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Abst ract 

The objective of this research is to proditce a control scheme by an  inverse metliod 
that is capable of acting f a t  anough to be w f u l  in a rd-time maniifactiuing en- 
vironment .The scheme shoiild provide a transient boimdary condit ion t hat prodiices 
a prescribed interfacial surfme motion with a corresponding deyired morphoiogy at 
the phase interface in solidification probbms. In this thesis, an inverse technique is 
pres~nted for one and twedimensional heat transfer problems with phose change. It 
calculates the required boiindary temperature to provide a specsed interface velocity 
at the solid-iiqiid interface. An entropy-based method b used to improve the stability 
of the proposed algorithm. The eEects of free convection in the liquid are &O con- 
sidered. A control-volume- based finite element method is employed for the numerical 
solution of the conservation equationv for mas,  momentum and energy. Numerical 
examples are presented in order to demonstrate the promising capabilities and perfor- 
mance of the p r o p d  formulation. In practicai solidification problems, this method 
can Iead to stable and meaningful results. 
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Nomenclature 
reference kngt h 
spat i d  coordinates 
specific heat 
thermal conduct ivity 
latent heat 
enthalpy 
t ime 
local coordinate 
time step 
temperature 
density 
wlocity 
presstire 
sensit ivity coefficient 
shape hinction 
source term 
entropy production rate 
Prandtl niimber 
Rayleigh number 
Stefan number 
intemal energy 

Greek 

gmeral scalar variable 
r thermophysical property 
a thermal difftisivity 
B thermal expansion coefficient 
v kinemat ic viscoaity 
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1 Liqt iid 
r reference 
s solid 
p+l nodal point 
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Chapter 1 

Introduction 

1.1 Background 

In ma- industrial processes. thermal and Buid flow controls are required in a real- 
timo mode to improve processing conditions. It has receiveci considerable attention 
dite to its widr practical applications. Specific examples would be in metilliugy, such 
as casting and rnolding processes. Controlling the heat tramfer m d  fliud flow patterns 
is important sincc it largely affects the casting qiiaiity and production time in materi- 
ah processing. The heat BILW and velocities at the solidification interface determine 
the casting or molding properties and stnictures. They can be controlled by utilizing 
measiuements. siich as thermocouple temperature meastu~ments. diiring a process and 
thm iirljtistiiig the rxternal boiindiiry conditions at the inkt  in a rd-tinie mode to 
giw desird resiil ts. .hot  hm esample inclildes variotu aspects of biologicd t issiic d c  
struction or presenat ion by alternat ing freezing-thawing cycles. The siimival rate of 
prmerved blood cells is dependent iipon the rate of temperatlue change dtuing Ereez- 
ing and preservation. Information on the cooling rates tthat will insue optirniun c d  

sirvival rates can be employeci for irnproveci control of the freaing proces. 

Deniirci aud Codter [I] implemmted this type of control s~iccrssfully in niolding 
processes. Given a mold shape with specifid inkt gate and vent locations. one can 
i d ~ n t i b  the desirecl flow progression xhemes. Experirnents were condiicted wi t h a tw* 
dimensiond. irregiilar mold cavity to test the performance of the control unit during 
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j actiial injection molding processes. Two inlet gates and three different desired fiow 
progression schemes were considered. The experinictital apparatiis in the injection mold 
filling experinients diiring this stiidy is show in Fig. 1.1. The asembly inclildes a two- 
dimasional transparent mold cavity with two inlets (supplied by two tiibing pumpo 
with corresponding piimp controllem) and embedded sensors. Liqiiid was siippüd 
from the resin tank. Also, a video camera was iiwd to monitor the flow pattern 
arising during the injection mold filling experirnents. 

The control method can br siimmarized as follows. At anje given time. nieas~ire- 
ments of the interface position were obtained. Then, tising a Fortran program. they 
cornparrd t his present interface position with the interface position dong the desired 
Bon* progression path identifwd earlier. In this way. they detrrmined the desired in- 
terface position that was closest to and following the presmt interface position. This 
position can be cakd the drsired interface position of interat for the given tinie step. 
The algorithm was then repeated many times. At each ins%ance, the input rvas set to 
the present interface position plus a different inlet flow rate combination. By ninning 



tliis step r~peatedly with different inlet flow combinationu, the int~rface position can 
bt. calciilated for euch time step. Also, they cornparrd the resiilt ing prdictrd interface 
position from each oiitpiit with the desired interface position of interest and foiind the 
prwiicted interface position that was closest to the desired interface position at the 
given tirne level. The inlet flow rate combination that gave the predicted interface po- 
sition was the best choice for the current time step. This procediire was t hm repeated 
for siibseqiient time steps iintil the mold cavity is filled. 

In thk: thesis, a deterministic control strategy, based on solutions of the governing 
transport eqiiations, wiii be adopted, rather than neural network control in the previ- 
oiis example. 

In this procdure, w can have a "forward modei" or an inverse model". In the 
fonvard modeling cas .  a present interface position and an inlet flow rate combination 
are given and the model is expected to preclict the shape and location of the next in- 
terface. In the inverse modeling case, a present interface position and a next interface 
position are given and it is expected to predict the inlet flow rate combination that 
provides these two consecutive interface positions. It was shown in the previous study 
that an inverse model can be more usefiil than a forward model becaiise the inverse 
nioci~l direct ly calciilates the appropriate inlet flow rate combinat ion at partic111a.r 
t iriii.. Tb fonrïird rnodel. on the other hand. giws one of nmiy possiblr siibsecpent 
interface positions. A search method miut then be employed to fiiid the optimal iniet 
flow rate combination at each time step that le& to the best of al1 possible siibsrqiient 
int ~rfiice positions. 

The control scheme iising a forwucl model reqiiires the nimiericd calctilation of the 
direct hmt triusfer prohlem. Coriwrwly, the control schme iising an inverse niodd 
rqiures r he niim~ricai cakiilat ion of the inverse heat tramfer prohlem. 

1Ioüt heat transfer prohlerns are concerned ~ 5 t h  
at  interior points when certain initial and boundary 

the deterniinat ion of temperat iires 
conditions are given. mch as  speci- 



f i d  teiiiperat lire or hmt fti~u bolindary condit ions. These pro blems are called "direct" 
prohlriiis bwüiisc. the soliitio~is involve a direct integration of differential qiiations 
wit h kiiown iiiit i d  conditions. ?iiirneroiis r~search st ildies have been perfomed on t his 
topic. The methods for these problems have been weli developed. 

On the other hand. the inverse heat transfer probbm is concerneci with the esti- 
niatioti of the reqi~ird boiindary heat flux or temperatiue valiies based on internal 
mrosiiremrnts or a desired internal process behaviour. It is WU known that an inverse 
prohlem is miich more difficult to solve numerically than a direct problem. Its solution 
strongly depends upon the amount of error in the prescribed data for two main reasons. 
Firstly, in the direct problem, any fluctuations in the applied heat flux are damped as 
the heat diffuses throiigh the solid medium. In the inverse problem, the opposite sit- 
uation occim. The fluctuationv or noise in the measurements will be amplifieci in the 
projet  ion hack to the boiindary. and the resiilting siuface condition estimates can be 
easily owrwhelmed by the noise in the interior measurement. Secondly, the physics of 
heat condiiction introduces a aatiiral lag between the applied boiindary temperature 
or heat fliix and the temperatiue response at interior points. Thus, a step change in 
the surface temperatiire or heat fliix d l  not be f d y  felt in the interior until a finite 
amoiint of time has passeci. 

The inverse Iieat transfer problern has bem applied to two niaiii areas: ( i )  thc [riverse 
Heat Condiiction Problem (IHCP). and (ii) problems involving phase chanq. 

1.2 The Inverse Heat Conduction Problem (IHCP) 

In the: Inverse Heat Condiiction Problem. the desired siuface tempwatims or heat 
RI LWS WP est imatcd by iit ilizing t ransimt temperatiire measi trenients at one or more 
intrrior locations of the specified domoin. 

The inverse heat conduction problem has beeu the mbject of considerable research. 
Several niethods have been proposeci to solve the IHCP. It is worth mentioning that 



Stolz [2] presrnted one of the first stiidies of inverse heat transfer problems with a 
niini~rical met hod. Stolz formidates the inverse problem as thoiigh it is a direct prob- 
lem and obtains an integral equation for the iuiknown siufacr condit ion. The solution 
is ob taiiied by nimierically invert ing the integral eqi iations. This procediire becomes 
imstable if the time step becomes small. Biirggraf [3] foiind an exact series solution to 
n one-dimensional inverse problem. The temperatiue and heat flux histories are given 
at a single intemal point. Approximate resiilts are found if discrete or experimental 
data are itsed. 

The weli-known methods for the solution of the IHCP are the sequential hinction 
specification met hod [4], the regiilarization met hod (51 and the combined function spec- 
ificat ion and regiilarizat ion (CFSR) me thod. 

(i) The Sequential Function Specification Method 

Beck [4] has stabilized the IHCP by using several future-time temperatires with a 
least-sqiiare method to cdciilate components of the heat flux a t  a given the .  This 
method is called the Sequential Function Specification Method. It can improve the nii- 

mrrical stability of IHCP solutions effectively. The main idea of this method is given 
as followu. A tempocary assiimption is made that the heat fli~ws or the temperattues 
are constant owr r fiitiim t inm:  this iissiimption will be stibseqiiently rmiowd. -411 
estimatr is soiight for *)ie vdiie of heat AILY or temperattue. constant owr r fiitiire time 
steps. t hat rnininiizes the l e s t  sqiiares emor brtween the compiited and nirasiired sen- 
sor temperatiues. SImy authors have applied thi: approach. i.e. Bass r t  al (61 and 
Osman and Beck [7]. 

(ii) The Regularizat ion Met hod 

The Regidarization method was proposed by Tikhonov and Arsenin [SI. I t  is a 
procediire that modifies the least squares approach and provides stability by adding 
smoothing factors that are intended to rduce the infliience of measurement error in 



the data. An aiignientrd mm-of-squares htnction is miiiimized. This met hod involves 
t h  wtiole doniain in the sense that it iitilizes al1 of the data to estimate simiiltaneoiwly 
the ht-at fliru cornponents. Thiis, if the soliition is n e d d  oowr a large domain and a 
long period of time. th? dimensions of the matrices and the number of compiitations 
iiivolved increase accordingly. The influence of the regiilarization component is deter- 
m i n 4  by the magnitude of a regiilarization parameter. Different criteria are foiind in 
the literatiw for the selection of this permeter, i . ~ .  Tikhonov and Arsenin [5], Miirio 
[SI, Scott and Beck [9]. 

(iii) Combined F'unction Specification-Regularization (CFSR) Method 

This method is also presented for the solution of the iHCP by Beck and Miirio 
[IO] and Osman and Dowding [Il]. It is u s d  to stabilize and smooth the estimates 
of the surface heat flux distribution. I t  diffen from the global regcilarization methods 
in t hat the solution is found seqiientially, t hereby greatly improving compiitational 
efficiency. This method was shown to be very cornpetitive with the global regiilar- 
ization methods in t e m  of the heat flux estimates. In studies by Beck and Murio 
[IO]. Tikhonov regularization way applied to the time variation of heat flux. Also, Os- 
man and Dowding [Il] apply the regularization to the spatial variation of the heat flux 

1.3 Inverse Heat Transfer Problem with Phase Change 

Probl~ms iiivolving phase change me accornpanied by either absorption or relt'ose of la- 
tent energy (niel t ing or solidification). A moving boundary exists and separates the two 
phases of differing thermo-physical properties where latent energy is either absorbed 
or i ib~rat~ci .  The heat transfer proccsses now becorne more coniplicatrd in cornparison 
to the IHCP. 

In inverse problerns wit h phase change, the temperature and the interface velocity 
may hc prescribd at the phase interface. The reqiiired temperature and heat RILK at 



thr stationary boiiridtuy of the domain are thrn iinknown and must be determined by 
the analpis. Diie to the prwnce of the moving interface. the above problems may 
br strongly non-linpar. Therc are only limited studies on the siibjxt of inverse heat 
trarisfrr wi th phase change. 

We will consider previoiis methods that have been proposed for the solution of this 
problem. They can be categorized into the analytical method, front-fixing method, 
front-tracking met hod and the fixed domdn method. 

( i) Analyt i d  Met hod 

There are only a limited niimber of analytical solutions available, which are mainly 
for one-dimerisional problems. Rubinsky and Shitzer [12] derived analytic infinite-series 
solutions to the onc-dimemional inverse Stefm probbm in Cartesian and spherical co- 
ordinates. Condiiction heat tramfer was assiimed in the liquid region. Frederick and 
Grief [13] prt~ented another rnethod, which can be w d  to obtain the solution of prob- 
lems involving phase change. The solution in one of the phases is specified as a known 
singlephase solution. An inverse anaiysis then determines the solution for the other 
phase. 

(ii) Ront-fixing Method and Front-tracking Method 

In the Front-fL\ting method and the Front-tracking mthod,  the solid and liqiiid 
regions are treated separatdy luid the phase change interface is explicitly handled as 
a moving boiindary. 

For the one-dimensionai case (Fig. 1.2). the problem involves consideration of the 
conservation of etirrgy in the domin by dividing it into two distinct doniainu. R1 ancl 
fis. wherc. Rt + R, = R. The enprgy conseri-ation is written as two separate eqtiiitioris 
in the liqiiid (R,) and solid (Q,) regions, respectively. i.e. 



Figure 1.2: Onc-dimemional solidification 

whers the siibscripts 1 and s denote liqiiid and solid, respectiwly. The complete descrip- 
tion of the probkrn involves, in addition to the initial conditions and the appropriate 
extenial boimdary conditions, the interface conditions on the phase change boiindary, 
rSl, which are 

rvhere sl rppreients the position of the interface. ds/dt is the interface wlocity and 
Tm is the phase change temperature. Eq. (1.4) States that the h ~ a t  transfrrred by 
condiiction in the solidifid portion is q i a l  to the heat entering the interface by la- 
tent heat liberation at the interface and the heat corning from the liquid by condiiction. 

In the front-fixing method, the moving interface is fixeci with a proprr coordinatr 
transfomat ion and the interface becomes effect iwly stat ionary For inverje problems 
ahere the interface position is specified a priori. it will be shou?i that these tram- 
formation techniques offer significunt advantages. However, t h e e  methods introdiice 
numericd complications. Zabarav [l4] iwed a front-fixing method to obtain the solil- 
tion of several one-dimensional inverse solidincation problems. A finite element method 





whew H is the ent halpy fiinction and only transient k a t  condiiction is considerd The 
eiithalpy change is writteii in terms of sptrific heat miiltiplied by temperature change. 

Theii. appropriate heat source ternis, or modified (apparent) specific heat, involv- 
ing latent heat. are introdiiced and a single differential equation is solved over the 
whole domain (solid and liqtiid). This method haï the great advantage of simpler 
numerical impkmmtation and an easier iticorporation into exïsting codes. Volier (191 
introdiiced an enthalpy method to solw the irivme one-dimensional Stefan problem. 
The discretized equation is obtained by a control volume approach and a time-stepping 
scheme. In solving this equation, hi te  differences are used and the value of the iiquid 
lraction is used to track the progress of the solid-liquid phase interfwe. The deter- 
mination of time stap and nimerical gid iy based on the prescribed movement of the 
phase interface. The method rqiiires that at any time step the phase interface moves 
Erom one node point to the next point. An iteratiw techniqiie is adoptd siich thirt the 
solution provides a specified movement of the phase interface. 

1.4 Effect s of Convection on Solidification 

In some cases, it is svfficient that phase change problems c m  be analyz~d ~ 5 t h  con- 
duction heat transfer only. However. convection canot  be neglectcd in other cases 
of practicd interet. Licpiid flow diiring solidification nffrcts the morphology of the 
solid/licpiid iiitrrfiic~. solidincation rate and the ternperat t u e  distriht it ion. Ir may bc 
necessaq- to t akp into accoiint convection effects in the inverse solidification probiem. 

Convection heat t r a d e r  problems are nomally dividd into two broad clitegories, 
namely forced convection and free (or natiual) convection. In forced convection, the 
fliud motion is diie to externally applid pressure or viscoiis forces. Wwri the Aiud 
motion is prodiiced by btioyancy forces. which are iistially dtie to temperétriire or con- 
centration gradients in the flow. the process is cailed frw or natural convection. 

There is an important difkrence between forcd and natiual convection. Iu the for- 



mer case the flow is externally imposeù and is often independent of the temperatiue 
field. The flow field can thiis be obtained independent of the heat transfer processes 
and then ilseci in the detem~ination of the temperatiue field. In natilral convection, on 
the other hand. the flow and heat transfer mechanisnu are typically linked, since the 
flow itself arises due to the temperature differences in the fliiid. As a resiilt, the flow 
field cannot be obtained independent of the temperatiire field and the two processes 
m u t  be considered simiiltaneoiwly. Because of these complexities, natural convection 
flow are generally more difficult to solve (analyticslly and numerically) as compared 
to corresponding forced flow circumstances. 

Several papers have been publisheâ on the numerical calculation of the direct solidi- 
ficat ion problem with natural convection. One of the first significant investigations was 
by Spmow et ai. [20]. They solved an axially symrnetric solidification problem using 
an implici t fini te difkrence method. Marshall et al. (2 11 and S trada and Hoinrich [22] 
dewloped a finite element method t hat compiited heat transfer rates for stedy-state 
natiral convection in a rectangiilar enclosiue involving high Rayleigh nwnbers. Mc- 
Daniel and Zabaras [23] presented their resuits on twdimensional solidification and 
melting problems for pure met& using a Ieast-squares Eront-tracking finite element 
method. Only few studies have considered the nitmericd simulation of inverje solidifi- 
cation wit h the effects of nat tua1 convection. Voller [24] piihlished resiilts that rxtend 
the inverse nicthod to solidification and melt ing problems of met& in which A~iid f l o ~  
occttrs in the melt. 

In this thesis. the effects of natiiral convection on inverst. solidification prc~blem will 
be considered. 

1.5 Scope of Present Study 

It is apparent that niunerical simulation of heat transfer plays a very important role 
in the control strate= as mentionid eariier. In particidar. an inverse method for heat 
transfer problems is useful for control implementation in solidification proceses. 



This thesis will addres the niimrrical simulation of the inverse hcat transfer proh 
Icrri with phase change for sdidincation procwe~. A F k d  Domain Xfethod will be 
i t i d  for one and two-dimemional solidification problems siich that the phase interfice 
nioves iiniformly and sat isfies a desireci progression. The solidification probiem wit h 
and withoiit Riud BON* will be considered. During the numerical calciilation, since the 
Second Law of Thermodynamics shoiild be satisfied, an entropy-based met hod is intro- 
diiceci to improw the numerical stability of the formidation. A Finite Element Methoci 
is ernployed for the numerical discretization. In order to demonstrate the promis- 
ing capabilities and performance of the current formulation, some examples involving 
conduction with phase change will be presented. These inciude onedimensional and 
tw*dimensional problems with an interface moving at a constant velocity or a specified 
variable vdocity. Also, the numerical results for an example that incliides the effects 
of fliiid flow will be presented. 

It is anticipated that the contributions of the present work can be realized in three 
regards. Fimtly, a control volume based finite element discretization is employed in 
the formulation of the inverse procedure. in this way, the mode1 is conservation based 
while retaining the geometric flexibility of the finite element method. Secondly, an 
entropy based techniqiie is proposed for the improvement of numericd stability in the 
inwrse nirthod. It considers locd violations of the Second Law. dile to discretizatiori 
mors. ns a criterion for a corrective stratrgy in the compiitations. The niagnitiide 
of riegative rntropy production can be used in a qiiantitative correction of the a p p w  
m t  thermal condtictivity It wili be shown that this approach provides an effective 
alternat ive to previoi ti inverse stabilizing techniques such as hture tinie stepping. Fi- 
nally. the mode1 is extrnded to a problem considering natiiral convection. As a resilt, 
the fomiiilation appelirj capable of handling phase change with Buid flow. The abow 
developnients can provide important contributions in terms of control engineering in 
coiipled thermal/fliiid processes involving solidification and melting applications. 



Chapter 2 

Mat hemat ical Mode1 

2.1 Descriptions of Inverse Solidification Problerns 

A soüdification problem occ~in when a substance has a transformation point whereby 
it changm from liqiiid to solid with an emission of latent kat .  The essential feature 
of such problems is the existence of a moving interface with respect to the subutract, 
i . ~ .  in some cases, a solidincation probkm requires only motion with respect to the 
material which itself is in motion. 

Heat t r a d e r  problems dealing with phase change at a constant temperature (i.e. 
piire materiais) are referred to as Stefan problems. The Stefan problem involves the 
solidifiait ion or nielting of a p i u ~  matpria1 and it is chsracterizcd by a distinct rnoving 
phase change boiindary wit h respect to the material at which u. heat bailuice condition 
hm to be satisfied. The way in which this interface moves h typically controlled 
by the boiindary temperature; in other woràs, the temporal location of the interface 
between the phases is &en and the required temperature at the fixed boiindaxy is 
calculateci. This is the so-calleci inverse Stefan problem. For the inverse design probl~m. 
it is desirabk to approximatc. the boiindary trmperatiire history that midd produce 
a prescribed interfacial motion. With this information. one can hopefidly develop a 
controiled experiment that produces the dtycribed boimddary condition to ensure a 
des i rd  niot ion of the phase interface in a practical application. 



2.1.1 Description of Inverse Stefan Problem 

Figiim 2.1: Iuvenr Stcfaii pwblein, Ciaf (a) 

Consider solidification in a ngion (Figs. 2.1-2.2) occiipied initially by a pure liqriid at a 
temperature T,&). with Tm denoting the melting temperatiue. Since the top. bottom 
and right boimdaries of the cavity are insulated, no temperatiue gradients will occiu 
in the liquid region normal to these boundaries and the position of the interface wili 
be controlled by the temperature at the Ieft boundaxy of the cavity The conductivity. 
K. density p. and specific heat. c. are asstuned to be temperature independent. The 
melting temperatiue, Tm. is giwn. For case (a), it is assrimd that the interface nioves 
in the x direction and the shape of the interface is a vertical straight line at aii times 
and the velocity of the interface can be constant or variable. For case (b), it is assimed 
that the interface velocity in the y direction varies according to position and the shape 



of the interface is a straight line. In the nbove example, al1 points on the interface 
reach  th^ right b o i i n d q  at same tirne. We will salve these problems to a~isess how 

the temperatiires of the left boiindary shoiild Vary with time to prodiice the desired 
iiitcrfacr motion. In case (a), the temperatiue at the left boundary will be iiniform 
and it will only change with tirne, To(t). It can be treated as a one-dimensional heat 
transfer probl~m althoogh the discretized domain will be tw+dimensional. In case 
(b). ive have a tw-dimensional problem, where the temperature at the left boiindary 
changm with hoth timr and position y, (To(tly)). 

2.1.2 Description of Inverse Stefan Problern with Fluid Flow 

Fiqirc 2.3: Inwm Stcfrin problcrn with fliiid flow 

Consider solidification in a rectangtilar region (Fig. 2.3) occiipied initially by a piire 
liqiiid of temperatlire T,, ( .r) .  M e n  the liqiud is stiperheated. fliiid Flow will play a 
rok in hear transtr. The position of the interface is controlled by the temperatin of 
the kf t  boiindary in  th^ cavity Given the interface velocity and assiuning that this 
interface moves uni formly wit h a vertical profile at all t imes, t hen. dile to fluid flow and 
convection, the temperature of the left boundary wodd not be uniform. We wiIi sohe 
this problem to asses how the temperature of the Mt bocindaq shoiild vary This 
teniperatiire at the left bo~mdary will be a functioii of time and position y. (Ta& y)). 

The problem 
makes it a fu11y 

occius in a twedimensional domain and fliiid flou- in the liqiud region 
twc+dimensional inverse heat tramfer problem with phase change. 



2.2 Governing Equat ions 

The processes of heat transfer and Ritid flow are governed by fundamental principles 
from th~rmodynamics and mechanics. These principles are the conservation of m a s ,  
monientum, and energy. The conservation principles are general statements that are 
applied in a local sense, leading to the continuity, momentum and energy equations. 
These eqiiations describe physical processes and they are the mathematical statements 
of three fiindanienta1 principles: (1) m a s  is conserveci; (2)F = ma (Newton's Law); (3) 
energy is conserved. The phase change process occm within the energy conservation 
equation. 

2.2.1 Definit ions of Dirnensionless Variables 

The qiationu of heat transfer and fliiid flow may ba non-dimensionalized to achieve 
certain objectives. Fintly. it woiild provide conditions upon which dynamic and anergy 
similarity may be obtained for geometrically similax problems. Secondly, the solution 
of these eqiiations would usually provide convenient values within iimits between zero 
and one. 

In this work, the governing eqiiations will be written in a dimensionles form. 
will define the following dimensionlms variables. 

where l' represents any material property, mch as condiictivity or density. @ represents 
a general dependent variable. ,& is a reference lsngth and al is the thermal difhsivity 
in the iiqiiid. For the individual scalar fields, the reference scnlar variables are 



The siibscripts i and w refer to reference temperatire, they can be taken as maximilm 
and minimum temperat ures, respect ively. 

The key dimensionless qiiantities WQ the Stefan number (Ste). Praxidtl number (Pr) 
and the Rayleigh number (Ra). They are defined as 

c r u 0  Ste = - L 

where L is the latent heat. ,û is the thermal expansion coefficient and u is kinematic 
viscosi ty. 

In all siibsequent governing equations, al1 variables are in a dimensionles form 
without the superscripts * (removed for brevity). 

2.2.2 Governing Equat ions 

The solidification problem with fluid flow may arise froni naturai convection in the 
iiquid and twephase regions. The governing equations are obtained by applying the 
principles of conservation of mass, rnornentu.cn and energy to a finite control voliunc. 
locatd at a given position in the region. In t his situation, m a s ,  momenttun and en- 
ergu eqiiatiom need to be considerd sirniiltaneoiwiy. 

(i) M a s  equation 



Consider the niodel for a finite control volume fived in the region. The fiindamental 
physictil priiiciple that mius is consamed is applied to this control voliime. It meanv 
that 

time rate of decrease of Net mass flow out of control 
nias inside control volume volume through surface 

As~iirning the fliiid is incompressible and 
eqiiation is written as: 

au 67) -+- a~ anr 

the density remains constant, the m a s  

= O  (2.13) 

CVhen phase transition iy considered, the this masv balance is applied in each phase 
separately! and then results fiom aii phases are summed to give the mixture equation. 
The form of the resulting eqiiation appears identical to the above equation, but de- 
pendent scalars (i.e. u,v) are interpreted instead as the m a s  fraction-weighted siim of 
individiial phase values, i.e. v = fItrS + fi vi is the mixtiue velocity, where f, and fi 
refer to solid and liquid fractions, respect ively. 

(ü) Momentum equation 

Similady, the momentiim equat ion is obtained for a 

hIass accelerat ion Body forces on 
in control volume control volitme 

It can be written as 
(x-direct ion) 

( y-direc t ion) 

control volume as 

Surface force on 
control voliune 

where p can be e x p r e d  as 



H m  pd refers to the dqnamic pressure component and po refers to the hydrostatic 
pressure cornponent. Also, h refers to free siuface height; in this thesis, free surface 
motion d l  not be considered. 

In Eqs.(2.15)-(2.16), the term on the left hand side of the equations represent time 
rate of rnomentiim change inside the control volume and the advection rnomentiim flux, 
respectively. The terms on the right hand side of the eqiiations refer to the pressure 
forcr, viscous forces, body forcm and moment iirn prodi ict ion due to phase interactions. 
respectively. For example, momentum production due to phase interactions may arise 
due to Biiid acceleration through pockets or channels in the solid dendritic matrix of 
the twephase mixture. Ducy's Law will be employed for these terms since the proceïs 
appears analogous to fluid flow through a porous medium. In particular, Darcy's Law 
is given by 

h Z G  = W ( f 4  (2.18) 

where K, refers to x-direction permeability and u, = ul-us representu the x-component 
relative phase wlocity. The permeabiiity coefficient decreases as fi (liquid fraction) de- 
creases to a limiting value of zero as the multiphase region becornes completely solid. 

In adopting mixture qtiantities in the above momentum equations, their form a p  
pears very similar to the corresponding single phase eqiiations. In witing the con- 
senntion rqiiat,ions in terms of these mktiire qiiantities. we then ohtairi a standard 
fom for the fliiid flow qiiations (i.e. 3 eqiiations for mixture i1.v.p) rather than mul- 
tiple eqtiations for individiial phase qiiantities. However, the source: terms, G, and 
G,. inclilde permeability effects (as dixussed above), as well as convection terms (Le. 
convection dinerences between mixture and individual phlise quantities) resiilt ing kom 
si immat ion of the individiial phase equat ions. 

LVe will assime that the fliuds tue il'ewtonian fluids, i.e. shear stress in Biiid is 
proportional to t ime-rate-of-strain (wlocity gradients). The kwtonian constitutive 



relationships apply to the phase stress tensor, siich that 

This resiilt holds under conditions wit h moving monotonie gas~s (Stokes relation). 
in certain situations, such as d t rwn ic  w a w  involving more complex fluids, experi- 
mentu also indicate the validity of the Stokes relation. This relation is often adopted in 
order that the viscous transport can be wri t ten in terms of a single viscosi ty coefficient. 

Also, we will assime that the fluid is Boussinesq-incompressible; in other words, p is 
constant except in the body force term of the y momentum equation. The Boiwinesq 
approximation assumes a ünear dependence of density on temperatiue. Therefore, 

wherr p is the density in the ambient mdium.  T, is the amhient temperatiue and ,@ is 
the thermal expansion coefficient. 

S~ibstiticting Eqs.(2.19)-(2.21) and Eq.(2.23) into Eqs.(2.15)-(2.16) and iising Eq. 
(2.13). we obtain the foiiowing momentiun quations for an incompressible fltud : 
(x-direc t ion) 

(-direct ion) 



where we have assiimid a zero solid phase velocity. The ahove equations apply to the 
liquici region in the phase change problem. 

(iii) Energy equation 

Consider the mode1 of a finite control volume 6xed in the region. The fiindamental 
physical principle that energy is conserved is applied to this control volume. It means 

Rate of increase of energs- Net Aux of heat into 
inside the control volume the control volume 

The conservation equation for energy then has the following fom. 

where H is the phase enthalpy and p is density. For most solid-liqiiid phase change 
materials, the assiimption may be employed that 

where e is intemal energy and it is defined as 

whrre c , ~ ( T )  repr~sents the effective specific heat of phase k. 

In the above eqiiations. the specific heat is set constant in each phase region and 
the density is set constant throughotit the domain. Problems that involve a density 
ciifference acrws the phase change reqiiire an additional advection term in the heat 
transfer equation to account for shrinkage driven flows. However, this effmt will not 
be considerd in the present work. 

2.2.3 The General Conservation Equation 

The foregoing equations can be consiciered as particidar cases of the generd eqiiation 
d - ( p @ ) + ~ * ( ~ V a )  =v-(Jj+S t3t (2.30) 



The pneral eqiiation consists of foiir terms; they are the unsteady term, the con- 
vection term. the diffusion term and the source term, respectively. 

2.2.4 Special case: Stefan Problem without fluid flow 

The solidifkat ion problem wit hout Auid flow involves heat condiiction and the release 
(/absorption) of latent heat. Since no Auid flow aises, rnass and momentiim conser- 
vation do not need to be considered. The governing eqiiation for twedimensional, 
solid-üqiiid phase transition of a pire material, is nrritten followvs. 

d 
ai(~e) = V (kV T) (2.3 1) 

After a supplementary equation of state has been specified, e=e(T), then the energy 
equation may be written in terms of the temperature field done. 

2.2.5 Enthalpy Equation of State 

An enthdpy eqiiation of state is &O required in order to write the energy equation in 
tenns of temperature alone. The piecewise linear equation of state can be expresseci in 
one equation. where the subscripts k=1,2 refer to the solid and üqiiid phases, respec- 
tively, as 

Referenc~ d i i e s  c m  be obtained hy integration of the Gibbs eqiiation fkom a point 
in the liqiiid region to another point in the solid region. These d i i e s  have been 
consistently set to 
(k=l) 



c' Cs 1 
e,2 = -(q ci - Ts) + -Ts cz + - Ste 

In this way, latent heat tramfer occim through the above & term since phase 
change reqiiires an energy change corresponding to the latent heat of fusion. 

2.3 Boundary Conditions and Initial Condit ions 

The governing equatiom above present several dBerent possibilities. The temperature 
fields and flow fields are quite different for these cases, dthough the governing qua-  
tions are similar. This is partly because they have different boundary conditions and 
different initial conditions. The boundary conditions and the initial conditions dictata 
the particiilar solutions to be obtained from the goveming rquations. So, the formula- 
tion of a problem requires appropriate boundary and initial conditions. 

Spatial boundary conditions in direct heat tramfer problems are of three general 
types. They may be stated in a simplified mathematical fom as foilows. 

1. Dirichlet Boi indq  coiidit ion: specifieci vallie of sidaci. teniperat i w .  i . ~ .  

@ = f~ (2.39) 

2. Xeiunann Boiindaq condition: specified value of ocitward normal heat flux or 
temperatlire gradient. i.e. 

3. Robin boimdary condition: convection conditiont i.e. 



For the case of heat triinsfer with fliiid flow, the boiindary conditions on the flow vari- 
ables are ~sp reyü~d  in tcrms of Aiiid velocities. Zero velocity conditions am prescribed 
alilorig al1 solid bolindaries. Other pwibilities include Neumann (zero fli~x) conditio~is 
dong a linr of symnietry, or prescribed values at  a flow inlet. 

For the inverse problem, with the exception of the boundary where the temperatlue 
net& to be controlled, al1 boiindary conditions can be treated as in a direct prohlem 
(Dirichlet. Seimanri auci Robin bouiidary condit ions). At the controlling boiindary, 
the temperatures are unknown and they represent the solutions of the problem. The 
temperature at this boundary W obtained by iterationv following an initial estimate; in 
other words, a t  the beginning of each time step, an estimatd temperature is initiaiiy 
given. Usuaiiy, it is set equal to the temperature a t  the last time step. During each 
time stcp in the solution, the controlling boundary temperature (Le. x=O) is updated 
at e c h  iteration iintil the predicted movement of the interface agrees, within a giwn 
tolerance. with the specified mowment. The update u s d  in this work is given by: 

(2.42) 

where m is the iterative counter, the subscript p refers to nodal point p and R is the 
sensit ivity coefficient (dixiissed in next chapter). 

Sirice t hr prohlrm is t inv  dependent (transient ). i . ~ .  the variahles change \vit h tinie. 
the initial condition shoiild give the distribution of the temperatin and the vdocities 
owr the ent ire region at the init i d  t ime, t = 0. 



Chapter 3 

Numerical Mode1 

Finite Element iMethod and Finite DifEerence (Volume) Methoch are the most common 
numerical methodu for heat tramfer analysis. The principal advantages of the finite el- 
ement approach are the ability to handle irrepuiar geometries and treatment of difficiilt 
boiindq conditions. Also, the overall flexibility of the approach in t e k  of changing 
geometries or physical proprrties, wit hoiit altcring the soliition algorit hm, is a major 
benefit. On the other hand, finite element codes for heat transfer and fliiid flow are 
still far from optimal and are currently rindergoing further developrnent. They may be 
lesu efficient or l e s  easy to code initially in cornparison to finite difference methodu. 

A fini te element met hod is a mathematical procediire for solving a partial different i d  
qiat iot i  iri an intrgnl sensr ucrom a finite eknient. It r q i i i r ~ s  that an integral r e p  
resentation of a partial differential eqiiation is coastnicted. The solution of a physical 
problrm by a finitr element method follow a wll-drfined sequmtial process. Firjtl.  
the phpical region is discretized into elements. The niimber. type, and allocation of 
elemrnts are often a mattrr of judgment. Secondly, interpolation or shapi. fimctions 
are sei~cted for the elements. The interpolation functions repreJent the assimed form 
of the spat i d  soliition in the elernrnts and are related to the xiiimber of nodes in the 
elements. Thirdly. the matrix eqiiations for an individuai elenlent are formidated iwing 
the integral statrment for the element. Foiirthly. the matriv eqiiatiom for the overall 
-stem. consisting of d the ekments, are assernbl~d~ The global equations have the 
same form as the ekment equationu but they have a larger dimerwion. Finally, the 



global eqiiations are solvd. Post-processing of resiilts can also be piirsmed. 

Some aspects of the finite elenlent progam disciisseà in this chapter (i.e. fluid flow 
algorit hm) have been developed elsewhere [25] in the context of direct problem. The 
contributions of this thesis appear through the extensions to inverse problems. As a 
msiilt, the entire formulation is described as it relates to implementation of the inverse 
procecicliir~. 

3.1 Discret ization of Solut ion Domain 

The fin* step in a finite element approach is to subdivide the volume into a set of 
subvolurnes while nodes are distributed throughout the domain. A twedimensional 
domain and linear, foiu-noded quadrilateral elements are used. A typical element is 
s h o w  in Fig. 3.1 with the local non-orthogonal coordinate system. The> coordinates 
are denoted by s and t. The range of both coordinates is from -1 to 1, with the nodes 
niimbered from 1 to 4. Figue 3.2 shows the control voliime which is divided into foiu 
sii b-cont rol-volilmes ( SCVs) . The boimdaries of ~i ibcont  rol-volumes are calleci si ib 
surfaces (SS). An integration point (ip) is defined as the midpoint of each siibsurface. 
Shape fiinctions are ernployd to relate the local and global coordinates. 

-4 gen~ral mriabl~. a. globd coordinates. and deri~atiws of the gewriil variable 4 
are ~xprtssrd in ttir following forni. 



where finite slemcnt shape fiinctions Ni are iwd to relate global Cartesian coordinate 
and scalar values, 9, to local element values in a bilinear fashion. They represent the 
local shapa fiinctions Ni (i=1,2,3,4) for the linear quadrilateral elements at the local 
coordinate (s, t) . 

However. the x and y derivatives of the shape fitnctions are not p t  known. They are 
detrrmined iising the chah nile with the following resmlts. 



Figtirc. 3.2: Coritrol volitnic 

vv here 

is the Jacobian determinant. Also, 

Control Volume 

These geometric qiituititi~s are compirted at an ebment level at rach time step. 



3.2 Discret ization of Governing Equat ions 

The discrete control voliime qiiations can be derived by integrütion of the continiiiim 
~qiiütions, Eqs. (2.13), (2.24), (2.25) and (2.27) over finite control voliim~s and time 
interwls. This incliides a net surface flow balance with source and temporal storage 
voliime integrah. For SCVl within the shaded control volume (Fig. 3.2), Eqs. (2.13), 
( Z N ) ,  (2.23) and (2.27) are integated to yield the following integral consrnation laws. 

The vector denotes advection flux and Pd denotes - diffusion flux. A h ,  Ss 
represents the source t em.  Integration over a time interval At = tn+' - tn yields the 
eqiist ion 

where Ji is the SCVl area. The control volume (node n) qiation will be cornpleted 
when each element SCV contribution b essembleci into the global system of discrete 
eqiiat ions. 

3.2.1 Conservation of M a s ,  Moment um Equations 

The dgc h i c  rcpresmtations of t hr integriit ion point eqi [nt ions are reqtiired to forni 
the integration point eqiiations. The ciment approach is bas4 on the CO-located al- 
gorithm developcd by Schneider and Raw [26]. The algebraic oppro?ciniations of the 
integration point values are given as follows. 

(i) Convection Operator 

The convection operator at an integration point is represented by an upstream 

a@ C(@) = pv- = pv ds 



whert. V rrpresents the Ri iid wlocity magnitude, 

and s is the local streamwise direction 

Also. L, is the convection length scale and Qu represents the upwind value of a. The 
iipwind valiles. 9, were determined by two different models as describeci in ref. [23]. 

(5 )  Diffusion Operator 

The diffusion operator in all transport equations is represented different ially by the 
Laplacian, L(@) = v2(@). It  is approximated by a central difference, 

where Ld W a diffusion length scale. It was approximated by extensions from one- 
dimensional residts. In particular, 

whrre 4 .r  and Ay refer to length scales perpendicular and tangent i d .  respectiwly to 
t i i ~  siib-siirfiic~ in qiirst ion. 

(üi) Pressure Gradient Operator 

An approximatioii to the local pressure gradient in the x and y directions was also 
reqiiired. Shape fi inctions were employed in t his approxirnat ion, 

whcw the iipper-case convention represents nodal variable dependence. The p r w i u e  
g a d k n t  in the y direct ion is constnictd in a similar fahion. 



(iv) Tkansient operator 

A transient term at an integration point is approximated by a backward-difFerence, 

where the superscripts n+l, n denote current and previoiis time steps, respectively. 

Now, we c m  add the various operaton to form the complete integration point 
equation approximation. These integration point equations, at element level, can be in- 
verted to determine the integration point variables in tems of the nodal point variables. 
The above integration point operators are substituted into the momentum transport 
equation, i.e. 

ôû - + c ( i t ) = - ~ ~ + ~ ( ~ ) + Ë + 3  at (3 .25) 

Assembling each of the component operators in Eq. (3.25) and inverting the 4 
ebment integation point equations for f i i p  explicitly in terms of the nodal values, 

fiil = [ICUU]{U) + [IC"'P]{P) + {RS) 
and similarly for the y-momentum equation, 

whert. the IC matrices represent Influence Coefficient matricm and {RS) refers to the 
right side soiuce vector. 

The conservation of m a s  equation can then be obtained kom Eq.(3.17) with a(& t )  = 
1. F'' = O and = f i .  For the conservation of momentiun equation. @(P.'.) = L3(E t )  
and the mean mixtiire diffusion. advection and source term components of Eq. (3.17) 
are modeilmi by 



4 

Su, = l i p  - C fi&û;J + ( P ~ R ~ # ( T  - Tr) (3.30) 
i= L 9 

whwe the siibscripts i. j. k denote local nodes, coordinate directions and phases, re- 
spect iwly 

The cntire fltiid flow system is a press3irc-velocitl* coupled systcm of eqtiations whosc 
soliition consists of the three variables 11, v and p at each nodal point. Meanwhile, there 
are thret? equations ( m m  equation and two momenturn equations). This mems that 
the ntimber of equations is eqiial to the nrimber of variables. But the mass equation, 
apparently having no direct link to pressure, but rather an indirect link through the 
integration point equations, is an additional constraint on the velocity field. The m a s  
equa tion is considerd to be the main equation for pressure and the momentum q u a -  
tions provide birther eqiiations for the velocity components. 

The temperature-velocity coupling appears through the buoyancy terms in Sul. 
Althoiigh the pressure-velocity coupiing was resolved simultaneoiisly in these equations, 
the velocit-temperat tire coiipling remains segregated. In ot her words, the energy 
eqiiat ion ohtains temperat tue separately. and inter-qiat ion iterations (moment iim- 

rrirrgy qiiations). rather than a sirniiltaneoiis coiiplixig. are perfonnd tiritil acceptable 
conwrgcnce is achiewd. 

3.2.2 Conservation of Energy Equation 

The conservation of energy equation can be obtained by substitiiting 9(5, t) = e(5, t )  

in Eq. (3.17). The diffusion. advection and soiuce terms are approximrited by 



A Crank-Xicolson schenie is iised to evaliiate diffusion terms and sources at the in- 
termediate time level. In particiilar, this intermeàiate time level refers to the midpoint 
between the ciment time level and previous time Ievel. For example, if we let the 
superscripts n+l and n refer to curent and previoiis step, then the diffusion term in 
Eq. (3.31) is cvaliinted as 

The coefficients at step n+l remain as active coefficients in the implicit solution 
wherew terms at step n are grouped together in the source term. The time marching 
procediire then becornes second order accurate and algorithm essentially second order 
acctiratc! in space. 

3.2.3 Boundary Conditions 

At a solid wdl. al1 velocity components are specified as zero. The momentum equations 
for the elements at solid wail are replaceci by these equations (all velocity components 
are zero) in the global system. Furthermore, boundary conditions for the energy con- 
servation eqiiation may bs specified for Dirichiet, Neiimann or Robin conditions. The 
sprcific types of conditions are problem dependent and in the rxunple prohlenis (next 
ci1iiptt.r). le will identify t hese specific conditions. 

For an inverse probbm, the temperature at the boundary where the temperatiue is 
req~llrd and predicted is initidy unknown. Thw, it is considerd a problem variable 
instead of a boundary condition. It is obtained throiigh an itrrative procediire. 

3.3 Sensitivity Coefficient 

The sensitivity coefficient wiil be defined as foliom, 



where the siibscript O refers to boundary and p refers to nodal position. 

This coefficient essentially measures the influence of changes in the boiindary tem- 
peratiue To on the temperature at the point P (insida domain). The range of sensitivity 
coefficient R is between O and 1. The value of R expresses the temperatiue connec- 
tion between the point P and the boundary. As the sensitivity coefficient, R, becomes 
larger, then the inAuence of the changes at the boundary temperature to the point P 
becouies strouger. It i.: apparent that the closer the point lies relative to the boundq ,  
then the bigger the sensitivity coefficient becomes. This coefficient is used to update 
the boundary temperature in the current inverse method. 

Furthemore, if we mite T ~ ~ + '  in terms of a Taylor series expansion, then it can 
be expressd as 

We wiil neglect the higher order terms and only the first 2 t m s  are retained. If we 
rearrmge Eq.(3.36), then it becomes the same as the b o u n d q  temperature equation 
describd earlier in Eq. (2.42). 

Sow. ive d l  consider how to perform the niimericil cnlciilation of the smsitivity 
corfficirnt. Siibstitiit ing Eq.(2.32) into Eq.(l.31). we find t.hiit the heat condiiction 
eqi~ation becornes an equation in terms of temprratiire alonr. Then. taking derivatives 
Mth respect to Ta on both sides of the ~quation. the terms in Eq(3.31) and Eq43.33) 
will be taken (derivatives, one by one). The fint term on the right hand side of Eq. (3 33) 
is not a fiuiction of To (i.e. zero derivative). Then,we obtain a resulting equation in 
terms of the sensitivity coefficient. R. The resulting equations can he writtsn in the 
following form: 



where Jr refers to siikcontrol voliinie area. Also, 

Fiuthermom, we have the following boimdary condition where 

and the initial condition 
R ~ O  = O 

where the subscript denotes node point and the siipe~cript denotes the t ime level. 
Throiigh a similar procediue ay in the solution of the direct problem, the reiilting 
q ia t ion  can be solveà niimericdly and the solution R can be obtained. 

In Eq. (3.37), R is a matrix and every node point has a comsponding R value. 
I t  can br solveci niimericaiiy in the same manner as a direct problem. The boiindary 
conditions and init id conditions are known (Eq.(3.40) and Eq.(3.4 1)). B y solving 
Eq. (3.37), we obtain the sensit ivity coefficients for every nods point. FVhile solving t his 
cqiiation. iterations arr needed. When the differmce bstween valiies at two iterations 
is sriii\ll~r i hari r h~ specified tolrrarice. t hm.   th^ ciilciilat ion is trrniiniitrd. 

Wheii IW iipdiite the boiindary condition dilring the iterat ions in the inverse nwt hod. 
oniy the sensitivity coefficients on the interface points art. iwd. Since the interface is 
moving at each time step, the sensitivity coefficient at a different location is adopted. 
L\kn the controlling botmdary is parallel wit h the y-ais, the sensitivi ty coefficients 
vary only with x. For two dimensional solidification problems. the interface profile is 
not a vertical line and the sensitivity coefficients on the interface have differmt taliies. 
In this case. each point woiild i w  its own corresponding ~d i ie .  

In the inverse probleml the governing eqiiations are the sume as in dirwt prob- 
lem. The difference is that the interface position is given and the temperattues at 



t hr controlling bolindary are iinknown. The ot her boiindary conditions are given as 
in the direct problem. Diiring each tinie step, initially. a giiessed temperature at the 
controlling boiindary is i w d  and the equatioas are solved as a direct problem. The 
temperatures at the cont rolling boiindary are iipdated cont imiously through iterations 
iintil the predicted movement of the interface cornes within a given tolerance of the 
desireà pnth. Then the solution is terminated. 

In the inverse merhod, the interface is moving: it moves across one grid spacing 
at  each time step during the calculation. Given the movement of the interface (Le. 
prescribed velocity of interface), we then select a constant time step. During the 
caiculations, in order to ensure that at  any time step the interface moves from one 
node point to the next adjacent point, a h e d  numerical grid is specified. The grid can 
be iiniform or non-uniform according to the different interface velocities in a particular 
problem. 

3.4 Entropy Based Met hod for Numerical Stability 

Due to the difhisive nature of heat flow, the inverse heat transfer problem is ill-posed 
in the spri~e that arbitrarily s m d  errors in the temperature mearurements or interface 
position c m  lead to arbitrady large errors in the estimateci values of the boundary 
teniperat lire. himerical simiilations have show t hat numericd insrubility often occius 
in t l i r  iiiwrse b a t  transfer probkin. Diiring inverse cakiiliitioris. cvhm the i r i t d x e  
niows farther and farther lrom the houndas; it becornes more and more difficiilt to 
cont rol the interface by adjiist ing the bo i indq  temperat tire. Then. niirnerical oscil- 
lations are likely to occcir. In order to enhance solution performance and improve the 
stability of the algorithm. an entropy based method will bs proposed here. 

The scheme cturently iised in the niunericd solut ion of heat and fltiid flow is con- 
senative. This mrans that it conserves mass, momentiim and rnergy in any control 
volume. The First Law of Thermodynamics W satisfied for each control voltinie. How- 
ewr. t be Second Law has not received the same treatment. This is imfort mate because, 



withoiit an entropy condition, the eqiiations have many soliitions. some of which are 
rriruo~iable and smooth, whereas other possible resiilts may s e m  non-phyjicd (Le. OS- 

cillations). Fiirthermore, it hm beon shown that satisfaction of a ce11 entropy ineqiiality 
is si fficient , in some cases, to giiarantee non-linear st ability in niunerical compiitations. 

A few research stiidies have investigated the Second Law of Thermodynvnics for 
niimerical stability in solidification problems. Naterer [27, 281 iised an entropy based 
m~thod  ~iiccessfiilly in direct h ~ a t  transfer problerns. Entropy may becorne a mecha- 
nism for providing convergence enhancement in phase change computations. 

3.4.1 The Second Law and Generalized Entropy 

Although the First Law of Therrnodynamia allows for conversion fiom one form of 
energy to another, as long as the overall qiiantity is conserveci, experimental evidence 
indicates that in certain types of energy conversion, a restriction miist be placcd in 
terms of the direction and extent of transformation. For example, it is a fact that 
althoiigh work cm be compltely converted into heat, heat cannot be completely con- 
verteci into work in a continuous rnanner. It is the Second Law of Thermodynarnics that 
imposes restrictions on the direction and extent of energy transformation processes. 

The Second Law is a fiindamental law of nature. It can be stated in many dSerent 
foniis. siich as the Clatisiiw statrmcnt of the Secoud Law. as follows: it is impossible 
for any device to o p r r a t ~  in a cycle in such a mmnrr that the soie effect is the transfer 
of heat froni  on^ body to another body at a highrr temperatiue. In the case of a 
heat pwnp. or refrigerator. heat does flow from a region of low temperatiue to high 
temperature, but only when work is added to the machine £rom an outside soiuce. 
The Second Law of Thrrmodj-namics. through the property calkd entropq: permits a 
qiiantitatiw e\aliiation of thmnodjnnamic systems and predictü the direct iond nat tire 
of physical processes. It provides information that complements an analpis biwd on 
the conservation of mass and energy. 

A h ,  recent rwarch on computational inteterptations of entropy and entropy pr* 



duction has shown that entropy is related to discretization errors, artificial dissipation 
and non-physicd niixnericiil results. This means that in addition to physical mech- 
anisms prod ticing en tropy, we find that cornpii tat ional proceciiires can also prodiice 
mtropy. CVe can refer to "generalizd entropy" as the combined computational and 
physical entropy Then, the Second Law of Thermodynamics in a niunerical scheme 
can be expressed in terms of "generaüzeà" (computational plus physical) entropy as  
follows, 

where P, refers to the entropy production rate and Sk and f i  represent the thermo- 
dynamic entropy and entropy fliuc in phase k, respectively. The equality refers to 
revenible processes whereas the inequality refers to irrevenible processes. We will use 
the foliowing variables, 

In these eqiiations, s t  represents the specific entropy in phase k, 

where the additional siibscript r refers to values at  a reference state. 

In a siniilar way as the construction of the rnthalpy eqiiation of state. wc! mwt 
incliide an mtropy of fusion term in the above reference entropy in the iiquid phase. 
Since entropy is calctdated after the solution of the conservation eqiiations is obtained, 
t hen iterations d l  not be requird in this case. The elements are re-assembled for the 
compiitation of voltimetric entropy production rate following the soliition of the con- 
serat ion eqiiat ions. This assembly incliides the transient entropy t e m  (using entropy 
eqication of state and backsvard difterence in time), advective t e m  (iising pressure- 
weighted upwinding) and diffusive term (using bilinear interpolation with shape fiinc- 

, t ions). At  the boiuidaries, a positive-definite expression for entropy production (see 
belon.), rather than completion of the transport eqiiation, W giwn as the boimdary 



coadi t ion. 

Another expression for the entropy prodiiction rate involving heat condiiction iu 
given as follows[27], 

where k denotes the thermal condiictivity. The temperature is measured on an absoliite 
temperatlire scale. Since VT - vT. k and are ail greater than or equal to zero, then, 

This 
such 

- 

result U the Second 
as heat condiiction. 

Law of Thermodynamia. It applies to al1 physical processes 
However , non-p hysical be haviour in the numerical solut ion, 

arïsing from discretization errors (i.e. coarse grid refinement, lack of solution conver- 
gence, large time steps) may violate the Second Law in a discrete control volume. 

The difference betwwn the two forms of the expressions for P, is that in Eq. (3.46), 
the local entropy production rate wiii be greater thsn or equal to zero, both analyt- 
icaily and niimerically. On the other hand, Eq. (3.42) is a transport equation and 
non-physical numerical resiilts may lead to negative entropy production rates in the 
nt tmericd formt ilation. 

3.4.2 Improving Stability of Inverse Method 

The principle of increasing entropy dining an irreversible process provides a means for 
anaiyzing processes on the basis of the Second Law of Thermodynamics. The processes 
that reult  in a total positive entropy production are possible according to the Second 
Law. Any processes t hot siiggest a decrease in the total mtropy for an isolated bystern 
arp impo5sibl. and only totally reversible proceses c m  prodiice a zero change in the 
total entropy. 'lumerical stiidieu siigpt that satisfaction of the Second Law is im- 
portant becaitie a siifncient condition for stability of a scheme can be given in trrms 
of a positive entropy production rate in the computations, Le. non-physical solutions 
are accom panid by a negat ive ent ropy prodiict ion. To excliide non-p hysical soliit ions 



and to sr& a physicaily relevant soliition, additional modifications rnay be required in 
the niimerical formulation. In the ciment model, this modification will be based on 
the Second Law of Thermodynamics, which states that the entropy production mtiyt 
remain positive. The method will be calld an entropy based method. 

For the inverse problern with solidification from the left boundary, experience has 
shown that as time increases, the interface moves further away from the left boimdary 
and the &rct of the boiindary temperature on the interface movement becomes weaker 
and weaker. The thermal information cannot be effectiveiy carried from the boundary 
to the interface. As a result, it will be more and more dficult to control the interface 
movement by the temperature at the left boundary. Then, oscillations in the inverse 
solution may start to occiir. h o ,  from the calculation of the sensitivity coefficient, it 
can be seen that as the interface moves further and hxther away from the left boimd- 
q, the sensitivity coefficients become smailer and smaller. LVhm the values of the 
sensitivity coefficient are very smali, the resulting roundoff error may lead to numeri- 
cal instabiüty. Meanwhile, from the iipdating eqiiation for the boiindary temperature, 
Eq.(2.42), diiring the iterations, it can be shown that when the sensitivity coefficient 
becomes very small, the updated boundary temperature will exhibit big changes from 
one iteration to the next iteration. The solirtion will become iinstable as the iterative 
d 1 i w  change driistically. 

By calciilating the entropy production rate. niimerical stiidies in the prrsent work 
have shown that the entropy production rate becomes negatiw when t hr simiilation b e  
cornes unstable. The scheme may violate the Second Law of Th~rrnodynamics. There 
fore, the algorithm will be modified in order to stabilize the calculatiom. In the ciment 
formiilat ion. the entropy production will br rmployd as a criterion. i.r. if the value of 
mtropy production becornes negative, it suggests that an instability occim und thtis a 
correction of the soliition needs to be used. The correcting procediue shoiild O& be 
applied when the non-physicd solut ion behavior arises. In t his way? we reduce compii- 
tational time and avoid correct ions of the soliit ion at aveu time step. 



Diiring the simidation, the entropy prodiiction rate is compiited baseci on Eq.(3.42) 
follorving eacli tinie step. If the nodal valiie of P, is negative, then the locd solution is 
not physically corrcct. Thmefore, instead of proceeding to the next time step, a cor- 
rection is performd based on the niagnitiide of entropy production within the control 
volume. 

From Eq. (3.46), the condrictivity can be expresseci in terms of entropy production 

Thw, k is related to the entropy production rate and the local temperature gradient. 

In order to calculate the above expression, we need to estimate the value of tempera- 
tiue gradient corresponding to the related entropy production rate. Recall that P, was 
obtained for a specific control volume and it was based on the transient entropy term 
and the net entropy flux across the botindaries of the control volume. As a remit, it 
was comprised of a volumetric summation of t e m s  in siibcontrol-voliimes correspond- 
ing ro a given node in the mesh. On the other hand, the temperature gradient in Eq. 
(3.48) is a pointwise valiie bwed on the temperature distribution obtained from the 
solution of the energy eqiiation. In order to match reprpsentations, the area-weighted 
\ziliiia of tenip~rat tire gradient is also cakiilated anci assembleci wit h the cuk~iktion of 
P, siich t h t  au owrall or characteristic V T  is eniployed for tlir ~oliimt.tric vdiie in 
the calciilation cf k. This approximation becomes more acciiratc as the grid is refined. 

If the Second Law is violatd locally, then the condiictivity can bc compiited in 
Eq.(3.48) iising the entropy production P, from Eq.(3.42). Thrn this entropy based 
condiictivity is iised to calciilste the serisitivity coefficients again and modified seri- 
sit ivity coefficients are obtained. These new sensit ivi ty coefficieiits c m  be ~rnployd 
to iipdate the boiindary temperatire diiring the iteration. It will be shom that this 
met hod prevmts potentially non-physical solution behaviour in ntimerical caiciilat ions 
in inverse problerns. 



3.5 Solution Procedure 

The niimerical procediire for the inverse solution cm now be siimmarimd as follows. 

1. Specify the niovement of the phase interface (Le. interface velocity) and choose 
a constant time step based on t his interface velocity. 

2. Based on the velocity of the interface and the chosen time step, then a L~ed 
niimerical gid is specified siich that at any time step the interface moves from one gid 
point to the next g i d  point. If a variable interface velocity is specified, then either a 
variable time step or non-uniform grid is selected. In this work, the latter approach is 
adopted. 

3. W i t b  each time step, an estimate of the unknown controlling boiindary temper- 
attire is given and then the energy conservation eqiiation is solved in a direct manner 
for the temperaturt., T. 

4. The sensitivity coefficients are obtained and the unknown (controlling) boundary 
temperature is iipdated. Then, the energy equation is solved again. An entropy baved 
correction of conductivity is provideci for the sensitivity coefficients whenever the Sec- 
ond Law is locally violated. 

3. Repeat steps 3-4 for each iteration in solving the energy conservation ~qiiation. 
The soliit ion is trrminated when the predicted movement of the interfiice agrees. to a 
given tolerance. with the specified (desired) interface movement. 

6. Assemble the intemal masïmomentiim consenation eqiiations. The currmt 
temperat iue soliition is itsed for constnict ion of biioyancy terms in the pmommtiim 
eqiiation. 

7. Apply the vdocity and pressure boiindary conditions. 



Y. Solve the simdtmeoiw mass-momentum equation set for the Biiid v~locitp i7, 
and pressure. p, in the liquid region. The velocity in the solid phase is taken as zero. 

9. Repeat steps 6-8 for iterations of the mas-momentum conservation eqiiations 
iintil solution convergence involving the p - ü coupling is obtained. 

10. Retilrn to item 3 for solution convergence in the T-ü coiipling. After the 
inter-equation residuals decreave below a specified small tolerance, the calculation is 
terminated for this time step. Then we begin the next time step. 

For the inverse problem without the effects of fluid flow, the numerical procedure 
follows step 1 to step 5. If the effects of fluid flow are considered, the numerical 
procediire follows step 1 to step 10. 



Chapter 4 

Applications and Results 

In this chapter, numerical results axe presented to indicate some general features, per- 
formance and acciiracy of the proposed rnethodology. The goal of the study involves 
dstermining the boundary temperatiire, which produces a prescribed moving phase in- 
terface shape and motion. The following problems are considered: (1) Stefan problem 
with variable interface velocity, (2) Stefan problem wit h constant interface velocity, 
(3) twa-dimensional solidification process involving pure aluminum, (4) solidification 
process with pure gallium and the effects of fluid Bow. The finite element cornputer 
code was verified through comparisons with results obtained from a direct problem 
and by comparisons with availabb exact solutions. Calculations were performed with 
a Pmtiiim 233 MHz proc-or and the soliition at each tirne step generaliy reqiiirtul 
O& a IPW s~conds. 

4.1 Stefan Problem with Variable Interface Velocity 

One of the classical direct problems reported by Carslaw and Jaeger[29] is the so- 
lidification of a pure material initially at the phase-change temperattire (To = O) in a 
serni-infinite region. Al1 parmeters in t his example are reporteci in dimensionless fonn. 
The temperature at the surface x=O (le& boiindary) is maintained at the temperatiire 
T(0. t )  = - 1. The solution of this direct problem describes how the position of the 
phase interface moves with tirne, i.e. 



where the interface velocity, V, is variable, with 

Let iw now reverse this direct problem and use it 
to verify the performance of the present method. 

(4.2) 

as an example of an inverse problem 
LVe have a one dimensional problem. 

However, the computer program is written for two-dimeasional problems. So, for this 
example, the variables in the y direction will be uniform. Given the interface position, 
Eq.(4.1), and the variable interface velocity, Eq.(4.2), the phase change will be con- 
trolled by condiiction in the solid behind the phase interface. We reqtiire the estimation 
of the boundary temperature, T(0, t) , at x=O. The following problem parameters are 
adopted, 

c = l  

Ste = 0.05 

where a, c and Ste are thermal difhsivity, speciiic heat and Stefan number in dirnen- 
sionles form, respectively. Using a constant time step in the numericd solution, it is 
determined that 

At = 1 
0.0986n1 

where n is the niimber of nodal points in the gid. 
sionless t ime s t ~ p  (Le. Foiirkr nnmber incr~ment ) . 

This time step refers to a dimen- 

In order to emure t hat the interface moves one grid point in one time step in the x 
direction, a non-imiform grid in the x direction is used. The grid in the y direction is 
uniform. The x grid coordinate is expresseci as follows. 

where P refers to node point. 



Trrhlc 4.1: Doti~iciar?; tciiipcratiirc at x=O for Stcfmi proliIciii witti mritiblc iirtcrfmc vciocity (with 
40 x 5 ch!iirciit l i i ~%h)  

The analytical solution for this problem shows that the boundary temperature re- 
mains constant, Le. 

The rwilts lrom the ciirrmt inverse algorithm are shonn in Ti~ble 4.1. It a p  

pears that the resiilts are in good agreenient with the analytical solution. This one- 
dimensional problem is solved in a two-dimensional domain with a 5x40 rlement mesh 
(Table 4.1). In the heat flow direction (x direction), 40 elenlents are employed, whereas 
5 elements are sufncient in the y direction since the problem is one-dimensional. The 
tempecatiire predict ions are within the range -0.991 1610 to -1.031 1662. These resiilts 
indicate that the algorit hm cemains stable and it exhibits good acciuacy 

Since a specilied interface velocity is iised. the problem remaias identical upon re- 
finement of the grid and refinement of the time sep.  Considering different refinements 
of the grid. the results for a 5 x 2 0  and 5x10 element m s h  are show in tabb 4.2-4.3. 



Tddc 4.2: Bouiiclary tciiipcratiirc at x=O for Stcfari pmhlciii witli variable iiitcrfwc vclocity (witli 
20 x 3 oiciiicirt rricslr) 

t i i l w  stcp 
1 

i30tilitl~ry Twixp~mt t trr 
- 1.0@ri880 



The temperattue pr~dictions are now wit hin the range -0.9891495 to -1.0314784 and 
-0.9510683 to -1.0626889. Thiis, Thiw, improved acciuacy is ohtained for the refind 
grid. h balance between the refinement of the grid and the length of computing time 
shoitld be considered since more g i d  points are taken in the calciilations, but more 
calciilations are needed and the computing time will be longer. 

4.2 Stefan Problem with Constant Interface Velocity 

The problem involves the solidification of a piire material initially a t  the phasechange: 
temperatiue (To = O) as described in section 2.1.1. It requires the estimation of the 
boundary temperatiue, T(0, t), at x=O, such that this boundary temperature providev 
a constant phase interface velocity, V. Since the top, bottom and right boundaries of 
the cavity are insiilated, no temperature gradients will occur in the liqiiid region and 
the phase change wiil be essentially controlled by conduction in the solid. In physical 
t ~ r m s ,  this case r~presents solidification of a liqiiid initiaily at the rnelting temper- 
atiue, which is cooled at the left boundary (x=O). Solidification starts a t  x=O and 
proceeds rightward. The liqiiid portion of the mold remains at the rnelting tempera- 
t u e  during the process. This problem was chosen as a test problem because the exact 
solution is available in the technical literatiue(291. The following problem parameters 
(dimensionless) are adopted here, 

where S te. a and c are Stefan number, t hemal diffiwivity and specific heat , respectiwly. 

The mact analytic soiiitio~i for thk situation involving a constant-velocity interface 
motion. V = constant. a.as b t  obtained by Stefan and later report4  by Carjlaw and 



and 
T(x ,  t )  = To. 3: 2 Vt  (4.4) 

At x = O. the siitfact. temperatlire rqiiired to produce the prescribed motion becornes 

The ~xact  soliition for oiu example can be obtained by substitution of the parameters 
into the ahow generiil solution. Then it becornes 

Figiiri* 4.1: T(0, t )  for piirc gailium as a ffiitictioii of tiiiic for thm! diffcrcnt iotcrfmc vclocitii. (tt = 
1.3762 * 10-'rit2/.v. L = 801W).I/kg, tp = 331.5.1/kgaC, To = 20.g0C) 

Carslaw and Jaegrr[291 commented that this is an impractical case at large t due to 
the exponential natiue of the t ime-wing boundq condition. The above example is 
difficidt to achirw in a large casting for long tirne perioh since it is required ewitiialiy 
to have an infinitdy low temperature at x=O to maintain a constant velocity at the 
interface. But. this example is a good way to examine the effectiveness of the present 
algorithm. Also. it d o s  represent many practical circzlmsta.uces during early stages of 



-exact solution Y 

Figure 4.2: I3oii1idm-y tcrnpcrntitrc at x=O for Stcfan problciti with cawtant iiitcrfacc vclucity (di- 
t~ic~sioiilc.i?i ti111c wtcp=O. 1) 

solidification. Figure 4.1 displays the boundaxy temperature T(0, t )  as a fiinction of 
time resiilting from t h  specified interface velocities for pure galliiim. From the fig- 
ure, the interface position can be determinecl b d  on the given interface velocity and 
time level. Additionaliy, althoiigh the exact solution displayd in Eq. (4.5) is dafineci 
in terms of an exponmtial fiinction, it is rvidrnt that low-order polynornials cotild be 
iwed to describe T(0, t). 

The niimrrical solution uses a constant time step and a iiniform grid. The res~dts 
are shown in Fip .  4.2-4.1 together with the exact soliitions. The residts are compared 
Mth exact solutions giwn by Eq.(4.6) for three different time steps: At = 0.1, 0.05 
and 0.005. 

From Fip .  42-44. it can be obs~rved that very good accuracy is achieved at early 
th le  stages where the distance between the interface and the left boiindary is small. 
Also. with a smailer time step. a more acciirate nimerical soliition is obtained. For 
esampk, when the time step is 0.005, the accuracy of the soliition is the b a t  and 



predicted results - exact solution 

Fip irc 4.3: Doiiridary tetciripcratiirc at x-O for Stcfnti problriii wit h cuiwtririt iiitcrh*~ ivlwity (di- 
iiiciisioiiIcxs titm stcp=O.Ob) 

Figurc 4.4: Doiiiiclary tcciipcratiirc at x=O fur S t c h i  probIciri with mntaut interfacc vclotity (di- 
rrict~*iotil~xt tiiiic stcp=0.005) 



Tahlc 4.4: Tiriic stcp scwitivity (with t=0,1) 

Tablc 4.5: Tinic stcp scusitivity (wit 11 t=0.8) 

when the time step is 0.1, l e s  accuracy is obtained. Tables 4.4-4.5 show the time step 
sensitivity, i.a. the relation between time step (At) and solution error at the given 
moment in time (t=0.1 and t=O.8). It is apparent that the numerical error decreases 
when a smalbr time step, At, is teken. 

ALso, ns time passes, the interface moves further away from the left boundary and 
the solution becornes more unstable and oscillations (or divergence) in the analytical 
soiiition occur (in Figs. 1.2-4.4, only the stable region hm been plotted). The algorithm 
loses recognition of the correct boundq condition. From Figs. 4.2-4.4, it can be seen 
that at a amaller time step, osciiiations occtir earlier. In other words, the calculated 
boiindary temperattire becomes iinstable at an earlirr time in the case of small tirne 
steps. Thiis. the calciilation ewntiidly dom not predict the desireci botind- temper- 
attire. For example. when ht=O.O05. the numerical solution rapidly diverges Erom the 
exact soliition at abotit t= 0.225; while using &=O.O5. the oscillations start only after 
t= 1.1. 

Figures 1.5-4.6 show the raiilts for diEerent Stefm niunt~er (Ste=O.P and Ste=0.05). 
The dimc.nsionless time strp is 0.05. It is s h o w  t hat acctirate resiilts are achieved over 
a fairly wide range of Stefan numbers. 

In the iihove niimerical simiilations, we find that when the distance between the in- 
terface and the Left boiuidwy becomes large, it is more difncidt to controi the interface 
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Figure 4.5: Duiiiidary tcinpcraturc at x=O for Stcfaii problcrn with curwtarit iutcrfac vclocity (di- 
nicxiliioid*or tiitic stcp=0.05, Stc=O.2) 

Figir~!  4.6: Boi tiiclary tcritperatiirc nt x=O for S tofari prol~lciri wit h cui~tluit iiitcrhr. vcludty (di- 
ri1ci~sioii1c.ri.i ti~iic* stcp=O.O3, Stc=O.O5) 
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predicted results - exact solution 
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F i y m  4.7: Docindary tcniperaturc at x=O with At = 0.05 (no ciitropy b m i  niodificatioii) 

movenient with the left boundary temperature. An instability will occiir. This is illits- 
trated in Fig. 4.7 (tirne step At=0.05). From Fig. 4.7, the results indicate that before 
t= 1.1, the simulation performs well in predicting the required boiindary temperatiue; 
after t= 1.1? the oscillations start and they becorne larger and laqer as time passes. 
The calciilation no longer prdicts the required boundary temperature after large t. 

An entropy based mmrthod W iüed here to improvt. the niunerical stability Th ra- 
rionale for t his appronch has been described in chapter 3. 

The Second Law is employed to provide a criterion for the application of an entropy 
b a s d  modification. During each time step, the entropy production rate is compiitd 
and it should be positive within a control volume. Otherwise, it means that the Second 
Law is violated and the procas is not physically plausible (Le. the niinlerical instability 
will happm). Thiw. an mtropy based method can be lwd. The thermal condiictivity 
iJ corretted based on the local calcidation of the entropy production rate. Then it is 
iwd  to compiite and modib the sensitivity coefficient prior to the next iipdate of the 
boiindary temperature in the iterative procedure. 



ptedicted results - exact solution 

4.8: i301~1iciary tc~npcraturc at X-O with At = 0.05 (with entropy 1& nidification) 

The resiilts shown in Fig. 4.8 illustrate that the entropy based rnethod performs 
weil in improving the niunerical stability of the computatiow. 'iotice that the os- 
cillations are reduced for the next few time ~teps. The entropy based modification 
permits stable compiitations of the controiling boiindary temperatiire for additional 
time steps. Since the rntropy hased modification is only applied after local violations 
of the Second Law. it does not affect acciiracy diiring early stages of the reictlts since 
it is not appiied aat those tinies. After it is applied for the boiindary temperattire, it 
rcdiices the oscillations in the boiindary temperature (Le. improves acctiracy). Also. 
since an improved boiindary estimate is obtaind in this rnanner, it is anticipateci that 
a more accurate temperature distribution is obtaincd in prrmitting proper conduction 
transport back to the interface throiigh the soiid. It is worthwhile comparing this a p  
proach to another conventional techniqite for stabilizing inverse compiitations, narnely 
fiit iire t imr stepping. In fiit tue time stepping, the b o u n d q  temperat tire is assumed 
as fixed for r hitiut. time strps, and the system of eqiiations is solved over this time 
range. Then the botuidary temperature is iipdated and iteratiom continue tintil a 
siun of sqiiores difference (involving interface tmperatilre at futiue time and phase 



change temperatiue) is minimized. In addition to the potential cost savings in tems 
of compcitat ional time. the ciment ent ropy basrd approach provides a physically bued 
alternative to Iiitiue tinw stepping. It is auticipated that entropy is a natiual mecha- 
nism (often overlook~d) which can stabilizr resiilts d i b i t  ing non-physical bahavio~ir 
(i.e. numerical oscillations). 

4.3 Solidification of Pure Aluminum 
4.3.1 One-dimensional Problem 

Figure 4.9: Onc-dinicii~ioiial solidification of ptirc diirriiriiiiri 
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By considering the following solidification process involving pure alilminiim, we arc! 
a h l ~  to cinderstand hirther the possibility of implementing thc method in a practical 
applicüt ion. The enclosure (Fig. 4.9) is initially occiipied by liqidd aluminiim wit h 
properties as giveii in Table 4.6. The top, bottom and right wails arc insiilated and no 
ternperatiire gradients are initially present in the liquid region. The liqiiid is initiaily 
at  th^ melting temperature. The interface is then prescribed to move iuiiformly at 
a constant velocity (V = 0.04mmls) as a vertical straight üne ( i . ~ .  one dimensional 
phase change). The temperattue at the bft boundary will be predicted in order to 
control the interface Y hape and motion. 

Figitrv 4. IO: 13oiliiclary tcinpcratiirc for wliclifi<~ntio~i prucicw of p im atiiniiiiiirri (tirtic stcp=125s) 

The predicted boiuidary temperatiire at  x=O is a fiinction of time. The residts are: 
shorvn in Fig. 4.10. These resdts agree weil with the exact solution. In this example, 
the velocity of the interface is O.O4mm/s. The dimensionless interface velocity eqiials 
0.0488. Cornparing t his example r i t  h the last example (dimensionless interface velocity 
= 2). this resiilt LS like the w l y  part of the soliition. As a r ~ s d t ,  the soliitions have 
the good agreement. The entire solidification process takes 11.6 min (tirne step = 125 
seconds). The program is executd on a penonal compittar and compiitations reqike 
a few seconds for each tirne step. If we compare execution time in the program with an 



actiiiil tims step in practice? then the physical time scale is substantidy larger than 
the conipiitational tinie scale. Thics, it is feasible to apply the program in a practical 
control sett ing for solidification processes. In other words, since the comptitational 
time reqiiirtul to adwnce the phase interface a giwn distance is more than an order 
of magnitude l e s  than the physical time in the interface advance, then it appears 
that the algorithm may be silitable for a real-time control setting. The results fiom 
the predictions can allow the control engineer to modify the boundary temperature 
in time to have the desired interface movement in a given time incremant. In more 
compücated problerns, siich as three dimensional predictions with fluid Bow, it is likdy 
that the computational time may exceed the correspondhg physical tirne. However, 
with the rapid advance of computing technology and procesor speed, it is anticipated 
that control engineering, merged with CFD (Computational Fliiid Dynarnics), wili 
become a viable alternative to conventional control techniqiies. For example, recent 
stiidies involving the NASA Lewis Research Centcr [30] have facilitated the iise of CFD 
by control engineerj designing propuision controk. 

4.3.2 Two-dimensional Problem 

0.15m --d 

Fi@ irc 4. LI: Twwclirric~rsioual solidificatiou of pure diiriiitit 1111 



In this problem, we consider solidification in a region (Fig. 4.11) occupitd initiaily by 
pure duminum at  the melting temperature Tm. The top, bot tom and right boundaxia 
of the cavity are indateci. We require that the interface velocity in the x direction 
varies with y, whib the shape of the interface remains as a ~traight line and al1 points on 
the interface reach the right boiindary at  the same time. The position of the interface 
will be controild by the temperature of the left boimdary of the cavity. LVe will solve 
this problem to obtain the manner in which the temperature of the left boundary 
should vary with time and position y, i.e. To(t, y). This example is a 2-D problem. 
The dimensional parameters in this simiilation are the same as in Table 4.6. 

Figure 4.12 shows the mesh stntctiue For the finite elem~nt discretization. The 
simiilation is performed on a 20 x 20 mesh. The resiilts for midpoint boiindary temp~r- 
attire are s h o w  in Fig. 4.13. Althoiigh no exact solution is available for compariuoas. 
ive can stili compare the temperattire at the mid-point of the left b o u n d q  to the 
average of an equivalent 1-D problem. Meanwhile. Fig. 4.14 shows the restilts for the 
distribution of temperature at the left boiindary at  different times and the trend of 
temperature is correct, i.e. the average Lft b o i i n d q  trmperat tue demases with time 
and the temperatures dong the kft botuidary increase kom the bottom to the top 
boiuidary Also, comparing the temperature for a point at the left boundary with the 
exact solution of an quivalent one-dimemional problem, at the top, WP find that the 
temperature is higher than the exact soltition; a t  the bottom. the temperature is lower 
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Figiirc 4.13: Doiiidary tcmpcratrire at niid-point for yolidificatio~i of ptirc alurrliiiuiii 

than the exact solution. It reveals the correct trends of the two dimensional effects 
in this problrm. Heat transfer OCCIES from the top to the bottom regions. So. at the 
top, the boiindary temperature does not need such a cold valui as the one-dimensional 
problern. At the bottom, the boundary temperature should be colder than the temper- 
at lire in the cqiiivalent one-dimensional problern. Thtw, in overall terms. the ciirrrnt 
inverse algorit hm appears siiitable for applications to mi ilti-dimensional problems. 

4.4 Solidification Problem for Pure Gallium with the Effects 
of Fluid Flow 

Consider a solidification process wit h pure gallium in a t wo-dimensional rec t angular 
enclomire of aspect rat io=2 (height=0,04Sm, width=O.Ogrn). The top, bottorn and 
right walIs are insiilatd. The liqiiid is initially superheated, Le. the initial tempera- 
tiue is larger than the melting ternperatiue. The boundary conditions and geornetry 
for this example are shown in Fig. 4.16. The interface is prescribed to more at a 
constant velocity ( V  = 0.076mmls) and we require it to move as a vertical straight 
line. The dimensiontil parameters used in calculation are listed as follows (Table 1.7). 
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Figure 4.15: Solidificatioii of piirc gdliiini in a rcctangular c~iclosurc 

The prediction of the boiindary temperature is reqiiired. 

We can observe some important practicd benefits in performing this particidar sim- 
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ulation. \Ve are effectivdy tq-ing to rediica the interface distortion diie to natiiral 
convection nrising at the interface. In this example. if a iiniform Mt boiindary tern- 
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to undrsirable delects in the 6nd material, since the convwtion proces oftan leads to 
non-iiniform dispersion of alloy constitiients (i.e. defect cailed macro segregation) or 
an iiridmirable interface striictiire. This partLy explains recent interests in microgravity 
niaterials trsting in spaw since these effects of buoyant-induced Boa; are rediiced or 
eliminated. 

In o i r  example, we wili modik the boimdary temperature in an attempt to re- 
tain a iiniform interface shapa rather than a profib distorttd by the effects of natiiral 
convection. From a practicd perspective, it means that the procediire can outline a 
manner by which the control engineer should orient cold regions dong the boundary to 
prodiice dasirable material characteristicu. For example, once the boundary conditions 
are oiitlined, the grain boundaries may grow into the liquid, during solidification, in a 
mannrr siich t hat the final material cm effectively resist conditions of mauirniim stress. 

So. in this example. if the temperatures at the left boundary remain uniform. then 
the shape of the phase interface would not be a vertical straight line as a remit of fliud 
flow. Thiis. the temperatures at the left boundary should be a fiuiction of time, t, and 
position, y, in order to obtain the desireci shape of the interface (vertical straight line) . 

1 

The number of grid (y) 
Figlitrc 4.16: Bouixtary tetriperaturc for wiidification with f l iuci  flow 



Figiire 4.16 shows the resiilts of the temperatiues at the left boiindary at early stages 
of solidification. It can be sem that the b o ~ i n d q  temperatire is not uniform and it 
decrezws from the bottoni to the top in order to eliminate the effect of convection on 
shape distortion in the interface. The distribiition of velocity (direction) in the liqiiid 
region is shown in Fig. 4.17. 

l / / , / / / /  1 / / / 1 ; 1 /  1 1  

Figirc 4.17: Distribution of vclocity in liqtiid mgioii (.rame Ycalc for magnitudc) 

The results illustrate that a somewhat steeper temperature change is reqiiired at 
the two ench (iipper and lower ends) of the boundary to retain the linear interface 
shape. This c m  he explained part- hy the larger lateral pressure gradients in thme 
sections resiil t ing in larger i 1-v~loci ty magni t i ides t here For examplt.. the enhancd 
rate of conwctive heat transfer near the top section of the phase interface from the 
bidk liqiud implies that a colder temperature is reqiiired there in order to maintain a 
similar fkeezing rate as a lower section with l e s  interfacial heat transfer. In the middle 
section of the boundary, the temperattue change is more uniform. In any case, the 
main trend. involving the vertical temperature change along the boiindary, dite to the 
d k t  of natiiral convection in the liquid. c m  be observed in the presmt resiilts. As 
a result, it is anticipatd that the current mode1 is suitable for applications involving 
phase change togeth~r with flttid Bow. 



Chapter 5 

Conclusions and Recommendat ions 

5.1 Conclusions 

The Enthalpy Met hod and Finite Elemrnt Method were employed effectively to simu- 
late one and two-dimensional inverse solidification problemv where a desired interface 
vdocity was specifid. The Enthaipy hlethod is boved on a nodejrimping algorithm 
which calcidates the borindary temperatiue for a given interface wlocity. The interface 
veloci ty c m  be cons tant or variable and the nids coiilcl be uniform or non-uniform. The 
finite element method permits flexibility in inverse problems nith irregular geometries. 
Before oscillations appear in certain examples, the solutions show good agreement wit h 
exact soliitions. Also. an entropy based method is used to irnprove the stability of the 
calccilations whenever oscillations appear. The entropy production rate is considered 
as a qiiantitatiw measiire to jiidge when the non-phpical soliitions aise. By entropy 
bued modifications. the soliitions becorne stable for more time strps. The effects of 
fliiid flow diiring solidification are also considered. The compiitational code simiilated 
naturai convection in the liqiiid diuing soüdification. Further stcidie of inversr solidi- 
fication problems can Iead to aiitomated control of varioiis processes, such as casting, 
where the b o i i n d q  temperatiue can he used to control the interface shape and motion 
as iswli as the proprrties of the solidifying cqstals. 



5.2 Recommendat ions for Future Research 

Sonie siiggest ions for Fut t ue resmrch will now be provided. Firstly, experimental tes ting 
shoiild he piirstied for fiuther vdidation of the procediire and an assessrnent of its 
siiitability in practical applications involving materials processing. Secondly, ciirrent 
work on the e f f ~ t s  of fluid flow gïve initial developments and further stiidies should be 
lindertaken for the investigation of the inverse fluid flow algorithm. 
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