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Abstract

Various applications in computational linguistics and artificial intelligence rely on
high-performing semantic similarity and word sense disambiguation techniques to solve
challenging tasks such as information retrieval, machine translation, question answering,
and document clustering. While text comprehension is intuitive for humans, machines
face tremendous challenges in processing and interpreting a human’s natural language.
This thesis discusses two interconnected natural language processing tasks using a con-
textual semantic approach and knowledge-based repository. The first task is a knowledge-
based semantic similarity and relatedness between words using WordNet, and the second
is a knowledge-based semantic word sense disambiguation. The semantic similarity and
relatedness task determines the level of likeness and connectedness between two words
within a given context based on their semantic representation within a knowledge graph.
The word sense disambiguation task determines the correct sense (meaning) of a word

within sentence and document contexts.

The main focus of current research in this field relies solely on the taxonomic relation
“ISA” to evaluate semantic similarity and relatedness between terms. Semantic similar-
ity and relatedness have not been exploited to their full potential to solve integral natural
language processing tasks, such as the word sense disambiguation task. Despite the wide
range of knowledge-based word sense disambiguation approaches, the underlying similar-
ity measure for most of them is the word overlap measure (i.e., Lesk similarity measure),
which is, by definition, limited to the exact match of terms between the compared texts.
This thesis explores the benefits of using all types of non-taxonomic relations in WordNet
knowledge graph to enhance existing semantic similarity and relatedness measures. We
propose a holistic poly-relational approach based on a new relational-based information
content and non-taxonomic-based weighted paths to devise a comprehensive semantic
similarity and relatedness measure. Furthermore, we propose a novel knowledge-based
word sense disambiguation algorithm, namely Sequential Contextual Similarity Matrix
Multiplication algorithm (SCSMM). The SCSMM algorithm combines semantic similar-

ity, heuristic knowledge, and document context to respectively exploit the merits of local



context between consecutive terms, human knowledge about terms, and a document’s
main topic in disambiguating terms. Unlike other algorithms, the SCSMM algorithm
guarantees the capture of the maximum sentence context while maintaining the terms’
order within the sentence. Also, we identify the core factors that affect our proposed

algorithm and most existing word sense disambiguation systems.

The results of the proposed algorithms demonstrate an improvement over the bench-
mark methods, including the state-of-the-art knowledge-based techniques. Our proposed
semantic similarity and relatedness measure demonstrated improvement gain that ranged
from 3.8%-23.8%, 1.3%-18.3%, 31.8%-117.2%, and 19.1%-111.1%, on all gold standard
datasets MC, RG, WordSim, and Mturk, respectively. On the other hand, the proposed
SCSMM algorithm outperformed all other algorithms when disambiguating nouns on the
combined gold standard datasets, while demonstrating comparable results to current state-
of-the-art word sense disambiguation systems when dealing with each dataset separately.
Finally, the thesis discusses the impact of granularity level, ambiguity rate, sentence size,

and part of speech distribution on the performance of the proposed algorithm.
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Chapter 1 Introduction

Chapter 1

Introduction

While text comprehension is intuitive for humans, machines face tremendous challenges
in processing and interpreting human natural language. The research area of Natural Lan-
guage Processing (NLP) deals with the study of the computer’s ability to process, analyze,
and extract meanings from human’s natural language. NLP has been the focus of the re-
search community for many decades. However, until now, many NLP tasks have yet to be
solved, such as sentence boundary detection, concepts similarity and relatedness, Word
Sense Disambiguation (WSD), sentence similarity, topic detection, text summarization,
and text generation. The main objective of any NLP task is to allow machines to achieve
an automatic level of processing and handling of language as close as possible to a hu-
man’s. This thesis discusses two interconnected NLP tasks using a contextual semantic
approach by exploiting a knowledge-based repository. The first task is semantic similarity
and relatedness between words, and the second is a knowledge-based semantic WSD task.
The semantic similarity and relatedness task determines the level of likeness and connect-
edness between two words within a given context based on their semantic representation
within a Knowledge Graph (KG). The WSD task determines the correct sense (meaning)

of a word within sentence and document contexts.

In this thesis, we propose a comprehensive semantic similarity and relatedness mea-
sure that exploits the KG structure to its full potential. Furthermore, we propose a novel

WSD approach that employs knowledge-based semantic similarity and relatedness mea-
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sures. This chapter starts with an overview of the area of study, Section 1.1. Then, Section
1.2 describes the specific problems and research challenges addressed in this thesis. In
Section 1.3, we summarize the main contribution of our research. Finally, Section 1.4

describes the organization of the thesis.

1.1 Overview

Data can be connected through various types of relations to present useful information. At
the same time, a coherent collection of information produces specific knowledge. Linked
Open Data (LOD) is a structure to allow linking data from multiple sources via mean-
ingful semantic relationships to form useful information. Ontologies are a good example
of LOD. Ontologies encompass a formal and machine-readable representation of entities’
names, definitions, properties, and contextual relationships using formal links/relations
that reflect a true connection in the real world [2]. Ontologies are sometimes referred to
as KG. Examples of well known KGs include, but not limited to, DB bedia', WordNet?,
BabeINet®, GeoNames*, the Gene Ontology GO°. In this research, we use WordNet KG

as our main lexical database.

Gruber defined ontology as “an explicit specification of conceptualization” [2]. In
technical terms, an ontology is a formal semantic representation of the concepts within
a specific domain. The semantic representation is established through a set of axioms.
An axiom connects two concepts and/or instances through a specific relation that models
real-world connection in the form of subject, predicate, and object. For instance, “John
lives in Tokyo” would be represented in the KG as subject:John, predicate:Livesin, and
object:Tokyo, see Fig. 1.1b. An interconnected set of axioms forms a KG or semantic
graph (SG) as referred to in [3, 4, 5]. Ehrlinger and W68 have formally defined KG as

an acquisition and integration of information into ontology with a reasoner to derive new

'https://wiki.dbpedia.org/
’https://wordnet.princeton.edu/
3https://babelnet.org/
*https://www.geonames.org/
Shttp://geneontology.org/
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knowledge [3]. An illustration of such a graph connecting instances and an ontology

connecting concepts can be observed in Fig. 1.1b and Fig. 1.1a, respectively.

isChildOf

isWifeOf

isHusbandOf

(a) Segment of ontology®

<« IsHusbandOf/
1sWifeOf >
IsFatherOf

IsMotherOf

IsFrindOf
<€—IsSiblingOf—>>
ISAUNtOf=——»
——[sUncleQf———3»

IsCapital Of—3»

Uit

Livesin

y

(b) Segment of KG

Figure 1.1: Segments of the family ontology and KG

6Visualization can be accessed at http://vowl.visualdataweb.org/webvowl.html
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Since ontologies are domain-specific by nature, they incorporate a set of non-taxonomic
relations that are relevant to the modeled domain. These relations resembles the semantic
knowledge for all entities of that domain. Fig. 1.1 demonstrates such semantic representa-
tion, as it describes the family ontology through semantic relations that model real-world

family relationships such as husband, child, spouse, and sibling.

Semantic is the study of meaning, a branch of the philosophical theory semiotics deal-
ing with the relationships between signs and their meanings. Hebeler has described it as
follows: “Semantic gives a keyword symbol useful meaning through the establishment of
relationships” [6]. In computer science, it is the study of relationships between modeled
entities within an ontology or KG. Whereas in NLP, semantic is the study of contextual
relationships between words, sentences, or documents by analyzing asserted and inferred
relationships within a KG. For instance, Fig. 1.2 depicts a sample of a KG presenting the
taxonomic relations (i.e., IS A (ISA)) and some of the non-taxonomic relations between
its concepts. Eat is an example of a non-taxonomic relation associating Farm Animal
with Vegetables. ISA is the only mandatory relation, as it shapes the taxonomic structure
of all entities within the KG. The non-taxonomic relations provide additional semantic
information that represents real-world associations between entities within the modeled

domain. The more non-taxonomic relations are present in the KG, the semantically richer

X
Living Thing
,-)@ Plant
IS A IS A 1S A IS A

4 Eatable Plant % Farm Animal &Savage Animal
¢ 'r'.|‘ly

s pmN A
{ IS A

| ]
Ama o N
| é"f?ﬂ/: Fruit Iim) Vegetable (

the graph.

Animal

r/t__ g \
I\':.f:/lOrnate Plant

t

a-glq-

Figure 1.2: Semantic relations within a knowledge graph
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Given the above definition, semantic relations have been a core element in the many
research topics, especially within NLP domain. Semantic relations within KGs can deter-
mine the contextual similarity and relatedness between two given words or their concepts.
Semantic relations can also be used to disambiguate words within a given context; this
is a fundamental NLP challenge machines have yet to master. Finally, semantic knowl-
edge can capture the contextualized similarity between two full sentences, which can be
adopted to solve other Information Retrieval (IR) and NLP tasks such as topic detection,

document clustering, classification, and document summarization.

In addition to the semantic relations, concepts within KG are considered informative
entities, where each concept contains a specific amount of information that reflects its
distribution within its domain. This notion is referred to as Information Content (IC). IC
is a basic quantitative measure of the amount of information in something. It is derived
from the probability of a particular event occurring from a random variable. Within a
KG, concepts have been assigned an IC value using two approaches. The first relies on
an external corpus and uses a probabilistic model. This approach is referred to as IC-
extrinsic approach. The second depends on various features from within the KG, such
as; child nodes, depth, leaves, and parents. This approach is referred to as IC-intrinsic

approach. In this thesis, we focus on the IC-intrinsic approach.

1.1.1 Semantic Similarity and Relatedness

Semantic similarity and relatedness measure the level of likeness and connectedness be-
tween two terms based on their relations. Some literature evaluates the similarity and
relatedness as a single distance measure between the meanings of two terms. On the other
hand, others distinguish similarity as a specific case of relatedness, and relatedness is a
more general measure. Hence, semantic similarity is a specific measure of likeliness,
while relatedness is a more general measure that reflects connectedness. In this con-
text, similarity can be measured by the taxonomic relations, while relatedness includes
all other non-taxonomic relations. For example, in Fig. 1.2 the concepts ‘Vegetable’ and

‘Fruit’ will have high semantic similarity while ‘Fruit’ and ‘Savage Animal’ will have a
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low semantic similarity. An example of high relatedness from the same ontology is the
relationship between ‘Vegetable’ and ‘Farm Animal’ as they have a direct non-taxonomic

relation (‘Eat’) between them.

A wide range of semantic similarity measures have been proposed and applied in
various applications and domains. These measures vary in performance based on their
approaches and application domains. Detailed comparisons of these measures can be
found in [7, 8, 9, 10, 11, 12, 13]. In summary, semantic similarity measures can be
categorized into four main categories based on their approach: path, feature, IC, and
hybrid. More details of these are presented in Chapter 2. However, the focus of this thesis

is on IC-based semantic similarity and relatedness measures.

Semantic similarity and relatedness can be applied to solve challenging tasks, includ-
ing the WSD that we present in the following section. Furthermore, semantic similarity
can be applied in other NLP tasks, including text classification, information retrieval,

machine translation, and document clustering. [9].

1.1.2 Word Sense Disambiguation

WSD is considered one of the oldest tasks of computational linguistics going back to
the 1940s. It started as a distinct task since the beginning of machine translation. The
first challenge that triggered WSD task is Machine Translation (MT) in the 1940s. Since
then, researchers have been developing models and algorithms to improve the accuracy
of this task using various approaches; supervised, semi-supervised, and knowledge-based
systems. WSD is an essential task in many other applications, such as IR, information ex-
traction, knowledge acquisition, and NLP. With the introduction of supervised machine
learning in the 1990s, various supervised approaches attempted to solve the WSD task.
More recent studies are exploring semi-supervised and unsupervised approaches by go-
ing back to using knowledge base in the form of graph systems such as WordNet’, and

BabelNet®.

Thttps://wordnet.princeton.edu/
8https://babelnet.org/
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Human beings can detect the appropriate sense unconsciously by large, whereas teach-
ing that to a machine is challenging. Within the NLP domain, WSD is the task to deter-
mine the appropriate meaning (sense) of words given a surrounding context. WSD is
considered a classification task, where the system’s main task is to classify a specific
word to one of its senses as defined by a lexical dictionary. One typical example is the
word ‘Bank’, where it has eighteen different senses defined in WordNet® lexical database.
Out of which, ten are defined as nouns, and the rest are defined as verbs, as shown in Fig

1.3.

Based on their approaches, WSD systems are divided into four main categories: super-
vised, semi-supervised, unsupervised, and knowledge-based. Supervised systems require
a large sense-annotated training dataset, which is challenging to construct. To our knowl-
edge, there are only two datasets available; the first is the SemCor dataset, which consists
of 226,040 manually annotated senses divided into 352 documents [14]. The second is
the One Million Sense-Tagged Instances) (OMSTI) dataset, which consists of one mil-
lion automatically annotated senses [15]. The dataset was constructed based on a large
English-Chinese corpus using an alignment-based WSD technique [16]. Various super-
vised systems have been designed to date. These systems use different techniques such as
decision list [17], decision trees [18], naive bayes [19], and various neural network and

sense embedding systems [20, 21, 22, 23, 24].

Semi-supervised systems employ a bootstrapping process with a small seed of a sense-
annotated training dataset and a large corpus of un-annotated senses. At first, a supervised
classifier is trained using the seed, then the iterative bootstrapping process gradually in-

creases the size of the annotated dataset and shrinks the un-annotated one [25].

Other systems followed an unsupervised approach by using a context clustering [26],

word clustering [27], and other graph-based algorithms such as PageRank algorithm [28].

The last category, which is the focus of our research is knowledge-based. Systems of
this category rely on the structure and features of a KG. Different systems exploit various

features, such as taxonomic relations, non-taxonomic relations, concept’s IC, and paths.

http://wordnetweb.princeton.edu/perl/webwn?s=bank
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Word to search for: bank | search WordNet |

Display Options: | (Select option to change) v || Change |
Key: "S:" = Show Synset (semantic) relations, "W:" = Show Word (lexical) relations
Display options for sense: (gloss) "an example sentence”

Noun

« S: (n) bank (sloping land (especially the slope beside a body of water)) "they pulled
the canoe up on the bank"; "he sat on the bank of the river and watched the
currents”

+ S: (n) depository financial institution, bank, banking_concern, banking_company. (a
financial institution that accepts deposits and channels the money into lending
activities) "he cashed a check at the bank"; "that bank holds the mortgage on my
home"

+ S: (n) bank (a long ridge or pile) "a huge bank of earth”

+ S: (n) bank (an arrangement of similar objects in a row or in tiers) "he operated a
bank of switches"

+ S: (n) bank (a supply or stock held in reserve for future use (especially in
emergencies))

+ S: (n) bank (the funds held by a gambling house or the dealer in some gambling

games) "he tried to break the bank at Monte Carlo"

« 3: (n) bank, cant, camber (a slope in the turn of a road or track; the outside is higher
than the inside in order to reduce the effects of centrifugal force)

the top) for keeping money at home) "the coin bank was empty”

+ S: (n) bank, bank building (a building in which the business of banking transacted)
"the bank is on the corner of Nassau and Witherspoon"

+ S: (n) bank (a flight maneuver; aircraft tips laterally about its longitudinal axis
(especially in turning)) "the plane went into a steep bank”

Verb

« S: (v) bank (tip laterally) "the pilot had to bank the aircraft”

+ S: (v) bank (enclose with a bank) "bank roads”

« S: (v) bank (do business with a bank or keep an account at a bank) "Where do you
bank in this town?"
S: (v) bank (act as the banker in a game or in gambling)

¢ S: (v) bank (be in the banking business)
S: (v) deposit, bank (put into a bank account) "She deposits her paycheck every
month"

¢ S: (v) bank (cover with ashes so to control the rate of burning) "bank a fire"

« S: (v) count, bet, depend, swear, rely, bank, look, calculate, reckon (have faith or
confidence in) "you can count on me to help you any time"; "Look to your friends for
support”; "You can bet on that!"; "Depend on your family in times of crisis"

Figure 1.3: Senses for the term bank

The first knowledge-based system was developed by Lesk, based on the term’s definition
overlap with its sentence [29]. The Lesk model was extended to include the definitions
of semantically related terms [30]. Other techniques of this category include the one we
propose in this thesis: a semantic similarity technique. Each sense of the ambiguous word
is assigned a weight based on its semantic similarity with other terms within the sentence,

document, or both. The sense with the highest weight is selected as the correct sense.
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The most straightforward approaches out of all are the two baselines approaches. The
first is the Most Frequent Sense (MFS) baseline, which is a heuristic approach that selects
the sense that appears the most within a training dataset. The second is the WordNet 1%

sense approach, which is merely selecting the first sense as it appears in WordNet.

1.2 Problem Statement and Motivation

An overwhelming number of semantic similarity measures have been proposed in the lit-
erature. Some researchers considered similarity to be a specific case of relatedness [9, 31],
while others did not distinguish between semantic similarity and relatedness [32, 33].
Nonetheless, for the majority of these methods, similarity has been evaluated strictly
based on hierarchical relations (i.e., hyponym/hypernym), except for a few methods that
have exploited a limited number of non-taxonomic relations to compute relatedness be-
tween concepts (i.e., meronymy/holonymy and antonymy) [9, 34, 35]. Even for those who
adopted non-taxonomic relations, they treated all relations equally without analyzing their

meanings and the information they carry between concepts.

Furthermore, to our knowledge, semantic similarity and relatedness measures have
not been exploited to their full potential to solve integral NLP tasks, such as the WSD.
Amongst all four WSD categories, supervised and knowledge-based are the most promis-
ing approaches [36]. However, supervised approaches require a large annotated dataset,
which is challenging to produce. Due to the limited number of sense-annotated datasets,
these systems face challenges to excel and demonstrate a noticeable improvement over
other systems. Moreover, supervised systems need to be well trained, which is com-
putationally and time expensive. Finally, most WSD supervised systems are unable to
intuitively explain their results since they usually use a training function that leads to a

calculated decision-making process.

On the other hand, knowledge-based systems do not require a training dataset, as they
rely on a massive dictionary or KG. Moreover, knowledge-based systems can easily ex-

plain their results since they normally follow an intuitive process. With the advancement
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of LOD and domain-specific KGs, these systems have a higher potential to outperform
other approaches due to the advantage of broader KG coverage [37]. The two required
ingredients to achieve that, are a semantically rich KG and a comprehensive semantic

similarity and relatedness measure.

The limitations in current semantic similarity and relatedness measures and WSD

systems motivated us to pursue the following objectives:

e Address the limitations in existing IC-intrinsic and path-based similarity methods.

e Study the effect of various non-taxonomic relations on enhancing semantic similar-

ity and relatedness measures using WordNet KG.

e Design a new method that combines semantic similarity and relatedness into a sin-

gle comprehensive measure that complements existing taxonomic measures.

e Investigate the effect of semantic similarity and relatedness measures, word sense

heuristic, document context, and average sentence size on disambiguating words.

e Propose a new algorithm that exploits semantic similarity and relatedness, word

sense heuristic, and document context to solve all-word WSD task.

e Evaluate our approaches using gold-standard benchmarks and state-of-the-art meth-

ods to demonstrate their robustness and scalability.

We tackled the above-mentioned objectives by adopting the methodology given below.

e Exploit all non-taxonomic relations within WordNet KG to design a new relational-

based similarity and edge-weighted relatedness measures.

e Develop a framework to systematically evaluate and demonstrate the effect of the
proposed relational-based similarity and relatedness on current benchmark meth-

ods.

e Develop a framework to show the effect of the following three parameters on WSD:

10
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— Semantic similarity and relatedness.
— Word senses heuristics from SemCore and OMSTI datasets.

— Document context.

e Formulate several experimental scenarios to validate all demonstrated results.

1.3 Contributions

Compared to the aforementioned literature and motivated by the importance of the re-

searched topic, the contributions of this work can be summarized as follows:

We propose a new relation-weighting schema based on the IC difference between

linked concepts to measure non-taxonomic relational-based similarity.

e We propose a new relatedness measure based on a new non-taxonomic edge-weighted

paths between terms.

e We propose a holistic poly-relational approach that exploits all non-taxonomic rela-
tions, their types and their frequency to enhance semantic similarity and relatedness

in the context of WordNet.

e We propose a novel knowledge-based WSD technique that reflects human thinking
by exploiting semantic similarity and relatedness, word sense heuristic, and docu-

ment context for solving All-Words (AW) WSD task.

e We demonstrate the effect of various semantic similarity and relatedness measures,

word sense heuristic, and document context on the performance of WSD methods.

1.4 Thesis Organization

Chapter 2 provides a preliminary study of the semantic similarity and relatedness mea-

sures. The chapter also presents background information about the WSD task. This chap-

11
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ter also presents a comprehensive literature review of the related approaches and tech-
niques. In Chapter 3, we present our proposed comprehensive semantic similarity and re-
latedness measure and its main parameters. Chapter 4 presents a novel knowledge-based
WSD algorithm that employs semantic similarity, word sense heuristic, and document

context. Finally, the conclusion of this thesis and future work are presented in Chapter 5

1.5 List of Publications

e M. AlMousa, R. Benlamri and R. Khoury, "Exploiting Non-Taxonomic Relations
for Measuring Semantic Similarity and Relatedness in WordNet”, Journal of Knowledge-

based Systems, Elsevier, Nov 2020.

e M. AlMousa, R. Benlamri and R. Khoury, "A Novel Words Sense Disambiguation
Approach using WordNet Knowledge Graph,” Journal of Computer Speech and
Language, Submitted, 2020.

e M. AlMousa, R. Benlamri and R. Khoury, "NLP-Enriched Automatic Video Seg-
mentation,” 6th International Conference on Multimedia Computing and Systems

(ICMCS), Rabat, 2018, pp. 1-6, doi: 10.1109/ICMCS.2018.8525880.
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Chapter 2

Background and Literature Review

2.1 Knowledge Representation

Ontologies and KGs are knowledge repositories that systematically model real world en-
tities and their relationships in machine readable format. The semantic representation
consists of a set of axioms that is a subject, predicate, and object. The subject and object
are concepts with a relationship referred to as predicate. A complete set of axioms form an
ontology or KG. Ontologies and KG are generally domain specific. Therefore, they incor-
porate a wide range of taxonomic and non-taxonomic relationships that models a specific
domain context between concepts. The research community have been using the terms
interchangeably, However, for the purpose of this research, we follow the mainstream un-
derstanding of KG as a representation of instances of ontological concepts for a specific
domain [3]. To illustrate this definition, Fig. 2.1a describes the WordNet ontology, which
includes concepts and object properties. The latter are referred to as links, pointers, or
relations. On the other hand, Fig. 2.1b shows instances of concepts and their relations
based on the designed ontology and inferred knowledge. Despite various definitions of
KG and ontology, the terms have been used interchangeably when referring to some of
the well known knowledge base repositories such as DBpedia [38], Freebase [39], YAGO
[40], BabelNet [41], and WordNet [42] and similarly structured databases [9, 32, 34, 43].

13
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Figure 2.1: A fragment of WordNet ontology and graph

In this thesis, we focus on WordNet as our main knowledge repository. WordNet is

an English words lexicon database, that organizes concepts into a conceptual hierarchy.

It was designed to semantically model English words through the categorization of syn-

onyms and existing taxonomic and non-taxonomic relations [42]. Since the creation of

WordNet, it has become a valuable resource used in many domains, including NLP, IR,

and semantic-based recommender systems. Its semantic structure triggered the research

community to examine tasks such as the ones we investigate in this research, namely se-

mantic similarity and relatedness and semantic WSD. The next two sections present the

related work for the studied topics.
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2.2 Semantic Similarity and Relatedness

Semantic similarity is a measure of likeness between various text components such as
words, sentences, or documents. It has a significant role in many NLP tasks, such as IR

[44], text clustering [45], text classification [46], text summarization [47], and WSD [48].

Semantic similarity is also applied in recommender systems [49], geo-informatics
[50], and biomedical informatics [51] domains. Semantic relatedness is a measure of the
contextual relationship between words, sentences, or documents. It is a more general
measure than semantic similarity, as two dissimilar words can be very related; for exam-
ple, ‘bird’ and ‘feather’ are conceptually dissimilar yet are intuitively related. Nonethe-
less, most literature has used the two measures interchangeably. Semantic similarity and
relatedness measures can be categorized into two main categories based on their knowl-
edge resources. The first is corpus-based measures, which include statistical approaches
[52], neural network [53], and word embedding approaches [54, 55, 56, 57]. The second
category is knowledge base (KB) measures, which uses an ontology or KG structure to
measure the similarity and relatedness between terms. Researchers have also categorized
similarity and relatedness measures based on other criteria, such as their technique (su-
pervised or unsupervised), topological, and statistical. A more detailed comparisons of

such categorization can be found in [7, 8,9, 10, 11, 12, 13].

2.2.1 Semantic Similarity Methods

This thesis focuses on the KB approaches, which can be further categorized into four main

categories: path, feature, IC, and hybrid measures.

Path-based: These measures count the number of edges in the shortest path between
concepts. The longer the path between two concepts, the less similar they are, and vice

versa [33, 35, 58, 59, 60, 61].
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Information Content-based: Based on the information source, IC-based measures can

be either extrinsic or intrinsic.

e Extrinsic: Extrinsic IC measures are corpus-based, meaning an external corpus and

a statistical model are used to compute the information of each concept [52, 62, 63].

e Intrinsic: Intrinsic IC measures, are KG-structure-based, meaning the concept’s
information lies within the KG topological structure. Various structural attributes
have been used as indicators of the information contained within each concept [9,

32, 33, 34, 43, 64, 65].

Feature-based: Feature-based measures represent a concept as a vector of features con-
structed from its attributes [66, 67, 68, 69]. Jiang et al. formally represented Wikipedia
concepts as a structured knowledge base and proposed a multi-vector feature-based ap-
proach that includes features from concept’s synonyms, glosses, Anchors, and Categories
[70]. Recent methods in this category incorporated Neural Network (NN) models to em-
bed feature vectors that represent the entities, relations, and the entire KG. These methods

are being referred to as Knowledge Graph Embedding (KGE) [57, 71].

Hybrid: Finally, hybrid similarity measures combine two or more of the above [8, 33,

61, 69, 72].

From the above-mentioned approaches, we are more interested in the semantic sim-
ilarity and relatedness measures that are IC-based. In particular, we focus on the IC-
intrinsic approaches. The IC-intrinsic approaches compute the concepts’ IC value based
on various graph-based features such as the number of hyponyms, depth, siblings, leaves,
and other graph features. On the other hand, IC-Extrinsic approaches employ a statistical
approach on an external corpus to compute the information contained within each concept

that exists in the KG.

It is worth pointing out that some KB approaches have viewed similarity and related-

ness as a single measure based on various topological features. On the other hand, some
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Table 2.1: IC-intrinsic measures

IC Measures Formulae Hierarchical features

Seco [32]  iCse(c) =1 — log(hypo(c)+1) hyponyms

log(mazum )

log(mazwn) log(mazeep)

Zhou [43]  icipou(c) =k (1 - M) +(1—k) (M) hyponyms, depth

Sebti'[33]  icsenti(c) = —log Eh]_[ ()m hypernyms,
c;€hyper(c
direct hyponyms
v 1

Meng [65]  iCmeng(€) = fomemamsy X (1 - g(“ef;%(ﬂfiﬁa +l)) depth,
hyponyms’ depth

Sanchez [34] icyanche-(¢) = —Eog(niz’z@%i) leaves,
hypernyms

Cai [9] 1Cei(C) = (1 - %) x tanh(deep(c)) hyponyms,
depth

Zhang [64] iCipang(c) = K (1 — %) —(1-K)L g:l log (w) hyponyms,
hypernyms’ siblings

where w= I1 m +1,
ci€hyper(c)
K = e

n is number of direct parents

other KB approaches viewed similarity as the conceptual likeness between terms based
on a single taxonomic relation (ISA), whereas relatedness is based on all other relations.
This research adopts a single similarity and relatedness measure based on all existing
relationships within the KG. Also, it extends the concept of IC to all relationships and

concepts within the KG.

The next two subsections present in detail the literature related to IC-intrinsic based

approaches and approaches that exploited non-taxonomic relationships.
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2.2.2 IC-Intrinsic Approaches

In this section, we further discuss the IC-intrinsic-based semantic similarity and related-
ness measures, which had heretofore been presented by the research community. These
are used as benchmarks to evaluate the proposed method in this thesis. Table 2.1 lists the

IC-intrinsic measures implemented through various topological features of WordNet.

Seco [32] was the first to introduce an intrinsic IC measure that is not dependent on
an external corpus. His approach relies on the intrinsic features of the KG, specifically
the number of hyponyms within the concept. He proposed an IC-intrinsic measure as
a monotonically decreasing function with the number of hyponyms for a given concept.
Seco’s IC-intrinsic model proved that the number of hyponyms inversely conveys the

concept’s IC [32].

Using Seco’s IC, Zhou [43] and Cai [9] incorporated the concept’s depth to emphasize
the generalization/specialization effect on IC. Both approaches used depth to overcome
Seco’s method’s limitation of attributing concepts with equal IC values regardless of their
hierarchical level in the taxonomy. Zhou introduced a new IC measure as a function of
normalized depth and hyponyms to compute the concept’s IC [43], Cai proposed a new
IC measure as a nonlinear transformation function to measure the contribution of depth
to the concept’s IC. Furthermore, Cai proposed a similarity measure to evaluate the IC

measure [9].

Sebti proposed a new IC-intrinsic measure as a monotonically-increasing function
of depth and number of siblings. He utilized the branching factor of all subsumers as
an indicator of information gained through ancestor concepts. Hence, his new measure
incorporated the number of subsumers with the probability of branching using direct hy-
ponyms. Sebti’s measure is not normalized, thus, the IC values could have the range of
[0, 00). Furthermore, he improved his IC measure with an edge-counting tuning semantic

similarity function [33]. This approach clearly confirms the parent-child effect on IC, fol-

IThe authors did not explicitly state the final equation in their article. However, they demonstrated it
through an example as follow: IC(Bozx) = —Log (% X % X % X é X 1—13 X 4—19) = 18.2778, where the

denominator represents the number of siblings from the highest subsumer to the concept
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lowing the inheritance principle, while being a monotonically decreasing function moving

from leaf to root.

Inspired by information theory, Sanchez proposed a new leaf-based intrinsic IC mea-
sure. He argued that the concept’s IC is directly proportional to its subsumers and in-
versely proportional to its leaves. Hence, his IC measure is described as a measure of
concept’s concreteness level to its abstraction level, specificity to generality. Unlike previ-
ous studies, Sanchez incorporated multiple inheritance in the semantic similarity measure

through the number of subsumers [34].

In another study, Meng exploited the depth of a concept, as well as that of its hy-
ponyms, in order to overcome Seco’s approach of attributing the same IC value to all
leaves. In other words, Meng’s main argument was that leaves at a higher level of the
taxonomy (i.e., smaller depth) convey less information than deeper leaves; hence, they

have a smaller IC value [65].

Zhang introduced a new IC-intrinsic measure exploiting multiple inheritance. Zhang’s
improvement came from covering multiple inheritance concepts as well as incorporating
the concept’s siblings with depth, hyponyms, and hypernyms [64]. Another Multiple
inheritance approach was recently developed by Hussain [73]. His approach utilizes a
new neighbourhood ancestor semantic space to define concept’s IC value. This technique
is applied on a semi-structured taxonomy KG called Wikipedia Concept Graph (WCG)
[73].

Table 2.1 lists the IC-intrinsic measures described above, which are implemented
through various topological features of WordNet. These IC measures were evaluated
using either existing similarity measure such as Resnik [52], Lin [63], and JCN [62], or
new proposed similarity measure. For example, Cai [9] and Zhang [64] proposed new
similarity measures exploiting the benefits of their new IC. Table 2.2 lists all pre-existing

and new similarity measures based on [C-intrinsic measures.
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Table 2.2: IC-based similarity measures

Sim Measures Formulae

Resnik [52] SiMyes(c1,c0) = mazx ic(c)
ceS(eq,e2)
) 2 X st Tes 5
Lin [63] simun(ct, ¢2) = — sim .(61 c2)
(?,c(_cﬂ + ZC(CQ)) , .
) —za X res )
JCN [62] sime(ctyc) = 1 — 1c(c1) + 1c(ca) . SiMMres(C1, C2)
Cai [9] S’imcail (Cl, CQ) = exp_(axs‘plw(61,02)+ﬁxsplN(c1,cz))

SimCaig (C].J CQ) — eXp_(axsplW (Cl ,Cﬂ)"‘ﬁ XS_‘plo(C] ,92))

splw (c1,ca) =ic(cy) +ic(ea) — 2 X ic(LCS(cq,¢2))

__ len(eg,e2)
sply(c1,c0) = 2XMaT geep

deep(c dee. 1
splo(c1, e2) = log (emeseayts)

; . 2xiec(LCS(e1,e
Zhang [64] 3'3mzhang(cl} CQ) =1- EOQ‘ (2 - W)

2.2.3 Non-Taxonomic Approaches

The majority of semantic similarity methods have been strictly evaluated based on the tax-
onomic relationship ISA (i.e., hyponym/hypernym within WordNet). However, few meth-
ods have exploited a limited number of non-taxonomic relationships (i.e., meronymy/holonymy

and antonymy) to compute various relatedness measures [9, 34, 35].

WordNet includes many categories of non-taxonomic relations to enhance semantic
similarity and relatedness measures that have yet to be exploited by researchers. Table
2.3 depicts theses relations and their usage frequency within WordNet KG. For instance,
those methods which used meronymy relation did not distinguish between the three types
of meronym relations: part of, substance of, and member of. This distinction is important
because each meronym relation contributes different type of information to the semantic
definition, and conveys specific information about the nature of the association between
concepts. Based on the relation type (part of, substance of, and member of), the subject
of an axiom conveys its inclusion in a larger entity, its physical components, or its par-

ticipation in a group, respectively. Furthermore, other non-taxonomic relations that have

20



Chapter 2 Background and Literature Review

not yet been exploited, such as synonym, derivation, antonym, theme, cause, and action,
convey an important informative component of a concept’s semantic definition and infor-
mation content. Therefore, a comprehensive semantic similarity measure should fairly
incorporate information from all relations. Furthermore, relatedness in the literature was
mostly evaluated based on the length of the path between two terms, without considering
the importance of a particular relation within the modeled domain. We strongly believe
that the most frequently used relations in a modeled domain, convey contextually related

concepts in that domain.

Nonetheless, few studies used non-taxonomic relations to solve challenges such as
spelling error correction and WSD based on the relatedness between concepts. In [30, 74,
75], the authors attempted to solve WSD by using a gloss vector. They evaluated a relat-
edness measure between concepts using standard vector-based similarity measures (i.e.,
overlap, cosine similarity). The vector’s dimensions are words extracted from a concept’s
glossary in WordNet. However, the employed method was more of a linguistic/NLP ap-
proach rather than a semantic one, as they evaluated the English definition from a glossary

rather than semantic relations.

In Liu [31], concepts are expressed by their relevant concepts as a vector. Relevancy is
defined by the set of hypernyms and hyponyms. Dimensions are represented as their local
densities (i.e., number of siblings in this case). To improve similarity and relatedness,
the authors computed the relatedness strength between two concepts based on the number
of paths between them. A path could be direct PartOf path (i.e., one concept is part of
the other), or indirect (i.e., one concept is part of an element from the relevant set of the
other). The relatedness strength is then added to the Least Common Subsumer (LCS)
as a new sibling, and a taxonomic-based approach is applied to compute similarity [31].
A major limitation in this approach is that the paths are not pure relational, but mostly
hierarchical. It nonetheless demonstrated that multiple paths are directly proportional to

the relatedness strength, and can be employed to improve relatedness.

In [8], the authors explored a new path-based approach. Path;gs and pathpgof are

computed based on ISA and PartOf relations, respectively. Then the shortest of the two
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is selected to compute the similarity level between the two concepts. The main inno-
vation of this method lies within the path;ss taxonomic approach. This is because the
pathpertoy is limited to a direct PartOf relation, or at most two such relations that connect
two concepts through a common meronym [8]. This is a major limitation of this approach,

especially, with a limited to none such paths exist between pairs within the used datasets.

Table 2.3: Non-taxonomic semantic relations in WordNet

Relation Name Frequency Prevalence
synset_member (synonym) 145076 74.61%
member_meronym 12252 6.30%
member_holonym 12242 6.30%
part_meronym 9082 4.67%
part_holonym 9071 4.67%
derivation 2957 1.52%
antonym 2154 1.11%
substance_holonym 746 0.38%
substance_meronym 744 0.38%
theme 103 0.05%
cause 15 0.01%
action 3 0.00%

2.2.4 Critical Analysis of the Related Work

Various intrinsic IC measures were proposed and used to determine the semantic sim-
ilarity between concepts. As described in Section 2.2.2, these IC measures exploited
different taxonomic features of the KG. A common limitation of these measures is that
they rely solely on a single semantic dimension — the taxonomic ‘is a’ (ISA) relation —
and that they ignore all other semantic dimensions, hence, limiting semantic similarity
strictly to the generalization/specialization relation. However, by definition, “Semantics
give a keyword symbol useful meaning through the establishment of relationships” [6].
This is clearly illustrated in the example shown in Fig. 2.2. The isolated first sense of

the noun Car, denoted as Car-n#l, has no semantic meaning except that it is a member
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Figure 2.2: The car concept in WordNet graph

of synset Car-n (see Fig. 2.2a). When adding the taxonomic semantic relation ISA, as
shown in Fig. 2.2b, one can then elaborate on the definition as follows: “Car is a mo-
tor vehicle, which is a self-propelled vehicle, etc.”. However, when we further include
explicit (e.g. part holonym /meronym, theme, action, etc.) and implicit (i.e. synonym)
non-taxonomic relations, the semantic definition of Car-n#1 is significantly enriched, and
hence its IC. The new definition of Car-n#1 would be: “Car is a motor vehicle, which is a
self-propelled vehicle. Car has a theme as passenger. Car leads to actions such as trans-
port and drive. Car has some parts such as car door, throttle, air bag, fender, etc. Car
has synonyms (auto, machine, motorcar, and automobile)”. To overcome this limitation,
we argue that semantic relations other than ISA enhance the concept’s semantic definition
and increase its IC value; an increase that is proportional to the type and strength of that
relation. Hence, this work extends the taxonomic-based IC principle applied in previous

literature by exploiting non-taxonomic semantic relations.

As described in Section 2.2.3, it can also be observed that the few non-taxonomic
approaches available in the literature do not exploit non-taxonomic relations to their full
potential. They either limit the non-taxonomic relational path to one or two links or only

rely on a single relation (i.e., PartOf).

Domain ontologies and KGs are contextually designed for specific purposes; there-
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fore, they include a rich set of non-taxonomic relations that contextually describe the
relationships between concepts. This is clearly illustrated in Fig. 1.1a, which describes
the family ontology in terms of relations that model real-world family relationships such
as husband, child, spouse, and sibling. On the other hand, Fig. 1.1b describes an example
KG of family domain with many non-taxonomic relations describing various relationships
between persons of the modeled family. Relatedness between persons of a family can be
better evaluated using these relations, focusing on their types and occurrences in a path
between two persons. Therefore, to overcome the limitations of existing non-taxonomic
approaches, in this thesis, we consider the type and frequency of all non-taxonomic re-
lations to measure relatedness between concepts. Thus, incorporating all contextually
related concepts and privileging the dominant relations in the described domain. Conse-
quently, in this thesis, we propose a weighted relational-based path approach, exploiting
all non-taxonomic relations between two concepts to measure their relatedness and en-

hance their semantic similarity.

To summarize, various principles and findings from the aforementioned analysis of
the literature motivated this research. Firstly, the role of relationships in ontology and KG
design, and their importance to serve a contextual purpose within the modeled domain.
Ontologies are domain-specific with a precise set of relations that enhances the semantic
representation of the data within the KGs [6]. Therefore, ignoring these relations leads to
an incomplete semantic evaluation. Secondly, our approach takes into consideration the
information inheritance principle, such as the one used in the taxonomic approaches based
on ISA relation. A child concept accumulates information from its parent concept(s), and
adds its own new information. However, we strongly believe that other relations also
contain and convey important information between concepts. Therefore, the effect of
non-taxonomic relations on similarity is unavoidable. Finally, it should be noted that the
benchmark datasets are measured by humans based on the combination of similarity and
relatedness. Therefore, to provide fair evaluation and comparison with the gold standard,
our approach makes use of all types of relations in a KG to devise a single measure that

incorporates both the semantic similarity and relatedness between concepts.

Visualization is done using http://vowl.visualdataweb.org/webvowl.html
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Inspired by the related work, and motivated by the aforementioned drivers, we present

the following observations:

Observation 1 Considering non-taxonomic relations in a KG enhances information con-
tent, thus yielding more semantic similarity between concepts than just relying on taxo-

nomic relations.

Observation 2 The prevalence of a non-taxonomic semantic relation within a KG is an
indicator of its importance and relevance to the modeled domain. Thus, it has an impact

on the relatedness between concepts.

2.3 Word Sense Disambiguation

The main objective of WSD is to classify a word within a given context into its correct
sense. This task has been investigated within the computational linguistics field since
the 1940s, and since then, many algorithms and techniques have been developed. WSD
is a challenging task for several reasons, one of which is related to the discrepancies of
senses choices between dictionaries. One dictionary might provide more senses for a
word than another. To overcome such a challenge, many researchers relied on a single
comprehensive machine-readable lexical dictionary such as WordNet?, Wikipedia3, and

BabelNet*.

Another difficulty is derived from the evaluated test datasets and the inter-annotator
agreement. The datasets to evaluate any system must be judged and annotated by hu-
mans because human judgment is considered a gold standard for any system. Compiling
test datasets is not an easy task, as it is difficult for humans to remember or know all
senses for all words, including their precise meanings and differences from other senses.
The gold standard datasets usually measured by the inter-annotator agreement. Based on

[37,76,717,78, 79] the inter-annotator agreement using WordNet ranges between 67% and

’https://wordnet.princeton.edu/
3https://www.wikipedia.org/
‘https://babelnet.org/
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80% on fine-grained inventory. Such a low range of inter-annotator agreement encouraged
the research community to develop and further investigate coarse-grained databases. In
fact, some of the coarse-grained inventory has achieved up to 90% inter-annotator agree-
ment [37, 79, 80]. Nonetheless, significant efforts has been made to compile high-quality
datasets that are considered the primary gold standard for WSD systems (i.e., SensEval2,
SensEval3, SemEval 2007, SemEval 2013, and SemEval 2015). These datasets are further

discussed in Section 4.4.1.2.

2.3.1 Applications

Many NLP applications rely on WSD, either directly or indirectly. The list includes, but
is not limited to MT, IR, Question Answering (QA), Named Entity Recognition (NER),
text summarization, etc. Below we describe some of the most common applications, and

Fig. 2.3 depicts more of such applications.

e Machine Translation [81, 82]: One of the main applications of WSD is MT, as it is
required to determine the lexical choice in order to provide the appropriate transla-
tion. For instance, in a financial context, the English word ‘change’ could be trans-
lated to French to either ‘changement’ (‘transformation’) or ‘monnaie’ (‘pocket

money’).

e Information Retrieval [83, 84]: Accurate disambiguation of a search query can
help prune some documents containing the same word but have a different context.
Query expansion is one technique that employs WSD through a relevance feedback
approach to improve IR performance. As the name suggests, the search query is
modified by adding, removing, or reweighting the query words. The expansion can
be achieved by an explicit or implicit WSD. An explicit WSD includes synonym
words from the same Synset in WordNet. While implicit WSD includes the most
frequent words that appear in a corpus. Paskalis and Khodra demonstrated the effect
of successful WSD on the performance of an IR system. They concluded that a sim-

ple WSD approach, along with relevance feedback, improves the performance of IR
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Figure 2.3: WSD in NLP

system [83]. In another research, Stokoe demonstrated an improvement of sense-
based IR system over a traditional vector-based Term Frequency-Inverse Document

Frequency (TF-IDF) approach.

e Question Answering [85]: WSD plays a critical role in QA systems. Imagine a
system answering the following question *When did George Bush enter the White
House?’, this question is ambiguous as it is not clear which George Bush is being
referred to here. Therefore, additional context might help disambiguate the ques-

tion.

e Named Entity Recognition [86]: Some entities have the term ‘bank’ as part of its

name, for instance, consider the following sentences:

1. I went to the Bank of Montreal.
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2. I went to the bank of the Amazon river.

3. I went to the bank to cash a cheque.

The first sentence has the word bank as part of the name of the financial institution
Bank of Monteral. In contrast, the second sentence refers to land beside the Ama-
zon river (the 1* noun sense in Fig. 1.3). Finally, the third sentence describes the

second sense (the 2™ noun sense in Fig. 1.3) as the financial institute.

2.3.2 WSD Approaches

A vast number of research approaches, techniques and models have attempted to solve the
WSD challenge as a standalone task or as part of a larger NLP application [37, 87, 88, 89,

90, 91, 92]. Either way, these approaches are grouped into four conventional categories:

2.3.2.1 Supervised Approach

Supervised techniques require the use of a training dataset (i.e., a sense-annotated cor-
pus). However, these corpora are hard to produce due to the complexity of identifying
the best combination of words’ senses based on their definitions from WordNet. To our
knowledge, there are currently two such datasets available: SemCor [14] and OMSTI
[15], which will be discussed in Section 4.4.1.1. Supervised approaches also require a
Machine Learning (ML) technique that will, through training, create a feature vector for
each ambiguous word, train a classifier to appropriately assign the correct sense class to

an ambiguous target word, and finally, test it using a dataset to evaluate the model [21, 93].

Early development of supervised WSD approaches include rule-based, probabilistic,
or statistical models. Many comprehensive surveys have covered the mathematical details
of each model in [37, 88, 89, 90, 91, 92]. Nonetheless, to list a few, the following are some

of the common supervised WSD techniques:
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Decision List : This is one of the first rule-based techniques that can be viewed as an or-
dered list of weighted ‘if-else’ rules. The rules are constructed based on a sense-annotated
training dataset, where each word will have a list of senses associated with specific fea-
tures that dictate its score and hence rule order. Finally, based on the word occurrence and
its feature vector, the model checks the decision list and selects the sense with the highest
feature score. Table 2.4 describes a list of rules in the form of (feature, class, score) for the
word ‘bank’. However, despite their advantages, decision lists are known for over-fitting

drawbacks; hence, they are outperformed by many recent ML techniques [17, 92, 94, 95].

Table 2.4: A Decision list example for the word Bank

Feature Sense Class Score
account with bank Bank-2 (financial) 4.83
stand/V on/P ... bank Bank-2 (financial) 3.35

bank of blood Bank-5 (supply) 2.48
work/v ... bank Bank-2 (financial) 2.33
the left/J bank Bank-1 (river) 1.12

Decision Trees : Instead of a list, rules are presented in a binary tree that leads to the
appropriate class decision leaf based on a “yes-no” answer to each rule. Quinkan was
the first to introduce this model in [96] and then extended it in [97]. Fig. 2.4 depicts
the decision tree rules for the word bank. Although they are simple to understand and
can be presented in a human-readable format, Mooney concluded that they have been
outperformed by recent ML models, due to their data sparsity, and unreliable predictions

caused by the small training dataset [18, 37, 88].

Naive Bayes : As the name suggests, this probabilistic classifier is based on the Bayes’
theorem. For an ambiguous word, the sense with maximum conditional probability given

the contextual features is selected [19, 98].
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Figure 2.4: Decision tree example for the word Bank

Support Vector Machine : It was first introduced by Bose et al. in 1992. The goal
of the Support Vector Machine (SVM) algorithm is to maximize the distance between
positive and negative examples by learning a linear hyperplane from the training dataset
[99]. Although SVM is a binary classifier, however, it can be used to separate each sense
as one class from all other senses, and the sense with the largest class will be selected as
the correct sense, Fig. 2.5 shows the selection of the best hyperplane between two classes
based on two features. Although many researchers employed the SVM model to solve
WSD [100, 101, 102], yet the “it makes sense” (IMS)° system is considered one of the
first comprehensive publicly available systems that uses SVM for WSD [103].

Neural Network and Sense/Concept Embedding : NN has been employed in the field
of NLP and, in particular, WSD since the early days. However, since the introduction
of Word2vec in 2013 [54], the majority of research moved towards word, concept, and
sense embedding, such as in [20, 21, 22]. One of the first incorporations of Mikolov
et al. [54] and the original IMS [103] was the IMS+Word2vec system introduced by
Tacobacci et al. [104]. Then, Papandrea proposed an improvement over both the original
IMS system and the previous IMS+Word2vec [105]. The work in [23, 24] adopted a
context2vec embedding on the original Long Short-Term Memory (LSTM) in [106] and

Shttps://www.comp.nus.edu.sg/~nlp/software.html
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Figure 2.5: SVM hyperplane selection example

the Bidirectional Long Short-Term Memory (BiLSTM) approach presented by Graves
and Schmidhuber in [24, 107].

2.3.2.2 Semi-Supervised or Minimally-Supervised Approaches

Semi-supervised approaches take a middle ground strategy by using a secondary small
sense-annotated corpus as seed data, then applying a bootstrapping process such as the
one presented in [25]. The bootstrapping technique requires only a small amount of
tagged data that acts as seed data. This data then undergoes a supervised method to train
an initial classifier, which is, in return, used on another untagged portion of the corpus to
generate a larger training dataset. Only high-confidence classifications are considered as
candidates for the final training dataset. Those same steps are then repeated in numerous
iterations, and the training portion successively increases until the entire corpus is trained,
or a maximum number of iterations caps the process. The main advantage of the boot-

strapping approach is that it requires a small seed dataset to begin the training process.
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The seed data could be manually-annotated or generated by a small number of surefire
decision rules (e.g., the term bank in the context of a water body almost always indicates

the riverside, the 1% noun sense from Fig. 1.3).

Under the same category, a semi-supervised approach is achieved by employing word-
aligned bilingual corpora. This method assumes that an ambiguous word in one language

is not ambiguous in another [108].

A more recent approach combined the original LSTM and Word2vec models from
[106] and [54, 104], respectively. Then a semi-supervised algorithm annotates unlabeled
sentences with those of similar ones from a smaller labeled dataset by using label prop-
agation technique. This method relies on co-occurrence information between the tagged

and un-tagged corpora [109].

2.3.2.3 Unsupervised Approach

Unlike the previous two categories, unsupervised approaches do not require the prior
knowledge of the text; hence, no manual sense-annotated corpus is required. Nonetheless,
most techniques in this category still require a training corpus for an unsupervised training
task. Algorithms from this group have been further categorized into three groups: context

clustering, co-occurrence graphs, and word clustering.

Context Clustering: Algorithms of this approach bear the underlying assumption that
words of the same sense occur in similar contexts. Thus senses can be induced from
corpus by clustering word occurrences with respect to their contexts. This is a clustering
task over a context feature vectors for each word that appear in the training corpus. It is
also referred to as Word Sense Induction (WSI) as introduced by Schiitze [110, 111]. This

group of algorithms follows three basic steps:

1. A context vector ¢ is created for each instance of word w in the training corpus.
The context vector could include features such as: Part Of Speech (POS), morphol-

ogy, lemma, position, and other surrounding words.
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2. Employ a clustering algorithm to cluster each instance into a predefined number of
clusters, where each cluster represents a sense of the word w. Some of well known
clustering algorithms used for the purpose of this task are: K-means clustering

algorithm [26], agglomerative clustering algorithm [111, 112] etc.

3. Compute a cluster centroid vector wg; that represents a specific sense of word w.

The above steps represent the training part of the algorithm, as for the disambiguation
of an instance term ¢ of word w, a context vector ¢ is created for the term t, then ¢ is
assigned to the closest sense (cluster) vectors wg; of w using a vector-based similarity

such as cosine similarity [36].

Co-occurrence Graphs: A Different view of WSD is presented by the co-occurrence
Graph method. In this technique, a co-occurrence Graph G = (V, E) is constructed based
on the co-occurrence of the syntactic relations (E') between words (V') within the same
sentence, paragraph, document, or specified context. Dorow [113] and Widdows [114]

presented such graph construction based on grammatical relations as follows:

1. For an ambiguous word w, a graph G, is constructed with all words appearing in

the context.

2. An adjacency matrix is determined for the G,, graph, and interpreted as a Markov

chain.

3. Apply Markov clustering algorithm to determine word senses.

Other algorithms, based on the co-occurrence graph, have been further developed to
enhance WSD task such as HyperLex [115], and PageRank WSD algorithm [116] which
is based on the original PageRank algorithm developed by [117].

Word Clustering: In comparison to context clustering, this method aims to cluster se-
mantically similar words that can convey a distinct meaning. One of the first models

for word clustering was presented by Lin Dekang [118]. Given a target word wy, the
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model identifies semantically similar words (i.e. synonymous) based on their syntactical
dependencies. The model constructs a similarity tree with a single node w;. The tree
branches expand based on similar words, where, by using pruning algorithm, each branch

is differentiated as a distinct sense of w; [118].

Clustering by Committee (CBC) is another technique presented by Lin and Pantel
based on a similarity matrix of a given corpus. A clustering algorithm (i.e., average
linkage clustering) is used to cluster similar words into groups called committees that
each represents a specific sense. Finally, a target word is matched to one of the committees

(senses) based on its similarity with the centroid [27].

2.3.2.4 Dictionary/knowledge-based Approaches

The main advantage of approaches of this category is that they do not require an inten-
sive training process. However, they disambiguates words in context by exploiting large
scale knowledge resources (i.e., dictionaries, ontologies, and KG). The most common
techniques within this category, which are the focus of this study, are described in detail

below.

Definition Overlap Systems: The definition overlap, or Lesk algorithm named after
its author, is based on the commonality of words between two sentences, where the first
sentence is the context of word w; and the the second is the definition of a given sense
from the knowledge base [29]. The definition with the highest word overlap is consid-
ered the correct sense. However, the Lesk algorithm has major limitations, i.e., being
highly sensitive to the exact word match and having a concise definition within Word-
Net. To overcome this limitation, Nanerjee and Padersen [30] extended Lesk’s algorithm
to include related concepts within the knowledge base. Related concepts are identified

through direct relations with the candidate sense (e.g., hypernyms or meronyms).

Semantic Similarity Systems: Since the introduction of WordNet, many semantic sim-

ilarity and relatedness measures have been developed. Some of the most relevant mea-
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sures were discussed in [9, 119]. This technique follows the intuition that words that
appear in a sentence are coherently contextual, and should therefore be highly related

within a conceptual knowledge base such as WordNet.

Soler and Montoyo proposed a verb WSD method based on the WordNet hierarchy.
They first identified the verb-object phrase that needs to be disambiguated. Then, they
extracted all nouns within the verb’s gloss (definition) to determine its similarity with the
following noun object in the phrase. Finally, a similarity matrix is constructed between
nouns of each verb sense and the object senses. The similarity measure they used is
based on the depth distance of the compared concepts and their LCS. For example, “He
is writing an article”, the target phrase is write-article, and the nouns from the first sense
write-1 are {student, thesis, week}, Finally, the similarity matrix is constructed as shown
in Table 2.5. The verb sense with the maximum total similarity is considered the correct

sense (see Table 2.6) [1].

Table 2.5: Similarity matrix between write-1 and article senses [1]

write-1 atricle-1 atricle-2 atricle-3 atricle-4

student-1 0.31 0.37 0 0

student-2 0.45 0.40 0 0

thesis-1 0.67 0 0.70 0.40
thesis-2 0.72 0 0.94 0.44
week-1 0.29 0 0.30 0.30
week-2 0.29 0 0.30 0.30
week-2 0.26 0 0.27 0.27
Total 2.99 0.77 2.51 1.71

Table 2.6: Total matrices similarities between write and article senses [1]

Totals atricle-1 atricle-2 atricle-3 atricle-4

write-1 2.99 0.77 2.51 1.71
write-2 2.84 0.83 2.45 1.46
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Pedersen et al. [120] introduced a variation to the Lesk overlap approach by propos-
ing an exhaustive evaluation of all possible combinations of sentences that can be con-
structed by all candidate senses within a context window. The context window is the
words surrounding a target word. The Pedersen algorithm can be expressed as a general
disambiguation framework based on a semantic similarity score. The framework can be
described as follows: for a target word w;, S is chosen such that it maximizes the sum

of the most similar sense with all other words’ senses based on the following equation

[37, 120]:

]

& __argmazr mazx !
S T SeSenses(w;) E : S’ESenses(wjjscore(S: S ):' (1)
w; €T w;#w;

where T' = (wy, ..., wy,) is the set of all words in a text, Senses(w;) is the full set of
senses of w; € T. The formula measures the contributions of all context words with the
most suitable sense. Pedersen’s algorithm, as shown in Algorithm 1, can use any semantic
similarity and relatedness measure. However, their results as reported in [120] are much

lower than some of the recent approaches of this category, as shown below:

Algorithm 1: Maximum Relatedness Disambiguation [120]
Input : w;: Target word

Output: i: Index of maximum related sense

1 foreach Sense s,; € Senses_of (w;) do

2 Initialize score; < 0

3 | foreach word w; € ContextW indow(w;) = {w; : j # i} do
4 Initialize maxScore; < 0

5 foreach Sense s;;, € Senses_of (w;) do

6 if maxzScore; < relatedness(s, ;i) then

7 mazScore; = relatedness(sy, sjk)

8 if maxScore; > threshold then

9 scorei+ = maxScore;

10 Return i such that score; > score;,Vj,1 < j < n,n = number of words in the

sentence.
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A more recent study conducted by Mittal and Jain [121] utilized an average of three
semantic similarity measures, some of which include Wu and Palmer (Sim,,,) measure
[60], Leacock and Chodorow path-based measure (Simy.;) [122], and a node counting
distance measure. The average of all three similarity measures is assigned as a similarity
value between each sense of an ambiguous word and all neighboring words (context)

[121].

Heuristic Systems: Based on linguistic properties, heuristics are applied to evaluate
word senses. The main idea is based on the ranking of sense distribution within a training
dataset. Three main heuristic models have been developed to solve the WSD task: MFS,

one sense per discourse, and one sense per collocation.

1. MES is based on the frequency distribution of senses within the training dataset (i.e.,
SemCor and OMSTI). For a word w, the sense with the highest frequency is ranked
first w;, and the sense with the second highest frequency is ranked second wg, and
so on. Table 2.7 depicts the ranking of the noun senses for ‘plant’ within SemCor
dataset. In fact, senses in WordNet itself are ranked based on their frequency of

occurrence in semantic concordance texts® [37].

2. One sense per discourse argues that the meaning of a word is most likely preserved

within a specific text/domain, rather than in general.

3. One sense per collocation narrows the preservation of meaning within collocation

instead of a domain.

Once the challenging part of ranking the senses within the knowledge base is completed,
disambiguating a word would be as simple as selecting the most frequent sense from the
training dataset; which is referred to as MFES baseline. The first sense selection from
WordNet is also considered a baseline approach. These baseline approaches yield a mod-
erate accuracy between 55.2% and 67.8% as reported in SemEval-07 and SemEval-15,

respectively [123].

Shttps://wordnet.princeton.edu/documentation/wndb5wn
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Table 2.7: WordNet sense ranking based on SemCor frequencies

Sense  Definition Frequency
plant-1 Buildings for carrying on industrial labor 338
plant-2 A living organism lacking the power of locomotion 207
plant-3  Something planted secretly for discovery by another 2
plant-4  An actor situated in the audience whose acting is 0

rehearsed but seems spontaneous to the audience

Graph-based Systems: Several other methods exploited the knowledge base structure
and attempted to construct a sub-graph to determine the appropriate sense within a sen-
tence. Navigli and Lapata constructed a graph containing all possible combinations of
the ambiguous words’ senses. Where each node of the new graph represents a sense of
one of the word sequence, while edges correspond to relationships between senses. Once
the graph is constructed, each node is assessed based on the shortest path measure to

determine the most suitable sense for each word that provides the highest context [124].

The final literature of this technique was presented by Dongsuk et al. [125] that pro-
posed a new vector-based semantic similarity measure and an iterated WSD technique.
Their semantic similarity measure is based on the construction of a sub-graph for each
sense, then a semantic relational path is extracted using Depth First Search (DFS) al-
gorithm. Finally, by regarding relationships as words, and semantic relational path as
sentences, they implemented an unsupervised learning approach (i.e., Doc2Vec) to gen-
erate a vector for each sentence [126]. Sentences with similar semantic relational paths
are projected to a similar vector space. The semantic similarity measure is then calculated

using a standard cosine similarity [125].

Out of all WSD approaches, this thesis focuses on the knowledge-based approaches,
due to their ability to exploit massive semantic knowledge graphs. Another advantage of
knowledge-based systems is their independence of expensive sense-tagged corpus, which
led to rapid developments of such systems in recent years. Finally, the recently developed

knowledge-based systems narrowed the performance gap with their peers of the super-
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vised systems, and in some cases they have outperformed them.

2.3.3 State-of-the-art Knowledge-based Systems

The following are the knowledge-based systems that have been used as a benchmark and

are compared to our system.

Lesk: The original Lesk algorithm is based on a gloss overlap between the definitions
of the ambiguous word’s senses and its sentence (i.e., context). The sense definition
with the maximum overlap with the word’s sentence is selected as the correct sense [29].
Leskex is an extension of the original gloss overlap, which extended the gloss to include
terms that share one or more relations with the ambiguous term in the KG. They also
employed the TF-IDF weights to compute the final similarity between the extended gloss
and the context [30]. Finally, LesKeyems» incorporated Latent Semantic Analysis (LSA)
to select the appropriate sense using semantic vector similarity instead of TF-IDF vector
similarity. They re-weighted the terms using an Inverse Glass Frequency (IGF), viewing
all extended glosses as a corpus compared to the Inverse Document Frequency (IDF)
approach. Beyond using the distributional semantic space, the latter overcame the bag of
words overlap limitation in the original Lesk algorithm by using a vector cosine similarity
[127]. However, the Lesk algorithm is dependent on the matching of terms between
the compared texts. Moreover, the algorithm would fail if the compared text contains
synonym terms rather than the exact terms. In addition, none of the overlap approaches

take into consideration the sequence of terms within the sentence itself.

UKB: UKB employed a graph-based PageRank approach on the entire WordNet graph,
which is a completely different approach from Lesk’s. To optimize the PageRank al-
gorithm over WordNet, they constructed a subgraph for a text window (typically a sen-
tence or few contiguous sentences). The subgraph included the senses of all open-class
(ambiguous) terms and the rest of the text as a context [28]. An extended version of

UKB, namely UKBygjos, employed extended WordNet to transform the glosses into dis-
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ambiguated synsets. This implementation of UKB also incorporated sense frequencies to
initialize context words [128]. The latest release of UKB is UKBgjos18, Which includes
the optimal parameters for the software to guarantee optimal performance. For example,
they used over 20 words window as a context of each target word and 30 iterations for
the personalized PageRank algorithm. They also confirmed that using WordNet versions
1.7.1 and 2.0 resulted in better performance since they match the annotated datasets [129].
Furthermore, the authors highlighted the use of an undirected graph as a limitation for the

PageRank algorithm [128].

Babelfy: A graph-based approach integrated entity linking and WSD that is based on
random walks with restart algorithm [130] over BabelNet, which is an extensive multi-
graph semantic network integrating entities from WordNet and Wikipedia or Wiktionary.
Babelfy employs the densest subgraph heuristic for selecting the most suitable sense of
each text fragment. For a target word, Babelfy considers the entire document instead
of the sentence alone [131]. This approach is also bound by the PageRank algorithm

limitations with respect to WordNet KG.

WSD-TM: This is a graph-based WSD system that uses a topic modeling approach
based on a variation of the Latent Dirichlet Allocation (LDA) algorithm. This approach
employes the whole document as a context to disambiguate all open-class words within
the document. WSD-TM views document as synsets and synset words rather than topics

and topic words, then performs the LDA algorithm based on that assumption [132].

Baselines: Senses in WordNet are ranked based on their frequency of occurrence in
semantic concordance texts’. Therefore, selecting the first sense of the target word in
WordNet is presented as a baseline. Another baseline is based on the MFES extracted from

the training dataset (SemCor and/or OMSTI).

To summarize, Table 2.8 highlights the main characteristics of the benchmark systems.

"https://wordnet.princeton.edu/documentation/wndb5wn

40


https://wordnet.princeton.edu/documentation/wndb5wn

Chapter 2 Background and Literature Review

Table 2.8: knowledge-based WSD system

System Algorithm Similarity Measures KG
Lesk [29] Definition overlap Lesk WordNet
Leske [30] Definition overlap Lesk WordNet
LeSKextremb [127] Definition overlap Lesk WordNet
UKB [28] PageRank JCN, LCH, LESK = WordNet
UKBgioss [128] PageRank JCN, LCH, LESK = WordNet
UKBgioss1s [129]  PageRank JCN, LCH, LESK = WordNet
Babelfy [131] PageRank Undefined BabelNet
WSD-TM [132] LDA LESK Wiki
WNI* sense 1%t Sense NA WordNet
MES, Heuristic NA NA

2.3.4 Ciritical Analysis of the Related Work

Although the above-mentioned benchmark systems are all knowledge-based, they can be
further classified into three subcategories based on their implemented algorithm. The
first subcategory is the definition overlap, the second is the graph-based (i.e., PageRank),
while the third is topic modeling. The Lesk systems follow the definition overlap, which
limit the similarity between two texts on the term’s exact match. Furthermore, the original
Lesk algorithm adopts a bag-of-words approach. This was enhanced with a vector-based
in subsequent literature. However, none of the overlap methods considered the broader

context of the document.

The UKB systems employ a graph-based method (i.e., PageRank). The PageRank al-

gorithm is time-consuming and requires intensive computational power to weigh the links
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between WordNet concepts. Furthermore, some of these systems employ the Lesk algo-
rithm for the initial weights linking any two concepts [133], while others use a collection
of semantic similarity measures including JCN, LCH, and Lesk [128, 134]. The personal-
ized PageRank optimizes the performance by using a subgraph approach. However, this
is done at the cost of context reduction, as the optimal results of UKB considers a window

size of 20 words, which could span multiple sentences [129].

The WSD-TM system relies on the document topic as the main disambiguating con-
text. Despite the importance of the global document context, the WSD-TM overlooks the
importance of the word’s local surroundings, which is considered a local context. Further-
more, this system also employs Lesk similarity to model relationships between synsets as
one of its priors to the LDA algorithm. A major limitation that applies to most systems in
these three categories is that they follow a bag of word approach, ignoring the sequence
of the terms within the sentence, which we believe is a critical factor to disambiguate a

word within its sentence and discourse contexts.

Research published in neuroscience journals shows that human brain models suggest
that semantic memory is a construction of the conceptual knowledge based on a widely
distributed network [135]. Based on some models, the brain networks consist of neurons,
neuronal populations, or brain regions that can be viewed as nodes, and the structural
or functional connectivity viewed as edges linking these nodes together [136]. Fig. 2.6
describes such a network with functional relationships connecting various brain regions
(nodes). Furthermore, structural or functional connectivities refer to the anatomical path-
ways between neurons, neuronal populations, or brain regions, depending on the spatial
scales of interest. These structural and functional connections form a biological route
for information transfer and communication [135, 137]. If we compare the KG to our
brain, viewing concepts as nodes and relations as structural and functional connections,
we can rely on widely distributed KG to extract various semantic knowledge, including
similarity and relatedness between nodes using the structural and functional relationships,

respectively.

Inspired by the brain models, we try to overcome the limitations mentioned above as
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Figure 2.6: Visualization of the human brain network using the BrainNet viewer [138]

follows: we argue that the sequential connectivity of terms has an essential part in forming
the overall context of the sentence. Beneath the sequential connectivity, there exists struc-
tural and functional relationships that construct the term’s context. These relationships are

measured by semantic similarity and relatedness within the KG.

Consider the following two sentences:

e “John has all his faculty members at the meeting table.”

e “John has all his faculties and could think clearly and logically”

The word faculty (lemma of faculties) has two distinct meanings (see Fig. 2.7), and
without the rest of the sentence or other external context (e.g., knowing that John is a
dean at a university), it is challenging to distinguish the correct meaning. Since humans

use and rely on context to disambiguate words, machines are even more dependent on it.
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Word to search for: faculty | search WordNet |

Display Options: (Select option to change) v

Key: "S:" = Show Synset (semantic) relations, "W:" = Show Word (lexical) relations
Display options for sense: (gloss) "an example sentence”

Noun

« S: (n) faculty, mental faculty, module (one of the inherent cognitive or perceptual
powers of the mind)

« S: (n) staff, faculty (the body of teachers and administrators at a school) "the dean
addressed the letter to the entire staff of the university"

Figure 2.7: Senses of the word ‘faculty’ in WordNet

If we remove the terms after faculty from both sentences, it will not be easy, as a
human being, to understand the correct meaning. This difficulty is derived from the fact
that the term faculty is ambiguous. However, as we add more context to the sentence,
the meaning becomes more evident in each sentence. More importantly, our brain will
be able to establish functional connectivities between the terms of the sentence and infer

additional knowledge, such as John could be working at a university as a chair or a dean.

Initially, our brain could not understand the meaning of faculties because it could
not make the connection between the term and its surrounding context {‘John’, ‘has’,
‘all’, ‘his’}. However, as soon as the context is enriched with {‘members’, ‘at’, ‘the’,
‘meeting’, ‘table’}, our brain was able to create a context from the joint meanings of
the core terms in the sentence {‘John’, ‘faculty’, ‘member’, ‘meeting’, ‘table’}, hence,
disambiguate the sentence. Surprisingly enough, the three terms {‘member’, ‘meeting’,
‘table’} are also ambiguous terms, with even more senses to choose from, see Fig. 2.8.
However, our brains can connect the various meanings of each term and determine the
context of the full sentence. Our main observation here shows us that humans tend to
connect terms/things based on the various associations that connect them, in addition to
its prior heuristic knowledge about the ambiguous terms. The prior heuristic knowledge

is represented by the common use of the terms presented in the sequence.

To summarize, the four point below are essential for disambiguating words within a

sentence, hence, we incorporate them into our proposed WSD algorithm:

e The sequence of the terms within the sentence

e The connectivity between various concepts (i.e., senses) of ambiguous terms.
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e A basic heuristic knowledge of each term and its various concepts (i.e., senses)

e The broader context of the document.

2.4 Conclusion

Various semantic similarity and relatedness measures have been proposed in the literature,
most of which rely on a single semantic relation: the ISA taxonomic relation. Few mea-
sures utilized the part-of or antonym non-taxonomic relations within WordNet. However,
limiting these methods to one or two non-taxonomic relations within WordNet makes
them rigid and limited in evaluating semantic similarity and relatedness between terms.
To our knowledge, none have presented a comprehensive method that is adaptable to
other relations that exist in a domain-specific KG. Semantic similarity and relatedness
measures have shown limited performance and computational complexity when solving

knowledge-based WSD tasks.

8http://wordnetweb.princeton.edu/perl/webwn
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[ Oy

WordNet Search - 3.1

Word to search for: [member l Search WordNet ]

Display Options: | (Select option to change) v || Change
Key: "S:" = Show Synset (semantic) relations, "W:" = Show Word (lexical) relations
Display options for sense: (gloss) "an example sentence"

Noun

e S:(n) member, fellow member (one of the persons who compose a social group
(especiallv individuals who have ioined and participate in a aroun oraanization))

WordNet Search - 3.1

Word to search for: | meeting I Search WordNet ]

Display Options: | (Select option to change) v [ Change ]
Key: "S:" = Show Synset (semantic) relations, "W:" = Show Word (lexical) relations
Display options for sense: (gloss) "an example sentence"

Noun

« S:(n) meeting, group meeting (a formally arranged gathering) "next year the
meeting will be in Chicago”; "the meeting elected a chairperson”

« S:(n) meeting, get together (a small informal social gathering) "there was an
informal meatina in mv livina rnnm”

WordNet Search - 3.1

Word to search for: table | Search WordNet |

Display Options: | (Select option to change) v || Change
Key: "S:" = Show Synset (semantic) relations, "W:" = Show Word (lexical) relations
Display options for sense: (gloss) "an example sentence"

Noun

S: (n) table, tabular array, (a set of data arranged in rows and columns) "see table 1"

» S:(n) table (a piece of furniture having a smooth flat top that is usually supported by
one or more vertical legs) "it was a sturdy table”

« S:(n) table (a piece of furniture with tableware for a meal laid out on it) "/ reserved a
table at my favorite restaurant”

« S:(n) mesa, table (flat tableland with steep edges) "the tribe was relatively safe on
the mesa but they had to descend into the valley for water”

» S:(n) table (a company of people assembled at a table for a meal or game) "he
entertained the whole table with his witty remarks”

» S:(n) board, table (food or meals in general) "she sets a fine table"; "room and

board”

Verb (c) Senses of the word ‘table’ in WordNet

putkif (held acbtefmiatentinter Tatstepsteanalthasdahink in WordNet®

« S:(v)table, tabularize, tabularise, tabulate (arrange or enter in tabular form)
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Chapter 3

Poly-Relational Semantic Similarity and

Relatedness Measure

3.1 Introduction

The rapid expansion of LOD requires a comprehensive semantic similarity measure that
is yet to exist. DBpedia [38], Freebase [39], YAGO [40], and WordNet [42] are examples
of lexical KG repositories that resemble LOD. KGs are representative of an ontological
schema, which semantically models a specific domain of knowledge. In technical terms,
an ontology is a formal semantic representation of the concepts within a specific domain.
The semantic representation is established through a set of axioms. An axiom connects
two concepts and/or instances through a specific relation that models real-world relation-
ship in the form of subject, predicate, and object. An interconnected set of axioms forms

a KG, or SG as referred to in some literature [3, 4, 5].

This chapter presents the first cornerstone of this thesis, a Poly-Relational Semantic
Similarity and Relatedness (PR-SSR) measure that comprises all semantic relations be-
tween concepts. The rest of the chapter is organized as follow: section 3.2 describes the
architectural design for the PR-SSR. Section 3.3 presents the proposed parameters for

each relation which are used in the new measure presented in the next Section 3.4. Fi-
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PR-SSR System Architecture

Lexical Database The Proposed Modules

WordNet RDF : for Non-Taxonomic Relations
Baseline Measure

Dataset
pairs of words

Poly-Relational Semantic Similarity and Relatedness Measure Strategies

Figure 3.1: PR-SSR system architecture

nally, and before we conclude the chapter, Section 3.5 presents the experiment’s setup,

evaluation metrics, implementation, and the experimental results.

3.2 System Architecture

Fig. 3.1 shows the PR-SSR system architecture, which includes three offline statisti-
cal modules: the WordNet stats, term stat, and paths finder modules. These modules
pre-calculate the required statistics for the WordNet Resource Description Framework
(RDF) graph and the test dataset when performing testing on a pre-existing gold standard
dataset, such as the ones described below in Section 3.5.1.1. The architecture also in-
cludes the implementation of six existing baseline measures; these are the same measures
that are described in Section 2.2.2. We measure our system based on the improvement
of these baselines. The core of our system consists of four components, Relations IC,
relations prevalence, IC-based non-taxonomic similarity (we refer to it as RelSim), and
prevalence-based non-taxonomic relatedness modules. These components implement our
proposed Semantic Information Content (SemIC), prevalence, RelSim, and relatedness,

respectively. Finally, the last component is the weighted combination of the baseline
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taxonomic similarity T'exSim, the proposed relational-based similarity RelSim, and the

proposed non-taxonomic relatedness in one of the four strategies.

3.2.1 System Flowchart

Fig. 3.2 depicts the flowchart for calculating the semantic similarity and relatedness.
Unlike other methods, we combine existing taxonomic measures with the proposed non-
taxonomic relational-based similarity and non-taxonomic relatedness measures between

terms.

The process starts after extracting the compared terms statistics. These statistics in-
clude the LCS for the compared terms, also the number and types of all non-taxonomic
relations. We use WordNet v3.1 to calculate these statistics. The next step starts by calcu-
lating the taxonomic IC for each term and then the semantic similarity using the calculated
IC. Using the concept’s IC, we calculate a local IC for each relation Relation Information
Content (RIC). Having the relation-IC, we then compute the proposed relational-based
similarity (RelSim) between terms. In Section 3.4.1 we present three strategies to com-
pute RelSim. If there exists any non-taxonomic path between the terms, we calculate the
non-taxonomic relatedness between the terms as an edge-weighted path using the rela-

tions distribution within the KG (prevalence) as discussed in Section 3.3.2.

3.3 New Semantic Similarity and Relatedness Parame-

ters

3.3.1 Relation IC

Similar to concepts, relations are organized into hierarchical structure within their ontol-
ogy. For instance, the Wordnet ontology presented earlier in Fig. 2.1a shows a sub-set
of the relations’ hierarchy used in Wordnet, where topObjectProperty is the most general

relation, and Hypernym, Hyponym, and others are some of the most specific relations in
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Consider
a pair of terms
(term1 & term?2)
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Find the LCS concepts of
term1 and term2
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y
Find non-taxonomic
relations for term1 and
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Calculate the taxonomic
IC for term1 and term2

Y

Calculate Non-Taxonomic
Relations' IC

Is there
common non-taxonomic

and term2?
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v

Calculate taxonomic
Similarity between term1 and
term2
TaxSim(term1,term2)

Calculate non-taxonomic
(Relational-based) Similarity
between term1 and term2
RelSim(term1,term2)
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non-taxonomic paths
between term1 and
term2?

Y

Calculate non-taxonomic
relatedness between term1
and term2
Relatedness(term1,term2)
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Calculate the final Similarity
and Relatedness measure |

between term1 and term2
SemSimRel(term1,term2)

Figure 3.2: Flowchart for the semantic similarity and relatedness algorithm
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the hierarchy. Based on such hierarchy, concepts gained an intrinsic IC attribute, and
likewise, do relations. Having this intuition, we utilize existing IC-intrinsic measure with
relations to compute the ICr,,(r;) as the taxonomic-based IC for relation r of type ¢. Eq.

(1) simply reflects the taxonomic IC for each relation type.

ICT&:..“ (Tt) - icbase (Tt): (1)
where icy,q. denotes the baseline taxonomic IC measure from Table 2.1.

Furthermore, domain and/or range concepts in an ontology may contextualize a re-
lation. The IC of domain and range concepts enrich the associated relation as global
contextual information. Intuitively, we argue that relations assimilate global contextual
information from their domain and range concepts, which is proportional to their depths.
Therefore, we define the global IC for a relation as a monotonically increasing function
with respect to both the IC and depth of the domain and range concepts, as shown in
Eq. (2). Consequently, for two pairs of concepts with the same absolute IC difference,
the deeper the pair, the greater the global IC. Also, for two pairs of concepts at the same
depth, the greater absolute IC difference, the greater the global IC. It should be noted here
that Eq. (2) is a monotonically increasing function with respect to both the IC and depth

of the domain and range concepts, as shown below:
o

ICqc(r) = ) (2)

iChase (Dom(n)) — iChase (Ran(’r;))

where icpase (Dom(rt)), and icpase(Ran(r:)) are the ICs of the domain and range concepts
respectively, and ¥ = [1/(deep(Dom(r,)) + deep(Ran(r;)))], where deep is the depth

function.

Similar to the global context, an instance relation attains information from its subject
and object within the KG. Hence, local contextual information is assigned to each instance
relation based on its subject and object. The local IC for a relation instance of type ¢ is

defined in the equation below:

T
ICLe(ry) = ) (3)

1Chase (Sub(:r’t)) — Cpasge (Obj (Tt))

where Sub(r;), and Obj(r;) are the subject and object concepts, respectively, and 7" =

[1/(deep(Sub(r;)) + deep(Obj(r;)))]. Fig. 3.3 illustrates the effect of the depth of the
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IS A IC=.2
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RIC=0.89 RIC=0.67
Ic=5 ISA
ISA Relation Depth=2 Relation
IC=.8
Depth=6

(a) Deep concepts (b) Shallow concepts

Figure 3.3: Concept’s depth effect on RIC

concepts on the relations’ IC values. This effect applies to both the global and the local
ICs within the ontological schema and knowledge graph instances respectively. Fig. 3.3a
shows a RIC between deeper concepts while Fig. 3.3b illustrates an RIC between shallow

concepts.

Finally, the taxonomic, global context, and local context IC values are combined to

form the RIC, as shown in the following equation:
RIC(r) = a x ICyu(re) + B x ICga(ry) + v x ICpe(ry), (4)

where a, 3, and « are constants to measure the contribution of each IC function. These
constants are contextually selected based on the actual conceptual schema and hierarchical

structure of the ontology and KG describing the modeled knowledge.
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3.3.2 Relation Prevalence

Based on the second observation described in Section 1.2, relations exist in a KG in
accordance to their relevancy to the modeled domain. Consequently, important relations
are used more frequent than other less important relations, because they relate more to the
modeled domain. For example, a father-of and mother-of relations are more prevalent
in a Family-domain KG than a Plant-domain KG. Therefore, the probability of a relation
in a KG, Eq. (5), measures the contribution of that relation to the semantic information

added to each associated concept.

P(T’t) _ fT’BQ‘(T'z) (5)

~ Total number of relations’

where freq(r,) is the total number of relations of type z.

3.3.3 Poly-Relational similarity and relatedness measure

The relations’ IC and prevalence are the core ingredients for the proposed relational-based
similarity and relatedness measure, respectively. The two proposed measures complement
the existing taxonomic-based similarity measures, and together they form a comprehen-
sive poly-relational semantic similarity and relatedness measure. Therefore, we propose
a semantic similarity and relatedness measure between two terms as a function of their

taxonomic similarity, relational similarity, and relatedness.
SemSimRel(w;, wy) = f(Ta:.r:Sém(wl,wg),ReISim(wl,WQ), Relatedness(wl,'LUg)), (6)

where T'azSim(w,, w,) represents a general taxonomic IC-based similarity measure be-
tween w; and w, as described in Table 2.2, RelSim(w,,w,) is the proposed relational-
based non-taxonomic similarity presented in Section 3.4.1, and Relatedness(wy,ws;) is
the proposed relatedness based on weighted non-taxonomic relational paths presented in

Section 3.4.2.

in the next section we show how the relation’s IC and prevalence are employed to
devise a novel comprehensive semantic similarity and relatedness measure named PR-

SSR.
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3.4 Proposed Method

In this section we present four different strategies for our proposed PR-SSR Measure us-
ing the relation’s IC and prevalence metrics presented in the previous section 3.3. The first
three strategies exploit the relation’s IC to compute a relational-based (non-taxonomic)
similarity, while the forth strategy uses the relation’s prevalence to compute the non-

taxonomic relatedness.

3.4.1 Relational-based Similarity

In relational-based similarity, terms are considered similar based on the similarity of their
semantic non-taxonomic relations, which could be viewed as functionality or attributes
in some domains. For instance, In the family KG Fig. 1.1 ‘Meredith’ and ‘Ruth’ have
some similarity for being both mothers by having the same ‘is mother of” relation. To
demonstrate the benefit of employing relations to enhance semantic similarity, we propose
three strategies showing their impact at different granularity levels. The first strategy
makes use of all relations, regardless of their type, to compute a single semantic attribute.
While, the second strategy exploits relations’ types in computing similarity. Finally, the
third strategy computes similarity based on instances of each relation type. This coarse-to-
fine grain investigation provides new insights about the role of non-taxonomic relations
in measuring semantic similarity. Furthermore, a fourth strategy, employing relations’
prevalence, proposes a weighted non-taxonomic relational path to bring into perspective

the role of relatedness in further enhancing semantic similarity.

Strategy 1

This strategy is based on the intuition of the original taxonomic IC, where each concept
is attributed an IC value as a measure of various hierarchical features (i.e., hyponyms,
depth, hypernyms, leaves, and siblings) as shown in Table 2.1. Similarly, we propose an

additional SemlIC attribute for each term, based on all associated non-taxonomic relations.
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Figure 3.4: SemlIC for concept based on strategy 1

This SemIC metric, defined in Eq. (7), is an aggregation of the RIC contribution of all

associated relations.
SemIC(w) = log > (P(r)) x RIC(ry)) +1 |, (7)
ryeRelSet: (wgo)

where RelSet(w =% o) is the set of all relation instances that link term w with all other
object terms. Fig. 3.4 illustrates a concept SemIC as a single value computed using Eq.

7.

The SemlIC is then used to evaluate the semantic similarity between terms, using exist-
ing baseline similarity measures from Table 2.2. The relational similarity RelSim(w;, ws)

between w; and w, is computed by replacing the ic(w) by SemIC(w), as denoted below:

RelSim(w, ws) = Sim(wig, ,osWas., ;o) (8)

where w;__, . refers to the semantic IC of term 7 instead of its taxonomic IC.

Strategy 2

The non-taxonomic semantic IC, SemIC, proposed in the first strategy assigns a non-

discriminating semantic attribute to each concept. Although this attribute describes the
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Figure 3.5: SemlIC for concept based on strategy 2

semantic information contained within the concepts, yet, relations’ types are being ig-
nored in the similarity evaluation between two concepts. Furthermore, in Section 2.2.3,
we demonstrated the importance of each relation type and its own implication on the se-
mantic definition and IC of a concept. Therefore, the second strategy refines the first one
by attributing a vector of RICs for each term. Each element of the vector represents the
average RIC of a specific relation type. Fig. 3.5 illustrates three non-taxonomic relation
types (part of, member of, and substance of). For each relation type, the average RIC is
computed and used to build a final SemIC vector as shown in Eq. 9 below:
Avg(RIC(ry))
SemIC(w) =Ty = , 9)
Avg(RIC(ren))
where r; € RT'Set(w) denoting the set of relation types linking the term w to all other

objects.

We then employ one of the existing vector-based similarity/distance measures, such as
Euclidean, Hamming, Cosine, Mean-Squared Error (MSE), and Summation of Squared
Difference (SSD), to measure relational similarity. We compared eleven distance mea-

sures from Math.NET numerics library'.

n

1
MSE(,§) = - (zi—v)", (10)

i=1

'https://numerics.mathdotnet.com/Distance.html
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Figure 3.6: SemlIC for concept based on strategy 3

The MSE distance, described in Eq. (10), provided the highest correlation results with the
gold standard, and consequently, is used to compute the relational similarity as shown in

Eq. (11)

RelSim(wy,ws) =1 — MSE(Ty,, Tw,), (11)

where 7, and 7, are the average relational type vectors of w; and ws, respectively.

Strategy 3

This strategy is more granular than the previous ones, where we focus not only on the
types of relations as we did in strategy 2, but also on each instance within each rela-
tion type. More specifically, this approach exploits the benefits of measuring similarity
between instances of the common relation types of both terms. Then, aggregating the

resulting type-wise relations’ similarities to compute the overall relational similarity.
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As illustrated in Fig. 3.6, first, for each relation type in the RT Set(w), we generate
a vector of RICs associated to the relation instances of that type. Then, these vectors
are used to build a semantic IC of a term as a set of type-wise RIC vectors denoted by
{7,1 = 1..n}, where n is the number of relation types associated to that term, as shown

in Eq. (12).

' | RIC(ray) | )
Ty =
RIC(roim,)
SemIC(w) = { > (12)
| RIC(rum)
Tin =
\ RIC(ronm.)

where m; is the cardinality of instances of the i** relation type. To compute the relational
type-wise similarity between two terms, we use the MSE distance method as shown be-
low:

RelTypeSim(ry,, ,11,,) =1— MSE(r, ,T,,) (13)

Consequently, a type-wise relational similarity set for the common relation types between

two terms can be expressed as follows:

RelTypeSim(ria,,, ; Ti1,,)
Type-wise Rel Sim(w1, ws) = (14)
RelTypeSim(ﬁnwl ) T_':mw2)

Finally, the overall relational similarity between two terms is defined as the normalized
sum of the weighted type-wise relational similarities. The normalization is based on the

total prevalence of all common relation types, as shown in the following equation:

b
EP(’&)

Tt

RelSim(wy, wy) =

b

> P(r) x RelTypeSim(ry,, ,r,,),  (15)

where r, € RT Set(w;) N RT Set(w,).
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3.4.2 Relatedness

Relatedness can be expressed by the direct connection(s) between two terms through non-
taxonomic relations. It is a reflection of the contextual bond between terms. As described
in the gold standard datasets, MC [139], RG [140], WordSim [141], and MTurk [142],
concepts were evaluated based on their similarity and relatedness. For example, in [141],
one instruction was “When estimating similarity of antonyms, consider them ‘similar’
(i.e., belonging to the same domain or representing features of the same concept), rather
than ‘dissimilar’”. Therefore, it is essential to incorporate relatedness into a similarity
measure, as shown in Eq. (6). A non-taxonomic path associates two terms with a relation-
ship that is reflected by the intermediate relations between them. Intuitively, the longer
the path between terms, the less related they are. Furthermore, each relation has a weight
that reflects its importance to the domain. Hence, relations with higher weights indicate
a stronger contextual relationship between the associated terms. Inversely, the weaker the
weight between terms, the less related they are. Finally, terms that have multiple paths in-
dicate stronger bond between them. For instance, the lexical terms (king and queen) share
more than one path between them, as they are considered antonyms in addition to their
respective synsets, which are member-meronyms of the synset ‘royal family’. Based on
our results, these terms would have a relatedness of 92% over both paths. Based on these
principles, we propose a new relatedness measure based on weighted non-taxonomic re-

lational paths.

Strategy 4

Taking the above considerations into account, we propose a relatedness measure as a
function of the number of paths, their length and strength. The length of a path is a
function of the number of non-taxonomic relations between terms. Strength is measured
by the proposed prevalence of the path relations as defined in Section 3.3.2. As the path
length increases, the relatedness decreases. On the other hand, as the accumulated weight
of all relations in the path increases, relatedness increases. Therefore, relatedness needs to

be a monotonically decreasing function with respect to path length, while monotonically
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increasing with respect to the relations’ weight. To satisfy these constraints, we propose

the following relatedness measure:

X Z 1 — Distance;(wy, ws), (16)

path;=1

Relatedness(wy, ws) =

S|

where n is the number of paths, and the distance is calculated as shown below:

1
Distancei(wl, T.UQ) = m X Z e_P(H); (1?)

re€pathi (wi,wz)
where max_depth,,, is the the maximum hierarchical depth of WordNet. To ensure paths
convey meaningful relatedness between terms, we only consider paths with a length
shorter or equal to maxz_depth,,. Fig. 3.7 illustrates the effects of path-length and
relation-prevalence on the relatedness measure. As can be seen from Fig. 3.7a and Fig.
3.7b, where the pathways between concepts C1 and C7 have the same length but differ-
ent prevelances, the higher the prevalences between concepts the greater the relatedness.
However, for Fig. 3.7c, although the pathway between C1 and C7 has the same average
prevalence per relation type as that in Fig. 3.7a, yet its relatedness is higher due to the
shorter path. Finally, the overall relatedness measure between concepts C1 and C7 over
all of the three paths is 0.854, which represents the average relatedness over all of the

paths as shown in Eq. 16.

3.5 [Evaluation and Experimental Results

3.5.1 Experimental Setup

The goal of our experiments is to evaluate the proposed semantic similarity and related-
ness based on the WordNet database and the most commonly-used gold standard datasets.
This section presents WordNet KG, datasets, evaluation metrics, implementation, and de-

tailed discussion of the results.
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Figure 3.7: Relatedness paths between concepts with different relations’ prevalence

3.5.1.1 Lexical Knowledge Base and Datasets

WordNet WordNet is an English-based lexical database, where words are organized
within each POS category into sets of cognitive synonyms named synset. Synsets are
organized into a hierarchical structure (taxonomy) from the most abstract concepts (i.e.,
entity in the nouns category) to the most specific leaf concepts. Synsets and lexical terms
are linked through means of pointers that represent a specific semantic relationship be-

tween them.

The main and most structured explicit relation type is the hyponymy (ISA) relation
and its inverse hypernymy relation, which forms the hierarchical structure of WordNet.
ISA represents the generalization/specialization relation between concepts. The next most
common relation used is holonomy/meronymy (part of) relation. All other relations such

as antonymy, theme and derivation are used much less frequently. Tables 2.3 and 3.1
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Table 3.1: Hierarchical relations in WordNet

Relation Name Frequency Prevalence
hyponym 75180 44.89 %
hypernym 75139 44.86 %
instance_hyponym 8592 5.13 %
instance_hypernym 8568 5.12 %

depict the frequency of each relation used within WordNet?.

WordNet was designed with the intention of providing a machine-readable dictionary
that determines a word definition through semantic relations [42]. In addition to the ex-
plicit relations, lexical terms within one synset also share implicit relations between each
other, namely “synonymy”. As shown in Table 2.3, this relation is explicitly emphasized
in our approach. We use the synset_member relation that exists in WordNet to identify the
synonyms of each synset. The number of synonym relations is then computed using the
combination ("2‘) where n is the number of synonyms (synset_member) within one synset.
Hence, the use of synonymy relation comply with the spirit of WordNet, providing se-
mantic definitions for its synsets and lexical terms. Therefore, in this work, we employ
both of explicit and implicit semantic relations to obtain better semantic similarity and

relatedness between terms.

Gold Standard Datasets Our experimental environment consists of the lexical database

WordNet 3.1 as a KG and three widely-used evaluation datasets.

e RG [140]: contains 65 pairs of words, where each pair is assigned a rating of sim-
ilarity ranging between [0,4]; O being most dissimilar/unrelated terms, and 4 being

exactly similar.

e MC [139]: contains 28 pairs of words, chosen carefully from RG to represent a full

range of similarity/relatedness.

The frequency is calculated based on the nouns POS from WordNet v3. 1
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e WordSim [141]: contains 353 pairs of terms. The rating range is between [0,10],
where 0 is completely dissimilar/unrelated and 10 is exactly similar. The instruc-
tions provided to the subjects — humans experts — were to assign a rating for
each pair based on the similarity/relatedness of the two words. More specifically,
in WordSim, the instructions were clear for the antonym words to be considered
as similar rather than dissimilar, since they belonged to the same domain and/or

express features of the same topic.

e MTurk [142]: intended to emphasize relatedness between terms. MTurk contains
771 pairs or words with their average relatedness score between [1-5], where 1

represents ‘not related” words, and 5 represents ‘highly related” words

Table 3.2 provides a summary of the main characteristics and statistics of each dataset.
In our implementation, we examine all pairs within each dataset, with the exception of
WordSim as it contains few pairs that were not found in WordNet-3.1 due to variation in
the term morphology or tense. The last four rows in the table (rows 5, 6, 7, and 8) are the
focus of our poly-relational approach. Row 5 shows the number of pairs that share one or
more non-taxonomic relation type, regardless of whether or not the object of the relation
is the same. For instance, “car has part-meronym ...” and “auto has part-meronym...”,
hence both terms share the same relation type part-meronym. Row 6 counts the number
of terms where one or more of its non-taxonomic relations contain multiple instances.
For example, for “car has part-meronym fender, car has part-meronym engine”, there are
two instances of the relation part-meronym. Row 7 shows the number of pairs where at
least one of its terms matches a term contained in row 6. Finally, row 8 describes the
number of pairs that have at least one non-taxonomic path that connects the pair (i.e.,
“Car is synonym of auto”, “King is member-meronym of royal family, and royal family is

member-holonym of queen”.
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Table 3.2: Gold standard datasets characteristics

Criteria MC RG WordSim MTurk

1 # of pairs 28 65 353 771
2 # of pairs (our implementation) 28 65 342 770
3 Distinct terms/senses 44 65 500 1281
4  Terms with non-taxo. relations 18 23 207 487
5  Pairs with common relations (CR) 4 4 54 110
6  Terms with multi-instances (MI) 8 10 77 204
7  Pairs with CR & MI 2 2 20 48

8  Pairs with one or more path(s) 6 12 35 149

3.5.2 Evaluation Metrics

The practice of evaluating semantic similarity measures has relied on the correlation be-
tween the proposed method and gold standard [9, 32, 33, 34, 43, 64, 65]. Two main cor-
relation methods have been applied. The first is the Pearson correlation for two random
variable X and Y, as shown below:

_ cov(X,Y)

OOy

p (18)

Yet, a simplified estimated correlation of the Pearson has been normally applied based

on the following:

e

[
-

(z: —7)(yi — 7)
r—= ! (19)

\/:1(3%' B E)2\/12(% —7)? ?

where n is the size of the sampled sets, z;, y; are the i** element of semantic similarities

reported by any measure, and the human judgment, respectively, and =, i, represent the

mean for each set.

The second correlation method is the Spearman correlation coefficient (Spearman’s
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rho). This is a rank-based correlation, which is not restricted to continuous data.

63 d;

n(n? —1)’ 20)

p=1-—

where d is the pairwise distance of the ranks of the elements z; and y;, and n is the size

of the sampled set.

3.5.3 Implementation

Our experimental implementation utilizes the .NET framework and dotNetRDF library?.
This library helps to convert the N-Triples of WordNet 3.1* KG file into an in-memory
RDF graph. Out of the 5.5 million triples, we focus only on noun synsets and lexical
senses, including their relations. However, some of these relations, such as translation,
gloss, and tag counts, are also ignored because they serve other purposes that are outside
the scope of this research. In summary, we focus on triples with relations that serve the
semantic of the noun synsets and lexical senses. These relations are listed in Tables 2.3
and 3.1. After the extraction and cleansing, we are left with a total of 81,816 noun synset,
262,786 individual lexical senses, and 374,453 instances relations. These relations are
grouped into 12 non-taxonomic and four taxonomic relation types as shown in Tables 2.3

and 3.1, respectively.

It is worth mentioning that the ontology of WordNet’ is very abstract, and the relations
have very shallow hierarchy with no specific domain and range concepts. Hence, in our
experiment, the taxonomic IC (I Crgz (7)), and the global IC (I Cg(r;)) do not contribute
towards calculating the full RIC (RIC(r,)). As a result, relations attain their information
strictly from the local IC (ICL¢(r;)) from WordNet’s KG. Based on this, The RIC in Eq.
4 will be fully equal to the local IC (ICp¢(r¢)) and the values of « = 8 = 0, while v = 1.

The rest of the implementation consists of an offline module that calculates WordNet’s
KG statistics, and the gold standard datasets statistics. In addition, we implemented the

existing baselines’ IC and taxonomic similarity measures.

3http://www.dotnetrdf.org/api/html/N_VDS_RDF.htm
*http://wordnet-rdf.princeton.edu/
Shttp://wordnet-rdf.princeton.edu/ontology
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3.5.4 Experimental Results and Performance Analysis

The main purpose of this experiment is to confirm the observations in section 1.2, which
emphasize that all relations convey an important informative component of a concept’s
semantic definition and information content, and that relation type prevalence reflects
its relevance to the modeled domain. This is demonstrated in this section by showing
the enhancements provided by our poly-relational approach to existing taxonomic-based
similarity measures. The common practice of evaluating any approach is to compute the
pairwise similarities of a given dataset. Then, calculate the correlation as discussed in
section 3.5.2, with the gold standard for that dataset. The higher the correlation with the
gold standard, the better the approach. Therefore, for each baseline, we implement its IC
measure to evaluate non-taxonomic relations. Then employ Eq. (22) to incorporate the
proposed RelSim(wi,w2). Finally, compare our results with each baseline based on gold

standard correlations.

In section 3.4 we presented four strategies, which will be referred to in this Section
as S1, S2, S3, and S4. The results of each strategy, as shown in Fig. 3.8 to Fig. 3.12,
are described by the gain between the proposed approach and each baseline. The gain is
based on the correlation of each approach with the gold standard, which is computed as

follows:
Corr() poryr — Corr()pasetine
Corr ( ) baseline

where Corr() poyr and Corr()pasetine are the correlations of the PR-SSR approach and

; 21

gain =

any given baseline approach with the gold standard dataset, respectively. Each figure
shows the gain for its respective strategy, and includes the evaluation using the Pearson

correlation, as defined in Eq. (19), and the Spearman correlation, as defined in Eq. (20).

Finally, we compute the full semantic similarity and relatedness as described in Eq.
(6). However, since S1, S2, and S3 do not involve relatedness, semantic similarity (Sem-
Sim) for these strategies includes only the taxonomic similarity and the non-taxonomic

relational similarity measures, as shown in the equation below:

SemSim(wy, wy) = (1 — ay) x TazSim(wy, ws) + oy x RelSim(wy,wy),  (22)
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where «a; is the contribution of the relational similarity that overcomes the limitations
of the existing baseline taxonomic similarity. This is measured by the prevalence of the

non-taxonomic relations common to both terms, as in the following equation:

o= 3 P (23)

re€R(wq)NR(ws)
Strategy 4, on the other hand, incorporates the relatedness in the overall semantic similar-

ity and relatedness measure.

Strategy 1

As stated in Section 3.4.1, S1 considers all non-taxonomic relations and encapsulates their
SemIC values into a single attribute for each term, namely SemIC. The results for this
strategy, as presented in Fig. 3.8, demonstrates limited improvements across the evalu-
ated baselines and gold standard datasets. For instance, using MC gold standard, although
our approach demonstrates a gain of 0.05% with Meng as a baseline, it shows a consistent
decline with the two other datasets, especially when using the Spearman correlation. Sim-
ilarly, with MC gold standard using Seco as a baseline, the gain is approximately 0.06%,
while it shows a decline of 0.27% with the Spearman correlation. Examining the same
baseline with WordSim gold standard dataset, our approach has approximately 0.64% and

1.10% gain with both the Pearson and the Spearman correlations, respectively.

The decline in this strategy is due to the fact that existing taxonomic IC-based sim-
ilarity measures rely on the IC of the LCS of the two terms, as shown in in Table 2.2.
However, non-taxonomic relations do not follow hierarchical structure, and therefore, tra-
ditional taxonomic IC-based similarity measures are not effective for evaluating SemlIC.
This was the main motivation for investigating new ways for computing relational-based
similarity in subsequent strategies. Furthermore, S1 does not take into consideration the
type of non-taxonomic relations when comparing the semantic IC values of two terms.

Thus, ignoring an important aspect of terms’ semantic.
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Strategy 2

Strategy 1 has clearly undermined baselines similarities instead of improving them. As
discussed in Section 3.4.1, S2 overcomes the limitations of S1 by expanding the encap-
sulated SemIC of a term. Instead of reducing SemlIC to a single-value attribute, terms are
attributed a vector of relation type-based RIC measures, each of which represents a single

relation type (part-meronym, instance-meronymy, derivation, etc.), as shown in Eq. (9).

As shown in Fig. 3.9a, with the exception of MTurk dataset using Seco, Zhou, Meng,
and sdnchez, S2 demonstrates a consistent gain across all baselines and gold standard
datasets. For instance, using WordSim gold standard dataset and Meng as a baseline,
S1 shows a decline of —0.58%, while S2 shows a gain of 0.50%. This remains consistent
with the Pearson correlation using the other datasets too. However, based on the Spearman
correlation, as shown in Fig. 3.9b, although there is an overall improvement with RG and
WordSim gold standard datasets, MC still demonstrates a decline with most baselines. We
believe this is due to the sensitivity of the Spearman ranking correlation on such a small
dataset, as the same baselines, with a relatively larger dataset (RG), still demonstrate a

minimal gain.

1.25%
1.00%
0.75%
0.50% |
0.25%

] | u

0.00% ™= _ jIIJ “I ' ”' I

-0.50%
-0.75%
-1.00%

-1.25%
MC RG WordSim MC RG WordSim

(a) Pearson Rho (b) Spearman Rho

1 Seco Zhou Sebti ® Meng ® Cai M Sanchez

Figure 3.8: Semantic similarity gain using strategy 1
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Despite the decline in MC dataset using the Spearman correlation, improvements in
all other evaluations motivated us to go beyond and expand each vector element of SemIC

into existing instance relations of that type. This is the main motivation behind S3.

Strategy 3

Fig. 3.10a shows the gain of S3 using the Pearson correlation. It can be observed that
the gain nearly mirrors S2 results. This can be explained by the fact that only a small
proportion of the datasets used exhibit pairs with common relations that have multiple
instances, as shown in Table 3.2. Therefore, their effect is not significant on the overall
results. On the other hand, using the Spearman correlation, a significant improvement
can be observed for MC and RG datasets as shown in Fig. 3.10b. This can be justified
by the fact that the Spearman correlation, being based on ranking, is very sensitive to the
size of the dataset used. For a small dataset, semantic similarity changes to a few pairs
will significantly impact the overall ranking, thus resulting in considerable improvement
to the correlation. Inversely, for a large dataset, semantic similarity changes to a few pairs

will not have the same impact on the overall ranking, thus resulting in minor improvement

1.25%
1.00%
0.75%
0.50%
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0.00% - I]I ] I I. I I l s Al
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1 Seco Zhou Sebti ® Meng = Cai ® Sanchez

Figure 3.9: Semantic similarity gain using strategy 2

69



Chapter 3 Poly-Relational Semantic Similarity and Relatedness Measure

1.50%
1.25%
1.00% :
0.75% : « :
0.50% : | - :
0.25% l I 1 : i
0.00% “I MAullnn | 1 1 | I

-0.25%

-0.50%
MC RG WordSim MC RG WordSim

(a) Pearson Rho (b) Spearman Rho

1 Seco Zhou Sebti ® Meng = Cai ™ Sanchez

Figure 3.10: Semantic similarity gain using strategy 3

of the correlation. This is clearly shown in Fig. 3.10b for MC and RG, which are small
datasets with only 2 pairs affected by semantic similarity changes. However, for Word-
Sim dataset, which includes 342 pairs, and only 20 pairs affected by semantic similarity

change, the improvement in correlation is very minor.

The only surprising mystery remaining is a decline using the Sebti baseline with Word-
Sim dataset. After analyzing the baseline, dataset, and other literature [58], we conclude
that this could be caused by a small subset of the dataset that is affected by Sebti’s cal-
culation method. This finding is confirmed in another literature [58], noticing similar
behaviour of abnormality with the same dataset. To address the shortcomings in Word-
Sim dataset, we conducted another experiment using only a subset of the whole dataset,
focusing mainly on relevant pairs. These are pairs with at least one common relation
type, or at least one connected path, or both. In particular, 54 pairs were used to test
strategies S1, S2, and S3, and 66 pairs were used to test S4. The use of this semantically
rich dataset shows consistent gain across S2, S3, and S4 as can be observed in Fig. 3.11.
On the other hand, the inconsistent gain in S1 confirms our initial observation for S1, that

semantic-blind comparison is not effective.
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Figure 3.11: Semantic similarity gain for all strategies using WordSim relevant pairs

Strategy 4

As described in Section 3.4.1, S4 differs from the previous strategies by incorporating a
relatedness measure, which is based on weighted paths between terms, as defined in Eq.

(16). The overall semantic similarity and relatedness measure that was defined in Eq. (6),

12.50%
10.00%
7.50%
5.00%
. lul. I| |I
WordSim = Mturk MC WordSim | Mturk
(a) Pearson Rho (b) Spearman Rho

o Seco # Zhou Sebti ® Meng ® Cai M Sanchez

Figure 3.12: Semantic similarity and relatedness gain using strategy 4
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is expressed as follows:

SemSimRel(wy, wy) = (1 — ag — B) X TazxSim(wy, wy)+

ay X RelSim(wy, wy) + B x Relatedness(wy, ws), (24)

where a; and 8 measure the contribution of relational similarity and relatedness, respec-
tively. Note that as in Eq. (24) is different from a4 in Eq. (22), due to the effect of the
relatedness parameter in S4. The optimal values for a, and 3 in S4 are empirically eval-
uated. We used different combinations of (as, ), and we found that the optimal values

across all datasets and baselines are ay = 0.12 and S = 0.55.

To test strategy 4 with a more relevant dataset that includes both similarity and relat-
edness, we used the MTurk gold standard dataset. As described in section 3.5.1.1, MTurk
was built to capture relatedness measure between terms, which is the main focus of strat-
egy 4. Based on the results shown in Fig. 3.12, the gains for this strategy are consistent
across all baselines and gold standard datasets. For example, using Sebti as a baseline, S3
shows a decline with the Spearman correlation, while S4 shows over 5% of gain. Also, the
results show better performance with MTurk, which is a larger relatedness dataset, thus
confirming scalability of S4. As shown in Fig. 3.12, the highest gain is 12.63%, which is
achieved based on Zhou baseline with MTurk gold standard dataset using Pearson’s cor-
relation. On the other hand, the highest correlation value for the same dataset is attained
using Cai baseline with the pearson correlation of 0.8620, see Table 3.3. As shown in Fig.
3.12, the proposed poly-relational approach demonstrates consistent improvement in the
semantic similarity and relatedness measure across all datasets. These results are coherent
with the human perception of semantic similarity and relatedness within the gold standard

datasets.

To test the robustness of the proposed approach, we further extended our experiment to
include WordNet’s existing similarity measures [143], which includes some corpus-based
measures, such as RES [52], WUP [60], and LIN [63], as well as taxonomic-based path
measure PATH [59]. Furthermore, we compared our approach with the state of the art
Knowledge Graph Embedding semantic similarity models implemented in [71]. We used

the implementation provided in [71] to train three models (TransE, TransH, and TransG)
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Table 3.3: Pearson correlation with gold standard and proposed strategies

Method MC RG WordSim MTurk
RES corpus 0.8154 0.8475 0.5370 0.7240
WUP corpus 0.7740 0.8047 0.4256 0.6735
LIN corpus 0.7759 0.7569 0.4376 0.6151
PATH; , 0.7504 0.7889 0.4295 0.6732
Secograph 0.8943 0.8680 0.3528 0.4534
Zhougrap, 0.8429 0.8403 0.3259 0.4414
Sebtigrapn 0.8434 0.8577 0.3835 0.4564
Menggraph 0.8563 0.8711 0.3652 0.4702
Caigraph 0.8635 0.8840 0.3856 0.4898
sanchezgrpn 0.8950 0.8701 0.3475 0.4489
TransE corpus 0.8310 0.7737 0.4032 0.4465
TransH corpus 0.7800 0.8041 0.4097 0.4289
TransG corpus 0.8102 0.7720 0.3639 0.4083

Strategy 1grapn (baseline) 0.8966 (sdnchez ) 0.8841 (Cai) 0.3864 (Cai) 0.4902 (Cai)
Strategy 2grpn (baseline) 0.8966 (sanchez ) 0.8854 (Cai) 0.3894 (Cai) 0.4900 (Cai)
Strategy 3grapn (baseline) 0.8966 (sdnchez ) 0.8854 (Cai) 0.3894 (Cai) 0.4900 (Cai)
Strategy 4grapn (baseline) 0.9291 (Seco) 0.8953 (Cai) 0.7079 (Seco) 0.8620 (Cai)

on WordNet and the gold standard datasets. We have then obtained the embedding vectors
for each term and computed the cosine similarity for each pair of terms. Tables 3.3 and
3.4 display the actual Pearson and Spearman correlations based on our implementation
using WordNet 3.0, the KGE from [71] and the Natural Language Toolkit (NLTK) [144]
WordNet similarity implementations. Also, the tables present the respective correlations
for the six examined benchmarks [9, 32, 33, 34, 43, 65], in addition to the poly-relational
approach, showing the best obtained correlation across all baselines for each strategy. It
can be seen from the results provided in Tables 3.3 and 3.4 that the proposed strategies

outperform all baselines. Furthermore, the results show gradual improvement from S1
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Table 3.4: Spearman correlation with gold standard and proposed strategies

Calculation Method MC RG WordSim MTurk
RES corpus 0.8028 0.8067 0.6082 0.7020
WUP corpus 0.7681 0.7766 0.4278 0.7224
LIN corpus 0.7457 0.6952 0.4751 0.6758
PATH;s 0.7506 0.8002 0.3869 0.7271
Secograph 0.8660 0.7963 0.3308 0.4896
Zhougapn 0.8130 0.7883 0.3232 0.5057
Sebtigrapn 0.7781 0.7693 0.3349 0.4762
Menggrapn 0.8001 0.7918 0.3205 0.5082
Caigrap, 0.8174 0.7981 0.3150 0.5025
sancheZgaph 0.8772 0.7994 0.3195 0.5036
Zhang graph 0.3480 0.3434 0.1013 0.2195
TransE corpus 0.8085 0.7236 0.3525 0.4622
TransH corpus 0.7670 0.7406 0.3728 0.4454
TransG orpus 0.8342 0.6689 0.3180 0.4203

Strategy I grapn (baseline) 0.8741 (sdanchez ) 0.8001 (sanchez ) 0.3344 (Seco ) 0.5035 (sanchez)
Strategy 2grapn (baseline) 0.8741 (sanchez ) 0.8028 (Cai) 0.3347 (Seco ) 0.5029 (sanchez )
Strategy 3ng1, (baseline) 0.8788 (sanchez ) 0.8046 (Cai) 0.3347 (Cai) 0.5039 (sanchez )
Strategy 4grapn (baseline) 0.8917 (Seco)  0.8121 (Cai) 0.6848 (Seco) 0.8600 (Cai)

to S4, with the exception of S3 when using the Pearson correlation. This is justified
above, while discussing the results of S3. As highlighted in both tables, the proposed
method provides significant improvement over all baselines with both the Pearson and the

Spearman correlations, thus showing its superiority over all other methods.

The complexity of the proposed semantic similarity and relatedness algorithm is de-
pendent on the IC function for the used baseline and concepts’ depth in WordNet graph.
It should be noted here that the number of relation types in the WordNet graph is constant,
and therefore it does not affect the computational complexity of the proposed technique.
As shown in Eq. 6, the complexity of the proposed method is given by the maximum com-

plexity among the three algorithms used for computing taxonomic similarity, relational-
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based similarity and relatedness. The taxonomic similarity and relational-based similarity
have the same algorithm complexity since they are both dependent on the computational
complexity of the concept’s IC value. Although the IC function varies from one baseline
to another, yet their complexity is linear, that is O(n), where n is the number of hierar-
chical features used to compute the IC value for each baseline (e.g. hyponyms, siblings,
direct hyponyms, depth of concepts in the graph) as shown in Table 2.1. However, the
complexity of the relatedness measure is O(nm), where n and m represent the number
of paths and the maximum path length between two terms respectively. Therefore, the
overall complexity of the proposed algorithm is given by O(mn), which is considered a
reasonable polynomial complexity compared to the state of the art KGE semantic simi-
larity methods, where models need to be trained on large datasets using computationally

expensive neural network configurations.

3.6 Conclusion

In this chapter, we examined the concept of semantic similarity based on the information
content of terms. We introduced a novel approach that can be applied to any knowledge
domain. The proposed approach exploits both taxonomic and non-taxonomic relations to
compute IC and SemIC of all terms. These are employed at different granularity levels
to measure semantic similarity. Furthermore, we introduced a new approach to measure

relatedness based on weighted paths built out of non-taxonomic relations.

The experimental results prove that non-taxonomic relations add valuable information
to their associated terms, and contribute to determining the semantic similarity between
them. Furthermore, it was shown that prevalence of each relation type is an important
ingredient in measuring semantic similarity and relatedness, thus mimicking human per-
ception. Therefore, we can conclude that non-taxonomic relations play a vital role in

determining domain specific semantic similarity.
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Chapter 4

Semantic Word Sense Disambiguation

4.1 Introduction

Regardless of the language used, spoken words carry a specific meaning that allows hu-
mans to communicate and understand each other. Communication would be confusing if
the words used in a sentence carry multiple meanings, which could be clarified by pro-

viding additional context.

This chapter presents the main tasks of pursuing the WSD challenge (Section 4.2).
Section 4.3 presents in details the proposed WSD process including the novel Sequential
Contextual Similarity Matrix Multiplication (SCSMM) and back-tracing algorithms. This
section also includes a detailed flowchart of the proposed system. Section 4.4 presents a
description of the leading gold standard datasets and a thorough evaluation of the pro-

posed approach.

4.2 Word Sense Disambiguation Tasks

The research community and the SemEval International Workshop on Semantic Evalua-

tion' described two main tasks for WSD. These tasks are: Lexical Sample (LS) and AW.

ICurrent workshop website: http://alt.qgcri.org/semeval2020/
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The main difference between the two is the number of target terms to be disambiguated

within a sentence, more details as follows:

Lexical Sample (LS) : This is mostly applied by supervised approaches, where the
system is required to disambiguate a small set of predefined ambiguous words, typically
one target word per sentence, with the rest of the words providing a context. Having
only one target word per sentence simplifies the supervised classification task; hence such
approaches, in general, achieve higher accuracy, as they are focused on a single class with

a broader context.

All-Words (AW) : This task assumes open-class words and a smaller context. The
objective is to disambiguate all open words within a sentence, leaving a smaller concrete
context. Supervised systems may suffer while solving this task due to a lack of a sense-
annotated training dataset covering a full lexicon. On the other hand, other approaches,
specifically knowledge/dictionary-based approaches, are more suitable for this task since
they can exploit a full lexicon knowledge base on demand with very little or no prior

training [37].

Although AW is considered a more realistic task to evaluate, yet, producing a train-
ing corpus for a LS task is much easier; since human annotators have to read the senses’
definitions once for a block of instances for the same target word. On the other hand, to
produce a training corpus for AW task, human annotators have to read the definitions for
each word in the sequence with every annotated sense. Nonetheless, very few datasets
have been sense-annotated for AW WSD task, and only one is manual. Besides, more
gold-standard evaluation datasets have been presented through the SensEval/SemEval in-
ternational workshop from 1998 to date. Section 4.4.1.1 presents these datasets in more

detail.
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4.3 Proposed Method

This section presents a novel, context-aware WSD algorithm based on a KG semantic
similarity and relatedness measure. Our main intuition is derived from the brain’s basic

steps to analyze and disambiguate words in context (i.e., sentence, document).

As described in Section 2.3.4, four main elements are essential for disambiguating
words within a sentence. These are (i) the sequence of the terms within the sentence;
(i1) the connectivity between various concepts (i.e., senses) of ambiguous terms; (iii) a
basic heuristic knowledge of each term and its various concepts (i.e., senses); and (iv)
the broader context of the document. These design elements are incorporated into the

proposed WSD algorithm.

4.3.1 System Flowchart

Fig. 4.1 describes the main tasks of the proposed WSD method, starting from parsing the
XML content of the dataset and the NLP preprocessing tasks, followed by the construction
of document’s context. The document context consists of all context words within each
document (terms with a single sense) that have nonzero TF-IDF value. Then, the three
main WSD processes, which make up the WSD algorithm, are executed for each sentence
in the document. These are the construction of Contextual Similarity Matrix (CSM)s
queue, followed by the main SCSMM algorithm, and finally the identification of the most
contributing senses to the global context in the back-tracing algorithm. In the cases where
there is any ambiguous terms left, the carry-forward process is executed to disambiguate

them.

4.3.2 WSD Algorithm

The complete WSD process, as described in Algorithm 2, consists of the CSM queue
construction, a novel SCSMM and a back-tracing algorithms for an AW WSD task. The

proposed method follows a knowledge-based approach using WordNet as a sense dic-
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Figure 4.1: Flowchart for the proposed WSD algorithm
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tionary and the main knowledge resource. Before starting the WSD process, standard
NLP preprocessing steps take place, such as sentence tokenization, stop-words removal,

lemmatization, and POS tagging.

Algorithm 2: WSD Algorithm Using SCSMM
Input :S: Sentence with list of ambiguous words

Output: S: Sentence with annotated sense
1 Data Structures:
2 CSMQue: Contextual Similarity Matrices Queue
3 MtxProductStack: A Stack for the produced matrices resulting from the
product of consecutive matrices
for i < 0to (|TermsOf(S)| — 1) do
L CSMQue Lnauene call getSemSimMatriz(S;, Siy1)

£ =

wn

6 MtxProductStack < Call SCSM M (CSMQue)
7 § « Call BMCC(Mtz ProductStack)

Before delving into the algorithm, the next section presents the core components that
construct the CSM; these are the semantic similarity, sense heuristics, and document con-

text.

4.3.2.1 CSM Core Components

The similarity matrix algorithm described in Algorithm 3 employs the aforementioned
semantic similarity and relatedness measure as the similarity measure between the senses
of every term and its consecutive term SC'M (t;,t;,1). The local context generated by the
consecutive terms’ similarities is then complemented by the heuristic of each sense and
the global context from the document context similarity. As a result, each cell in the CSM
matrix resembles the local context, prior knowledge, and document context, see lines 7-9

in Algorithm 3.
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Algorithm 3: Get Semantic Similarity matrix method
Input : Pry.,: First term

C'rierm: Second term
Output: SimMtz: Similarity Matrix
1 Data Structures:
2 CSM: Contextual Similarity Matrix
3 Initialization:
4 CSM « NewMatriz||Sense( Prieym)|][|Sense(Crierm)|]{0}

5 foreach s; € Sense(Priepy,) do

6 foreach s; € Sense(Crierm) do

/+ Get the Semantic Similarity and Relatedness */
7 CSMIi][j] < SSR(sy, s;)

/+ Apply heuristics as a weighted frequency of each sense */
8 CSM]i][j]* = H(s:) * H(s;)

/+ BApply document context similarity of each sense */
9 CSM{i|[j]* = DocCtzSim(s;) * DocCtzSim(s;)
10 return CSM

1- Semantic Similarity: A semantic similarity and relatedness measure represents a
direct and local context between consecutive terms. The main idea is to find the maximum
pairwise context between senses of the two consecutive terms. However, it is possible
to have more than one local context from two words based on the combination of their
senses. Various knowledge-based semantic similarity and relatedness measures have been
evaluated in order to determine the best similarity measure for our algorithm. These
measures are presented in Section 2.2.1 and [119]. We further evaluate these measures in

Section 4.4.3.

2- Sense Heuristics: In addition to the semantic similarity between senses, each sense
has heuristic information that reflects its used frequency. These heuristics are observed

from the available training datasets; SemCor and OMSTI. The heuristic function is based
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on the senses frequency distribution within the training dataset. More formally, for a term
w; that has a set of senses {S}, and a sense s;;,1 < j < |S], the heuristic function is

described as below:

-

P(sijlw;) 545 € {S}

H(s) = gy 250 ¢ 15} (1)
1 wig {W)

where P(s;;|w;) is the conditional probability of the sense s;; given its term wy;, that is

computed based on their respective counts within the dataset as follows:

Count(s;;)

P(siilw;) = ——=42 2
(515lwi) Count(w;) )
Note that if the training dataset does not contain the term w;, its heuristic is set to one,

and it will not affect the similarity matrix.

3- Document Context: As described in the semantic similarity, multiple sense-pairs
might have high similarity indicating various contexts. To determine the appropriate con-
text in the sentence, we crosscheck each sense with the document context obtained from
all non-ambiguous terms in the document. Formally, for a given document with sets of
ambiguous and non-ambiguous (context) terms D = {{ A} U {C}}, and each ambiguous
term w; (w; € {A}) has a set of senses {5y, }, then the sense s;; (s;; € S,,) has a con-
text similarity weight weightcy,p(s;;|C) with the document context C expressed as the

average similarity with all context terms ¢;, € {C'} as depicted in the equation below:

. 1 .
weightcp(sii|C) = m X Z SiMjen (84, Ck) 3)
cpeC

Iustrative Example: Consider the sentence “I’m walking to the bank”, with the two
ambiguous words ‘walk’ and ‘bank’. The similarity matrix, Table 4.1, shows high simi-

larities between the sense pairs walk) — bank?, and walk! — bank2 of 0.092 and 0.077,
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respectively. These represent a local context for each pair of senses. For more details of

these senses and their definitions, see Fig. 4.2.

Table 4.1: Similarity matrix between terms walk, and bank,

bankl bank2 bank3 bank4 bank5 bank6 bank7 bank8 bank9 bank10
walkl | 0.051 0.053 0.047 0.045 O 0 0 0 0 0
walk2 | 0.048 0.044 0.044 0.037 O 0 0 0 0 0
walk3 | 0.069 0.072 0.063 0.059 O 0 0 0 0 0
walk4 | 0.042 0.039 0.039 0.033 O 0 0 0 0 0
walk5 | 0.069 0.072 0.063 0.059 O 0 0 0 0 0
walk6 | 0.065 0.068 0.060 0.056 O 0 0 0 0 0
walk7 | 0.067 0.077 0.061 0.058 O 0 0 0 0 0
walk8 | 0.066 0.075 0.061 0.058 O 0 0 0 0 0
walk9 | 0.088 0.069 0.092 0.055 O 0 0 0 0 0
walk10 | 0.065 0.063 0.059 0.053 O 0 0 0 0 0

For our system to disambiguate such a small sentence with no additional context, it
relies only on the semantic similarity. Therefore, the senses walk) and bank> would be
selected since they have the highest similarity of 0.092 compared to all other combina-
tions. However, when adding heuristics, the results change completely towards another
pair walk! and bank? with the highest similarity of 0.0236. Intuitively, people would
think that the first meaning of walk (walk}) and one of the first two senses of bank would
be more meaningful contexts than the rest. This intuition is clearly visible in Table 4.2
with the top two senses of bank (bank} and bank2). Note that the heuristic weights for
walk] is 0.9, and for bank. and bank? are 0.35 and 0.5, respectively. Heuristics were

computed using both of SemCor and OMSTT datasets.

Finally, if we learn additional context around the sentence, such as non-ambiguous
terms within the same document (i.e., river), our brain will shift towards a more concrete
context based on the document’s main topic, and thus does our system. The first sense

will have higher similarity than the second one, with the first sense walk,f, of 0.153 and
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receives four balls) "he worked the pitcher for a base on balls"

S: (n) walk, manner of walking (manner of walking) "he had a funny walk"

S: (n) walk (the act of walking somewhere) "he took a walk after lunch"

S: (n) walk, walkway, paseo (a path set aside for walking) “after the blizzard he
shoveled the front walk"

S: (n) walk (a slow gait of a horse in which two feet are always on the ground)
S: (n) walk of life, walk (careers in general) "it happens in all walks of life"”

Verb

+ S: (v) walk (use one's feet to advance; advance by steps) "Walk, don't run!"; "We
walked instead of driving”; "She walks with a slight limp"; "The patient cannot walk
yet"; "Walk over to the cabinet”

+ S: (v) walk (accompany or escort) "I'll walk you to your car”

¢ S: (v) walk (obtain a base on balls)

S: (v) walk (traverse or cover by walking) "Walk the tightrope"; "Paul walked the

WordNet Search - 3.1

Word to search for: bank | search WordNet |

Display Options: | (Select option to change) v
Key: "S:" = Show Synset (semantic) relations, "W:" = Show Word (lexical) relations
Display options for sense: (gloss) "an example sentence”

Noun

+ S: (n) bank (sloping land (especially the slope beside a body of water)) "they pulled
the canoe up on the bank"; "he sat on the bank of the river and watched the
currents”

+ S: (n) depository financial institution, bank, banking_concern, banking_company. (a
financial institution that accepts deposits and channels the money into lending
activities) "he cashed a check at the bank"; "that bank holds the mortgage on my
home"

« 3: (n) bank (a long ridge or pile) "a huge bank of earth”

+ S: (n) bank (an arrangement of similar objects in a row or in tiers) "he operated a
bank of switches"

+ S: (n) bank (a supply or stock held in reserve for future use (especially in
emergencies))

¢ S: (n) bank (the funds held by a gambling house or the dealer in some gambling
games) "he tried to break the bank at Monte Carlo"

+ S: (n) bank, cant, camber (a slope in the turn of a road or track; the outside is higher
than the inside in order to reduce the effects of centrifugal force)

s S:(n) savings bank, coin bank, money box, bank (a container (usually with a slot in
the top) for keeping money at home) "the coin bank was empty”

+ S: (n) bank, bank building (a building in which the business of banking transacted)
"the bank is on the corner of Nassau and Witherspoon"

« S: (n) bank (a flight maneuver; aircraft tips laterally about its longitudinal axis
(especially in turning)) "the plane went into a steep bank”

Verb (b) Noun senses for the term bank

S: (v) bank (tip laterally) "the pilot had to bank the aircraft"

S: (v)hanle(érkld3efimiticnbaok ) ibaskmedsdsilk’ and ‘bank’ in WordNet

+ S: (v) bank (do business with a bank or keep an account at a bank) "Where do you

bank in this town?"

S: (v) bank (act as the banker in a game or in gambling)

s S: (v) bank (be in the banking business)

s S: (v) deposit, bank (put into a bank account) "She deposits her paycheck every
month"

¢ S: (v) bank (cover with ashes so to cor%tdfol the rate of burning) "bank a fire"
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Table 4.2: Similarity matrix with heuristics between terms walk, and bank,

bankl bank2 bank3 bank4
walkl | 0.0158 0.0236 0.0021 0.0010
walk2 | 0.0003 0.0004 0.0000 0.0000
walk3 | 0.0004 0.0006 0.0001 0.0000
walk4 | 0.0001 0.0001 0.0000 0.0000
walk5 | 0.0001 0.0002 0.0000 0.0000
walk6 | 0.0001 0.0002 0.0000 0.0000
walk7 | 0.0001 0.0002 0.0000 0.0000
walk8 | 0.0001 0.0002 0.0000 0.0000
walk9 | 0.0002 0.0002 0.0000 0.0000
walk10 | 0.0001 0.0002 0.0000 0.0000

0.151, respectively. The final correct senses in this case would be walk] and bank}. On
the other hand, if the document contained more financial terms (i.e., central_bank), the
other sense would be selected. Based on the above, we employed the document’s context

similarity, which improves the overall similarity between the senses.

4.3.2.2 Sequential Contextual Similarity Matrix Multiplication Algorithm

Once all CSMs are constructed for the sentence, the WSD algorithm starts by building
a similarity matrix queue (C'SM Que) from all CSMs, maintaining their sequence, see
Algorithm 2 lines 4-5. Line 6 in the algorithm generates the final matrix based on the
sequential multiplication of the matrices as presented in the SCSMM algorithm (Algo-
rithm 4). Fig. 4.3 illustrates the sequential multiplication process of the consecutive local
CSMs for a sample sentence with four ambiguous words. Finally, the algorithm applies
a back-tracing process to determine the most contributing senses to the maximum global
context. Next, we describe in detail the SCSMM algorithm followed by the back-tracing

algorithm.
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Algorithm 4: Sequential Contextual Similarity Matrix Multiplication
Input : CSMQue: Contextual Similarity Matrices Queue

Output: Mtz ProductStack: A stack stores the product of consecutive matrices
1 Data Structures:
2 Proarie: Stores the previous matrix
3 CTatriz: Stores the current matrix
4 MtxProductStack: A stack stores the product of consecutive matrices
5 Initialization:
6 Prmamriz 22" CSMQue
7 MtzProductStack &% Proairic
8 while CSMQue # Empty do
9 | Cromatriz 2% CSMQue
10 MRes < Proariz * CTmatriz
Push

11 MtxProductStack <—— M Res

12 P Tmatriz ¥ Crmat-ri:r

R_esult: Mtz ProductStack

Similarity Matrices Multiplication: Once all CSMs are constructed between consec-
utive terms (see Fig. 4.3, matrices M1, M2, and M3), the matrix multiplication algorithm
(Algorithm 4) starts by multiplying M1 and M2, then the resulting matrix M4 is multiplied
by M3, and so on. The sequential multiplication of matrices guarantees a global context
across all words within the sentence. It also guarantees the maximum context value while
maintaining the order of the terms within the sentence. The order of words in a sentence
is critical to better understand and disambiguate the sentence. Finally, starting with the
latest produced matrix, the back-tracing algorithm traces back all senses that contributed

to the maximum global context.

Back-Tracing Senses: The final step of the SCSMM algorithm is the back-tracing stage
(Algorithm 2 line 7). In this stage, we identify the most contributing sense to the sen-

tence’s global context (Algorithm 5). Fig. 4.5 and 4.4 illustrate the back-tracing stage as
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Figure 4.3: SCSMM illustration

follows: the back-tracing starts by selecting the maximum value from the final produced
matrix. This value represents the maximum contextual weight for a given sentence. Then,
this value is decomposed into its row and column vectors from the previous matrix mul-
tiplication. In step three, we select senses with the maximum product. These are senses
that contributed the most to the global context. Finally, steps two and three repeat until

there are no more elements to decompose.

As described above, our algorithm is intuitive and its results are explicable. It starts
with a local context, then, it improves the context with heuristics and document context.
Finally, it selects the most appropriate sense that contributes to the maximum global con-

text while maintaining terms order.

4.3.2.3 Document Carry Forward Terms

In a few cases our algorithm is unable to disambiguate a term using the SCSMM algo-

rithm. This would happen where a term has no local context (zero similarity) with its
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Algorithm 5: Back-tracing the Maximum Context Contributing senses
Input : MtzProductStack: A Stack stores the product of the consecutive

matricides
Output: SensesList: A stock of list of selected Senses

1 Data Structures:

(¥

Proairie: Stores the previous matrix

Criariz: Stores the current matrix

L]

4 location < r,c,val >: triple <row, col, value> of the location of maximum
value in the matrix

5 Initialization:

6 Proairiz EP Mtz ProductStack

7 location{r, c,val} - Maz(Prpyariz)

8 while Mtz ProductStack # Empty do

o | SensesList &2 Sense(c)

10 CTrmatriz (Pﬂ Mtz ProductStack

/+ The index of column that contribute the most to the context */

11 ¢ < Maz({Rowc,.Colp,})

12 | location < {r,c,val}

13 P Tmatriz ¥ Crmat-ri:r

., Push

14 SensesList <—~ Sense(c)
., Push

15 SensesList +—— Sense(r)

16 return SenseslList

surrounding terms. In such cases, we first attempt to disambiguate the term using its sen-
tence as a context, including all recently disambiguated terms. Then we select the sense
that has the maximum similarity with the sentence context. However, if a term still cannot
be disambiguated within its own sentence, then, the term is carried forward to be disam-
biguated after the entire document is processed. These terms are referred to as Document
Carry Forward (DocCF) terms. DocCF are processed after all sentences have been disam-

biguated to provide a maximum context for these terms. For each DocCF term, the sense
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Figure 4.5: SCSMM back-tracing steps

with the maximum average similarity with all terms in the document is selected.
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4.4 Evaluation and Experimental Results

4.4.1 Experimental Setup

We compared the results of our proposed SCSMM-WSD approach to the state-of-the-art
systems based on well-known evaluation datasets. We also employed the commonly used
training dataset in this field to obtain sense heuristic. We have also compared our ap-
proach to the baseline approaches represented by selecting the first sense in WordNet and
the MFES using both training datasets. To obtain heuristics, we retrieved the senses’ anno-
tations from the SemCor and OMSTI training datasets (see Section 4.4.1.1). The SemCor
annotations are available as part of the SemCor installation package in the ‘cntlist’ file,
and the OMSTI annotations were preloaded to the SQL database from the ‘keys’ file
downloaded from [123]2.

4.4.1.1 Training Datasets

The two large sense-annotated corpora (SemCor and OMSTI) have been used by many
supervised approaches in training their models. Both datasets are tagged with WordNet

senses. One of which is manually annotated, while the other is automatic.

e SemCor [14]: SemCor is a manually annotated corpus extracted from the original
Brown corpus. The dataset is annotated with POS, lemmas, and word senses based
on WordNet KG. SemCor consists of 352 documents: 186 documents include tags
for all POS words (nouns, verbs, adjectives, and adverbs), while the remaining 166
contain tags only for verbs. The total number of sense annotations in all documents
is 226,040. To our knowledge, SemCor is the largest manually annotated corpus
with WordNet senses and is the main corpus used in various literature to train su-

pervised WSD systems [103, 145].

e OMSTI [15]: OMSTTI is an automatically sense-annotated corpus with senses from

the WordNet 3.0. As the name suggests, it contains one million sense-annotated

2http://lcl.uniromal.it/wsdeval/home
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instances. To automatically tag senses, OMSTI used an English-Chinese parallel
corpus’® with an alignment-based WSD approach [16]. OMSTI has already shown

its potential as a training corpus by improving the performance of supervised sys-

tems [15, 104].

4.4.1.2 Evaluation Datasets (Gold Standard)

A comprehensive evaluation framework has been presented in [123] with the integration
of the primary WSD datasets. These datasets were presented as part of the SemEval
International Workshop on Semantic Evaluation* between the years of 2002-2015. The

framework included datasets from five main competitions, as presented in Table 4.3.

Table 4.3: SensEval/SemEval evaluation datasets

Dataset Task # of Senses

Name Method NN V  Adj Adv Total
SensEval2 (SE2) [146] LS, AW 1066 517 445 254 2282
SensEval3 (SE3) [147] LS, AW 900 588 350 12 1850
SemEval-07 (SE07) [148] LS 159 296 - - 455
SemEval-13 (SE13) [149] LS, AW 1644 - - - 1644
SemEval-15 (SE15) [150] LS, AW 531 251 160 80 1022

We further analyzed the datasets to determine the average sentence size, context size,
and the ambiguity rate within each dataset. Table 4.4 depicts the statistics for each dataset.
The average sentence size is calculated based on the number of annotated terms/processed
sentence. Some sentences do not contain any terms; hence they are omitted. The context
size 18 measured by the number of terms that have a single sense, hence unambiguous
terms. Finally, the percentage of ambiguity is computed based on the number of am-
biguous terms to the total number of terms. For example, SemEval-07 has the highest

ambiguity rate of 94%, with only 26 out of 455 terms that are not ambiguous (only one

Shttp://www.euromatrixplus.net/multi-un/

4Current workshop website: http: //alt.gcri.org/semeval2020/
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sense) and the smallest average sentence size with only, on average, three terms/sentence.
Note that the ambiguity rate is inversely correlated with context size, which could degrade

the disambiguation score, as presented in the results in Section 4.4.5.

Table 4.4: Statistics of WSD gold standard dataset

Criteria SE2 SE3 SE07 SEI13 SEI15
#Doc 3 3 3 13 4
#Sent* 242 297 120 301 133
#Terms 2282 1850 455 1644 1022
AvgSentSize 9 6 3 5 7

Single sense 442 311 26 348 189
Ambiguity rate  81% 83% 94% T19% 82%

Furthermore, out of those ambiguous terms, Table 4.5 depicts the granularity level for
each POS on all datasets combined. The granularity level reflects the average number
of senses for each term. The granularity level negatively impacts disambiguation perfor-
mance. Having a high granularity level makes the disambiguation decision very difficult
even for humans, explaining the relatively low inter-agreement score between annotators.
The annotators’ inter-agreement score ranges between 72% to 80% on AW task. The
average granularity level for verbs is the highest compared to all other POS; on average,
each verb term has 10.95 senses compared to 5.71, 4.7, and 4.4 senses for the nouns,
adjectives, and adverbs, respectively. The fourth row presents the maximum number of
senses within each POS, where the maximum number of senses in verbs reaches up to 59,
compared to 33, 21, and 13 senses for the nouns, adjectives, and adverbs, respectively.
Both nouns and verbs are highly granular, explaining most systems’ results as described
later in Section 4.4.5. The mode and median also explain the results in Section 4.4.5, as

most ambiguous verbs have four senses compared to two senses in all other POS.

92



Chapter 4 Semantic Word Sense Disambiguation

Table 4.5: Ambiguous terms statistics for all gold standard datasets

Noun Verb Adjective Adverb

# of terms 4300 1652 955 346
# of ambiguous 3442 1555 732 208
Average granularity 5.7 11.0 4.7 4.4
Max #senses 33 59 21 13
Mode 2 4 2 2
Median 5 7 4 3

4.4.2 Evaluation Metric

Three main metrics are used to evaluate any WSD system performance: Precision, Recall,
and F1-score. These measures are commonly used in the IR field. Assuming, within a
dataset, there is a set of manually annotated test words T' = (wy, ..., wy,), and for any
system, the set of all evaluated/retrieved words is represented as F = (wy, ..., wg) : k <=
n, and the set of correctly evaluated words C' = (wy, ..., wy,) : m <= k. Then we can

evaluate the system as follow:

e Precision: the percentage of correctly identified words given by the system:

Number of correct words m

== 4)

~ Number of evaluated words k'’

P

where k = | E/| the total number of evaluated words, and m = |C| the total number

of correctly evaluated words.

e Recall: the percentage of correctly identified words given by the system out of all

test words in the dataset:

R Number of Correct words _ E‘ )

Number of test words n

where n = |T'| the total number of evaluated words, and m = |C| the total number
of correctly evaluated words. If a system is able to evaluate every test word in T,

then, we can say that the system has a 100% coverage, hence, P = R.

93



Chapter 4 Semantic Word Sense Disambiguation

e Fl-score: is a balanced Fy-score where a = 0.5. The Fj-score is given by the

following equation:
2PR

P+ R

The general Fi,-score measures the trade-off between the precision and recall as

Fi-score =

(6)

follow:
1

ap+(1—a)

F,,-score =

(M

==

4.4.3 Evaluated Semantic Similarity measures

In this section, we present various semantic similarity and relatedness measures that have
been evaluated in our experiment. The similarity measure with the best performance is
employed to construct the similarity matrix for our algorithm, as shown in Algorithm 3,
Line 7. These measures have been discussed in detail in [119]. Table 4.6 depicts the
performance of the top four measures (LCH, WUP, JCN, and PATH) on all dataset. As
shown in these results, the JCN measure provides the best WSD performance across all
datasets. The only exception is on SemFEval2013 (SE13) where both PATH and LCH
outperformed JCN. However, using the combined datasets, JCN outperformed all other

methods. Hence, it is the measure used in our SCSMM algorithm.

Table 4.6: F1-score for top four semantic similarity and relatedness methods

SSR SE2  SE3 SE07 SEI3 SEI5 Al

LCH 7251 69.89 61.01 6442 6629 67.67
WUP 73.17 6878 6289 63.56 06648 67.37
JCN 78.14 72.67 64.78 063.44 68.38 69.67
PATH 73.17 70.11 61.01 64.66 6629 67.98

It is worth pointing that we have evaluated our PR-SSR from the first task with a
small subset of the SemCor dataset (30 sentences). However, due to the WordNet version
difference between the first and second tasks’ implementations, we had run into a manual

mapping of concepts from WordNet 3.0 (in the second task) and WordNet 3.1 (in the first
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task). Therefore, to focus on the WSD algorithm, we applied the SSR measures that are
part of the WordNet::Similarity library [143]. Aside from the implementation limitation,
there are no theoretical blocks to prevent us from exploiting the benefits of the proposed
PR-SSR to improve the SCSMM algorithm. As pointed in the last chapter, complete
integration of the two tasks is part of the future works which would likely benefit the

WSD system.

4.4.4 Implementation

Fig. 4.6 describes the architecture for the proposed WSD system. The WSD system
is built based on the Web API architecture, which includes controllers and models. We
further extend the architecture to provide separate services component that handles the
main WSD system logic. The architecture consists of two Web API systems: the WSD
API and the PYNLTK API. The WSD API is responsible for the core WSD algorithm,
while the PyNLTK API is responsible for any NLP processing tasks, including the gloss-

based similarity (i.e., Lesk).

The main WSD application is a C# Web API application with three separate layers:
controllers, services, and the models. The controllers handle the API routing process
and trigger the appropriate system logic from the services layer. In return, the services
component is responsible for implementing the core WSD algorithm. It also connects
with the models to add, retrieve, and update data from the database. Furthermore, the
services layer is also responsible for establishing any internal or external API calls such
as the calls to the PYNLTK API to perform any NLP pre-processing required or the
calls the BabelNet API° to obtain BabeleNet synsets, which is required for the NSARI

embedding evaluation.

The second PyNLTK API application is a python-based implementation. The main
responsibility of this component is to compute text-based similarity measures, such as the

LESK similarity.

Shttps://babelnet.org/
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WSD System Architecture

~

WSD API

PYNLTK API

BableNet
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Embedding NLTK Corpora
models vectors From the NLTK package
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NASARI, TransE

-

Figure 4.6: WSD system architecture

The data is retrieved from three distinct sources. The first is an SQL server database
that stores the heuristics datasets (SemCor and OMSTI). The second consists of filesys-
tems that contains pre-calculated embedding vectors for WordNet KG from two embed-
ding models: NASARI [57], and TransE from [71]. The final is the NLTK corpora as
part of the NLTK® package. We employed the Brown and SemCor corpora to compute

concepts’ IC.

Table 4.7 depicts the main parameters that control our system, where the right most
column shows the optimal configuration that leads to the best performance. Note that
we include all POS in the evaluation for the POS_OF_Int. However, since adjectives and
adverbs merely describe the nouns and the verbs, respectively, they are not considered a

context in DocCtxPOS parameter.

Shttps://www.nltk.org/
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Table 4.7: Configuration parameters for the SCSMM system

Name Description Best Config.
SSR Semantic similarity and relatedness measure JCN

H(x) Heuristic dataset used s=SemCor, so=SemCor+OMSTI H(s)

DocCix Document Context used in the CSM flag True

DocCF Document carry forward flag True
POS_OF_Int The list of POS of interest that are being processed {n,v,adj,adv}
DocCtxPOS  The list of POS used as in the document context {n,v}

4.4.5 Experimental Results and Performance Analysis

To validate the robustness of the proposed method, we evaluated its performance with
the five gold standard datasets presented in Table 4.3. We further present the results of
the combined datasets to demonstrate the overall performance of the evaluated systems.
The performance is measured by the Fl-score discussed in Section 4.4.2. We present
the proposed SCSMM method using two heuristics deployments; the first uses heuristics
from the SemCor dataset (H,), and the second uses both SemCor and OMSTI datasets’
(Hg,). In addition, we present three additional configurations for the SCSMM algorithm.
These configurations demonstrate the effects of the document context and document carry

forward on the performance of the proposed algorithm.

Table 4.8 depicts the F1-score for each individual dataset in addition to the overall
performance on all five datasets combined. The results of all configurations of the pro-
posed SCSMM algorithm are compared to the current state-of-the-art knowledge-based
systems presented in [28, 29, 128, 131]. In addition, we present the baseline approaches

using WNI* sense, the MFS;, and the MFSj,.

The proposed SCSMM algorithm has the best performance when the document con-

text is included in the CSM, and when the DocCF disambiguation option is enabled. SC-

"The training dataset were downloaded from http://lcl.uniromal.it/wsdeval/

training-data

97


http://lcl.uniroma1.it/wsdeval/training-data
http://lcl.uniroma1.it/wsdeval/training-data

Chapter 4 Semantic Word Sense Disambiguation

Table 4.8: F1-score for each gold standard datasets

System SE2 SE3 SE07 SEI3 SEI5 All
Leskex 506 445 320 536 51.0 487
LesKextsemb 63.0 637 567 662 646 63.7
UKB 560 51.7 39.0 536 552 532
UKBgioss 60.6 541 420 590 612 57.5
Babelfy 670 635 516 664 703 65.5
UKBigiogs18 68.8 66.1 530 688 703 67.3
WSD-TM 69.0 669 556 653 69.6 66.9
WNI* sense 66.8 662 552 630 67.8 652
MFS, 656 66 545 638 67.1 64.8
MFS,, 66.5 604 523 626 642 62.8
SCSMMy;., 669 672 554 630 684 656
SCSMMy,, 68.1 672 554 630 684 66.0
SCSMMu, + DocCta 684 668 569 634 69.0 662
SCSMMy, + DocCF 68.1 67.1 563 630 687 66.0

SCSMMy. + pocciz + Doccr 68.9 67.6 57.1 635 695 66.7

SMM outperforms all other systems on two datasets, the SE3 and SE07, while matches
the WSD-TM system on SE2. We noticed that our system is outperformed on SE13, as
it is ranked fifth compared to other systems on the same datasets. We believe this is due
to the following reasons: (1) This dataset is not diverse, as it only includes nouns, while
we noticed with other datasets; that various POS contribute positively to the overall dis-
ambiguation algorithm. However, we could not prove this causation due to the effects
of other factors and the limited datasets. (2) The other important factor is the average
sentence size, as shown in Table 4.4. SE13 has an average sentence size of five terms per
sentence, which is considered a small sentence size compared to other datasets. The only

dataset that falls below that is SEO7, which is explained next.

Finally, the SEO7 dataset has shown a consistent drop in performance across all sys-
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tems. According to our analysis, this drop is due to three main reasons. First, the high
percentage of verbs within this dataset, as verbs have a very high granularity level that has
an inverse proportional effect on the disambiguation score (see Table 4.5 and Fig. 4.8).
Second, the dataset’s small context size, as the entire dataset contains two nouns and 24
verbs as a context, making the SE07 dataset the most ambiguous dataset with a 96% am-
biguity rate (see Table 4.4). Third and most importantly, the average sentence size. This
dataset has the smallest average sentence size of three terms per sentence compared to all
other datasets. Such a small average sentence size negatively impacts our algorithm be-
cause it identifies the global context between all terms, which is less accurate with smaller

sentences.

Additionally, Table 4.9 depicts the F1-score of the combined five datasets on each
POS. As can be seen from the results, our system outperforms all other systems when
disambiguating nouns using the SCSMM g, + pocctr + Doccry With F1-score of 69.9. This
is due to the proposed sequential algorithm that captures the maximum combination of
the local similarities within each sentence. This can also be explained by the fact that
nouns are structured and connected within WordNet compared to all other POS. Note that

Leskext+emp and WSD-TM outperforms our system on verbs.

4.4.5.1 Discussion of Experimental Results

Despite the various scores achieved by the evaluated systems, Table 4.8 shows a perfor-
mance correlation across all systems. The results demonstrate a consensus on the top and
worst scores per dataset. For instance, most systems perform best on SE/5 and worst on
SEO7. Based on the observation above, we present and analyze the effect of POS distri-
bution, granularity level, ambiguity rate, and sentence size on the performance of WSD

systems in general and the proposed SCSMM algorithm in particular.

POS Distribution : The diversity of POS within each dataset appears to correlate with
the F1-score. Fig. 4.7 depicts the F1-score for our proposed SCSMM algorithm with the

POS distribution for each dataset. As shown in the figure, SE2 and SE15 contain similar
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Table 4.9: F1-score for each POS on all gold standard datasets

System Noun Verb Adj Adv
Leskex 541 279 546 603
LesKextremb 69.8 51.2 51.7 80.6
UKB 56.7 393 639 440
UKBigioss 62.1 383 66.8 66.2
Babelfy 68.6 499 732 79.8
WSD-TM 69.7 512 76.0 80.9
WNI1* sense 67.6 503 743 80.9
MES; 67.6 49.6 73.1 80.5
MEFSq, 65.8 459 727 80.5
SCSMMy,., 68.2 50.5 74.6 80.1
SCSMMpy, 68.9 50.5 747 80.1
SCSMMuy, + Doccia 69.8 50.1 73.6 78.6
SCSMMUy, + DoccF 689 50.8 745 80.1

SCSMMuy, + DocCtz + Doccr  69.9  51.0 747 80.3

POS distribution, in particular, the weights of verbs within the datasets has a higher impact
on the performance of any WSD system, including the proposed algorithm. SE2 and SE15
contain almost the same percentage of verbs 23% and 25%, respectively, and have a very
similar Fl-score. As for the SE3, verbs occupy 32% of the dataset. Consequently, the
performance of all systems has deteriorated for this dataset compared to SE2 and SEI5.
Finally, having verbs outweigh nouns by almost double in SEO7, all systems showed the

lowest F1-score on this dataset compared to all other datasets.

Finally, the trigger dataset for analyzing the POS distribution is SE13. SE13 contains
three of the best qualities a dataset could have, yet, it has low performance compared to
other diverse datasets. SE13 contains only nouns, which are well structured in WordNet,
it has the lowest ambiguity rate of 79% as shown in Table 4.4, and it has the lowest

granularity level of 5.9 as a dataset (see Fig. 4.9). As a result, we conclude that a diverse
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POS Distribution with F1-Score
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Figure 4.7: The distribution of POS compared to F1-score

distribution of POS within a dataset improves our WSD algorithm.

Granularity Level : Granularity level is one of the most apparent factors that affect
the performance of any WSD system including the proposed algorithm. Fig. 4.8 exhibits
the performance of the proposed system and all other evaluated systems compared to the
granularity level for each POS. The columns in the figure represent the granularity levels,
while the lines represent the F1-score for the evaluated systems. The figure clearly shows
that the more granular senses within POS, the lower the system’s performance. The same
holds for the granularity level within each dataset regardless of the POS distribution. Fig.
4.9 presents the F1-score for all systems on each dataset compared to the granularity level

of each dataset.

Context vs. Ambiguity Rates : Both SE2 and SE/5 have almost the same POS distri-

bution within their respective datasets (see Fig. 4.7) and the exact same granularity level
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POS Granularity Level Vs. F1-score
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Figure 4.8: The granularity level of POS compared to F1-score
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Figure 4.9: The granularity level of datasets compared to F1-score

(see Fig. 4.9). On the other hand, the other three datasets have different POS distribution
and relatively higher granularity level. So what are the advantages of SE15 over SE2 that
yield better performance? We believe this is due to the context and ambiguity rates. The
ambiguity rate represents the percentage of ambiguous terms within each POS or dataset.
Fig. 4.10 depicts the POS distribution for each dataset in addition to the context and am-
biguity rates within each POS. Except for the nouns, SE15 has a higher context rate than

SE2. This explains the results of the Fl-score for each POS within these two datasets.
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Table 4.10 shows the F1-scores for the proposed SCSMM g, + pocciz + Doccr) algorithm
for each POS on SE2 and SE15 datasets. The results correlate with the context and am-
biguity rates within each POS. For example, SE2 has a higher context rate for the nouns
than SE15; thus, it performed better. On the other hand, SE15 performed better than SE2

on all other POS due to their higher context rates.

POS (Context,Ambiguous) Distribution

(100%,0%)

(58%,43%)

100% ry31%69%) 8%

90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

SE2 SE3 SEO7 SE13 SE15
B Noun MVerb M Adjective ™ Adverb

Figure 4.10: Distribution of POS with (context to ambiguous) ratio

Table 4.10: F1-score for SCSMMy. + Docciz + Docor) Per POS

Dataset Noun Verb Adjective Adverb

SE2 775 433 73.0 78.0
SE15 69.5 574 80.6 85.0

Average Sentence Size : The average sentence size is the most important factor that
affects the performance of our SCSMM algorithm and other systems, as it is more chal-
lenging to extract a context from fewer words. The same is true for a large number of

words. The average sentence size is shown in Table 4.4, which explains the lower per-
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formance of SE13 compared to SE2 as the average sentence size is smaller for SE13.
However, although SE15 has a smaller average sentence size than SE2, it performed bet-
ter. This result can be justified by the context rate factor discussed above, or an indication

of an optimal average sentence size.

4.5 Conclusion

In this chapter, we presented a novel knowledge-based WSD approach. The proposed SC-
SMM-WSD approach provides comparable results and outperforms most of the current
state-of-the-art KG-based systems. Moreover, we evaluated the performance of current
WSD systems, including our proposed method, on well-known gold standard datasets
from the SemEval workshop series. Based on the datasets analysis and the trends of the
evaluated systems’ results, we conclude that WSD systems are impacted by the granular-
ity level of the dataset and the included POS, the diversity of POS within the dataset, the

context to ambiguity rate, and the average sentence size.

We believe that as the KGs are enriched with more relationships between entities, and
more domain-based KG are exploited, knowledge base systems will outperform other
WSD approaches. Furthermore, knowledge base systems are intuitive, and their results

are easily explained, understood, and justified by a human.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

This thesis presented a novel semantic similarity and relatedness measure, namely PR-
SSR, that combined taxonomic and non-taxonomic relations. Our proposed measure is
based on two new parameters that describe non-taxonomic relations. The first is a rela-
tion’s IC (RIC) that quantifies the amount of information exchanged between the concepts
at both edges of the relation. The second is the relation’s prevalence. The prevalence mea-
sure reflects the importance and relevancy of a relation within the KG. We believe that the

prevalence measure can show better results if a domain-specific KG is used.

The proposed semantic similarity and relatedness technique can be applied to many
research domains such as IR, Semantic Recommender Systems, and NLP. For example, in
social media, non-taxonomic relations are dominant and can be used to infer new insights
about entities in the semantic graph (i.e., friends, places, products, and services). In
a Recommender Systems for an e-store, products can be suggested to customers based
on their semantic relations with other products. Similarity Search engines can benefit
significantly from such measure, especially when there exists a semantically rich KG.
However, the proposed semantic similarity and relatedness approach has a limitation in

the sense that it cannot be applied to a knowledge graph with few or no non-taxonomic
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relations (semantically-poor KG).

In Chapter 4, we proposed a novel knowledge-based WSD approach that follows the
brain intuition in disambiguating words within a sentence. The proposed SCSMM algo-
rithm identifies senses that provide the maximum global context within a sentence. Unlike
other systems, our proposed SCSMM algorithm exploits the merits of local context, word

sense heuristic, and the global context while maintaining the words order.

This thesis also presented a detailed analysis of the core factors that affect any WSD
system. These factors include the diversity of POS distribution, the granularity level of
the dataset, the granularity level of the POS within the dataset, the context to ambiguity
rate, and the average sentence size. Based on the datasets analysis and the trends of
the evaluated systems, we conclude that WSD systems are impacted negatively by the
granularity level of the dataset and the included POS. On the other hand, a more diverse
POS within the dataset improves the results of the proposed WSD algorithm. Similarly,
the higher the context rate, the better F1-score. Finally, the results show that the proposed
SCSMM algorithm can be negatively impacted by very short sentences (i.e., less than

three words).

5.2 Future Work

Despite the improvement of the proposed PR-SSR measure, it has a major dependency on
existing taxonomic IC-based measures denoted by the baselines presented in Section 3.2.
This dependency is due to the usage of existing taxonomic-based similarity measures.
As future work, these baselines can be eliminated to develop a new relatedness measure
based on the relations-1C and prevalence of both taxonomic and non-taxonomic relations.
Furthermore, such a new measure could positively impact the WSD algorithm with full
integration of the two tasks, as it provides additional semantic representation between
terms. Finally, it would be interesting to employ both algorithms (PR-SSR and SCSMM)
to solve more complex problems such as semantic sentence similarity and topic detec-

tion. The semantic representation of concepts within the KG is an integral measure for
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semantic-based WSD. Current knowledge-based WSD methods do not utilize this mea-
sure to its full potential. We believe that this is because the currently available KGs are
limited in semantically representing many real-world relations between concepts. Hence,
we need a domain-specific KG in addition to the current massive KG, which was beyond

the scope of our research.

Another limitation of the proposed algorithms is the semantically-poor KG. This is
due to the lack of domain specific non-taxonomic relations, which limits the contextu-
alised connections between relations, hence the semantic similarity and relatedness value
between terms. To overcome this limitation, a semantically rich domain-specific KG can
be developed and incorporated to enhance both the semantic similarity and relatedness
between terms and WSD results. Finally, the proposed SCSMM method does not capture
the exact topic of the document, but rather utilizes all context words in the document to
disambiguate terms. To address this limitation, future research could investigate the adap-
tation of topic modeling and text clustering algorithms such as the LDA algorithms used

in [132].
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