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ABSTRACT 
 
Keywords: drones, hazard trees, management, thermal, sensors, aerial imagery  

 
 

 The Mavic 2 Enterprise Dual was recently released by DJI in December of 2018.  It is a 

small compact device with enormous potential for field work in a variety of industries, one of 

which has been investigated in this undergraduate thesis report.  Public parks and recreation 

areas are becoming an important part of our health and well-being during an increasingly 

technological and urban time.  However, safety is always a concern with public participation in 

any activity, and one which wardens and managers are constantly trying to improve upon. 

Approximately 11% of deaths or injuries that occur during outdoor recreational activities have 

been the result of falling trees or tree branches (Brookes 2007).  Trail inspections, in an attempt 

to identify hazard trees that are dead or rotting before causing issue, can be infeasible due to a 

number of conditions, making the rise in remote sensing and drone technology potentially 

revolutionary to this field.   

The Mavic 2 Enterprise Dual is equipped with dual thermal and visual cameras.  

Thermal imagery is incredibly useful for identifying objects that are less visible with traditional 

imagery by using different heat signatures.  Thermography has been used across a range of 

disciplines including engineering, medicine and perhaps most relevant, arboriculture.  Although 

not thoroughly researched, numerous case studies have shown that zones of decay can be seen 

inside standing trees using thermal imagery at ground level (Catena & Catena 2008).  Assessing 

individual trees in this manner may not be particularly useful for identifying hazard trees in large 

public parks but it begs the question of whether aerial thermal imagery could potentially be 

implemented in the same manner and if so, would the Mavic 2 Enterprise Dual be an appropriate 

tool for the task.  
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INTRODUCTION AND OBJECTIVE 
 

Parks and greenspaces play an important role in the lives of many people around the 

world.  Although there may be a lack of evidence to prove the connection between health and 

nature, much of the public perceives it as having a positive effect on their lives.  This could be 

due to the calm and relaxing effect of spending time outdoors, or the fact that most of peoples 

time in natural environments is spent on activities such as walking or biking (De Vries et al. 

2003).  The perceived advantages to spending time outside are becoming seemingly more 

important in an increasingly technological and urban world.   

 Protected areas and parks often fill this desire for outdoor recreation by creating well 

maintained trail networks.  However there is an inherent risk in participating in these activities.  

Approximately 11% of deaths or injuries that occur during outdoor recreational activities have 

been the result of falling trees or tree branches (Brookes 2007).  These types of incidents are 

hard to prevent due to the sheer number of potentially hazardous trees and the variety of 

circumstances that surround their fall.  Through an investigation by Andrew Brookes (2007) of 

incidents in natural areas since the 1960’s it was observed that age and experience of the victims 

are not necessarily contributing factors to the incidents occurrence.  Weather often plays the 

largest role in fallen tree incidents in the form of strong winds, snow and more.  Most incident 

reports also cite the presence of rot or other damage to the tree prior to its fall.  Unhealthy trees 

are more likely to fall and therefore more likely to cause injury or death when combined with 

other conditions. 

 In 2004 at Hamilton Ontario’s botanical gardens, a 10 year old was struck and killed by 

a large tree branch.  As a result of an investigation afterwards, the coroner’s jury made 18 

recommendations to improve the safety of the area.  These included trail inspections every 

morning, and a thorough trail assessment every 2 years.  However these recommendations are 

difficult to implement in large parks with extensive trail systems, treelined roadsides and 
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campsites (Brookes 2007).  It is simply impractical to inspect the entire area at an appropriate 

interval.  Combined with the added backcountry routes and campsites that are even more rarely 

visited and it is nearly impossible.  

 Besides the obvious threat to human life, dead or dying hazard trees can cost 

organizations thousands of dollars.  As an example, in 1993 a woman hiking in Toorongo Falls 

Reserve in Australia was struck by a falling tree.  She was awarded $300 000 for damages from 

the Department of Natural Resources, despite the location of the incident being outside of any 

closely managed region of the park (Brookes 2007).  She was exploring a riverbank away from 

any designated trail or campsite.  The lawsuit was granted under the claim there should have 

been warning signs nearby.  This enters into a grey area of snag management in which the line is 

blurred between managing parks and recreation sites for public safety or nature and conservation 

goals (Brookes 2007).  I will not delve into the debate on what the intensity of snag management 

for public safety should be.  However, the inherent risk of outdoor recreation activities, the 

impracticality of time-consuming trail inspections and the potential monetary costs of an 

incident, warrant the review of current methods of hazard tree identification. 

 The rising introduction of drone technology, their practicality and their speed has 

potential to revolutionize the identification of natural hazards from the air.  In the last decade 

much literature has been published identifying possible techniques using LiDAR and Infrared 

images to identify hazard trees.  These methods have produced variable accuracy rates between 

70 – 80% (Yao et al  2012) (Polewski et al 2015) but can involve significant equipment costs 

and image analysis times, not to mention LiDAR systems often require winged aircraft to do the 

flyover which is a significant expense.     

 In conjunction with the Lakehead Region Conservation Authority (LRCA), I will 

investigate potential alternatives to traditional hazard tree identification, while keeping in mind 

cost-effectiveness and time.  The LRCA is a community based environmental agency that is 

responsible for the management of renewable natural resources within the local watershed.  The 
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organization undertakes a broad range of duties including watershed management, erosion 

control, flood forecasting & warning, recreation, water level monitoring, environmental 

education and stewardship.  The successful implementation of these commitments are partly 

achieved through providing Conservation Areas for semi-passive recreational and environmental 

educational opportunities.  The safety of participants in these types of LRCA programs is the 

goal of the research involved in this thesis.  My study area will be located in the Cascades 

Conservation Area located outside of the City of Thunder Bay Ontario, Canada. 

 

OBJECTIVE 

 The goal of this project was to find an efficient method of identifying dead standing 

trees within the LRCA’s managed Conservation Area, Cascades, using thermal imagery from the 

new DJI Mavic 2 Enterprise Dual which is a newly release mid-priced drone.  The findings will 

aid in removal efforts to help keep visitors safe in high traffic areas of the park.  The 

investigation will aim to determine the feasibility of using thermal imagery for hazard tree 

identification as well as whether the Mavic 2 Enterprise Dual is appropriate for such analysis. 
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LITERATURE REVIEW 
 

There are many advantages to using remotely sensed data for dead standing tree 

identification.  Ground surveys are often time consuming, financially expensive and challenging 

in remote areas.  Also, in order to maintain the quality of ground surveys, high resolution data is 

needed.  Satellite images from freely available sources are generally not a high enough 

resolution for this purpose (e.g., Landsat imagery).  Another problem with satellite imagery is 

the potential cloud cover during certain times of the year and in specific climates (Koh & Wich 

2012).  To address these problems autonomous unmanned aerial vehicles have risen in 

popularity through recent years.  These devices are commonly known as drones but can be 

identified by many names including unmanned aerial vehicles (UAV), unmanned aircraft 

systems, or remotely piloted aircraft systems.  Drones are self-propelled airborne devices that 

have no onboard pilot.  They were first developed for military purposes in the Second World 

War.  The increased use for other applications in recent years has been mainly due to the 

miniaturization and reduction in price of the cameras and sensors used on board.  This has been 

largely driven by the smartphone industry.   

Drones can take on many forms but the 2 main ones are fixed wing and rotary winged 

aircrafts.  Fixed winged can often carry heavier loads and fly longer distances while rotary 

winged forms tend to be smaller with reduced range.  For the purpose of hazard tree 

identification rotary winged devices are ideal because they are more maneuverable and take off 

and land vertically which is useful when working under forest canopies (Sandbrook 2015).  

Rotary winged drones are often used for more precision work such as agricultural and fire 

monitoring, which makes them ideal for conservation work as well.   

Drones can offer flexible, accurate and affordable solutions to the technical challenges 

of conservation area monitoring.  There are safety concerns to consider though when deploying 

this technology.  These aircrafts are generally safer than piloted aircrafts mainly because there is 

no risk to the pilot in the event of a crash and the smaller size reduces risk to people on the 
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ground as well.  Most drones now have software to return them automatically to the takeoff 

location in the event of an emergency.   

The history of these devices being used for military applications has raised a lot of 

concern over the ethical implications and possible infringements on privacy and civil liberties.  

This along with safety concerns has led to regulation on behalf of the government in many 

countries around the world.  Drones have the potential to cause fear, confusion, and hostility 

among those on the ground who are uninformed of its presence.  People who do not understand 

the practical uses for this technology can generate conspiracies and suspicions.  Likewise, people 

may recognize the drone for what it is but have misconceptions about its purpose.  Because of 

this, the potential conflict between drone research and the public must be considered for flying 

over public parks (Sandbrook 2015).  

This being a relatively new technology, legislation governing the flying of drones is still 

in the development phase.  The agency responsible for the implementation of drone laws in 

Canada is Transport Canada.  Currently, as of May 2019 the laws surrounding the use of drones 

in Canada don’t require any sort of training or license to fly as long as the drone weighs 35 

kilograms or less.  There are strict rules and conditions however governing how a drone must be 

flown: below 90 meters’ altitude, at least 30 – 76 meters away from vehicles, or the public 

depending on the drone’s weight, at least 3 miles from any aerodromes, 1 mile from heliports, 

away from restricted airspace, during the day, within sight or within 500 meters of the operator 

and many more.  These restrictions limit the possible situations and locations where this 

technology can be implemented but are easily followed under most circumstances including this 

study (Transport Canada 2019).   

As of June 1st 2019 Transport Canada is implementing new legislation which will define 

all drones as aircrafts, hoping to crack down on safety concerns from the public and other 

airspace users.  This mainly effects who can fly, but also makes minor changes to original 

regulations restricting how and where a drone can be flown.  The most significant change would 
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be the introduction of a license requirement for all drone operators in the form of a drone pilot 

certificate.  This creates a platform where each pilot is now fully responsible for his/her aircraft 

(drone) and also ensures each owner is fully aware and informed on all relevant laws governing 

it’s use.  These changes create a safer environment for drone operators and the surrounding 

public but will add an extra element of consideration for organizations hoping to implement this 

technology into their daily operations (Transport Canada 2019).    

Despite the concerns and changing governance, the many advantages of drones have 

sparked a recent rise in remote sensing techniques attempting to identify hazard trees from the 

air so they can be dealt with appropriately before causing an issue.  Recent advances in LiDAR 

technology has generated higher spatial point density and additional characteristics about the 

reflectivity and vertical structure of trees (Yao 2012). Mucke et al (2012), attempted to use this 

advance in LiDAR technology to identify dead standing trees.  Using a specified area and the 

GPS locations of twelve known living and dead standing trees, a cylindrical extraction of 

LiDAR points within a 2.5 meter radius was analyzed.  A full explorative point cloud analysis 

was carried out and the different representations of the dead and living trees were determined.  

The distinguishing features included, point distribution (number of echo’s per certain height 

interval) and the FWF (Full Wave-Form) attributes echo width and amplitude.  This was done 

for both leaf on and leaf off conditions to identify any differences (Mucke et al 2012).  The 

finding was that echo distribution and echo amplitudes were the strongest indicators for the 

delineation between standing live and dead trees.  Regardless of leaf presence, echo’s from dead 

standing trees were more equally distributed than live trees.  This was likely due to the dead 

standing trees used in this study not having a live crown.  Live trees showed a significantly 

higher amplitude in the top 30% of echo’s with leaves on versus leaves off.  This experiment 

suggests that with further refinement, it may be possible to recognize and identify dead standing 

trees based on full waveform LiDAR data by using a measure of point distribution and 

penetration depth during leaf on conditions (Mucke et al 2012).   
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Other methods of possible dead tree identification may be by using colour infrared aerial 

imagery (Polewski et al 2015).  This method uses single colour infrared images as an input with 

no image correspondence or 3D elevation information necessary.  However a set of training 

samples must be used which comes in the form of polygons that delineate individual snags and 

their location.  This is the basis for developing shape and prior intensity information.  The first 

step is to use this intensity prior information to find regions in the image that are most likely to 

contain snags.  Within this narrowed region, the second step uses the intensity and shape 

algorithm derived from the training data to classify likely dead standing trees.  Finally a grid of 

circles is overlaid on the image.  The circles are ranked based on the intensity algorithm to 

determine the probability of containing a dead standing tree.  For the high probability circles, a 

level-set segmentation using the mean shape of a snag tree determines whether or not there is 

enough evidence to support the existence of said tree.  The accuracy of this type of identification 

varied but generally averaged around 71 – 77%.  Some issues that arose from using only colour 

based images were difficulties in distinguishing between open ground, lying dead trees and 

snags.  The loss of fine detail was also observed because of the transformation from image 

intensity values into probability values (Polewski et al 2015). 

Something that has not been thoroughly investigated as a possibility is using thermal 

imagery as a way of identifying dead standing trees.  There is potential for success using this 

technique based off previous research on the thermal properties of dead trees.  Large or living 

trees tend to heat and cool more slowly which creates more stable temperatures beneath the bark 

of the tree trunk.  On the other hand smaller or dead trees tend to fluctuate more with the 

temperature of the surrounding environment (Coombs et al  2010).  Bark is not very efficient 

with the transfer of heat and therefore has the ability to keep the wood inside at a significantly 

different temperature than the outside air.  This is accomplished with the help of tiny air pockets 

within the bark that have very efficient insulating properties.  The result is a small microclimate 

within the wood beneath the cambium of a living tree trunk (Nicolai 1986).   
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In order to measure the amount of thermal radiation being emitted from the tree, this 

thesis will utilize thermal sensors mounted on a drone.  A thermal camera is a passive sensor that 

captures the infrared radiation emitted by all objects above absolute zero.  Similar to drone 

technology these sensors were originally developed for military applications, for uses such as 

surveillance and night vision.   

The development of automatic vision systems such as thermal sensors has increased 

dramatically in recent decades.  In the beginning, standard images were captured either in 

grayscale or RGB (red, green, blue) colour bands.  The problems with this image capturing 

technique is that an external energy source is needed to reflect colours and visibility, meaning 

nothing can be captured in total darkness.  To improve the process, 3D and near infrared sensors 

were developed in the 1940’s and 50’s which could actively emit radiation and measure the 

reflection back.  This allowed remote sensing to occur regardless of light conditions.  Over time 

this idea was improved by creating a passive type of sensor which measures mid to long 

wavelength infrared spectrum radiation (3-14 um).  This new sensor used the dominant 

wavelength emitted based off of temperature to measure the thermal properties of an object 

while being independent from any kind of external energy source.  The development of this 

technology has led to its application in a range of industries and has led to a lower price range 

which makes the technology more affordable to more users.   

The basic premise behind the sensor is that infrared radiation is constantly being emitted 

from objects based on their temperature.  This radiation is located between the visible and 

microwave spectrum which has a wavelength range between 0.7 micrometers (700 nanometers) 

to 1 meter.  The peak of radiation intensity emitted shifts more towards the visible light spectrum 

with increased temperature which is why extreme heat such as a red hot iron can be visible to the 

human eye.  This peak is what is measured by the sensor to determine temperature (Gade & 

Moeslund 2014).   
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Thermal sensors are used for many different purposes in conservation and vegetation 

health.  By using active thermography, (adding thermal energy to an object and measuring its 

temperature) sensors can detect a bruised fruit before allowing it to hit the market.  Thermal 

imaging of wheat fields can also identify fungal infected wheat plants (Gade & Moeslund 2014).  

Airborne tests of the common thermal sensor brand FLIR, have also been used to show thermal 

variations in peach orchards based on irrigation levels.  Peach trees that were under water stress 

were shown as warmer than those that were fully irrigated (Berni et al 2009).  In some 

jurisdictions within the United States, stream temperatures are actively monitored using remotely 

sensed thermal images in order to protect endangered and threatened aquatic biota.  This is very 

important as it can identify water temperatures that exceed the thermal tolerances of native 

species and make corrective actions to assist those (Torgersen et al 2001).  FLIR thermal 

sensors have even been used in Australia to identify active termite infestations inside buildings 

(Reynolds & Riley 2002).  These are just some examples that can be used to highlight the 

diverse number of applications that the FLIR thermal sensor can be utilized for. 

As important as collecting the thermal imagery is, the ability to convert it into tangible 

information that can be utilized in conjunction with other data sets in GIS (Geographical 

Information Systems) programs is critical.  This can be accomplished through image 

classification and analysis.  As long as the pixel size within the images remains coarser, or of a 

similar size to the object of interest then general pixel based analysis is often sufficient.  

However if increased accuracy is warranted then object based classification is more appropriate.  

The recent advance of extremely high resolution imagery has made this method much more 

important since often the object of interest is made up of several pixels in the image.  In 2007 the 

first 0.5 meter resolution satellite became operational and in the years since the diversity of 

applications for security, urban planning, conservation planning and more, has only increased 

the rate of improvement.  When using object based image classification, the first step is to divide 

the image into segments generated by one or more criteria of homogeneity in one or more 
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regions respectively.  By doing this, each segment will have more spectral information available 

such as mean values per band, median values, minimum and maximum values, mean ratios, 

variance and more.  This additional information is highly valuable for increasing the accuracy of 

classification.  Object based analysis provides a new critical bridge between a spatial concept 

applied in multi scale landscape analysis and GIS and the synergy between image objects and 

their similar radiometric characteristics (Blaschke 2010).  

As with all natural areas around the world, forest canopies are constantly changing.  

Another method of classifying these changes is to use an image analysis method known as 

change detection.  This is accomplished by using repetitive image coverage at short intervals and 

identifying changes in the radiance values between multiple images.  This will produce a final 

image showing where land cover has changed based on the spectral values.  This is generally a 

pixel based analysis produced by the subtraction of 2 images.  Pixels that show no change within 

the time period will be distributed around the mean, while the pixels with significant spectral 

change (e.g., a tree that has died) will appear in the tails of distribution and therefore be 

highlighted as a changed area.  This can be a very effective way of identifying forest canopy and 

vegetation changes as well (Mas 1999). 
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MATERIALS AND METHODS 
 

The flights and data collection used in this thesis were conducted in conjunction with the 

Lakehead Region Conservation Authority within a high traffic conservation area that the 

organization maintains outside of the city of Thunder Bay, Ontario (Figure 1).  Cascades 

Conservation Area is located north of the city within a 15 minute drive for most residents.  

Cascades is extremely popular for its spectacular rapids along the Current River which runs 

through the 162 hectare park.  There are 5.5 kilometers of trails on the property including a 

popular 775 meter loop which is paved to be accessible to all abilities.  There is also a pavilion 

area with BBQ’s and interpretive displays highlighting the geological, hydrological and 

botanical features of the area.  (LRCA 2016).  

Our focus on Cascades Conservation Area is based on not only the presence of large 

volumes of visitors but also on the history of human interference in natural processes when 

preserved for protection.  The Lakehead Region Conservation Authority is located within the 

Boreal Forest.  In this biome, forest fires are the primary mechanism for stand replacement 

which creates new young stands while eliminating older dead or dying timber.  This rotation is 

generally around 70 years naturally (Lee et al 1997).  Inside protected land such as our focus 

area though, fire suppression is often practiced to maintain the aesthetics of the area for visitors 

and protect infrastructure.  While this can result in major shifts in ecosystem structure and 

function, the real concern with respect to this study is the possible over-maturity of the forest, 

resulting in more potential dead standing trees.  Fire exclusion eliminates the ability of nature to 

thin out dead or dying trees (fuel for the fire) within the natural fire cycle (Covington & Moore 

1994).  This highlights the importance of finding new innovative ways to identify these hazards. 
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Figure 1. A map of the trail network at Cascades Conservation Area. 

 

Since the focus of the hazard tree identification is on public safety, the flight path will 

attempt to follow and capture only the area surrounding the high traffic areas within the park, 

mainly the pavilion areas and trails.  Table 1 lists the trails to be used in this study. 

  

Table 1. A summary of trails in Cascades that should be captured for the purpose of this study. 

Trail Name Distance (km) 

Forest Trail 0.775 

Blue Trail 

Orange Trail 

Red Trail 

Yellow Trail 

0.634 

1.629 

1.505 

0.871 
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 Due to limitations, (see also the  Discussion section below), the data was flown 

manually resulting in minor errors.  If autonomous flight was possible we would’ve used a 

buffer imposed around the specific trails and areas of interest and clipped the imagery down to 

this smaller focus area for the analysis.  The buffer would be 30 meters, which is above the 

average tree height in the park (Figure 2).  Any tree in this buffer would therefore be at risk of 

landing on a trail if it were to fall.  

 

Figure 2. An example of the 30 meter buffers surrounding the trails at Cascades 

 

The data collection was flown during the winter season in the target areas partly due to 

the timing of this thesis project but also because this is when we expect to see the biggest 

thermal difference between dead and living trees.  This is hypothesized because the lower 

temperatures are likely to accentuate the effect that water inside the living trees trunk has on its 

overall temperature, as opposed to dead hazard trees which are more likely dry.   However, this 

brought about a significant number of challenges, the most limiting issue being the battery life 

under cold weather conditions.  The most common type of battery used in these devices are 

lithium ion batteries which have a significantly reduced capacity under cold weather conditions.  

To combat this, strategies were employed to maintain the batteries temperature above the 
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recommended limit (usually about 10 degrees celsius) pre-flight until the moment before takeoff.  

Once in the drone, the battery will be able to maintain most of its heat with the help of energy 

losses from the drawn current.  Efforts to accomplish this are not difficult and can be as simple 

as keeping the battery in the inner pocket of a jacket or inside a polystyrene casing.  Another 

possible issue with winter flights was icing on the wings.  Generally however if the sky is clear 

this is not a major concern.  The only exception being when the temperature is around 0 degrees 

Celsius, which is when humidity in the air could cause ice issues (Ader & Axelsson 2017). 

Our imagery was collected with the Mavic 2 Enterprise Dual which was released by DJI 

in late 2018.  The Enterprise Dual is a compact unit that folds up to fit with all its gear (batteries, 

remote, etc) into a small carrying case making it ideal for field work.  The second generation of 

the original Mavic drone includes advances in autonomous flight through obstacle avoidance and 

alerts to any nearby aircrafts which makes the device incredibly simple to fly regardless of 

experience level.  The real advances with respect to this project though is the built in dual 

camera system.  It includes a standard visible spectrum camera as well as an integrated 

radiometric FLIR thermal sensor.  These video feeds can be seen separately or used in 

conjunction for an enhanced thermal display using object detection from the visible camera.  

This makes identifying ground features easy from the air even while filming using the thermal 

sensor.  

The data collected for use in this research was collected over 2 days of field work on 

February 27 2019 and March 9 2019.  Advanced notice was given to the Lakehead Region 

Conservation Authority and appropriate signage was posted to inform park visitors of our work.   

Because the Mavic 2 Enterprise Dual is brand new technology, the appropriate software 

needed to program autonomous flights using the trail shape files from Cascades is still being 

developed.  As a result, all the imagery used, was flown manually.  This proved to be quite 

difficult as without the trail routes preprogramed, we had to visually identify them from the air 

using the camera footage as we flew.  Our data collection method consisted of 4 base locations 
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from which we took off and landed.  From each location we were able to capture the forest area 

surrounding all sections of trail in the immediate vicinity.  Once the battery range was 

exhausted, we moved to the next site with a new battery to collect from there.     

As a result of the uncertainty surrounding processing imagery from such as new drone, 

the data was collected both in video and still photo format.  The intentions of collecting the 

video was to then separate it into photo frames for stitching and analysis using an ESRI ArcPro 

extension named Full Motion Video.  The video multiplexer within it is designed to extract 

frame by frame still images from the video which are automatically georeferenced for analysis.   

The resulting thermal imagery layer would then be clipped to reflect the buffer zone surrounding 

each trail.  This would reduce the amount of un-needed data and therefore would also reduce 

processing time.  Unfortunately due to software difficulty working with this drone model the 

plan was not realized.  Instead a less detailed approach had to be taken due to technology and 

time constraints. 

The video had to be ignored all together in favour of using individual photos for 

analysis.  A set of 3 photos taken at various locations along the trails were used for analysis to 

attempt the identification of dead standing trees.  The 3 images used, were chosen, as they 

appeared to provide the best thermal variance between trees, therefore giving the best chance of 

identifying differences between dead and living.   Additionally, 6 more photos all from the same 

location were analyzed to determine if there is an optimal flying height to identify individual 

trees.  Image locations and launch sites can be seen in Figure 3. 
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Figure 3. A map showing the GPS points of the 4 launch sites, 3 picture points and location of 
the height test photos 

 

 With the absence of fully georeferenced thermal imagery, identifying and pinpointing 

dead trees on the imagery for classification reference was not possible.  As a result, there was no 

baseline to start the classification.  Instead, a series of ground photos were used to identify 

sample trees in each image for prior thermal information which is needed for classification. 

Different classifications were done including a pixel based unsupervised classification and a 

supervised classification both done in ERDAS Imagine as well as a supervised object based 

classification done in eCognition on each of the 3 single images.  All types of classifications 
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were compared as best as possible to the ground truthed trees using a series of ground photos 

collected at the location each image is geotagged to.  The ideal method of analysis would be to 

have ground truthed dead trees marked directly on the images for a comparison of spectral 

properties but this was not possible with the Mavic 2 Enterprise Dual Drone.  Using the ground 

photos as a reference for the presence of dead trees in the aerial thermal image, a visual 

assessment of the difference in classification between individual trees was used to determine 

feasibility.   

The second part of the analysis was to determine whether the height the imagery is 

flown at significantly affects the accuracy of a classification scheme.  This will be done in a 

similar manner by classifying all 6 images from heights ranging from 20 - 70 meters.  For this 

analysis, identifying dead hazard trees is not the priority. Instead focus was placed on simply 

identifying individual trees from different altitudes.  This was because the largest effect height 

will have on the image is increased ground representation in each pixel meaning decreased 

resolution at higher altitudes.  This could make identifying individual trees for assessments such 

as this much more difficult.  

Our final analysis is hoped to conclude whether or not thermal imagery possesses the 

possibility of hazard tree identification in the future and if so, whether or not the Mavic 2 

Enterprise Dual is appropriate for such analysis.  
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RESULTS 

 The 3 images used to assess the feasibility of using thermal imagery for hazard tree 

identification are referred to as 078, 112, and 136 which correspond to the image identification 

numbers on the original photographs. Identifying dead standing trees using computer 

classification requires a baseline to determine what spectral properties within the image 

represent a dead tree versus a living one.  In the absence of photo georeferencing, visual 

assessments of the aerial thermal image compared to visual images taken using the Mavic 2 

Enterprise’s Dual camera system, and photos taken from the ground were used to identify dead 

trees from each image.  2 dead trees and 2 living trees were chosen in each image for use as 

samples for classification, they were circled respectively red and green to represent dead and 

living and then given unique identification numbers.  This process can be seen in Figures 4 -  6.  

 Once a baseline was established we were able to complete 3 different classification tests.  

The first was an unsupervised classification using the image classification software ERDAS 

Imagine.  The process of completing an unsupervised classification was the simplest of all the 

methods undertaken but generally results in the least accurate result.  The steps consist of 

uploading the photos into the software and then simply instructing the program to conduct an 

unsupervised classification of the images.  This involves specifying how many classes to create 

and then letting the software determine for itself the appropriate ranges of values for each class.  

The program was instructed to create 3 classes, one for living trees, one for dead trees and one 

for everything else.  The results of this first rudimentary classification were predictably 

unsuccessful as each tree in the image was classified the same way with no difference between 

the dead and living trees.  The results can be seen in Figures 7 - 9 with the reference trees circled 

and identified as well in each.   
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Image 078 
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Figure 4. A comparison of the thermal image 078 with a spectral image of the same location and 
a 360 degree view from the ground at the same location. 
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Image 112 
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Figure 5. A comparison of the thermal image 112 with a spectral image of the same location and 
a 360 degree view from the ground at the same location. 
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Image 136 
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Figure 6. A comparison of the thermal image 136 with a spectral image of the same location and 
a 360 degree view from the ground at the same location. 
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Figure 7. Image 078 with a 3 class pixel-based unsupervised classification, showing no 

difference between living and dead trees. 

 
Figure 8. Image 112 with a 3 class pixel-based unsupervised classification, showing no 

difference between living and dead trees. 

 
Figure 9. Image 136 with a 3 class pixel-based unsupervised classification, showing no 

difference between living and dead trees. 
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Using the same program, ERDAS Imagine, the next step was to create a new classified 

image this time using a supervised method.  Once again the images were loaded into the 

software but this time around, I used a drawing tool to create polygons around the 2 dead and 2 

living tree canopies identified as references in each photo, as well as a number of samples 

representing the forest floor.  The thermal values within each polygon were then used by the 

computer as a reference to what constitutes the classification of each.  Generally, this results in 

more accurate classification results, however as seen in Figures 10 – 12 this was not the case. 

 
 

Figure 10. Image 078 with a pixel-based supervised classification using thermal values from 
referenced dead and living trees in the image. 

 

 
Figure 11.  Image 112 with a pixel-based supervised classification using thermal values from 

referenced dead and living trees in the image. 
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Figure 12.  Image 136 with a pixel-based supervised classification using thermal values from 
referenced dead and living trees in the image. 

 
 Not only did the supervised pixel based classification fail to differentiate between dead 

and living trees, but the difference in thermal values between the two was so minuscule that all 

the trees were given the value of the same class (green for living tree) similar to the results of the 

unsupervised classification. 

  The third and final classification method was a supervised object based classification 

which involves more steps to complete and is therefore more time consuming for 

implementation, however it is often the most accurate of all 3 methods.  The program used is 

called eCognition, in which you can upload individual images to first be classified into objects.  

The program uses the images thermal characteristics to separate it into small objects, essentially 

separating the trees from the ground before the primary classification even begins.  By setting a 

high shape value during this phase, the program will also ensure that shape has a strong 

influence in the definition of objects.  The result is an image separating the trees and 

surroundings into smaller objects each with averaged pixel properties from what lies within 

them.  The averaged pixel properties in each object consists of characteristics such as standard 

deviation from the mean, brightness, maximum difference and more, which gives the program 

more values to use in the classification (Figure 13). 
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Figure 13. An example of an image (112) classified into objects, to create more consistency 
between pixels in the hopes of a more accurate classification. 

 
 

 Once the objects are created, the supervised classification was similar to the pixel based 

method, except that since the sample objects are automatically classified as what they are 

identified as, I only used one of each tree as a sample to see if the second would end up being 

classified correctly.  Figures 14 - 16 show the results of the supervised classification with the 

dead sample tree pointed out, since dead tree identification specifically was our goal. 



�

�

�

�

�

�

���

 
 

Figure 14. Object based supervised classification for image 078 with the dead tree used as a 
sample pointed out.  Brown objects are classified as dead and green represents living. 

 
 

Figure 15. Object based supervised classification for image 112 with the dead tree used as a 
sample pointed out.  Brown objects are classified as dead and green represents living. 
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Figure 16. Object based supervised classification for image 136 with the dead tree used as a 
sample pointed out.  Brown objects are classified as dead and green represents living. 

 
 
 The final of the 3 classification methods tested produced the most promising results with 

the second dead tree in 2 of the 3 images being classified as dead (when looking at the center of 

the tree). 

 The imagery for this analysis was flown at 50 meters’ elevation, but given the 

importance that resolution plays in classification and image processing, a series of aerial images 

were taken of the same area at 10-meter height intervals between 20 meters and 70 meters to 

determine if there was an optimal height above ground to fly for this type of analysis.  Using the 

images in Figure 17, an object classification was done on each one to see which appeared to 

allow the easiest identification of individual trees. 
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          20 m            30 m 

 
          40 m            50 m 

 
          60 m            70 m 
 
Figure 17. An object classification of individual trees at different heights to determine if there is 

an optimal flying height for hazard tree identification. 
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DISCUSSION 

 Despite the promising results seen in the third classification method (object based 

supervised classification; Figures 14 -16), significant technological hurdles must be solved 

before effective implementation of this method can be considered.  The most significant factor 

holding back the use of the Mavic 2 Enterprise Dual for this type of field work currently is its 

release date.  The Mavic 2 Enterprise Dual was only released on December 20th 2018 which was 

what led to this study investigating its potential for this type of analysis, however this also led to 

limitations.  There is a distinct lack of software available that works with this drone for everyday 

flight and image analysis tasks.  The DJI Pilot application, which is currently the only 

compatible flight app with the Mavic 2 Enterprise, has yet to release an update which allows 

autonomous flying for the Mavic 2 Enterprise Dual model.  Autonomous flight would be ideal 

for hazard tree identification as a set of trail shape files similar to Figure 2 could be uploaded as 

a flight path and then the equipment could direct its self to ensure the area was covered.  

Autonomous flight and data collection could also ensure a more consistent overlap between 

images which is important for creating image mosaics and georeferencing later on.  Without this 

feature though, we had to fly manually while visually following the trails of interest from the air, 

while simultaneously capturing photos as consistently as possible.  This is much more 

challenging and nearly impossible to maintain centering overhead the trail while flying.  It is 

because of this challenge that the original plan was to fly manually and record video instead, so 

we could keep focus on flying the correct path.  However once again it was technological 

limitations that prevented us from implementing this method. 

 With the aerial video footage from most drones, a tool called a video multiplexer within 

the popular ArcPro computer program offered by ESRI can be used to create a compatible file 

for the Full Motion Video tool, which can then extract individual frames to georeference images 

on the landscape.  To compute and display the relative corner points of the video image footprint 

on the map, a series of required metadata is needed from the drone.  This includes, time stamp 
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information, latitude. longitude, altitude, heading, pitch, roll, sensor relative roll, elevation, and 

azimuth as well as the sensors horizontal and vertical field of view.  The majority of which is 

present in the Mavic 2 Enterprise Dual’s flight log except for the sensor information, specifically 

the horizontal and vertical field of view.  These camera specifications for the onboard thermal 

sensor are not readily available which makes displaying the images accurately, impossible.  

Many other popular drones have their camera specifications programed into the Full Motion 

Video tool however due to the recent release of the Mavic 2 Enterprise Dual, ArcPro has yet to 

update their software to be compatible with this new equipment.  This was a major blow to our 

analysis and is what forced us to use the limited number of aerial photographs we took while 

manually flying. 

 Agisoft is a popular and common software used to stitch together a series of images into 

one georeferenced image using the metadata available to us, which included each images 

coordinates and altitude information.  Unfortunately, as a result of technological limitations once 

again, creating an image mosaic using Agisoft proved impossible.  Because of the lack of 

consistent image overlap (due to lack of autonomous flights) the program failed to identify 

matching features between images to combine and stitch together (Figure 18).   

 
Figure 18. Screen capture from Agisoft showing only ½ the photos combined, based on overlap. 
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As a result, only about half of the set of images were combined (Figure 18).  Of the limited 

photos that were successfully mosaicked and georeferenced, the low resolution of the thermal 

sensor resulted in significant distortion in the final image.  The distortion made picking out 

individual trees, as is needed for this analysis impossible as shown in Figure 19.  

 
 
Figure 19. The final mosaic that was created using irregularly spaced images in Agisoft.  There 

is significant distortion making the image useless for photo classification. 
 

The failure of these standard methods for creating workable georeferenced images for 

classification, unfortunately meant the depth of this study’s final results would be slightly 

compromised since all the classification would have to be done without the images being 

georeferenced.  Instead we had to classify a number of individual images and use ground 

truthing and photos to pick out where trees of interests were located in each image.  This meant 

that even if we did get meaningful success, the location of any additional dead trees that were 

classified would be difficult to point out in the field.  However, using the individual images still 
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presented us with an opportunity for an effective proof of concept study to determine the 

feasibility of this method should the technology improve in the future. 

There are 2 main types of classifications used in all fields, pixel and object based.  This 

study was no different, so we started with 2 pixel-based classifications, one unsupervised and 

one supervised followed by a supervised object based classification.  The order of these 

classifications were strategic as they generally are progressively more accurate which is also 

shown with the increasing complexity of each one.  We started with the pixel based 

classifications (Figures 7, 8, 9, 10, 11, & 12).  As we expected with both, the results were 

relatively inaccurate.  They did pick out the difference between what is a tree and what is not, 

however the difference in thermal characteristics between living and dead trees was too small to 

accurately pick out using this method. 

 An example of a histogram (Figure 20) from one of the images illustrates the sharp 

differences between thermal values.  A very high number of pixels (14693) have a value very 

close to the average which in this case is 38.794, likely representing the value of the forest floor 

that covers most of the image.  After that there is a sharp drop where the rest of the pixels have 

relatively high values with less separation.  The large difference between the ground values and 

the vegetation values is much more obvious than the difference between individual living and 

dead trees, which explains why the pixel based classifications had no trouble with this 

differentiation.  By using individual pixels for classification as well, it increases the likelihood of 

including forest floor values that show through the canopy of the trees in the samples for 

supervised classification, which would certainly decrease the accuracy of the final results. 
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Figure 20. An example of a histogram from image 078 showing the sharp difference in thermal 

values throughout the image. 
 
 The third and final method of classification attempted to fix this issue using object based 

classification.  By classifying the tree canopies beforehand using the unique pixel characteristics 

and averaging the values within each object, the ground values would have less of an effect.  It 

was also likely to create a more distinct spectral difference between objects for classification.  

Due to these factors, the object based classification (Figures 14, 15, & 16) of the 3 images 

produced much more promising results.  In images 078 and 136 (Figures 14 and 16), the second 

dead tree (078_2 & 136_1) that was not used as the sample, was identified as dead (brown 

classification).  Although not all the objects covering the trees canopy received this 

classification, the center of them did, which was different that the rest of the trees in the image.  

The only exception was in image 112 (Figure 15), dead tree ID 112_2 still appeared as living 

(green classification) in the center of the canopy.  However, there is a likely reason for this, as 

can be seen by looking at the visual images and ground photos for image 112 in Figure 5, it can 

be clearly seen that there is a living conifer tree beneath the open canopy of the dead tree 
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(112_2).  This could have potentially led to this anomaly.   The partial success of this method of 

classification can most likely be attributed to the increased number of pixel characteristics 

including brightness, standard deviation from the mean and more, that are included in the 

definition of objects.  Using objects also minimizes the effects that individual thermal readings 

from the forest floor can have through the canopy of individual trees.  However, the method is 

far from perfect. 

  Figure 21 clearly shows how much overlap still exists between the object values of a 

dead tree versus an alive tree.  It is an example from image 078, however image 112 was also 

very similar.  Both dead and alive tree properties occupy the same range of values regardless of 

which image characteristic is being used and the overlap value is high for each.  This 

demonstrates that there is still only minor differences between the properties of a dead and living 

tree in most cases, and also explains why none of the classified trees were shown as entirely 

dead or entirely living since the difference was so minor.  However, there was an exception this 

pattern in image 136 which had a lot less overlap between the two (as shown in Figure 22).  This 

was unexpected, given the limited range difference of thermal values we had been seeing in the 

other images.  The most likely explanation for the significant difference is by looking at the trees 

stage of death.  By looking at the visual ground images for image 136 in Figure 6, it can be seen 

that both dead trees have their bark falling off, if not already gone in a lot of places along the 

trunk.  This indicates the tree has been fully dead for a long time period whereas others may still 

be hanging on with part of the canopy or a few solitary branches living.  
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Figure 21. A screen capture showing the difference in object values between dead trees (blue 
lines) and alive trees (black lines) for image 078, using the sample trees from the supervised 

classification. 
 

 The object based supervised classification gave us the most promising results of the 3, it 

demonstrated that under certain circumstances, mainly the reduction of ground thermal values in 

the canopy and the introduction of more image characteristics, dead trees that pose a hazard to 

park users have the potential to be classified using thermal imagery.  However, it has also 

become apparent that characteristics such as the stage of the trees death and the species 

(hardwood or softwood specifically) can drastically affect the accuracy of such classification.   
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Figure 22. A screen capture showing the difference in object values between dead trees (blue 
lines) and alive trees (black lines) for image 136, using the sample trees from the supervised 

classification.  Much less overlap between the two is seen. 
 

By testing a variety of different flying heights as well, we were able to determine that a 

flying height of 40 - 50 meters was ideal with the current generation of thermal sensor on the 

Mavic 2 Enterprise Dual.  The stark differences can be seen between the different heights in 

Figure 17.  Between 20 - 30 meters, the sensors could pick out individual branches and ground 

features which makes identifying individual trees difficult.  Between 40 - 50 meters, individual 

trees could easily be picked out and at an appropriate size for classification.  At 60 meters or 

higher the classification was also able to identify individual trees, but they were much smaller 

which would make classification much more difficult.  Not only that, but the thermal radiation 
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from groups of trees in close proximity also begins to merge together due to reduced resolution 

at this height which further reduces the effectiveness of individual tree identification.  

Therefore, we were able to conclude that if this study is revisited in the future, our flying 

height of 50 meters is ideal.  Again, in the future with less technological limitations reducing the 

capability of this analysis, there is significant potential here for park managers to increase the 

safety of visitors in a time and cost efficient manner 
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CONCLUSION 
 

 There does appear to be slight differences between living and dead trees when it comes 

to thermal imagery.  This is demonstrated in the rudimentary classification of all 3 test images 

using an object based supervised classification.  It is apparent though that that are a variety of 

technological issues preventing large scale adoption of the assessment method.  First and 

foremost was the lack of compatible software to georeference the video and photos into a 

workable format.  The features of the drone itself is also preventing the Mavic 2 Enterprise Dual 

from having large scale success.  We know from the use of thermography for identifying 

structural issues with trees at ground level (Catena & Catena 2008) that there should be thermal 

differences present between living and dead trees.  These differences were partially present in 

the object based classification especially for image 136, which indicates that despite the overall 

poor quality of the results, a more sensitive thermal sensor may have greater potential.  There is 

also a possibility of the misidentification of reference trees using ground photos without 

georeferenced information, which may have skewed the results.  Regardless, based off the partial 

success that we saw with the technological limitations we faced, it is likely that this technique 

could be useful in the future once technological improvements are developed.   
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