
Online Sequential Learning with Non-iterative
Strategy for Feature Extraction, Classification and

Data Augmentation

by

Adhri Nandini Paul

Lakehead University

A Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

MASTERS

in the Department of Computer Science

Lakehead University

All rights reserved. This thesis may not be reproduced in whole or in part, by

photocopying or other means, without the permission of the author.

ii

Online Sequential Learning with Non-iterative
Strategy for Feature Extraction, Classification and

Data Augmentation

by

Adhri Nandini Paul

Lakehead University

Supervisory Committee

Dr. Yimin Yang, Supervisor

(Department of Computer Science, Lakehead University, Canada)

iii

ABSTRACT

Network aims to optimize for minimizing the cost function and provide better

performance. This experimental optimization procedure is widely recognized as gra-

dient descent, which is a form of iterative learning that starts from a random point

on a function and travels down its slope, in steps, until it reaches to the steepest

point which is time-consuming and slow to converge. Over the last couple of decades,

several variations of the non-iterative neural network training algorithms have been

proposed, such as Random Forest and Quicknet. However, the non-iterative neural

network training algorithms do not support online training that given a very large-

sized training data, one needs enormous computing resources to train neural network.

In this thesis, a non-iterative learning strategy with online sequential has been ex-

ploited. In Chapter 3, a single layer Online Sequential Sub-Network node (OS-SN)

classifier has been proposed that can provide competitive accuracy by pulling the

residual network error and feeding it back into hidden layers. In Chapter 4, a multi-

layer network is proposed where the first portion built by transforming multi-layer

autoencoder into an Online Sequential Auto-Encoder(OS-AE) and use OS-SN for

classification. In Chapter 5, OS-AE is utilized as a generative model that can con-

struct new data based on subspace features and perform better than conventional

data augmentation techniques on real-world image and tabular datasets.

iv

Contents

Supervisory Committee ii

Abstract iii

Table of Contents iv

List of Tables vii

List of Figures viii

Acknowledgements xii

1 Introduction 1

1.1 Overview . 1

1.2 Problem Description . 3

1.3 Contribution . 4

1.4 Organization of Thesis . 5

2 Background and Related Work 6

2.1 Background . 6

2.1.1 Fully-Connected Classifier with Sub-network Nodes 9

2.1.2 Autoencoder . 11

2.1.3 Non-iterative multi layer Autoencoder 12

2.2 Generative Model . 14

2.2.1 Variational Autoencoder . 14

2.2.2 Generative Adversarial Networks 15

2.3 Conclusion . 15

3 Online Sequential Single Layer Classifier with Sub-Network Nodes 17

3.1 Abstract . 17

v

3.2 Introduction . 18

3.3 Method . 21

3.3.1 Online Sequential Classifier with Sub-network Node 21

3.4 Experimental Results . 23

3.4.1 Datasets . 23

3.4.2 Image Classification . 27

3.5 Conclusion . 28

4 Online Sequential Learning with Non-iterative Strategy for Mul-

tiple Layer Neural Network 29

4.1 Abstract . 29

4.2 Introduction . 30

4.3 Method . 32

4.3.1 Online Sequential Autoencoder 32

4.4 Experimental Results . 35

4.4.1 Unsupervised Features Learning: 39

4.4.2 Image Reconstruction . 40

4.5 Conclusion and Future Work . 42

5 Extension of Online Sequential Autoencoder for Data Augmentation 44

5.1 Abstract . 44

5.2 Introduction . 45

5.3 Method . 49

5.3.1 Online Sequential Autoencoder 49

5.3.2 Reparameterization Weight 49

5.4 Experiments . 51

5.4.1 Comparison of Performance of Sampling Techniques and Our

Method for Tabular Dataset 51

5.4.2 Image Data Augmentation . 55

5.4.3 Image Reconstruction . 58

5.5 Conclusion . 59

6 Conclusion & Future Work 60

6.1 Overview . 60

6.2 Future Work . 60

6.3 Conclusion . 61

vi

Reference 63

vii

List of Tables

Table 3.1 Mathematical Notations. 20

Table 3.2 Tabular Datasets. 24

Table 3.3 Image Datasets. 24

Table 3.4 Performance Comparison on Classification Problems

(Mean: Average Testing Accuracy Training Time) . . 26

Table 3.5 Performance Comparison on Image Classification Prob-

lems with Imagenet pre-trained Vgg16 deep features. 27

Table 4.1 Performance Comparison (Mean: Average Testing Ac-

curacy Training Time) of Dimension Reduction . . . 37

Table 4.2 Performance Comparison (Mean: Average Testing Ac-

curacy Training Time) of Dimension Reduction . . . 38

Table 5.1 Performance Comparison on Classification Problems

with Augmented Data 52

Table 5.2 Performance Comparison on Classification Problems

with Augmented Data 57

viii

List of Figures

Figure 1.1 Problems faced by network when defining the number

of layers. 2

Figure 1.2 Overview of proposed networks and construction. . . 4

Figure 2.1 Network architecture of a Sub-network based classifier. 9

Figure 2.2 The abstracted architecture of a multi layer autoencoder. 12

Figure 3.1 Comparison of Validation errors for the full training

and the sequential training of DNA and LEU dataset

where the x- and y-axis show the number of Epochs

and average validation loss, respectively. 20

Figure 3.2 Contents of Encoding Layer Weight of Olivetti Face

Dataset From Top to Bottom with the Dimension of

100, 40 and 10 respectively 25

Figure 4.1 Proposed framework including feature extractor and

classifier. 31

Figure 4.2 The mean squared error (MSE) on testing dataset with

different m and c settings (c = 2P). 35

Figure 4.3 Visualized encoding layer weights (first column), de-

coding layer weights (middle column), and the dif-

ference between encoding layer weights and encoding

layer weights (last column). Each image contains the

reshaped weights of the first 25 neurons. The first row

represents OS-ELM; the second row represents our pro-

posed algorithm. 36

Figure 4.4 Visualizing the Performance Comparison of Features

of USPS Dataset (a) Deep Autoencoder, (b) t-SNE,

(c) PCA and (d) OS-Autoencoder respectively 39

ix

Figure 4.5 Generalization performance comparison on USPS and

Duke dataset based on Autoencoder and our proposed

method where the x- and y-axis show the number of

features and average testing accuracy, respectively. Re-

sult on (a) USPS, (b) Duke. 40

Figure 4.6 Contents of Encoding Layer Weight of Olivetti Face

Dataset From Top to Bottom with the Dimension of

100, 40 and 10 respectively 41

Figure 4.7 Generalization performance comparison on deep fea-

tures (gathered by VGG16) of Scene15 and caltech101

dataset based on Autoencoder and our proposed method

where the x- and y-axis show the number of features

and average testing accuracy, respectively. Result on

(a) Scene15, (b) Caltech 101. 42

Figure 4.8 The qualitative comparisons of small image reconstruc-

tion performance of Deep Autoencoder, Deep Belief

Network(DBN) and our proposed algorithm. The first

three rows from top to bottom: some images randomly

sampled from MNIST training set; the correspond-

ing Deep Autoencoder reconstructed images; the corre-

sponding DBN reconstructed images and OS-Autoencoder

reconstructed images. 43

Figure 4.9 The qualitative comparisons of small image reconstruc-

tion performance of deep autoencoder and our pro-

posed algorithm. From top to bottom: some images

randomly sampled from CIFAR10 testing set; the cor-

responding deep autoencoder reconstructed images; the

corresponding OS-Autoencoder reconstructed images. 43

Figure 5.1 An abstracted comparison of input data mapping through

the subspace among the generative models. 45

x

Figure 5.2 Structure of our proposed method in two layers. In

the first layer, the d-dimensional inputs X map into an

m-dimensional space. The number of hidden nodes m

would be concatenated with a mask to generate fake

data, which will be filtered by a trained model, with

real data, to produce quality output. 48

Figure 5.3 Work Flow of our proposed approach 49

Figure 5.4 Visualized hidden layer learning information of (a)variational

autoencoder [97] and (b) OS-Autoencoder on mnist

dataset. VAE imposed some random signals, and OS-

Autoencoder holds prominent features. 50

Figure 5.5 Generalization performance comparison on Hill-Valley

Dataset based on sampling techniques and our pro-

posed method where each bar represents Accuracy, Pre-

cision, Recall, and F-score respectively 52

Figure 5.6 visualize the structure of encoding 784 dimensional

MNIST dataset into latent space 2 by plotting each

point with coloring by number it is [0,1,. . . ,9] 53

Figure 5.7 Generalization performance comparison on DNA Dataset

based on sampling techniques and our proposed method

where each bar represents Accuracy, Precision, Recall,

and F-score respectively 53

Figure 5.8 Comparison among Confusion Matrix of sampling tech-

niques respectively (a)random over sampling, (b)random

under sampling, (c) Smote and (d) OS-AE for Leu

Dataset . 54

Figure 5.9 Generalization performance comparison on deep fea-

tures (gathered by VGG16) of Cifar10 and Cifar100

dataset based on image augmentation technique and

our proposed method where the x- and y-axis show

the number of epochs and average testing accuracy,

respectively. Result on (a) Cifar10, (b) Cifar100. . . . 56

xi

Figure 5.10 The qualitative comparisons of image reconstruction

performance of VAE, DCGAN and our proposed algo-

rithm. The first three rows from top to bottom: some

images randomly sampled from Cifar10 training set;

the corresponding OS-Autoencoder generated images;

the corresponding VAE reconstructed images and DC-

GAN generated images. 56

Figure 5.11 The qualitative comparisons of data augmentation per-

formance of VAE, DCGAN, and our proposed algo-

rithm. The first three rows from top to bottom: some

images randomly sampled from Cifar100 training set;

the corresponding OS-Autoencoder generated images;

the corresponding VAE reconstructed images and DC-

GAN [77] generated images. 58

xii

ACKNOWLEDGEMENTS

I would like to thank:

First of all, I express my deepest gratitude and special thanks to my supervisor Dr.

Yimin Yang, for providing me the chance to work under his guidance. He is a

teacher and mentor with an unmatched combination of intellect, intuition and wit.

His constructive suggestions, and encouragement is the reason I was able to learn and

grow as a researcher. It was an absolute privilege to work with him on this research.

I express my deepest thanks to my parents for taking part in giving necessary advice

and guidance and arranging all facilities to make learning easier. I choose this mo-

ment to acknowledge their contribution gratefully.

Chapter 1

Introduction

1.1 Overview . 1

1.2 Problem Description . 3

1.3 Contribution . 4

1.4 Organization of Thesis . 5

1.1 Overview

The goal of AI is to ameliorate the interaction between computers and the mod-

ern world and associate the connection intelligently. Nowadays, deep learning has

penetrated this concert with an artificial neural network and revolutionized many

real-world applications such as computer vision [58], speech process [35], and com-

putational biotechnology [96], and so on. To cope with the increasing demand for

usage of these applications, a wide variety of neural structures appeared. Deep Neu-

ral Network(DNN) is a variant of neural structures where more layers can add to

solve complex nonlinear problems and produce an unprecedented result by utilizing

iterative learning. So we start with a question: What is iterative learning? Gener-

ally speaking, it is a training process of neural networks to improve their learning

accuracy. Every neural network has been build upon input and output nodes, which

connect through some hidden layers. Raw data fed into the network through the

input node. A set of actions performed to generate a result as the output. Output

2

compared with the actual output of the dataset and error is fed back to that network

to update the weights of hidden layers, which referred to as back-propagation. This

iterative learning continues until the produced output reaches close to the actual out-

put of the dataset. As we move backward to update the weights, it takes a long time

to get the proper gradient values. Sometimes, the gradient gets too small and gets

stuck into local minimum value, which termed as vanishing gradient. For reducing

the complexity faced by gradient descent, some non-iterative learning algorithms have

emerged, such as Random Forest (RF) [6], Quicknet [27], Extreme Learning Machine

(ELM). Unlike iterative learning, the fact that one needs to feed all the training data

to the model at once for non-iterative learning, and load the whole huge dataset into

the computer memory is infeasible.

The goal of a machine learning model is to capture underlying patterns well from any

Figure 1.1: Problems faced by network when defining the number of layers.

data of the problem domain. However, underfitting and overfitting are the biggest

problems faced by machine learning algorithms. Underfitting occurs when a model

is quite simple and unable to learn prominent features of the data. As a result, it

suffers from high bias and low variance. On the other hand, overfitting appears when

a model captures all underlying patterns from data rather than a prominent one.

These models face low bias and high variance.

In Figure 1.1, underfitting and overfitting problems are demonstrated through a re-

gression model where the model is trying to fit through the actual data point. In

the first graph, the model learns a less dominant feature by intersecting fewer data

points, which implies an underfitting problem. In the second graph, the model yields a

smaller distance from data points that define the reliability of the model. In the third

graph, the model captured all trends rather than the dominant one, which causes

overfitting problems. To solve these problems, DNN required to define an optimal

number of layers. Having fewer layers leads to underfitting, and then an increasing

3

number of layers will cause an overfitting problem. For reducing these problems,

a large number of labeled training data required. Various data augmentation tech-

niques are available such as: rotating images, flipping images, adding blur, adjusting

saturation, cropping, and so on. Some DNN based generative models named Genera-

tive Adversarial Networks(GANs)[29] and Variational Autoencoders (VAEs) [55] has

gained attention from researchers because of generating coherent and detailed images

in an unsupervised manner. However, these models are trapped in back-propagation

and suffer high-convergence. That is the reason for these models are expensive and

time-consuming. Moreover, they focused on only image data.

1.2 Problem Description

The main problems on which we are focused on to be solved are as follows:

• Iterative learning-based models suffer from gradient descent problems, and as a

result, it required lots of time to converge for getting a small norm of network

weight vector.

• Most of the traditional hierarchical networks need a tremendous amount of

computation power and time to train how to reduce time complexity and gain

better performance.

• Neural networks often face overfitting problems due to the small scale of the

dataset. So we focus on finding out a way to improve the generative model

efficiently for both tabular and image data augmentation.

• Neural networks suffer from selecting an optimal number of hidden layers. How

to efficiently generate the number of hidden nodes as well as layers?

In our research, we focus on building SLFN by utilizing online sequential training,

which can obtain better classification accuracy than traditional ones. The whole

process and the experimental result described in Chapter 3. By transforming high

dimensional data into the essential feature, the sub-set can increase the efficiency of

machine learning algorithms significantly for object classification. For that reason,

we proposed an autoencoder and concatenated it with the classifier to build a hier-

archical network in Chapter 4 (See Figure 1.2). This hierarchical network can solve

the problems faced by gradient descent and provide better performance without con-

suming a massive amount of memory as well as time. We noticed that our proposed

4

Figure 1.2: Overview of proposed networks and construction.

autoencoder works well in the field of feature extraction. For that reason, in Chapter

5, we extend this autoencoder to generate new data and deploy it to solve the over-

fitting problem. We test our proposed model in both image and tabular datasets and

compare the result with some data augmentation techniques.

1.3 Contribution

This thesis focuses on the improvement in the field of object classification. We de-

pict the overview in Figure 5.3, to provide the abstraction of our work and how we

modify our research work as a whole to build an efficient one. Therefore, through our

experiments, this paper has made the following contributions:

• A classifier with online sequential learning proposed that it can optimize the

usage of hidden nodes and calculate the input weight instead of using random

value

• A multi-layer network with an online sequential learning strategy is buid which

is a combination of feature extractor and the classifier. Non-iterative strategy

is exploited to build like BP based algorithm can process data batch-wise, but

there is no need to configure any learning parameters such as learning rate,

number of learning epochs, stopping criteria, and other predefined parameters.

5

• We propose a generative model by utilizing our proposed autoencoder. Experi-

mental results show that a DCNN model with augmented data via our proposed

algorithm acquire higher classification accuracy rather than same DCNN model

itself or other data augmentation techniques. For instance, Resnet [33] combined

with our method achieves 94.68% image recognition accuracy from CIFAR-10

[57] augmented dataset with only five epochs.

1.4 Organization of Thesis

This section was all about introduction and rest of the thesis proceeds as follows,

Chapter II gives detailed insight into the background for the various methods and

algorithms analyzed in this thesis.

Chapter III introduced an Online Sequential Classifier with Sub-network Node for

object classification.

Chapter IV introduced an Online Sequential Autoencoder(OS-AE) to extract deep

features for dimension reduction and image reconstruction. Moreover, we extend

Chapter III to build a multi layer network that can classify the object based on the

extracted feature.

Chapter V is an extension of chapter III, and we utilize features extraction quality

of OS-AE to generate both image and tabular data.

Chapter VI is the last in this thesis, which summarizes the whole work in this thesis

and further explaining the prospects of the research.

6

Chapter 2

Background and Related Work

2.1 Background . 6

2.1.1 Fully-Connected Classifier with Sub-network Nodes 9

2.1.2 Autoencoder . 11

2.1.3 Non-iterative multi layer Autoencoder 12

2.2 Generative Model . 14

2.2.1 Variational Autoencoder . 14

2.2.2 Generative Adversarial Networks 15

2.3 Conclusion . 15

2.1 Background

Neural Networks have been a hot topic since their first formulation during the 40s. Af-

ter their introduction, many usages have discovered in the field of machine learning

and artificial intelligence. A standard neural network constructs with many con-

nected and straightforward processors named neurons, some non-linear activation

passes through the neurons to activate. Input neurons get activated through sensors

come from input data; sequentially, other neurons get activated through weighted con-

nections from previously active neurons. A optimized weighted connection minimizes

the cost function and trigger network to exhibit desired behavior. Many successive

non-linear layer based models were popular in the era of the 60s to 70s. An effi-

cient gradient descent method called backpropagation (BP) developed and applied to

7

train these models. However, BP-based training of NNs had been trying in practice

because of less computation power. In 1980, Neocognitron [23] was the first deep

artificial NN that sequentially assimilate the neuro-physiological insights of the vi-

sual cortex and response to specific properties of visual sensory inputs, such as the

orientation of edges. It introduced convolutional NNs (CNNs or convnets), where the

receptive field of a convolutional unit (basically rectangular) with a given weight vec-

tor (a filter) shifted step by step across a 2-dimensional array of input values (pixels

of an image). It is quite similar to modern, contest-winning, feed-forward, gradient-

based Deep CNN networks such as Alexnet [58], Resnet [33], and so on by alternating

convolutional and down-sampling layers.

Nevertheless, Fukushima used WTA-based unsupervised learning rules [25] instead

of backpropagation to set the weights in Neocognitron. For downsampling purposes,

he altered Max-Pooling (MP) by Spatial Averaging. In the new millennium, DL

combinations of BP based CNNs and MP able to provide outstanding performance

because of the availability of multi-processor Graphics Cards Unit (GPU). As GPUs

are widely popular for video games and to mitigate the up-growing demand, the

competitive market had reduced hardware prices. GPUs accelerate matrix and vec-

tor multiplications and speed up the learning ability of NN. As a result, deep NNs

have finally gained wide-spread attention and contributed many efficient alternative

machine learning algorithms such as kernel machines [91], many feed-forward neural

networks(FNNs). Most FNN applications focused on FNNs with few hidden layers as

additional layers often did not provide any kind of practical benefits. Many practition-

ers state that a single layer feed-forward neural network(SLFN) with enough hidden

units can approximate any multivariate continuous function with arbitrary accuracy

[56]. Over the past two decades, SLFNs have become an exciting topic for many

researchers because of their universal approximation capability [9]. It revolutionized

the machine learning technique and played a vital role in the field of both regression

and classification-related problems. An SLFN builds upon one input layer to receive

input from external environments, a single hidden layer, and one output layer to send

network output to external environments. We can say that for N arbitrary distinct

samples (xi, ti) , the network output is

fL(x) =
L∑
i=1

βββih(ai · xj + bi) =
L∑
i=1

Hi · βββi, j = 1, . . . , N (2.1)

8

where h(·) denotes an activation function, (ai, bi) denotes the input weight and bias

of ith hidden node , and βi is the ith output weight between the hidden node and the

output nodes. A neural network gives small squared error when the weight of the

nodes are small as well [3]. Because, the generalization performance largely depends

on the weights rather than number of nodes. if activation function h(·) is invertible,

ai and βββ would be the smallest norm and provide the smallest training error. Accord-

ing to the neural network theories, SLFNs work as universal approximators whenever

(a, b, β) parameters are adjusted [104]. Back-propagation works behind of training

SLFNs with additive hidden nodes. Stochastic gradient descent BP (SGBP) [49] is

one of the main variants of BP for the batch learning process. The goal is to min-

imize the cost functions through gradient descent in the parameter space of NN by

adapting control parameters (weights). Sometimes, NN may suffer from vanishing or

exploding gradients because of backpropagated error signals with standard activation

functions. As a result, the gradient would either shrink rapidly or grow out of bounds.

For solving these problems, numerous approaches proposed to gain steepest descent

through BP. Such as Least-squares methods (Gauss-Newton, Levenberg-Marquardt)

[26, 72] and quasi-Newton methods [83] . However, they are computationally expen-

sive for large NNs. For increasing the learning speed, ad-hoc constants added [18]

to the slope of the activation function in BP. Moreover, momentum was introduced

to determine the direction of gradient [84]. Some algorithms approached to control

BP step size for adapting a global learning rate [61] instead of computing individual

learning rates for each weight [48]. In BP based online learning, each weight’s learning

rate inversely proportional to the empirical standard deviation of its local gradient

[73]. As a result, stochastic weight fluctuates. For minimizing this fluctuation, se-

quential learning algorithms have become an integral part of training feed-forward

networks. What is sequential learning? It is a neural procedure associated with find-

ing out about the best possible ordering of events [10]. According to Ritter et al.

[81], “The order in which material is presented can strongly influence what is learned,

how fast performance increases, and sometimes even whether the material is learned

at all”. Resource Allocation Network (RAN) [76] and its extensions [69, 103] are

sequential learning algorithm and gained popularity because of it’s fastest learning

speed. However, it handles data one by one instead of chunk by chunk (block of

data). Moreover, it can only work with either additive or radial basis function (RBF)

types of hidden nodes [44]. Huang et al. [64] proposed an online sequential learning

algorithm that process data chunk by chunk. However, it faces problem in choosing

9

Figure 2.1: Network architecture of a Sub-network based classifier.

appropriate number of hidden nodes. Yang et al. proposed a non-iterative learning

algorithm consisting of a hidden node within a sub-network, generated by calculation

and provide competitive accuracy [100].

2.1.1 Fully-Connected Classifier with Sub-network Nodes

Network can grow sub-network nodes that form by pulling back residual error to

hidden layer. It forms through a single hidden node or several nodes and focused

on reaching the smallest training error as well as the smallest norm between output

weight and hidden nodes [2, 3].

According to Bidirectional ELM [36], this residual error can be pulled back to the

network, which will help to select a minimal number of neurons or sub-network itself

to get higher classification accuracy. N numbers of distinct samples of (xi, ti
N) and

a sigmoid or sine activation function h , the input weight and output weight of nth

subnetwork would be

α̂ααn = h−1(u(en−1)) · xT (Id×d/c+ xxT)−1, (2.2)

β̂ββn = H†g−1(en−1), (2.3)

where h−1(·) has been used as the inverse function of h(·); u is used as a normalized

10

function which processes the input and target data by mapping from original range

to (0,1]; This functions applied to the residual network error of the previous subnet-

work; xT (I/c+ xxT)−1 = x−1 is the Moore-Penrose generalization inverse of training

samples. Meanwhile, H† = (HTH + (Im×m)/c)−1HT can be used in Eq. 2.3 to get

the output weight of that sub-network. The residual error of nth sub-network can be

defined by Eq.2.5

en = t−H · βββ, (2.4)

Huang et al. [64] proved that non-iterative learning issue can be solved by online

sequential training. Instead of sending the entire dataset, data will be presented

chunk by chunk with varying or fixed lengths of the chunks and the output weights of

which constantly updated by adopting a Recursive Least Squares (RLS) algorithm.

For that reason, it can deliver better performance than the other iterative learning

algorithms and successfully applied in the field of system modeling and object clas-

sification, such as online nonlinear system identification [85], consumer sentiments

prediction [89], and time series prediction [31]. However, it may still suffer from some

issue of instability due to randomized input weight, and as a result, generalization

performance may degrade if the number of hidden nodes in SLFNs has not set ap-

propriately [30, 46].

From the last few decades, data mining is started from all kinds of different actions

happening around the world, such as weather updates, medical records, communica-

tion system to build a data warehouse that machines can use to learn. For learning

the intricate structure of these high-dimensional data and the object classification ac-

curacy, the neural network has utilized by contributing some benchmark hierarchical

networks, which work as a pioneer in the deep learning domain. Such as : Deep Belief

Network [38], recurrent neural network [71], multi-layer neural network [14, 94, 95]

non-iterative hierarchical network [52, 102] and so on [33, 66, 67, 93]. These networks

work well at discovering intricate structures in high-dimensional data as they are ef-

ficient to extract meaningful features and map these features for classification. What

are the features? Generally speaking, features are a low-dimensional representation of

training or testing objects, which can provide insights into the raw high-dimensional

input data. The quality of the features determines whether the subsequent classi-

fication and recognition will get a good result. The feature extraction techniques

designed to reduce dimensional by choosing informative and non-redundant feature

subset from a large number of components in data. For that reason, processing high

11

dimensional data requires a large amount of memory and computation power [34].

Based on the availability of label information, feature extraction techniques devel-

oped in a supervised, unsupervised, or semi-supervised manner. Supervised methods

evaluate the correlation between feature and class labels, based on which the features

are selected. It includes linear discrimination analysis (LDA) [16], neighborhood com-

ponents analysis (NCA) [28], Isometric Projection [7].

Unsupervised feature extraction usually focuses on mapping function to find the best

subspace from the geometrical structure of the data space. It includes principal com-

ponent analysis (PCA) [50], information network embedding [90]. Many machine

learning practitioners believe that unsupervised feature extraction methods involving

neural networks can achieve high performance rather than traditional pattern recog-

nition methods because deep learning method automatically learns features from big

data. There are many ways to extract features based on neural networks, such as

extracting features through convolutional neural networks (CNN) or using unsuper-

vised learning models, autoencoders, etc. Autoencoders [92] are a special variant of

neural networks, involving an unsupervised learning algorithm that compresses the

input into a lower-dimensional and extracts prominent features efficiently. Moreover,

they can reconstruct the output from that lower-dimensional representation. A brief

description has given below

2.1.2 Autoencoder

Autoencoder is a backpropagation based algorithm through which real data provide

as input [37]. Suppose the input vector x is first mapped to a hidden representation

where z = f(x) and passed through the encoding layer, construct with one or more

layers of non-linearity. The hidden representation z is afterward passed through

the decoder to generate output x̂ = g(z), which parametric the decoder function g.

Similar to the encoder, the decoder network built on multiple layers of non-linearity.

This process needs several iterations to adjust its weight and bias to learn deep

features with the reduced numbers of hidden nodes, and based on these features; it

can reconstruct whole input as an output. The goal of the autoencoder is to minimize

the following cost function:

L(x, g(f(x))) = ||x̂− x||2, (2.5)

12

Eq. 2.5 utilized to reduce the error between the inputs and the reconstructed outputs

of the network and gradually decreased until it reaches below a threshold, which

consumes much time. For reducing the time consumption rate, a non-iterative multi-

layer autoencoder introduced [51, 99]. However, hidden nodes used in the encoding

layer are randomly generated that can deteriorate useful features. Instead of using

several random layers, a multi-layer autoencoder introduced, [99], where only the

encoding layer weight has been generated randomly, based on which the decoding

layer weight has calculated.

2.1.3 Non-iterative multi layer Autoencoder

Non-iterative multi-layer autoencoder learns prominent features based on singular

values and significantly faster than the existing deep networks [51]. Instead of using

several random layers, input data mapped into L dimensional feature space. Though

the encoding layer weight has generated randomly, decoding layer weight has cal-

culated. A brief description of the non-iterative multi-layer autoencoder algorithm

explained in the following four steps.

Figure 2.2: The abstracted architecture of a multi layer autoencoder.

Step-1 : Randomly initialize the encoding layer weights α and biases b using an

orthogonal random process. The orthogonal random process will ensure the random

weights and biases satisfy the conditions in Eq. 2.6

αααTααα = IIIm×m, b
T b = 1, (2.6)

13

where Im×m represents an m × m identity matrix. After initializing the encoding

layer, obtain the encoding layer output H through Eq. 2.7.

H = g(Xααα + b), (2.7)

Step-2 : Calculate the decoding layer weights β through Eq. 2.8

βββ = H†g−1(Y), (2.8)

where g−1(·) is the inverse function of g(·). This inverse function helps βββ to be the

smallest norm among all the least-squares solutions. For instance, if g(·) = sin(·),
then g−1(·) = arcsin(·); if g(·) is sigmoid function, then g−1(·) = −log(1/(·)− 1). It

is worth noting that, the pseudo inverse H† [79] is calculated by Eq. 2.9.

H† = (HTH + (Im×m)/c)−1HT , (2.9)

Then, obtain b regarding Eq. 2.10

b = rmse(Hβββ − g−1(Y)), (2.10)

where rmse(·) is the root mean squared error. The Singular Value Decomposition

(SVD) of Eq. 2.8 can be written as

Hβββ =
N∑
i=1

ui
d2
i

d2
i + C

uTi X, (2.11)

where u are the eigenvectors of HHT and d are the singular values of H and SVD

of input data X. That is reason why H works as the projected feature space of input

data. For that reason, output weight βββ of this autoencoder can learn feature from

input data. However, it is a non-iterative process, and there is no way to upgrade the

learning process based on the error between the inputs and the reconstructed outputs

of the network. Moreover, decoding layer weight is calculated based on encoding

layer weight which generated randomly. As a result, it decreases the efficiency of

autoencoder by capturing anonymous information rather than relevant ones.

14

2.2 Generative Model

The generative Model is a theory that involves any kind of data distribution using

unsupervised learning, and it has gained tremendous popularity within a few years.

Generative models aim to learn existing data distribution from the training set and

generate new data points by adding variations. It is quite hard to learn exact data

distribution, either implicitly or explicitly. Neural network learns true data distribu-

tion efficiently and model the learned distribution by integrating new ideas. Among

the generative models, Variational Autoencoders (VAE) and Generative Adversar-

ial Networks (GAN) are two most efficient approaches using neural networks in an

unsupervised fashion. A brief discussion has given below.

2.2.1 Variational Autoencoder

In machine learning, dimension reduction plays a key role by choosing attributes from

features that describe the dominant portion of data and utilize in many situations

where low dimensional data is required such as data transmission, Data Storage, heavy

computation. This reduction implies either by selection (choose prominent features

from existing) or by extraction (combine old features to create a meaningful minimal

amount of new features). The ideal dimension reduction approach is to find the

best encoder/decoder pair that can keep the maximum information while encoding

and generate a minimum of reconstruction error when decoding from a designated

dataset. Variational autoencoders (VAE) [55, 80] are probabilistic encoder/decoder

pair that uses a stochastic encoder to learn the probability distribution q(z | x) from

training data and pair it with a generative network that maximizes the log-likelihood

log p(x | z) of training data .

log(p(x)) > Eq(z | x)[log(p(x | z))]−KL(q(z | x)||p(x)),

KL is the Kullback–Leibler divergence between two distributions. Equation 2.2.1 aims

to maximize the log-likelihood of our data distribution by adding a regularization

term given by KL(q(z | x)||p(x)). VAE is trying to minimize the lower bound of

log(P (X)) the KL-divergence term is less than 0. This KL-divergence is similar to

maximize Eq(z | x) as a maximum likelihood estimation and performed as a decoder.

15

2.2.2 Generative Adversarial Networks

The Generative Adversarial Networks (GAN) [29] are built based on a min-max ad-

versarial game between two neural networks to find the Nash equilibrium point .

One is a generative model, G, and another is discriminative model, D. A generator

model G uses a function G(z) to capture the data distribution from sample z, and a

discriminator model D computes the probability that a sample came from the data

distribution rather than generative model distribution. Basically, the Generator fo-

cuses on generating realistic images and then send to the Discriminator to decide

whether the image is fake or real.

min
G

max
D

V (D,G) = Ex∼pdata(x)[log(D(x)] + Ez∼pz(z)[log(1−D(G(z)))], (2.12)

The Equation 2.12 depicts that if input of Discriminator comes from true data distri-

bution, then the output of D(x) should be 1 for maximizing the above function w.r.t

D. On the other hand, if the images are generated by the Generator then D(G(z))

should be 1 to minimize the objective function w.r.t G. In a nutshell, the network

trains to maximize parameters of Discriminator using Gradient Ascent and minimize

the same parameters of Generator using Gradient Descent.

One of the popular models of GAN involving Convolutional Neural Network is DC-

GAN [77], which stands for Deep Convolutional Generative Adversarial Networks.

This network takes input as a noise of random numbers simulated as uniform dis-

tribution and outputs an image of the desired shape. The network builds upon

many convolutional, deconvolutional, and fully connected layers to map the input

noise to the desired output image. This network trains using mini-batch stochastic

gradient descent tuned with hyperparameters. Though the training the network is

time-consuming and require enormous computation power, generators create realistic

vector arithmetic pattern using which images manipulates creatively.

2.3 Conclusion

Deep learning plays a vital role in fast-growing machine learning technology. The

accelerated use of deep learning algorithms in diverse fields demonstrates the impor-

tance of this technology and the movement towards future advancement. Besides, it

is essential to note that the hierarchy of layers is the main factor in creating a pro-

ductive application of profound learning [11]. Back propagation-based learning has

16

become a paradigm to train hierarchical neural networks as it is quite efficient to get

optimal weight. However, the training consumes excessive time than required, which

has been a significant dilemma for many applications. Various kinds of approaches

proposed to upgrade the back-propagation algorithm to get optimal gradient descent

are not efficient enough to reduce time complexity. Moreover, the latest data in-

dicates that network depth is critical because deeper NN’s classification findings are

more reliable than shallow ones. However, unrestricted network depth carries tremen-

dous computing costs with little efficiency boost. According to a recent survey [86],

a quest for solution-computing, perturbation-resistant, low-complexity NNs that can

be represented by a few bits of information that reduce time complexity and boost

network performance in both supervised and unsupervised learning. So, we propose

an event-driven, resource-efficient, and quantized hierarchical network that can solve

the high variance of gradient descent problem and provide excellent generalization

performance without consuming lots of time. Moreover, we compare our model with

other hierarchical networks with the same dataset to compare our model efficiency.

17

Chapter 3

Online Sequential Single Layer

Classifier with Sub-Network Nodes

3.1 Abstract . 17

3.2 Introduction . 18

3.3 Method . 21

3.3.1 Online Sequential Classifier with Sub-network Node 21

3.4 Experimental Results . 23

3.4.1 Datasets . 23

3.4.2 Image Classification . 27

3.5 Conclusion . 28

3.1 Abstract

The non-iterative pseudo-inverse matrix-based neural network training algorithm can

achieve prominent generalization performance and, most importantly, much faster

than many other popular machine learning algorithms, including the iterative learn-

ing based neural network. Over the last couple of decades, several variations of the

non-iterative neural network training algorithms proposed to improve the performance

in learning patterns from the data, such as: extreme learning machine (ELM) [43],

random vector functional link network (RVFL) [74], Moore-Penrose Inverse [79]. The

18

hidden nodes in these types of NN generated randomly, and output weights are deter-

mined analytically. The random feature mapping is the key factor in measuring the

stability of these types of NN, which depends on hidden nodes. However, there is no

proper way to choose an optimal number of hidden nodes and activation functions to

ensure the high quality feature. Moreover, one needs enormous computing resources

to train the neural network as it does not support iterative training in nature. In

this chapter, we exploit a non-iterative learning strategy with online sequential for

single layer network with sub-network nodes that can optimize number of hidden

nodes. The experimental results show that the proposed approach achieves satis-

factory classification accuracy on many classic machine learning benchmark datasets

with inadequate time consumption.

3.2 Introduction

From the past few years, the neural network has become an essential part of the ma-

chine learning family by contributing some benchmark methods such as autoencoder

[92], Deep Belief Network [38], recurrent neural network [71], non-iterative hierar-

chical network [102] and so on [33, 66, 67, 93] for learning the intricate structure of

high-dimensional data and object classification. The training time of these neural

networks is generally time-consuming, which has been a significant bottleneck for

many applications. As input transferred through higher or same dimensional space

in each layer, the number of optimization parameters increases rapidly. This rapid

increase is primarily the result of the underlying stochastic gradient method used.

As a result, NN requires a lot of computation power and time to train the network.

In fact, after consuming a tremendous amount of time, the output error of the net-

work will stop or reduce slowly. For optimizing the parameters, a sequential training

algorithm conserves information from input and train it sequentially. In [53], Kim

proved through experiments that sequential training achieved a lower validation loss

than the full training. This experimental result drives as a motivation to work with

sequential training. For validating that claim, an experiment has been conducted on

full training and our proposed sequential learning algorithm to compare the valida-

tion loss, which visualized in Figure 3.1. From this experiment , we can see that the

validation error of sequential learning decreases rapidly with learning epochs. In [22],

a brief review has been provided about sequential learning and explained a problem

faced by it named “catastrophic forgetting” (CF). It is a consequence of input data

19

distribution overlapping [21]. For that reason, it disturbs the subsequent learning by

eliminating information about previously learned behavior. New learning changes the

weights of previously learned inputs and generates the wrong outputs. As a result,

the error of the old information increases catastrophically after adding new learning,

and forgetting occurs. Pseudorehearsal is an efficient way to reduce CF with the ben-

efit of relearning [82]. It restricts the changes in previously learned function so that

new learning only influences local changes by keeping the rest of function unaffected.

Huang et al. [64] proposed pseudorehearsal based SLFN by utilizing Moore-Penrose

Inverse [79], which can reduce the training time of neural networks a thousand times

and delivers better performance than some conventional methods. It builds upon one

input layer which can receive the stimuli from external environments, single-hidden

layer with some nodes, and one output layer that generates output to forward it to

external environments. However, the hidden layer generated randomly with infinite

numbers of hidden nodes, and its input weights randomly generated [42]. Various

studies [1, 8, 64] show that an appropriate number of neurons gained by some op-

timization methods work well rather than heaps of hidden nodes. Instead of using

random hidden nodes along with randomized input weight, Yang et al. proposed a

non-iterative learning algorithm consisting of a hidden node within a sub-network,

generated by calculation [100]. This subnetwork hidden nodes can be grown by itself

in the process of pulling back the residual network error to hidden layers. As it is a

non-iterative learning algorithm, one needs to load the whole huge dataset into the

computer memory is infeasible. Driven by this fact, a motivation arises: can we

use online sequential learning to build our classifier for obtaining better

performance?

In particular, this chapter has the following contributions:

1. Our online sequential classifier with m sub-network nodes provides a similar or

much better generalization performance without maintaining a large number of

hidden nodes. It reflects in the experimental result, which shows a significant

increase in training accuracy within less time.

2. Generalization performance of this network is not sensitive to regularization

parameter C. C is a pre-defined constant and range ∈ {2−10, 2−9, ..., 29, 210}.
For that reason, users need to follow trial-and-error method to get the optimal

value of C. Any random value of C will not affect the generalization performance

of OS-SN in the learning process.

20

50 100 150 200 250 300

0.2

0.4

0.6

0.69

0.43

0.2

0.36 0.35 0.35

0.44

0.25

0.14
0.1 0.1 0.1

Number of Epochs

V
al

id
at

io
n

L
os

s
DNA Dataset

Full training

Sequential training

50 100 150 200 250 300

0.2

0.4

0.6 0.58

0.31
0.26

0.19
0.15 0.15

0.27
0.22 0.19

7 · 10−28.3 · 10−28.3 · 10−2

Number of Epochs

LEU Dataset

Full training

Sequential training

Figure 3.1: Comparison of Validation errors for the full training and the sequential
training of DNA and LEU dataset where the x- and y-axis show the number of Epochs
and average validation loss, respectively.

Table 3.1: Mathematical Notations.

Notation Definition Shape
α hidden layer (encoding layer) weights d×m
bα hidden layer (encoding layer) biases 1×m
β output layer (decoding layer) weights m× o
bβ decoding layer biases 1×m

mask neuron embedding layer d×m
X input data n× d
X̂ reconstructed input data n× d
Y target data n× o
Ŷ neural network output n× o
H hidden layer output (encoding) n×m
g(·) activation function N/A
c a constant 1
d input dimension 1
m number of neurons in hidden layer 1
o output dimension 1
n number of samples 1
L number of subnetworks 1
α̂n input weight of nth subnetwork d× o
βn output weight of nth subnetwork o× o
h(·) activation function N/A
en residual error of current subnetwork n× o

21

3.3 Method

The proposed method is designed for building an online sequential version of single

layer classifier with sub-network nodes where the residual network error feed back

into the network[100]. We define some mathematical notations in Table 3.1 for future

use in this paper. In Table 3.1, g(·), c, d, m, o, and n are activation function which

is the element-wise operation and other notations are all matrices.

3.3.1 Online Sequential Classifier with Sub-network Node

We would split the data along with target label data with n size and send it to the

network for training. Firstly, we would use (x0, t0) chunk of data for the initial training

of the network. Afterward, ei represents the residual network error and (α̂ααi, β̂ββi) defines

the input weight and output weight, which update in every iteration. For the first

training batch ααα0 (initial training phase), according to Eq. 2.2 and pseudo-inverse of

the training sample, we get Eq. 3.1

ααα(0) = x−10 · h−1(e0) = (xT0 x0 + (Id×d)/c)
−1xT0 h

−1(e0), (3.1)

We would use m0 to represent xT0 x0+(Id×d)/c. Now we can write Eq. 3.1 in following

way:

ααα(0) = m−10 xT0 h
−1(e0), (3.2)

After the initial training, we would update the inputweight in a sequential manner

with next batch of training samples (xi, ti). We combine x0 and x1 together as well

as their corresponding residual error e0 and e1, theoretically, we can get

α̂αα1 = m−11

[
x0

x1

]T [
h−1(e0)

h−1(e1)

]
, (3.3)

where

m1 = (Id×d)/c+

[
x0

x1

]T [
x0

x1

]
,

= (Id×d)/c+ xT0 x0 + xT1 x1,

= m0 + xT1 x1,

(3.4)

22

and [
x0

x1

]T [
h−1(e0)

h−1(e1)

]
= xT0 h

−1(e0) + xT1 h
−1(e1),

= m0m
−1
0 xT0 h

−1(e0) + xT1 h
−1(e1),

= m0ααα(0) + xT1 h
−1(e1),

= (m1 − xT1 x1)ααα(0) + xT1 h
−1(e1),

= m1ααα(0) − xT1 x1ααα(0) + xT1 h
−1(e1),

(3.5)

According to Eq. 3.3, Eq. 3.4, and Eq. 3.5, we derive

α̂αα1 = m−11

[
m1ααα(0) − xT1 x1ααα(0) + xT1 h

−1(e1)
]
,

= ααα(0) −m−11 xT1 x1ααα(0) + m−11 xT1 h
−1(e1),

= ααα(0) + m−11 xT1
[
h−1(e1)− e1ααα(0)

]
,

(3.6)

We can generalize Eq. 3.6 to

ˆααα(i+1) = ααα(i) + m−1i+1x
T
i+1

[
h−1(ei+1)− xi+1ααα(i)

]
, (3.7)

Instead of calculating inputweight α̂n for each chunk of data, we can use the Eq. 3.7

as a previous knowledge of inputweight to update the weight of new chunk of data.

We would train our OS-Subnetwork in the following manner:

Algorithm 1 Subnetwork training algorithm

Result: Trained α̂ααn, β̂ββn,

Consider (xi, ti
N) as training dataset L = 1 and e = t

while L < Lmax do

calculate (α̂ααL,β̂ββL) with Eq. 3.2 and 4.1

calculate eL with Eq. 2.5;

L = L+ 1;

end

Suppose, for initial training is (xinit,tinit) and remaining data would consider for

sequential training (xseq,tseq). If total numbers of training epochs is Total Epochs

and batch size for sequential data is BATCH SIZE.

23

Algorithm 2 OS-Subnetwork training algorithm

Result: Update αααL sequentially and calculate the corresponding βββL

Split the dataset for initial and sequential training

epoch← 0 ;

For(xinit,tinit, we obtain αααL and βββL through Algorithm 1 for each subnetwork

while epoch < Total Epochs do
l← 0

; while l < length(xseq) do

if l +BATCH SIZE ≤ length(xseq) then
xbatch ← xseq[l : l +BATCH SIZE];

tbatch ← tseq[l : l +BATCH SIZE] ;

else
xbatch ← xseq[l :];

tbatch ← tseq[1 :];

end

l← l +BATCH SIZE ;

Update sequentially αααL through Eq. 3.7 and calculate βββL for (xbatch,tbatch)

following 1;

end

epoch← epoch+ 1;

end

3.4 Experimental Results

We choose dataset from a diverse environment to measure the efficiency of our pro-

posed classifier. For that reason, we would describe the dataset and compare our

proposed classifier with other classifiers in this section,. Moreover, we use the mean

classification accuracy as one of the evaluation metrics to test the performance.

3.4.1 Datasets

For image data classification, we select six databases which described in Table 3.3

two datasets related to numeric values are mnist and USPS. Afterward, Ollivetti for

24

Table 3.2: Tabular Datasets.

Dataset #Features #Train #Test #Category
Mushroom 256 7291 2007 2
Acoustic 51 40000 58000 3

Hill Valley 101 606 606 2
Protein 357 17766 6621 2
Duke 7129 29 15 2

Leukemia 7129 38 34 2
DNA 180 1046 1186 3

Credit Card Fraud Detection(CCFD) 30 21100 64807 2

Table 3.3: Image Datasets.

Dataset Training Image Testing Image Category
USPS 7291 2007 10
Mnist 60000 10000 10

Olivetti Face 200 200 40
Satimage 4435 2000 6
Cifar10 50000 10000 10
Cifar100 50000 10000 100
Scene15 2250 1610 15

Caltech101 6000 3144 102
Caltech265 20560 10047 257

25

face dataset, Cifar10 and Cifar100 dataset are related to objects and Scene15 [20] are

based on Category scene.

Figure 3.2: Contents of Encoding Layer Weight of Olivetti Face Dataset From Top
to Bottom with the Dimension of 100, 40 and 10 respectively

mnist/USPS datasets both are hand-written dataset where mnist has a training set

of 60,000 examples and a test set of 10,000 examples. The digits have centered in a

fixed-size, which is 28x28 image. USPS dataset are 16X16 grayscale pixels were 7291

for training and 2007 for testing.

Olivetti Face dataset has ten different images of each 40 distinct persons. The im-

ages were taken by varying facial expressions (such as open or closed eyes, smiling or

not smiling), and facial details (glasses or no glasses). We considered five images of

each person in total of 200 images for training and rest for testing purposes.

Cifar10/100 datasets contain a natural colored image with 32x32 pixels. Cifar10

consists of 60,000 color images in 10 categories, including airplane, bird, auto-mobile,cat,

dog, frog, deer, ship, horse and truck. Cifar100 dataset also builds upon 60000 color

images of 100 categories. Both datasets have been split where 50000 images for train-

ing and remaining for testing. In Cifar10 dataset 5000 data per class and cifar100

dataset with 500 data per class has been used.

Scene15 dataset is a dataset containing 4486 gray-scale images where 3860 images

Table 3.4: Performance Comparison on Classification Problems (Mean: Average Testing Accuracy Training Time)

Dataset
ELM SVM RF OS-SN

Accuracy Time(s) nodes Accuracy Time(s) Accuracy Time(s) Accuracy Time(s) SN
Hill 76.25% 0.1647 500 58.67% 0.1295 56.90% 8.59 92.27% 0.011 2

Mushrooms 88.91% 0.9147 500 89.17% 38.62 52.90% 8.59 89.27% 0.11 2
Mnist 91.06% 8.46 500 80.58% 478.59 96.78% 403.59 85.80% 0.68 3
USPS 93.54% 2.08 500 94.65% 146.49 93.79% 148.78 86.25% 1.83 2
Duke 79.32% 0.84 500 86.36% 0.159 79.58% 20.89 97.05% 0.44 3
Leu 77.06% 9.46 500 83.58% 2.39 58.58% 15.78 89.08% 0.81 3

DNA 91.25% 0.215 500 92.90% 0.46 93.52% 4.42 92.58% 0.031 3
Protein 67.09% 5.15 500 51.18% 253.46 68.23% 222.59 75.18% 0.119 3
CCDF 97.98% 96.78 1000 91.13% 600.87 92.69% 567.36 98.56% 2.39 3

27

Table 3.5: Performance Comparison on Image Classification Problems with Imagenet
pre-trained Vgg16 deep features.

Dataset
Vgg16 SVM OS-SN

Accuracy Accuracy Time(sec) Accuracy Time(sec)
Caltech101 92.1 88.2% 112.42 89.52% 4.45
Caltech256 73.2 75.17% 14.12 78.22% 1.36

Scene15 92.4 86.63% 18.26 92.53% 1.07
CIFAR10 94.21 95.49% 103.94 94.88% 2.05

came from 15 -category scenes. For our experiments, we randomly select 150 images

per category as training data and remaining for testing data.

Caltech101 dataset contains 9144 images of 102 types of object categories. Each

category holds a various range of images from 31 to 800. For our experiment, we

train 15 on 15 and 30 random samples per category and use rest for testing purpose.

Caltech256 dataset contains 30607 images of 257 object categories. Each category

holds atleast 80 images per category. Compared to Caltech101 dataset, this dataset

contains large variations in object location and size.

3.4.2 Image Classification

In Table 3.4 a performance comparison has visualized among popular ELM, Support

Vector Machine(SVM), Random Forest(RF), and our proposed OS-SN algorithm.

It indicates that our algorithm provides more accuracy compared with opponent

methods. To demonstrate it properly, we consider one medium-sized and another large

dataset, such as Mushroom and Protein datasets. For the Mushroom dataset, our

OS-SN algorithm provides higher accuracy in 9 times, 350 times and 80 times faster

than ELM, SVM, and RF, respectively. On the other hand, our OS-SN algorithm

provides higher accuracy in 50 times, 2600 times, and 2000 times faster than ELM,

SVM and RF, respectively. Though the OS-SN algorithm performs well in the Duke

dataset, it consumes maximum time rather than other algorithms. Duke is a small

but high dimensional (7129) dataset. For training this dataset through OS-SN, we

split it for initial and sequential training. Moreover, we split the data into three

batches. That’s why it takes time. To reduce the time consumption, we provide the

data in one batch for sequential training. Though it takes less time, testing accuracy

degrades to 94%.

Our proposed hierarchical network achieves higher categorization accuracy in com-

28

plex image datasets. Such as : Scene15, Cifar10, Caltech101 and Caltech256. The

experiments conducted in a workstation with 128 GB memory and one Geforce 1080

TI GPU. We use 100,10,10 and 30 images of per class for training, respectively. The

remaining parts utilizes for testing purposes. We perform all experiments by convert-

ing the color images into grayscale. Moreover, we have repeated all experiments 10

times by changing the permutation of whole training, and test images. We also add

the state of art Vgg16 accuracy to check performance differences. The average classi-

fication rates recorded for each run. Initially, we use Vgg16 4096-dimensional features

tuned with Imagenet pre-trained weight as an initial parameter and with end-to-end

training on the target dataset to extract complex features. Afterward, we associate

our network with that features to accumulate similar patterns of data together and

classify their category. We compared our network with the SVM classifier trained by

pre-trained deep features of VGG16. In Table 3.5, we can notice moderate accuracy

within less time of our proposed network.

3.5 Conclusion

In this chapter, we proposed an online sequential classifier for object recognition.

According to the experimental results, the following conclusions are: (1) it generates

sub-network hidden nodes by pulling back neural network residual error to the hidden

layers. (2) our network with m hidden nodes can achieve similar or better general-

ization performance than other learning methods with hundreds of hidden nodes. (3)

It could significantly reduce the training time compared to other conventional learn-

ing methods including BP, SVM, and ELM. (4) Instead of using randomized input

weights, we approach a new way where weights would be configured by calculation.

29

Chapter 4

Online Sequential Learning with

Non-iterative Strategy for Multiple

Layer Neural Network

4.1 Abstract . 29

4.2 Introduction . 30

4.3 Method . 32

4.3.1 Online Sequential Autoencoder 32

4.4 Experimental Results . 35

4.4.1 Unsupervised Features Learning: 39

4.4.2 Image Reconstruction . 40

4.5 Conclusion and Future Work . 42

4.1 Abstract

In this chapter, we are going to propose an online sequential multiple layer neural

network where we build the first portion with an online sequential autoencoder to

extract subspace features and map into the sub-network node for classification. A

multi-layer autoencoder is efficient for feature extraction as well as plays a vital role

in dimension reduction and image reconstruction. The experimental results show that

30

the proposed approach achieves satisfactory classification accuracy on many classic

machine learning benchmark dataset with extremely low time consumption.

4.2 Introduction

The performance of machine learning algorithms is highly dependent on the quality of

data representation (or features). For that reason, researchers are deploying machine

learning algorithms for designing pipelines that can transform high dimensional data

into meaningful feature descriptors that can support machine learning algorithms for

object classification. Feature selection and extraction techniques designs to reduce

dimension as it significantly increases the time and space requirements for processing

the data [34]. The process of selecting the feature subset divides into two categories:

hand-crafted features and machine learning-based features. The primitive one in-

cludes a spatial pyramidal feature (SPF) [60], and scale-invariant feature transform

(SIFT) [68]. The latter one mainly refers to the feature extraction techniques, in-

volving supervised, unsupervised, or semi-supervised algorithms, based on the kind

of label information provided. Supervised feature extraction methods typically focus

on the correlation between feature and class labels, and as a result, it requires a large

amount of labeled training data. From the past few years, some unsupervised feature

extraction techniques gained popularity for projecting the data points from the di-

mensions of maximum variances and map it into a low dimension such as Stochastic

Neighbor Embedding (SNE) [39], t-Distributed Stochastic Neighbor Embedding (t-

SNE) [70], and deep neural network-based autoencoders. They work well in dimension

reduction, data visualization, and signal processing. However, a significant problem

among the methods mentioned above is consuming excessive training time for back-

propagation based learning. To reduce the time complexity faced by backpropagation,

Yang et al. proposed a non-iterative learning multi-hidden layer autoencoder [99] to

learn the deep features which work well rather than other non-iterative algorithms.

If we retrospect on the previous studies [4, 37], they state that a multi-layer neural

network with iterative learning performs well in the field of feature representation.

Because, iterative based learning converges the particular value of weight that for

which the loss is minimum. This point is called minima for the loss function. How-

ever, this process is slow and requires to be cautious in setting the learning rate so

that network can reach near to the global minimum. On the other hand, non-iterative

algorithms support online sequential for training only a single layer network. If we

31

Figure 4.1: Proposed framework including feature extractor and classifier.

need to train the multi-layer networks with a non-iterative learning strategy, we need

to use a significant portion of memory. When we have a big dataset, the existed

methods all fail to train a such big one. From the previous chapter we noticed that

an online sequential network could deliver better performance than the other iterative

learning algorithms. Driven by this fact, a motivation arises: if we introduce online

sequential learning in non-iterative autoencoder and concatenate with our proposed

classifier, can we increase the efficiency of the network to obtain better performance?

In particular, this chapter has the following contributions:

1. An online sequential autoencoder has been proposed with a non-iterative strat-

egy that can process data chunk-by-chunk, but there is no iterative tuning

required inside the hidden layer to configure any predefined parameters [12].

Instead of using randomized input and output weight, it analytically determines

proper value of weight for which the loss would be minimum based on sequen-

tially arrived data. Thus, it reduces computational workloads dramatically and

uses less memory.

2. An online sequential version of a multi-layer neural network has been proposed

which is build upon a feature extractor and a classifier (see Figure 4.1), which

can process large dataset without possessing a significant proportion of memory.

We use OS-AE as a feature extractor and OS-SN for classification.

3. We evaluated the approach we proposed in terms of accuracy and time con-

sumption. The experiment’s results show that our method delivers much better

performance and faster training speed than most of the other iterative and

non-iterative network.

32

4.3 Method

The proposed method is an online sequential version of a multi-layer neural network

where training data will go through autoencoder to extract deep features, and based

on these target features, sub-network nodes are going to be trained iteratively to

provide better performance with fewer hidden nodes. In Figure 4.1, we visualized how

our network process the training data may arrive chunk-by-chunk to the Autoencoder

and reduce the dimension of input data (d) to its target value (m). Based on these

target features, sub-network nodes are going to be trained iteratively to provide better

performance with fewer hidden nodes.

4.3.1 Online Sequential Autoencoder

In this section, we give the mathematical derivation and a detailed description of the

proposed algorithm.

We use Xi to represent the ith training batch of samples (in autoencoder, Yi = Xi).

Accordingly, Hi represents the encoding layer output regarding the input Xi. Here

we follow the mathematical equation of OS-ELM [64]. The batch size is n. We use

α(i), βββ(i) to represent the encoding weights and decoding weights updated after the

training on the ith training batch. For the first training batch H0 (initial training

phase), according to Eq. 2.8 and Eq. 2.9, we get Eq. 4.1

βββ(0) = H†0g
−1(X0) = (HT

0 H0 + (Im×m)/c)−1HT
0 g
−1(X0), (4.1)

We use K0 to represent HT
0 H0 + (Im×m)/c. Start from the arrival of the second

training batch of samples X1 is the sequential training phase. If we combine X0 and

X1 together, theoretically, we can get

βββ(1) = K−11

[
H0

H1

]T [
g−1(X0)

g−1(X1)

]
, (4.2)

33

where

K1 = (Im×m)/c+

[
H0

H1

]T [
H0

H1

]
,

= (Im×m)/c+ HT
0 H0 + HT

1 H1,

= K0 + HT
1 H1,

, (4.3)

and [
H0

H1

]T [
g−1(X0),

g−1(X1)

]
= HT

0 g
−1(X0) + HT

1 g
−1(X1),

= K0K
−1
0 HT

0 g
−1(X0) + HT

1 g
−1(X1),

= K0βββ
(0) + HT

1 g
−1(X1),

= (K1 −HT
1 H1)βββ

(0) + HT
1 g
−1(X1),

= K1β
(0) −HT

1 H1βββ
(0) + HT

1 g
−1(X1),

(4.4)

According to Eq. 4.2, Eq. 4.3, and Eq. 4.4, we derive

βββ(1) = K−11

[
K1βββ

(0) −HT
1 H1βββ

(0) + HT
1 g
−1(X1)

]
= βββ(0) −K−11 HT

1 H1βββ
(0) + K−11 HT

1 g
−1(X1),

= βββ(0) + K−11 HT
1

[
g−1(X1)−H1βββ

(0)
]
,

(4.5)

We can generalize Eq. 4.5 for upcoming any chunk of data and continuously

update output weight until all data has been utilized by Eq. 4.6

βββ(i+1) = βββ(i) + K−1i+1H
T
k+1

[
g−1(Xi+1)−Hi+1βββ

(i)
]
, (4.6)

In OS-ELM, encoding layer weights would generate randomly for the next chunk of

data, and as a result, the network has to train again. In Figure 5.4, we visualized the

encoding and decoding layer weight of OS-ELM that triggered to copy the decoding

layer weight βββi to encoding layer weight α(i+1) in our proposed algorithm, which

reduce time consumption as well as accuracy.

ααα(i+1) = (βββ)T , (4.7)

Because βββ(i+1) depends on both βββ(i) and Xi+1, one can learn βββ without losing the

34

“previous knowledge”. Assume the batch of samples for initial training is Xinit; the

batch of samples for sequential training is Xseq; the total number of training epochs

is Total Epochs; the sequential training batch size is BATCH SIZE. We define the

proposed algorithm in Algorithm 3. Once the training finished, one can encode the

data X through H = g(Xα).

Algorithm 3 OS-Autoencoder training algorithm

Result: Trained α, βββ, bα, and bβββ

randomly initialize α according to Eq. 2.6

epoch← 0 ;

given Xinit obtain βββ through Eq. 4.1;

while epoch < Total Epochs do
l← 0 ;

while l < length(Xseq) do

α← βββT ;

if l +BATCH SIZE ≤ length(Xseq) then
Xbatch ← Xseq[l : l +BATCH SIZE] ;

else
Xbatch ← Xseq[l :] ;

end

l← l +BATCH SIZE ;

according to Xbatch, obtain βββ through Eq. 4.6 ;

end

epoch← epoch+ 1;

end

The learning process used in this algorithm includes continuous update of the weights

results in error between the inputs and the reconstructed outputs of the network are

gradually decreased until it reach to its threshold.

The performance of the proposed algorithm depends on both the number of hidden

neurons m (encoding dimension) and the pre-defined constant c. We train the network

on Caltech101 dataset with different settings of m ∈ {10, 20, 30, ..., 200} and c ∈
{2−10, 2−9, ..., 29, 210}, the result is shown in Fig. 4.2. The proper way of selecting the

35

0.6

200

0.8

1

150 10

10-4

M
S

E

1.2

5

Dimension (m)

1.4

100

Exponent (p)

0

1.6

50
-5

0 -10

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

10-4

Figure 4.2: The mean squared error (MSE) on testing dataset with different m and c
settings (c = 2P).

optimal value of c is chosen by trial-and-error method [45].

4.4 Experimental Results

In this section, We would describe the dataset and compare our proposed algorithm

with other algorithms. To test the performance, we first train some autoencoders to

reduce the dimension of the original dataset, then train a classifier on the encoded

dataset and use the mean classification accuracy as one of the evaluation metrics. To

test the efficiency of our algorithm, we compared our network with other algorithm

are in the following order:

1. Our proposed Algorithm;

2. Autoencoder [99];

3. t-distributed SNE (t-SNE) [19];

4. Stochastic neighbor embedding (SNE)[36];

5. Linear Graph Embedding (LGE)[65];

6. Deep Autoencoder (DAE) [37];

36

Figure 4.3: Visualized encoding layer weights (first column), decoding layer weights
(middle column), and the difference between encoding layer weights and encoding
layer weights (last column). Each image contains the reshaped weights of the first 25
neurons. The first row represents OS-ELM; the second row represents our proposed
algorithm.

Table 4.1: Performance Comparison (Mean: Average Testing Accuracy Training Time) of Dimension Reduction

Dataset Dimension
DAE ML-AE AE OS-AE

Accuracy Time(s) Accuracy Time(s) Accuracy Time(s) Accuracy Time(s)
Hill 101→ 2 51.25% 0.82 88.78% 0.69 49.08% 0.27 51.65% 0.11

Satimage 36→ 26 90.23% 3.33 73.98% 0.97 86.00% 1.45 83.27% 0.9
USPS 256→ 10 91.05% 7.88 89.96% 1.87 92.08% 2.78 87.79% 1.14
Duke 7129→ 2 50.64% 0.89 48.87% 3.72 61.55% 0.28 62.89% 0.118
Leu 7129→ 10 60.29% 0.57 60.96% 6.87 76.68% 0.67 71.89% 0.114

DNA 180→ 2 60.54% 1.93 56.65% 0.42 73.48% 0.16 78.87% 0.026
Protein 357→ 2 55.29% 28.45 46.56% 4.98 49.24% 4.08 47.00% 3.45

Olive Face 4096→ 40 78% 2.88 84.48% 1.75 92.08 0.52 90.87% 0.126
Acoustic 50→ 2 45.65% 60.32 69.98% 0.78 64.10% 1.75 56.87% 0.36

Table 4.2: Performance Comparison (Mean: Average Testing Accuracy Training Time) of Dimension Reduction

Dataset Dimension
SNE LGE t-SNE OS-AE

Accuracy Time(s) Accuracy Time(s) Accuracy Time(s) Accuracy Time (s)
Hill 101→ 2 51.25% 223.48 52.88% 0.09 51.23% 61.23 51.65% 0.11

Satimage 36→ 26 89.75% 3823.67 82.98% 332.67 89.23% 691.21 83.27% 0.9
USPS 256→ 10 93.75% 1827.80 87.96% 6.87 95.28% 2991.78 87.79% 1.14
Duke 7129→ 2 51.74% 2.798 48.37% 0.72 73.33% 1.88 62.89% 0.118
Leu 7129→ 10 71.75% 24.45 47.96% 0.87 79.68% 4.98 71.89% 0.114

DNA 180→ 2 61.74% 702.78 61.65% 0.32 59.48% 216.75 78.87% 0.026
Protein 357→ 2 44.25% 61997.45 46.96% 288.98 48.68% 17724.98 47.00% 3.45

Olive Face 4096→ 40 79.84% 12.78 80.25% 0.48 69.48% 216.75 90.87% 0.126
Acoustic 50→ 2 56.65% 428.32 59.48% 216.75 un-define infinite 56.87% 0.36
CCFD 30→ 15 un-define infinite 89.28% 427.66 un-define infinite 98.88% 4.66

39

Figure 4.4: Visualizing the Performance Comparison of Features of USPS Dataset
(a) Deep Autoencoder, (b) t-SNE, (c) PCA and (d) OS-Autoencoder respectively

7. Unsupervised Mulilayer Autoencoder with subnetwork nodes(ML-AE)[101].

The algorithms mentioned here are used for dimension reduction and ELM with 1000

hidden nodes has been used to classify from encoded dimension. The codes used for

t-SNE, SNE, LGE are downloaded from internet.

4.4.1 Unsupervised Features Learning:

In Table 4.2, a performance comparison has been visualized among SNE, LGE,t-SNE,

and our proposed algorithm. Furthermore, we carry out these experiments in Table

4.1 to compare our single-layer network with other multilayer neural network algo-

rithms, such as Deep Autoencoder, MLNN-SN and Autoencoder. It indicates that

our OS-Autoencoder can learn optimal features more accurately within less time com-

pared with opponent methods. Let consider the Protein dataset (large datasets with

medium dimension) and Leu dataset (medium samples with medium dimensions).

Firstly in the Protein dataset, a significant increase in training speed has been no-

ticed. Our approach is 20000, 80 and 6000 times faster than SNE, LGE and t-SNE.

Secondly, in the Leu dataset, the training speed of our approach is about 200,8 and

40 times faster than SNE, LGE, and t-SNE.

40

5 10 15 20 25

70

80

90

65.68

88.05
91.23 91.35 92

63.19

92.28
90.28 91.25 90.45

83.24

90.2 91.28
89.35 90.28

79.7

91.21
93.91 94.67 94.78

Number of Features

T
es

ti
n
g

A
cc

u
ra

cy
(%

)

USPS Dataset

proposed

Autoencoder

MLNN-SN

Deep Autoencoder

5 10 15 20 25

40

50

60
62

64 63.28 64.35 63
61

66
62 61

63

48.19

52.99 53.28
51.35 50.28

34.66

47.33 48.66 47.35

58

Number of Features

Duke Dataset

proposed

Autoencoder

MLNN-SN

Deep Autoencoder

Figure 4.5: Generalization performance comparison on USPS and Duke dataset based
on Autoencoder and our proposed method where the x- and y-axis show the number
of features and average testing accuracy, respectively. Result on (a) USPS, (b) Duke.

Os-Autoencoder learns optimal features based on the number of feature selection.

To examine those deep features, we visualize the encoding layer weights based on the

number of features. In figure 4.6, we experiment with these interesting method on

olivetti face dataset. The original dimension of the dataset is 4096, and we tested

it by reducing the dimension into 100, 40, and 10. Our proposed autoencoder learn

different features based on the reduced dimension so that optimal features accumulate

together into the weights with the deeper compression of dimension.

In Fig 5.6 we want to visualize how the original high dimensional data acts after

passing through different dimension reduction algorithm such as : deep autoencoder,

tsne, pca and OS-Autoencoder on Usps dataset. The actual dimension of the dataset

is 256 and we reduced it to 50. According to Fig 5.6 our OS-autoencoder clustered

and distributed more precisely based on their features rather than other algorithms.

4.4.2 Image Reconstruction

To compare the image reconstruct quality of our algorithm, we compare with deep

autoencoder, Deep Belief Network(DBN) and our proposed algorithm. We applied

both training algorithms on the same neural network architecture (single hidden layer

with 256 neurons) and trained the neural networks on the MNIST dataset and CI-

FAR10 [57] dataset.

41

Figure 4.6: Contents of Encoding Layer Weight of Olivetti Face Dataset From Top
to Bottom with the Dimension of 100, 40 and 10 respectively

For the MNIST dataset, the input dimension is 28 × 28 = 784. We trained deep

autoencoder and OS-Autoencoder 30 epochs on MNIST dataset separately. We used

two layers of belief network by stacking two Restricted Boltzmann Machine to train

the Mnist dataset. Fig. 5.10 depicts that the quality of image reconstruction is much

clear, which perceive that our proposed autoencoder can able to learn prominent

features rather than other multi-layer autoencoders.

For the CIFAR10 dataset, we first converted the images from three channels RGB

color space to one channel grayscale images. Therefore, the input dimension is

32 × 32 = 1024. We trained deep autoencoder and OS-Autoencoder 200 epochs

on CIFAR10 dataset separately. The qualitative comparisons are shown in Fig. 5.11.

The image reconstruction performance of our proposed OS-Autoencoder is better

than deep autoencoder under the same experimental setting.

After the last training iteration on MNIST dataset, we visualized the encoding layer

(hidden layer) weights, decoding layer (output layer) weights, and the difference of

encoding layer weights and decoding layer weights (see Fig. 5.4). We can see that

the encoding layer of deep autoencoder is random since only the decoding layer was

trained. Although we also only trained the decoding layer, the encoding layer of

our OS-Autoencoder contains some visual patterns because we copied the weights

42

15 51 75 102 125

60

70

80

72

76
78

81.35 81

70
73

84 83.25 83

55

58.2
61.28 61.35 60.28

73.6

81.2 82
84.2 84.78

Number of Features

T
es

ti
n
g

A
cc

u
ra

cy

Scene Dataset

proposed

Autoencoder

MLNN-SN

Deep Autoencoder

15 51 75 102 125

50

60

70

80

90

52

64

71

78
75

51

63

87

82
84

57

62.2

67
69.35

67

78.2

85.3 86.18
87.91 87

Number of Features

Caltech101 Dataset

proposed

Autoencoder

MLNN-SN

Deep Autoencoder

Figure 4.7: Generalization performance comparison on deep features (gathered by
VGG16) of Scene15 and caltech101 dataset based on Autoencoder and our proposed
method where the x- and y-axis show the number of features and average testing
accuracy, respectively. Result on (a) Scene15, (b) Caltech 101.

of the decoding layer back to the encoding layer after each training step. Because

we did not copy the weights after the last training step, there are some differences

between the encoding layer weights and decoding layer weights. The learned patterns

in the decoding layer of our OS-Autoencoder are more evident than deep autoencoder.

4.5 Conclusion and Future Work

In this chapter, we proposed an online sequential autoencoder that works well in the

field of dimension reduction and feature extraction. Instead of using randomized input

weights, we copy-back upgraded decoding layer weight for each iteration and reach the

steepest descent in the value of the loss function iteratively without configuring the

learning rate. Compared to other algorithms, our proposed method provides higher

classification accuracy as well as faster training speed. In the future, we will extend

the proposed algorithm to a hierarchical network for dimension reduction: to allow

the network learns abstracted deep features.

43

Figure 4.8: The qualitative comparisons of small image reconstruction performance of
Deep Autoencoder, Deep Belief Network(DBN) and our proposed algorithm. The first
three rows from top to bottom: some images randomly sampled from MNIST training
set; the corresponding Deep Autoencoder reconstructed images; the corresponding
DBN reconstructed images and OS-Autoencoder reconstructed images.

Figure 4.9: The qualitative comparisons of small image reconstruction performance
of deep autoencoder and our proposed algorithm. From top to bottom: some images
randomly sampled from CIFAR10 testing set; the corresponding deep autoencoder
reconstructed images; the corresponding OS-Autoencoder reconstructed images.

44

Chapter 5

Extension of Online Sequential

Autoencoder for Data

Augmentation

5.1 Abstract . 44

5.2 Introduction . 45

5.3 Method . 49

5.3.1 Online Sequential Autoencoder 49

5.3.2 Reparameterization Weight 49

5.4 Experiments . 51

5.4.1 Comparison of Performance of Sampling Techniques and Our

Method for Tabular Dataset 51

5.4.2 Image Data Augmentation . 55

5.4.3 Image Reconstruction . 58

5.5 Conclusion . 59

5.1 Abstract

In recent years, iterative learning based generative models have gained popularity

due to some incredible contribution in the field of Data Augmentation. Though a

well-designed generative model can produce highly realistic data, it suffers from slow

45

Figure 5.1: An abstracted comparison of input data mapping through the subspace
among the generative models.

convergence and needs hours to train. In the previous chapter, we introduced a novel

feature extraction method named OS-Autoencoder, which achieve prominent gener-

alized performance in learning patterns from data and reconstruct data efficiently

within a few epochs. In this chapter, we extend Online Sequential Autoencoder so

that it can work as a generative model for manipulating images as well as tabular

dataset and provide satisfactory evidence that augmented data can increase classifi-

cation accuracy.

5.2 Introduction

Most of the real-world classification problems face some degree of class imbalance be-

cause of not having an equal proportion of data to make an unbiased decision. Class

imbalance describes a dataset with a skewed ratio of majority to minority samples.

If the proportion of data between different classes is small, then most of the machine

learning or statistical algorithms perform well, but as this difference grows, these

algorithms tend to assume most of the features are coming from the majority class.

This imbalance can be reduced simply by augmenting classes either by oversampling

the data points of the minority class or undersampling the instances of the major-

ity class. Though theoretically, this does not allow classifiers to get biased toward

46

one class; these approaches are not efficient enough. Over-sampling introduces the

likelihood of overfitting since it duplicates the minority class instances. Similarly,

undersampling the majority can be biased by leaving out essential instances that

hold deep features to differentiate two classes. Chawla et al. proposed a sophisti-

cated algorithm named Synthetic Minority Over-sampling Technique (SMOTE) [5]

and the extension of Borderline-SMOTE [32] to generate synthetic data by consid-

ering nearest neighbor example which achieved remarkable improvements over other

sampling techniques. This algorithm can induce class overlapping, and as a result,

it creates additional noise whenever it works with high dimensional data. Previous

studies [4, 37] state that multi-layer neural network can manipulate high dimensional

data efficiently, which motivate us to introduce neural network in the field of class

imbalance of tabular data.

On the other hand, neural networks have become an integral part of image classifica-

tion and revolutionized the performance by contributing autoencoders, convolutional

neural networks and so on [24, 87]. However, they demand a large number of labeled

training datasets to reduce overfitting problems [63], which is difficult to meet in

practical applications. Therefore, some regularization technologies gained popular-

ity to alleviate this problem such as dropout [88], batch normalization [47], transfer

learning[78], semi-supervised learning [54] and data augmentation [75]. In [59], Hinton

et al. mentioned the importance of data augmentation in order to train deep neural

networks and reduce the generalization error. Unfortunately, data augmentation is

an art, as it involves many choices, and an inappropriate choice can obscure the path

to get the optimal solution. The most common augmentation technique for image

data is category-free transformation methods to generate new samples from available

ones. These methods include Flipping(flip image horizontally or vertically), Rotation

(rotate an image in random orientation), Cropping(Crop part of the image in specific

resolution), Color Jittering(change brightness and contrast), and Noise(add random

disruption, basically gaussian noise) . However, these schemes are not informative

enough, and augmented samples sometimes lead to no effect or create a detrimental

effect on the accuracy, as well as the robustness of classifiers. Engstrom et al. [17]

showed that basic transformations such as rotations or flipping could easily reduce

accuracy by deep CNN models. For instance, the random transformations reduced

the accuracy of MNIST by 26%, CIFAR10 [57] by 82%, and ImageNet (Top 1) [13]

by 28%. On the other hand, with the adaptation of deep neural network, Generative

Adversarial Networks(GANs)[29] and Variational Autoencoders (VAEs) [55] models

47

have drawn increasing attention for learning structure and patterns of input images

and generating coherent and detailed images in unsupervised manner [62]. Basically,

GANs are constructed with a generative model G and a discriminator model D. In Fig

5.1, the latent space of particular data distribution is mapped through G to generate

data in the training process, and D is engaged in discriminating between real and

synthesized instances produced by G.

min
G

max
D

V (D,G) = Ex∼pdata(x)[log(D(x)] + Ez∼pz(z)[log(1−D(G(z)))], (5.1)

The discriminator network fights against the generator network’s backpropagation

and provides the loss function to update gradient descent [105]. However, if the

discriminator gets too successful, the generator gradient vanishes and suffer non-

convergence. For that reason, selecting hyperparameter is highly sensitive, as the

model parameter oscillate. As a result, it is time-consuming and performs at a high

computation cost. For instance, GANs data augmentation technique experience on

for something as simple as 28x28 grayscale MNIST digits takes around 10K epochs

in Google Colab GPU environment to produce indistinguishable data from original

ones. VAEs are another form of generative models nearly the same as traditional bot-

tleneck autoencoders that follow variational bayesian learning to extract distribution

from data. In Fig 5.1 we can see an encoder takes the latent vector from the input, and

a decoder reconstructs the original variables from the latent space to generate unique

images that have similar characteristics. A disadvantage of VAEs is that, because of

the injected noise and imperfect reconstruction, and with the standard decoder (with

factorized output distribution), the generated samples are much more blurred than

those coming from GANs. Moreover, it suffers from high-variance because gradients

bounces around in varying directions. Thus we motivated to ask: Can we solve the

gradient variance problems faced by the generative model?

In Chapter 4, we propose an autoencoder named online sequential autoencoder, which

has emerged to alleviate this problem faced by backpropagation. Experimental re-

sults prove that it extracts deep features efficiently by utilizing Moore-Penrose Inverse

(see 5.1) and deliver better performance than the other iterative learning algorithms.

Moreover, image reconstruction quality of this autoencoder is quite transparent be-

cause output weight can hold prominent feature precisely. It motivates us to add

variation in output weight to analyze the changes in OS-AE re-construct data?

48

Figure 5.2: Structure of our proposed method in two layers. In the first layer, the
d-dimensional inputs X map into an m-dimensional space. The number of hidden
nodes m would be concatenated with a mask to generate fake data, which will be
filtered by a trained model, with real data, to produce quality output.

In particular, this chapter has the following contributions:

1. A novel data augmentation technique is proposed using online sequential au-

toencoder, which can augment not only image dataset but also tabular dataset

within fewer epochs .

2. Higher Quality Data. Experimental results show that the DCNN model with

augmented data via our proposed algorithm acquire higher classification accu-

racy rather than same DCNN model itself or other data augmentation tech-

niques. For instance, Resnet [33] combined with our method achieves 94.68%

accuracy from CIFAR-10 [57] augmented datasets with only five epochs.

49

5.3 Method

The proposed method involves an online sequential autoencoder to process training

data for extracting deep features and, based on these features, construct new data

iteratively. It translates an image tensor of size height×width×color channels down

into a vector size nx1, in the field of feature space augmentation. For that reason,

the same architecture can be utilized for both image and tabular data augmentation.

In Figure 5.2, we visualized how our network process the training data may arrive

chunk-by-chunk to OS-AE and reduce the dimension of input data (d) into some of

hidden nodes(m). A mask containing few random neurons will be concatenated with

the extracted feature to learn prominent ones and will generate new data.

Figure 5.3: Work Flow of our proposed approach

5.3.1 Online Sequential Autoencoder

OS-AE is composed of an encoder that extracts subspace features from input vari-

ables and a decoder that reconstructs the original variables from the extracted feature

by using pseudo-inverse. In chapter 4, we described the mathematical term to con-

struct the autoencoder. According to Figure 5.4, OS-Autoencoder holds some visible

patterns as weights of both encoding and decoding layers, which are updating contin-

uously. Though VAE has the similar encoding and decoding process, learned patterns

after the encoding layer is a random signal. As, the encoding layer weight is profuse

enough, we can moderate that weight to utilize in data augmentation.

5.3.2 Reparameterization Weight

We noticed that the encoding weight of OS-AE bears significant information. If we

enrich the extracted weight, we will generate new features. In Figure 5.3, we show the

work-flow of data augmentation by utilizing feature extracted via OS-AE. To create

50

Figure 5.4: Visualized hidden layer learning information of (a)variational autoencoder
[97] and (b) OS-Autoencoder on mnist dataset. VAE imposed some random signals,
and OS-Autoencoder holds prominent features.

some variation in the extracted feature, we concatenate a mask to train the neurons

to re-parameterize encoding layer weight. In chapter 4, Eq.4.6 is used to generate

output weight. So, we are going to use that weight with some variant to train the

neuron embedded in the mask. So,

M = M
[
Ki+1β

(i)β(i)β(i) −HT
i Hi+1βββ

(i) + HT
i+1g

−1(Xi+1)
]
,

= MKi+1β
(i)β(i)β(i) −MHT

i Hi+1βββ
(i) + MHT

i+1g
−1(Xi+1),

(5.2)

We would utilize Eq. 5.2 and reshape this weight in the form of input data. As we

embedded few neurons with the mask, we would take the average of that weight based

on embedded neurons; we are going to train and subtract it from input data which

will produce new data.

In chapter 4, Algorithm 3 has described the procedure of training OS-AE. Once the

training finished, we will use βββ to train the mentioned neurons to generate new data

through Algorithm 4.

51

Algorithm 4 OS-Autoencoder as a generative model

Result: Train new neuron to generate new data

while neuron < number of neurons do
node ← reshape(M);

node weight← average(node);

neuron← neuron+ 1;

end

while k < length(x train) do
new data ← x train[k] + node weight;

node weight← average(node);

k ← k + 1;

end

The learning process used in this algorithm includes continuous update of the

weights and gradually update neuron to generate new relevant data.

5.4 Experiments

In this section, We would describe the dataset and compare our proposed algorithm

with other algorithms. We conduct our experiments in Keras with 32 GB of memory,

Geforce 1080 8GPU and an I7-4470(3.4G) processor. To test the performance, we

would use different algorithms for data augmentation in eight tabular and seven image

dataset and compare mean classification accuracy as one of the evaluation metrics.

5.4.1 Comparison of Performance of Sampling Techniques

and Our Method for Tabular Dataset

We compare OS-AE algorithm with random over-sampling(ROS), random under-

sampling(RUS) and smote. To differentiate their efficiency, we use our OS-SN clas-

sifier with 2 sub-network nodes to obtain their classification accuracy. We have used

imblearn library to apply to utilize mentioned algorithms.

In Table5.2, a performance comparison has been visualized among random over sam-

pling, random under sampling, Smote and OS-AE. It indicates that our proposed

algorithm can learn optimal features more accurately and reconstruct new data more

efficiently rather than any sampling technique. Let consider the Hill dataset (small

52

Table 5.1: Performance Comparison on Classification Problems with Augmented Data

Dataset Dimension No Aug ROS RUS Smote OS-AE
Duke 7129 70.00 76.23 75.23 73.00 80.20
Hill 101 79.44 80.23 81.66 86.34 90.25

Protein 357 68.12 71.88 70.49 74.36 75.87
Mushroom 256 88.29 89.34 87.56 91.23 96.15

Leu 7129 78.56 79.75 84.47 77.82 97.21
Acoustic 51 65.29 67.66 66.35 71.12 70.02

DNA 180 91.25 90.34 90.55 92.02 92.05

ROS RUS SMOTE OS-AE

75

80

85

90

80
81

86

90

75
76

80

86

78
77

83
82

76
77

82

84

#
S
co

re
V

al
u
e

Accuracy Precision Recall F-score

Figure 5.5: Generalization performance comparison on Hill-Valley Dataset based on
sampling techniques and our proposed method where each bar represents Accuracy,
Precision, Recall, and F-score respectively

53

Figure 5.6: visualize the structure of encoding 784 dimensional MNIST dataset into
latent space 2 by plotting each point with coloring by number it is [0,1,. . . ,9]

ROS RUS SMOTE OS-AE

75

80

85

90
90

91
92 92

87
88

89

87

76

87

82

89

81

87

85

88

#
S
co

re
V

al
u
e

Accuracy Precision Recall F-score

Figure 5.7: Generalization performance comparison on DNA Dataset based on sam-
pling techniques and our proposed method where each bar represents Accuracy, Pre-
cision, Recall, and F-score respectively

54

Figure 5.8: Comparison among Confusion Matrix of sampling techniques respectively
(a)random over sampling, (b)random under sampling, (c) Smote and (d) OS-AE for
Leu Dataset

55

datasets with less dimension) and Duke dataset (small samples with high dimensions).

Firstly in Hill dataset, a significant increase in accuracy has been noticed. Our ap-

proach can able to generate 300 good quality unbiased data, which increased from

79% to 91% , whereas random over sampling and under sampling can able to in-

crease tends to 1%. Though smote acquired kind of similar accuracy as our proposed

algorithm, it did not perform well in high dimensional Duke dataset. It increased

accuracy from 70% to 73%, whereas OS-AE can able to increase accuracy by 10% by

generating 23 new data instance. For that reason, we can say that reconstruct new

data based on optimal features learned by OS-AE perform much better rather than

sampling majority or minority classes.

As it is hard to evaluate a model based on the only accuracy, we compare preci-

sion,recall and F-measure of all sampling techniques as well as our proposed algorithm

on a low dimensional medium-sized dataset (Hill) and high dimensional small-sized

dataset (Duke) in Figure 5.7. The quality of proposed method can be verified based

on F-score, which is an average of precision and recall. We noticed synthetic data

generated by OS-AE provides high precision and recall than other methods.

5.4.2 Image Data Augmentation

From Table 3.3, we can see that USPS, Mnist and Olivetti face are small dataset.

For that reason, we use ELM with 1000 hidden nodes as a classifier to train these

dataset. On the other hand, we use ResNet50[33] as a classifier for training Scene15

and Cifar10/100 dataset. Moreover, we process all dataset into grayscale from color

and convert the image tensor from 3D vector to 2D vector. All the experiments

are repeated ten times by randomizing selected training and testing images, and the

average of per-class recognition rate has been recorded. We visualize the encoded

feature structure of mnist dataset in Figure 5.6 to compare how data have been

clustered based on their feature for both VAE and OS-AE algorithm. We noticed

that each class has been clustered separately based on their features. However, OS-

autoencoder performed well rather than VAE. Why this is happening? Because VAE

is constructed based on probabilistic model and as a result some features of different

class has been overlapped. On the other hand, OS-AE generates new data based on

their prominent features, and as a result each class has been distinguished without

any interference.

56

1 2 3 4 5 6

85

90

95

82.05

84.13

92.24
91.12

93.34 93.76

87.1

88.66 88.68
89.61

91.14
92.13

84.8 84.89

86.4
87.08

88.19
88.8

87.8 87.89

90.4
91.08

92.19

94.68

Number of Epochs

T
es

ti
n
g

A
cc

u
ra

cy
%

Cifar10 Dataset

Flipping

Translation

Noise Disturbance

OS-AE

1 2 3 4 5 6

72

73

74

75

71.68
71.98

72.14

73.08

74.19

74.86

72.18

72.77

73.24 73.18 73.15 73.1373.08

73.49
73.67

73.22

74.29

74.96

73.68
73.89

74.64

74.08 74.19

75.31

Number of Epochs

Cifar100 Dataset

Flipping

Translation

Noise Disturbance

OS-AE

Figure 5.9: Generalization performance comparison on deep features (gathered by
VGG16) of Cifar10 and Cifar100 dataset based on image augmentation technique
and our proposed method where the x- and y-axis show the number of epochs and
average testing accuracy, respectively. Result on (a) Cifar10, (b) Cifar100.

Figure 5.10: The qualitative comparisons of image reconstruction performance of
VAE, DCGAN and our proposed algorithm. The first three rows from top to bottom:
some images randomly sampled from Cifar10 training set; the corresponding OS-
Autoencoder generated images; the corresponding VAE reconstructed images and
DCGAN generated images.

Table 5.2: Performance Comparison on Classification Problems with Augmented Data

Dataset No Aug Flipping Translation Rotation Noise Combination OS-AE
Olivetti face 92.05 93.78 93.23 93.64 83.67 93.21 97.89

Mnist 91.06 92.14 90.39 94.32 91.34 94.78 91.25
Usps 92.18 93.12 91.59 88.97 95.36 94.61 96.17

Cifar10 93.08 94.71 93.14 88.36 94.03 93.01 94.68
Cifar100 74.29 74.86 73.13 71.78 74.96 74.61 75.31
Scene15 87.08 88.23 84.54 86.75 88.02 87.88 89.26

58

Figure 5.11: The qualitative comparisons of data augmentation performance of VAE,
DCGAN, and our proposed algorithm. The first three rows from top to bottom:
some images randomly sampled from Cifar100 training set; the corresponding OS-
Autoencoder generated images; the corresponding VAE reconstructed images and
DCGAN [77] generated images.

Comparison of performance of Scene15, Cifar10/100

The result showed in Table 5.2 indicate that the DCNN model with augmented dataset

with different methods significantly increment classification accuracy whereas OS-AE

generated images to acquire the highest value. we first converted the images from

three channels RGB color space to one channel grayscale. Therefore, input dimension

is 32x32x3=3072. To extract the deep feature of vgg16 pre-trained weight, we add

a layer of 3072 dimension with vgg16 as an initial parameter and send that feature

through our OS-AE, which can create more enriched and new dataset. For Cifar

10/100 dataset, top accuracy gained by Resnet-50 without augmentation is 93.08%

and 74.29%, which has been increased by OS-AE that is 94.68% and 75.31%. In Figure

5.9, we visualize how our proposed method acquire the highest accuracy compare to

other traditional methods within six epochs in cifar10 and Cifar100 dataset.

5.4.3 Image Reconstruction

To compare the image generation quality of our algorithm, we compare with VAE,

DCGAN and our proposed algorithm. We trained the neural networks on CIFAR10

and CIFAR100 [57] dataset.

VAE encodes the input data as a distribution over the latent space. It ensures that

the latent space has excellent properties that enable the generative process. We

59

have used Cifar10 and Cifar100 as input and have utilize 500 epochs to generate

images that needed at-least 30 minutes. In figure 5.10 and 5.11, we can see after 500

epochs the generated images are blurry, and it is hard to identify the object features.

Convolutional neural networks help to find spatial correlation in input data, and that

is the reason why DCGAN[77] would be a better alternative of GAN for image/video

data. In figure 5.10 and 5.11, we can see some realistic and high-resolution visual

content where patterns are fake. For that reason, images do not hold any notable

pattern through which we can use those images for classification. The training is

performed over 400 epochs and needs huge computation power. Comparing to VAE

and DCGAN, OA-AE has used only 10 epochs on Cifar10/100 dataset separately,

and the quality of the image is much precise and can reconstruct prominent features.

5.5 Conclusion

In this Chapter, we proposed a novel estimator of autoencoder that can efficiently

generate both image and tabular data and optimized using online sequential learning.

Our proposed method can learn convenient representations of features and generate

new data which play a vital role to solve overfitting problem. The theoretical advan-

tages are reflected in experimental results by proving that our proposed method can

generate quality data within few seconds compared to other generative models.

60

Chapter 6

Conclusion & Future Work

6.1 Overview . 60

6.2 Future Work . 60

6.3 Conclusion . 61

6.1 Overview

Iterative based learning has become a paradigm for training a hierarchical neural

network to increase the efficiency of the model but required long training time for slow

convergence of the network. To reduce the time complexity faced by the hierarchical

network, we introduced online sequential learning with the benefit of a non-iterative

strategy. Moreover, we extend the network to build a generative model that can

create some vibrant new data.

6.2 Future Work

For high dimensional imagenet datasets Such as Cifar10, Cifar100, and Caltech101,

we have used a DCNN model tuned with Imagenet pre-trained weight as an initial

parameter and with end-to-end training to extract complex features. We can improve

these models by substituting gradient descent with online sequential learning. In [98]

Yang et al. introduced a non-iterative learning strategy to retrain neurons of fully

connected (FC) layers of DCNN, which provide better performance than the same

61

network with its original BP based training. It motivates us to introduce online

sequential learning in the DCNN model so that our hierarchical network would be

more efficient and powerful.

Furthermore, our proposed method with OS-AE can learn convenient representations

of features most of the time, as well as faster training speed compared to other gen-

erative models. There are still some forms of modification is acquired to get realistic

images like GAN. Variational auto-encoder outputs can be improved by forcing gen-

erative adversarial training mechanism [41] to generate less blurry images. In the

future, we will focus on deep feature consistent principle [40] to learn how to embed

GANs into our network. Additionally, we can send our OS-AE deep feature instead of

noise vector inputs to GANs utilizing Bidirectional GANs [15]. As our model works

well in both tabular and image data, it inspires us to extend this framework to other

domains such as video (frame generation) and audio (speech synthesis).

6.3 Conclusion

In this thesis, we present an online sequential hierarchical network scheme with a non-

iterative strategy for image recognition. We also extend this network for performing

as a generative model. The network is approached from three main ways:

• Prominent features extracted from input data and map these features for clas-

sification following batch-by-batch learning.

• Low-dimensional subspace features fused by different operators;

• Without substituting iterative learning, we solve the gradient descent problem

faced by BP.

• Instead of using randomized input weights, we can approach a classifier where

weights would be configured by calculation and reach to the steepest descent

iteratively without configuring the learning rate. Moreover, it does not need

extra computation overload and provides excellent accuracy in less time.

• We optimized the usage of hidden nodes by substituting with sub-network node,

which minimizes the training time significantly.

• Features extracted through OS-AE as a low-dimensional subspace features and

fused it with a variance to generate new data.

62

Furthermore, this thesis indicates that our network functions as a feature extractor,

a classifier and a generative model. The experimental results show that our network

performs better than other relevant state-of-the-art methods.

63

Bibliography

[1] Z. Bai, G. Huang, D. Wang, H. Wang, and M. B. Westover. Sparse ex-

treme learning machine for classification. IEEE Transactions on Cybernetics,

44(10):1858–1870, Oct 2014.

[2] P. L. Bartlett. For valid generalization, the size of the weights is more im-

portant than the size of the network. In Proceedings of the 9th International

Conference on Neural Information Processing Systems, NIPS’96, pages 134–140,

Cambridge, MA, USA, 1996. MIT Press.

[3] P. L. Bartlett. The sample complexity of pattern classification with neural

networks: the size of the weights is more important than the size of the network.

IEEE Transactions on Information Theory, 44(2):525–536, March 1998.

[4] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise

training of deep networks. In B. Schölkopf, J. C. Platt, and T. Hoffman, editors,

Advances in Neural Information Processing Systems 19, pages 153–160. MIT

Press, 2007.

[5] K. W. Bowyer, N. V. Chawla, L. O. Hall, and W. P. Kegelmeyer. SMOTE:

synthetic minority over-sampling technique. CoRR, abs/1106.1813, 2011.

[6] L. Breiman. Random forests. Machine Learning, 45(1):5–32, Oct 2001.

[7] D. Cai, X. He, and J. Han. Isometric projection. In Proceedings of the 22nd Na-

tional Conference on Artificial Intelligence - Volume 1, AAAI’07, page 528–533.

AAAI Press, 2007.

[8] J. Cao, Y. Zhao, X. Lai, T. Chen, N. Liu, B. Mirza, and Z. Lin. Landmark

recognition via sparse representation. 07 2015.

64

[9] Cheng Xiang, S. Q. Ding, and Tong Heng Lee. Geometrical interpretation and

architecture selection of mlp. IEEE Transactions on Neural Networks, 16(1):84–

96, 2005.

[10] C. M. Conway. Sequential Learning, pages 3047–3050. Springer US, Boston,

MA, 2012.

[11] S. Dargan, M. Kumar, M. R. Ayyagari, and G. Kumar. A survey of deep

learning and its applications: A new paradigm to machine learning. Archives

of Computational Methods in Engineering, pages 1–22, 2019.

[12] C. Deng, G.-B. Huang, J. Xu, and J. Tang. Extreme learning machines: new

trends and applications. Science China Information Sciences, 58:1–16, 02 2015.

[13] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A

large-scale hierarchical image database. In 2009 IEEE conference on computer

vision and pattern recognition, pages 248–255. Ieee, 2009.

[14] S. Ding, N. Zhang, X. Xu, L. Guo, and J. Zhang. Deep extreme learning machine

and its application in eeg classification. Mathematical Problems in Engineering,

2015, 2015.

[15] J. Donahue, P. Krähenbühl, and T. Darrell. Adversarial feature learning. CoRR,

abs/1605.09782, 2016.

[16] M. Dorfer, R. Kelz, and G. Widmer. Deep linear discriminant analysis, 2015.

[17] L. Engstrom, D. Tsipras, L. Schmidt, and A. Madry. A rotation and a transla-

tion suffice: Fooling cnns with simple transformations. ArXiv, abs/1712.02779,

2017.

[18] S. E. Fahlman. An empirical study of learning speed in backpropagation

networks. Technical Report CMU-CS-88-162, Computer Science Department,

Carnegie Mellon University, Pittsburgh, PA, 1988.

[19] X. Fang, Z. Tie, Y. Guan, and S. Rao. Quasi-cluster centers clustering algorithm

based on potential entropy and t-distributed stochastic neighbor embedding.

Soft Computing, May 2018.

65

[20] L. Fei-Fei and P. Perona. A bayesian hierarchical model for learning natural

scene categories. In 2005 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR’05), volume 2, pages 524–531. IEEE,

2005.

[21] R. French. Semi-distributed representations and catastrophic forgetting in con-

nectionist networks. CONNECTION SCIENCE, 4:365–377, 01 1992.

[22] R. French. Catastrophic forgetting in connectionist networks. Trends in cogni-

tive sciences, 3:128–135, 05 1999.

[23] K. Fukushima. Neocognitron: A self-organizing neural network model for a

mechanism of pattern recognition unaffected by shift in position. Biological

Cybernetics, 36(4):193–202, 1980.

[24] K. Fukushima. Neocognitron: A self-organizing neural network model for a

mechanism of pattern recognition unaffected by shift in position. Biological

Cybernetics, 36:193–202, 1980.

[25] K. Fukushima. Training multi-layered neural network neocognitron. Neural

Networks, 40:18–31, 2013.

[26] C. F. Gauss, C. H. Davis, and M. of America Project. Theory of the motion

of the heavenly bodies moving about the sun in conic sections a translation of

Gauss’s ”Theoria motus.” With an appendix. Boston,Little, Brown and com-

pany,. https://www.biodiversitylibrary.org/bibliography/19023.

[27] T. Ghosh. Quicknet: Maximizing efficiency and efficacy in deep architectures.

01 2017.

[28] J. Goldberger, G. E. Hinton, S. T. Roweis, and R. R. Salakhutdinov. Neigh-

bourhood components analysis. In L. K. Saul, Y. Weiss, and L. Bottou, editors,

Advances in Neural Information Processing Systems 17, pages 513–520. MIT

Press, 2005.

[29] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio. Generative adversarial nets. In Z. Ghahramani,

M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Ad-

vances in Neural Information Processing Systems 27, pages 2672–2680. Curran

Associates, Inc., 2014.

66

[30] W. Guo, T. Xu, K. Tang, et al. Online sequential extreme learning machine with

generalized regularization and forgetting mechanism. Control Decis, 32:247–

254, 2017.

[31] W. Guo, T. Xu, K. Tang, J. Yu, and S. Chen. Online sequential extreme

learning machine with generalized regularization and adaptive forgetting factor

for time-varying system prediction. 2018.

[32] H. Han, W. Wang, and B. Mao. Borderline-smote: A new over-sampling method

in imbalanced data sets learning. In ICIC, 2005.

[33] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recog-

nition. 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 770–778, 2016.

[34] X. He, M. Ji, C. Zhang, and H. Bao. A variance minimization criterion to

feature selection using laplacian regularization. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 33(10):2013–2025, 2011.

[35] G. Hinton, L. Deng, D. Yu, G. Dahl, A. rahman Mohamed, N. Jaitly, A. Senior,

V. Vanhoucke, P. Nguyen, T. Sainath, and B. Kingsbury. Deep neural networks

for acoustic modeling in speech recognition. Signal Processing Magazine, 2012.

[36] G. Hinton and S. Roweis. Stochastic neighbor embedding. 15, 06 2003.

[37] G. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with

neural networks. Science, 313(5786):504 – 507, 2006.

[38] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep

belief nets. Neural Comput., 18(7):1527–1554, July 2006.

[39] G. E. Hinton and S. T. Roweis. Stochastic neighbor embedding. In Advances

in neural information processing systems, pages 857–864, 2003.

[40] X. Hou, L. Shen, K. Sun, and G. Qiu. Deep feature consistent variational au-

toencoder. 2017 IEEE Winter Conference on Applications of Computer Vision

(WACV), pages 1133–1141, 2016.

[41] X. Hou, K. Sun, L. Shen, and G. Qiu. Improving variational autoencoder

with deep feature consistent and generative adversarial training. CoRR,

abs/1906.01984, 2019.

67

[42] G. Huang, S. Song, J. N. D. Gupta, and C. Wu. Semi-supervised and unsuper-

vised extreme learning machines. IEEE Transactions on Cybernetics, 44:2405–

2417, 2014.

[43] G.-B. Huang, L. Chen, C. K. Siew, et al. Universal approximation using in-

cremental constructive feedforward networks with random hidden nodes. IEEE

Trans. Neural Networks, 17(4):879–892, 2006.

[44] G.-B. Huang, P. Saratchandran, and N. Sundararajan. An efficient sequential

learning algorithm for growing and pruning rbf (gap-rbf) networks. IEEE trans-

actions on systems, man, and cybernetics. Part B, Cybernetics : a publication

of the IEEE Systems, Man, and Cybernetics Society, 34:2284–92, 01 2005.

[45] G.-B. Huang, H. Zhou, X. Ding, and R. Zhang. Extreme learning machine

for regression and multiclass classification. Trans. Sys. Man Cyber. Part B,

42(2):513–529, Apr. 2012.

[46] H. T. Huynh and Y. Won. Regularized online sequential learning algorithm for

single-hidden layer feedforward neural networks. Pattern Recognition Letters,

32(14):1930–1935, 2011.

[47] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network train-

ing by reducing internal covariate shift. In F. Bach and D. Blei, editors, Proceed-

ings of the 32nd International Conference on Machine Learning, volume 37 of

Proceedings of Machine Learning Research, pages 448–456, Lille, France, 07–09

Jul 2015. PMLR.

[48] R. A. Jacobs. Increased rates of convergence through learning rate adaptation.

Technical report, USA, 1987.

[49] R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predic-

tive variance reduction. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahra-

mani, and K. Q. Weinberger, editors, Advances in Neural Information Process-

ing Systems 26, pages 315–323. Curran Associates, Inc., 2013.

[50] I. Jolliffe. Principal Component Analysis. Springer Verlag, 1986.

[51] L. Kasun, H. Zhou, G.-B. Huang, and C.-M. Vong. Representational learning

with elms for big data. IEEE Intelligent Systems, 28:31–34, 11 2013.

68

[52] L. L. C. Kasun, H. Zhou, G.-B. Huang, and C. M. Vong. Representational

learning with elms for big data.(2013). 2013.

[53] J. Kim. Sequential training algorithm for neural networks. CoRR,

abs/1905.07490, 2019.

[54] D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling. Semi-supervised

learning with deep generative models. In Advances in Neural Information Pro-

cessing Systems 27: Annual Conference on Neural Information Processing Sys-

tems 2014, December 8-13 2014, Montreal, Quebec, Canada, pages 3581–3589,

2014.

[55] D. P. Kingma and M. Welling. Auto-encoding variational bayes, 2013. cite

arxiv:1312.6114.

[56] A. K. Kolmogorov. On the representation of continuous functions of several

variables by superposition of continuous functions of one variable and addition.

Doklady Akademii Nauk SSSR, 114:369–373, 1957.

[57] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny

images. Technical report, Citeseer, 2009.

[58] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep

convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and

K. Q. Weinberger, editors, Advances in Neural Information Processing Systems

25, pages 1097–1105. Curran Associates, Inc., 2012.

[59] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with

deep convolutional neural networks. In NIPS, 2012.

[60] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid

matching for recognizing natural scene categories. 2006.

[61] Y. LeCun, P. Y. Simard, and B. Pearlmutter. Automatic learning rate maxi-

mization by on-line estimation of the hessian's eigenvectors. In S. J. Hanson,

J. D. Cowan, and C. L. Giles, editors, Advances in Neural Information Process-

ing Systems 5, pages 156–163. Morgan-Kaufmann, 1993.

69

[62] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. P. Aitken, A. Tejani, J. Totz,

Z. Wang, and W. Shi. Photo-realistic single image super-resolution using a

generative adversarial network. CoRR, abs/1609.04802, 2016.

[63] J. Lemley, S. Bazrafkan, and P. Corcoran. Smart augmentation learning an

optimal data augmentation strategy. Ieee Access, 5:5858–5869, 2017.

[64] N.-Y. Liang, G.-B. Huang, P. Saratchandran, and N. Sundararajan. A fast and

accurate online sequential learning algorithm for feedforward networks. IEEE

Transactions on neural networks, 17(6):1411–1423, 2006.

[65] B. Liu, S.-X. Xia, F.-R. Meng, and Y. Zhou. Extreme spectral regression for

efficient regularized subspace learning. Neurocomputing, 149:171–179, 2015.

[66] H. Liu, H. Liu, F. Sun, and B. Fang. Kernel regularized nonlinear dictionary

learning for sparse coding. IEEE Transactions on Systems, Man, and Cyber-

netics: Systems, 49(4):766–775, April 2019.

[67] H. Liu, F. Sun, B. Fang, and D. Guo. Cross-modal zero-shot-learning for tactile

object recognition. IEEE Transactions on Systems, Man, and Cybernetics:

Systems, pages 1–9, 2018.

[68] D. G. Lowe. Distinctive image features from scale-invariant keypoints. Int. J.

Comput. Vision, 60(2):91–110, Nov. 2004.

[69] Y. Lu, N. Sundararajan, and P. Saratchandran. Performance evaluation of a se-

quential minimal radial basis function (rbf) neural network learning algorithm.

IEEE transactions on neural networks, 9 2:308–18, 1998.

[70] L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. Journal of machine

learning research, 9(Nov):2579–2605, 2008.

[71] Ming Liang and Xiaolin Hu. Recurrent convolutional neural network for ob-

ject recognition. In 2015 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 3367–3375, June 2015.

[72] M. Naveen, S. Jayaraman, V. Ramanath, and S. Chaudhuri. Modified leven-

berg marquardt algorithm for inverse problems. In K. Deb, A. Bhattacharya,

70

N. Chakraborti, P. Chakroborty, S. Das, J. Dutta, S. K. Gupta, A. Jain, V. Ag-

garwal, J. Branke, S. J. Louis, and K. C. Tan, editors, Simulated Evolution and

Learning, pages 623–632, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[73] R. Neuneier and H. G. Zimmermann. How to Train Neural Networks, pages

373–423. Springer Berlin Heidelberg, Berlin, Heidelberg, 1998.

[74] Y.-H. Pao and Y. Takefuji. Functional-link net computing: theory, system

architecture, and functionalities. Computer, 25(5):76–79, 1992.

[75] L. Perez and J. Wang. The effectiveness of data augmentation in image classi-

fication using deep learning. 12 2017.

[76] J. Platt. A resource-allocating network for function interpolation. Neural Com-

put., 3(2):213–225, June 1991.

[77] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learn-

ing with deep convolutional generative adversarial networks, 2015. cite

arxiv:1511.06434Comment: Under review as a conference paper at ICLR 2016.

[78] R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng. Self-taught learning:

transfer learning from unlabeled data. In ICML ’07: Proceedings of the 24th

international conference on Machine learning, pages 759–766, New York, NY,

USA, 2007. ACM.

[79] C. R. Rao. Generalized inverse of matrices and its applications. Number 04;

QA263, R3. 1971.

[80] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and

approximate inference in deep generative models. In E. P. Xing and T. Jebara,

editors, Proceedings of the 31st International Conference on Machine Learn-

ing, volume 32 of Proceedings of Machine Learning Research, pages 1278–1286,

Bejing, China, 22–24 Jun 2014. PMLR.

[81] F. Ritter, J. Nerb, E. Lehtinen, and T. O’Shea. In Order to Learn: How the

Sequence of Topics Influences Learning. Oxford Series on Cognitive Models and

Architectures. Oxford University Press, 2007.

[82] A. Robins. Sequential learning in neural networks: A review and a discussion

of pseudorehearsal based methods. Intell. Data Anal., 8(3):301–322, Aug. 2004.

71

[83] E. M. Rosen. A review of quasi-newton methods in nonlinear equation solv-

ing and unconstrained optimization. In Proceedings of the 1966 21st National

Conference, ACM ’66, page 37–41, New York, NY, USA, 1966. Association for

Computing Machinery.

[84] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning Internal Repre-

sentations by Error Propagation, page 318–362. MIT Press, Cambridge, MA,

USA, 1986.

[85] D. M. Salih, S. B. M. Noor, M. H. Merhaban, and R. M. Kamil. Wavelet

network: Online sequential extreme learning machine for nonlinear dynamic

systems identification. Adv. in Artif. Intell., 2015, Jan. 2015.

[86] J. Schmidhuber. Deep learning in neural networks: An overview. Neural net-

works, 61:85–117, 2015.

[87] J. Schmidhuber. Deep learning in neural networks: An overview. Neural Net-

works, 61:85–117, 2015. Published online 2014; based on TR arXiv:1404.7828

[cs.NE].

[88] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.

Dropout: A simple way to prevent neural networks from overfitting. Journal of

Machine Learning Research, 15:1929–1958, 2014.

[89] Z.-L. Sun, T.-M. Choi, K.-F. Au, and Y. Yu. Sales forecasting using extreme

learning machine with applications in fashion retailing. Decision Support Sys-

tems, 46:411–419, 12 2008.

[90] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei. Line: Large-

scale information network embedding. In Proceedings of the 24th International

Conference on World Wide Web, WWW ’15, page 1067–1077, Republic and

Canton of Geneva, CHE, 2015. International World Wide Web Conferences

Steering Committee.

[91] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag,

Berlin, Heidelberg, 1995.

[92] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked

denoising autoencoders: Learning useful representations in a deep network with

a local denoising criterion. J. Mach. Learn. Res., 11:3371–3408, Dec. 2010.

72

[93] P. Wei, Y. Ke, and C. K. Goh. Feature analysis of marginalized stacked denois-

ing autoenconder for unsupervised domain adaptation. IEEE Transactions on

Neural Networks and Learning Systems, 30(5):1321–1334, May 2019.

[94] D. Xiao, B. Li, and Y. Mao. A multiple hidden layers extreme learning machine

method and its application. Mathematical Problems in Engineering, 2017, 2017.

[95] D. Xiao, B. Li, and S. Zhang. An online sequential multiple hidden layers

extreme learning machine method with forgetting mechanism. Chemometrics

and Intelligent Laboratory Systems, 176:126–133, 2018.

[96] H. Y. Xiong, B. Alipanahi, L. J. Lee, H. Bretschneider, D. Merico, R. K. C.

Yuen, Y. Hua, S. Gueroussov, H. S. Najafabadi, T. R. Hughes, Q. Morris,

Y. Barash, A. R. Krainer, N. Jojic, S. W. Scherer, B. J. Blencowe, and B. J.

Frey. Rna splicing. the human splicing code reveals new insights into the genetic

determinants of disease. Science (New York, N.Y.), 347(6218):1254806, January

2015.

[97] Q. Xu, Z. Wu, Y. Yang, and L. Zhang. The difference learning of hidden

layer between autoencoder and variational autoencoder. In 2017 29th Chinese

Control And Decision Conference (CCDC), pages 4801–4804, May 2017.

[98] Y. Yang, J. Wu, X. Feng, and A. Thangarajah. Recomputation of dense lay-

ers for the performance improvement of dcnn. IEEE transactions on pattern

analysis and machine intelligence, PP, 05 2019.

[99] Y. Yang, Q. J. Wu, and Y. Wang. Autoencoder with invertible functions for

dimension reduction and image reconstruction. IEEE Transactions on Systems,

Man, and Cybernetics: Systems, 48(7):1065–1079, 2018.

[100] Y. Yang and Q. M. J. Wu. Extreme learning machine with subnetwork hid-

den nodes for regression and classification. IEEE Transactions on Cybernetics,

46(12):2885–2898, Dec 2016.

[101] Y. Yang and Q. M. J. Wu. Multilayer extreme learning machine with sub-

network nodes for representation learning. IEEE Transactions on Cybernetics,

46(11):2570–2583, Nov 2016.

73

[102] Y. Yang and Q. M. J. Wu. Features combined from hundreds of midlayers:

Hierarchical networks with subnetwork nodes. IEEE Transactions on Neural

Networks and Learning Systems, PP:1–13, 01 2019.

[103] L. Yingwei, N. Sundararajan, and P. Saratchandran. A sequential learning

scheme for function approximation using minimal radial basis function neural

networks. Neural Comput., 9(2):461–478, Feb. 1997.

[104] R. Zhang, Y. Lan, G. Huang, and Z. Xu. Universal approximation of extreme

learning machine with adaptive growth of hidden nodes. IEEE Transactions on

Neural Networks and Learning Systems, 23(2):365–371, 2012.

[105] X. Zhang, Z. Wang, D. Liu, and Q. Ling. Dada: Deep adversarial data aug-

mentation for extremely low data regime classification. abs/1809.00981, 2018.

	Supervisory Committee
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	Introduction
	Overview
	Problem Description
	Contribution
	Organization of Thesis

	Background and Related Work
	Background
	Fully-Connected Classifier with Sub-network Nodes
	Autoencoder
	Non-iterative multi layer Autoencoder

	Generative Model
	Variational Autoencoder
	Generative Adversarial Networks

	Conclusion

	Online Sequential Single Layer Classifier with Sub-Network Nodes
	Abstract
	Introduction
	Method
	Online Sequential Classifier with Sub-network Node

	Experimental Results
	Datasets
	Image Classification

	Conclusion

	Online Sequential Learning with Non-iterative Strategy for Multiple Layer Neural Network
	Abstract
	Introduction
	Method
	Online Sequential Autoencoder

	Experimental Results
	Unsupervised Features Learning:
	Image Reconstruction

	Conclusion and Future Work

	Extension of Online Sequential Autoencoder for Data Augmentation
	Abstract
	Introduction
	Method
	Online Sequential Autoencoder
	Reparameterization Weight

	Experiments
	Comparison of Performance of Sampling Techniques and Our Method for Tabular Dataset
	Image Data Augmentation
	Image Reconstruction

	Conclusion

	Conclusion & Future Work
	Overview
	Future Work
	Conclusion

	Reference

