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ABSTRACT 

Blake, S.A. 2018. Using Trail Camera Imagery to Develop A Habitat Suitability Index 
(HSI) For Moose (Alces alces) In The English River Forest, ON. Lakehead University, 
Thunder Bay, ON. 18 pp. 

Keywords: moose, habitat, suitability, forage, wetland, mature forest, maximum entropy 
modelling, open-source, camera traps  

Moose are a valuable economic and ecological resource in Ontario. Understanding their 

spatial distribution throughout the forest is essential for managing populations and 

preserving habitat. One method of identifying the spatial distribution of species is 

through the development of habitat suitability indices. Suitability models use presence 

points and environmental variables to predict the likely distribution of a species across a 

given landscape. This thesis examined the feasibility of using trail camera imagery to 

create a habitat suitability index for moose Alces alces in the English River Forest, ON. 

This was accomplished by using recreational trail camera purchased from Cabela's 

Canada, and an open-source maximum entropy modeling software called MaxEnt. Three 

runs through the modeling software were completed in order to produce the most 

accurate model possible. Results showed varying performance with the three models. 

The binary model had the highest AUC at 0.808. However, it was determined that 

suitabile habitat was highly correlated to the unclassified layer, which represents roads. 

The non-binary run rectified the issues with the binary model, but only produced an 

AUC of 0.661. Interestingly the pre-sapling – sapling layer was found to include 

information which was highly correlated to other variables. This resulted in the layer 

being relatively unimportant to the model, and it was subsequently removed. The non-

binary run with omitted layers was determined to be the best spatial distribution fit with 

an AUC value of 0.771 and a standard deviation of 0.161. Overall, results concluded that 

it was possible to use trail camera imagery to develop a habitat suitability index for 

moose in the English River Forest.
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INTRODUCTION 

 Moose (Alces alces) are a valuable economic and ecological resource in Ontario. 

These animals are a popular recreational game species in the province, with revenue from 

resident and non-resident hunters generating more than $500 million annually (Telfer 

1997). Moose in Ontario are managed to ensure the provision of their ecological, cultural, 

economic and social importance to citizens of the province (OMNR 2009). While 

providing opportunities for economic growth and recreational ventures in the province, 

moose also have an intrinsic value in the boreal ecosystem (OMNR 2018). One of 

Ontario’s main strategies for maintaining healthy populations is through the development 

of dynamic forest landscapes. These landscapes are established through the 

implementation of a selective harvesting system, which provides a variety of cover and 

forage stands within the moose’s home range. Thus, promoting species persistence, 

facilitating movement and providing idealistic forage during sensitive times of the year.  

 Moose, as previously stated, hold an essential trophic position within the boreal 

ecosystem. These animals occupy a circumpolar distribution bounded by lack of habitat 

to the north, and temperatures exceeding 27°C to the south (Timmerman & McNicol 

1988). Moose are able to tolerate cold temperatures quite well; however, during summer 

months they can suffer from heat stress (Telfer 1997). To mitigate this stress, moose will 

submerge themselves in cool lakes to regulate their internal body temperature. Therefore 

distance to water plays a significant factor in their spatial distribution during summer 

months. Main forage during summer months consists of small quantities of upland woody 

browse, with the majority of their diet consisting of macrophytes when available. As a 
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result, moose tend to prefer early successional habitats in the summer where woody 

browse is abundant, and low-lying riparian zones with access to water.  

 Recently it has been discovered that populations of moose are in a state of decline 

from a number of factors such as the expansion of tick ranges, overharvesting and the 

influx of parasites and disease (ECO 2015). Across Canada numbers are down close to 

20%, falling from 115 000 in the early 2000s to 92 000 in just over ten years. In fact, 

moose populations are declining on a global scale, leading to the assumption that 

common issues may be attributed to their regression.  

 Habitat suitability indices (HSI) have been used in many moose management 

studies to determine critical areas of habitat in a specific geographic region (Allen 1987). 

These indices can help to inform wildlife managers on the likely spatial distribution of 

species throughout a geographic location. This can help to pinpoint key areas where 

cover patches should be left untouched, and help to design harvest plans that maintain 

cover while providing ample forage opportunities. Previously conducted studies like the 

one by Dussalt et al. (2006), focus on moose selection in a regional context. Presence 

data is typically collected through either telemetry or radio-collaring, and forest-specific 

information is gained through provincial resource inventories. While results from these 

studies are highly accurate and represent a basis for moose management in the province, 

they are costly and time consuming to conduct.  

 To make HSIs more economically efficient for the average researcher or student, 

other methods of presence data collection must be examined. One relatively inexpensive 

and simplistic approach would be to use wildlife game cameras, also known as trail 

cameras, to collect point specific locations. High-quality cameras range in price from 

$300 to $600 USD, with options for both active and passive image collection (Swann et 
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al. 2004). Trail cameras do not require the same amount of extensive fieldwork 

associated with other methods, while still producing highly accurate results.  

 Since moose are such an important ecological, cultural, social and economic 

resource in the province, understanding their spatial responses to climate change and 

dynamic harvesting landscapes in Northwestern Ontario is essential to implementing 

effective management strategies (Rempel 2011). The objective of this thesis is to define 

an HSI for moose in Northwestern Ontario’s English River Forest (ERF) through the use 

of trail camera imagery. The study location for this project was located within the 

southeast portion of the English River Forest in the Sustainable Forest License (SFL) area 

held by Resolute Forest Products Ltd (Wilkie 2018). This study intends to determine if it 

is possible to create a moderately to highly accurate habitat suitability indices for Moose 

with the use of localized presence data. It is the hope that the HSI produced from this 

study will possess the ability to quantify localized habitat trends.  

.
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LITERATURE REVIEW 

MOOSE ECOLOGY  

 In Northwestern Ontario, moose are considered an essential part of the ecological 

biodiversity of the boreal forest. It is crucial to understand this species ecology and 

interactions with habitat, to effectively manage populations. Moose tend to occupy 

stands in young boreal forests, with highest densities found in mixedwood stands, or 

areas that have been affected by natural disturbance (Courtois et al. 2002). In the study 

of Poley et al. (2014), it was determined that Moose in Ontario’s far north select for 

mixedwood stands with high terrain ruggedness. Moose occupancy was also high in 

areas with disturbed habitat.  

 As seasons change, moose will shift their diet to reflect seasonally available 

flora, and thus will select for different forest types. Optimal habitat is dominated by 

mature conifer stands in the summer and early winter, whereas young conifer stands are 

preferred in the late winter (Courtois et al. 2002). Clear cuts are avoided almost 

exclusively except for a short period in early winter. Subsequently, Herfindal et al. 

(2009) determined that moose selected for different habitats at the home range and 

landscape scales. At the landscape scale, it was discovered that moose prefer areas with 

good foraging opportunities and an abundance of cover. This differs significantly 

between age classes and sexes. Adult bull moose were found to have home ranges that 

were more than 24 km2, whereas females were closer to 12 km2. At the home range 

scale, moose selected for areas with an increase in cover and minimal human impacts. It 

was determined throughout the study that larger home ranges were associated with 
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increased areas of unsuitable habitat, and at the home range scale, habitat type selection 

decreased with its availability. And thus, habitat selection at the home range scale was 

attributed to fluctuations in forest type and human influence. In turn, in areas with 

decreased resource availability moose tend to have lower reproductive and survival 

rates.  

 The OMNRF currently manage moose in Ontario on a fragmentation-based 

model to ensure idealistic habitats are available throughout the boreal forest region. In 

the OMNR’s (1988) Timber Management Guidelines for the Provision of Moose Habitat 

that clear cuts should be 80 – 130 ha in size, with the optimal average cut size around 

100 ha. Additionally, suitable shelter should be no further than 200 m away throughout 

the clear-cut. In areas where cuts exceed 100 ha, shelter patches must be left to promote 

movement through the stand. These are to be comprised of immature to mature conifer 

and be at least 3 – 5 ha in size. Shelter patches are to be placed 300 – 400 m apart. These 

patches help to facilitate movement throughout the stand and provide adequate 

protection from predators. Clear-cut areas can provide good forage opportunities when 

regeneration begins to occur. This process of leaving patches of fragmented habitat helps 

to facilitate movement throughout the forest stand while still providing adequate 

opportunities to access winter and summer forage.  

FOREST MANAGEMENT FOR LARGE MAMMALS 

 Forest Management is a critical factor in terms of cervid habitat suitability. It 

influences forage availability, movement patterns, the introduction of predators, and can 

fragment populations. In Snaith & Beazley (2004), the effects of forest management 

practices on moose populations were examined. In general clear cuts tended to promote 

good moose habitat after 10-40 years after browse species had time to regenerate. Moose 
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tend not to stray more than 80 – 200 m from cover and therefore are not found in large, 

newly – cut areas where forage may be available. Usually, moose avoid these areas until 

10-15 years post-cut. Large-scale harvesting can lead to spatial fragmentation of 

populations, whereas selective or partial cutting can enhance moose habitat by creating 

new foraging sites while leaving residual cover. Habitat should ideally maintain 55-75% 

mature forest cover in patches no smaller than 8ha, and ensure that cover is no more than 

200m away at any point. 

 Forestry developments such as roads are also shown to have adverse effects on 

moose density. Roads, both active and decommissioned, provide access to predators and 

competing cervid species, increase hunting-pressures, fragment habitat and disturb 

wildlife. Roads are essentially open-foraging corridors. However, Snaith & Beazley 

(2004) claim that moose do not frequently take advantage of these areas. In a Nova 

Scotia study site, fecal pellet analysis determined that moose selected for areas with few 

to no roads, making the decommissioning of roads essential to maintaining moose 

populations. In Beyer et al. (2013), the study determined that moose displayed a non-

linear functional response to road-crossings. The most significant response was 

exhibited when road density exceeded thresholds of 0.2-0.4 km2, with crossing rates 

increasing during summer months. These seasonal differences in crossing rates were 

directly correlated to seasonal movement patterns and home ranges. Although there is a 

non-linear trend to road-crossings, the study found that moose crossroads less frequently 

in areas with higher road densities. Therefore, high traffic areas are at less of a risk for 

moose crossings than lower density areas.  

 In Ontario, timber harvests are planned to avoid specific areas of concern for 

moose in forest regions. OMNR (1988) establishes guidelines for both access road 



 
 

7 

development and resource extraction. In terms of access, roads are not to be built in 

areas with identified aquatic feeding areas, mineral licks, and calving sites. Additionally, 

road placement should not facilitate the movement of hunters throughout the forest. 

Roads should be signed during operations and removed following harvest completion. 

Harvesting should follow a selection model, with shelter patches left throughout harvest 

blocks. These patches are not to be cut until surrounding vegetation has reached a 

minimum height of 2 m. In turn, renewal and tending operations should be conducted in 

a matter that promotes regeneration within the context of the quantity and quality of 

moose habitat.  

REMOTE SENSING IN MOOSE MANAGEMENT  

 Remote sensing can be a useful tool in a variety of wildlife management settings. 

It can help to determine habitat selection responses of species based on large-scale 

distribution patterns and different temporal scales. In Michaud et al. (2014), remote 

sensing techniques were used to determine moose species-habitat relationships to 

estimate moose occurrence and abundance within the study site. Habitat suitability was 

determined by developing a Dynamic Habitat Index (DHI) with parameters set for land 

cover, topography, snow cover, and natural/anthropogenic disturbances. Moose 

occurrence/abundance data was collected through aerial surveys. The results were able 

to determine moose occurrence with moderate confidence, as they selected for areas 

with high quantities of protective cover. This is likely a response to predator avoidance. 

Abundance was not adequately determined in this study as the results were spatially 

variable. The model run was over-estimating abundance in areas of Northwestern 

Ontario, while under-estimating abundance in the northeast.  

 Camera traps are used in wildlife management to collect presence data in various 
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settings. Meyer et al. (2015) used camera traps to determine if large-bodied mammal 

populations were intact following forest disturbance in Central Panama. The study was 

conducted between 2005-2014 across 15 national parks and forest fragments, with two 

sites in an undisturbed national park serving as a reference. It was determined based on 

the results that the disturbed forests had little to no apex predators or large mammals and 

lower species richness. The presence data collected serves as a baseline for the 

effectiveness of conservation efforts. In Tape and Gustine (2014) camera traps were 

used to determine migration phenology of terrestrial wildlife species. They placed 14 

cameras were set along a 104km transect to record spring caribou migrations. Results 

showed evident northward migrations, with migration speed increasing with latitude. 

The findings of this study can be useful in determining how migration timing and speed 

could be affected by seasonal changes in habitat and snow depth.  

Merlin et al. (2016) looked at Airborne Laser Scanning (ALS) data to look at forest 

structure and its role in moose habitat selection. They GPS-tagged 18 moose in Finland 

and collated it with ALS data from moose locations. ALS data was collected during the 

National Land Survey (NLS) of Finland using a Leica ALS50 laser scanning system. 

Results determined that females were selecting for forests with low levels of understory 

vegetation during calving periods (May-June). Following this period, females and calves 

relocated to areas where dense woody vegetation dominates the understory. From June 

to October moose were found in mature conifer dominant forests with dense canopies. 

Subsequently, moose moved back into areas with dense understory vegetation during 

winter months. This study shows how ALS scanning data can be applied to aid in the 

interpretation of wildlife ecology.  
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HABITAT MODELLING  

 Habitat Suitability Indices (HSI’s) are a valuable tool in wildlife management as 

they allow researchers to assume areas where species are most likely to occur. (Dussault 

2006). The U.S. Fish and Wildlife Service first introduced HSI’s to wildlife management 

in 1981. They were designed to provide methods for evaluating habitat preferences of 

species and the present habitats ability to support these preferences. (Hepinstall et al. 

1996). HSI’s for a target species are scored on a scale of 0 to 1. A score of 1 indicates 

habitat that meets all of the suitability parameters and therefore is optimal for species 

persistence (Dussault 2006). Models can be used in moose management to identify areas 

with optimal habitat and subsequent regions where habitat quality can be improved 

(Allen et al. 1987). Preliminary HSI’s for moose in the Lake Superior region; developed 

by the US Fish and Wildlife Service, prioritize abundance of growing forage site and 

canopy cover, in addition to forest cover type composition (Allen et al. 1987) However, 

the lake superior region HSl does not consider hunting, predation, or pathogens as a part 

of the index. Habitat suitability is based primarily on aquatic forage, woody browse, and 

cover (Hepinstall et al. 1996). This leaves the effects of forestry practices on predator, 

hunting and pathogen access on moose habitat selection relatively unknown.  

 In Rempel et al. (1997), vegetation maps along with the Lake Superior Model II 

HSI for moose were used to determine HSI inputs for ideal forage, cover, winter cover 

and landscape treatment. The HSI was found to be highest in the modified clear-cut 

stand, which had a high density of forestry roads connecting various cut blocks.  Osko et 

al. (2004) applied an HSI to two separate populations of moose in Alberta with the 

overall goal of proving that wildlife habitat preferences are not fixed. For both these 

populations, the same habitat classes were available but varied in relative abundance. 
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Results showed fluctuation in habitat class selection between the two populations 

indicating that population preferences are not fixed, but highly variable. This paper 

provides useful insight into the need for localized habitat suitability indices rather than 

large-scale fixed ones. In Dussault (2006), a habitat suitability index for moose was 

created for Canada’s Boreal Forest. The main components of this index were: a 

suitability index for forage (SIfood) and another for the transition zones between cover 

and food (SIedge). These components were applied at various spatial scales including 

500, 100 and 10 ha. Results determined that SIedge had a more significant impact at 

larger plots (500ha) whereas; SIfood was more influential in smaller plots. The methods 

used in this index are transferable to a variety of other studies as it is based on biological 

requirements.      

 Maximum entropy modeling (MEM) is a mathematical process in which a 

probability distribution predicts the suitability of conditions for each grid cell on a 

rasterized image. Phillips et al. (2006) used MEM to identify the geographic 

distributions of species with presence-only data. The study was conducted on a species 

of sloth and a small montane rodent. Predictions were made based on ten subset 

occurrence records for both species. Results showed that the MaxEnt software 

conducting the MEM analysis provided significantly better distribution modeling for 

both species than what is available in field guides. MaxEnt was also able to produce an 

accurate delineation of suitable versus unsuitable habitat. This depicts the usefulness of 

MaxEnt in modeling a presence only data set 
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MATERIALS AND METHODS 

STUDY AREA 

The study area for this project is located at the southeastern edge of the English 

River Forest (ERF). The ERF is situated in the western portion of the province’s 

ecoregion 3W (Fig. 1). The forest falls under the jurisdiction of the OMNRF’s Wildlife 

Management Unit (WMU) 15A and cervid ecological zone B. The study site itself is 

situated between the Moberly lake/Brightsand River conservation areas to the east, tri-

lake area to the west, Baltic lake to the north, and the Wagner Private forest to the south 

(Wilkie 2018). Lawson (2009) deemed the area to be a vital moose aquatic feeding 

habitat. Bedrock in this zone is primarily Precambrian Shield, which is overlain by a thin 

collection of glacial and post-glacial deposits (Hupf et al. 2019). The majority of soils in 

the region are thin layers of gravel and sand, with areas of exposed bedrock 

intermittently placed. Low-lying areas in the zone are comprised of small lakes and 

wetlands, which provide essential summer feeding habitat for moose (Lawson 2009). 

Resolute Forest Products is the current SFL license holder for the English River Forest, 

which is approximately 10 000 km2 in total area. The study site for this project is 87 

km2 of the total 10 000 km2 ERF, located in the southeast corner of the forest (Wilkie 

2018). The area is currently undergoing decommissioning and reclamation efforts and 

hosts no active harvesting blocks. Roads in the area are at varying degrees of 

reclamation spanning from active to fully vegetated.   
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Source: OMNRF, 2018 
Figure 1. Location of the English River Forest within Ontario.  
 
PRESENCE DATA AQUISITION 

Presence-absence data for Moose was collected from 18 Cabela’s Outfitter 14MP 

Black Infrared HD trail cameras between May 15th, 2017 and October 3rd, 2017 (Wilkie 

2018) (Appendix A). These cameras use Passive Infrared motion sensors, which do not 

emit a detectable flash when the sensor is triggered. The maximum detection area is 30° 

on either side of the unit for 25 m, with a narrower 100 m detection range (Wilkie 2018). 

Cameras were affixed to suitable trees along targeted paths and locked in place to deter 

theft. Placement varied from 0.5 meters to 1.5 meters above ground level; this was to 

ensure all cameras were at least 30 cm above ground vegetation. The average distance 

between cameras was 3.2km, with the closest cameras placed 61.2 m apart (Fig. 2). 

Presence photos were produced at a resolution of 14 MP, and trigger speed was set to 1 
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second with a 3-image burst and 10-second videos with a one-minute delay. No baits or 

wildlife attractants were used (Wilkie 2018). This was to ensure unbiased results and 

monitor the natural behaviors of the animals. Post-capture, photos were sorted by 

camera location and date of capture, animals observed were then identified, and moose 

observations were pulled from the broader data set. All presence points were compiled 

in Microsoft Excel in UTM coordinates and exported in a Comma-separated value (.csv) 

file for use in MaxEnt.  

 

Source: Wilke, 2018 
Figure 2. Location of Trail Cameras Within the Plot  
 
HABITAT DATA ACQUISITION  

Forest Resource Inventory 

To determine landscape classes present in the ERF, remotely derived data was 

extracted from the Ontario Forest Resources Inventory (FRI). The FRI is an open-source 

data set produced by the MNRF that provides spatial information on tree species forest 

composition, condition, and regeneration (OMNR 2016). Data acquisition in the FRI is a 

combination of leaf-on black and white aerial imagery collected at 20 cm resolution and 
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color infrared imagery collected at 40 cm resolution. Field sampling is used as a means 

to ground-truth aerial imagery to ensure image interpretation is highly accurate. The FRI 

for the ERF was downloaded from the Land Information Ontario metadata tool.  

Ontario Landscape Tool 

 In order to use landscape class to identify key areas of moose habitat, the base 

FRI needed to be plugged into a program called the Ontario Landscape Tool (OLT). 

This open-source program enables users to import FRIs from anywhere within the 

province and export shapefiles produced from landscape simulations, including 

landscape classes present within a specific forest (Fig. 3). For this study, the FRI for the 

English River Forest was imported into an OLT scenario, and the model was run. 

Shapefiles derived from the finished scenario included landscape classes for the ERF, 

moose aquatic feeding areas, growing season cover for moose and growing season 

forage for moose. The primary file used to determine habitat suitability was landscape 

class, with the latter three serving as reference files.  

 

Source: Elkie et al. 2018 
Figure 3. Landscape classes present in the Northwest Region of Ontario as defined by 
the Ontario Landscape Tool (OLT).  
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GIS Modeling  

 Once the landscape class file was exported from OLT, it was plugged into 

ArcGIS 10.6, which is a spatial mapping software developed by Esri. The attribute table 

for the FRI was altered to include additional feature classes for each landscape class 

identified by OLT. Polygons identified as each landscape class were given a value of 

100 and all other polygons were given a value of zero. This was repeated 15 times to 

cover each landscape class. Following this, each of the newly created feature classes in 

the landscape class shapefile were rasterized at a pixel resolution of 10 m by 10 m 

independently, producing a series of overlapping raster files with pixel values of either 

100 or 0 based on individual landscape classes.  

In addition to the 15 landscape class rasters, an additional two layers were 

created based on moose habitat preference. These layers were distance to cover and 

distance to water (Table 1). Based on literature reviewed it was determined that these 

factors would play a significant factor in habitat preference within the ERF. The 

Euclidean Distance tool in ArcGIS was used to rasterize the selected feature classes for 

water and cover at the extent of the FRI in 10 m by 10 m pixels, then to describe each 

cell within the rasters spatial relationship to the source feature class. All raster layers 

created were then converted into American Standard Code for Information Interchange 

(ASCII) files and compiled in a base environmental layers folder. 
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Table 1. Landscape class layers used to create preference layers of distance to cover (m) 
and distance to water (m) for moose in the English River Forest, ON. 
 
Preference Layers Landscape Class Layers 

Distance to Cover (m) 
Mature - Late Upland Conifer & Mixed 

Immature Conifer 

Distance to Water (m) Water 

  

The focal statistics tool in ArcGIS was used to quantify distance to features. This 

tool uses neighborhood analysis to create an output raster in which each output cell is 

given a value that is a function of proximity to input cells (ESRI 2019). Focal statistics 

were run on the base rasters derived from the landscape class shapefile, including each 

of the landscape classes and the two additional preference files. These rasters were then 

converted into ASCII files and uploaded into a separate environmental layers folder for 

the focal sweep run.   

A bias file for the moose presence points was created to manipulate the data set 

to select background data with the same bias as presence data collected from the trail 

cameras. The minimum bounding geometry tool in ArcGIS was used to create a 

minimum convex polygon around the presence locations. The buffer tool was then 

applied to this shapefile to create a 1 km buffer around the data points. The buffered 

shapefile was then rasterized at the same 10 m by 10 m pixel resolution. 

MaxEnt 

 Moose habitat suitability in the ERF was determined and modeled by an open-

source maximum entropy modeling software package called MaxEnt. The MaxEnt 
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software package uses presence points, and environmental landscape layers to extract 

background information and cross-examine it with the given presence locations (Merow 

et al. 2013). Using this information, the program outputs a series of graphs and 

suitability maps that illustrate the prospective species distribution across the given 

landscape. MaxEnt settings (Table 2) and the bias file were kept the same in both runs to 

minimize variability. The output formats were set to logistic, the output file type was set 

to ASCII, and output grids were removed from both runs to reduce disk space and 

increase speed.  

MaxEnt Models 

Models produced through the implementation of the MaxEnt software included 

proposed spatial distribution maps, Area Under the Receiver Operating Characteristic 

graphs, permutation models and analyses of variable contributions. Output models were 

available through MaxEnt for each moose presence local and the collective group of 

locations. Three different runs were utilized to ensure the best habitat suitability index 

possible is produced from the given environmental variables. These three runs were a 

binary run without a focal sweep, a non-binary run with a focal sweep, and a non-binary 

run with non-contributing layers omitted. Habitat suitability was quantified for each of 

the three runs as minimum suitability, maximum suitability, median suitability and 

average suitability (Appendix B). Output results that were examined for the context of 

this thesis focused on the graphs and maps produced from the collection of variables. 

Focus was placed on the average suitability maps for each run, which provided the 

context for the likely spatial distribution of moose, as identified by the environmental 

variables.  
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Table 2. MaxEnt settings used for both binary and non-binary runs.  

Settings Menu Test Data Parameters  Values   

Basic  

Random Test Percentage 25 
Regularization Multiplier 1 
Max. # of Background Points  10000 
Replicates 15 
Replicated Run Type Subsample 

Advanced  

Maximum Iterations 5000 
Convergence Threshold 0.00001 
Adjust Sample Radius 0 
Log File maxent.log 

Default Prevalence  0.5 
 

Jackknife Predictions 

Jackknife predictions were used to evaluate the correlation of each 

environmental variable in the model. Jackknife predictions are a method of cross-

validating results to determine the bias of an estimator (Abdi & Williams 2010). Each 

parameter in the model is estimated from the whole sample, then individual elements are 

removed from the model, and it is rerun. This enables the parameter of interest to be 

calculated from a smaller sample size. Jackknife predictions for this study were 

computed using AUC on test data 

Receiver Operating Characteristic 

Values for Area Under the Receiver Operating Characteristic (AUC) were used 

to evaluate the overall suitability of the model. AUC values can range anywhere from 0 

to 1.0. If the AUC values are less than 0.5 the environmental layers are worse indicators 

of average fit than random predictions. If AUC values are closer to 1.0, it indicates 

better model performance.  
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RESULTS 

CAMERA TRAPS  

A total of 108 images of moose were collected during the 142-day capture 

period. Moose were captured on 14 of the 18 cameras deployed. Images were obtained 

throughout the day, with no direct temporal-specific preference. Most images were 

identifiable to sex, with the majority of the captures identified as males at 57 images, 

whereas females only accounted for 27 images. The remaining 24 images were not 

identifiable to sex.  

MAXENT MODELS 

Binary Input Run  

The binary run produced a pointwise mean distribution model with spatial 

distribution encompassing a range of values from high probable occupancy indicated in 

red with a value of 1.0 to areas of no probably occupancy indicated in blue with a value 

of 0 (Fig. 4). Habitat distribution for this model was widespread throughout the forest 

without a significant range of suitability, however most habitat occupied a value range 

of around 0.46 to 0.15. Red areas identified in this model are indicative of high 

probability of occupancy. Interestingly, the areas identified as having the highest 

probable occupancy fell along identified road corridors. This is likely a result of the 

rasterization process in ArcGIS. Environmental layers with the highest relative 

contributions to the model include mature – late upland conifer and mixed, pre-sapling – 

sapling, and mature – late lowland conifer and mixed (Appendix C). These habitat types 

were identified earlier in the study as potential indicators of moose growing season 
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cover and growing season forage respectively.  

 
Figure 4. Mean spatial distribution of moose in the ERF based on binary values for 
environmental layers.   
 

The receiver operating characteristic (ROC) graph for this model (Fig. 5) shows 

that the average test AUC for the model is 0.808 and the standard deviation is 0.191, 

suggesting a relatively high predictive power of the model.  
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Figure 5. Receiver operating characteristic (ROC) curve for binary data averaging over 
replicate runs.  
 

Jackknifing tests for the binary model (Fig. 6) showed that the layers with the 

highest variable importance in the binary model were mature – late upland conifer and 

mixed, water and mature – late lowland conifer and mixed (Appendix E). The layer with 

the lowest variable importance in the model were distance to cover, distance to water, 

grass and rock. Training gain values dropped the most with the removal of the mature – 

late lowland conifer and mixed, and mature – late upland conifer and mixed layers. This 

indicates that these layers were key predictors of moose occurrence in the English River 

study area.  

 
Figure 6. Jackknife predictions of Regularized Training Gain for moose for individual 
environmental variables (binary).  

Non-Binary Input Run (With Focal Sweep)  

The non-binary (focal sweep) run produced a pointwise mean distribution model 

with spatial distribution encompassing a range of values from moderate distribution 
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indicated in yellow, to areas of no distribution indicated in blue (Fig. 7). Habitat 

suitability in this model encompasses a wider range of values with the highest 

probability focused in areas of lowland conifer, immature conifer and mixed-wood, and 

stands adjacent to these variables with values spanning from 0.77 to 0.23. Environmental 

layers with the highest relative contributions to this model include mature – late lowland 

conifer and mixed, pre-sapling – sapling, and immature conifer (Appendix C). 

Interestingly, pre-sapling sapling had the second highest percent contribution to the 

model. However, it had zero permutation importance. This indicates that there may be 

other highly correlated variables associated with this particular layer, skewing the 

results.  

 
Figure 7. Mean spatial distribution of moose in the ERF based on non-binary (focal 
sweep) values for environmental layers.   
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Figure 8. Receiver operating characteristic (ROC) curve for non – binary (focal sweep) 
data averaging over replicate runs.  
 

The receiver operating characteristic (ROC) graph for the non-binary (focal 

sweep) model (Fig. 8) indicates that the average test AUC for the model is 0.669 and the 

standard deviation is 0.188. Although the AUC values for this model are less than the 

previous binary run, the model is no longer classifying the road corridors as habitat and 

is likely a better predictor of moose distribution.  

 
Figure 9. Jackknife predictions of Regularized Training Gain for moose for individual 
environmental variables (non-binary). 
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Jacknife tests also indicted that layers with the highest contribution to the model 

were mature – late upland conifer and mixed, and mature – late lowland conifer and 

mixed (Fig. 9). The layers with the lowest variable importance in the model were 

immature hardwood and open muskeg (Appendix E). Regularized training gain values 

for pre-sapling – sapling were significantly higher when running with only that layer as 

opposed to the run that did not include the variable. Without the variable there is no 

changed in the training gain giving the indication that this model does not contribute any 

additional information and should be subsequently removed from the run to ensure a 

better overall fit.  

Non-Binary Run With Omitted Layers  

The binary run produced a pointwise mean distribution model with spatial 

distribution encompassing a range of values from moderate distribution indicated in 

yellow to areas of no distribution indicated in blue (Fig. 10). Habitat distribution in this 

model mirrored that of the non-binary run, but increased the focus on areas of upland 

conifer & mixed and lowland conifer with most values spanning the range of 0.77 to 

0.23. Environmental layers with the highest relative contributions to the model include 

mature – late upland conifer and mixed, and mature – late lowland conifer and mixed 

(Appendix C). Notable layers omitted from this model include rock, islands, grass, 

mature – late balsam fir and mixed and pre-sapling – sapling. All layers except pre-

sapling – sapling were removed after consulting the original non-binary run, as they 

were determined to be insignificant in predicting moose distribution throughout the 

ERF. 
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Figure 10. Mean spatial distribution of moose in the ERF based on non- binary values 
for select environmental layers. 
 

The receiver operating characteristic (ROC) graph for the non-binary run with 

omitted layers (Fig. 11) indicates that the average test AUC for the model is 0.771 and 

the standard deviation is 0.161.  This is again an improvement on the previous model.  

 
Figure 11. Receiver operating characteristic (ROC) curve for non – binary run with 
omitted layers data averaging over replicate runs. 
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Layers with the highest variable importance in the non –binary with omitted 

layers Jackknife prediction model were mature – late upland conifer and mixed, and 

mature – late lowland conifer and mixed (Fig. 12). The layers with the lowest variable 

importance in the model were immature hardwood and open muskeg (Appendix E). 

These values are similar to the non-binary (focal sweep) run and therefore indicate that 

the omission of selected layers had little to no adverse impact on the predictions results. 

The removal of the pre-sapling – sapling layer improved the model's predictability and 

removed potential bias associated with the overfitting of that layer.  

 

Figure 12. Jackknife predictions of AUC for moose for individual environmental 
variables (non-binary with omissions).  
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DISCUSSION 

This study aimed to develop a rudimentary habitat suitability index (HSI) for 

moose (Alces alces) in the English River Forest, ON with presence data collected from 

trail camera imagery. While this method produced several models with reasonably 

accurate performance, improvements can be made to both the presence and habitat data 

acquisition phases to better understand the actual spatial distribution of the species 

within the forest. The first area examined was the method used to acquire presence 

locals through camera traps. The main issue with the method employed was the limited 

number of data points acquired, which will be examined in the following section. 

Additionally, errors within the GIS modeling process limited the contributions of certain 

environmental layers within the models, this was due to operator bias and not a result of 

software limitations. In terms of the three models developed, each model varies in their 

overall suitability with the binary model being the worst overall fit with an inherent bias 

towards roads and the non-binary model with non-contributing layers omitted having the 

best overall fit out of three. HSIs are not a new concept in wildlife management. They 

are widespread throughout many biogeographical flora and fauna studies. However, this 

study attempted to create an accurate model using localized presence points, essentially 

making the model more accessible in terms of cost efficiency. The results of this study 

will be discussed in detail below in terms of their fit, limitations, and biases, which 

enable recommendations to be made to ensure future studies can improve on these  

shortfalls.  
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CAMERA TRAPS  

 
Source: Wilke, 2018 

Figure 13. Cabela’s Outfitter 14 MP Black Infrared HD trail camera being affixed to 
tree.  
 
 Presence points for this study were gathered from camera traps placed along road 

corridors in a southeastern block of the ERF. There were two main reasons why camera 

traps were employed in this study. The first was to reduce observer bias in the data 

collection (Randler & Kalb 2018). Images captured require observers to go into the field 

a minimum of two times to set and collect the image memory cards. Captured photos 

may then be examined in a lab by a variety of observers to ensure accurate species 

identification. The second reason as to why camera traps were employed in this study 

was to ensure that the data collection process was cost efficient and repeatable. Tracking 

systems that utilize global positioning systems (GPS) can range in price from $7000 to 

$9000 USD per individual unit, for a one-year study. These numbers however do not 

factor in battery replacements or technician fieldwork wages (Thomas et al. 2011). 
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Whereas, the average cost for a high-quality trail camera is around $300 to $600 USD 

(Swann et al. 2004). This might seem like quite a high number when buying cameras in 

bulk. However, these devices have relatively no maintenance costs, unlike GPS devices. 

Trail cameras again only require the placement and collection of the unit at the start and 

end of the study period, and the resulting images can be examined in a variety of 

contexts other than for presence locals. With both of these benefits considered, trail 

cameras were identified as an idealistic tracking method for this study. Cameras used in 

this study fell into the more affordable category of around $99 USD (Cabelas Canada 

2018).  

The use of camera traps provided accurate and reliable presence data for use in 

the MaxEnt suitability index. However, this method was not immune to shortfalls. The 

way in which the image locals were collected for this study incorporated potential bias 

into the model. There are three main areas where potential bias was incorporated 

through the use of trail cameras. The first potential bias contributor would be the 

location of camera traps. Trail cameras used in this study were placed as part of a 

Masters of Science in Forestry thesis on road reclamation efforts. Therefore, all presence 

points were collected on road corridors, as the original intended use of the data was to 

monitor wildlife on roads following various decommissioning methods. A second 

contributor of potential bias was the number of cameras included in the study. While the 

use of an 18-camera suite was sufficient to produce an HSI, the results could have been 

more comprehensive and representative if additional cameras were included. The final 

area where bias could have been introduced is through the delineation of the study area. 

The study area was around 87 km2, located in the southeastern portion of the ERF. The 

surrounding forest type in this area is primarily mature – late lowland conifer and pre-
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sapling - sapling. This caused the models to consider moose habitat as a product of 

mainly lowland conifer and sapling stands. As a result, two out of the three models were 

highly correlated to these variables.  

Future studies that intend to incorporate camera traps to quantify ungulate 

presence throughout a forest should consider implementing some of the following 

recommendations. The first recommendation would be to ensure that enough cameras 

are placed throughout the study area to amass more than 20 presence points during the 

collection period. Guisan et al. (2017) suggest that an idealistic number of observations 

should fall somewhere within the range of 20 to 50. While increasing the number of 

cameras in the suite is beneficial in a quantifiable context, it is redundant in terms of 

qualitative results if cameras locations are biased. Future studies should place cameras in 

a multitude of different forest compositions to ensure unbiased results. A final 

recommendation for future studies would be to ensure that cameras are not set directly 

on road corridors to ensure that these areas are not being unfairly considered as habitat 

throughout the modeling process.  

HABITAT SUITABILITY MODELS   

 The habitat suitability models produced during this study used a standard method 

called maximum entropy modeling (MEM). The process of MEM enables habitat 

suitability to be quantified as a combination of environmental input variables and 

species presence localities (Phillips et al. 2004). The MEM software used in this study 

was MaxEnt. This program uses the distribution of maximum entropy, subject to the 

constraint of each input variable, to determine a species target distribution. This software 

has been used in many spatial distribution models in the past, including Phillips et al.’s 

(2006) inquisition into the spatial distribution of Bradypus variegatus, a small species of 
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sloth. One of the benefits of the open-source MaxEnt software is its user-friendliness. 

The program utilizes a simple graphical interface that requires minimal inputs (Venette 

2015). With a base knowledge of GIS modeling software and file conversions, the 

program runs seamlessly.  

Three models were produced through the use of MaxEnt to quantify the spatial 

distribution of moose in the ERF. The first model was a binary run where all 

environmental layers were given a raster cell value of either 100 or 0 based on the 

corresponding variable. The second model was a non-binary run where a focal sweep 

was employed to attribute range values to raster cells based on their distance from the 

corresponding variable. The third run was a non-binary run where layers that were found 

to be non-contributing or overfit to the original non-binary run were removed. These 

various models were selected for this study to illustrate the differences between binary 

and non-binary methods fully, and how distance to select environmental variables can 

play a significant factor in the spatial distribution of moose. Comparisons of the three 

habitat suitability models produced in this study can help to identify which model was 

the most accurate in terms of probable distribution and identify deficiencies accumulated 

throughout the modeling.  

The first model produced was from the binary input run. This run utilized binary 

input layers as the environmental variables for the model. The binary run produced a 

habitat suitability index with the highest AUC value of all three models at 0.808. 

However, even with a high AUC score the accuracy of this model was determined to be 

quite low as a result of manual rasterization biases. The FRI is acquired from the Land 

Information Ontario metadata tool as a vector package and must be rasterized in a GIS 

modeling software to utilize it within MaxEnt. During this process, each variable was 
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given a value of 100, and all subsequent variables in the attribute table were assigned a 

value of 0. This process was complete for each landscape class. The main issue with this 

process is that in ArcGIS values of 0 are not considered null. When the environmental 

variables were plugged into MaxEnt the unclassified layer which houses all the roads 

information was left unchecked and not included in the model. This was done under the 

assumption that if left unchecked, the results would not be inaccurately skewed towards 

identifying roads as habitat. However, since raster cells labeled unclassified in each of 

the other models were given a value of 0, the model still identified these areas as having 

high potential suitability. This issue could have been mitigated if, during the 

rasterization process, cells labeled as unclassified are given a null value instead of 0.  

The second model that was produced came from the non-binary (focal sweep) 

run. For this run, binary raster’s generated from the previous model had focal statistics 

run on them in ArcGIS. This enabled cells previously labeled as 0 to acquire new values 

based on their distance from each identified environmental variable. The focal sweep 

also solved the issue with the unclassified cells in the binary run as these areas were 

provided values based on the surrounding landscape classes. The AUC value for this run 

was 0.669, a significant drop from the value of the binary run. Although the test AUC 

was lower for this run compared to the previous, it is no longer identifying roads a prime 

moose habitat, which would warrant a reduction in the suitability matrix. While an 

improvement on the previous model, the non-binary run was not immune to its 

shortfalls. Based on the jackknife predictions for the AUC, the model is significantly 

overfitting to the pre-sapling – sapling layer, so much so that the AUC value would 

improve to nearly 0.9 if the model were rerun with this variable alone. Essentially, areas 

classified as pre-sapling – sapling are being selected at a significantly higher rate than 
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other variables.  

To mitigate the issues prevalent in the previous two models, a third model was 

run. This model utilized the environmental variables from the non-binary run, and 

omitted layers that were found to be non-contributing, or overfit to the model. Layers 

that were omitted include rock, islands, grass, mature – late balsam fir and mixed and 

pre-sapling – sapling. The AUC value for this run was 0.771, which is higher than the 

binary model but still less than the non-binary. Although the AUC falls in the middle of 

the pack, this model was determined to be the best overall fit for the spatial distribution 

of moose in the ERF. All layers in the model were found to have a percent contribution 

and permutation importance to the model except for distance to cover and distance to 

water, which was found to have no significant effect on the model. It is unknown as to 

why these variables did not have a considerable contribution within the context of this 

model. However, it is likely a result of some sort of error throughout the rasterization 

process.  

Based on the findings of each of the three models outlined in this study, 

recommendations can be made on how to improve this process for future studies. The 

first recommendation would be to ensure that there are no issues present in the 

rasterization process before executing the model. This was a significant source of error 

in two out of the three runs, and could not be rectified due to time constraints. The 

second recommendation would be to ensure environmental variables selected are of 

recognized ecological value to moose. Some of the variables included in this study were 

not necessarily influential predictors of moose occurrence, such as grass, rock and pre-

sapling-sapling. Their subsequent removal ended up improving the model. Additionally, 

if layers such as distance to cover and distance to water were removed, it may also 
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improve the model’s overall fit. Environmental variables that may be of interest to 

include in future studies to introduce new information to the model include terrain 

elevation, burn areas and distance to roads. 
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CONCLUSIONS 

This study demonstrated how trail camera imagery can be a useful tool in 

developing a habitat suitability index for moose. Camera units are inherently affordable 

when compared to telemetry or GPS methods. Additionally their portability, and ease of 

use are unmatched by other presence point, acquisition methods, which require extensive 

fieldwork and multiple crews to deploy and maintain tracking devices. This makes them 

an excellent option for research projects where the budget is a constraint. Camera traps 

were used throughout this study in conjunction with a maximum entropy modelling 

software called MaxEnt. This software proved its worth as a potential option to use in 

conjunction with camera traps. MaxEnt is both open-source and relatively user-friendly, 

which makes it an ideal match with trail cameras if affordability and accuracy are the 

ultimate goal. Together, these methods make the production of a habitat suitability index 

more accessible to researchers. The models generated from this study however were not 

immune to shortfalls. Bias introduced in the GIS modelling process and the high 

correlation of certain environmental variables included in the study, resulted in two out 

of the three models lacking accuracy. The best model was clearly the non-binary run 

with non-contributing layers omitted, however distance to cover and distance to water 

should have been removed to enhance accuracy, but they were left in to illustrate their 

relative unimportance to the overall fit all three models. It is recommended that future 

studies look into removing these last two layers, rectifying issue present in the GIS 

modelling process and introducing additional variables such as elevation or burn areas.  
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APPENDIX A – INVENTORY OF MOOSE IMAGES AND LOCATIONS  

Camera 
Location 

Camera 
Number 

Serial 
Number 

Coordinates 
(N) 

Coordinates 
(W) 

File 
Type 

Common 
Name 

Genus Species Sex 
Date 

Captured 
Time 

Date 
Collected 
From Field 

Corner of road Camera 20 1612080109 49°32'52.20" 90°40'28.80" Image Moose Alces alces Male 17-05-23 11:45 AM 17-05-25 

Corner of road Camera 20 1612080109 49°32'52.20" 90°40'28.80" Video Moose Alces alces Male 17-05-23 22:52 PM 17-05-25 

Hill-corner Camera 6 1612080108 49°32'52.20" 90°40'28.80" Image Moose Alces alces Female 17-05-23 23:06 PM 17-05-25 

Hill-corner Camera 6 1612080108 49°32'52.20" 90°40'28.80" Video Moose Alces alces Female 17-05-23 22:57 PM 17-05-25 

South Access Camera 11 1612080102 49°32'44.90" 90°40'40.77" Video Moose Alces alces NA 17-05-20 13:59 PM 17-05-25 

Bridge Pull Camera 8 1612080156 49°33'25.98" 90°38'54.07" Image Moose Alces alces Male 17-06-07 10:53 AM 17-06-22 

Chip Pile Camera 5 1612080187 49°34'40.43" 90°39'00.71" Image Moose Alces alces NA 17-05-27 8:17AM 17-06-22 

Chip Pile Camera 5 1612080187 49°34'40.43" 90°39'00.71" Video Moose Alces alces NA 17-05-27 8:18 AM 17-06-22 

Chip Pile Camera 5 1612080187 49°34'40.43" 90°39'00.71" Image Moose Alces alces Male 17-06-04 9:40 AM 17-06-22 

Chip Pile Camera 5 1612080187 49°34'40.43" 90°39'00.71" Video Moose Alces alces Male 17-06-04 9:42 AM 17-06-22 

Chip Pile Camera 5 1612080187 49°34'40.43" 90°39'00.71" Video Moose Alces alces NA 17-06-11 7:43 AM 17-06-22 

North access Camera 18 1612080117 49°34'56.38" 90°38'31.27" Image Moose Alces alces Male 17-06-04 14:13 PM 17-06-22 

North access Camera 18 1612080117 49°34'56.38" 90°38'31.27" Video Moose Alces alces Male 17-06-04 21:59 PM 17-06-22 

North culvert 
pull 

Camera 19 1612080156 49°34'54.60" 90°37'32.10" Image Moose Alces alces Female 17-05-25 21:17 PM 17-06-22 

North culvert 
pull 

Camera 19 1612080156 49°34'54.60" 90°37'32.10" Image Moose Alces alces Female 17-05-25 13:53 PM 17-06-22 

North culvert 
pull 

Camera 19 1612080156 49°34'54.60" 90°37'32.10" Video Moose Alces alces Female 17-05-25 8:03 AM 17-06-22 

North culvert 
pull 

Camera 19 1612080156 49°34'54.60" 90°37'32.10" Image Moose Alces alces Female 17-05-25 21:58 PM 17-06-22 

North culvert 
pull 

Camera 19 1612080156 49°34'54.60" 90°37'32.10" Video Moose Alces alces Female 17-05-25 12:09 AM 17-06-22 

North culvert 
pull 

Camera 19 1612080156 49°34'54.60" 90°37'32.10" Image Moose Alces alces Female 17-05-25 8:30 AM 17-06-22 

North culvert 
pull 

Camera 19 1612080156 49°34'54.60" 90°37'32.10" Video Moose Alces alces Female 17-05-25 21:42 PM 17-06-22 

North culvert 
pull 

Camera 19 1612080156 49°34'54.60" 90°37'32.10" Image Moose Alces alces Female 17-05-25 9:33 AM 17-06-22 

North culvert 
pull 

Camera 19 1612080156 49°34'54.60" 90°37'32.10" Video Moose Alces alces Female 17-05-25 23:15 PM 17-06-22 

North culvert 
pull 

Camera 19 1612080156 49°34'54.60" 90°37'32.10" Image Moose Alces alces Male 17-05-25 23:10 PM 17-06-22 
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Appendix A. cont’d.  

Camera 
Location 

Camera 
Number 

Serial 
Number 

Coordinates 
(N) 

Coordinates 
(W) 

File 
Type 

Common 
Name 

Genus Species Sex 
Date 

Captured 
Time 

Date 
Collected 
From Field 

North culvert 
pull 

Camera 19 1612080156 49°34'54.60" 90°37'32.10" Video Moose Alces alces Male 17-05-25 1:05 AM 17-06-22 

North culvert 
pull 

Camera 19 1612080156 49°34'54.60" 90°37'32.10" Image Moose Alces alces Male 17-05-25 7:18 AM 17-06-22 

North culvert 
pull 

Camera 19 1612080156 49°34'54.60" 90°37'32.10" Video Moose Alces alces Male 17-05-25 8:26 AM 17-06-22 

North culvert 
pull 

Camera 19 1612080156 49°34'54.60" 90°37'32.10" Image Moose Alces alces Male 17-05-25 13:07 PM 17-06-22 

North culvert 
pull 

Camera 19 1612080156 49°34'54.60" 90°37'32.10" Video Moose Alces alces Male 17-05-25 13:08 PM 17-06-22 

North culvert 
pull 

Camera 19 1612080156 49°34'54.60" 90°37'32.10" Image Moose Alces alces Male 17-05-25 9:07 AM 17-06-22 

North culvert 
pull 

Camera 19 1612080156 49°34'54.60" 90°37'32.10" Image Moose Alces alces Male 17-05-26 9:41 AM 17-06-22 

North culvert 
pull 

Camera 19 1612080156 49°34'54.60" 90°37'32.10" Video Moose Alces alces Male 17-05-26 16:57 PM 17-06-22 

North culvert 
pull 

Camera 19 1612080156 49°34'54.60" 90°37'32.10" Image Moose Alces alces Male 17-05-26 5:20 AM 17-06-22 

North culvert 
pull 

Camera 19 1612080156 49°34'54.60" 90°37'32.10" Video Moose Alces alces Male 17-05-26 11:22 AM 17-06-22 

North culvert 
pull 

Camera 19 1612080156 49°34'54.60" 90°37'32.10" Image Moose Alces alces Male 17-05-26 21:06 PM 17-06-22 

North culvert 
pull 

Camera 19 1612080156 49°34'54.60" 90°37'32.10" Video Moose Alces alces Male 17-05-26 6:46 AM 17-06-22 

North culvert 
pull 

Camera 19 1612080156 49°34'54.60" 90°37'32.10" Image Moose Alces alces NA 17-06-06 11:54 AM 17-06-22 

North culvert 
pull 

Camera 19 1612080156 49°34'54.60" 90°37'32.10" Video Moose Alces alces NA 17-06-06 21:27 PM 17-06-22 

North culvert 
pull 

Camera 19 1612080156 49°34'54.60" 90°37'32.10" Image Moose Alces alces Male 17-06-11 21:28 PM 17-06-22 

North culvert 
pull 

Camera 19 1612080156 49°34'54.60" 90°37'32.10" Video Moose Alces alces Male 17-06-11 8:21 AM 17-06-22 

South Access Camera 11 1612080102 49°32'44.90" 90°40'40.77" Image Moose Alces alces NA 17-06-21 14:04 PM 17-06-22 

Chip Pile Camera 5 1612080187 49°34'40.43" 90°39'00.71" Image Moose Alces alces Male 17-06-28 2:38 AM 17-07-26 

Chip Pile Camera 5 1612080187 49°34'40.43" 90°39'00.71" Video Moose Alces alces Male 17-06-28 12:14 AM 17-07-26 

Chip Pile Camera 5 1612080187 49°34'40.43" 90°39'00.71" Image Moose Alces alces Female 17-07-04 20:38 PM 17-07-26 

Chip Pile Camera 5 1612080187 49°34'40.43" 90°39'00.71" Image Moose Alces alces Female 17-07-12 20:01 PM 17-07-26 
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Camera 
Location 

Camera 
Number 

Serial 
Number 

Coordinates 
(N) 

Coordinates 
(W) 

File 
Type 

Common 
Name 

Genus Species Sex 
Date 

Captured 
Time 

Date 
Collected 
From Field 

Chip Pile Camera 5 1612080187 49°34'40.43" 90°39'00.71" Video Moose Alces alces Female 17-07-12 7:10 AM 17-07-26 

Chip Pile Camera 5 1612080187 49°34'40.43" 90°39'00.71" Image Moose Alces alces Female 17-07-16 22:30 PM 17-07-26 

Chip Pile Camera 5 1612080187 49°34'40.43" 90°39'00.71" Video Moose Alces alces Female 17-07-16 21:44 PM 17-07-26 

Corner of road Camera 6 1612080109 49°32'52.20" 90°40'28.80" Image Moose Alces alces Male 17-07-13 11:01 AM 17-07-26 

Corner of road Camera 6 1612080109 49°32'52.20" 90°40'28.80" Video Moose Alces alces Male 17-07-13 6:41 AM 17-07-26 

South Access Camera 11 1612080102 49°32'44.90" 90°40'40.77" Image Moose Alces alces Female 17-06-28 12:34 PM 17-07-26 

South Access Camera 11 1612080102 49°32'44.90" 90°40'40.77" Video Moose Alces alces Female 17-06-28 18:32 PM 17-07-26 

South Access Camera 11 1612080102 49°32'44.90" 90°40'40.77" Image Moose Alces alces Female 17-07-12 13:32 PM 17-07-26 

North access Camera 18 1612080117 49°34'56.38" 90°38'31.27" Image Moose Alces alces Male 17-06-28 9:45 AM 17-07-26 

North access Camera 18 1612080117 49°34'56.38" 90°38'31.27" Video Moose Alces alces Male 17-06-28 9:46 AM 17-07-26 

North access Camera 18 1612080117 49°34'56.38" 90°38'31.27" Video Moose Alces alces NA 17-07-09 14:34 PM 17-07-26 

North access Camera 18 1612080117 49°34'56.38" 90°38'31.27" Image Moose Alces alces Male 17-07-09 11:20 AM 17-07-26 

North access Camera 18 1612080117 49°34'56.38" 90°38'31.27" Video Moose Alces alces NA 17-07-09 12:41 PM 17-07-26 

North access Camera 18 1612080117 49°34'56.38" 90°38'31.27" Video Moose Alces alces NA 17-07-09 13:12 PM 17-07-26 

North access Camera 18 1612080117 49°34'56.38" 90°38'31.27" Video Moose Alces alces NA 17-07-09 13:38 PM 17-07-26 

North access Camera 18 1612080117 49°34'56.38" 90°38'31.27" Image Moose Alces alces NA 17-07-09 11:26 AM 17-07-26 

North access Camera 18 1612080117 49°34'56.38" 90°38'31.27" Video Moose Alces alces NA 17-07-09 21:25 PM 17-07-26 

North access Camera 18 1612080117 49°34'56.38" 90°38'31.27" Video Moose Alces alces NA 17-07-09 21:29 PM 17-07-26 

North access Camera 18 1612080117 49°34'56.38" 90°38'31.27" Image Moose Alces alces Male 17-07-14 10:40 AM 17-07-26 

North access Camera 18 1612080117 49°34'56.38" 90°38'31.27" Video Moose Alces alces Male 17-07-14 19:46 PM 17-07-26 

North access Camera 18 1612080117 49°34'56.38" 90°38'31.27" Video Moose Alces alces Male 17-07-18 23:02 PM 17-07-26 

Middle of road Camera 20 1612080109 49°32'49.79" 90°40'30.58" Image Moose Alces alces NA 17-06-28 15:09 PM 17-07-26 

Middle of road Camera 20 1612080109 49°32'49.79" 90°40'30.58" Video Moose Alces alces NA 17-06-28 15:28 PM 17-07-26 

Middle of road Camera 20 1612080109 49°32'49.79" 90°40'30.58" Image Moose Alces alces Male 17-07-13 5:53 AM 17-07-26 

Middle of road Camera 20 1612080109 49°32'49.79" 90°40'30.58" Video Moose Alces alces Male 17-07-13 10:19 AM 17-07-26 

Chip Pile Camera 5 1612080187 49°34'40.43" 90°39'00.71" Image Moose Alces alces Male 17-08-02 15:58 PM 17-08-02 
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Camera 
Location 

Camera 
Number 

Serial 
Number 

Coordinates 
(N) 

Coordinates 
(W) 

File 
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Name 

Genus Species Sex 
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Captured 
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Date 
Collected 
From Field 

Chip Pile Camera 5 1612080187 49°34'40.43" 90°39'00.71" Image Moose Alces alces Male 17-08-02 2:46 AM 17-08-02 

Chip Pile Camera 5 1612080187 49°34'40.43" 90°39'00.71" Image Moose Alces alces Male 17-08-02 13:51 PM 17-08-02 

Corner of road Camera 6 1612080109 49°32'52.20" 90°40'28.80" Video Moose Alces alces Male 17-08-01 20:48 PM 17-08-02 

Bridge Pull Camera 8 1612080156 49°33'25.98" 90°38'54.07" Video Moose Alces alces Female 17-06-29 21:02 PM 17-08-02 

Bridge Pull Camera 8 1612080156 49°33'25.98" 90°38'54.07" Image Moose Alces alces Female 17-07-05 21:05 PM 17-08-02 

Bridge Pull Camera 8 1612080156 49°33'25.98" 90°38'54.07" Image Moose Alces alces NA 17-07-05 16:23 PM 17-08-02 

Bridge Pull Camera 8 1612080156 49°33'25.98" 90°38'54.07" Video Moose Alces alces Female 17-07-16 11:41 AM 17-08-02 

Bridge Pull Camera 8 1612080156 49°33'25.98" 90°38'54.07" Image Moose Alces alces Male 17-07-20 12:22 PM 17-08-02 

Bridge Pull Camera 8 1612080156 49°33'25.98" 90°38'54.07" Image Moose Alces alces Male 17-07-21 19:23 PM 17-08-02 

Bridge Pull Camera 8 1612080156 49°33'25.98" 90°38'54.07" Video Moose Alces alces Male 17-07-21 8:58 AM 17-08-02 

Bridge Pull Camera 8 1612080156 49°33'25.98" 90°38'54.07" Video Moose Alces alces Male 17-07-21 13:28 PM 17-08-02 

South Access Camera 11 1612080102 49°32'44.90" 90°40'40.77" Image Moose Alces alces Male 17-08-01 12:00 PM 17-08-02 

South Access Camera 11 1612080102 49°32'44.90" 90°40'40.77" Video Moose Alces alces Male 17-08-01 23:07 PM 17-08-02 

North Landing Camera 12 1612080115 49°34'56.88" 90°39'2.86" Image Moose Alces alces Male 17-07-26 13:58 PM 17-08-02 

North Landing Camera 12 1612080115 49°34'56.88" 90°39'2.86" Video Moose Alces alces Male 17-07-26 2:54 AM 17-08-02 

North Landing Camera 12 1612080115 49°34'56.88" 90°39'2.86" Image Moose Alces alces Male 17-07-26 15:10 PM 17-08-02 

North Landing Camera 12 1612080115 49°34'56.88" 90°39'2.86" Video Moose Alces alces Male 17-07-26 15:30 PM 17-08-02 

North Landing Camera 12 1612080115 49°34'56.88" 90°39'2.86" Image Moose Alces alces Male 17-07-26 2:44 AM 17-08-02 

North Landing Camera 12 1612080115 49°34'56.88" 90°39'2.86" Video Moose Alces alces Male 17-07-26 15:49 PM 17-08-02 

North Landing Camera 12 1612080115 49°34'56.88" 90°39'2.86" Image Moose Alces alces Male 17-07-26 6:51 AM 17-08-02 

North Landing Camera 12 1612080115 49°34'56.88" 90°39'2.86" Video Moose Alces alces Male 17-07-26 22:33 PM 17-08-02 

North Landing Camera 12 1612080115 49°34'56.88" 90°39'2.86" Image Moose Alces alces Male 17-07-26 16:12 PM 17-08-02 

North Landing Camera 12 1612080115 49°34'56.88" 90°39'2.86" Video Moose Alces alces Male 17-07-26 16:46 PM 17-08-02 

North Landing Camera 12 1612080115 49°34'56.88" 90°39'2.86" Image Moose Alces alces Male 17-07-27 11:25AM 17-08-02 

North Landing Camera 12 1612080115 49°34'56.88" 90°39'2.86" Video Moose Alces alces Male 17-07-27 21:19 PM 17-08-02 

North Landing Camera 12 1612080115 49°34'56.88" 90°39'2.86" Image Moose Alces alces Female 17-07-30 16:11 PM 17-08-02 
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North Landing Camera 12 1612080115 49°34'56.88" 90°39'2.86" Video Moose Alces alces Female 17-07-30 19:30 PM 17-08-02 

SW Corner Camera 17 1612080106 49°32'50.82" 90°41'31.23" Image Moose Alces alces Male 17-07-29 15:23 PM 17-08-02 

NE Corner Camera 19 1612080156 49°34'55.46" 90°36'34.41" Image Moose Alces alces NA 17-07-02 2:29 PM 17-08-02 

NE Corner Camera 19 1612080156 49°34'55.46" 90°36'34.41" Video Moose Alces alces NA 17-07-02 12:43 PM 17-08-02 

NE Corner Camera 19 1612080156 49°34'55.46" 90°36'34.41" Video Moose Alces alces NA 17-07-14 12:37 PM 17-08-02 

Middle of road Camera 20 1612080109 49°32'49.79" 90°40'30.58" Video Moose Alces alces NA 17-07-31 20:03 PM 17-08-02 

Middle of road Camera 20 1612080109 49°32'49.79" 90°40'30.58" Image Moose Alces alces NA 17-07-31 12:08 AM 17-08-02 

Middle of road Camera 20 1612080109 49°32'49.79" 90°40'30.58" Video Moose Alces alces NA 17-07-31 22:06 PM 17-08-02 

Chip Pile Camera 5 1612080187 49°34'40.43" 90°39'00.71" Image Moose Alces alces Female 17-08-12 15:04 PM 17-08-26 

Chip Pile Camera 5 1612080187 49°34'40.43" 90°39'00.71" Image Moose Alces alces Female 17-08-12 18:23 PM 17-08-26 

Chip Pile Camera 5 1612080187 49°34'40.43" 90°39'00.71" Image Moose Alces alces Female 17-08-12 10:41 AM 17-08-26 

Source: Wilke, 2018 
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APPENDIX B – HABITAT SUITABILITY INDICIES FOR EACH MODEL 

Binary Input Run 

 
Appendix B-1. Maximum habitat suitability for moose in the ERF based on the binary 
input run.  
 

 
Appendix B-2. Median habitat suitability for moose in the ERF based on the binary 
input run. 



 
 

XLVII 

 
Appendix B-3. Average habitat suitability for moose in the ERF based on the binary 
input run. 
 

 
Appendix B-4. Minimum habitat suitability for moose in the ERF based on the binary 
input run. 
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Non-Binary Input Run 

 
Appendix B-5. Maximum habitat suitability for moose in the ERF based on the non-
binary input run. 
 

 
Appendix B-6. Median habitat suitability for moose in the ERF based on the non-binary 
input run. 
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Appendix B-7. Average habitat suitability for moose in the ERF based on the non-binary 
input run. 
 

 
Appendix B-8. Minimum habitat suitability for moose in the ERF based on the non-
binary input run. 
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Non-Binary Run With Omitted Layers  

 
Appendix B-9. Maximum habitat suitability for moose in the ERF based on the non-
binary run with omitted layers.  
 

 
Appendix B-10. Median habitat suitability for moose in the ERF based on the non-
binary run with omitted layers.  
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Appendix B-11. Average habitat suitability for moose in the ERF based on the non-
binary run with omitted layers.  
 

 
Appendix B-12. Minimum habitat suitability for moose in the ERF based on the non-
binary run with omitted layers. 
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APPENDIX C – CONTRIBUTION OF VARIABLES TO EACH MODEL RUN  

The tables below provide estimates of the percent contributions and permutation 
importance of each variable used in the corresponding model. Percent contribution is 
measured as factor of the regularized gain in relation to the contribution of the 
corresponding variable. Permutation importance is measured as a randomized 
permutation of the background data in combination with the training value for each 
corresponding variable. The model is then re-run on the permuted data and the resulting 
drop in AUC levels are then presented in the Permutation Importance section as a 
normalized percentage.  
 
Binary Input Run 
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Non-Binary Input Run 
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Non-Binary Input Run with Omitted Layers 
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APPENDIX D – JACKKNIFE T-TEST AND AUC PREDICTIONS 

Binary Input Run 

 

 
 
Appendix D-1. Jackknife predictions of AUC for moose for individual environmental 
variables (binary).

 
Appendix D-2. Jackknife predictions of Test Gain for moose for individual 
environmental variables (binary). 
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Non-Binary Input Run 

 
Appendix D-3. Jackknife predictions of AUC for moose for individual environmental 
variables (non-binary).  

 
Appendix D-4. Jackknife predictions of Test Gain for moose for individual 
environmental variables (non-binary). 
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Non-Binary Input Run with Omitted Layers 
 

 
Appendix D-5. Jackknife predictions of AUC for moose for individual environmental 
variables (non-binary with omitted layers). 
 

 
Appendix D-6. Jackknife predictions of Test Gain for moose for individual 
environmental variables (non-binary with omitted layers). 
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APPENDIX E – ENVIRONMENTAL LAYER RESPONSE CURVES 

Binary Input Run 

 

Appendix E-1. Response curve depicting the relative contribution of Mature to Late 
Balsam Fir to the binary model.  
 

 
Appendix E-2. Response curve depicting the relative contribution of Open Muskeg to 
the binary model. 
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Appendix E-3. Response curve depicting the relative contribution of Pre-sapling – 
Sapling to the binary model. 
 
 

 
Appendix E-4. Response curve depicting the relative contribution of Rock to the binary 
model. 
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Appendix E-5. Response curve depicting the relative contribution of Treed Muskeg to 
the binary model. 
 
 

  
Appendix E-6. Response curve depicting the relative contribution of Mature to Late 
Upland Conifer & Mixed to the binary model. 
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Appendix E-7. Response curve depicting the relative contribution of Water to the binary 
model. 
 
 

 
Appendix E-8. Response curve depicting the relative contribution of Mature to Late 
Lowland Conifer to the binary model. 
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Appendix E-9. Response curve depicting the relative contribution of Islands to the 
binary model. 
 

 

Appendix E-10. Response curve depicting the relative contribution of Immature 
Hardwood to the binary model. 
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Appendix E-11. Response curve depicting the relative contribution of Immature Conifer 
to the binary model. 
 

 
Appendix E-12. Response curve depicting the relative contribution of Mature to Late 
Hardwood and Mixed to the binary model. 
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Appendix E-13. Response curve depicting the relative contribution of Grass to the 
binary model. 
 

 

Appendix E-14. Response curve depicting the relative contribution of Distance to Water 
(m) to the binary model. 
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Appendix E-15. Response curve depicting the relative contribution of Distance to Cover 
(m) to the binary model. 
 

 
Appendix E-16. Response curve depicting the relative contribution of Brush to the 
binary model. 
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Non-Binary Input Run 

 

Appendix E-17. Response curve depicting the relative contribution of Mature to Late 
Balsam Fir to the non-binary model.  
 

  
Appendix E-18. Response curve depicting the relative contribution of Open Muskeg to 
the non-binary model. 
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Appendix E-19. Response curve depicting the relative contribution of Pre-sapling – 
Sapling to the non-binary model. 
 
 

  
Appendix E-19. Response curve depicting the relative contribution of Rock to the non-
binary model. 
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Appendix E-20. Response curve depicting the relative contribution of Treed Muskeg to 
the non-binary model. 
 
 

   
Appendix E-21. Response curve depicting the relative contribution of Mature to Late 
Upland Conifer & Mixed to the non-binary model. 
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Appendix E-22. Response curve depicting the relative contribution of Water to the non-
binary model. 
 

  
Appendix E-23. Response curve depicting the relative contribution of Mature to Late 
Lowland Conifer to the non-binary model. 
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Appendix E-24. Response curve depicting the relative contribution of Islands to the non-
binary model. 
 

  
Appendix E-25. Response curve depicting the relative contribution of Immature 
Hardwood to the non-binary model. 
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Appendix E-26. Response curve depicting the relative contribution of Immature Conifer 
to the non-binary model. 
 

  
Appendix E-27. Response curve depicting the relative contribution of Mature to Late 
Hardwood and Mixed to the non-binary model. 
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Appendix E-28. Response curve depicting the relative contribution of Grass to the non-
binary model. 
 

  
Appendix E-29. Response curve depicting the relative contribution of Distance to Water 
(m) to the non-binary model. 
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Appendix E-30. Response curve depicting the relative contribution of Distance to Cover 
(m) to the non-binary model. 
 

  
Appendix E-31. Response curve depicting the relative contribution of Brush to the non-
binary model. 
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Non-Binary Input Run with Omitted Layers 
 

  
Appendix E-32. Response curve depicting the relative contribution of Open Muskeg to 
the non-binary model with non-contributing layers omitted. 
  

 
Appendix E-33. Response curve depicting the relative contribution of Treed Muskeg to 
the non-binary model with non-contributing layers omitted. 
 
 
  
  



 
 

LXXV 

 
Appendix E-34. Response curve depicting the relative contribution of Mature to Late 
Upland Conifer & Mixed to the non-binary model with non-contributing layers omitted. 
 

 
Appendix E-35. Response curve depicting the relative contribution of Water to the non-
binary model with non-contributing layers omitted. 
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Appendix E-36. Response curve depicting the relative contribution of Mature to Late 
Lowland Conifer to the non-binary model with non-contributing layers omitted. 
 

 
Appendix E-37. Response curve depicting the relative contribution of Immature 
Hardwood to the non-binary model with non-contributing layers omitted. 
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Appendix E-38. Response curve depicting the relative contribution of Immature Conifer 
to the non-binary model with non-contributing layers omitted. 
 

  
Appendix E-39. Response curve depicting the relative contribution of Mature to Late 
Hardwood and Mixed to the non-binary model with non-contributing layers omitted. 
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Appendix E-40. Response curve depicting the relative contribution of Distance to Water 
(m) to the non-binary model with non-contributing layers omitted. 
  

  
Appendix E-41. Response curve depicting the relative contribution of Distance to Cover 
(m) to the non-binary model with non-contributing layers omitted. 
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Appendix E-42. Response curve depicting the relative contribution of Brush to the non-
binary model with non-contributing layers omitted.  
  




