
FOREST ROAD LOCATION MODELLING WITH DIJKSTRA’S SHORTEST PATH

AND ARCGIS

by

Adam Rickards

FACULTY OF NATURAL RESOURCES MANAGEMENT
LAKEHEAD UNIVERSITY
THUNDER BAY, ONTARIO

April 2019

ii

FOREST ROAD LOCATION MODELLING WITH DIJKSTRA’S SHORTEST PATH

AND ARCGIS

by

Adam Rickards

An Undergraduate Thesis Submitted in Partial Fulfillment
of the Requirements for The Degree of

Honours Bachelor of Science in Forestry

Faculty of Natural Resources Management
Lakehead University

23 April 2019

_____________________________ ___________________________
 Major Advisor Second Reader

iii

LIBRARY RIGHTS STATEMENT

In presenting this thesis in partial fulfillment of the requirements for the HBScF
degree at Lakehead University in Thunder Bay, I agree that the University will make it
freely available for inspection.

This thesis is made available by my authority solely for the purpose of private study
and research and may not be copied or reproduced in whole or in part (except as permitted
by the Copyright Laws) without my written authority.

Signature: _________________________________

Date: _____________________________________

iv

Abstract

Rickards, A.J. 2019. Forest road location modelling with Dijkstra’s shortest path and
ArcGIS.34 pp.

Keywords: forestry, forest, road, network, Dijkstra, slope, terrain, GIS, ArcGIS, modelling,
LiDAR, DEM

Road network modelling has great potential to reduce forest road construction

and planning costs. Forest roads are the essential means to access forest resources and

are one of the most expensive factors in forest operations. Route optimization models

have been used recently to aid in pre-planning of forest road networks. Modern

technology is increasing the feasibility of these models. LiDAR data is becoming less

expensive and more freely available aiding in the accuracy of road network models.

LiDAR has the potential to greatly reduce the costs of forest roads through selection of

optimal route locations. LiDAR will also reduce the manual planning and design of

forest roads further reducing costs. The objective of this study is to model forest road

locations. Model parameters calculate distance and slope as the factors in selecting

locations. The study tested the same areas with three data types 50 m2 cell resolution

DEM, 5 m2 cell resolution DEM, and 2 point per metre LiDAR. The test cases in this

study found that using LiDAR data gave the best location. Overall there is potential

using these data and models to assist in the pre-planning of forest roads.

v

Contents
Abstract .. iv

List of Figures .. vi

List of Tables... vii

Introduction ... 1

Literature review ... 1

Forest roads ..1

Graph theory and operations research ..2

Dijkstra’s shortest path algorithm ..3

Forest Road Modelling ...4

Materials and Methods .. 4

Data Acquisition ...4

The Algorithm ..5

Coding of the Algorithm ..7

Results ... 11

Tile 1 ..11

Tile 2 ..13

Tile 3 ..16

Discussion ... 17

Conclusion .. 19

Acknowledgements ... 20

Appendices .. 24

The code ...24

vi

List of Figures

Figure 1: Sample graph used to test the algorithm .. 6

Figure 2: Potential neighbours when cell (1, 1) is the current visited cell 8

Figure 3:Radius of curve constraint route (0, 0) to (1, 1) limited list of

neighbours ... 9

Figure 4: Validation of algorithm with 90-degree constraint 10

Figure 5: Tile 1 routes over digital elevation models ... 12

Figure 6: Tile 1 routes over topographic imagery 5m contour lines 12

Figure 7: Tile 2 routes over digital elevation models ... 14

Figure 8: Tile 2 routes over topographic imagery 20m contour lines 14

Figure 9: Example of route oscillating, close up of Figure 7 c) 15

Figure 10: Tile 3 routes over digital elevation models 16

Figure 11: Tile 3 routes over topographic imagery 10m contour lines 16

vii

List of Tables

Table 1: Procedure to find shortest path from Figure 1 .. 7

Table 2: Slope multipliers ... 9

1

Introduction

The development, construction and planning of forest roads are an expensive and

necessary means to access forest resources. The optimization of road location selection

can assist in reducing the costs associated with forest roads.

The purpose of this study was to select an optimal resolution for data, and to test

which data would provide the better route location. Three different scenarios were used

to test the model, the first was 50 m2 cell resolution digital elevation model (DEM), the

second 5 m2 cell resolution DEM, and the third was 2 point per metre light detection and

ranging (LiDAR). To generate potential road locations Python was used to code an

implementation of Dijkstra’s shortest path. Python has a module, ArcPy that works with

ArcGIS.

Literature review

Forest roads

Road networks in forestry operations are the essential means to access forest

resources (Abdi et al. n.d.). Thousand of kilometres of forest roads are annually

constructed globally to access resources (Anderson and Nelson 2004). Forest roads are

very costly to build and maintain, and require concise planning (Akay et al. 2013).

Manual planning of forest roads is labour and time intensive (Anderson and Nelson

2004). Road network locations are essential in reducing overhead costs in forestry

operation (Rönnqvist 2003). Forest road networks need to balance and minimize the

amount of roads constructed while maintaining access for resource harvesting, tending,

silviculture, and recreation (Liu and Sessions 1993).

2

With increases in personal computer processing, access to Geographic

Information Systems (GIS), and GIS data, pre-planning of forest roads becomes faster

and more efficient (Abdi et al. n.d.). ArcGIS is a spatial data platform from ESRI that

allows for the creation, sharing, analysis, and management of data (ESRI n.d.). These

technological advancements allow for the automation of road network planning

(Stückelberger 2007).

Digital elevation models are a specialized database that represent topography

through a series of points representing elevations either interpolated from measured

elevations in the case of traditional DEM, or measured elevations in the case of LiDAR

(“What is a DEM - Digital Elevation Model Definition” n.d.). Data are collected through

ground surveys and photogrammetry and a digital elevation model is created. GIS

software and tools can interpret these DEM data and provide a means for analysis.

LiDAR is an acronym for light detection and ranging. LiDAR uses laser pulses

to measure distances and generate surface characteristics (US Department of Commerce

n.d.). Surface characteristics can be ground surface, buildings, vegetation, water

including seabed and riverbed elevations. (Akay et al. 2009).

Graph theory and operations research

Graph theory is the study of graphs where a graph (G) is defined as G =(N,E),

where N is a finite number of nodes, and E is a finite set of edges (links between pairs of

nodes) (Wilson 2010). Weighted graphs are defined as G = (N,E; w) where w represents

an attribute for each which is the cost of that edge (Stückelberger 2007). Graphs can be

further divided into different categories, directed and undirected, as well as static and

3

dynamic (Cortes et al. 2003). The previously given definitions is an undirected graph

with nodes and edges. In directed graphs nodes are referred to as vertices and edges are

referred to as arcs (Wilson 2010). Arcs can only be travelled in one direction, and in

order to have bi-directionality between vertices two arcs are required. A dynamic graph

is defined by the addition and removal of nodes or edges during operations which can be

differentiated from a classic graph where the nodes and edges are static and do not

change (Cortes et al. 2003).

Operations research is a field that studies practical applications in operating

activities and using the scientific method models decision supports for optimizing these

activities (Hillier and Lieberman 2005). The application of graph theory in combination

with operations research allows for applications such forest road location modelling

(Stückelberger et al. 2007). Operations research can be used to apply a shortest path

network routing algorithm to a graph and increase road layout efficiency.

Dijkstra’s shortest path algorithm

Dijkstra’s shortest path is an algorithm for finding the shortest path between two

nodes (Dijkstra 1959). Dijkstra’s algorithm finds the shortest path from one node to all

other nodes until the end node is found (Stückelberger 2007). The shortest path

algorithm is only able to work with positive edge or arc weights. One limitation with

Dijkstra’s algorithm is that it only considers edge or arc cost and is not capable of

measuring multiple attributes simultaneously, thus penalties based on these other

attributes need to be applied to the costs (Stückelberger 2007).

4

Forest Road Modelling

Forest roads require specific constraints to limit where a viable road can be

located (Bont et al. 2012). Constraints are created by adding weights to edges or

removing edges from areas that are infeasible for road locations (Aruga et al. 2005).

Road constraints can be applied to water crossings, steep terrain, infeasible turning radii,

geological structures, substrates, and or values within the area (Henningsson et al.

2007). When creating a model to output candidate roads all the constraints must be

considered and weighted according to the impact they will have on road location

selection (Stückelberger et al. 2006).

Anderson and Nelson (2004) handle the application of all constraints using

increasing weights on edges. This method does not omit areas from selection and instead

only reduces likelihood of selection. By removing edges from infeasible areas it can

fully prevent the model from selecting these routes, though this option should only be

used on areas that have no potential for a candidate road (Stückelberger 2007).

Materials and Methods

Data Acquisition

Data were acquired from the province of New Brunswick, Canada online

database GeoNB. The data were in the form of digital elevation model (DEM), and

LiDAR tiles. The DEM tiles from the New Brunswick database were interpolated using

LiDAR from Natural Resources Canada to 1 m2 cell resolution. The LiDAR data were

shot at 2 points per square metre. The area selected was chosen for its dynamic terrain,

and availability of a public library of LiDAR tiles. Having a broad range of elevations

across the sample area better illustrates the algorithms routing decisions over terrain.

5

ArcGIS was used to aggregate the original 1 m2 resolution DEM tiles into 5 m2

and 50 m2 resolution tiles. These new tiles covered the same land area at a coarser

resolution. The aggregation technique took the mean elevation over the new cell area

and applied it to the new larger cell. The LiDAR data was interpolated to a raster of 5

m2 cell resolution. Cell elevations were determined by the lowest point in that area, this

one done to eliminate outliers that may misrepresent the ground elevation. The tile size

of 1 km2 was used to keep processing time to a feasible amount for this study. At the 1k

m2 tile size with 5 m2 cell resolution 40, 000 nodes are generated.

The Algorithm

The route optimized forest road location problem finds a shortest path from a

start node to an end node. The start and end nodes are preselected. To test the

implementation of the algorithm a simple graph was selected (Fig. 1). A solution found

using the solver plugin in Microsoft excel as well as a manual calculation was done for

verification (Table 1). The steps in Dijkstra’s shortest path are:

o Mark all nodes unvisited.

o Select a start node, assign it a cost of zero, assign all other nodes a

cost of infinity.

o Calculate the edge costs of all neighbouring nodes to the node

currently being visited.

o Mark the current node as visited and proceed to the next node with

the least cost from the start node.

6

o If a node is re-checked from the current visited node and the cost is

lower to the start node, adjust the route to the node to least cost

route.

o If destination node is marked visited end the function. Otherwise

select the next node with the lowest cost from the start and visit it.

Figure 1: Sample graph used to test the algorithm where ‘O’ is the start node

and ‘T’ is the destination node

Table 1 shows the procedure and steps that the algorithm works through to find

the optimal route.

7

Table 1: Procedure to find shortest path from Figure 1

Coding of the Algorithm

Python was selected as the programming language to implement the algorithm as

it works with ArcGIS by utilizing the ArcPy module. The code uses the ArcPy module

to convert the elevation data into an array where each node contains a value for the

elevation at that location. Nodes were given a unique identifier based on the x and y

coordinates of the node. ArcPy formats coordinates (y, x), with (0,0) as the top left

corner. The nodes in this data format are created in a grid structure as shown in Figure 2

wherein cell (1, 1) is the current cell and the potential neighbours are connected with

Action Route (Cost) Neighbours (Cost of path) Cost from Origin

Select origin (O) O (0)

Find neighbouring nodes and cost O-A (2) 2

O-B (5) 5

O-C (4) 4

Visit node with least cost (A) O, A (2)

Find neighbouring nodes and cost A-D (7) 9

A-B (2) 4

Visit node with least cost (B) O, A, B (4)

Find neighbouring nodes and cost B-D (4) 8

B-E (3) 7

B-C (1) 5

Visit node with least cost (C) O,C (4)

Find neighbouring nodes and cost C-B (1) 5

C-E (4) 8

Visit node with least cost (E) O, A ,B, E (7)

Find neighbouring nodes and cost E-D (1) 8

E-T (7) 14

Visit node with least cost (D) O, A ,B, D (8)

Find neighbouring nodes and cost D-T (5) 13

Calculate solution O, A ,B, D, T (13)

8

arrows. With the nodes created 8 neighbours were selected based on moving to the next

cell immediately surrounding the current point.

Figure 2: Potential neighbours when cell (1, 1) is the current visited cell

The code generates a list of all nodes. The start point is then selected, and all

other nodes are given a tentative distance of infinity. With the start point selected and

the queue generated based upon all unvisited nodes the code then iterates over all the

neighbours of the start node and calculates the cost to each neighbour node. The next

visited node will be selected based upon the least cost to the start node. Once the

following node is selected it becomes the next visited node and is removed from the

queue. The equation used to calculate cost between nodes was:

Cost = distance + (distance * slope penalty)

 Slope penalty used a piece-wise scale to select the weight increment for

different slopes, as shown in Table 2. Slope was calculated using absolute values since

Dijkstra’s algorithm can’t function with negative values.

9

Table 2: Slope multipliers

To constrain the solution from having 90 degree turns the algorithm was slightly

modified to limit the available neighbours based upon the route of entry to the current

visited node. Figure 3 illustrates an example of how, if the current point is (1,1) and

point of entry was (0, 0), the possible list of neighbours becomes (1,2), (2, 2), (2, 1).

Figure 3:Radius of curve constraint route (0, 0) to (1, 1) limited list of

neighbours

By altering the potential neighbours to accommodate the 90 degree radius of

curve constraint the graph becomes a dynamic graph with edges being added and

removed. To verify that the optimal route was being output, five sample runs were done

over a 5 by 5 cell grid. Figure 4 illustrates the algorithm working over the 5 by 5 cell

array and outputting the optimal route given the constraints. The route traveled start at

node (0, 0) and ends at (4, 4) with a total cost 1847.

Slope (°) Weight Multiplier

0-5 0

6-10 1

11-15 2

16-100 1000000

10

Figure 4: Validation of algorithm with 90-degree constraint

After selecting the shortest path, the array is then cleared of all elevation values.

They were replaced with “No Data”. The points along the selected route were given a

value of 1. By creating this binary variable, the data can be returned to the Arc GIS

environment and viewed spatially over the location.

11

Results

The results are divided into three sections with each section based on one test

case demonstrating the implementation of the algorithm over a 1 km2 tile. Each tile was

separated into three categories 50 m2 DEM, 5 m2 DEM, and 5 m2 LiDAR. The 50 m2

resolution was selected based on its use in previous papers analyzing shortest paths for

road networks. The 5 m2 resolutions were selected to test efficacy of DEM compared to

LiDAR data for route optimization of road networks. Considerations for optimality will

be given primarily to cost, followed by visualizations of route selection over changes in

elevations. Tiles will have different contour frequencies based upon the rate of change

of the elevation in each tile. Cost is more direct comparison between implementations

on the same cell resolution, whereas route over terrain is a more significant comparison

between different cell resolution implementations.

Tile 1

Figure 5 demonstrates the three routes output by the algorithm over the first tile

at each of the three categories: a) 50m DEM, b) 5m DEM, c) 5m LiDAR. Figure 6

demonstrates the routes over a topographic map with contours drawn at 5m intervals,

and the routes transformed into a line to better illustrate the results.

12

Figure 5: Tile 1 routes over digital elevation models

Figure 6: Tile 1 routes over topographic imagery 5m contour lines

Figures 5 and 6 a) DEM 50m demonstrates the course representation when using

a 50m cell size. The coarse resolution allows the algorithm to generate a more direct

route ignoring areas that at a finer resolution would have a greater slope penalty.

The trends in the 5 m2 DEM and LiDAR show that at this resolution the route is

more subjected to the terrain. The additional number of times the slope penalty is

applied causes the algorithm to select a route that follows the terrain.

13

Differences in the DEM 5m compared to the LiDAR 5m can be attributed to the

difference in interpolation techniques. The DEM having been initially taken from

LiDAR and converted to a 1m cell resolution DEM and further aggregated to 5m cell

resolution DEM will have elevation values more smoothed over the area than the direct

conversion of LiDAR shot at 2 point per meter to a 5m cell resolution raster. The slight

increase in ground elevation accuracy causes more drastic route selection due to slope

penalties.

The route selected on the 50 m2 resolution is too direct and ignores too much

topography to be a viable forest road. The 5 m2 resolutions better follow terrain making

them better for pre-planning potential road locations. The LiDAR has the lowest cost

which demonstrates the higher accuracy data allowed for a more optimal route selection.

Tile 2

Figures 7 and Figure 8 illustrates the results of the algorithm working over

another tile with more varied topography. The contour lines drawn in Figure 8 are at

20m intervals.

14

Figure 7: Tile 2 routes over digital elevation models

Figure 8: Tile 2 routes over topographic imagery 20m contour lines

The case of this more dynamic route is illustrated in the results shown in Figures

7 and 8. The 50m DEM route weaves into a valley to find a more static elevation,

though the cost with the applied slope penalty is the highest of all the runs. The high

slope penalty on the 50m DEM can be attributed to the course resolution removing

potential routes to bypass infeasible areas.

All three test cases on this tile found no possible solutions without absorbing the

slope penalty of 1,000,000. The results in Figures 7 and 8 b) Dem 5m and c) LiDAR 5m

15

have more similarities to each other than to c) DEM 50m. The trend illustrated by a) and

b) can be attributed to the algorithm avoiding the slope penalty as much as possible.

Both the a) and b) can be seen oscillating significantly and not taking a straight a path

(Fig. 9).

Figure 9: Example of route oscillating, close up of Figure 7 c)

The 5m DEM and 5m LiDAR demonstrate some similarities in path selection

with the DEM 5m route being shorter with a higher cost. This case illustrates how the

LiDAR 5m has more fine adjustments in the route compared to the 5m DEM. The fine

adjustments are likely attributed to the aggregation method used on the 5m DEM. Both

routes can be seen to avoid areas of high slope finding the narrowest points to cross the

valleys.

Figures 7 and 8 a) DEM 50m ignores significant topography, and absorbs the

slope penalty on the majority of the edges making it a sub-optimal route for a forest

road. Figures 7 and 8 a) and b) demonstrate similarities in paths which indicates a more

optimal solution though differences in cell elevations cause different routes. The LiDAR

had the lowest cost and thus had to absorb the slope penalty making it the most optimal

of the three solutions and the best potential route for a forest road.

16

Tile 3

Figures 10 and 11 show the routing selection over tile 3. Tile 3 had the largest

change in elevation of the three tiles. The contour lines in Figure 11 are drawn at 10m

intervals.

Figure 10: Tile 3 routes over digital elevation models

Figure 11: Tile 3 routes over topographic imagery 10m contour lines

Tile three is the only tile where the algorithm route didn’t extend the slope

penalty for 16-100 degrees was not applied, as shown in Figure 10. This tile also

17

illustrates the three most similar routes, with all three crossing the top valley in a similar

area before heading downwards. Figure 11 a) illustrate a route unnecessarily crossing

over steeper terrain, this is due to the coarse resolution not registering the elevation

changes.

Figures 10 and 11 b) and c) show very similar route section, the minor difference

is likely attributed to difference in the aggregation method of the two raster images. The

trend illustrated in Figures 10 and 11 c) demonstrate the algorithm providing the optimal

solution, navigating through a valley and following the terrain very closely and at the

lowest cost.

The coarse resolution of a) in Figures 10 and 11 is the least feasible for a forest

road as it unnecessarily crosses terrain features.in Figure 10 b) has a slightly higher cost

than the c). Figure 10 c) had the lowest cost making it the optimal choice for a forest

road location.

Discussion

At a 5 m2 resolution it becomes apparent that the radius of curve implementation

requires further research. Working at 50 m2, resolution the radius of curve application

generates a feasible result for real world road design. Application of a radius of curve

constraint along edges generates an infeasible result at 5 m2 resolution. The infeasible

curve is apparent in Figure 9 where the selected route oscillates in steep terrain. This

poses an algorithmic challenge since the algorithm is designed to assess edges between

three nodes, but current research on road location modelling does not address this

problem. The duration of the curve would be required to extend further than a single

node.

18

The radius of curve constraint issue could see its resolution in different forms.

Modification of the graph structure and design may create feasibilities. Using a different

selection criterion for neighbours may hold a solution. Changing the base algorithm may

have better results.

In previous studies the graph structure used has typically been a static graph

(Anderson and Nelson 2004, Stückelberger 2007). This study used a dynamic graph to

implement the radius of curve constraint. Using a dynamic graph creates additional

complications as Dijkstra’s shortest path is not designed to be run over this graph

structure (Sunita and Garg 2018). There are many implementations and modifications to

Dijkstra’s algorithm to assist in using it over dynamic graphs. The addition and deletion

of edges as the code runs creates a complication. Potential routes only exist depending

on the route of entry to a visited node. This implementation worked for the modification

but that is because the structure of the data was a grid. Having a grid structure ensured

that there were always three points of entry to and from any point. This variability

allowed an optimal solution to be presented. Given a different graph structure, such as

the graph in Figure 1, this modification can run into errors where it will be unable to

find a feasible solution.

Previous studies on this subject have used DEM imagery, but currently LiDAR

is becoming more freely available. The added accuracy of LiDAR combined with the

lower cost demonstrated by LiDAR make it a likely to be used in future research.

LiDAR was not used and was less available during the previous study periods for the

papers referenced in this study.

19

With increases in computational power and an increase in high accuracy data

availability it is becoming more feasible to allocate forest roads using computational

models. Models such as the one in this study can be used to greatly reduce the planning

costs associated with forest road planning and reduce manual planning endeavours.

Future potential in these models would be to build in harvest allocation

selections. Modelling both the harvest selection and associated road networks

simultaneously has the potential to greatly reduce road costs. Route modelling could

also be expanded to simultaneously assess not only the route but also the width

feasibility, and cut and fill requirements.

Conclusion

The goal of this study was to demonstrate the viability of forest road location

models for planning forest roads. This model used Python, ArcGIS and a modified

version of Dijkstra’s shortest path algorithm to calculate optimal road locations.

Testing of the model and running it over various graphs of increasing complexity

gives confidence that the result obtained through the model is the optimal solution. The

results confirm that with a larger cell resolution the algorithm will produce sub-optimal

solutions as significant topography is ignored. Smaller cell resolution data outputs more

nuanced routes that follow the topography more closely. Both 5 m2 resolution DEM and

LiDAR produce very similar results. LiDAR data had the lower cost.

The study demonstrates that with increased data accuracy road network routing

models will produce more feasible solutions when accounting for changes in elevation

across a landscape. The advancements in LiDAR technology and its recent availability

will enhance the potential of forest road optimization.

20

Acknowledgements

I would like to thank the following people for their guidance and contributions.

Dr Kevin Crowe, for guiding me through this process and not letting me take shortcuts.

Tomislav Sapic for assisting me and talking me through issues as they arose. Andrew

Vester for teaching me how to organize code and properly use an interactive

development environment and the debugger function. Philip Stankowski for aiding me

in writing structure and clarity.

21

References

Abdi, E., Majnounian, B., … A.D.-J. of F., and 2009, undefined. (n.d.). A GIS-MCE

based model for forest road planning. agriculturejournals.cz. Available from

https://www.agriculturejournals.cz/publicFiles/52_2008-JFS.pdf [accessed 5 April

2019].

Akay, A.E., Aruga, K., Bettinger, P., and Sessions, J. 2013. Using Optimization

Techniques in Designing Forest Roads and Road Networks. (1998): 1–2.

Akay, A.E., Oğuz, H., Karas, I.R., and Aruga, K. 2009. Using LiDAR technology in

forestry activities. Environ. Monit. Assess. 151(1–4): 117–125. Springer

Netherlands. doi:10.1007/s10661-008-0254-1.

Anderson, A.E., and Nelson, J. 2004. Projecting vector-based road networks with a

shortest path algorithm. Can. J. For. Res. 34(7): 1444–1457. NRC Research Press

Ottawa, Canada . doi:10.1139/x04-030.

Aruga, K., Sessions, J., Akay, A., and Chung, W. 2005. Simultaneous optimization of

horizontal and vertical alignments of forest roads using Tabu Search. Int. J. For.

Eng. 16(2): 137–151. doi:10.1080/14942119.2005.10702522.

Bont, L.G., Heinimann, H.R., and Church, R.L. 2012. Concurrent optimization of

harvesting and road network layouts under steep terrain. Ann. Oper. Res. 232(1):

41–64. Springer US. doi:10.1007/s10479-012-1273-4.

Cortes, C., Pregibon, D., and Volinsky, C. 2003. Computational Methods for Dynamic

Graphs. J. Comput. Graph. Stat. 12(4): 950–970. Taylor & Francis.

doi:10.1198/1061860032742.

22

Dijkstra, E.W. 1959. A note on two problems in connexion with graphs. Numer. Math.

1(1): 269–271. Springer-Verlag. doi:10.1007/BF01386390.

ESRI. (n.d.). What is ArcGIS? | ArcGIS for Developers. Available from

https://developers.arcgis.com/labs/what-is-arcgis/ [accessed 12 April 2019].

Henningsson, M., Karlsson, J., and Rönnqvist, M. 2007. Optimization Models for Forest

Road Upgrade Planning. J. Math. Model. Algorithms 6(1): 3–23. Kluwer Academic

Publishers. doi:10.1007/s10852-006-9047-0.

Hillier, F.S., and Lieberman, G.J. 2005. Introduction to operations research. McGraw-

Hill Higher Education.

Liu, K., and Sessions, J. 1993. Preliminary Planning of Road Systems Using Digital

Terrain Models. J. For. Eng. 4(2): 27–32. Taylor & Francis Group .

doi:10.1080/08435243.1993.10702646.

Rönnqvist, M. 2003. Optimization in forestry. Math. Program. 97(1): 267–284.

Springer-Verlag. doi:10.1007/s10107-003-0444-0.

Stückelberger, J. 2007. A weighted-graph optimization approach for automatic location

of forest road networks. Available from https://www.research-

collection.ethz.ch/bitstream/handle/20.500.11850/150287/eth-30141-

02.pdf?sequence=2 [accessed 11 April 2019].

Stückelberger, J., Heinimann, H.R., and Chung, W. 2007. Improved road network

design models with the consideration of various link patterns and road design

elements. Can. J. For. Res. 37(11): 2281–2298. doi:10.1139/X07-036.

23

Stückelberger, J.A., Heinimann, H.R., and Burlet, E.C. 2006. Modeling spatial

variability in the life-cycle costs of low-volume forest roads. Eur. J. For. Res.

125(4): 377–390. Springer-Verlag. doi:10.1007/s10342-006-0123-9.

Sunita, and Garg, D. 2018. Dynamizing Dijkstra: A solution to dynamic shortest path

problem through retroactive priority queue. J. King Saud Univ. - Comput. Inf. Sci.

Elsevier. doi:10.1016/J.JKSUCI.2018.03.003.

US Department of Commerce, N.O. and A.A. (n.d.). What is LIDAR. Available from

https://oceanservice.noaa.gov/facts/LiDAR.html [accessed 12 April 2019].

What is a DEM - Digital Elevation Model Definition. (n.d.). Available from

https://www.caliper.com/glossary/what-is-a-digital-elevation-model-dem.htm

[accessed 12 April 2019].

Wilson, R.J. 2010. Introduction to graph theory. Prentice Hall/Pearson.

24

Appendices

The code

Attached at the end of this document is a copy of the python code in a self

contained 4-page document. This one done in order to maintain the formatting and

readability of the code.

1

2

3 import sys

4 import arcpy

5 import numpy

6 import math

7 import timeit

8

9

10 NEIGHBOUR_CELL_NUMBER_MAX = 1

11

12 #Find the shortest path between start and end nodes in a graph

13 def shortestpath(graph,start,end, max_x, max_y, visited=[],distances={},predecessors={}):

14

15 unvisited_nodes = create_nodes_list(graph)

16

17

18

19 # we've found our end node, now find the path to it, and return

20 while start != end:

21

22 print start

23

24

25 # detect if it's the first time through, set current distance to zero

26 if not visited: distances[start]=0

27

28 start_x, start_y = get_node_coordinates(start)

29

30 if predecessors == {}:

31 previous_node = start

32 else:

33 previous_node = predecessors[start]

34

35

36 xprev, yprev = get_node_coordinates(previous_node)

37

38 x_relative = xprev - start_x

39 y_relative = yprev - start_y

40

41 # process neighbors as per algorithm, keep track of predecessors

42 neighbours = find_neighbour_nodes(start_x, start_y, x_relative, y_relative,

max_x, max_y)

43

44 for neighbour in neighbours:

45 if neighbour not in visited:

46

47 neighbour_x, neighbour_y = get_node_coordinates(neighbour)

48 neighbour_distance = calculate_distance(start_x, start_y, neighbour_x,

neighbour_y)

49

50 neighbour_slope = calculate_slope(neighbour_distance,

graph[start_x][start_y], graph[neighbour_x][neighbour_y])

51 neighbour_weight = calculate_weight(neighbour_slope, neighbour_distance)

52

53 neighbourdist = distances.get(neighbour, sys.maxint)

54 tentativedist = distances[start] + neighbour_weight

55 if tentativedist < neighbourdist:

56

57 distances[neighbour] = tentativedist

58 predecessors[neighbour]=start

59

60 # neighbors processed, now mark the current node as visited

61 visited.append(start)

62 unvisited_nodes.remove(start)

63

64 # finds the closest unvisited node to the start

65 unvisiteds = dict((k, distances.get(k,sys.maxint)) for k in unvisited_nodes)

66 closestnode = min(unvisiteds, key=unvisiteds.get)

67

68 start = closestnode

69

70

71 path=[]

72 while end != None:

73 path.append(end)

74 end=predecessors.get(end,None)

75 return distances[start], path[::-1]

76

77 #creates a list of all nodes in the graph

78 def create_nodes_list(graph):

79 node_list = []

80 for x in range(0,len(graph[0])):

81 for y in range(0,len(graph)):

82 node_list.append(get_node_id(x,y))

83

84 return node_list

85

86 # #create a list of all arcs in the graph

87 # def generate_arc_list(graph, list_of_nodes, neighbour_nodes):

88 # arc_list = []

89

90

91 # #create dictionary af all arcs in the graph

92 # def dictionary_arcs_w_weight(graph, list_of_nodes, neighbour_nodes, weights):

93 # arc_dictionary = {}

94

95

96

97 #calculates distance between current node and neighbour

98 def calculate_distance(x1, y1, x2, y2):

99 return math.sqrt(((x1-x2) * cellSize)**2 + ((y1-y2) * cellSize)**2)

100

101 #calculates weight from distance and slope

102 def calculate_weight(slope, distance):

103 return distance + (distance * slope)

104

105

106 #calculates slope as an absolute vale, applies piecewise scale for interpreting slope

107 def calculate_slope(distance, z1, z2):

108 slope = abs((((z1) - (z2)) / distance) * 100)

109

110 weighted_slope = 0

111

112 if slope >= 0 and slope <= 5:

113 weighted_slope = 0

114 elif slope > 5 and slope <= 10:

115 weighted_slope = 1

116 elif slope > 10 and slope <= 15:

117 weighted_slope = 2

118 elif slope > 15:

119 weighted_slope = 1000000

120

121 return weighted_slope

122

123 # #finds all neuighbour nodes, based on the global NEIGHBOUR_CELL_NUMBER_MAX value

124 # def find_neighbour_nodes(x1, y1, max_x, max_y):

125 # neighbours = []

126

127 # for x_value in range(-1*NEIGHBOUR_CELL_NUMBER_MAX, 1*NEIGHBOUR_CELL_NUMBER_MAX+1):

128 # for y_value in range(-1*NEIGHBOUR_CELL_NUMBER_MAX,

1*NEIGHBOUR_CELL_NUMBER_MAX+1):

129 # neighbour_x = x1+x_value

130 # neighbour_y = y1+y_value

131

132 # if not (neighbour_x >= max_x or neighbour_x < 0 or neighbour_y >= max_y

or neighbour_y < 0 or (neighbour_x == x1 and neighbour_y == y1)):

133 # neighbours.append(get_node_id(neighbour_x, neighbour_y))

134

135 # return neighbours

136

137 #finds all neuighbour nodes, based on the global NEIGHBOUR_CELL_NUMBER_MAX value

138 def find_neighbour_nodes(x1, y1, xprev, yprev, max_x, max_y):

139 neighbours = []

140 x_values = []

141 y_values = []

142

143 if xprev == 0 and yprev == 0:

144 x_values = [-1, 0, 1]

145 y_values = [-1, 0, 1]

146 elif xprev == -1 and yprev == -1:

147 x_values = [0, 1]

148 y_values = [0, 1]

149 elif xprev == 0 and yprev == -1:

150 x_values = [-1, 0, 1]

151 y_values = [1]

152 elif xprev == 1 and yprev == -1:

153 x_values = [-1, 0]

154 y_values = [0, 1]

155 elif xprev == -1 and yprev == 0:

156 x_values = [1]

157 y_values = [-1, 0, 1]

158 elif xprev == 1 and yprev == 0:

159 x_values = [-1]

160 y_values = [-1, 0, 1]

161 elif xprev == -1 and yprev == 1:

162 x_values = [0, 1]

163 y_values = [-1, 0]

164 elif xprev == 0 and yprev == 1:

165 x_values = [-1, 0, 1]

166 y_values = [-1]

167 elif xprev == 1 and yprev == 1:

168 x_values = [-1, 0]

169 y_values = [-1, 0]

170

171 for x_value in x_values:

172 for y_value in y_values:

173 neighbour_x = x1+x_value

174 neighbour_y = y1+y_value

175

176

177

178 if not (neighbour_x >= max_x or neighbour_x < 0 or neighbour_y >= max_y or

neighbour_y < 0 or (neighbour_x == x1 and neighbour_y == y1)):

179 neighbours.append(get_node_id(neighbour_x, neighbour_y))

180

181 return neighbours

182

183

184 #interprets cell position to generate a string identifier for the cells

185 def get_node_id(x, y):

186 return str(x) + "," + str(y)

187

188 #splits the coordinates into x or z and numeric value

189 def get_node_coordinates(id):

190 split = id.split(',')

191 return int(split[0]), int(split[1])

192

193 #takes list of coordinates and changes the z values in the array to 1

194 def selected_cells(path_coordinates, graph):

195 for coordinate in path_coordinates:

196 x, y = get_node_coordinates(coordinate)

197 graph[x][y] = 1

198 return graph

199

200 # makes all points not in the path 0

201 def zeroing_graph_values(graph):

202 for x in range(0,len(graph[0])):

203 for y in range(0,len(graph)):

204 graph[x][y] = 0

205 return graph

206

207 #creates a weight for 90 degree turning radius

208 def radius_of_curve(x1, y1, x2, y2, x3, y3):

209 pass

210

211

212

213

214 if __name__ == "__main__":

215

216

217

218 start_timer = timeit.default_timer()

219 print start_timer

220

221 raster =

arcpy.Raster(r'C:\Users\Administrator\Documents\Lakehead\thesis\lid_rast\Run8\lid_8.t

if')

222 lowerLeft = arcpy.Point(raster.extent.XMin,raster.extent.YMin)

223 cellSize = raster.meanCellWidth

224

225 graph = arcpy.RasterToNumPyArray(raster, lowerLeft, nodata_to_value=100000)

226

227 max_x = len(graph[0])

228 max_y = len(graph)

229

230 weight, shortest_path = shortestpath(graph, "0,0", "199,199", max_x, max_y)

231 print weight, shortest_path

232

233 zeroed_graph = zeroing_graph_values(graph)

234

235 route = selected_cells(shortest_path, zeroed_graph)

236

237 myraster = arcpy.NumPyArrayToRaster (route, lowerLeft, cellSize, cellSize, 0)

238 myraster.save

(r'C:\Users\Administrator\Documents\Lakehead\thesis\lid_rast\Run8\lid_8_route.tif')

239

240

241 stop_timer = timeit.default_timer()

242 print stop_timer

243

244

245 print ('Time: ', stop_timer - start_timer)

246

