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ABSTRACT 

Vibration control is aimed to suppress or eliminate unwanted vibration to ensure proper 

operation of machines. On the other hand, energy harvesting intends to scavenge energy from 

ambient vibrations to power electronical devices such as wireless sensors. It is much desired to 

achieve simultaneous vibration control and energy harvesting. A great amount of effort has been 

focused on the use of a linear vibration absorber for this purpose. The shortcoming of such an 

approach is that its effectiveness is limited to a narrow bandwidth of frequency. 

The goal of this research is to develop a device in order to achieve simultaneous vibration 

suppression and energy harvesting in a broad frequency band. Instead of using a linear vibration 

absorber, a nonlinear energy sink (NES) is considered. Since it is very challenging to realize a true 

NES as it requires a zero linear stiffness, this study focus on developing a variant NES that 

possesses a low linear stiffness but high nonlinear stiffness. Three designs and their corresponding 

apparatus are introduced. A base excitation is conducted to determine the spring restoring force in 

order to character the stiffness of each design. The apparatus that best emulates the NES is chosen. 

A stiff primary system and a flexible primary system are also developed by changing the primary 

spring’s stiffness. The behaviors of the chosen variant NES are further investigated in two 

combined system: weakly coupled one (a stiff primary system plus the variant NES) and the 

strongly coupled one (a flexible primary system plus the variant NES). The transient responses of 

the two combined systems are investigated numerically and experimentally. The steady state 

responses of the two combined systems to a harmonic base excitation are investigated in 

numerically and experimentally. The results from both the weakly coupled and the strongly 

coupled systems show some typical features of the NES: 1:1 resonance, targeted energy transfer 

(TET), initial energy or excitation level dependence, jumping phenomena, and strongly modulated 

response (SMR), etc.   
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Chapter 1 Introduction 

1.1 Motivation and overview of the research 

Vibration exists in many mechanical systems. The excessive vibration usually is undesired 

and harmful. Examples of unwanted vibration include noise in airplanes, unbalanced motors, the 

response of buildings to an earthquake or the response of a car on a rough road surface. Therefore, 

researchers and engineers have made efforts to control vibration. In general, vibration can be 

controlled by the four methods: (a) proper design through stiffening, softening or damping, (b) 

passive control, (c) semi-active control, and (d) active control.  

A vibration absorber or a tuned mass damper (TMD) is one of the passive vibration control 

devices to suppress vibration of a primary system subjected to a harmonic excitation. The TMD is 

very effective if the exciting frequency is constant. However, the TMDs’ performance deteriorates 

if the exciting frequency varies. Therefore, the major shortcoming of the TMD is a narrow 

operating band width.  

This study is concerned with two kinds of vibration of a primary system: (1) transient 

responses to initial disturbance and (2) steady state responses to harmonic base excitation. Figure 

1.1 shows the schematic of these two vibration problems where mp, kp, and cp are the mass, stiffness 

and damping coefficient of the primary system, respectively; xp(t) is the absolute displacement of 

the primary structure in Figure 1.1 (a) and the relative displacement of the primary mass in Figure 

1.1 (b); and y(t) is the displacement of the base.  
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(a) (b)  

Figure 1.1 Schematic of two common vibration problems: (a) transient response; (b) harmonic base excitation. 

For the transient response of the system shown in Figure 1.1 (a), the equation of motion is 

given by  

 
0 

(0), (0)

p p p p p p

p p

m x c x k x

x x

 


   



  (1.1) 

 
1

,  =
2 2

p p
n

p p p

k c
f

m k m



   (1.2) 

where px , px  and px  are the displacement, velocity and acceleration of the primary structure, 

respectively; (0)px  and (0)px  are the initial displacement and initial velocity; and nf  is the 

natural frequency of the primary system. 

Figure 1.2 shows a typical transient response for the system with a low damping 

coefficient. The initial displacement and the initial velocity are set to xp(0) = 0.005 m and 

(0) 0 m/spx & , respectively. As shown in Figure 1.2, the oscillation of the system attenuates over 

a long time. The vibration with this extended duration is undesirable.  
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Figure 1.2 Transient response of the primary system: mp =0.324 kg, kp=5417.5 N/m, and 𝜁 = 0.017. 

For the system shown in Figure 1.1 (b), the equation of motion is defined by  

 
cos( )

p p p p p p p

y

m x c x k x m y

y A t

 


    


 
  (1.3) 

where Ay = -Ω2Y is the acceleration amplitude, Ω is the excitation frequency, and Y is the amplitude 

of the base motion. As shown in Equation (1.3), the base excitation can be thought of as the direct 

excitation of the inertial force when the relative displacement of the primary mass is used. Figure 

1.3 shows the system response to a linear upsweep of harmonic base excitation. Note that the 

response peaks around 20.58 Hznf   that is the natural frequency of the system. It should be also 

noted that the response to a downsweep excitation is identical to that from the upsweep excitation 

as the system is linear. 

Energy harvesting intends to convert the mechanical energy of the vibration into electrical 

energy. For instance, these papers [1, 2] studied the vibration energy harvesting. Since vibration 

suppression involves the dissipation of energy, it is then of interest to investigate simultaneous 

vibration and energy harvesting. This thesis will focus on finding a way to suppress vibration and 

collect useful energy at the same time. The motivation of this research is to develop an apparatus 

for a brandband vibration suppression and energy harvesting. 
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Figure 1.3 The harmonic response for the system with the natural frequency fn = 20.58 Hz. 

1.2 Literature review 

1.2.1 Nonlinear energy sink 

Passive vibration suppression has been studied by many researchers in the past [3, 4, 5, 6, 7, 

8, 9]. Figure 1.4 (a) shows an example of passive vibration control where ma, k1 and ca are the 

mass, linear stiffness and damping coefficient of the vibration absorber, respectively. As pointed 

previously, the major shortcoming of the vibration absorber is a narrow operating bandwidth. 

Instead, nonlinear energy sinks (NESs) have been proved to perform effectively in a wide 

frequency region [10]. The NES is a special type of nonlinear vibration absorber (NVA). In 

particular, the NES consists of a small mass, a spring with an essentially nonlinear stiffness and a 

viscous damper [9]. 
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(a) (b)  

Figure 1.4 Schematic of a primary system attached by a vibration absorber with the harmonic base excitation: (a) a 

linear vibration absorber; (b) a nonlinear vibration absorber. 

Figure 1.4 (b) shows the primary system attached by a nonlinear vibration absorber where the 

stiffness kn represents a linear stiffness term k1 and a nonlinear stiffness term k3. In this case, the 

nonlinear restoring force of the absorber spring can be defined as a cubic function
3

1 3F k z k z  , 

where z is the relative displacement between the absorber mass and primary mass. On the other 

hand, the restoring force of the NES’s spring is defined by a pure cubic term 3
3F k z . The lack of 

the linear stiffness means that the NES can respond to any frequency as long as the excitation is 

sufficiently strong. Hence an NES is preferable to an NVA in terms of broadband performance. 

These studies [11, 12, 13] proved the effectiveness of the NES. In other research [14, 15], a linear 

oscillator (LO) coupled to an NES was studied by considering the underlying Hamiltonian system. 

In this system, the vibrational energy of the LO is efficiently absorbed by the NES. Such a setup 

with passive energy transformation can be presented as the so-called passive energy pumping or 

the targeted energy transfer (TET). Energy pumping or TET is defined as a one-way irreversible 

energy transformation from a linear primary system to a nonlinear attachment [16, 17, 18]. 

Moreover, the mentioned Hamiltonian systems were involved in the 1:1 internal resonance [10]. 

The 1:1 internal resonance is a particular concept that both the LO and NES process an equal 

dominant frequency. In [15], the author examined the resonance capture of a strongly nonlinear 
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and weakly damped two-degree-of-freedom system by numerical analysis. When the system is 

involved in the 1:1 resonance manifold, energy pumping is presented. 

Many papers [19, 20, 21, 22, 23, 24, 25, 26, 27, 28] showed that the unwanted vibrational 

energy in the primary structure could be purposely transferred to the local essentially nonlinear 

attachment. In [29, 30], the authors explained the robustness and benefit of an NES with the 

absence of a linear stiffness. Moreover, these two studies found that an initial energy level is 

required to activate the NES. As long as the initial level of energy is higher than a certain energy 

threshold, the NES is engaged into the TET and the system reaches the 1:1 resonance. In [19], the 

researchers investigated the effectiveness of the TET through a detailed study of the transient 

responses with three initial energy levels. The results revealed that the TET was not achieved at 

the low initial energy level while the TET was effectively achieved for the intermediate initial 

energy level. The study showed that the NES with the intermediate initial energy level attenuated 

by 90-95% of the total oscillation energy. Even though the effectiveness of the TET decreased at 

the high initial energy level, the NES was still significantly activated. In [20], the researchers 

investigated the TET behaviors using both the grounded NES configurations and the ungrounded 

NES configurations. The advantages and disadvantages of these two configurations were 

investigated. It was found that the NES was only activated with a high amplitude, and the 

effectiveness of the TET decreased with the increase of the critical resonant regime. 

In references [31, 32, 33, 34], the steady state responses of a primary system attached with the 

NES under harmonic excitations were investigated. In particular, the weakly modulated response 

and strongly modulated response (SMR) were examined. The approximate solutions of the steady 

state responses were based on the complexification averaging method (CX-A) [19]. The CX-A 

method assumes that the dynamics of the system analysis can be performed by a slow-fast partition. 

The numerical results were presented by the so-called frequency response plots (FRPs) [19]. The 
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desired bifurcation points were found, revealing the existence of multiple periodic solutions and 

the interesting SMR. Similar to transient response, the SMRs can be regarded as a repetitive TETs.  

In practice, it is very challenging to realize an essentially nonlinear stiffness in the NES. The 

NES design in [35] achieved an essentially nonlinear stiffness by two coil springs attached to a 

small mass. The other ends of the two coil springs are connected to the pivots. If the springs are 

free of tension, a pure cubic stiffness is produced by the geometric nonlinearity. However, a rail 

guide is used to support the NES mass. The studies reported in [36, 37, 38] constructed an NES by 

using two thin steel wires to suspend a small mass. In order to reduce the pre-tension in the wires, 

the NES mass is supported on an air track, resulting in the linear stiffness of 11.3 N/m and the 

nonlinear stiffness of 1.83×107 N/m3. In [39], the NES was made by a visco-elastic membrane by 

setting constant air pressure. The pre-stress caused large amplitude oscillations of the membrane. 

Thus, there was a normalized pre-stress parameter χ that was used to introduce an approximated 

zero linear stiffness. An experimental study was conducted in [40] to identify the nonlinear 

performance of the Vibro-Impact NES (VI-NES). The study conducted in [10] introduced the 

Magnetic-Strung NES (MS-NES). A magnet NES with two strings was set between two outer 

magnets on the primary system resulting in the nonlinear force.  

Dr. Kefu Liu’s research group has focused on simultaneous vibration suppression and energy 

harvesting using a variant NES [41, 42, 43, 44]. Different from the previous NES design, these 

devices were not essentially nonlinear. In Kremer’s research [41, 42], the proposed NES consisted 

of a clamped beam and fixed repelling magnets, resulting in a low mechanical damping, a low 

linear stiffness, and a high nonlinear stiffness. The proposed NES acted similarly as the true NES. 

In Zhang’s research [43], the NES beam was transversely preloaded to be nearly buckled to achieve 

quasi essentially nonlinear stiffness. In Xiong’s study [44], a cantilever beam with fixed repelling 

magnets was mounted vertically to process a weak linear stiffness and strong nonlinear stiffness.  
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1.2.2 Energy harvesting 

In the last decade, the energy harvesting [45] has been receiving much attention. The sources 

available for energy harvesting include the following types: light, radio-frequency electromagnetic 

radiation, thermal gradients, and motion. Based on the sources, there are many useful applications 

[46, 47]. For example, solar cells are the typical energy harvesting solution; thermoelectric 

generation is a solution for accumulating the thermal energies; piezoelectric energy harvester 

(PEH) is a method to harvest ambient vibration energy by the piezoelectric effect. 

In the mechanical engineering field, vibrational energy can be converted to electric energy. 

Two common electromechanical transduction methods are the electromagnetic induction [48, 49, 

50] and piezoelectric effect. In [51], a micro-electromagnetic energy harvester was investigated. 

The main structure consists of an electroplated copper planar spring, a permanent magnet, and a 

copper planar coil. The device is able to produce a voltage of 18 mV and output power of 0.61 

μW. On the other hand, piezoelectric energy harvester (PEH) [52, 53, 54, 55] has been studied by 

many researchers. The advantages of the PEH are a high power generation per volume and wide 

working bandwidth. A typical piezoelectric energy harvester consists of a cantilever beam attached 

to a piezoelectric ceramic and an inertia mass on the end of the beam [56, 57]. In [58, 59] 

researchers investigated cantilevered beams with piezoceramic layers under harmonic base 

excitations. In the present study, a PEH is combined with a variant NES to realize the goal of 

vibration suppression and energy harvesting. 

1.3 Objectives of the research 

This study intends to continue the works reported in [41, 42, 43, 44]. The main theme is to 

seek a variant NES that possesses a low linear stiffness and high nonlinear stiffness for the purpose 

of simultaneous vibration suppression and energy harvesting. The objectives of this work are 

defined as follow: (1) to design three apparatuses that are capable of emulating the characteristics 
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of the NES; (2) to identify the parameters of the developed variant NESs and the parameters of the 

two developed primary systems; (3) among the three apparatuses, to select one apparatus that best 

emulates a true NES; (4) to investigate the transient responses of the weakly coupled system and 

strongly coupled system; and (5) to investigate the steady states responses of the weakly coupled 

system and strongly coupled system under harmonic base excitation. 

1.4 Thesis outline 

The rest of the thesis is organized as follows. Chapter 2 introduces the three proposed 

apparatuses of the variant NES and presents the identification of their parameters. Based on the 

testing results, one variant NES is selected for further study. Chapter 3 focuses on the transient 

responses of the two systems: the weakly coupled system and strongly coupled system. Chapter 4 

concentrates on the harmonically forced responses of the two coupled system. Finally, Chapter 5 

summarizes the main findings of this research and gives suggestion for the future work. 
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Chapter 2 Apparatus Development and System Characterization  

This chapter focuses on the development of an apparatus that can be used to study 

simultaneous vibration suppression and energy harvesting. First, the system under consideration 

is introduced, which consists of a primary system attached with a nonlinear energy sink (NES). 

Then three variant NES designs are proposed. Finally, system characterization is conducted to 

determine the best variant NES among the three proposed designs. This lays a foundation for the 

next phase of investigation of this study. 

2.1 Introduction 

Figure 2.1 shows the schematic of a primary system with a nonlinear energy sink (NES) 

being attached where ma, kn and ca are the mass, nonlinear stiffness and damping coefficient of the 

NES respectively; mp, kp and cp are the mass, stiffness and damping coefficient of the primary 

system, respectively; xa(t) and xp(t) represent the displacement of the NES mass and primary mass, 

respectively; y(t) represents the displacement of the base. As discussed in Introduction, realization 

of a true NES is rather challenging as it requires an essential nonlinear spring.  

 

Figure 2.1. Schematic of a primary system attached by an NES. 



19 

 

The previous study [43] has shown that a nonlinear vibration absorber (NVA) can behave in 

a way similar to an NES if it meets two conditions: a strong nonlinearity and a weak coupling 

between the NVA and the primary system. An NVA that realizes these two conditions is referred 

to as a variant NES in this study. In what follows, the study is focused on developing a system 

consisting of a primary system and a variant NES. 

2.2 The Proposed Apparatus 

An apparatus is required in order to study simultaneous vibration suppression and energy 

harvesting. The desired apparatus should consist of a primary system and a variant NES. Figure 

2.2 shows three proposed designs for the apparatus. All three designs consist of a primary system 

and a variant NES. The primary system is formed by clamping the primary block and the base 

block by four thin steel plates which act as the primary spring. The variant NES is formed by the 

cantilever beam and the mass attached at the free end of the beam. The beam length and mass are 

chosen to keep its natural frequency as low as possible. 
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Figure 2.2. Schematic of the three designs: (a) single-stop blocks; (b) double-stop blocks; (c) quadratic-curved 

blocks.  
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To harvest energy, the cantilever beam is composed of a thin steel plate and a piezoelectric 

energy harvester (PEH) (PPA-2011, PPA Piezo Protection Advantage). Three different ways are 

used to enhance the system nonlinearity. In Figure 2.2 (a), two L-shape blocks named single-stop 

blocks are used. If the magnitude of the transverse motion of the beam exceeds the gap between 

the beam and the blocks, the beam makes contact with one of the blocks so that its stiffness changes 

suddenly. Thus the beam possesses a two piecewise linear stiffness. In Figure 2.2 (b), two upside-

down F-shape blocks named double-stop block are employed so that the beam possesses a three-

piece linear stiffness. In Figure 2.2 (c), two quadratic-curved blocks named as continuous-contact 

blocks are used to produce a continuous nonlinear stiffness. In the following section, the stiffness 

of each of these systems will be determined. 

The testing system is shown in Figure 2.3. The base is fastened onto a slipping table that is 

driven by a B&K Vibration Exciter (Type 4809) through a stinger. The shaker is driven by a B&K 

power amplifier (Type 2718). Two laser reflex (RF) sensors (Wenglor model CP24MHT80) are 

used to measure the displacement of the primary mass and NES mass, respectively. A dSPACE 

CLP1104 data acquisition board is used to collect sensor data generated from the laser reflex 

sensors and voltage output generated by the PEH. The control program is developed by MATLAB 

Simulink and interfaced with the dSPACE Controldesk Desktop software. 
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Figure 2.3. Schematic of testing system. 

2.3 Identification of the Primary System Parameters 

A traditional method is employed to determine the parameters of the primary system. The 

mass of the primary system is found to be mp = 0.324 kg by a scale. In order to investigate different 

couplings between the primary system and the variant NES, two primary systems are formed by 

employing two sets of thin steel plates. They are obtained by cutting steel rulers with a width of 

30.19 mm and a thickness of 0.53 mm. The length of the first set is 73.23 mm while the length of 

the second set is 156.98 mm. Thus the first primary system has a high stiffness while the second 

primary system has a low stiffness. To determine the stiffness of the primary system, the free 

response is recorded, and the natural frequency is determined from the Fast Fourier transform 
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(FFT) spectrum of the free response. Figure 2.4 shows the free response and its FFT spectrum 

from the primary system with high stiffness. The natural frequency of the primary system is found 

to be 20.58 Hz. Figure 2.5 shows the free response and its FFT spectrum from the primary system 

with low stiffness. The natural frequency is found to be 6.92 Hz. Stiffness pk can be determined by 

the following equation: 

 2
p p pk m   (2.1) 

The results are kp = 5417.45 N/m for the first primary system and kp = 611.98 N/m for the second 

primary system. 

In order to determine the damping coefficient, the logarithmic decrement method is used. 

As is shown on Figures 2.4 (a) and 2.5(a), all peak values are measured. The damping ratio can be 

obtained by the following equations: 

 
1 ( )
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( )

x t

n x t nT


 
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  (2.2) 

 
2 24
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


  (2.3) 

 2 (2 )p p pc f m    (2.4) 

where ( )x t  is the peak of the response at time t, x(t+nT) is the peak of the response at time t+nT 

with T  as the natural period, and   is the damping ratio. By using Equation (2.3) and Equation 

(2.4), the damping ratio for the first primary system is found to be 0.016883   while the 

damping ratio for the second system is found to be 0.02035  . Using the found damping ratio 

and Equation (2.4), the damping coefficients can be determined and are listed in Table 2.1. 
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Figure 2.4. Experimental results of the first primary system: (a) Free response; (b) FFT spectrum of the response. 

 

Figure 2.5. Experimental results of the second primary system: (a) Free response; (b) FFT spectrum of the response. 
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Table 2.1 Estimated parameter values of the primary system 

Stiff Primary System Flexible Primary System 

Parameter Estimated value Parameter Estimated value 

pm  0.324 kg pm  0.324 kg 

pk  5417.45 N/m 
pk  611.98 N/m 

pc  1.983 Ns/m 
pc  0.131 Ns/m 

pf  20.58Hz pf  6.917Hz 

  0.025 
  0.004 

2.4 Characterization of Nonlinear Springs of the Proposed Variant NESs 

Figures 2.6, 2.7 and 2.8 show the setups used to determine the nonlinear stiffness for each 

of the proposed variant NESs. In all setups, a rigid frame is constructed by connecting the primary 

block and base block by two rigid plates. The cantilever beam is constructed by connecting the 

piezoelectric energy harvester and steel ruler by the connector. The two magnets are attached to 

the end of the beam by the magnet holder.  
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(a)  (b)  

Figure 2.6. Schematic of the developed model with the single-stop blocks: (a) Isometric view; (b) Front view. 

Figure 2.6 shows the developed model that employs the single-stop blocks. The 

configuration of the single-stop blocks is specified by height h and gap d. 

(a)  (b)  

Figure 2.7. Schematic of the developed model with the double-stop blocks: (a) Isometric view; (b) Front view. 

Figure 2.7 illustrates the developed model that employs the double stop-blocks. In this case, 

the configuration of the double-stop blocks is specified by height h, and gaps ∆h, 1d and 2d , 

respectively. 
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(a) (b)  

Figure 2.8. Schematic of the developed model with the continuous-contact blocks: (a) Isometric view; (b) Front 

view. 

Figure 2.8 shows the developed model that employs the continuous-contact blocks. The 

configuration of the continuous-contact blocks is specified by height h and gap d. 

The three systems can be represented by the model shown in Figure 2.9 where am  is the 

NES mass, ac  is the mechanical damping coefficient of the NES system, nk  is the nonlinear 

stiffness of the NES spring, ( )y t  and ( )ax t  are the displacements of the base and NES, 

respectively. 

 

Figure 2.9. Schematic of equivalent SDOF system 
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The equation of motion for the system and the dynamics of the PEH circuit can be defined 

by [43]: 

 3
1 3 0 a a am x c z k z k z V         (2.5) 

 0sV
C V z

R
      (2.6) 

where az x y    is the relative velocity, az x y   is the relative displacement; ( )f z is the 

restoring force of the nonlinear spring; θ is the electromechanical coupling coefficient of the PEH; 

V is the voltage across the resistor R that is used to close the circuit of PEH; sC is the capacitance 

of the PEH. As the value of the term θV is very small, Equation (2.5) can be simplified as 

 ( , ) a aF z z m x     (2.7) 

where 3
1 3( , ) aF z z c z k z k z    , the NES mass is found to be ma = 0.023 kg. 

To determine the linear stiffness k1 and damping coefficient ca of the NES systems, a free 

response is induced by gently tapping the NES mass without the stop blocks in place. Figure 2.10 

(a) shows a typical free response while Figure 2.10 (b) gives its FFT spectrum. The natural 

frequency is found to be 4.281 Hzaf  . The linear stiffness is then found to be 1 16.64 N/mk  by 

Equation (2.8).  

 2
1 (2 )a ak m f   (2.8) 

The damping ratio is ς = 0.011, and damping coefficient can be found by the following 

equation (2.9) to be ca = 0.014 Nm/s  

 2 (2 )a a ac f m    (2.9) 

The parameter value found in this section are tabulated in Table 2.2. 
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Figure 2.10. Experimental results of the NES system without the stop blocks: (a) Free response; (b) FFT spectrum of 

the response. 

Table 2.2 Estimated parameter values of the NES system 

Parameter Estimated value 

am   0.023 kg 

1k  16.64 N/m 

ac  0.014 Ns/m 

af  4.281Hz 

2.5 Comparison of the Three Variant NESs 

The nonlinear stiffness of each of the three proposed NESs is determined by the force 

surface method. A 3-dimensional plot of ( , )F z z vs. z and z is referred to as the force surface [60, 

61]. If ax , z and z are available at discrete interval k with a sampling time ∆t, there is a triplet of 

( )k kz z t , ( )k kz z t  , and ( , )k kF z z  where ( 1)kt k t   . Using the method outlined in [61], 

these data can be mapped to the phase plane. The phase plane is then divided into small square 
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grids. The forces lying within each grid are averaged to give the force value for the center of the 

grids. The process is repeated until no new square grid is produced. This generates an average 

force map in the phase plane for the variant NES, which can be used to identify the restoring force 

of the NES spring. Based on the previous studies [43, 41], two important requirements to ensure 

the accuracy of the force surface method are the way to excite the system and the calculation of 

the velocity and acceleration data. The excitation signal should be rich enough so that the response 

signals cover fully the phase plane. Thus a modulated periodic signal is used to excite the base. 

The signal is determined by the following equation:  

 ( ) cos(0.1 ) cos(2 )ey t Y t f t     (2.10) 

where fe is the exciting frequency that will be selected by trial-and-error. For results presented 

within this section, the displacement signals of the base and NES mass are recorded for 200 

seconds with the laser reflex (RF) sensors. The velocities and accelerations are obtained by 

numerical differentiation. Numerical differentiation is very susceptible to noise presented in the 

displacement signals. To alleviate the noise amplification problem, the displacement signals are 

smoothened by cubic spline approximation before numerical differentiation operations. 

2.5.1 Variant NES with the single-stop blocks 

Figure 2.11 shows the restoring force surface as ( , )F z z vs. z and z obtained with fe = 6.9 

Hz. A nonlinear effect is witnessed on Figure 2.11. And the restoring force rapidly increases as 

displacement growth. In the meantime, the NES spring reveals a low mechanical damping, as the 

force surface appears flat along the velocity axis or z . 

The circles in Figure 2.12 show ( ,0)F z vs. z. Clearly due to the effect of single-stop blocks, 

the restoring force appears as piece-wise linear stiffness. The piece-wise linear restoring force is 

defined by the following equations: 
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Figure 2.11. Restoring force surface with exciting frequency fe = 6.9 Hz and height h = 0.065 m.  
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Figure 2.12. Restoring force of NES system with single-stop blocks and fixed gap d = 0.007 m: (a) h = 0.065 m; (b) 

h = 0.075 m;(c) h = 0.084 m.  

where k11, k12, k13 are the piece-wise linear stiffnesses, and b is the clearance. It will be of interest 

to examine where the restoring force ( ,0)F z  can also be represented by a cubic function defined 

as  

 3
1 3( ,0)F z k z k z    (2.12) 

where k1 is the linear stiffness and k3 is the nonlinear stiffness. In Figure 2.12 the solid lines 

represent the best fits using Equation (2.11) while the dotted curve represents the best fits using 

Equation (2.12). The results in Figure 2.12 are obtained by fixing the gap as d = 0.007 m and 

varying the heights h. 

In particular, the results in Figure 2.12 (a) is based on 0.065 mh  , Figure 2.12 (b) is 

based on 0.075 mh   and Figure 2.12 (c) is based on 0.084 mh  . The relative displacement 

is within 0.008 m 0.008z   m. It is obtained that within the region of 0.0025 mz   the slope 
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of the curve is small, which results in a low linear stiffness. In the meantime, the restoring force 

increases quickly when the relative displacement exceeds the region of 0.0025 mz   , which 

gives a high linear stiffness. According to Table 2.3 the first group is considered the best among 

the three different setups. 

With the recorded voltage signal of the PEH, a voltage surface ( , )V z z  vs. z and z can be 

obtained. From the section ( , 0)V z , the proportional constant  can be determined by the 

following equation: 

 ( ,0)V z z   (2.13) 

where / sC  . The results are also presented in Table 2.3.  

Table 2.3 Results for the NES system with the single-stop blocks. 

h (m) fe ( Hz) k1 (N/m) k3 (N/m3) k11 (N/m) k12 (N/m) k13 (N/m) λ (V/m) 

0.065 6.9 25.48 1.134×106 99.91 18.01 120.3 1257 

0.075 9.0 54.02 1.001×106 157.3 20.59 143.1 1217 

0.084 10.5 90.1 6.819×105 174.5 22.04 178 1169 

2.5.2 Variant NES with the double-stop blocks 

The configuration of the system with double-stop blocks is defined by fixing the gaps d1 = 

0.004 m, d1 =7 mm, and ∆h =2.7 mm and varying the heights. Figure 2.13 shows the force surface 

for the case of h = 0.066 m. The exciting frequency is chosen to be fe = 5.8 Hz by the trial-and-

error method. 
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Figure 2.13. Restoring force surface with the exciting frequency fe = 5.8 Hz and height h = 0.066 m. 

The circles in Figure 2.14 shows the section of ( ,0)F z vs. z . Clearly due to the effect of 

the double-stop blocks, the restoring force appears as the piece-wise linear stiffness. The piece-

wise linear restoring force is defined by the following: 
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  (2.14) 

where k11, k12, k13, k14, and k15 are the piece-wise linear stiffnesses, and b1 and b2 are the clearances. 
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Figure 2.14 Restoring force of the NES system with the double-stop block and the two fixed gaps d1 = 0.004 m and 

d2 = 0.007 m: (a) h = 0.061 m; (b) h = 0.066 m;(c) h = 0.076 m.  

In Figure 2.14, the solid lines represent the best fits using Equation (2.14) while the dotted 

lines represent the best fits using Equation (2.12). The results in Figure 2.14 (a) are obtained with 

h = 0.0604 m. The results in Figure 2.14 (b) are obtained with h = 0.066 m. The results in Figure 

2.14 (c) are obtained with h = 0.076 m. The curve-fitting results are listed in Table 2.4. It is noted 

that if the cubic function of Equation (2.12) is used, the values of k1 become negative for the case 

h = 0.0604 m. A nonlinear spring with a negative linear stiffness results in a bi-stable system that 

has two no-zero stable positions. Apparently, the intended variant NES should not be a bi-stable 

system. Thus, a different curve-fit technique is needed in order to avoid this problem. It is also 

noted that the piece-wise linear stiffness values by using Equation (2.14) are not symmetrical.  
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Table 2.4 Results for the NES system with the double-stop blocks. 

h (m) ef (Hz) 1k (N/m) 3k (N/m3) 11k (N/m) 12k (N/m) 13k (N/m) 14k (N/m) 15k (N/m) λ (V/m) 

0.061 5.4 -7.63 2.005×106 235.4 149.4 19.6 150.0 67.0 1080 

0.066 5.8 16 2.123×106 261.9 92.85 24.88 90.25 173.7 1045 

0.076 6 24.38 1.308×106 596.1 201.1 20.1 166.8 132.6 1041 

2.5.3 Variant NES with the continuous-contact blocks 

The configuration of the system with the continuous-contact blocks are defined by a fixed 

gap d = 0.005 m and a designed height d = 0.067 m. The exciting frequency was selected to be fe 

= 6.8 Hz. The force surface is shown in Figure 2.15. 

 

Figure 2.15. Restoring force surface with the exciting frequency fe = 6.8 Hz and height h = 0.067 m.  
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Figure 2.16. Restoring force of the NES system with the continuous-contact blocks and d = 0.005 m and h = 0.067 

m.  

The circles in Figure 2.16 shows ( ,0)F z  vs. z . The solid line in Figure 2.16 is the best 

fits by using Equation (2.12). The range of displacement is 0.01 m 0.01 mz   , note that 

obvious ‘nearly flat’ portion in such range. It is also noted that the RMS values between the fitted 

data and experimental data is very small. The curve fitted results are listed in the Table 2.5. 

Compared with the results in Table 2.4, this setup results in a lower nonlinear stiffness.  

Table 2.5 Results for the NES system with the continuous-contact blocks. 

h (m) ef (Hz) 1k (N/m) 3k (N/m3) λ (V/m) 

0.067 6.8 13.82 7.003×105 1051 
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2.6 Conclusion 

This chapter has focused on the development of an apparatus for the study of simultaneous 

vibration suppression and energy harvesting. Two primary systems have been developed and their 

parameters have been identified. Three variant nonlinear energy sinks have been built. The 

common component of the variant NESs is a cantilever beam attached by a mass at its free end. 

The variation is achieved by using different stop-blocks. The nonlinear stiffness of each of the 

variant NESs has been determined by using the force surface method. For the NES with single-

stop blocks and the NES with double-stop blocks, the restoring forces determined by the force 

surface method are curve-fitted by both the piece-wise linear functions and the cubic function. on 

the other hand, for the NES with continuous-contact blocks, the restoring force is curve-fitted by 

the cubic function. Comparison of the three designs reveals that the NES with double-stop blocks 

and h = 0.066 m is the best one as it possesses a low linear stiffness and high nonlinear stiffness. 
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Chapter 3 Transient Responses  

3.1 Introduction 

This chapter studies the transient behaviors of the variant nonlinear energy sink (NES) 

developed in Chapter 2. The two different primary systems have been developed in Chapter 2 

(section 2.3 in particular). Attaching the NES to the primary system with the high stiffness results 

in a weakly coupled system, while attaching the NES to the primary system with the low stiffness 

results in a strongly coupled system. The transient behaviors of the two systems will be 

investigated by computer simulation and experiment. The focus is on comparison of the two 

systems in terms of achieving the targeted energy transfer (TET). TET is referred to as an 

irreversible transfer of mechanical energy from a linear oscillator to a nonlinear energy sink. As 

the variant NES used in the following study is not a true NES, it is of interest to examine the 

weakly coupled system’s TET and the strongly coupled system’s TET. In the meantime, the energy 

harvesting capability of the two systems is compared as well.  

3.2 Simulation results with the cubic nonlinearity function  

The schematic of a primary system attached by a variant NES is shown in Figure 2.1. If 

the NES’s stiffness is defined by a cubic function, the equations of motion of the combined system 

are defined by: 

 3
1 3( ) ( ) ( ) 0a a a a p a p a pm x c x x k x x k x x V             (3.1) 

 3
1 3( ) ( ) ( ) ( ) ( ) 0p p p p p p a a p a p a pm x c x y k x y c x x k x x k x x V                    (3.2) 

where ax , ax  and ax are the acceleration, velocity, and displacement of the variant NES mass, 

respectively; px , px  and px are the displacement, velocity, and acceleration of the primary 

mass, respectively; and y  and y are the velocity and the displacement of the base, respectively. 
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Table 3.1 lists the natural frequency af  of the NES only, the natural frequency pf  of 

the primary system only, and the natural frequencies 1f  and 2f  of the combined systems for 

both the weakly coupled system and strongly coupled system. It can be seen that 1f  is very close 

to af  and 2f  is very close to pf . 

Table 3.1 Comparison of the various natural frequencies 

System af (Hz) pf (Hz) 1f (Hz) 2f (Hz) 

Weakly coupled 4.198 20.58 4.191 20.61 

Strongly coupled 4.198 6.917 4.115 7.056 

To generate transient responses, the following initial conditions are used: (0)px X ,

(0)ax X , (0) 0px   and (0) 0ax  . The relative initial displacement is zero so that the total 

initial energy is held only in the primary system. This means that the input energy is equal to the 

potential energy stored in the primary system. The initial energy is computed by: 

 21
(0) (0)

2ini tot p pE E E k X     (3.3) 

If the damping is neglected, the total instantaneous energy ( )NESE t  in the variant NES can 

be obtained by: 

 

2 4
2

3( ) ( ) ( ) ( )( )
( )

2 2 4
a a p a pa a

NES

k x t x t k x t x tm x t
E t

         


  (3.4) 

And the total instantaneous energy ( )pE t  in the primary system is given by: 

 
2 2( ) ( )

( )
2 2

p p p p
p

m x t k x t
E t  


  (3.5) 

For the piezoelectric energy harvester (PEH), if a resistive load is used to close the circuit, 

the dynamics of the PEH circuit is defined by  
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 0sV
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      (3.6) 

where the accumulated energy in the PEH can be computed by numerical integration as follows: 
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R
    (3.7) 

where R is resistance, and V(t) is the instantaneous voltage across the resistance R. When the load 

resistance is set as R=100 MΩ, the circuit is considered to be open. 

To measure the TET, the percentage of the instantaneous energy in the NES is defined as: 

 
( )

( ) 100
( ) ( )

NES

p NES

E t
D t

E t E t
 


  (3.8) 

In what follows, the responses are generated by setting initial displacements to 2.5X 

mm, 5X  mm or 10X  mm, respectively. The initial displacement of 2.5X  mm is 

considered to be a low-energy level. The initial displacement of 5X  mm is considered to be a 

medium-energy level. The initial displacement of 10 mmX   is considered to be a high-energy 

level. As indicated by Equation (3.3), the initial energy level depends on the stiffness of the 

primary system as well. Table 3.2 lists the energy levels for both combined systems. In what 

follows, the transient behaviors will be examined in terms of the responses, the percentage of the 

instantaneous energy in the NES, and load voltages of the PEH. 

Table 3.2 Initial energy levels computed by Equation (3.3) 

System Low-energy level (J) Medium-energy level (J) High-energy level (J) 

Weakly coupled 1.69×10-2 6.77×10-2 2.709×10-1 

Strongly coupled 1.9×10-3 7.6×10-3 3.06×10-2 
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3.2.1 Computer simulation with the weakly coupled system 

First, the weakly coupled system is considered. Figure 3.1 and Figure 3.2 show the 

simulation results with the initial displacement X = 2.5 mm. As shown in Figure 3.1 (a), the 

primary system and the NES vibrate with significantly different amplitudes and frequencies. The 

frequency contents can be revealed by the wavelet transform (WT) spectrum. Figure 3.2 (a) shows 

the WT spectrum of the NES’s response, indicating that the response is dominated by frequency 

close to 1f  or af . Figure 3.2 (b) shows the WT spectrum of the primary system’s response, 

indicating that the response is dominated by frequency close to 2f or pf . Based on the difference 

in the response frequencies, it can be concluded that the 1:1 resonance phenomenon does not occur. 

However, as shown in Figure 3.1(b), even without the 1:1 resonance, the TET is established, and 

the energy is almost localized in the NES after 2 seconds. Figure 3.1(c) shows that the PEH is able 

to generate a fairly large magnitude voltage.  

 

Figure 3.1 Simulation results with X = 2.5 mm: (a) displacements (solid line: primary system; dotted line: NES); (b) 

the percentage of the instantaneous energy in the NES and (c) open circuit voltage generated by the PEH. 
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Figure 3.2 Wavelet transform spectra of the simulated responses with X = 2.5 mm: (a) xa and (b) xp.  

Figure 3.3 and Figure 3.4 show the simulation results for the case of the medium-energy 

level or X = 5 mm. As shown in Figure 3.3 (a) and Figure 3.4 with increase in the initial energy, 

the 1:1 resonance phenomenon is established so that the NES’s response becomes more nonlinear. 

In particular, Figure 3.4 (a) shows that in the beginning, the NES is set into an oscillation with a 

high frequency around 2f  or pf , but then the response gradually sets down at a low frequency 

around 1f  or af . Shown in Figure 3.3 (b), the TET is established after 3 seconds. As a result, 

the PEH’s voltage magnitude increases, indicated in Figure 3.3 (c).  
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Figure 3.3 Simulation results with X = 5 mm: (a) displacements (solid line: primary system; dotted line: NES); (b) 

the percentage of the instantaneous energy in the NES and (c) open circuit voltage generated by the PEH. 

 

Figure 3.4 Wavelet transform spectra for simulation with X = 5 mm: (a) xa and (b) xp. 

Figure 3.5 and Figure 3.6 show the simulation results for the case of the high-energy level 

or X = 10 mm. With a further increase in the initial energy level, the behavior of the 1:1 resonance 

is more dominant, as shown in Figure 3.5 (a) and Figure 3.6. In particular, Figure 3.6 (a) indicates 

that the NES is engaged in a strong nonlinear oscillation that is marked by a gradual decrease of 

the response frequency. However, in the first 3 seconds, both the primary mass and the NES mass 
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oscillate with a strong nonlinear beats phenomenon [62], indicating that energy is exchanged 

between the primary system and the NES. Therefore, the TET is not fully established for a short 

period. After 4 seconds, the TET is achieved so that the percentage of the instantaneous energy in 

the NES is close to 100% as shown in Figure 3.5 (b). Figure 3.5 (c) shows that the PEH’s voltage 

magnitude further increases.  

 

Figure 3.5 Simulation results with X = 10 mm: (a) displacements (solid line: primary system; dotted line: NES); (b) 

the percentage of the instantaneous energy in the NES and (c) open circuit voltage generated by the PEH. 

 

Figure 3.6 Wavelet transform spectra of the simulated response with X = 10 mm: (a) xa and (b) xp. 
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To investigate the effects of load resistance on the energy harvesting, the accumulated 

harvested energy defined by Equation (3.7) is computed for the five different resistance levels: 

R= 20, 50, 100, 200, 1000 kΩ. Figure 3.7 shows the results. Several observations can be made. 

First, the accumulated harvested energy increases with the increase of time. Second, the 

accumulated harvested energy increases with the increase of the initial energy level. Third, there 

is a best resistance in terms of maximizing the accumulated harvested energy. For five resistances 

considered, the highest accumulated energies are obtained with a load resistance of R = 50 kΩ for 

all three initial energy levels. 

 

Figure 3.7 The accumulated energy harvested by the PEH: (a) low-energy level, (b) medium-energy level and (c) 

high-energy level; (d) resistance (green line: 20 kΩ, blue line: 50 kΩ, red line: 100 kΩ, pink line: 200 kΩ, black line: 

1000 kΩ). 

3.2.2 Computer simulation with the strongly coupled system 

Figure 3.8 and Figure 3.9 show the simulation results for the case of the low-energy level 

or X = 2.5 mm. As shown in Figure 3.8 (a) and Figure 3.9, the 1:1 resonance phenomenon occurs 

such that the NES demonstrates the nonlinear behavior. In particular, Figure 3.8 (a) reveals that 

the NES oscillates with a frequency around 2f or pf and then the response gradually decreases to a 

low frequency around 1f  or af . However, in the first 3 seconds, a nonlinear beats phenomenon 

is witnessed in both of the NES and the primary system, indicating that the energy is reversible in 
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both the primary system and the NES. As a consequence, TET is not able to be fully established 

for the first few seconds. After 4 seconds, the TET is achieved so that the percentage of the 

instantaneous energy in the NES raises gradually to 1 as shown in Figure 3.8 (b). In Figure 3.9, a 

reasonably large magnitude voltage can be observed. 

 

Figure 3.8 Simulation results with X = 2.5 mm: (a) displacements (solid line: primary system; dotted line: NES), (b) 

the percentage of the instantaneous energy in the NES and (c) open circuit voltage generated by the PEH. 

 

Figure 3.9 Wavelet transform spectra of simulated response with X = 2.5 mm: (a) xa and (b) xp. 
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Figure 3.10 and Figure 3.11 show the simulation results for the case of the medium-energy 

level or X = 5 mm. Figure 3.10 (a) and Figure 3.11 show that the 1:1 resonance is more dominant 

with an increase in the initial energy. As shown in Figure 3.11 (a), the NES’s oscillation appears 

strongly nonlinear with an initial frequency around 2f  or pf  to a final frequency around 1f  or

af . However, due to the nonlinear beats phenomenon, the strong internal nonlinear resonance 

leads the frequency content to jump from around 2f  or pf  to around 10 Hz. Figure 3.10 (b) 

indicates that the TET is fully established after 5 seconds and the energy is almost 100% localized 

in the NES after 7 seconds. Figure 3.10 (c) shows the increase of voltage magnitude. 

 

Figure 3.10 Simulation results with X = 5 mm: (a) displacements (solid line: primary system; dotted line: NES), (b) 

the percentage of the instantaneous energy in the NES, and (c) open circuit voltage generated by the PEH. 
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Figure 3.11 Wavelet transform spectra of simulated response with X = 5 mm: (a) xa and (b) xp. 

Figure 3.12 and Figure 3.13 show the simulation results for the case of the high-energy 

level or X = 10 mm. With a further increase in the initial energy level, the desired 1:1 resonance 

is dominant as with medium-energy level, as shown in Figure 3.12 (a) and Figure 3.13, the NES 

oscillates with a strong nonlinearity, indicated by a gradual decrease of the response frequency. 

Still, as shown in Figure 3.13 (a) and Figure 3.12 (b), a long period of the nonlinear beats causes 

the delay in establishing the TET. After 7 seconds, the energy is almost localized in the NES. 

Besides, Figure 3.12 (c) indicates that the PEH’s voltage magnitude increases insignificantly 

compared to the case shown in Figure 3.10 (c).  
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Figure 3.12 Simulation results with X = 10 mm: (a) displacements (solid line: primary system; dotted line: NES); (b) 

the percentage of the instantaneous energy in the NES and (c) open circuit voltage generated by the PEH. 

 

Figure 3.13 Wavelet transform spectra of simulated response with X = 10 mm: (a) xa and (b) xp. 

Figure 3.14 presents the simulation results of the accumulated harvested energy for the 

strongly coupled system. Similar observations to those from the weakly coupled system are found. 

Firstly, the accumulated harvested energy increases over time. Next, the accumulated harvested 

energy increases from the low-energy level to the high-energy level. Thirdly, the highest 
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accumulated energies are obtained with the load resistance of R = 50 kΩ for all the three initial 

energy levels. 

 

Figure 3.14 The accumulated energy harvested by the PEH: (a) low-energy level, (b) medium-energy level and (c) 

high-energy level; (d) resistance (green line: 20 kΩ, blue line: 50 kΩ, red line: 100 kΩ, pink line: 200 kΩ, black line: 

1000 kΩ). 

3.3 Simulation results with the piecewise linear function 

It is of interest to investigate the behaviors of the combined systems if the NES’s stiffness 

is defined by the piecewise linear functions obtained in Chapter 2. The equations of motion of the 

combined system are defined by: 

 ( ) ( ) 0a a a a p a pm x c x x f x x V          (3.9) 

 ( ) ( ) ( ) ( ) 0a p p a p p a a p a pm x c x y k x y c x x f x x V                  (3.10) 

where ( )a pf x x is the piecewise linear function defined by: 
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  (3.11) 

where 11k , 12k , 13k , 14k  and 15k  are the piece-wise linear stiffnesses; and 1b  and 2b  are the 

“clearances”. 

The values of the piece-wise linear stiffness can be found in Table 2.4. They are 11 261.9k 

N/m, 12 92.85k  N/m, 13 24.88k  N/m, 14 90.25k  N/m and 15 173.7k  N/m respectively. And the 

clearances can be found in Figure 2.14 (b) which are 1 10.47b  mm and 2 6.832b  mm. 

Only the weakly coupled system is considered. Figure 3.15 and Figure 3.16 show the 

simulation results with the low-energy level. Figure 3.15 (a) and Figure 3.16 indicate that the 

primary system and the NES oscillate in two different frequencies, or the 1:1 resonance 

phenomenon is not achieved. Figure 3.16 (a) shows that the NES behaves almost linearly. 

However, similar to the case with the cubic function shown in Figure 3.1 (c), Figure 3.15 (c) shows 

that the TET can still be established without the 1:1 resonance. 
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Figure 3.15 Simulation results with X = 2.5 mm: (a) displacements (solid line: primary system; dotted line: NES); 

(b) the percentage of the instantaneous energy in the NES and (c) open circuit voltage generated by the PEH. 

 

Figure 3.16 Wavelet transform spectra of simulated response with X = 2.5 mm: (a) xa and (b) xp. 

Figure 3.17 and Figure 3.18 show the simulation results for the case of the medium-energy 

level or X = 5 mm. As shown in Figure 3.17 (a) and Figure 3.18, the NES’s response becomes 

more nonlinear. In Figure 3.18 (a), in the beginning, the frequency content of the NES is around 

20 Hz which is close to pf  or 2f , indicating that the 1:1 resonance is established. As a result, 

the NES’s response shows more nonlinearity. However, due to the nature of the piecewise linear 

stiffness, the frequency of the response quickly drops to around 10 Hz and then gradually sets 

down at a low frequency around 1f  or af . As shown in Figure 3.17 (b), the TET is fully 

established after 2 seconds. Figure 3.17 (c) shows the PEH voltage that is similar to that observed 

in Figure 3.3 (c). 
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Figure 3.17 Simulation results with X = 5 mm: (a) displacements (solid line: primary system; dotted line: NES); (b) 

the percentage of the instantaneous total energy in the NES and (c) open circuit voltage generated by the PEH. 

 

Figure 3.18 Wavelet transform spectra of simulated response with X = 5 mm: (a) xa and (b) xp. 

Figure 3.19 and Figure 3.20 show the simulation results for the case of the high-energy 

level or X = 10 mm. With the increase of the initial displacement, the response of the NES 

demonstrates a strong nonlinear behavior as shown in Figure 3.20 (a) and the 1:1 resonance is 

achieved shown as Figure 3.19 (a). The PEH’s voltage magnitude increases significantly shown in 
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Figure 3.19 (c). Besides, as shown in Figure 3.19 (b), the desired TET is established so that the 

energy is localized in the NES eventually. 

 

Figure 3.19 Simulation results with X = 10 mm: (a) displacements (solid line: primary system; dotted line: NES); (b) 

the percentage of the instantaneous total energy in the NES and (c) open circuit voltage generated by the PEH. 

 

Figure 3.20 Wavelet transform spectra of simulated response with X = 10 mm: (a) xa and (b) xp. 

Figure 3.14 shows the effects of load resistance on the accumulated harvested energy. The 

general trends are similar to those shown in Figure 3.7. However, the magnitudes of the 
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accumulated energy are lower than those in Figure 3.7. The conclusions made of the results in 

Figure 3.21 are the same as those previously made. 

 

Figure 3.21 The accumulated energy harvested by the PEH: (a) low-energy level, (b) medium-energy level and (c) 

high-energy level; (d) resistance (green line: 20 kΩ, blue line: 50 kΩ, red line: 100 kΩ, pink line: 200 kΩ, black line: 

1000 kΩ). 

3.4 Experimental results  

In order to validate the simulation results, the experiments are conducted. The experimental 

set-ups are shown in Figure 3.22 and Figure 3.30, respectively. The base of the combined system 

is firmly fixed on the ground. Two reflex (RF) lasers sensors on the left are used to measure the 

responses of the primary mass and the NES mass, respectively. As shown in Figure 3.22 and Figure 

3.30, a steel bracket mounted on a support (not shown) is used to control the initial displacements. 

For the low-energy level, the initial displacement should be controlled to be around 2.5X  mm. 

For the medium-energy level considered, the initial displacement should be controlled to be around 

5X  mm. For the high-energy level considered, the initial displacement should be controlled to 

be around 10X  mm. 
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3.4.1 Experimental results with the weakly coupled system 

 

Figure 3.22 Photo of the weakly coupled system.  

Figure 3.23 and Figure 3.24 demonstrate experimental results with the initial displacement 

2.48X  mm. As shown in Figure 3.23 (a) and Figure 3.24, the NES is not engaged in the 1:1 

resonance. In Figure 3.24 (a), the WT spectrum of the NES’s response shows that the frequency 

of the response decreases from a frequency around 7.5 Hz to the frequency around 1f  or af  in 

less than 0.5 seconds. This indicates that the NES’s nonlinearity is partially induced. However, the 

TET is fully established as shown in Figure 3.23 (b). Figure 3.23 (c) shows that the PEH is able to 

obtain a reasonably voltage magnitude. Note that as it is not possible for the measured response to 

be completely zero, a condition is imposed to make ( )px t zero if 5( ) 5 10px t   m. With this 

condition, 100% of the TET is established or ( ) 1D t   if 5( ) 5 10px t   . 
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Figure 3.23 Experimental results with X =2.48 mm: (a) displacements (solid line: primary system; dotted line: NES); 

(b) the percentage of the instantaneous total energy in the NES and (c) open circuit voltage generated by the PEH. 

 

Figure 3.24 Wavelet transform spectra with X = 2.48 mm: (a) xa and (b) xp. 

Figure 3.25 and Figure 3.26 show the experimental results with the initial displacement 

5.03X  mm or the medium-energy level. As shown in Figure 3.25 (a), the primary system and 

NES do not vibrate at the same frequency, indicating that the 1:1 resonance is not established. 

Figure 3.26 (a) shows that in the beginning, the NES is set into vibration with a frequency around 

7.5 Hz and then the response of the NES quickly decreases to the frequency around 1f  or af , 
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indicating that the NES’s nonlinearity is partially induced. As shown in Figure 3.25 (b), the TET 

is quickly achieved in a short period even without the 1:1 resonance. The percentage of the 

instantaneous energy in the NES is close to 100% after a short period as well. The voltage 

magnitude generated by the PEH sees a slight increase as demonstrated in Figure 3.25 (c). 

 

Figure 3.25 Experimental results with X =5.03 mm: (a) displacements (solid line: primary system; dotted line: NES); 

(b) the percentage of the instantaneous total energy in the NES and (c) open circuit voltage generated by PEH. 

 

Figure 3.26 Wavelet transform spectra with X = 5.03 mm: (a) xa and (b) xp. 
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Figure 3.27 and Figure 3.28 show the experimental results with the initial displacement 

10.29X  mm or the high-energy level. Figure 3.27 (a) shows that the primary system and the 

NES oscillate with different frequencies. Figure 3.28 shows that both of the NES’s and primary 

system’s response start with a high frequency around 2f or pf . Then the NES’s response frequency 

decreases to a frequency around 7.5 Hz for about 0.5 seconds and further decreases to a frequency 

around 1f or af . This indicates that the desired 1:1 resonance is achieved and the NES’s response 

shows a strong nonlinearity. Compared with simulation results, the nonlinear beats are less 

dominant. Therefore, after 1 second, the TET is fully established, and almost 100% of the energy 

is localized in the NES, as shown in Figure 3.27 (b). The PEH’s voltage magnitude sees a further 

increase. Compared with the simulation results, the PEH’s voltage magnitude is limited in 10 V. 

This is mainly due to the physical limitations of the PEH. Also, the analog to digital conversion 

channels of the data acquisition system are limited by ±10 V. Overall the experimental results 

agree well with simulation results.  

 

Figure 3.27 Experimental results with X =10.29 mm: (a) displacements (solid line: primary system; dotted line: 

NES); (b) the percentage of the instantaneous total energy in the NES and (c) open circuit voltage generated by the 

PEH. 
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Figure 3.28 Wavelet transform spectra with X = 10.29 mm: (a) xa and (b) xp. 

Figure 3.29 shows the effects of load resistances on the PEH’s harvested energy. Compared 

with the results shown in Figure 3.7, the main difference is that the highest accumulated harvested 

energies are obtained with the load resistance of R = 200 kΩ instead of 50 kΩ  

 

Figure 3.29 The accumulated energy harvested by the PEH: (a) low-energy level, (b) medium-energy level and (c) 

high-energy level; (d) resistance (green line: 20 kΩ, blue line: 50 kΩ, red line: 100 kΩ, pink line: 200 kΩ, black line: 

1000 kΩ). 
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3.4.2 Experimental results with the strongly coupled system 

 

Figure 3.30 Photo of the strongly coupled system. 

Figure 3.31 and Figure 3.32 show the experimental results with the initial displacement X 

= 2.55 mm or the low-energy level. As shown in Figure 3.31 (a) and Figure 3.32, the 1:1 resonance 

is established and a weak nonlinear manner is observed. In Figure 3.31 (b), after 2 seconds, the 

energy is localized in the NES system so that the desired TET occurs. As shown in Figure 3.31 

(c), a fairly large magnitude voltage is generated by the PEH. 
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Figure 3.31 Experimental results with X =2.55 mm: (a) displacements (solid line: primary system; dotted line: NES); 

(b) the percentage of the instantaneous total energy in the NES and (c) open circuit voltage generated by the PEH. 

 

Figure 3.32 Wavelet transform spectra with X = 2.55 mm: (a) xa and (b) xp. 

Figure 3.33 and Figure 3.34 show the experimental results with the initial displacement 

5.19X  mm or the medium-energy level. A stronger nonlinearity and more dominant 1:1 

resonance are observed in Figure 3.33 (a) and Figure 3.34. However, the energy is not able to be 
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fully localized in the NES such that the TET is partially achieved, as shown in Figure 3.33 (b). 

The PEH’s voltage magnitude changes little between Figure 3.33 (c) and Figure 3.31 (c).  

 

Figure 3.33 Experimental results with X =5.19 mm: (a) displacements (solid line: primary system; dotted line: NES); 

(b) the percentage of the instantaneous total energy in the NES and (c) open circuit voltage generated by PEH. 

 

Figure 3.34 Wavelet transform spectra with X = 5.19 mm: (a) xa and (b) xp. 

Figure 3.35, Figure 3.36 and Figure 3.37 show the experimental results with the initial 

displacement 10.14X  mm or the high-energy level. The system behaves in similar way to that 

with the medium-energy level. 
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Figure 3.35 Experimental results with X =10.14 mm: (a) displacements (solid line: primary system; dotted line: 

NES); (b) the percentage of the instantaneous total energy in the NES and (c) open circuit voltage generated by 

PEH. 

 

Figure 3.36 Wavelet transform spectra with X = 10.14 mm: (a) xa and (b) xp. 

Figure 3.37 shows the effects of load resistances on the PEH’s harvested energy. Compared 

with the results shown in Figure 3.21, the main difference is that the highest accumulated harvested 

energies are obtained with the load resistance of R = 200 kΩ instead of 50 kΩ. Compared with the 
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results shown in Figure 3.29, the magnitude of the accumulated harvested energy is lower than 

those for the weakly coupled system. 

 

Figure 3.37 The accumulated energy harvested by PEH: (a) low-energy level, (b) medial-energy level and (c) high-

energy level; (d) resistance (green line: 20 kΩ, blue line: 50 kΩ, red line: 100 kΩ, pink line: 200 kΩ, black line: 

1000 kΩ). 

In general, the simulation results are validated by the experimental results. It is noted that the 

weakly coupled system demonstrates a better TET performance than the strongly coupled system. 

And the variant NES in the weakly coupled system is witnessed a stronger behavior of the 

nonlinearity than the strongly coupled system. 

3.5 Nonlinear normal mode analysis 

Normal modes are an important concept in linear vibration theory. The equation of motion 

of a multi-degree-of-freedom (MDOF) linear system can be decoupled using the normal modes. 

Each of the decoupled equations of motions can be treated as an SDOF system and its modal 

response can be obtained by solving the SDOF system. Then the total responses of the system can 

be found by superposition of the modal responses. The concept of the normal mode can be 

extended to nonlinear system. A nonlinear normal mode (NNM) of an undamped discrete MDOF 

system is defined as a synchronous period oscillation where all the coordinates or masses of the 
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system reach their extreme positions or pass through zero simultaneously [43]. In [19], the NNM 

is further defined as a (not necessarily synchronous) time-periodic oscillation of a non-dissipative 

dynamic system. In what follows, the NNM analysis is conducted to understand the frequency 

contents of the combined system and the energy threshold required by the establishment of the 1:1 

resonance. The equations of motion of the underlying Hamiltonian (free of damping) mechanical 

system are defined as follow:  

 3
1 3( ) ( ) 0a a a p a pm x k x x k x x       (3.12) 

 3
1 3( ) ( ) 0p p p p a p a pm x k x k x x k x x          (3.13) 

In the NNM analysis, the complexification-averaging method (CX-A) is used [19]. To this 

end, the following complex variables are introduced:  

 1 2 and p p a ax j x x j x          (3.14) 

where ω is the dominant frequency also known as the fast frequency and 1j   . In terms of the 

new variables, the displacements and the accelerations of the undamped combined system can be 

expressed as follow: 

 1 1
1 1 1, ( )

2 2p p

j
x x

j

    



      (3.15) 

 2 2
2 2 2, ( )

2 2a a

j
x x

j

    



      (3.16) 

where the terms with the overbar denote complex conjugate. 

Since the nearly monochromatic periodic solution (the periodic orbits) are sought, an 

assumption can be made that the primary system and the NES vibrate at the same fast frequency
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 . Therefore, the two complex variables can be approximately expressed in terms of the fast 

frequency ω, ej𝜔t, and they can be modulated by slowly varying amplitudes ( )
n

t , 1, 2n  : 

 1 1 2 2( ) ( )  and ( ) ( )j t j tt t e t t e        (3.17) 

Substituting Equations (3.15) and (3.16) into Equations (3.12) and (3.13) yields the 

following expressions: 

 
    

1 1
1 1 1

3

3 1 1 2 21 1 1 2 2
3

( ( ) ( ))1
( ) ( ( ) ( ))

2 2

( ( ) ( )) ( ( ) ( ))( ( ) ( )) ( ( ) ( ))
0

2 8

p
p

jk t td
m t j t t

dt

k j t t t tjk t t t t

 
   



      
 

    
 

    
  

  (3.18) 

 
    

2 2 2

3

3 1 1 2 21 1 1 2 2
3

1
( ) ( ( ) ( ))

2

( ( ) ( )) ( ( ) ( ))( ( ) ( )) ( ( ) ( ))
0

2 8

a

d
m t j t t

dt

k j t t t tjk t t t t

   

      
 

   
 

    
  

  (3.19) 

Substituting Equation (3.17) into Equations (3.18) and (3.19) results in: 

 

 

   

   

1 1

1 1 1

1 1 2 2

1

3

1 1 2 2

3

( ) ( )1
( ( ) ) ( ( ) ( ) )

2 2

( ) ( ) ( ) ( )

2 2

( ) ( ) ( ) ( )
0

2 2

j t j t
pj t j t j t

p

j t j t j t j t

j t j t j t j t

jk t e t ed
m t e j t e t e

dt

j t e t e j t e t e
k

j t e t e j t e t e
k

 
  

   

   

 
   



   

 

   

 




 

 

    
 
  
  
 
 

  
   
 
 

  (3.20)

 
   

   

2 2 2

1 1 2 2

1

3

1 1 2 2

3

1
( ( ) ) ( ( ) ( ) )

2

( ) ( ) ( ) ( )

2 2

( ) ( ) ( ) ( )
0

2 2

j t j t j t
a

j t j t j t j t

j t j t j t j t

d
m t e j t e t e

dt

j t e t e j t e t e
k

j t e t e j t e t e
k

  

   

   

   

   

 

   

 



 

 

   
 
  
  
 
 

  
   
 
 

  (3.21) 
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Next Equations (3.20) and (3.21) are simplified by keeping the terms with fast frequency 

ω, and ignoring the higher order terms of e3j𝜔t and e5j𝜔t . Collecting the terms associated with ej𝜔t 

yields: 

 

   

2 2 2 23
1 1 2 1 2 2 1 1 1 23

3
1 2 1 1 2 2 1 1 1 23

31
( ) ( ) ( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) )

2 8

3
( ( ) ( )) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0

2 4

p p

p

jkd
m t jm t t t t t t t t t

dt

jkj
k t t k t t t t t t t

          


        
 

       
 

     

  (3.22) 

 

   

2 2 23
2 2 2 1 1 2 2 13

2 3
2 2 1 1 2 2 2 1 1 1 23

31
( ) ( ) ( ( ) ( ) ( ) ( ) ( ) ( )

2 8

3
( ) ( ) ) ( ( ) ( )) ( ) ( ) ( ) ( ) ( ) ( ) 0

2 4

a a

jkd
m t jm t t t t t t t

dt

jkj
t t k t t t t t t t t

        


         
 

      
 

     

  (3.23) 

The representations of polar forms:
( ) ( )

1 2
( )  and ( )j t j ta t e b t e    are introduced in Equations 

(3.22) and (3.23), where ( )a t  and ( )b t  are real amplitudes, ( )t and ( )t are the real phases. 

Then by separating the real and the imaginary parts, the four first-order ordinary differential 

equations are obtained as follow: 

  3 2 2 2
3 3 1 33

1
( 3 4 )sin( ) 3 sin(2 2 )

8 p

a b k a bk bk ab k
m

    


         (3.24) 

 

2 2 2 2
3 3 1 33

2 2 2 3 4
3 1 3

1
(( 9 3 4 ) cos( ) 3 cos(2 2 )

8

                      6 4 4 3 4 )

p

p p

a bk b k bk ab k
am

ab k ak ak a k am

     


  

      

    


  (3.25) 

  3 2 2 2
3 1 3 33

1
(3 4 3 )sin( ) 3 sin(2 2 )

8 a

b a k ak ab k a bk
m

    


        (3.26) 

 
2 2 3 2

3 1 3 33

2 2 2 4
3 1 3

1
(( 9 4 3 ) cos( ) 3 cos(2 2 )

8

                      +6a 4 3 4 )

a

a

ab k ak a k a bk
bm

bk bk b k bm

     


 

      

  


  (3.27) 

where the over-dot represents the derivative with respect to time. Due to seeking the periodic 

solutions, the steady state solutions of the equations above are found by setting Equations (3.25) 
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to (3.27) to be zero. Further, it is assumed that the system oscillates in phase or   . Thus 

Equations (3.24) and (3.26) become: 

  3 2 2 4
3 13

1
0 3 ( ) 4 ( ) 4 4

8 p p
p

k a b k a b ak am
am

  


        (3.28) 

  3 2 4
3 13

1
0 3 ( ) 4 ( ) 4

8 a
a

k b a k b a bm
bm

 


       (3.29) 

Equations (3.28) and (3.29) are a set of two coupled nonlinear algebraic equations which 

can be numerically solved for a and b by specifying frequency ω. After a and b are obtained, the 

responses can be expressed as follow: 

 
1 1( ) cos cos
2p p

a
x t X t t

j

  
 


     (3.30) 

 
2 2( ) cos cos
2a a

b
x t X t t

j

  
 


     (3.31) 

As the system is conservative, the total energy of the system can be defined by  

 2 2 4
1 3

1 1 1
( ) ( )

2 2 4p p a p a pE k X k X X k X X       (3.32) 

Figure 3.38 is the so-called Frequency Energy Plot (FEP)  that is made by using a triplet of a, b 

and ω obtained by solving Equations (3.28) and (3.29) with the parameters values of the weakly 

coupled system. The FEP shows the relationship between the total energies of the system and the 

frequencies ω of the periodic solutions. The two curves are the so-called the backbone curves of 

the NNMs, where the backbone branch “S11+” expresses an in-phase oscillation, and the backbone 

branch “S11−” indicates an out-of-phase oscillation. It is noted that S11+ originates from a low 

frequency that is very close to the natural frequency fa of the NES while S11− originates from a 

high frequency that is close to the natural frequency fp of the primary system. Finally, the energy 
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threshold is identified by the arrow in Figure 3.38. For a combined system consisting of a primary 

system and a true NES, when the initial energy exceeds this threshold, the oscillation is attracted 

to the S11+ backbone curve and the desired 1:1 resonance is activated. Otherwise, the system will 

be attracted to the S11− backbone curve and the primary system and NES vibrates at two different 

frequencies [19]. 

 

Figure 3.38 Analytic approximations of the frequency energy plot for the weakly coupled system: Backbone curve 

S11±. 

In order to compare the frequency contents of the responses with the backbone curves, the 

contours of the WT spectrum of the relative displacement is superimposed on the FEP. To this 

end, the WT spectrum’s time axis is matched to the system’s total energy determined at each time 

instant t . The results for the weakly coupled system are shown in Figure 3.39 and Figure 3.40 and 

the results for the strongly coupled system are shown Figure 3.41 and Figure 3.42 

As shown in Figure 3.39 (a), when the low initial energy level is below the energy 

threshold, the response of the system is not fully attracted to the backbone branch 11S  . This 

indicates that the desired 1:1 resonance does not occur. However, after a short period, the energy 

is concentrated on the backbone branch 11S  , indicating that the TET is achieved and the energy 
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is localized in the NES even without the 1:1 resonance, with this initial energy level, the 

nonlinearity of the NES is less dominant. 

As shown in Figure 3.39 (b), with the medium energy level, the initial energy is close to 

the threshold. The response appears more nonlinear, as revealed by the energy concentration 

around both the backbone branches 11S   and 11S   in the beginning. After a short period of 

time, the energy concentration starts follow the 11S curve and ends at the frequency components 

around fa. This indicates that the 1:1 resonance and the TET are partially established.  

Figure 3.39 (c) and Figure 3.39 (d) show the cases of the high-energy level and the case of 

the extra high-energy level (which will be explained in the next figure), respectively. Both of the 

initial energy levels pass the energy threshold. As a result, the oscillation energy is rapidly attracted 

to the 11S   curve so that a dominant 1:1 resonance appears and the desired TET is established. 

With the increase of the initial energy level, the NES demonstrates the desired nonlinear manner. 
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Figure 3.39 Frequency energy plots and wavelet transforms of relative displacement xa-xp from the simulation 

results: (a) low-energy level X =2.5 mm; (b) medium-energy level X = 5 mm; (c) high-energy level X = 10 mm and 

(d) extra high-energy level X = 13 mm. 

Figure 3.40 shows the FEPs of the experimental results. Figure 3.40 (a) shows that at the 

low-energy level, the vibration energy mainly concentrates around fa, similar to Figure 3.39 (a). 

This indicates that the 1:1 resonance is not triggered, but the TET is established. However, the 

nonlinearity of the NES is not activated. Figure 3.40 (b) shows that with an increase of the initial 

energy level, the vibration energy concentration starts to follow the backbone curve 11S  . The 

oscillation energy concentration originates around the frequency 7.5 Hz and gradually sets down 

around fa. This indicates that the TET is triggered without the 1:1 resonance. Figure 3.40 (c) shows 

the case of the high energy level. The initial energy level is still below the threshold. The response 

appears more nonlinear, as indicated by the response energy concentration around the 11S 

curve. 
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Comparing Figure 3.39 (a) to (c) reveals that the energy levels of the responses from the 

experiments are lower than those of the responses from the computer simulation. This is due to the 

fact that the stiffer the primary system, the more difficult to fully excite it with a large initial 

displacement. By closely inspecting Figure 3.25 and Figure 3.27, one can note that the primary 

system oscillates to a magnitude that is much lower than the initial displacement after it is released. 

To confirm the trend of the response energy concentration, an extra high-energy level is introduced 

by setting X = 13.25 mm. Figure 3.40 (d) shows the results. As it can be seen, although the initial 

energy still cannot exceed the threshold level, the response energy become more dominantly 

concentrated along the 11S  backbone. This indicates that the NES behaves strongly nonlinearity 

and the TET is quickly established. 

 

Figure 3.40 Frequency energy plots and wavelet transforms of relative displacement xa-xp from the experimental 

results: (a) low-energy level X =2.48 mm; (b) medium-energy level X =5.03 mm; (c) high-energy level X =10.29 

mm and (d) extra high-energy level X =13.25 mm.  
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Figure 3.41 shows the FEPs of the responses obtained by computer simulation with the 

strongly coupled system. Figure 3.41 (a) shows that the response energy concentrates around fa 

and fp in the beginning and sets down to fa eventually. Figure 3.41 (b), (c) and (d) confirm the trend 

that when the initial energy level exceeds the threshold, the 1:1 resonance occurs and the response 

energy is attracted to the backbone 11S   curve. It is also noted that the nonlinear beats exist in 

all of the three cases, indicating that the energy is exchanged back and forth between the primary 

system and NES. 

 

Figure 3.41 Frequency energy plots and wavelet transforms of relative displacement xa-xp from the simulation 

results: (a) extra low-energy level X =1 mm; (b) low-energy level X =2.5 mm; (c) medium-energy level X =5 mm 

and (d) high-energy level X =10 mm. 

Figure 3.42 shows the FEPs of the responses obtained experimentally with the strongly 

coupled system. The results are similar as to those shown in Figure 3.41, validating that the 

oscillation energy concentrates on the 11S   backbone curve when the initial energy level 
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exceeds the energy threshold. Comparing Figure 3.42 and Figure 3.40 reveals that the TET 

establishment in the strongly coupled system is accompanied by the nonlinear beats. 

 

Figure 3.42 Frequency energy plots and wavelet transforms of relative displacement xa-xp from the experimental 

results: (a) extra low-energy level X =1.08 mm; (b) low-energy level X =2.55 mm; (c) medium-energy level X 

=5.19 mm and (d) high-energy level X =10.14 mm. 

3.6 Conclusion 

In this chapter, the transient behaviors of the variant NES have been studied. Both the weakly 

coupled system and strongly coupled system are investigated through simulations and 

experiments. From the results given above, several conclusions are obtained as follow. Firstly, in 

order to activate the combined system into the 1:1 resonance and to achieve the TET, the oscillation 

energy of the combined system should exceed the critical energy threshold. Second, the weakly 

coupled system gives a better performance than the strongly coupled system in terms of the 1:1 
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resonance and TET. Finally, the accumulated energy capture of the weakly coupled system is 

greater than that of the strongly coupled system. Overall, the weakly coupled system is a better 

choice to activate the NES system and to establish the TET.  
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Chapter 4 Harmonically forced responses   

4.1 Simulation of harmonically forced responses 

 

In the study presented in [43], a software called Matcont was used in the study of harmonically 

forced responses of the combined system. The software uses the continuation method to find the 

approximate steady-state solutions of the primary and NES systems under harmonic excitation. In 

this study, ODE 45, a MATLAB built in function is used for the numerical simulation study. As 

in [43], it is of interest to investigate the phenomena of the saddle-node and Hopf bifurcation 

regions, where the saddle region indicates the presence of multiple solutions while the Hopf 

bifurcation region reveals the strongly modulated responses. The equations of motion with a 

harmonic base excitation are defined by 

 3
1 3( )a p a am z x c z k z k z V m y           (4.1) 

  3
1 3p p p p p p a pm x c x k x c z k z k z V m y            (4.2) 

 0sV
C V z

R
      (4.3) 

where 2 cos( )y Y t   is the acceleration of the base with an amplitude defined as 2
yA Y  in 

which Ω is the excitation frequency and Y is the amplitude of the base motion, and the other 

variables have been defined in Chapter 2. The parameter values used in the following simulation 

are the same as those used in Chapter 3  

For the harmonically excitation, the focus is on the steady state responses. As the system 

is nonlinear, its responses to single frequency harmonic excitation depend on the initial conditions 

in certain frequency ranges. One of the methods to deal with this problem is to conduct Monte 
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Carlo simulations of the steady state responses for different values of randomly picked initial 

conditions. This method is very time-consuming. In this study, a slow frequency sweep excitation 

is used to generate the so-called frequency response plots (FRPs) [44]. In particular, a chirp sweep 

is used. The instantaneous exciting frequency is determined by 

 e s
s

f f
f f t

T


    (4.4) 

where fs is the starting frequency, fe is the ending frequency, T = (fe − fs)/r is the sweep duration 

and r is the sweeping-rate. In an upsweep, fs = 4 Hz, fe = 25 Hz and r = 0.02 Hz/s while in a 

downsweep, fs = 25 Hz, fe = 4 Hz and r =− 0.02 Hz/s. 

 

4.1.1 Harmonically forced responses of the weakly coupled system 

Figure 4.1, Figure 4.2 and Figure 4.3 show the upsweep and downsweep frequency responses 

of the weakly coupled system subjected to base excitation with the three accelerations Ay = 1.0, 

1.5 and 2.0 m/s2, respectively. The load resistance is R = 20 kΩ. In all the figures, there are two 

frequency regions of interest. The first one is referred to low frequency region that is between 6.2 

Hz and 18.2 Hz while the second one is referred to as high frequency region that centers around 

20.5 Hz. In the high frequency region, the downsweep FRPs appear similar for all the three 

excitation levels. However, the upsweep FRP shows jumping when Ay = 1 m/s2. But the jumping 

phenomenon becomes less visible when Ay = 2 m/s2 is too high to attainable physically for the real 

apparatus. The responses peak around 20.5 Hz without jumping while the response amplitudes 

increase with the increase of the excitation level. The low frequency region can be considered as 

a broadband frequency region with the occurrence of the jump phenomenon. For all three 

excitation levels, the responses jump from a high state to a low state in the upsweep while the 

responses jump from a low state to a high state in the downsweep. The responses between the jump 

frequencies depend on initial conditions or disturbances. They may appear as the so-called strongly 
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modulated responses (SMRs) [63]. In Figure 4.1, the two jumping frequencies are found around 

6.21 Hz and 17.10 Hz, respectively. Figure 4.2 shows that the jumping frequencies are around 6.73 

Hz and 17.79 Hz, respectively. With the increase of the excitation level, the low frequency region 

is widened. Figure 4.3 indicates the jumping frequencies are around 7.2 Hz and 18.2 Hz, 

respectively, indicating that the low frequency region expands with an increase in the acceleration 

level. 

 

Figure 4.1 Frequency responses of the weakly coupled system under the base excitation of Ay = 1 m/s2: (a) xp; (b) z 

and (c) v (Blue line is the up sweep responses; Red line is the down sweep responses). 
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Figure 4.2 Frequency responses of the weakly coupled system under the base excitation of Ay = 1.5 m/s2: (a) xp; (b) z 

and (c) v (Blue line is the up sweep responses; Red line is the down sweep responses). 

 

Figure 4.3 Frequency responses of the weakly coupled system under the base excitation Ay = 2 m/s2: (a) xp; (b) z and 

(c) v (Blue line is the up sweep responses; Red line is the down sweep responses). 
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Figure 4.4, Figure 4.5 and Figure 4.6 show the upsweep and downsweep voltage responses of 

the weakly coupled system subjected to the three base excitation levels with the five load 

resistances of R  = 20, 50, 100, 200, 1000 kΩ. In all the figures, jumping phenomena occur in the 

low frequency region and the generated voltages increase with the increase in the value of the load 

resistance. 

 

Figure 4.4 Voltage responses with five load resistances under the base excitation of Ay = 1 m/s2 (a) upsweep 

excitation; (b) downsweep excitation (blue line: 20 kΩ, red line: 50 kΩ, cyan line: 100 kΩ, magenta line: 200 kΩ, 

yellow line: 1000 kΩ). 

 

Figure 4.5 Voltage responses with five load resistances under the base excitation of Ay = 1.5 m/s2 (a) upsweep 

excitation; (b) downsweep excitation (blue line: 20 kΩ, red line: 50 kΩ, cyan line: 100 kΩ, magenta line: 200 kΩ, 

yellow line: 1000 kΩ). 
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Figure 4.6 Voltage responses with five load resistances under the base excitation of Ay = 2 m/s2 (a) upsweep 

excitation; (b) downsweep excitation (blue line: 20 kΩ, red line: 50 kΩ, cyan line: 100 kΩ, magenta line: 200 kΩ, 

yellow line: 1000 kΩ). 

As mentioned in the previous study [43], the system under harmonic excitation may 

experience the weakly modulated responses or more importantly the strongly modulated responses 

(SMRs). Due to the nonlinearity of the NES system, the nonlinear beating may be found when the 

exciting frequency is close to the natural frequency of the NES system. Figure 4.7 shows the 

responses of the system excited at f = 6.5 Hz, indicating that the beating phenomena are found 

while the SMRs are not obtained. Basically, the nonlinearity can be observed when the oscillation 

amplitude is high enough. Figure 4.8 shows that when the acceleration level is dramatically 

increased to Ay = 10 m/s2 when the SMRs appear. Figure 4.9 shows another typical SMR when 

the system is excited at f = 7.52 Hz.  
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Figure 4.7 Response subjected to Ay = 1 m/s2 and f = 6.5 Hz: (a) xp; (b) z. 

 

Figure 4.8 Response subjected to Ay = 10 m/s2 and f = 6.5 Hz: (a) xp; (b) z. 
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Figure 4.9 Response subjected to Ay = 2 m/s2 and f = 7.5 Hz: (a) xp; (b) z. 

4.1.2 Harmonically forced responses of the strongly coupled system 

Figure 4.10, Figure 4.11 and Figure 4.12 show the upsweep and downsweep frequency 

responses of the strongly coupled system subjected to base excitation with the three accelerations 

Ay = 0.5, 0.75 and 1.0 m/s2, respectively. The load resistance is R = 20 kΩ. Due to that the rigidity 

of the strongly coupled system is much lower than that of the weakly coupled system, lower 

excitation level must be used to limit the responses within a realistic level. The excitation levels 

are chosen so that 0.015 mz  . As a result, the acceleration levels are reduced. In all the figures, 

the low frequency region centers around 6.5 Hz while the high frequency region that is between 

7.6 and 8.8 Hz. For all excitation levels, the upsweep and downsweep FRPs appear similar in the 

low frequency region. The responses peak around 6.5 Hz without jumping while the response 

amplitudes increase with the increase in the excitation level. The high frequency region can be 

considered as a broadband frequency region with the occurrence of the jump phenomenon. For all 

excitation levels, the responses jump from a high state to a low state in the upsweep while the 

responses jump from a low state to a high state in the downsweep. The responses between the jump 
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frequencies may appear as the strongly modulated responses, similar to the low frequency region 

of the weakly coupled system. In Figure 4.10, the two jumping frequencies are found around 7.66 

and 8.35 Hz, respectively. Figure 4.11 shows that the jumping frequencies are around 7.87 and 

8.578 Hz, respectively. Figure 4.12 indicates the jumping frequencies are around and 8.80 Hz, 

respectively, indicating that the low frequency region keeps expanding with the increase in the 

acceleration level. 

 

Figure 4.10 Frequency responses of the strongly coupled system under the base excitation of Ay = 0.5 m/s2: (a) xp; (b) 

z and (c) v (Blue line: the upsweep responses; Red line: the downsweep responses). 
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Figure 4.11 Frequency responses of the strongly coupled system under the base excitation of Ay = 0.75 m/s2: (a) xp; 

(b) z and (c) v (Blue line: the upsweep responses; Red line: the downsweep responses). 

 

Figure 4.12 Frequency responses of the strongly coupled system under the base excitation of Ay = 1 m/s2: (a) xp; (b) z 

and (c) v (Blue line: the upsweep responses; Red line: the downsweep responses). 

Figure 4.13, Figure 4.14 and Figure 4.15 show the upsweep and downsweep voltage responses 

of the strongly coupled system, subjected to the three base excitation levels. Five load resistance 
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R  = 20, 50, 100, 200, 1000 kΩ are considered. In all the figures, jumping phenomena occur in 

the high frequency region and the generated voltages increase with the increase in the load 

resistance. It is noted that the voltage responses are very complicated around 6.5 Hz and the 

jumping frequencies. 

 

Figure 4.13 Voltage responses with five load resistances under the base excitation of Ay = 0.5 m/s2 (a)upsweep 

excitation; (b) downsweep excitation (blue line: 20 kΩ, red line: 50 kΩ, cyan line: 100 kΩ, magenta line: 200 kΩ, 

yellow line: 1000 kΩ). 

 

Figure 4.14 Voltage responses with five load resistances under the base excitation of Ay = 0.75 m/s2 (a)upsweep 

excitation; (b) downsweep excitation (blue line: 20 kΩ, red line: 50 kΩ, cyan line: 100 kΩ, magenta line: 200 kΩ, 

yellow line: 1000 kΩ). 
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Figure 4.15 Voltage responses with five load resistances under the base excitation of Ay = 1 m/s2 (a)upsweep 

excitation; (b) downsweep excitation (blue line: 20 kΩ, red line: 50 kΩ, cyan line: 100 kΩ, magenta line: 200 kΩ, 

yellow line: 1000 kΩ). 

Figure 4.16 shows the responses of the system excited at 7 Hzf  , indicating that the 

SMRs are found. Within the region of the two jumping frequencies, the responses with the excited 

frequency at 7.5 Hzf   are shown in Figure 4.17, indicating the beating phenomenon and the 

SMRs. 

 

Figure 4.16 Response subjected to Ay = 0.5 m/s2 and f = 7 Hz: (a) xp; (b) z. 
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Figure 4.17 Response subjected to Ay = 1 m/s2 and f = 7.5 Hz: (a) xp; (b) z. 

4.2 Experimental results of the weakly coupled system 

Figure 4.18 contains photograph of the testing setup. Three laser reflex (RF) sensors on the 

left are used to measure the displacement of the primary mass, the NES mass and the base, 

respectively. A variable load resistor is connected to the piezoelectric energy harvester by two 

wires. The load resistance is set to be 20 kR   . The base of the apparatus is fixed on a slipping 

table in the bottom that is driven by the shaker (Brüel & Kjær model 2809) through a stinger. A 

power amplifier (Brüel & Kjær model 2718) is used to power the shaker. And a dSPACE CLP1104 

data acquisition board collects data from the RF sensors and sends an exciting voltage signal to 

the power amplifier. The dSPACE Controldesk interface is used to control the testing system and 

save the experimental data. 
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Figure 4.18 Photo of the testing setup of the weakly coupled system. 

To generate a harmonic base motion with a constant acceleration for frequency sweep, it is 

required to find the relationship between the base acceleration and magnitude of the exciting 

voltage signal that is sent to the power amplifier for each of the exciting frequencies. The voltage 

magnitude is varied from 0.2 V to 1.0 V in an increment of 0.025 V. For each voltage magnitude, 

the base displacement is recorded after the responses become steady. The acceleration of the base 

motion is computed by numerical differentiation. By repeating the process for all the voltage 

magnitudes, a linear relationship between the voltage magnitude and acceleration amplitude is 

obtained by curve fitting. This procedure was repeated for each frequency between 4 and 25 Hz 

with a increment of 0.5 Hz. Table 4.1 to Table 4.5 list the obtained results for the three acceleration 

amplitudes. 

  

Reflex 

Sensors 

Shaker 
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Table 4.1 The exciting voltage magnitudes (V) for the frequency in the range of 4 Hz to 8 Hz 

Base 

acceleration 
4 Hz 4.5 Hz 5 Hz 5.5 Hz 6 Hz 6.5 Hz 7 Hz 7.5 Hz 8 Hz 

1.0 m/s2 0.7631 0.5126 0.4484 0.3862 0.3241 0.2803 0.2690 0.2394 0.2214 

1.5 m/s2 1.1105 0.7394 0.6311 0.5417 0.4522 0.3881 0.3712 0.34 0.3113 

2.0 m/s2 1.4579 0.9662 0.8139 0.6971 0.5804 0.4958 0.4734 0.4405 0.4011 

 

Table 4.2 The exciting voltage magnitudes (V) for the frequency in the range of 8.5 Hz to 12.5 Hz 

Base 

acceleration 
8.5 Hz 9 Hz 9.5 Hz 10 Hz 10.5 Hz 11 Hz 11.5 Hz 12 Hz 12.5 Hz 

1.0 m/s2 0.2012 0.1868 0.1838 0.1834 0.1909 0.1912 0.1939 0.1952 0.1882 

1.5 m/s2 0.2924 0.2811 0.2782 0.2729 0.2766 0.2809 0.288 0.2956 0.2984 

2.0 m/s2 0.3836 0.3753 0.3725 0.3624 0.3624 0.3705 0.382 0.3961 0.4086 

 

Table 4.3 The exciting voltage magnitudes (V) for the frequency in the range of 13 Hz to 17 Hz 

Base 

acceleration 
13 Hz 13.5 Hz 14 Hz 14.5 Hz 15 Hz 15.5 Hz 16 Hz 16.5 Hz 17 Hz 

1.0 m/s2 0.1698 0.1896 0.16 0.1948 0.1978 0.21 0.2033 0.2381 0.2893 

1.5 m/s2 0.2906 0.3188 0.298 0.3481 0.3671 0.3924 0.4048 0.457 0.5201 

2.0 m/s2 0.4114 0.4481 0.4362 0.5014 0.5363 0.5748 0.6062 0.6758 0.7508 
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Table 4.4 The exciting voltage magnitudes (V) for the frequency in the range of 17.5 Hz to 21.5 Hz 

Base 

acceleration 
17.5 Hz 18 Hz 18.5 Hz 19 Hz 19.5 Hz 20 Hz 20.5 Hz 21 Hz 21.5 Hz 

1.0 m/s2 0.3386 0.3991 0.4658 0.5202 0.3221 0.1626 0.1894 0.1915 0.2038 

1.5 m/s2 0.5686 0.6163 0.6923 0.7760 0.7147 0.3596 0.283 0.2899 0.3257 

2.0 m/s2 0.7986 0.8335 0.9188 1.0319 1.1072 0.5565 0.3766 0.3883 0.4477 

 

Table 4.5 The exciting voltage magnitudes (V) for the frequency in the range of 22 Hz to 25 Hz 

Base 

acceleration 
22 Hz 22.5 Hz 23 Hz 23.5 Hz 24 Hz 24.5 Hz 25 Hz 

1 m/s2 0.2144 0.2217 0.2257 0.2272 0.2328 0.246 0.2677 

1.5 m/s2 0.3582 0.3723 0.3897 0.406 0.4264 0.4545 0.489 

2.0 m/s2 0.5019 0.5228 0.5537 0.5847 0.62 0.6629 0.7103 

 

In the testing, frequency sweep excitation is carried out incrementally instead continuously. 

The frequency sweep test starts from 4 Hz and ends at 25 Hz with a step of 0.5 Hz. At each of the 

frequencies, a harmonic voltage signal with the magnitude corresponding to the desired base 

acceleration is sent to the power amplifier to drive the shaker. After the responses become steady 

state, they are recorded for 30 seconds. After removing the offset of each responses, the root-mean-

square (RMS) value of each response is used to represent its magnitude. The responses are 

classified as high state and low state. If the cantilever beam hits the stop blocks, the responses are 

referred to as high state. On the other hand, if the cantilever beam does not hit the blocks, the 

responses are referred to as low state. Figure 4.19, Figure 4.20 and Figure 4.21 show the FRPs of 
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the primary mass’s displacement, the NES mass’s relative displacement, and the load resistor’s 

voltage for the three base acceleration levels. In the figures, blue squares only represent the high 

state while red circles only represent the low state. A frequency region where both the states exist 

is the so-called jumping region. There are two types of jumping. In the first type, a low state can 

jump up to a high state by tapping the NES mass gently or a high state can jump down to a low 

state by holding the NES mass temporarily. In the second type, the high state can automatically 

switch to the low state after a long period. The time duration required by such a switching is 

random and unpredictable. When a data point is marked by both a blue square and red circle, it 

may be a low state or high state, which is stable, i.e., no jumping.  

Figure 4.19 shows the experimental results with the acceleration Ay = 1 m/s2. Figure 4.19 (b) 

clearly shows that there are three jumping regions 6 to 11 Hz, 14 to 15.5 Hz, and 23 to 24.5 Hz. 

The first region belongs to the first type of jumping. Within this region, the high state responses 

may appear as the SMRs. The next two regions belong to the second type of jumping. Within these 

two regions, the high state responses may appear as the SMRs as well. Comparing these results 

with those in Figure 4.1, the testing somewhat validates the jumping phenomenon revealed in the 

simulation. Figure 4.19 (c) shows the voltage of the load resistor. The voltage trend in the first-

type jumping region agrees well with that in Figure 4.1 (c). However, the measured voltage 

magnitudes are higher than those from the simulation. In the high frequency region, the measured 

voltage peaks around 11 Hz with the magnitude of 1.12 V. Again, the overall trend is similar to 

that from the simulation, but the magnitudes are different. 
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Figure 4.19 Testing results with Ay = 1 m/s2 and R = 20000 Ω. (a) xp; (b) z and (c) v. (Red circle: low amplitude 

state; Blue square: high-low amplitude state; Dashed line: FPRs without the stop blocks). 

Figure 4.20 shows the experimental results with the acceleration Ay = 1.5 m/s2. In Figure 4.20 

(b), there are also three jumping regions: 6 to 9.5 Hz, 14 to 18 Hz and 20 to 23 Hz. The first region 

belongs to the first type of jumping while the last two regions pertain to the second type of jumping. 

Within the jumping region, the high state responses may appear as SMRs. Figure 4.20 (c) shows 

the voltage of the load resistor. In the first type of jumping region, the measured voltage peaks 

around 9.5 Hz with the magnitude of 0.78 V. The voltage trend in this jumping region agrees with 

the voltage trend in Figure 4.2 (c). However, the measured voltage magnitudes are lower than those 

from the simulation.  
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Figure 4.20 Testing results with Ay = 1.5 m/s2 and R = 20000 Ω. (a) xp; (b) z and (c) v. (Red circle: low amplitude 

state; Blue square: high-low amplitude state; Dashed line: states without the stop blocks). 

Figure 4.21 shows the experimental results with the acceleration Ay = 2.0 m/s2. In Figure 4.21 

(b), only two jumping regions are found. They are: 6.5 to 13 Hz and 22 to 24.5 Hz. In this 

acceleration level, the first region belongs to the first type of jumping region while the second 

region belongs to the second type of jumping. This first type of jumping region is the widest region 

among the three excitation levels. In Figure 4.21 (c), the voltage of the load resistor is shown with 

the measured peak voltage around 1.87 V at frequency 13 Hz. The measured voltage trend agrees 

well with that in Figure 4.3 (c) while the measured voltage magnitudes are lower than those from 

the simulation. 
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Figure 4.21 Testing results with Ay = 2 m/s2 and R = 20000 Ω. (a) xp; (b) z and (c) v. (Red circle: low amplitude 

state; Blue square: high-low amplitude state; Dashed line: states without the stop blocks). 

Figure 4.22 shows the responses of the system excited at f = 7.5 Hz and Ay = 1 m/s2. Both 

responses are the weakly modulated ones, showing a beating phenomenon and the weakly 

modulated responses. Figure 4.23 shows the combined system excited at f = 7.5 Hz with 

acceleration of Ay = 2 m/s2 levels. It clearly reveals the occurrence of the SMRs and beating 

phenomena. 
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Figure 4.22 Experimental results with Ay = 1 m/s2 and f = 7.5 Hz: (a) xp; (b) z.  

 

Figure 4.23 Experimental results with Ay = 2 m/s2 and f = 7.5 Hz: (a) xp; (b) z. 
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4.3 Experimental results of the strongly coupled system 

Figure 4.24 shows the experimental results with the acceleration Ay = 1 m/s2. Figure 4.24 (b) 

clearly shows that there are two jumping regions 8.5 to 10.5 Hz, and 13 to 14.5 Hz. The first region 

belongs to the first type of jumping. Within this region, the high state responses may appear as the 

SMRs. The next region belongs to the second type of jumping. Within these two regions, the high 

state responses may appear as the SMRs as well. Comparing these results with those in Figure 

4.10, the testing somewhat validates the jumping phenomenon revealed in the simulation. Figure 

4.24 (c) shows the voltage of the load resistor. The voltage trend in the first-type jumping region 

agrees well with that in Figure 4.10 (c). In the high frequency region, the measured voltage peaks 

around 10.5 Hz with the magnitude of 0.8844 V. Again, the overall trend is similar to that from 

the simulation, but the magnitudes are different. 

 

Figure 4.24 Testing results with Ay = 1 m/s2 and R = 20000 Ω. (a) xp; (b) z and (c) v. (Red circle: low amplitude 

state; Blue square: high-low amplitude state; Dashed line: states without the stop blocks). 
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Figure 4.25 shows the experimental results with the acceleration Ay = 1.5 m/s2. In Figure 4.25 

(b), there are also two jumping regions: 9.5 to 11.5 Hz and 14.5 to 15 Hz. The first region belongs 

to the first type of jumping while the second regions pertain to the second type of jumping. Within 

the jumping region, the high state responses may appear as SMRs. Figure 4.25 (c) shows the 

voltage of the load resistor. In the first type of jumping region, the measured voltage peaks around 

10.5 Hz with the magnitude of 0.91 V. The voltage trend in this jumping region agrees with the 

voltage trend in Figure 4.11 (c). However, the measured voltage magnitudes are different but close 

to those from the simulation.  

 

Figure 4.25 Testing results with Ay = 1.5 m/s2 and R = 20000 Ω. (a) xp; (b) z and (c) v. (Red circle: low amplitude 

state; Blue square: high-low amplitude state; Dashed line: states without the stop blocks). 

Figure 4.26 shows the experimental results with the acceleration Ay = 2.0 m/s2. In Figure 4.26 

(b), only two jumping regions are found and they are: 10 to 12.5 Hz and 13 to 15 Hz. In this 

acceleration level, the first region belongs to the first type of jumping region while the second 

region belongs to the second type of jumping. This first type of jumping region is the widest region 

among the three excitation levels. In Figure 4.26 (c), the voltage of the load resistor is shown with 
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the measured peak voltage around 1.288 V at frequency 12.5 Hz. The measured voltage trend 

agrees well with that in Figure 4.12 (c) while the measured voltage magnitudes are lower than 

voltage magnitude responses from the simulation. 

 

Figure 4.26 Testing results with Ay = 2 m/s2 and R = 20000 Ω. (a) xp; (b) z and (c) v. (Red circle: low amplitude 

state; Blue square: high-low amplitude state; Dashed line: states without the stop blocks). 

Figure 4.27 shows the responses of the system excited at f = 10 Hz, and Ay = 1 m/s2. Both the 

responses are the strongly modulated responses and showing a beating phenomenon. Figure 4.28 

shows the combined system excited at f = 9 Hz with acceleration of Ay = 2 m/s2 levels. It clearly 

reveals the occurrence of the SMRs and beating phenomena. 
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Figure 4.27 Experimental results with Ay = 1 m/s2 and f = 10 Hz: (a) xp; (b) z.  

 

Figure 4.28 Experimental results with Ay = 2 m/s2 and f = 9 Hz: (a) xp; (b) z. 

 



105 

 

4.4 Conclusion 

The harmonically forced responses of the weakly coupled system and strongly coupled system 

are investigated by the computer simulation study. The frequency response plots are obtained by 

the upsweep and downsweep excitations for the different base acceleration levels. The results from 

both the weakly coupled system and strongly coupled system show some typical features of the 

NES such as the responses’ dependence on the excitation level, jumping phenomena, strongly 

modulated responses (SMRs), and so on. However, there are two notable differences between the 

two systems. For the weakly coupled system, there are two jumping regions. The low frequency 

jumping appears easily for the excitation levels used while the high frequency jump occurs only 

when the excitation level is high enough. For the strongly coupled system, there is only one 

jumping region that is around the natural frequency of the primary system. The experimental 

studies are conducted to validate the harmonic forced responses of the weakly coupled system and 

strongly coupled system. Overall, the experimental results show the similar trends as those from 

the simulation. 
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Chapter 5 Conclusion  

The main purpose of this study is to develop a device for broadband vibration suppression and 

energy harvesting. For this propose, in Chapter 2, the three proposed apparatuses of the variant 

NES have been developed, and their parameters were identified. In the meantime, a stiff primary 

system and a flexible primary system have been developed, and their parameters were found. An 

experiment has been conducted to select one variant NES for subsequent study. The key findings 

are as follows. The proposed variant NESs are based on the use of different types of stop blocks: 

the single-stop blocks, double-stop blocks and continuous-contact blocks. The nonlinear stiffness 

and piecewise linear stiffness of each of the variant NESs have been determined based on testing 

results. Comparing the identification results indicates that the apparatus with double-stop blocks 

is closest to the NES as it has a low linear stiffness and high nonlinear stiffness. 

The transient responses of the two combined systems have been investigated in Chapter 3. It 

has been found that there is a critical energy threshold for establishment of the TET. The initial 

energy of the combined systems should exceed this energy threshold so that the combined systems 

could be activated into the 1:1 resonance for the TET to be established. Based on the simulation 

and experimental results, the weakly coupled system possesses a better nonlinear capture than the 

strongly coupled system. Moreover, the accumulated energy capture in the piezoelectric energy 

harvester of the weakly coupled system is greater than the strongly coupled system. 

In Chapter 4, the harmonically forced responses of the weakly coupled system and strongly 

coupled systems have been investigated by simulation. The frequency response plots (FRPs) have 

been obtained by the upsweep and downsweep excitations for different base acceleration levels. 

The results have shown the typical features of the NES: the jumping phenomena and the strongly 

modulated responses (SMRs). The voltage responses at five different load resistances have been 

examined under different base excitation levels. The experimental study has been conducted to 
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validate the simulation study. The results show a good match with those from simulation. The 

typical features such as the jumping phenomena and the SMRs have been observed. 

Future work may consider optimizing the proposed apparatus. For this concern, the 

improvement on the design of the continuous-contact blocks can be investigated. The current 

design of the variant NES with the continuous-contact blocks produces a relatively low nonlinear 

stiffness compared with the variant NES with double-stop blocks. A better design of the quartic 

surface can be used to process a strong nonlinearity in the NES. Finally, the dynamic responses of 

the system subject to random excitation can be an interesting topic to be investigated. 
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