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Abstract 

Rickards, A.J. 2019. Forest road location modelling with Dijkstra’s shortest path and 
ArcGIS.34 pp.  
 
Keywords: forestry, forest, road, network, Dijkstra, slope, terrain, GIS, ArcGIS, modelling, 
LiDAR, DEM 

 

Road network modelling has great potential to reduce forest road construction 

and planning costs. Forest roads are the essential means to access forest resources and 

are one of the most expensive factors in forest operations. Route optimization models 

have been used recently to aid in pre-planning of forest road networks. Modern 

technology is increasing the feasibility of these models. LiDAR data is becoming less 

expensive and more freely available aiding in the accuracy of road network models. 

LiDAR has the potential to greatly reduce the costs of forest roads through selection of 

optimal route locations. LiDAR will also reduce the manual planning and design of 

forest roads further reducing costs. The objective of this study is to model forest road 

locations. Model parameters calculate distance and slope as the factors in selecting 

locations. The study tested the same areas with three data types 50 m2 cell resolution 

DEM, 5 m2 cell resolution DEM, and 2 point per metre LiDAR. The test cases in this 

study found that using LiDAR data gave the best location. Overall there is potential 

using these data and models to assist in the pre-planning of forest roads.  
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Introduction 

The development, construction and planning of forest roads are an expensive and 

necessary means to access forest resources. The optimization of road location selection 

can assist in reducing the costs associated with forest roads.  

The purpose of this study was to select an optimal resolution for data, and to test 

which data would provide the better route location. Three different scenarios were used 

to test the model, the first was 50 m2 cell resolution digital elevation model (DEM), the 

second 5 m2 cell resolution DEM, and the third was 2 point per metre light detection and 

ranging (LiDAR). To generate potential road locations Python was used to code an 

implementation of Dijkstra’s shortest path. Python has a module, ArcPy that works with 

ArcGIS.  

Literature review 

Forest roads 

Road networks in forestry operations are the essential means to access forest 

resources (Abdi et al. n.d.). Thousand of kilometres of forest roads are annually 

constructed globally to access resources (Anderson and Nelson 2004). Forest roads are 

very costly to build and maintain, and require concise planning (Akay et al. 2013). 

Manual planning of forest roads is labour and time intensive (Anderson and Nelson 

2004). Road network locations are essential in reducing overhead costs in forestry 

operation (Rönnqvist 2003). Forest road networks need to balance and minimize the 

amount of roads constructed while maintaining access for resource harvesting, tending, 

silviculture, and recreation (Liu and Sessions 1993).  
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With increases in personal computer processing, access to Geographic 

Information Systems (GIS), and GIS data, pre-planning of forest roads becomes faster 

and more efficient (Abdi et al. n.d.). ArcGIS is a spatial data platform from ESRI that 

allows for the creation, sharing, analysis, and management of data (ESRI n.d.). These 

technological advancements allow for the automation of road network planning 

(Stückelberger 2007).  

Digital elevation models are a specialized database that represent topography 

through a series of points representing elevations either interpolated from measured 

elevations in the case of traditional DEM, or measured elevations in the case of LiDAR 

(“What is a DEM - Digital Elevation Model Definition” n.d.). Data are collected through 

ground surveys and photogrammetry and a digital elevation model is created. GIS 

software and tools can interpret these DEM data and provide a means for analysis. 

LiDAR is an acronym for light detection and ranging. LiDAR uses laser pulses 

to measure distances and generate surface characteristics (US Department of Commerce 

n.d.). Surface characteristics can be ground surface, buildings, vegetation, water 

including seabed and riverbed elevations. (Akay et al. 2009). 

 

Graph theory and operations research 

Graph theory is the study of graphs where a graph (G) is defined as G =(N,E), 

where N is a finite number of nodes, and E is a finite set of edges (links between pairs of 

nodes) (Wilson 2010). Weighted graphs are defined as G = (N,E; w) where w represents 

an attribute for each which is the cost of that edge (Stückelberger 2007). Graphs can be 

further divided into different categories, directed and undirected, as well as static and 



3 
 

dynamic (Cortes et al. 2003). The previously given definitions is an undirected graph 

with nodes and edges. In directed graphs nodes are referred to as vertices and edges are 

referred to as arcs (Wilson 2010). Arcs can only be travelled in one direction, and in 

order to have bi-directionality between vertices two arcs are required. A dynamic graph 

is defined by the addition and removal of nodes or edges during operations which can be 

differentiated from a classic graph where the nodes and edges are static and do not 

change (Cortes et al. 2003).  

Operations research is a field that studies practical applications in operating 

activities and using the scientific method models decision supports for optimizing  these 

activities (Hillier and Lieberman 2005). The application of graph theory in combination 

with operations research allows for applications such forest road location modelling 

(Stückelberger et al. 2007). Operations research can be used to apply a shortest path 

network routing algorithm to a graph and increase road layout efficiency.  

 

Dijkstra’s shortest path algorithm 

Dijkstra’s shortest path is an algorithm for finding the shortest path between two 

nodes (Dijkstra 1959). Dijkstra’s algorithm finds the shortest path from one node to all 

other nodes until the end node is found (Stückelberger 2007). The shortest path 

algorithm is only able to work with positive edge or arc weights. One limitation with 

Dijkstra’s algorithm is that it only considers edge or arc cost and is not capable of 

measuring multiple attributes simultaneously, thus penalties based on these other 

attributes need to be applied to the costs (Stückelberger 2007). 
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Forest Road Modelling 

Forest roads require specific constraints to limit where a viable road can be 

located (Bont et al. 2012). Constraints are created by adding weights to edges or 

removing edges from areas that are infeasible for road locations (Aruga et al. 2005). 

Road constraints can be applied to water crossings, steep terrain, infeasible turning radii, 

geological structures, substrates, and or values within the area (Henningsson et al. 

2007). When creating a model to output candidate roads all the constraints must be 

considered and weighted according to the impact they will have on road location 

selection (Stückelberger et al. 2006).  

Anderson and Nelson (2004) handle the application of all constraints using 

increasing weights on edges. This method does not omit areas from selection and instead 

only reduces likelihood of selection. By removing edges from infeasible areas it can 

fully prevent the model from selecting these routes, though this option should only be 

used on areas that have no potential for a candidate road (Stückelberger 2007).  

Materials and Methods 

Data Acquisition  

Data were acquired from the province of New Brunswick, Canada online 

database GeoNB. The data were in the form of digital elevation model (DEM), and 

LiDAR tiles. The DEM tiles from the New Brunswick database were interpolated using 

LiDAR from Natural Resources Canada to 1 m2 cell resolution. The LiDAR data were 

shot at 2 points per square metre. The area selected was chosen for its dynamic terrain, 

and availability of a public library of LiDAR tiles. Having a broad range of elevations 

across the sample area better illustrates the algorithms routing decisions over terrain.  
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ArcGIS was used to aggregate the original 1 m2 resolution DEM tiles into 5 m2 

and 50 m2 resolution tiles. These new tiles covered the same land area at a coarser 

resolution. The aggregation technique took the mean elevation over the new cell area 

and applied it to the new larger cell. The LiDAR data was interpolated to a raster of 5 

m2 cell resolution. Cell elevations were determined by the lowest point in that area, this 

one done to eliminate outliers that may misrepresent the ground elevation. The tile size 

of 1 km2 was used to keep processing time to a feasible amount for this study. At the 1k 

m2 tile size with 5 m2 cell resolution 40, 000 nodes are generated.  

The Algorithm 

The route optimized forest road location problem finds a shortest path from a 

start node to an end node. The start and end nodes are preselected. To test the 

implementation of the algorithm a simple graph was selected (Fig. 1). A solution found 

using the solver plugin in Microsoft excel as well as a manual calculation was done for 

verification (Table 1). The steps in Dijkstra’s shortest path are: 

o Mark all nodes unvisited. 

o Select a start node, assign it a cost of zero, assign all other nodes a  

cost of infinity. 

o Calculate the edge costs of all neighbouring nodes to the node 

currently being visited. 

o Mark the current node as visited and proceed to the next node with 

the least cost from the start node. 
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o If a node is re-checked from the current visited node and the cost is 

lower to the start node, adjust the route to the node to least cost 

route. 

o If destination node is marked visited end the function. Otherwise 

select the next node with the lowest cost from the start and visit it. 

 

Figure 1: Sample graph used to test the algorithm where ‘O’ is the start node 

and ‘T’ is the destination node 

Table 1 shows the procedure and steps that the algorithm works through to find 

the optimal route. 
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Table 1: Procedure to find shortest path from Figure 1 

 

 

Coding of the Algorithm 

Python was selected as the programming language to implement the algorithm as 

it works with ArcGIS by utilizing the ArcPy module. The code uses the ArcPy module 

to convert the elevation data into an array where each node contains a value for the 

elevation at that location. Nodes were given a unique identifier based on the x and y 

coordinates of the node. ArcPy formats coordinates (y, x), with (0,0) as the top left 

corner. The nodes in this data format are created in a grid structure as shown in Figure 2 

wherein cell (1, 1) is the current cell and the potential neighbours are connected with 

Action Route (Cost) Neighbours (Cost of path) Cost from Origin

Select origin (O) O (0)

Find neighbouring nodes and cost O-A (2) 2

O-B (5) 5

O-C (4) 4

Visit node with least cost (A) O, A (2)

Find neighbouring nodes and cost A-D (7) 9

A-B (2) 4

Visit node with least cost (B) O, A, B (4)

Find neighbouring nodes and cost B-D (4) 8

B-E (3) 7

B-C (1) 5

Visit node with least cost (C) O,C (4)

Find neighbouring nodes and cost C-B (1) 5

C-E (4) 8

Visit node with least cost (E) O, A ,B, E (7)

Find neighbouring nodes and cost E-D (1) 8

E-T (7) 14

Visit node with least cost (D) O, A ,B, D (8)

Find neighbouring nodes and cost D-T (5) 13

Calculate solution O, A ,B, D, T (13)
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arrows. With the nodes created 8 neighbours were selected based on moving to the next 

cell immediately surrounding the current point.  

 

 

Figure 2: Potential neighbours when cell (1, 1) is the current visited cell 

The code generates a list of all nodes. The start point is then selected, and all 

other nodes are given a tentative distance of infinity. With the start point selected and 

the queue generated based upon all unvisited nodes the code then iterates over all the 

neighbours of the start node and calculates the cost to each neighbour node. The next 

visited node will be selected based upon the least cost to the start node. Once the 

following node is selected it becomes the next visited node and is removed from the 

queue. The equation used to calculate cost between nodes was: 

Cost = distance + (distance * slope penalty) 

 Slope penalty used a piece-wise scale to select the weight increment for 

different slopes, as shown in Table 2. Slope was calculated using absolute values since 

Dijkstra’s algorithm can’t function with negative values.  
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Table 2: Slope multipliers 

 

To constrain the solution from having 90 degree turns the algorithm was slightly 

modified to limit the available neighbours based upon the route of entry to the current 

visited node. Figure 3 illustrates an example of how, if the current point is (1,1) and 

point of entry was (0, 0), the possible list of neighbours becomes (1,2), (2, 2), (2, 1). 

 

Figure 3:Radius of curve constraint route (0, 0) to (1, 1) limited list of 

neighbours 

By altering the potential neighbours to accommodate the 90 degree radius of 

curve constraint the graph becomes a dynamic graph with edges being added and 

removed. To verify that the optimal route was being output, five sample runs were done 

over a 5 by 5 cell grid. Figure 4 illustrates the algorithm working over the 5 by 5 cell 

array and outputting the optimal route given the constraints. The route traveled start at 

node (0, 0) and ends at (4, 4) with a total cost 1847.  

Slope (°) Weight Multiplier

0-5 0

6-10 1

11-15 2

16-100 1000000



10 
 

 

Figure 4: Validation of algorithm with 90-degree constraint 

After selecting the shortest path, the array is then cleared of all elevation values. 

They were replaced with “No Data”. The points along the selected route were given a 

value of 1. By creating this binary variable, the data can be returned to the Arc GIS 

environment and viewed spatially over the location.  
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Results 

The results are divided into three sections with each section based on one test 

case demonstrating the implementation of the algorithm over a 1 km2 tile. Each tile was 

separated into three categories 50 m2 DEM, 5 m2 DEM, and 5 m2 LiDAR. The 50 m2 

resolution was selected based on its use in previous papers analyzing shortest paths for 

road networks. The 5 m2 resolutions were selected to test efficacy of DEM compared to 

LiDAR data for route optimization of road networks. Considerations for optimality will 

be given primarily to cost, followed by visualizations of route selection over changes in 

elevations. Tiles will have different contour frequencies based upon the rate of change 

of the elevation in each tile. Cost is more direct comparison between implementations 

on the same cell resolution, whereas route over terrain is a more significant comparison 

between different cell resolution implementations.  

 

Tile 1 

Figure 5 demonstrates the three routes output by the algorithm over the first tile 

at each of the three categories: a) 50m DEM, b) 5m DEM, c) 5m LiDAR. Figure 6 

demonstrates the routes over a topographic map with contours drawn at 5m intervals, 

and the routes transformed into a line to better illustrate the results.  
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Figure 5: Tile 1 routes over digital elevation models 

 

Figure 6: Tile 1 routes over topographic imagery 5m contour lines 

Figures 5 and 6 a) DEM 50m demonstrates the course representation when using 

a 50m cell size. The coarse resolution allows the algorithm to generate a more direct 

route ignoring areas that at a finer resolution would have a greater slope penalty.  

The trends in the 5 m2 DEM and LiDAR show that at this resolution the route is 

more subjected to the terrain. The additional number of times the slope penalty is 

applied causes the algorithm to select a route that follows the terrain.  
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Differences in the DEM 5m compared to the LiDAR 5m can be attributed to the 

difference in interpolation techniques. The DEM having been initially taken from 

LiDAR and converted to a 1m cell resolution DEM and further aggregated to 5m cell 

resolution DEM will have elevation values more smoothed over the area than the direct 

conversion of LiDAR shot at 2 point per meter to a 5m cell resolution raster. The slight 

increase in ground elevation accuracy causes more drastic route selection due to slope 

penalties.  

The route selected on the 50 m2 resolution is too direct and ignores too much 

topography to be a viable forest road. The 5 m2 resolutions better follow terrain making 

them better for pre-planning potential road locations. The LiDAR has the lowest cost 

which demonstrates the higher accuracy data allowed for a more optimal route selection.  

 

Tile 2 

Figures 7 and Figure 8 illustrates the results of the algorithm working over 

another tile with more varied topography. The contour lines drawn in Figure 8 are at 

20m intervals.  
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Figure 7: Tile 2 routes over digital elevation models 

 

Figure 8: Tile 2 routes over topographic imagery 20m contour lines 

The case of this more dynamic route is illustrated in the results shown in Figures 

7 and 8. The 50m DEM route weaves into a valley to find a more static elevation, 

though the cost with the applied slope penalty is the highest of all the runs. The high 

slope penalty on the 50m DEM can be attributed to the course resolution removing 

potential routes to bypass infeasible areas.  

All three test cases on this tile found no possible solutions without absorbing the 

slope penalty of 1,000,000. The results in Figures 7 and 8 b) Dem 5m and c) LiDAR 5m 
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have more similarities to each other than to c) DEM 50m. The trend illustrated by a) and 

b) can be attributed to the algorithm avoiding the slope penalty as much as possible. 

Both the a) and b) can be seen oscillating significantly and not taking a straight a path 

(Fig. 9). 

 

Figure 9: Example of route oscillating, close up of Figure 7 c) 

The 5m DEM and 5m LiDAR demonstrate some similarities in path selection 

with the DEM 5m route being shorter with a higher cost. This case illustrates how the 

LiDAR 5m has more fine adjustments in the route compared to the 5m DEM. The fine 

adjustments are likely attributed to the aggregation method used on the 5m DEM. Both 

routes can be seen to avoid areas of high slope finding the narrowest points to cross the 

valleys.  

Figures 7 and 8 a) DEM 50m ignores significant topography, and absorbs the 

slope penalty on the majority of the edges making it a sub-optimal route for a forest 

road. Figures 7 and 8 a) and b) demonstrate similarities in paths which indicates a more 

optimal solution though differences in cell elevations cause different routes. The LiDAR 

had the lowest cost and thus had to absorb the slope penalty making it the most optimal 

of the three solutions and the best potential route for a forest road. 
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Tile 3 

Figures 10 and 11 show the routing selection over tile 3. Tile 3 had the largest 

change in elevation of the three tiles. The contour lines in Figure 11 are drawn at 10m 

intervals.  

 

Figure 10: Tile 3 routes over digital elevation models 

 

Figure 11: Tile 3 routes over topographic imagery 10m contour lines 

Tile three is the only tile where the algorithm route didn’t extend the slope 

penalty for 16-100 degrees was not applied, as shown in Figure 10. This tile also 
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illustrates the three most similar routes, with all three crossing the top valley in a similar 

area before heading downwards. Figure 11 a) illustrate a route unnecessarily crossing 

over steeper terrain, this is due to the coarse resolution not registering the elevation 

changes. 

Figures 10 and 11 b) and c) show very similar route section, the minor difference 

is likely attributed to difference in the aggregation method of the two raster images. The 

trend illustrated in Figures 10 and 11 c) demonstrate the algorithm providing the optimal 

solution, navigating through a valley and following the terrain very closely and at the 

lowest cost.  

The coarse resolution of a) in Figures 10 and 11 is the least feasible for a forest 

road as it unnecessarily crosses terrain features.in Figure 10 b) has a slightly higher cost 

than the c). Figure 10 c) had the lowest cost making it the optimal choice for a forest 

road location.  

Discussion 

At a 5 m2 resolution it becomes apparent that the radius of curve implementation 

requires further research. Working at 50 m2, resolution the radius of curve application 

generates a feasible result for real world road design. Application of a radius of curve 

constraint along edges generates an infeasible result at 5 m2 resolution. The infeasible 

curve is apparent in Figure 9 where the selected route oscillates in steep terrain. This 

poses an algorithmic challenge since the algorithm is designed to assess edges between 

three nodes, but current research on road location modelling does not address this 

problem. The duration of the curve would be required to extend further than a single 

node.  
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The radius of curve constraint issue could see its resolution in different forms. 

Modification of the graph structure and design may create feasibilities. Using a different 

selection criterion for neighbours may hold a solution. Changing the base algorithm may 

have better results.  

In previous studies the graph structure used has typically been a static graph 

(Anderson and Nelson 2004, Stückelberger 2007). This study used a dynamic graph to 

implement the radius of curve constraint. Using a dynamic graph creates additional 

complications as Dijkstra’s shortest path is not designed to be run over this graph 

structure (Sunita and Garg 2018). There are many implementations and modifications to 

Dijkstra’s algorithm to assist in using it over dynamic graphs. The addition and deletion 

of edges as the code runs creates a complication. Potential routes only exist depending 

on the route of entry to a visited node. This implementation worked for the modification 

but that is because the structure of the data was a grid. Having a grid structure ensured 

that there were always three points of entry to and from any point. This variability 

allowed an optimal solution to be presented. Given a different graph structure, such as 

the graph in Figure 1, this modification can run into errors where it will be unable to 

find a feasible solution.  

Previous studies on this subject have used DEM imagery, but currently LiDAR 

is becoming more freely available. The added accuracy of LiDAR combined with the 

lower cost demonstrated by LiDAR make it a likely to be used in future research. 

LiDAR was not used and was less available during the previous study periods for the 

papers referenced in this study.  
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With increases in computational power and an increase in high accuracy data 

availability it is becoming more feasible to allocate forest roads using computational 

models. Models such as the one in this study can be used to greatly reduce the planning 

costs associated with forest road planning and reduce manual planning endeavours. 

Future potential in these models would be to build in harvest allocation 

selections. Modelling both the harvest selection and associated road networks 

simultaneously has the potential to greatly reduce road costs. Route modelling could 

also be expanded to simultaneously assess not only the route but also the width 

feasibility, and cut and fill requirements. 

Conclusion 

The goal of this study was to demonstrate the viability of forest road location 

models for planning forest roads. This model used Python, ArcGIS and a modified 

version of Dijkstra’s shortest path algorithm to calculate optimal road locations.  

Testing of the model and running it over various graphs of increasing complexity 

gives confidence that the result obtained through the model is the optimal solution. The 

results confirm that with a larger cell resolution the algorithm will produce sub-optimal 

solutions as significant topography is ignored. Smaller cell resolution data outputs more 

nuanced routes that follow the topography more closely. Both 5 m2 resolution DEM and 

LiDAR produce very similar results. LiDAR data had the lower cost. 

The study demonstrates that with increased data accuracy road network routing 

models will produce more feasible solutions when accounting for changes in elevation 

across a landscape. The advancements in LiDAR technology and its recent availability 

will enhance the potential of forest road optimization. 
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Appendices 

 

The code 

Attached at the end of this document is a copy of the python code in a self 

contained 4-page document. This one done in order to maintain the formatting and 

readability of the code.  



1   

2   

3   import sys

4   import arcpy

5   import numpy

6   import math

7   import timeit

8   

9   

10   NEIGHBOUR_CELL_NUMBER_MAX = 1

11   

12   #Find the shortest path between start and end nodes in a graph

13   def shortestpath(graph,start,end, max_x, max_y, visited=[],distances={},predecessors={}):

14   

15   unvisited_nodes = create_nodes_list(graph)

16   

17   

18   

19   # we've found our end node, now find the path to it, and return

20   while start != end:

21   

22   print start

23   

24   

25   # detect if it's the first time through, set current distance to zero

26   if not visited: distances[start]=0

27   

28   start_x, start_y = get_node_coordinates(start)

29   

30   if predecessors == {}:

31   previous_node = start

32   else:

33   previous_node = predecessors[start]

34   

35   

36   xprev, yprev = get_node_coordinates(previous_node)

37   

38   x_relative = xprev - start_x

39   y_relative = yprev - start_y

40   

41   # process neighbors as per algorithm, keep track of predecessors

42   neighbours = find_neighbour_nodes(start_x, start_y, x_relative, y_relative,

max_x, max_y)

43   

44   for neighbour in neighbours:

45   if neighbour not in visited:

46   

47   neighbour_x, neighbour_y = get_node_coordinates(neighbour)

48   neighbour_distance = calculate_distance(start_x, start_y, neighbour_x,

neighbour_y)

49   

50   neighbour_slope = calculate_slope(neighbour_distance,

graph[start_x][start_y], graph[neighbour_x][neighbour_y])

51   neighbour_weight = calculate_weight(neighbour_slope, neighbour_distance)

52   

53   neighbourdist = distances.get(neighbour, sys.maxint)

54   tentativedist = distances[start] + neighbour_weight

55   if tentativedist < neighbourdist:

56   

57   distances[neighbour] = tentativedist

58   predecessors[neighbour]=start

59   

60   # neighbors processed, now mark the current node as visited

61   visited.append(start)

62   unvisited_nodes.remove(start)

63   

64   # finds the closest unvisited node to the start



65   unvisiteds = dict((k, distances.get(k,sys.maxint)) for k in unvisited_nodes)

66   closestnode = min(unvisiteds, key=unvisiteds.get)

67   

68   start = closestnode

69   

70   

71   path=[]

72   while end != None:

73   path.append(end)

74   end=predecessors.get(end,None)

75   return distances[start], path[::-1]

76   

77   #creates a list of all nodes in the graph

78   def create_nodes_list(graph):

79   node_list = []

80   for x in range(0,len(graph[0])):

81   for y in range(0,len(graph)):

82   node_list.append(get_node_id(x,y))

83   

84   return node_list

85   

86   # #create a list of all arcs in the graph

87   # def generate_arc_list(graph, list_of_nodes, neighbour_nodes):

88   #     arc_list = []

89   

90   

91   # #create dictionary af all arcs in the graph

92   # def dictionary_arcs_w_weight(graph, list_of_nodes, neighbour_nodes, weights):

93   #     arc_dictionary = {}

94   

95   

96   

97   #calculates distance between current node and neighbour

98   def calculate_distance(x1, y1, x2, y2):

99   return math.sqrt(((x1-x2) * cellSize)**2 + ((y1-y2) * cellSize)**2)

100   

101   #calculates weight from distance and slope

102   def calculate_weight(slope, distance):

103   return distance + (distance * slope)

104   

105   

106   #calculates slope as an absolute vale, applies piecewise scale for interpreting slope

107   def calculate_slope(distance, z1, z2):

108   slope = abs((((z1) - (z2)) / distance) * 100)

109   

110   weighted_slope = 0

111   

112   if slope >= 0 and slope <= 5:

113   weighted_slope = 0

114   elif slope > 5 and slope <= 10:

115   weighted_slope = 1

116   elif slope > 10 and slope <= 15:

117   weighted_slope = 2

118   elif slope > 15:

119   weighted_slope = 1000000

120   

121   return weighted_slope

122   

123   # #finds all neuighbour nodes, based on the global NEIGHBOUR_CELL_NUMBER_MAX value

124   # def find_neighbour_nodes(x1, y1, max_x, max_y):

125   #     neighbours = []

126   

127   #     for x_value in range(-1*NEIGHBOUR_CELL_NUMBER_MAX, 1*NEIGHBOUR_CELL_NUMBER_MAX+1):

128   #         for y_value in range(-1*NEIGHBOUR_CELL_NUMBER_MAX, 

1*NEIGHBOUR_CELL_NUMBER_MAX+1):

129   #             neighbour_x = x1+x_value

130   #             neighbour_y = y1+y_value



131   

132   #             if not (neighbour_x >= max_x or neighbour_x < 0 or neighbour_y >= max_y 

or neighbour_y < 0 or (neighbour_x == x1 and neighbour_y == y1)):

133   #                 neighbours.append(get_node_id(neighbour_x, neighbour_y))

134   

135   #     return neighbours

136   

137   #finds all neuighbour nodes, based on the global NEIGHBOUR_CELL_NUMBER_MAX value

138   def find_neighbour_nodes(x1, y1, xprev, yprev, max_x, max_y):

139   neighbours = []

140   x_values = []

141   y_values = []

142   

143   if xprev == 0 and yprev == 0:

144   x_values = [-1, 0, 1]

145   y_values = [-1, 0, 1]

146   elif xprev == -1 and yprev == -1:

147   x_values = [0, 1]

148   y_values = [0, 1]

149   elif xprev == 0 and yprev == -1:

150   x_values = [-1, 0, 1]

151   y_values = [1]

152   elif xprev == 1 and yprev == -1:

153   x_values = [-1, 0]

154   y_values = [0, 1]

155   elif xprev == -1 and yprev == 0:

156   x_values = [1]

157   y_values = [-1, 0, 1]

158   elif xprev == 1 and yprev == 0:

159   x_values = [-1]

160   y_values = [-1, 0, 1]

161   elif xprev == -1 and yprev == 1:

162   x_values = [0, 1]

163   y_values = [-1, 0]

164   elif xprev == 0 and yprev == 1:

165   x_values = [-1, 0, 1]

166   y_values = [-1]

167   elif xprev == 1 and yprev == 1:

168   x_values = [-1, 0]

169   y_values = [-1, 0]

170   

171   for x_value in x_values:

172   for y_value in y_values:

173   neighbour_x = x1+x_value

174   neighbour_y = y1+y_value

175   

176   

177   

178   if not (neighbour_x >= max_x or neighbour_x < 0 or neighbour_y >= max_y or

neighbour_y < 0 or (neighbour_x == x1 and neighbour_y == y1)):

179   neighbours.append(get_node_id(neighbour_x, neighbour_y))

180   

181   return neighbours

182   

183   

184   #interprets cell position to generate a string identifier for the cells

185   def get_node_id(x, y):

186   return str(x) + "," + str(y)

187   

188   #splits the coordinates into x or z and numeric value

189   def get_node_coordinates(id):

190   split = id.split(',')

191   return int(split[0]), int(split[1])

192   

193   #takes list of coordinates and changes the z values in the array to 1

194   def selected_cells(path_coordinates, graph):

195   for coordinate in path_coordinates:



196   x, y = get_node_coordinates(coordinate)

197   graph[x][y] = 1

198   return graph

199   

200   # makes all points not in the path 0

201   def zeroing_graph_values(graph):

202   for x in range(0,len(graph[0])):

203   for y in range(0,len(graph)):

204   graph[x][y] = 0

205   return graph

206   

207   #creates a weight for 90 degree turning radius

208   def radius_of_curve(x1, y1, x2, y2, x3, y3):

209   pass

210   

211   

212   

213   

214   if __name__ == "__main__":

215   

216   

217   

218   start_timer = timeit.default_timer()

219   print start_timer

220   

221   raster =

arcpy.Raster(r'C:\Users\Administrator\Documents\Lakehead\thesis\lid_rast\Run8\lid_8.t

if')

222   lowerLeft = arcpy.Point(raster.extent.XMin,raster.extent.YMin)

223   cellSize = raster.meanCellWidth

224   

225   graph = arcpy.RasterToNumPyArray(raster, lowerLeft, nodata_to_value=100000)

226   

227   max_x = len(graph[0])

228   max_y = len(graph)

229   

230   weight, shortest_path = shortestpath(graph, "0,0", "199,199", max_x, max_y)

231   print weight, shortest_path

232   

233   zeroed_graph = zeroing_graph_values(graph)

234   

235   route = selected_cells(shortest_path, zeroed_graph)

236   

237   myraster = arcpy.NumPyArrayToRaster (route, lowerLeft, cellSize, cellSize, 0)

238   myraster.save

(r'C:\Users\Administrator\Documents\Lakehead\thesis\lid_rast\Run8\lid_8_route.tif')

239   

240   

241   stop_timer = timeit.default_timer()

242   print stop_timer

243   

244   

245   print ('Time: ', stop_timer - start_timer)

246   


