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ABSTRACT  
 

Howard, B.J. 2021. The utility of molecular DNA markers for monitoring population 
 trends and genetic structure of woodland caribou. 48pp. 
 
Key Words: conservation, fecal matter DNA, non-invasive genetic sampling, 
 population trends, woodland caribou 
 
 The use of non-invasive genetic sampling techniques is becoming frequent in the 
field of conservation. An examination of population trends of woodland caribou in 
Canada reveals the potential for fecal DNA analysis. Various sampling techniques have 
been practiced throughout multiple studies, using different protocols among species. The 
use of fecal matter to extract DNA has been done for terrestrial and aquatic species. 
There are three main methods for storing collected fecal matter, drying and 
lyophilisation, freezing and using solutions. For DNA extraction, two main brands were 
used for the process, Qiagen, and PureLink. This literature review focuses on the current 
understanding of woodland caribou population trends in Canada, and the potential for 
fecal DNA to close the knowledge gap between known knowledge and future trends. 
The use of fecal matter genetic sampling has potential to benefit the understanding and 
enhance current survey methodology of woodland caribou populations in Canada, and 
specifically, in the province of Ontario.  
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INTRODUCTION 

 
Ecosystems across the world is under pressure from biodiversity loss, the expansion 

of invasive species, and deteriorating ecosystem services due to anthropogenic activity 

(Beever et al. 2015). In response, many populations and species are experiencing 

decline, with increasing numbers of species being listed as at-risk. Biodiversity is 

critical for the sustainability of earth’s ecosystems, as species provide beneficial 

resources for survival including food, recreation, and culture (Gascon et al. 2015). The 

scientific importance of species is undeniable, as many coexist to support biodiversity in 

ecological systems. Anthropogenic interference with ecological systems due to spatial 

variation have created challenges to monitoring wildlife demography and long-term 

viability (Fryxell et al. 2020). Managing conservation across large spatial landscapes 

requires the fundamental understanding of the three components of biodiversity. These 

include ecosystem diversity, species diversity and genetic diversity (Gugerli et al. 2008). 

Genetics is the primary foundation of ecosystem and species viability, and thus has 

become an essential tool for understanding the natural world (Frankham et al. 2013). 

The use of molecular genetics is not a new practice but has become an increasingly 

popular strategy for monitoring population trends across large spatial landscapes 

(Primmer 2009).  

Conservation genetics applies genetic knowledge to reduce the risk of extinction 

in threatened species (Frankham et al. 2013). By understanding population trends 

though the use of genetics, the status and future survivability of a species can be 

predicted. In smaller populations, species face the impacts of genetic factors, such as a 

loss of genetic diversity and accumulation of deleterious mutations, leading to 
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extinction. Genetic diversity is described as the raw material upon which natural 

selection acts to bring about adaptive evolutionary change, and as the environment is 

constantly changing, it is essential to understand and monitor genetic diversity of 

wildlife populations. Genetic analysis can be used to determine historical, biological and 

the impacts of geographical information, and can be applied in various interpretations 

and models. Genetic monitoring has the potential to provide information on abundance, 

distribution, vital rates and genetic interchange (Sawaya et al. 2012).  

To better understand long-term viability of at-risk populations and species, 

conservation biologists often study their population structure and trends using molecular 

genetic markers (Primmer 2009). To determine the reasoning behind why species at risk 

populations are deteriorating, it is important to understand the sensitivity of the habitat 

in which the animal is living in. (Corander et al. 2007). Determining whether or not a 

population is being influenced by an outlying population via gene flow is essential for 

understanding the health and dynamic of the species. This is one of the many ways 

genetic tools can be used to predict the survivability of the population. Genetics can be 

used in conservation biology to address causes of the population decline by determining 

how reproduction in the population is restricted. These tools can help determine whether 

the species is suffering from inbreeding due to geographical barriers or changing 

environmental conditions (Corander et al. 2007). Genetic tools can be applied to species 

at risk analysis to better understand population trends. 

Methods of genetic sampling have common steps in which they follow. These 

include determining the methodology of collecting, storing, extracting and analysing. 

Determining the methodology of collection is typically decided upon budget and 
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resources available. In some cases, expertise is needed and excessive transportation such 

as a helicopter, boat or vehicle depending on the species being examined. Storing of 

samples is determined by the type and quality collected. Extraction and analysing are 

based off the information needed to conduct the study. Genetic diversity can be assessed 

in various ways, including both invasive and non-invasive sampling. Non-invasive 

sampling includes collecting DNA materials from the environment such as hair, 

feathers, eggshells and fecal matter. This provides an advantage over invasive collective 

sampling as it does not harm or disturb the animal. Invasive sampling is a traditional 

method of collecting DNA samples which involves physically extracting tissues, blood 

or saliva directly from the animal (Cronin et al. 2006). Invasive sampling provides 

higher DNA quality through direct contact with the animal. Many of these approaches 

have already been taken to analyze population structure of various different species, 

including those at risk. 

Management of natural resources within Canada has been adapted to acknowledge 

the impact on endangered and at-risk species, with a focus on woodland caribou. Across 

Canada, woodland boreal caribou are estimated to number 31,000 to 39,000 within their 

entire distribution (Callaghan et al. 2010). Based on data collected by various 

jurisdictions, a total of 57 local population ranges of woodland caribou have been 

recognized (Callaghan et al. 2010). Of these local populations, 5.3% are increasing, 

29.3% are declining, 28.1% are stable and the status of the remaining 36.8% are 

unknown (Callaghan et al. 2010). It has been predicted that the impacts of 

anthropogenic disturbance will be devastating to woodland caribou across Canada, with 
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at least 50% of all smaller populations facing extirpation in the future (Hebblewhite 

2017).  

The purpose of this study is to review the utility of molecular genetic studies to 

estimate population size and structure in boreal woodland caribou. The collection of 

fecal-DNA is an ideal solution to the predictions of caribou population trends, 

something that has not yet been conducted for an up-to-date status in the province of 

Ontario. This literature review provides a review of studies that aim to estimate 

population size or trends, with a focus on identifying current methodological best-

practices and make recommendations for future studies.  
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METHODS AND MATERIALS 
 

This review will focus on the current understanding of caribou populations based on 

genetic data in Canadian jurisdictions and the best practice methodology for collecting 

fecal sample DNA. For this literature review, I will be using reliable academic sources 

and government reports to complete my research. To ensure accurate information and a 

thorough review, peer-reviewed journals from Canada and the world were examined. 

Key words such as non-invasive genetic sampling, woodland caribou population trends, 

fecal matter DNA, DNA genotyping were entered into the Google Scholar search 

engine.  
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LITERATURE REVIEW 
 
TAXONOMY AND DESIGNATABLE UNITS 
 
 Caribou (Rangifer tarandus caribou) are medium sized mammals that belong to 

the deer (Cervidae) family. They are known for their characteristic antlers that grow on 

both male and female individuals; however, some female individuals may have only one 

antler, or in some cases lack them altogether (Cumming 1992, COSEWIC 2019). The 

antlers of the Caribou (Boreal Population) are characterized by their flatness and 

complexity (COSEWIC 2019). In comparison to other common Canadian large 

mammals, they are slightly larger in size than white-tailed deer (Odocoileus 

virginianus), but smaller than elk (Cervus elaphus) and moose (Alces alces) (Banfield 

1974). This species requires special attention in Ontario as it constitutes as the only 

Indigenous cervid species north of Lake Superior (Cumming and Beange 1993). 

There are multiple subpopulations of caribou found across Canada, including the 

Atlantic-Gaspesie (endangered), Barren-ground (threatened), Boreal (threatened), 

Central Mountain (endangered), Dolphin and Union (endangered), Eastern Migratory 

(endangered), Newfoundland (special concern), Northern Mountain (special concern), 

Southern Mountain (endangered), Torngat Mountains (endangered) and various Peary 

subpopulations (non-active status) (COSEWIC 2019). Forest-dwelling caribou are 

subdivided into five different woodland caribou populations in Canada. This review will 

focus on woodland caribou and its sub-populations, specifically the boreal population, 

which is currently listed as threatened in Ontario. Across Canada, 28 of 57 populations 

of boreal woodland caribou (Rangifer tarandus caribou) are declining (Hebblewhite 

2017).  
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Figure 1. The distribution of Woodland Caribou, Boreal population in Canada displayed 
 on a map (Government of Canada 2012).  
 
THREATS TO POPULATION PERSISTENCE 

Woodland caribou serve as an important aspect to biodiversity in the boreal 

forest. This species acts as an umbrella species, in which they occupy a narrow and 

specialized niche, occurring at low densities in large patches of old growth 

(Hebblewhite 2017).  

Due to their specialized niche and the constant pressure of human disturbance on 

the boreal forest, it has been accepted that managing for woodland caribou has presented 

various challenges (Sleep 2007). Challenges are faced through climate change, 

predators, fire, parasites and hunting, and forestry (Thomas and Gray 2002). In the 

winter, the species can be found in high occupancy, deep in the boreal forest, whereas in 

spring and summer boreal caribou migrate short distances to calving areas (Sleep 2007).  
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 Through an increase in anthropogenic changes to the environment, an indirect 

consequence of impacting the predator-prey balance within the woodland caribou range 

has driven the grey wolf (Canis lupus) to increase (St-Pierre et al. 2021). In a study by 

Dyer et al. (2001) the impacts of human disturbance on caribou were analyzed. It was 

found that anthropogenic disturbance such as roads and development had a negative 

impact on animals in the area (Dyer et al. 2001). Vehicular traffic and road building 

created major disturbance for caribou and allowed for higher predation rates (Dyer et al. 

2001).  Road building and vehicular traffic are common disturbances in northwestern 

Ontario where boreal woodland caribou take up permanent residence. The impacts of 

this disturbance are yet to be studied in the boreal population. Based on the scientific 

literature, genetic data has been used to determine what is known about woodland 

caribou in Ontario and across Canada.  

APPROACHES TO POPULATION MONITORING OF WILDLIFE SPECIES  
 
 Measuring the population density of moving wildlife can be difficult and 

requires a large amount of time and resources (Witmer 2005). There are various factors 

to consider including budget, species and experience of the individuals performing the 

monitoring. Wildlife monitoring is applied in science and management for two main 

purposes (Pollock et al. 2002). Monitoring provides an estimation as to the current 

population trends, but also provides an insight as to how the population will react to 

future changes. Through monitoring, population trends and estimates can be obtained 

and applied through management to ensure successful methods are being applied to 

conserve wildlife.  
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 Population size monitoring requires repeated sampling of variables to obtain 

accurate estimates (Block et al. 2001). With the challenge of working over large spatial 

scales, many different techniques have been tested to produce good quality estimates, 

and accurate population numbers. In a long-term study looking at the population of gray 

wolves (Canis lupus Linnaeus), a collection of scat and hair samples were collected for 

genetic analysis (Stansbury et al. 2014). Through this data, an estimated population size 

was produced with a single-session population estimator using two different recapture-

coding methods (Stansbury et al. 2014). This estimate was then compared to population 

estimates produced through telemetry data. The results produced considerable variability 

in 95% confidence intervals between the two estimates (Stansbury et al. 2014). This 

study highlights the need for further development of a consistent population estimation 

method to be used across large spatial landscapes.  

 Monitoring programs are heavily influenced by the cost of methodology and 

time needed to execute the study. In a study by Phoebus et al. (2020), a low-cost, low-

effort scat sampling methodology was tested against grid-based DNA hair-snag 

sampling for grizzly bears (Ursus arctos horribilis). It was found that there was a much 

higher success rate of identifying individuals from the hair samples when compared to 

the numbers estimated from the scat collection due to the amount and quality DNA 

extracted from the samples. This is an example of how budgeting plays a major role in 

the development of an accurate population monitoring model.  

 The estimation of population census size requires survey work, data collection, 

and further analysis through a matrix to conclude a final number (Besbeas et al. 2002). 

A number of different survey approaches have been used in population biology studies 
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and are generally determined by the time frame and resources available (Takashina et al. 

2018). The chosen survey approach represents a trade-off between data accuracy, time 

and money (Takashina et al. 2018). Due to this trade-off, the sampling method, choice 

of scale, and data availability need to be carefully decided (Takashina et al. 2018). The 

resultant data must be accurate enough to be able to detect ecological change, especially 

when it comes to endangered species (Lindenmayer and Likens 2009).   

Telemetry 

Telemetry is a conventional technique in which radio-collared animals are 

tracked from the ground or aircraft (Curatolo 1986). Radio collars require trapping of 

the animal and attachment of the collar, which can be costly and requires experienced 

technicians (Kolenosky and Johnston 2015). The use of radio collars has been a 

common method for tracking wildlife migration patterns and daily movements (Curatolo 

1986). Multiple studies have taken place using radio collars to track caribou, timber 

wolves, fruit-bats, whitetailed deer, and water voles (Leuze 1979, Tester et al. 1964, 

Spencer et al. 1991, Rasiulis et al. 2014). The use of collars is effective to monitor 

population dynamics but has consequences and negative impacts to the animal it is 

being used for. The literature suggests the need for a less impactive alternative to 

wildlife population monitoring.  When working with species at risk, it is crucial to have 

the least amount of impact and stress on the animal.  

Aerial Surveys 

To estimate the population size of large terrestrial mammals, it has been 

common to use aerial surveys as the primary method (Caughley 1977, Gasaway et al. 

1985). This survey methodology has been used all over the world for various types of 
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wildlife, such as elephants, pronghorns, elk, and caribou (Vermeulen et al. 2013, 

Firchow et al. 1990, Svancara et al. 2002, Carr et al. 2010). Within Pukaska National 

Park, an aerial survey methodology was used to estimate the current population trend of 

woodland caribou (Patterson et al. 2014). The results showed a gradual decline of 3.7% 

per year since 1974 (Patterson et al. 2014). Aerial surveys are typically flown out of a 

helicopter or fixed wing-aircraft, with an experienced crew of observers on board, 

documenting animal tracks and sign along transect flights (Patterson et al. 2014). To 

save costs on operation, the use of unmanned aircraft systems (UAS) is being developed 

(Vermeulen et al. 2013). 

MARK-RECAPTURE USING GENETICS  
 

Genetic analysis is used as a tool for determining information about species 

dynamics and populations. Using genetic mark-recapture data has proven effective for 

understanding smaller population dynamics in terms of size and trends (Miller and 

Waits 2005).   

Studies that have introduced the use of genetic analysis into traditional mark-

recapture models are becoming more popular as the benefits from these studies are 

becoming more evident (Miller and Waits 2005).  This proposes benefits to 

distinguishing individuals within small, rare populations such as the woodland caribou. 

Some techniques and software used in various literature could be applied to future 

caribou research. The estimating software Capwire, was used by Miller and Waits 

(2005) in a study looking at different biological mark-recapture population datasets of 

European badgers (Meles meles), red wolves (Canis rufus), forest elephants (Loxodonta 

cyclotis) and northern hairy-nosed wombats (Lasiorhinus krefftii). This software’s intent 
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is to develop a method for estimating population size when the data may contain 

multiple observations of an individual within a session (Miller and Waits 2005). This 

software has potential to expand current knowledge of woodland caribou in Ontario.  

 The need for accurate genotyping is extremely important when collecting genetic 

data to use in capture-recapture analysis (Hettinga et al. 2012). The recent study done by 

Hettinga et al. (2012) executes the use of genetic data and from fecal matter DNA and 

capture-recapture models to estimate the population size of the North Interlake 

woodland caribou population.  

NON-INVASIVE GENETIC SAMPLING 
 

To obtain quality DNA, it is critical to collect adequate samples. Traditional 

sampling techniques are invasive to the animal, usually disrupting natural behaviours 

and taking tissues from the body. However, it is possible to obtain quality DNA from 

samples without disrupting or handling animals. Non-invasive techniques include 

extracting DNA from hair, feces, urine, feathers, shed skin, saliva and eggshells (Waits 

and Paetkau 2005).  

Information extracted from DNA is important to the conservation of species and 

can be applied to behavior ecology (Taberlet and Luikart 1999). Non-invasive genetic 

sampling allows for the study of large mammals without disturbance; and includes not 

having to catch, injure, risk individual safety, or observe the wildlife (Taberlet and 

Luikart 1999). Non-invasive genetic sampling has become common practice for the 

monitoring of black bear (Ursus americanus) populations in Canada (Woods et al. 

1999). Using barbed wire to collect samples of hair at baiting stations has proven 

effective for determining sex and population estimates (Woods et al. 1999).   
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There are limitations to non-invasive genetic sampling when it comes to genetic 

analyses critical for aiding conservation efforts (Ball 2010). An article written by Ball 

(2010) highlights some of the challenges that conservation efforts face with the 

limitations of non-invasive genetic sampling. Currently there is no method to 

determining the age of individuals through non-invasive genetic sampling. This is an 

attribute that would be beneficial to conservation efforts in estimating population trends 

of caribou. This paper suggests an alternative to using genetic analyses and suggests 

implementing the method of determining age class based on fecal pellet size. Applying 

this methodology to determine age classes of the caribou population could guide genetic 

analysis where known age is needed. A study by Flasko et al. (2017), obtained similar 

results 

HANDLING AND STORAGE OF FECAL MATTER 
 
 Various techniques have been used in the handling and collection of fecal matter 

for genetic analysis (Lindquist and Wictum 2015, Gillet et al. 2008, Murphy et al. 

2002). To ensure maximum quality of DNA, and to reduce the possibility of genotypic 

error, it is critical to employ sample handling standards. Throughout research studies, 

there has been a tendency to use one type of storage method, as opposed to executing 

multiple different techniques to reduce degradation. Very few studies have compared the 

effectiveness of different handling techniques of various fecal matter (Murphy et al. 

2002). There are multiple factors to consider when deciding how to handle and store 

fecal samples. Variables such as seasonal timing of the collection, wild versus captive 

animals, the environment in which the sample will be collected, and the time available 

to process and transport. Throughout the literature, there have been a multitude of 
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techniques including different types of drying and lyophilisation, freezing and the use of 

solutions. These techniques have been used for various species from aquatic marine 

mammals such as whales to domesticated canines (Lindquist and Wictum 2015).  

Drying and Lyophilisation 

Drying is a common method of preserving fecal matter. In a study looking at the 

comparison of breed, age and diet for canines to develop a yield of canine DNA, the 

drying method was used (Lindquist and Wictum 2015). Samples were collected from 

each canine, and a portion of samples were dried out for a total of 24 hours for 

immediate extraction. Due to the risk of exposure of the feces immediately after 

defecation to mold growth, environmental conditions and active bacteria, beginning the 

drying process as soon as possible is critical to prevent degradation. DNA was extracted 

from the outer surface of the dried stool, and the results produced sufficient quality and 

quantity of DNA. Drying is an ideal approach for land mammals, where stool can easily 

be collected, but poses a challenge for marine collection. In a similar study looking at 

the DNA of highly endangered North Atlantic right whales, lyophilisation was used as 

the storage method for the whale fecal matter to remove any hydration from being 

collected in a marine environment (Gillet et al. 2008). Fecal matter was freeze-dried at -

20 degrees Celsius for a total of seven days. Lyophilisation is carried out in extremely 

low temperature, allowing for the critical characteristics of the product (stool) to be 

preserved (Baressi et al. 2018). This technique is common practice in pharmaceuticals 

and provides longer stability and shelf life of the feces. The freezing temperature of -20 

degrees Celsius is the baseline for most research, as a similar study extracting DNA 

from bottlenose dolphins by Parsons (2005), used the same approach.  
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Freezing 

In a local study done in Manitoba, Canada, an alternative approach for storage 

was taken as conditions allowed for easy cold storage of samples. The cold climate 

allowed for the samples to be stored with no risk of exposure to contaminants. Hettinga 

et al. (2012) used cold storage when collecting fecal samples for the North Interlake 

woodland caribou population (Hettinga et al. 2012). Samples were collected using 

disposable wooden sticks and placed in sterile bags (Hettinga et al. 2012). The sterile 

bags were then placed in a cooler on board the aircraft that was used to access the 

remote locations of the population (Hettinga et al. 2012).  Once the samples were 

delivered to the lab, they were frozen at -20⁰C until thawed for extraction (Hettinga et 

al. 2012).  

Similar techniques were used in Klϋtsch et al. (2012) examining mitochondrial 

DNA data to determine postglacial expansion from multiple glacial refugia in caribou 

(Klϋtsch et al. 2012). Fecal matter was collected and bagged from caribou cratering 

sites. These cratering sites were determined by flying aerial transects in winter (Klϋtsch 

et al. 2012). Samples were kept frozen until processed for DNA extraction in the lab 

(Klϋtsch et al. 2012). Exact temperatures were not mentioned for reference but can be 

assumed to be similar to Hettinga et al. (2012). The cold storage method allows for less 

complications in sample contamination as heat does not pose a threat for the rapid 

growth of microbes, as well as less materials are required allowing for decreases in 

costing. This method is ideal in cold climate environments, such as the boreal forest 

where different populations of caribou are found.  
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When determining effectiveness and practicality in the field, the use of silica 

pouches have been preferred over any other type of storage (Murphy et al. 2002). 

Determining how to create the most cost-effective handling procedure, silica pouches 

were used in the collection of brown bear fecal matter. This produced the lowest quality 

DNA when compared to other storage methods such as using solutions. It is 

recommended that silica not be used during wet seasons as the drying power of the 

pouches is not strong enough to prevent mold from occurring. Murphy et al. (2002) also 

found that the use of resealable plastic bags was effective for storing silica and the 

sample, and no noticeable leaks were noted from the bags.  

Solutions  

Another technique of preserving the quality of feces involves using different types of 

solutions, such as ethanol or DET (DMSO/EDTA/Tris). In a study looking at the 

amplifiability of mitochondrial, microsatellite and amelogenin DNA loci of red brocket 

deer (Mazama americana), fecal samples were stored in 100% ethanol solution in 50 ml 

centrifuge tubes with screw caps (Oliveira and Duarte 2013). The amplification of DNA 

was successful, but it was found that the freshness of the sample impacted the quality of 

the DNA, suggesting that preservation begins immediately when stored in ethanol, 

making timing of sample collection a major factor in DNA quality. Ethanol is 

commonly used in biological specimen preservation, as it dehydrates tissue and slows 

the degradation process (Vesper et al. 2017). In a study examining the comparison of 

bone mechanical properties from mice, a sample preserved in ethanol was analyzed 

against a control sample preserved through wrapping in gauze soaked in phosphate 

buffered saline and frozen for seven days. The results showed that the bone preserved in 
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ethanol produced significant differences in stiffness at the structural and tissue level, 

leading to decreased elastic deformation and elastic strain. Based off this literature, 

storing in ethanol solution would be ideal for preventing degradation of fecal samples 

for DNA extraction. 

Solutions have been used as a preservation method across the globe. In a study done 

by Bhagavatula and Singh (2006) looking at Bengal tigers (Panthera tigris tigrsi), in 

India, fecal samples were stored in ethanol and silica (Bhagavatula and Singh 2006). 

Samples were broken into two portions, each of which were stored separately in ethanol 

(90%) and silica pouches (Bhagavatula and Singh 2006). The solution and samples were 

then encapsulated into 50 ml screw-cap tubes and kept at room temperature during 

transportation (Bhagavatula and Singh 2006). DNA was extracted from the samples in 

lab within a week of collection (Bhagavatula and Singh 2006). 

Frantzen et al. (1998) also tested the use of ethanol for preservation of DNA. The 

goal of this study was to determine if the quality of DNA was dependent on the 

preservation method used. This study should be used as a fundamental basis for deciding 

upon which method is best suited for the type of DNA extraction that is being done. 

Frantzen et al. (1998) tested two different uses of solutions for the preservation of 

mitochondrial DNA. Fecal samples collected from free-ranging baboons (Papio 

cynocephalus ursinus) were stored in two different solutions, 70% ethanol and 

DMSO/EDTA/Tris/salt solution (DETs). It was found that samples stored in DETs 

produced the best results for amplification, compared to the ethanol solution.  

This finding was contrasted in a study by Murphy et al. (2002) where the comparison of 

handling methods showed that samples stored in ethanol for up to one week amplified as 



 28 

well as samples in stored in DETs, but that ethanol better-preserved DNA quality over 

longer time periods (Murphy et al. 2002). In a study by Srbek-Araujo et al. (2018), the 

amplification rates of DNA from samples stored in DETs was compared against the 

DNA from samples stored in silica. It was found that overall, the DETs provided a 

higher amplification success rate of 94% compared to silica at an 81% amplification 

success rate.  

DNA EXTRACTION METHODS 

 Along with adequate storage and handling of samples, successful DNA 

extraction is necessary for producing quality DNA (Waits and Paetkau 2005). Often, 

fecal DNA extracts contain high concentrations of PCR inhibitors, and extraction 

methods are designed to minimize inhibitors while maximizing DNA yield (Waits and 

Paetkau 2005). There are numerous different commercial kits available for fecal DNA 

extraction, and various brands have been used successfully within the recent literature. 

Some kits are compatible with other biological sample types such as saliva, blood and 

tissue. Major brands on the market include Qiagen and PureLink, which retail kits 

specifically for extracting DNA from fecal matter.  

Fecal DNA Extraction Kits 

In a study done by Srbek-Araujo et al. (2018), a QIAamp DNA Stool Mini Kit 

was used to extract DNA from Panthera onca fecal matter. Qiagen is an international 

company known in various parts of the world for producing molecular testing products 

(Qiagen 2020). Qiagen offers a range of testing kits for DNA and RNA testing, for 

various types of samples such as blood, cell tissue, soils, and stool. The QIAmp DNA 

Stool Mini Kit was also used in a similar study extracting DNA from Puma concolor 
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feces, in which the results showed a successful extraction rate of 80% (Miotto et al. 

2007). This kit is sold at retail price of approximately $285 US and is capable of 50 

DNA preps (Qiagen 2020). The QIAmp DNA Stool Mini Kit is the most commonly 

employed fecal DNA extraction technique to date (Waits and Paetkau 2005). 

Another popular brand for DNA extraction kits is PureLink (Uda-Shimoda et al. 

2014). PureLink offers DNA Purification kits, retailing anywhere between $200-$1000, 

depending on the number of samples to be processed (Thermofisher 2020).  One study 

by Uda-Shimoda et al. (2014), conducting DNA extraction from cysts found in human 

stool concluded that the PureLink purification kit outperformed the Qiagen kit 

mentioned earlier. This study used the PureLink PCR purification kit and found that it 

produced a larger amount of DNA, executed the extraction in a shorter amount of time, 

and had a lower cost for a higher amount of sampling (Uda-Shimoda et al. 2014).  

DNA PROCESSING  

 The extraction of DNA is a critical component to any genetic analysis, especially 

when using non-invasive techniques involving very limited quantity. Two types of DNA 

can be extracted from animals, mitochondrial deoxyribonucleic acid (mtDNA) and 

nuclear deoxyribonucleic acid (nDNA). Through the use of polymerase chain reactions 

(PCR), the amplification of DNA can be done from minute amounts of fresh, alcohol-

preserved, or dried tissues (Bacon et al. 1999).  PCR is ideal for small samples because 

it replicates only the DNA region of interest (Frankham et al. 2013). The process 

involves extracting the DNA and further purifying it from the biological sample, such as 

fecal matter. The extracted DNA is then mixed with reagents which include 

oligonucleotide primers, DNA polymerase, magnesium, DNA nucleotides and PCR 
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buffer. Three major components go into the PCR process, denaturing, annealing and 

extension (Garibyan and Avashia 2013). Denaturing involves heating the reagent 

solution above the melting point, allowing for two strands of DNA to separate (Garibyan 

and Avashia 2013). Annealing is the next part of the process when the temperature is 

lowered to allow specific primers to bind to the target DNA (Garibyan and Avashia 

2013). Finally, the temperature is raised again, allowing for the DNA polymerase to 

extend the primers by adding nucleotides to the developing DNA strand (Garibyan and 

Avashia 2013). 

Genotyping 

 Failures and potential error are always a possibility in any experiment. In genetic 

analysis there are various steps in which potential errors can occur. Poor DNA quality 

produces two main types of genetic error, allelic dropout and false alleles (Adams and 

Waits 2007). Genotypic error occurs when the observed genotype of an individual does 

not correspond to the true genotype (Pompanon et al. 2005). A study focused on the 

DNA extraction of Bonobo (Pan paniscus) suggests that samples found homozygous at 

one or more loci should be genotyped repeatedly for verification (Gerloff et al. 1995). In 

this study, the authors found it was difficult to produce high quality DNA from Pan 

paniscus feces. They highlighted the limitations to handling limited amounts of 

extracted DNA and found that a second extraction was required a majority of the time to 

produce positive amplifications (Gerloff et al. 1995).  
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RESULTS 
 
POPULATION SIZE AND TRENDS  

 A comprehensive review of the literature reviewed only two studies that have 

used genetic data to estimate population size and trends in woodland caribou (Carr et al. 

2010, Hettinga et al. 2012). Genetic sampling can be used to provide population 

estimates with high confidence (Carr et al. 2010). This was demonstrated and tested on a 

small, closed area in the Slate Island Provincial Park (Figure 4) where the population 

was estimated from a collection of fecal matter DNA. Using a period of two different 

sample collections in 2007 and 2009, the population declined within 2 years (Carr et al. 

2010). In 2007 a total of 49 unique individual genotypes were identified, resulting in a 

total population estimate of 151 individuals (Carr et al. 2010). In 2009 a total of 57 

unique individual genotypes were identified resulting in an estimate of 99 individuals 

(Carr et al. 2010). 

GENETIC DIVERSITY AND POPULATION STRUCTURE  

With the increase in anthropogenic disturbance, habitat is becoming fragmented 

across large landscapes, causing a distribution change in terrestrial animals (Thompson 

et al. 2019). This distribution is generally associated with a decrease in genetic diversity 

(Thompson et al. 2019). The trend of decreasing diversity was found through a study 

done by analyzing the boreal population of caribou in Manitoba and Ontario (Figure 2) 

(Thompson et al. 2019).  Using genetic data from more than 1000 caribou and nine 

microsatellite loci, patterns of genetic erosion were revealed suggesting a range 

retraction of the boreal population (Thompson et al. 2019). Further examining the boreal 

population in Saskatchewan and Manitoba have shown similar results, suggesting a 
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noticeable separation between the northern and southern areas (Ball et al. 2010). The use 

of genetics in this region shows a decrease in genetic diversity. 

 

Figure 2. A map of the study area showing the sampling areas of the boreal woodland 
 caribou (Thompson et al. 2019). 
 

 In a study done by Klϋtch et al. (2012) the use of genetic analysis of 

mitochondrial DNA from 1600 individuals, was able to estimate population structure of 

woodland caribou in Canada. The results were interpreted to determine if glacial refugia 

contributed to the phylogeographical structure in this species of caribou (Klϋtch et al. 

2012). It was determined that woodland caribou most likely originated from a distinct 

area south of the Laurentide ice sheet and that the other four subspecies originated in 

northern refugia. These results can be applied to the future conservation of caribou and 
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planning for adaptation to climate change by modelling historical movement and 

interpreting future climate conditions in Canada (Klϋtch et al. 2012).  

In Manitoba, the impact of major highways, hydro transmission lines, and 

smaller roads have reduced the intermingling of smaller woodland populations, such as 

the Upper and Lower North Interlake groups (Hettinga et al. 2012). Population genetic 

structure analysis revealed a significant level of fragmentation between these two 

populations and neighbouring populations within the area (Hettinga et al. 2012). Results 

of population trending models showed a 0.90 decline of the North Interlake population 

(Figure 3) from 2005-2009 (Hettinga et al. 2012).  
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Figure 3. A diagram showing the North Interlake population sampling sights and  
 flight lines used (Hettinga et al. 2012). 
 
 Another study in Ontario was done using the analysis of fecal matter was done to 

analyze the population of woodland caribou within the Lake Superior Coastal Range and 

to determine the gene flow (Figure 5) between individuals (Drake et al. 2018). Samples 

were collected between 2005-2015 in Pukaskwa National Park, and long-term 

population decline was observed for the population despite the genetic connectivity 

within the range (Drake et al. 2018). Genetic analysis was used to identify areas of 

movement and suggestions for habitat improvement (Drake et al. 2018).  

 

Figure 4. A map in the Slate Island Provincial Park marking the fecal matter collection 
 sites and transects flown (Carr et al. 2010). 
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Figure 5. A visual representation of the genetic variation of clusters within the Lake 
 Superior Coastal Range. The dark large circles represent the greatest genetic 
 variation (Drake et al. 2018).  
 

A study done by Cronin et al. (2005), the gene flow of 11 herds of caribou across 

Canada were analyzed through genetic data. Three different ranges of caribou were 

examined, the Alaskan barren ground caribou, the Canadian barren ground caribou and 

the woodland caribou (Cronin et al. 2005). Mitochondrial DNA (mtDNA) was extracted 

from tissues, and genotypes at 18 microsatellites loci were determined with PCR 

(Cronin et al. 2005). The genetic results revealed a high level of differentiation of 

mtDNA genotype and microsatellite allele frequencies, reflecting a limited gene flow 

due to geographic barriers (Cronin et al. 2005). Similar results have been found in other 
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studies where highways, roads and large bodies of water restrict the dispersal of boreal 

caribou (Ball et al. 2010, Fall et al. 2007, Priadka 2018).  

The delineation of management units is dependent upon the genetic information 

available, specifically genetic diversity (Yannic et al. 2015). In a study to determine 

distinguished management units, the collection of genetic information was done for 

populations of woodland caribou from eastern Canada (Quebec and Labrador) (Yannic 

et al. 2015). The results showed a difference between the genetically based designation 

of management units and the presently defined ecological designation of management 

units.  

A study done examining the population of the Atlantic-Gaspesie caribou 

compared data that suggested the dispersal of three separate subgroups from GPS 

telemetry to the genetic diversity of the population (Pelletier et al. 2019). The results of 

this study showed genetic substructure among groups based on their geographical 

location (Pelletier et al. 2019). It was also determined that the effective population size 

has decreased by 53% over last 15 years (Pelletier et al. 2019).  

Maintaining genetic connectivity is essential for the conservation of woodland 

caribou (Priadka 2018). Using two different clustering methods (nonspatial and spatial) 

and the relative contribution of isolation by distance and isolation by resistance, the 

population genetic structure of boreal caribou across western Canada (clusters in 

Saskatchewan and Manitoba) was analysed (Priadka 2018). This study provides genetic 

tools to assess fine-scale spatial pattern of genetic variation, partition drivers of genetic 

variation and suggestions based on the use of these tools to improve management for 

maintaining genetic connectivity (Priadka 2018). The results of this study showed that 
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the significance of isolation by distance across the study area and within each genetic 

cluster supports the fact that boreal caribou maintain a natural clinal pattern of genetic 

structure (Priadka 2018). There were areas of discontinuity found across the study area, 

which could be led to the anthropogenic disturbance of roads in the area.  

The Journal of Wildlife Management, Conservation Genetics, Rangifer, The 

Wildlife Bulletin, and Molecular Ecology resulted in the highest citations for this review 

(Table 1). These citations will also include information from project applications, 

committee reports, and company websites. Most resources were found using the 

Lakehead University Database, which has open access articles for enrolled students.  

Table 1. A compiled list of cited academic journals and the number of referenced 
 articles used within this literature review.  

 

 

 

 

 

 

 

 

 

Name of Journal Number of articles
The Journal of Wildlife 

Management 11
Conservation genetics 5

Rangifer 3
The Wildlife Bulletin 3
Molecular Ecology 3

PLos ONE 3
All other Journals <2
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DISCUSSION 
 
 Utilizing genetic tools to monitor woodland caribou population trends and 

population structure presents advancements in the current knowledge of caribou 

populations, especially in woodland caribou. Currently, there is a large unknown 

surrounding the population dynamics within Ontario, and even more so across Canada. 

Of the known populations of woodland caribou, still 36.8% of them have an unidentified 

status, leaving the effectiveness of our management strategies undisclosed (Callaghan et 

al. 2010). Protecting species as risk is important to the health of the environment and 

understanding the impacts of anthropogenic impacts on genetic diversity is essential to 

preserve species and ecosystem diversity.  

 Of the found literature, studies suggest that the overall population of woodland 

caribou in Canada is declining, mainly due to the continuous loss of genetic diversity 

(Cronin et al. 2005, Carr et al. 2010, Hettinga et al. 2012). These findings were 

determined with the use of genetic DNA analysis, similar to findings with the use of 

telemetry data. This presents an area of unclarity when it comes to range delineation and 

genetic diversity and clustering. Further advancement of genetic sampling could create a 

greater understanding of gene flow within the population.  

 The knowledge gap between what is known about woodland caribou 

substructure and range delineation could be lessened with the use of genetic tools and 

can be applied to the future of species at-risk. The importance of universal designatable 

units for the conservation of species at risk is essential when it comes to developing 

legislation for protection (Weckworth et al. 2018). Designatable units are used within 

Canada to address areas of ecological significance, and many are established for 
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woodland caribou (Weckworth et al. 2018). Finding a way to prevent overlapping of 

these units could be beneficial for the development of effective management practices. 

Incorporating the use of genetics into developing designatable units could be ideal for a 

greater understanding of woodland caribou. The use of capture-recapture non-invasive 

genetic sampling is effective in providing both population size and trend estimates 

(Fryxell et al. 2020). There is endless opportunity for further development of this 

methodology and use of its results to build a greater understanding of caribou population 

dynamics in Ontario.  

 In 2011, the Ontario Federation of Anglers and Hunters (OFAH) released a 

report on woodland caribou, recommending the use of telemetry data to provide herd-

specific estimations of occupation and utilization to designate ranges of individual 

populations (Reid and Demille 2011). Going forward, using genetic tools may present a 

more feasible solution to understand subpopulations and substructure. It has been led to 

believe that the efforts to develop a strong conservation strategy for woodland caribou in 

Ontario have fallen short due to a lack of resources and validated diagnostic tools being 

used in the field (Serrouya et al. 2017). Due to the large amounts of helicopter time 

required, genetic sampling can be an expensive technique, however the collection of 

fecal samples can be easily added as an extra to traditional survey methods, such as 

aerial census (Carr et al. 2010). Genetic sampling can be made cost-effective when 

applied with traditional surveying and can enhance the data collected (Carr et al. 2010). 
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CONCLUSION 
 
 The use of non-invasive genetic sampling is an ideal alternative to traditional 

invasive genetic sampling of tissues when it comes to species at-risk. Understanding 

population trends and gene flow is essential to the proper management and population 

persistence of woodland caribou. Several advantages of genetic testing of fecal matter 

have been revealed, as it does not disrupt the life of the animal in any way and is 

effective in estimating population trends. The aid of genetics in understanding species 

at-risk should be further researched and applied to woodland caribou in Ontario. 
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