1 

Belanger et 

al. (2003) 

Canada  49 -74.5 Boreal conifer 3 2, 3, 4, 5 

Belleau et al. 

(2006) 

Canada 48.48 -79.41 Boreal deciduou

s 

1 2, 3, 4, 

5, 6, 7 

Brandtberg 

and Olsson 

(2012) 

Sweden 60.3 16.43 Boreal conifer 27 2, 6 

Carter et al. 

(2002) 

USA 30.6 -94.4 Temperat

e 

conifer 3 8, 9 

Curzon et al. 

(2014) 

USA 44.38 -83.31 Boreal deciduou

s 

15 10 

Egnell and 

Leijon 

(1999) 

Norway 56.87 15.38 Temperat

e 

conifer 15 1,11, 12 

Egnell and 

Valinger 

(2003) 

Sweden 56.87 15.38 Temperat

e 

conifer 20 1, 11, 12 

Fleming et 

al. (2006) 

USA, 

Canada 

55.97 -120.47 Temperat

e 

conifer 5 11 

Goulding 

and Stevens 

(1988) 

Scotland 53.02 -4.1136 Temperat

e 

conifer 2 3 

Hendrickson 

(1988) 

Canada 45.97 -77.38 Boreal mixed 4 1, 13 

Hendrickson 

et al. (1989) 

Canada 45.97 -77.38 Boreal mixed 3 2, 6 
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Reference Locatio

n  

Latitud

e 

Longitud

e 

Biome Stand 

type 

Time 

since 

harvestin

g (year) 

Variabl

e 

include

d * 

Johnson et 

al. (2002) 

USA 34 -83 Temperat

e 

conifer 16 8 

Johnson and 

Todd (1998) 

USA 35.97 -84.28 Temperat

e 

deciduou

s 

15 3, 4, 5, 

6, 7 

Kaarakka et 

al. (2014) 

Finland 61.02 24.69 Boreal conifer 10 8, 9 

Kabzems 

and 

Haeussler 

(2005) 

Canada 55.97 -120.47 Boreal deciduou

s 

5 1, 2, 13 

Kershaw et 

al. (2015) 

Canada 49 -89.22 Boreal conifer 15 14, 15, 

16 

Klockow et 

al. (2013) 

USA 47 -92.24 Boreal deciduou

s 

1 8, 9, 10, 

17, 18, 

19 

Kurth et al. 

(2014) 

USA 47 -92.24 Boreal deciduou

s 

15 8, 9, 10, 

17, 18, 

19 

Laiho et al. 

(2003) 

USA 30.88 -92.5 Temperat

e 

conifer 5 8 

Li et al. 

(2003) 

USA 34.9 -76.82 Temperat

e 

conifer 5 8, 9 

Mahendrapp

a et al. 

(2006) 

Canada 46.37 -62.83 Temperat

e 

mixed 11 1 

Mann (1984) USA 35.97 -84.28 Temperat

e 

mixed 1 1, 13 

Mattson and 

Swank 

(1989) 

USA 35.07 -84.43 Temperat

e 

mixed 6.5 2, 8 

McInnis and 

Roberts 

(1994) 

Canada 46 -66.33 Temperat

e 

mixed 2 13 

Morris et al. 

(2013) 

Canada 49 -89.22 Boreal conifer 15 1, 10, 13 

Norris et al. 

(2014) 

Canada 50.22 -119.35 Temperat

e 

deciduou

s 

16 8, 9 
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Reference Locatio

n  

Latitud

e 

Longitud

e 

Biome Stand 

type 

Time 

since 

harvestin

g (year) 

Variabl

e 

include

d * 

Nykvist and 

Rosén 

(1985) 

Sweden   Boreal conifer 14 3, 4, 5 

Olsson et al. 

(1996a) 

Sweden 56.7 13.83 Temperat

e 

conifer 15 17, 18, 

20 

Olsson et al. 

(1996b) 

Sweden 64.27 19.52 Boreal conifer 15.5 8, 9 

Piatek and 

Allen (1999) 

USA 36.42 -78.5 Temperat

e 

conifer 15.5 6 

Proe and 

Dutch 

(1994) 

England 55.17 -2.5 Temperat

e 

conifer 10 1 

Proe et al. 

(1999) 

England 55.17 -2.5 Temperat

e 

conifer 5 1 

Roberts et 

al. (1998) 

Canada 48.98 -56.05 Boreal deciduou

s 

3 3, 4, 5, 7 

Roberts et 

al. (2005) 

Canada  46.72 -123.42 Temperat

e 

conifer 2 1 

Rothstein 

and 

Spaulding 

(2010) 

USA   Temperat

e 

conifer 52.5 8, 9 

Saarsalmi et 

al. (2010) 

Finland 63.26 28.3 Boreal conifer 24.5 9, 19 

Sanchez et 

al. (2006a) 

USA 30.88 -92.5 Temperat

e 

conifer 10 9, 19 

Sanchez et 

al. (2006b) 

USA 34.92 -76.8 Temperat

e 

conifer 5 8, 9 

Sikström 

(2004) 

Sweden 59.83 12.33 Boreal conifer 5 1, 11, 12 

Strömgren et 

al. (2013) 

Sweden 64.41 18.31 Boreal conifer 25 8 

Thiffault et 

al. (2006) 

Canada 47.315 -71.075 Boreal conifer 17.5 2, 3, 4, 

5, 6 

Titus et al. 

(1998) 

Canada 36.42 -78.5 Temperat

e 

conifer 2 6 
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Reference Locatio

n  

Latitud

e 

Longitud

e 

Biome Stand 

type 

Time 

since 

harvestin

g (year) 

Variabl

e 

include

d * 

Titus and 

Malcom 

(1992) 

England 55.13 -2.48 Temperat

e 

conifer 2 6, 7, 9, 

19 

Vanguelova 

et al. (2010) 

England 55.1 -2.3 Temperat

e 

conifer 28 8, 9 

Wall (2008) Finland 61.78 24.75 Boreal conifer 4 8, 9, 17, 

18, 19, 

20 

Wall and 

Hytonen 

(2011) 

Finland 62.05 24.2 Boreal conifer 30 19 

Walmsley et 

al. (2009) 

England 53.02 -4.1136 Temperat

e 

conifer 23 1, 3, 4, 

12, 13 

Waters et al. 

(2004) 

Canada 51.5 -96.25 Boreal conifer 3 13 

Zabowski et 

al. (2000) 

USA 47.85 -120.64 Temperat

e 

conifer 5 1, 11 
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Reference Locatio

n  

Latitu

de 

Longitu

de 

Biome Stand 

type 

Time 

since 

harvesti

ng (year) 

Variable 

included * 

(Smolander 

et al., 2015) 

Europe 66.792 -27.992 Boreal conifer 10 1,2,3,4,5,6,

10, 

12,21,22,23 

(Johnson et 

al., 2016) 

USA 35.98 -84.26 Temperate mixed 33 1,2,3,4,5, 

6,7,8,9 

(Foote et 

al., 2015) 

USA 31.108 -95.167 Subtropical conifer 15 2，9 

(Webster et 

al., 2016) 

Canada 47.7 -83.6 Boreal conifer 40 2，3，7，

9 

(Zetterberg 

et al., 2016) 

Sweden 
56.867 15.383 

Boreal conifer 27 17,18,19,20 

(Jurevics et 

al., 2016) 

Sweden 
50.03 14.4 

Boreal conifer 36 2,8,10 

(Johnson et 

al., 2016) 

USA 34.983 -81.65 Subtropical conifer 33 1,2,3,4,5,6,

7 

(Mushinski 

et al., 2017) 

USA 31.108 -95.166 Subtropical conifer 21 1,2,6,12 

(Egnell et 

al., 2015) 

Finland 

64.183 19.66 

Temperate conifer, 

mixed 

24 8,9 

(Vangansbe

ke et al., 

2015) 

Belgiu

m 

51.283 5.567 

Temperate conifer 28 17,18,19,20 

(Huang et 

al., 2011) 

New 

Zealand 

-38.23 175.967 Temperate conifer 20 8 

(Huang et 

al., 2013) 

China 26.8 117.967 Subtropical conifer 15 1,6,10,12, 

(Wu, 2017) China 25.791 116.867 Subtropical conifer 5 2,3,6,7 

(Li, 2011) China 26.25 119 Subtropical conifer 16 1,24 

(Hu et al., 

2013) 

China 26.8 117.967 Subtropical conifer 15 2,6,8 

(Kranabette

r et al., 

2017) 
Canada 54.612 -126.307 

Boreal 
conifer 20 1,11,24 

(Morris et 

al., 2013) 
Canada 49.067 -89.4 Boreal 

conifer 15 1,24,25 

(Fleming et 

al., 2014) 

Canada 47.267 -81.78 Boreal conifer 15 1,23,24 
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(Tamminen 

et al., 2012) 

Finland 63.23 28.56 Boreal conifer 26 2,3,4,5,6,7 

(Ring et al., 

2016) 

Finland 57.147 14.772 Boreal conifer 5 3,4,5,21,26 

(Mendham 

et al., 2003) 

Australi

a 

-34.3 116 Mediterrane

an 

Evergree

n-

broadleaf 

6.5 2,3,4,5,6,7, 

25 

(Chen & 

Xu, 2005) 

Australi

a 

-26 152.816 Subtropical conifer 6 2,6 

(Zetterberg 

et al., 2013) 

Sweden 56.7 13.67 Boreal conifer 32 2,3,4,5,6,21

, 

26,27,28 

(Nambiar, 

2008) 

Congo -4 12 tropical 

Evergree

n-

broadleaf 

8 1,9,11,17,1

8, 

19,20,24,25

, 
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