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ABSTRACT 

 

The ever-growing wireless technologies of today are pushing the limits of the state-of-the-art radio 

frequency (RF) components design. One special requirement which is widely needed in modern 

applications is for the RF components to be smart, compact, and agile. Performance characteristics 

such as frequency tunability, antenna pattern reconfigurability, radiation polarization diversity etc., 

are the need of the hour. Field Programmable Microwave Substrate (FPMS) is a pertinent answer 

to the challenges of the modern wireless communication standards. Given the unprecedented level 

of programmability, the FPMS has the potential to affect the RF and microwave component design 

in a similar manner as the Field Programmable Gate Array (FPGA) affected the digital domain. 

The FPMS technology is composed of small unit cells that can be actively biased to control the 

dielectric material characteristics. Using this quality of FPMS, this work focuses on the design of 

a leaky wave antenna (LWA) where the uniaxial modulation of the substrate properties allows for 

the beam steering capabilities.  

The antenna is designed to operate at 2 GHz on a Duroid 5880 material system as a proof-of-

concept. First, the FPMS unit cell is optimized to operate at the desired frequency of 2 GHz with 

the help of a full wave solver ANSYS HFSS. Once optimized, the unit cells are integrated onto 

the antenna structure to study the effects on its radiation and impedance performance. A complete 

parametric study is performed on various design parameters to obtain the optimized impedance 

and radiation performance of the antenna. The low loss nature of the substrate provides for an 

antenna gain value as high as 11 dBi with a gain variation of 2.5 dB. A continuous maximum beam 

steering of backward and forward direction i.e., ±30° is achieved from the LWA design with 
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reasonable gain values. These performance parameters of the antenna demonstrate the potential of 

the novel FPMS technology in the design of intelligent RF components. 

 

Keywords: Microstrip Antenna; Leaky Wave Antenna (LWA); Field Programmable Microwave 

Substrate (FPMS). 
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Chapter 1 

Introduction 

1.1 Motivation 

Reconfigurable antennas have been used for decades in applications such as military radars, deep 

space communication, cellular technology, and others where the connected devices move relative 

to one another [1]. For instance, in military radars, the antenna on the flying aircraft must always 

be connected to the stationary base station through a wireless link as shown in Fig. 1.1. This can 

be accomplished with the help of reconfigurable antennas. Reconfigurability in antennas can be 

attributed to their impedance as well as radiation performance [2], [3].  

 

   

(a) (b) (c) 

Fig. 1. 1: Application of reconfigurable antenna (a) Military radar (b) Fighter aircraft (c) Military 

base station [2] 

 

In terms of radiation performance, a widely used property is the beam steering of antennas, also 

referred to as phased array antennas. Just like the classical applications, beam reconfigurable 



2 
 

antennas find their application in many of the modern wireless systems. However, these modern 

applications have their own set of demands. These include compact size, agility, reconfigurability, 

low-cost and last but not the least, high efficiency. A couple of examples of these applications: on-

the-go satellite communication and connected vehicles are shown in Fig. 1.2 [5]. 

 

 

  

(a) (b) 

Fig. 1. 2: Modern Application (a) On-the-go Satellite Communication (b) Automotive Radars [5] 

 

On-the-go satellite communication is demonstrated in Fig. 1.2(a), where the satellite and the 

connected vehicle (car) are moving relative to one another. Because of the relative motion between 

the satellite and the car, the system requires reconfigurable antennas that can establish a continuous 

connection between the two. Similarly, the emergence of self-driven cars as a concept, has 

increased the importance of reconfigurable antenna’s systems manifolds. In such an application, 

the car is equipped with automotive radars/sensors all around it in order to detect any obstruction, 

such as a person, animal, or other vehicles approaching it to provide collision mitigation. 
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Eventually, the goal is to make sure that the car can not only detect obstacles around it, but it can 

at the same time communicate with the infrastructure so as to materialize the dream of self-driven 

cars where the communication link acts as the driver of the vehicle. 

All the applications outlined above (including new and old) require smart antennas for their 

practical realization. For wireless communication, there is a variety of antennas available, each of 

which is more or less effective for a specific application. Since single antenna characteristics are 

fixed, system performance is restricted in the event of a change in scenario or in a system that runs 

multiple applications at the same time. This can be strengthened by using several antennas while 

sacrificing device size, or by having the antenna reconfigurable so that its features can be adjusted 

as the system requirements change. Hence, a single reconfigurable antenna can replace multiple 

conventional/classical antennas. The most popular types of reconfigurable antennas are frequency 

reconfigurable and radiation pattern reconfigurable antennas. 

Frequency tunable antennas are designed to vary their center frequency as per the requirements 

[3], [7]. These are useful in situations where several communications systems overlap in one 

solution. A good example of such an application is cell-phone communication, where standards 

such as Wi-Fi, GPS, Cellular Communication are all integrated into a single unit.  

Similarly, radiation pattern reconfigurability can be achieved by an intentional modification of the 

antenna radiation’s spherical distribution. The most advanced and well-known application in this 

case is beam steering, which includes steering the trajectory of the maximum radiation (main lobe) 

to optimised antenna gain in a particular direction. The direction of this maximum gain can be 

altered as per the user requirement. Among others, one of the most commonly used beam steerable 

antennas is known as Leaky Wave Antennas (LWAs) [6]. LWAs belong to a special class of 

antennas known as traveling wave antenna where the beam of the antenna is steered by varying 
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the frequency of the applied radio frequency (RF) signal [7]. Some of the practical applications 

where change in frequency is an advantageous are Photonic Radar System [8] and Multimode 

Adaptable Microwave Radar Sensor [9]. LWAs enable beam steering in photonic radar systems 

by estimating the direction of arrival of radar echoes for detection and localization of multiple 

objects by using a frequency modulated continuous wave signal. In the case of a multimode 

microwave radar system, the LWAs were used in military vehicles to identify and track target 

(threatening missiles) while generating signals to determine the appropriate counter-measure 

reaction. 

However, many of the wireless applications, such as on-the-move satellite systems, self-driven 

cars etc., would not want to change the center frequency of the antenna while the antenna’s beam 

is steered. Therefore, the focus of this thesis is on the design of a fixed frequency beam steerable 

LWA using a novel technology known as ‘Field Programmable Microwave Substrate (FPMS)’ 

[36]. It is for the first time, that the FPMS is explored as a viable option for the design and 

implementation of smart antenna systems. FPMS is composed of individual unit cells that can 

locally control the dielectric properties of a medium. This makes it an excellent candidate for 

design of LWAs which rely on the progressive properties of the substrate to achieve the desired 

radiation characteristics. The simulated results of the LWA design readily validates the use of the 

FPMS technology in the design of reconfigurable antenna elements.  

1.2 Thesis Objectives 

The goals of this thesis can be summarized as follows: 

➢ To study and optimize the FPMS unit cell design on a low dielectric constant substrate 

such as Duroid 5880 (𝑟  =  2.2) to ensure the realization of an efficient antenna element. 
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➢ Uniaxial integration of the FPMS unit cells in a microstrip line based leaky wave antenna 

(MLWA) to demonstrate its beam steering in one plane. 

➢ To show continuous beam steering on either side of the boresight radiation, i.e., forward 

and backward direction while maintaining radiation performance. 

➢  As a proof-of-concept, the thesis is to focus on 2 GHz (within S-Band) for the antenna 

realization (targeting satellite communication), however, the concept can be easily 

translated to higher frequencies to cater for other wireless applications.  

1.3 Thesis Contribution 

Following contributions can be outlined from the proposed thesis research: 

➢ This work presents the design of the first-ever leaky wave antenna based on FPMS 

technology for radiation pattern reconfigurability. 

➢ A beam steering range of 30 is achieved from the full-wave simulations carried out in an 

electromagnetic (EM) simulator (Ansys High Frequency Structure Simulator, HFSS). 

➢ The antenna provides a maximum gain of 11 dBi with a gain variation of 2.5 dB when the 

main-beam is steered to a maximum of 30 i.e., on either side of boresight. 

➢ The antenna maintains its impedance performance to match accordingly to the reference of 

IEEE journal papers, i.e., reflection coefficient ||  − 10 dB while reconfiguring its 

radiation pattern. 

1.4 Thesis Organization 

The thesis organization can be outlined as: 

Chapter 2 provides an overview of the theory behind the leaky wave antennas (LWA). It covers 

the basic working principles, and the physics behind its operation. This is followed by an extensive 
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literature review on various LWAs to summarize the state-of-the-art that currently exists in this 

domain. 

Chapter 3 begins with an introduction to the FPMS technology and its unit cells that are needed to 

realize it. This is followed by a detailed discussion on the optimization of the FPMS unit cells with 

respect to the dielectric constant and the resonant frequency, which is done by varying different 

design parameters and studying the impedance results. 

The main contribution of this thesis, i.e., FPMS based LWA, is explained in Chapter 4. At first, 

the chosen antenna design is optimized to work at 2 GHz with the help of a full wave solver 

ANSYS HFSS. The integration of the optimized FPMS unit cells along one of the axis of the 

antenna is then carried out. Followed by a complete parametric study is performed on various 

design parameters to obtain the best possible impedance and radiation performance of the antenna. 

Finally, the thesis concludes by listing the contributions of this work and highlighting some of the 

future steps that are currently undertaken to validate the proposed design in measurements. 

Furthermore, other research directions on the antenna designs using FPMS technology are also 

explained briefly to hint at possible future initiatives. 
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Chapter 2 

 

Background and Literature Review 

As discussed in Chapter 1, the focus of the thesis is on the design of beam-steerable/reconfigurable 

antennas. For this purpose, leaky wave antenna has been chosen as the preferred candidate. Thus, 

it is pertinent to discuss some fundamentals of the leaky wave antenna and to present some designs 

that already exist in literature before dwelling into the actual antenna design. 

 

2.1 Introduction 

Leaky-wave antennas (LWA) can be broadly classified in the category of traveling wave antennas. 

LWA uses a guiding structure that supports wave propagation along the length, with the wave 

radiating or “leaking” continuously along the structure. This kind of performance is achieved by 

carefully modulating the wave impedance along the antenna length. LWAs may be uniform, quasi-

uniform, or periodic depending upon the design topology. The slitted rectangular waveguide, 

developed by W. W. Hansen in 1940, is the first known LWA ever presented [6]. This antenna 

design provided a new platform to carry out research in the domain of traveling wave antennas. 

Most of the early designs of this category of antenna rely on closed waveguides, with leakage 

achieved by inserting long uniform slits or a series of closely spaced holes into the waveguides to 

allow power to radiate [10]-[16]. As suggested by Hines and Upson [6], by introducing a series of 

closely spaced holes into the waveguide structure, the antenna can be designed to radiate power 

along its length, as illustrated in Fig. 2.1. The beamwidth and directivity of the antenna can be 

controlled by the size, number and spacing between the slits. 
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Fig. 2. 1: A periodic leaky-wave antenna with a rectangular waveguide and a periodic array of 

holes in the narrow wall of the waveguide [6] 

LWAs can produce narrow beams, but the beamwidth is restricted by the structure's size. On the 

guiding structure of an LWA, the phase constant is less than the free-space wavenumber “𝑘0”. As 

a result, the leaky wave is fundamentally a radiating type of wave, radiating or "leaking" power 

continuously as it propagates on the guiding structure, hence the name of the antenna. Because of 

the leakage of power, the propagation wavenumber, 𝑘𝑧 = β −jα on the guiding structure is complex, 

consisting of both a phase constant “β” and an attenuation constant “α” (even if the structure is 

lossless). The phase constant (β) of the leaky wave controls the beam angle, while the attenuation 

constant (α) controls the beamwidth. To control the sidelobe level or the beam shape, the aperture 

distribution can be tapered. Using these fundamental design tricks, one can optimize the radiation 

and impedance performance of an LWA. 

2.2 Classification of Leaky Wave Antenna (LWA) 

LWAs can be classified into different categories, depending on the geometry and the principle of 

operation. The first distinction is between a one-dimensional (1D) leaky-wave antenna and a two-
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dimensional (2D) leaky-wave antenna. A 1D leaky-wave antenna is one where the guiding 

structure is basically one dimensional; that is, the structure supports a wave traveling in a single 

fixed direction [13]. In the case of 2D leaky-wave antenna, the guiding structure consists of a two-

dimensional surface and the leaky wave is a cylindrical leaky wave that propagates outward in the 

radial direction from the source [17], [18]. The focus of this work will be on 1D LWAs. Therefore, 

the discussion in this thesis is kept closely around this class of LWAs. 

1D LWAs can be further divided into two types: uniform (or quasi-uniform) and periodic. As per 

the name, the uniform antenna structure has a consistent pattern that is distributed along the 

antenna length [19]. Such a design allows for the wave propagation in the fast region with its wave 

number defined as, 𝑘𝑧 = β –jα. The phase constant for the fast-wave propagation should be in the 

range 0 < 𝛽 < 𝑘0. Practically, it may be difficult to realize a uniform LWA structure, therefore 

quasi-uniform LWAs are usually designed as they can be approximated as uniform LWAs [20]. In 

such a scenario, the structure is a periodic one that allows to maintain the condition on phase 

constant. Interestingly, the periodicity does not affect the radiation characteristics of the antenna 

directly. A periodic LWA can support both types of wave propagation i.e., fast and slow wave. In 

the latter case, the phase constant must meet the following condition 𝛽 > 𝑘0 [21] - [23]. By adding 

periodicity along the length of the structure, the fundamental propagating mode of the wave is 

made to radiate. Whether the wave is a fast or slow wave depends on the wavelength/frequency of 

the excitation signal. This will also determine the direction of radiation as will be discussed in the 

next section.  
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2.3 Physics of Leaky Wave Antenna (LWA) 

The analytical model of LWAs must be studied in two steps. In the first case, the wave is 

propagating as a fast wave, i.e., |𝛽| < 𝑘0. Following up on this analysis, the slow wave propagation 

i.e., |𝛽| > 𝑘0 can be studied later. For this study, a simple case of an aperture with an electric field 

in the y-direction, as shown in Fig. 2.2, is selected. The electric field 𝐸𝑦(𝑥, 𝑦) on the aperture (𝑥 =

0) in the form of a leaky wave can be expressed as, 

𝐸𝑦(0, 𝑧) = 𝐴𝑒−𝑗𝑘𝑧𝑧 (2.1) 

where complex wavenumber 𝑘𝑧 ensuring propagation in z-direction is given by 

𝑘𝑧 = 𝛽 − 𝑗𝛼 (2.2) 

also, β and α are the phase and attenuation constants respectively, while A is a coefficient 

expressing the maximum amplitude of the electric field. It is noteworthy to mention it here that ‘α’ 

in the case of a LWA defines the loss of power due to the leakage of the wave as it propagates 

along the length of the aperture. For practical purposes, this value of ‘α’ also includes the dielectric 

losses due to the substrate and the conductor losses due to the finite conductivity of the conductor. 

In many cases, the designers ignore the conductor losses as they are usually quite insignificant. 

 

Fig. 2. 2: An infinite aperture showing radiation from a leaky wave with aperture at x =0 [6] 
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The radiated field above the aperture in the air (x > 0) can be written as 

𝐸𝑦(𝑥, 𝑧) = 𝐴𝑒−𝑗𝑘𝑧𝑧𝑒−𝑗𝑘𝑥𝑥 (2.3) 

 

Importantly, the wave number in the x-direction ‘kx’ of the radiated field is dependent on the wave 

number in the z-direction of the aperture ‘kz’ as: 

𝑘𝑥 = (𝑘0
2 − (𝑘𝑧)2)1/2 (2.4) 

 

where 𝑘0 is free space wavenumber. Using 𝑘𝑥 = 𝛽𝑥 − 𝑗𝛼𝑥, squaring Eq. (2.4) and substituting 

the values of 𝑘𝑥 𝑎𝑛𝑑 𝑘𝑧 results in the following expression: 

𝛽𝛼 = −𝛽𝑥𝛼𝑥 (2.5) 

 

Assuming that the wave is a forward wave with 𝛽 > 0 and 𝛼 > 0 and is propagating in the +x -

direction away from the aperture, it follows from Eq. (2.5) that 𝛼𝑥 < 0. Strangely enough, this 

means that the wave in air is increasing exponentially, as opposed to decaying as it moves away 

from the source (aperture). This sounds unnatural and non-practical. In general, a radiating wave 

decays in amplitude as it moves away from the source. Thus, one can deduce that the fast wave in 

an LWA violates the basic principles of antenna radiation. However, this conundrum can be solved 

with help of a simple ray diagram shown in Fig. 2.3 [6].   
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Fig. 2. 3: Ray picture for a forward leaky wave [6] 

 

In Fig. 2.3, the power flow is depicted with the help of the rays that are leaving the top of the 

aperture with a phase constant, . The leaky wave mode is moving in the z-direction along the 

substrate with a wave vector, kz and phase constant, z. Using basic principles of geometry, one 

can write the following vector equation for .  

𝛃 = 𝐱̂𝛽𝑥 + 𝐳̂𝛽𝑧 = Re (𝐤) = Re(𝐱̂𝑘𝑥 + 𝐳̂𝑘𝑧) (2.6) 

If  𝜃0 is the angle of the rays with respect to z-axis then it can be given by, 

tan 𝜃0 =
𝛽𝑥

𝛽𝑧
 (2.7) 

For small value of attenuation constant α, the angle 𝜃0 can be approximated as 

cos 𝜃0 =
𝛽

𝑘0
 (2.8) 

This equation is used to measure the beam angle of the leaky wave antennas and is used by the 

designers to formulate their basic antenna structures. The separation of rays in Fig. 2.3, is dictated 

by the periodicity of the leaky wave structure and is directly responsible for the radiation intensity. 

Smaller the distance between these rays, the greater will be the strength of the radiated field and 
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vice versa. The ray diagram of Fig. 2.3 validates the mathematical formulation of Eq. (2.5) which 

states that the field level increases along the vertical line away from the aperture. Once the field 

maximizes in a particular direction, moving further higher in space will allow the intensity of field 

to decay. Thus, the physics of the LWA obeys the fundamental laws of physics. Also, it should be 

emphasized here that the total  is due to the leakage of the wave and the losses in air.  

Now, one would like to study the radiation of a wave from a 'backward wave' also known as ‘slow 

wave’ as shown in Fig. 2.4, The figure implies that the phase and group velocities are opposite. As 

the wave in the substrate travels along +z -direction, the radiated or leaked wave comes out of the 

aperture and propagates in the –z -direction. Thus, the group velocity (normally the direction of 

power flow) is assumed to be in the +z -direction, while the phase velocity is assumed to be in the 

-z -direction, and therefore β < 0 in this case (slow wave). For this case, the wave field is 

propagating in the +x -direction in air, therefore it is imperative that  𝛽𝑥 > 0 to satisfy the physical 

principle of wave propagation. This results in,  𝛼𝑥 > 0 as can be seen from Eq. (2.5). In such a 

scenario, the leaky wave fields are ‘proper’ due to the decaying exponential characteristics in the 

direction of propagation. Due to this, the slow wave is known as the proper mode for a LWA. It 

should be kept it mind that while uniform LWAs can only support fast or forward propagating 

wave, the periodic LWAs are able to support both forward (fast) and backward (slow) propagating 

waves. Due to this property, the periodic LWA is of more interest for this thesis. 
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Fig. 2. 4: Ray picture for a backward leaky wave [6] 

 

The analytical model of LWA, that has been discussed until this point considers an infinitely long 

antenna structure. However, in practice it is not possible to design an antenna whose length is 

infinite. One would like to study the antenna under finite considerations and with the feed point 

clearly identified. For this purpose, Fig. 2.5 shows the ray diagram of an LWA which is fed at z = 

0 with the electric current and electric field propagating in both directions i.e., 𝑧 > 0 and z < 0. 

For symmetricity/simplicity, one can assume that there is only forward/fast wave propagation and 

that the field propagating on either side is the same, i.e.,  

𝐸𝑦(0, 𝑧) = 𝐴𝑒−𝑗𝑘𝑧|𝑧| (2.9) 

 

Fig. 2. 5: Ray diagram of a leaky wave excited by a line source at z=0 [6] 
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Since the image is symmetric around the vertical x-axis, the following discussion is limited to the 

area z > 0 for simplicity. Assuming that the antenna is radiating its maximum at 𝜃 = 𝜃0 in z > 0 

direction while its mirror-reflection can be observed in the radiation along z < 0. The magnitude 

of the electric field is increasing until 𝜃 = 𝜃0, after which it decays in strength. Thus, the shaded 

area has the maximum radiation and the field within the shaded region defined by 𝜃0 < 𝜃 < 𝜋/2 

is negligibly small. This boundary condition will allow the antenna to follow the basic principles 

of the LWA while upholding the fundamental principles of wave propagation, whereby the 

radiation should decay and approach to zero at infinity. 

A simple Fourier transform method can be used to measure the exact field 𝐸𝑦(𝑥, 𝑧) due to the 

aperture field and is given in Eq. (2.10). 

𝐸𝑦(𝑥, 𝑧) =
1

2𝜋
∫ 𝐸̃𝑦(0, 𝑘𝑧

′ )𝑒−𝑗𝑘𝑥
′ 𝑥𝑒−𝑗𝑘𝑧

′ 𝑧𝑑𝑘𝑧
′

∞

 ̶∞

 (2.10) 

where the Fourier transform of the aperture field is 

𝐸̃𝑦(0, 𝑘𝑧
′ ) = 𝐴 [

2𝑗𝑘𝑧

(𝑘𝑧
′2 − (𝑘𝑧)2)

] (2.11) 

and vertical wavenumber is given by  

𝑘𝑥
′ = (𝑘0

2 − 𝑘𝑧
′2)1/2 (2.12) 

To satisfy the radiation condition at infinity, the vertical wavenumber in Eq. (2.12) is chosen as a 

positive real number or a negative imaginary number. 

If one solves for the electric field for such a problem with the boundary conditions as defined here, 

then the radiation plot as shown in Fig. 2.6 can be achieved [6]. This is obtained by considering a 

special case where 𝛽/𝑘0 = √3/2 and 𝛼/𝑘0 = 0.02. According to Eq. (2.8), this corresponds to a 
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leakage angle of 𝜃0 = 30°. This is the point until which the magnitude of the electric field 

increases, after which i.e.,  > 30, a clear decay in the electric field magnitude can be observed.  

 

Fig. 2. 6: The magnitude of the electric field generated by a leaky wave on an aperture is 

represented as a contour plot. The parameters of the leaky wave are to β/𝑘0=√3/2 and 

α/𝑘0=0.02 [6] 

 

The same study can be carried out on a slow (backward) wave excitation. However, to avoid 

repetition, it is not included here since the two analyses are quite similar with the expected 

difference in the results [6].    

2.4 Radiation Characteristic of One-Dimensional Leaky Wave Antenna. 

In this section, the basic radiation characteristics of a LWA are described using a one-dimensional 

periodic leaky-wave antenna. It is noteworthy that the antenna is studied for its analytical model 

that is validated by experimental results [24]. The antenna consists of a rectangular waveguide 

with an important design modification. Instead of using metallic walls on all four sides of the 

antenna, the authors used grating of metallic strips on one of the walls along the waveguide length 
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while the other wall is completely metallized (Fig. 2.7). The top and bottom surfaces of the 

waveguide are completely metallic and are extended beyond the width of the guide. The length of 

this extension is defined as ‘c’, shown in Fig. 2.7. The extended parallel plate structure is defined 

as ‘baffle’. It is not imperative for antenna radiation, but it can help to minimize the higher order 

modes from getting radiated.  This will result in a pure linear polarization being radiated from the 

antenna aperture. In this case, the antenna has a finite length along z -axis, with the center of the 

antenna placed at z = 0. This means that the antenna extends in both direction from z = 0 in positive 

and negative z -directions. Let the total length of the antenna aperture be ‘2l’, which implies that 

the antenna extends equally along the length (in z -direction) with a total dimension of ‘l’. Now, 

for the antenna to radiate, a line source with current excitation is placed at (𝑥0, 𝑧0). In a real-world 

scenario, this line source can be replaced with a coaxial feed. An important parameter here is the 

thickness of the substrate. This will dictate the scan angle at a particular center frequency.  

 

Fig. 2. 7: Leaky-wave antenna based on a metal-strip loaded dielectric waveguide [24] 
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The authors used Eq. (2.10) to solve for the radiation characteristics of the antenna. Applying the 

conditions of this antenna design on (2.10) results in the following normalized radiation pattern: 

𝐸𝑦
𝑅(𝜃) = 𝑐𝑜𝑠𝜃 ∫ 𝐸𝑦(𝑐, 𝑧)𝑒𝑗𝑘𝑧𝑧𝑑𝑧

𝑙

−𝑙

 (2.13) 

where 𝑘𝑧 = 𝑘0𝑠𝑖𝑛𝜃. 

The radiated field shown in Eq (2.13) can be used as a starting point for the design of an LWA. 

One would like to use this equation when starting the design of an LWA. The same step is 

performed by the authors in [24] to propose a different LWA structure. Designing an antenna on a 

low dielectric constant (𝑟 = 2.08) substrate and targeting a center frequency of 7.49 GHz, the 

authors fabricated a waveguide based LWA to validate their mathematical model.  With several 

results reported in the manuscript, here it is important to focus on the radiation pattern at 8.55 GHz. 

The rationale for choosing this frequency is that this is the only operating frequency where a 

comparison between the measured and calculated data is provided. An excellent match can be 

observed at 8.55 GHz in Fig. 2.8. The measured data is not as smooth as one would anticipate but 

that is due to the surface wave and space wave diffraction and can be reduced by controlling the 

total length ‘c’. By proper inspection and design optimization, these ripples in the measured data 

can be reduced significantly. Also, the front-to-back ratio can be further improved by improving 

the matching conditions. However, this is not of a major concern since the back lobe radiation is 

already several dBs less than the main lobe radiation.  

Nonetheless, the authors in [24], for the first time presented a theoretical model for a practical 

LWA design, which is validated by the measurements. 
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Fig. 2. 8: Theoretical and experimental radiation patterns at 8.55 GHz [24] 

 

2.5 Reconfigurability of Leaky Wave Antenna 

LWAs, as previously mentioned, have inherent frequency-based beam-scanning properties. In 

most cases, a wide frequency sweeping range is required for beam scanning. This frequency-

dependent beam scanning technique may be useful in certain applications, such as frequency-

scanning radars [25]. However, frequency-dependent beam scanning is unlikely to be used in many 

of the modern wireless communication systems such as Wi-Fi, Bluetooth, 5G, LTE etc. The main 

explanation for this is that most wireless communication systems use a predefined frequency band. 

With one dimensional LWA, this issue can be solved by electronically reconfiguring the leaky-

line boundary condition. Using active devices such as varactor diodes or micro-electromechanical 

system (MEMS), the leaky mode complex propagation constant can be altered, thus producing the 

desired control of the scanning beam with fixed frequency. This thesis work focuses primarily on 

the radiation pattern reconfigurability for LWAs at a fixed center frequency. 
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2.6 Examples of LWA in Literature 

Most of the LWA design in literature focus on beam scanning that is dispersive, meaning frequency 

dependent. Before delving into actual antenna design for this thesis, it is important to establish the 

state-of-the-art that exists in the field of LWA design. For this purpose, this section starts with the 

discussion of frequency dependent LWA that leads into the designs that present beam scanning at 

a single frequency.  

2.6.1 Frequency Reconfigurable LWA 

Classically LWAs have been used for beam steering applications by varying the frequency of the 

input signal. In terms of existing literature, this is where the discussion should begin. Usually, 

LWAs have been implemented using waveguides, however there has been a growing interest in 

using this antenna type with microstrip line as the feeding and radiation source. Microstrip leaky 

wave antennas (MLWA) are appealing because of their planar low profile, ease of fabrication, high 

efficiency, large bandwidth, and beam-scanning capabilities. An excellent example of microstrip 

based LWA is implemented and reported in [3]. The discontinuities in the antenna structure are 

provided with the help of via walls at the two lateral edges (Fig. 2.9(a)). These vias provide the 

required impedance change that result in the radiation of the traveling wave. The antenna radiates 

almost equally in two different directions as shown in Fig. 2.9(b). By sweeping the input 

frequency, the authors showed that both the beams of the antenna can be steered, and their radiating 

angles can be controlled. A simple analysis to understand the excitation of leaky wave modes is 

also presented in the paper that helps the readers to understand the working principle of the 

proposed antenna.  The measured impedance of the antenna shows an impedance bandwidth of 

23% that allows for an increased range of frequency sweeping, resulting in an increased beam 
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scanning range. While varying the frequency from 6.92 to 8.75 GHz the two antenna beams can 

steer in the following range of (𝜃; ±𝜙), (75°; ±48°) to (38°; ±60°). A maximum measured gain 

of 12.7 dBi is achieved with a variation of less than 3 dB throughout the frequency band.   

 

  

(a) (b) 

Fig. 2. 9: Dual beam microstrip LWA. (a) Fabricated antenna prototype. (b) 3-D radiation pattern 

[3] 

 

Like [3], another microstrip based LWA is proposed in IEEE Antenna and Wireless Propagation 

Letters (AWPL) in 2020. An even-mode-excited LWA loaded with elliptical annular ring patches 

is proposed in [7], as shown in Fig.  2.10. The rings along the microstrip line provide the proper 

impedance modulation while the vias are integrated on the edges of these rings to provide wide 

band impedance matching. While modifying the position of the shorting pins, the paper shows how 

one can control the propagation constant of the traveling wave which in turn helps to direct the 

beam in a particular direction. In addition, it also helps to optimize the gain of the radiated waves. 

The antenna radiates with its maximum in bore-sight direction when fed with a frequency of 14.8 

GHz. While tuning the frequency from 10.7 to 17 GHz, a beam steering of 105 is measured while 



22 
 

maintaining a stable gain of 16 dBi. These results demonstrate the efficacy of the proposed 

microstrip LWA and outlines a simple design that can provide stable beam scanning results.  

 

 
 

(a) (b) 

Fig. 2. 10: (a) Proposed and Fabricated antenna prototype (b) Normalized simulated (dash line) 

and measured (solid lines) radiation patterns [7] 

 

Similar to [3] and [7], Sarkar, et. al., presented another variant of MLWA for wideband operation, 

Fig. 2.11(a) [26]. The antenna is designed to operate in V-band i.e., 50-65 GHz of the frequency 

spectrum. Scaling the center frequency at this band introduces more challenges due to the small 

wavelength of the signal. The antenna is this case is also designed to radiate in two directions as 

in [3] and therefore it is regarded as a dual-beam MLWA. The architecture uses a dominant-mode 

microstrip–slot line transformation to achieve forward beam scanning with symmetrical dual side 

pencil beam. By integrating PIN diodes on the structure in tandem with metallic vias, a virtual 

magnetic wall is created at the centre of the microstrip line.  This magnetic wall causes the radiation 

from the microstrip line with forward scanning capability as shown in Fig. 2.11(b). With the help 

of dispersion plots, the authors analyzed the wave modes that are radiated out of the antenna 
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structure. An impedance bandwidth of 29.2% (52.5–65 GHz) is observed in measurements with a 

scanning range in H-plane of   ̶ 65° to +69.7°. The maximum gain of the antenna remains stable at 

around 18 dBi with a minor variation of 0.7 dB when the diodes are biased. This is a rather unique 

design because of its high frequency operation and the introduction of a magnetic wall boundary 

in the antenna structure. 

 

  

(a) (b) 

Fig. 2. 11: (a) Proposed fabricated prototype (b) Simulated and measured normalized radiation 

patterns [26] 

 

Further to the work that has been reported until this point a few other designs using MLWA 

structure have been reported very recently in literature [27]-[29]. Using line meandering [27], Yagi 

structure [28] and slot array [29], all these examples provide an effective design methodology that 
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can be employed to provide beam steering in various applications. With center frequencies of 10.8 

GHz, 5.4 GHz, and 18 GHz, respectively it is shown that this class of antenna can be applied in 

different frequency bands and wireless applications as needed. Beam scanning of almost 90 can 

be seen from these designs, however, they do rely on variation of input frequency to steer the 

antenna radiation. The maximum gain in all these cases remains stable with variations of 3 dB in 

general. The viability of LWAs using microstrip feed lines is further validated by these examples 

due to the spectrum of the frequency bands that have been reported in these articles.   

Lastly, in this section of frequency reconfigurable LWA, it is noteworthy to add one more design 

that can be defined as an MLWA. An improved half-width microstrip LWA with periodic short 

circuits shown in Fig. 2.12 is an intriguing design [30].  

 

 

 

 

(a) (b) 

Fig. 2. 12: (a) Microstrip LWA (b) Radiation patterns of the microstrip LWA [30] 
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The proposed antenna is composed of rectangular patch/feed with vias integrated at the lateral 

edges periodically. The vias do not form a continuous wall as has been seen in one of the designs 

before, rather they are spread equidistantly on either side. A repetitive pattern can be clearly seen 

in the structure.  This simple periodic construction produces backward-to-forward beam-scanning 

radiation patterns (Fig. 2.12(b)). When the operating frequency is altered from 4.6 GHz to 8.5 

GHz, the antenna’s maximum radiation scans from 144° to 41° in the H-plane (x-y plane). As the 

antenna steers its beam, the side lobe levels can be seen increasing which is expected in such 

antenna elements. However, the radiation levels of the side lobes are kept in check, which in turn 

helps to maintain the maximum gain of the antenna. This is another example of MLWA and is the 

one, which is to be further studied in this thesis to present a novel LWA structure. 

To summarize the literature of frequency dependent LWA, Table 2-1 is presented here. With a 

quick glance, the reader can have an idea of this particular type of antenna especially implemented 

using microstrip line. 

Table 2. 1 Performance comparison of frequency sweep reconfigurable LWA 

Reference Venue 
Frequency 

[GHz] 

Beam 

Steering 

[Degree] 

Gain 

[dBi] 

Size 

(Length x Width) 

[mm²] 

Year 

[3] IEEE TAP* 6.92 - 8.75 27° 12.7 254 x 90 2016 

[7] IEEE AWPL* 10.7 - 18 105° 16 170 x 30 2020 

[26] IEEE TAP* 52 - 65 135° 18.7 55 x 30 2020 

[27] IEEE APSIC* 10 - 10.5 30° 7 230 x 170 1996 

[28] IEEE AWPL* 4.9 - 5.6 78° 6.1 100 x 60 2018 

[29] IEEE TAP* 16.7 - 19.8 80° 17.4 170 x 30 2021 

[30] IEEE TAP* 4.6 - 8.5 103° 9 200 x 50 2011 
 

TAP* ~ IEEE Transactions on Antennas and Propagation 

AWPL* ~ IEEE Antennas and Wireless Propagation Letters 

EuCAP* ~ IEEE European Conference on Antennas and Propagation 

APSIC* ~ IEEE Antennas and Propagation Society International Symposium 
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2.6.2 Fixed Frequency LWA 

One of the main disadvantages of the classical leaky wave antennas is that the radiation beam 

typically scans with the operating frequency. This is often problematic for many modern wireless 

applications, which require a fixed center frequency when the antenna beam is scanned. It has been 

shown in some literature that the maximum antenna radiation of LWA can be steered at a single 

frequency [4].  Such designs are more applicable to conventional modern day communication 

systems. Here, the focus is on MLWA designs that can provide the stated antenna performance. A 

technique that has been implemented to achieve fixed-frequency beam scanning from MLWAs is 

by using half-width MLWA (HW-MLWA) configuration [4]. A long microstrip line with low 

impedance is loaded with vias and with the help of integrated switching elements as shown in Fig. 

2.13(a) [4]. The authors use binary switches to either connect the via to the line or disconnect it. 

The loading structure can be regarded as a unit cell that can be reconfigured between two extremes. 

A macrocell is formed by combining multiple reconfigurable unit cells, and the periodic LWA is 

formed by cascading identical macrocells. To validate the concept, a prototype HW-MLWA is 

designed, developed, and realized. The end of the line is terminated with a matched load to prevent 

any unwanted reflections. The antenna is measured using a switching element and a p-i-n diode. 

The results at 6 GHz are illustrated in Fig. 2.13(b). CBP stands for complete binary pattern, which 

describes the binary pattern of any macro cell state in terms of 1's or 0's, and each macro cell is 

made up of M unit cells, as shown in the table of Fig.2.13(b). The main beam scans between 31° 

and 60° from the bore-sight direction. The measured peak gain of the antenna is 12.9 dBi at 6 GHz, 

and with a gain variation of 1.2 dB. 
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(a) (b) 

Fig. 2. 13: (a) Fabricated antenna prototype (b) Radiation pattern with respect to macro-cell state 

[4] 

 

Like [4], Y. Li, et. al.,[31] presented another MLWA design which relies on off-the-shelf switch 

component, Fig. 2.14(a). The antenna system consists of a microstrip patch and two feeding 

terminals. The MLWA is excited using two ports that can be broadly labelled as A and B. The 

positions of ports A and B can be varied along the length of the antenna to control the direction of 

main lobe. To illustrate this, the authors used 3 different excitation points for port A and identified 

them as port 1, port 2, port 3, while for port B the nomenclature of three positions is regarded as 

port 1, port 2, port 3 respectively. The programmable switch is used to control the various feeding 

terminal combinations along the side of the MLWA, allowing the main lobe to scan at both sides 

progressively. At 7 GHz, the measured results show that the antenna provides a dual-beam 

radiation that can be steered using this method. By manipulating the feeding configuration, the 

design proposes beam scanning at a single frequency while providing acceptable impedance and 

radiation performance.  The two main beams scan from 41.16° to 63.01° and from 116.75° to 

138.59° as depicted in Fig. 2.14(b). 
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(a) (b) 

Fig. 2. 14: (a) Layout of MLWA (b) The radiation patterns of MLWA fed by three different 

feeding terminal combinations [31] 

 

A last example of the antenna type under discussion (MLWA) is published in 2017 by authors 

from Indian Institute of Technology [32]. Using varactor diode loading, the antenna can steer its 

beam when the capacitance is configured to different values. Due to the low frequency of 

operation, the antenna’s size is reasonably large (200 mm). However, it is expected that further 

increasing the length of the antenna will not only improve the antenna gain but also provide better 

steering range. Having written that, the authors kept in view the practical constraints when 

designing and implementing this antenna. The microstrip comb-line reported in [32] is 

diagrammatically represented in Fig. 2.15. With increasing bias voltage across the varactor diode, 

the antenna achieves 4° to 46° backward beam scanning with respect to bore-sight. A maximum 
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gain of 7.7 dBi is measured from the antenna with acceptable variation of 2.3 dB while scanning 

the beam.  

 

  

(a) (b) 

Fig. 2. 15: (a) Photo of fabricated antenna (b) Simulated and measured realized gain patterns at 

2.4 GHz for different bias voltages of varactor [32] 

 

2.7 Conclusion 

This chapter starts with the basic theory of the LWA antenna design to provide an understanding 

about the radiation characteristics of the antenna. The brief description of LWA’s fundamentals is 

followed by a comprehensive literature review on different types of MLWA antenna. Since the 

focus of this thesis is on microstrip based antenna designs, the literature review has been kept 

focussed around this topic. As per the chronology of LWA, the designs that show beam scanning 

capabilities by varying the input signal frequency are initially discussed. Most of the work in the 

field of LWA design reports beam scanning in this manner. This type of design requires large 

impedance bandwidth to show proper operation. A summary table of MLWA designs that rely on 

frequency-based beam steering is included in the chapter. At the conclusion of the chapter, it is 
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demonstrated that little research has been conducted on LWA designs that achieve beam scanning 

at a single operating frequency. Although there are some designs reported in the literature, it is 

believed that this area can be further explored for research to propose designs that can find 

applications in modern communication systems. Thus, the author in this work plans to explore a 

novel reconfigurable technology known as FPMS for the design of a single frequency beam-

steerable LWA. Such a design will be able to do-away with the dispersive properties of the LWA 

design while providing the required beam steerability. 
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Chapter 3 

 

Field Programmable Microwave Substrate (FPMS) 

The second chapter of this thesis delves into the specifics of the LWA design, beginning with the 

fundamental theory and progressing to a description of the current state-of-the-art in this field. One 

basic conclusion that is drawn at the end of the last chapter is scarcity of fixed frequency LWA 

design. Therefore, the central interest of this thesis is to come up with a reconfigurable LWA 

design that can provide beam steering at a single center frequency. Now when it comes to 

microwave applications, tunable and reconfigurable microwave circuits have almost reached 

saturation. A variety of techniques such as lumped-element loading [33], magnetic materials [34], 

ferroelectric components [35] etc. have been explored to achieve the desired results of 

reconfigurability.  

However, a novel idea that has been proposed in 2016 by N. Jess [36], known as field-

programmable microwave substrate (FPMS) is mostly untouched when it comes to antenna design. 

Even the very first publication on this topic relied on demonstration of circuits, based on a novel 

programmable microwave waveguide [36]. The paper has shown that an FPMS based waveguide 

that has the ability to reconfigure the substrate properties without replacing any physical 

components. Using this concept, the authors extended the work to show a working tunable filter, 

controllable oscillator and a frequency tuned amplifier. The reconfigurable waveguide thus 

presented shows an unprecedented level of programmability.  The use of FPMS in the RF domain 

is analogous to the use of a field-programmable gate array (FPGA) in the digital domain, thus the 

nomenclature. 
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In this chapter the fundamentals of FPMS are discussed by introducing its unit cell design and their 

implementation.  After providing a brief over-view of [36], it shown that how the FPMS unit cell 

is optimized for the LWA design with respect to its dimensions and capacitive values. All 

simulations were run on a Duroid 5880 substrate with a center frequency of 2 GHz, and the findings 

are summarized here. 

3.1 Field Programmable Microwave Substrate 

The operation of FPMS can be understood by first explaining its building block known as a ‘unit 

cell, and then describing how it is implemented to demonstrate its capabilities as a programmable 

waveguide [36].  

3.1.1 FPMS Unit Cell 

The small unit cells used in realization of FPMS can be individually reconfigured to have a range 

of positive or negative dielectric constants. It consists of two microstrip lines that are connected to 

each other perpendicularly. The intersection of the lines is loaded with a varactor diode that 

functions as a variable capacitor and biased with the help of an RF choke resistor, ‘R1’. A capacitor 

‘C1’ act as a DC blocker and is connected in parallel with this resistor to provide RF path to the 

ground. The unit cell design is pictorially shown in Fig. 3.1. FR4 substrate is used for the 

implementation of this structure. In simulations, the authors of [36] used a dielectric constant of 

4.9 and a dielectric loss tangent of 0.015-0.02. Each unit cell consists of metallization (brown in 

color), varactor “V1”, resistance “R1” of 10𝑘𝛺, decoupling capacitor “C1” of value 2.2 𝑛𝐹. Since 

the metallization includes both the direct-current (DC) and radio-frequency (RF) signals, 

resistance R1 and capacitance C1 are integral for the implementation of this structure. The 

optimized unit cell design has dimensions of W = 0.5 mm and L΄ = 2.54 mm, resulting in a total 
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structural dimensions of 5.08 mm x 5.08 mm for the plus shape metallization. The thickness of the 

substrate as used for this design is 1.17 mm.  

 

Fig. 3. 1: Unit cell used to construct FPMS [36] 

 

The unit cell metal structure of Fig. 3.1 is simulated using Keysight’s Advance Design System 

(ADS) in Momentum (layout), and in co-simulation (EM and circuit simulation combined). The 

S-parameters of the structure can be used to extract the material properties experienced by the 

wave using Nicolson-Ross-Weir (NRW) method [37]. NRW is a well-known algorithm that has 

been classically used to extract material properties of a substrate from its impedance parameters. 

In RF theory, this is a fundamental technique and therefore it is not discussed in detail in this thesis. 

Nevertheless, the effective material properties for different bias on the varactor is studied. The 

properties shown in Fig. 3.2 show that the effective dielectric constant of the unit cell can be 

modified by varying the bias on the varactor diode. At 1 GHz, the dielectric constant value ranges 

from 7 to 13 when the bias is varied from 25 V to 8 V. The rationale for focussing on 1 GHz here 
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is because 2 GHz is either very close to resonance here or it is the resonant point. Because this is 

the first-ever implementation of the FPMS technology, 1 GHz was rightly chosen due to the 

limitations of the FR-4 substrate, which only works well until 4 GHz, and also to keep the design 

simple. It is also important to mention it here that the dielectric properties of the material at a 

particular bias remains constant until a maximum frequency known as resonance frequency. This 

resonant point exists due to the capacitor’s own resonance behavior. That is to say that, when the 

capacitor reaches its self-resonance, it will start behaving as an inductor. As a result, the wave 

experiences a negative permittivity since the reactance is now inverted. Hence, the presence of 

self-resonant point. Further, it can be noted from Fig. 3.2, that the value of self-resonance changes 

as the varactor bias voltage changes. These characteristics are critical as they will ascertain the 

frequency bandwidth of the design in which it can be tuned or reconfigured.  

 

  

(a) (b) 

Fig. 3. 2: (a) Effective dielectric constant of unit cell (b) The magnified version [36] 
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In addition to dielectric constant, it is interesting to study the loss behavior of the proposed 

substrate. For this purpose, loss tangent in also plotted alongside dielectric constant, shown in Fig. 

3.3. The resonance frequency in this case is similar to the ones reported in Fig. 3.2. The loss tangent 

values are in the range of 0.01-0.02, which makes sense. The rationale for this conclusion is the 

inherent loss tangent of FR-4 substrate. Thus, a lower loss substrate can result in better loss 

performance of the unit cell structure and is worth exploring. 

To complete the loop on this circuit, the magnetic properties of the unit cell are also 

plotted/extracted in Fig. 3.4. Generally, it is anticipated that the relative magnetic constant of a 

substrate should be equal to 1. In this case, it is slightly greater than 1 due to the increased series 

inductance from the metal cross structure employed in the unit cell design. The magnetic constant 

in Fig. 3.4 is greater than unity. This property is also reflected in Fig. 3.5, where the magnetic loss 

tangent of the material is drawn. In an ideal scenario (substrate), the magnetic loss of the material 

should be zero. The non-zero value in this case can be attributed to the conductor loss incurred due 

to the metal structure. Adding the magnetic and dielectric loss tangents, results in overall power 

loss that a wave experiences when traveling through a medium. 

 
 

(a) (b) 

Fig. 3. 3: (a) Effective dielectric loss tangent of unit cell (b) The magnified version of (a) [36] 
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Fig. 3. 4: Effective magnetic constant of unit cell [36] 

 

  

(a) (b) 

Fig. 3. 5: (a) Effective magnetic loss tangent of unit cell (b) The magnified version of (a) [36] 

 

3.1.2 FPMS Implementation 

With the introduction and study of the basic building block of the FPMS technology i.e., unit cell, 

the next logical step is to apply its implementation in actual PCB board and analyze its efficacy 

for the realization of fundamental RF/microwave components. To accomplish this, Nathan et. al. 
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[36] designed and fabricated a 16x16 elements based FPMS demonstration board on FR-4 

substrate. The board consist of three microwave ports, a transistor in common emitter 

configuration, an inductor (circle in red) that grounds the anode of the varactor, and two capacitors 

(circle in blue) of capacitance 3pF attached to it to block DC and filter out low frequency signal. 

The complete proof-of-concept design is shown in Fig. 3.6(a) with a magnified version of the unit 

cells shown in Fig. 3.6(b). 

 

(a) 

 

(b) 

Fig. 3. 6: (a) Implementation of FPMS on FR4 (b) Close-up picture of an FPMS with 256-unit 

cells [36] 

 

To validate the integration of multiple functions on a single board, RF functions such as 

waveguide-based filters, oscillators and amplifiers are all simulated and measured. This level of 

versatility is particularly unique to the FPMS technology and highlights its novelty. With the help 

of the dynamic control that the FPMS unit cells provide to the designers, it is demonstrated in [36] 

that the waveguide can be tuned for its center frequency as well as impedance bandwidth. 

Similarly, the oscillator and amplifier functions are shown to be completely controllable by tuning 

the center frequency of these designs by the virtue of the FPMS unit cells. To keep this discussion 
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concise, only the results of waveguides are shared in this chapter. The design representation is 

illustrated in Fig. 3.7 where each square block is realized using the FPMS unit cells. These unit 

cells can be biased at different varactor voltages to control the dielectric properties experienced by 

the wave. In Fig. 3.7, the white colored blocks are biased to provide a negative dielectric constant 

while the blue colored blocks provide the positive dielectric constant for the propagating wave. As 

a result, the wave only passes through the blue region while avoiding the white one altogether. By 

selecting different number of blue cells along the width, one can control the center frequency of 

the waveguide. Thus, the three waveguides with different widths show different frequency 

response as can be seen in Fig. 3.8. With not much change in the insertion loss, the impedance 

bandwidth and the frequency can be tuned as per the requirements. Furthermore, it is shown that 

the ON-voltage for the varactor can also be varied to provide another degree of freedom. Therefore, 

25 V as well 10.7 V are both used in the test set up with minimum effect on the overall 

performance. 

 

Fig. 3. 7: FPMS implementation for waveguide (a) Bias = 25 V. (b) Bias = 25 V. (c) Bias = 

10.72 V [36] 
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(a) (b) (c) 

Fig. 3. 8: FPMS implementation for waveguide (a) Bias = 25 V. (b) Bias = 25 V. (c) Bias = 

10.72 V [36] 

 

3.2 FPMS Unit Cell Optimization for 2GHz 

To design an antenna using FPMS unit cells, it is important to first understand the operating 

principle of these unit cells with the help of a Full-wave simulator like Ansys High Frequency 

Structure Simulator (HFSS). The previous work on FPMS relied on a circuit simulator i.e., 

Keysight’s ADS to demonstrate its RF performance. However, for an antenna design, the same 

software cannot be used because of its inherent limitations. Therefore, in this work, all the 

simulations are to be carried out using HFSS. FPMS has never been used for antenna and wave 

simulations. Thus, this is the first ever attempt to integrate this technology into a radiating 

structure.  

For now, the design frequency is kept at 2 GHz to reduce the number of unknown variables. The 

substrate used in [36] is FR-4 which is quite lossy when it comes to RF frequencies. The loss 

tangent of FR-4 is 0.015-0.02 which is clearly not the best. Also, for antenna designs, it is deemed 

that the dielectric constant of the substrate should be as low as possible to provide higher gain 

values. Keeping this in view, Duroid 5880 substrate is chosen for the antenna and the unit cells 
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designs studied on this platform. One final selection is that of the varactor diode. Skyworks SMV 

1242 is a good candidate as it operates up to 10 GHz with reasonably low loss. The datasheet of 

the varactor is available from the manufacturer and provides the equivalent circuit values that can 

be employed to model this diode/varactor. Throughout this work, all the simulations are completed 

using this varactor at different bias values (different capacitance values). Several steps are taken 

to optimize the dimensions of the unit cell, substrate parameters and capacitance values of the 

varactor. All these variations are studied in detail and their discussion is covered in the upcoming 

sections.  

3.2.1 Substrate Material 

When starting the design simulations, it is better to use the exact same structure as used by Nathan 

et. al. [36] to demonstrate the first simulation results on Duroid. This will help to better understand 

the simulated results. The major difference here is that Duroid 5880 is used as a substrate in this 

case. Duroid 5880 has a dielectric constant of 2.2 and a loss tangent of 0.0009. The reflection 

coefficient along with its dielectric constant of the unit cell with Duroid 5880 substate material is 

shown in Fig. 3.9 for the same structure as reported in [36]. The S-parameter results shown here 

are quite expected. The results represent matched conditions until the varactor reaches its 

resonance where the capacitance starts behaving as an inductor. After which the power is reflected 

back to the input as is shown in the simulated results. Nonetheless, using these S-parameters the 

extracted properties of the substrate are also plotted. Here again, the negative permittivity of the 

substrate explains the reason of power getting reflected back. In a nut-shell the results show the 

starting point from where the unit cell can be studied for different design parameters.  
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(a) 

 

(b) 

Fig. 3. 9: (a) Reflection Coefficient of unit cell with Duroid 5880 (b) Dielectric constant 
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3.2.2 Unit Cell Optimization with respect to Line Dimensions and Substrate 

Thickness 

At first, the unit cell optimization is to be carried out by varying the length (L) of the metallization 

(orange color) and the thickness (T) of the substrate, as shown in Fig. 3.10. The primary goal of 

this optimization is to investigate all possible options for the unit cell size and the effect of substrate 

thickness on its impedance performance. The unit cell size should be realistic for practical 

implementation as well as in terms of its frequency response. The width ‘W’ of the metal is kept 

constant at 0.5 mm since this does not play a key role in optimizing the cell performance. The two 

metal lines of the unit cell metallization have equal lengths ‘L’. The point of intersection of the 

two lines is where the varactor (capacitor) is integrated, as shown in Fig. 3.10. Since these are 

early simulations, a fixed capacitor value (1 pF) has been integrated into the unit cell design. This 

allows one to isolate the effect of the capacitor loading from the basic structure. Thus, the reason 

for this choice of simulations. 
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(a) 

 

(b) 

Fig. 3. 10: Unit Cell under optimization (a) Top view (b) 3-D view 

 

The length of the metal is the first variable under consideration in the study. For this purpose, the 

length of the metal is first varied from 5 mm to 15 mm while the thickness of the substrate is kept 

constant at 0.13 mm. This is the minimum thickness of the substrate that can be used for Duroid 

5880 and thus the rationale for this value. The unit cell is simulated using Ansys HFSS, and the 
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simulated S-parameter results are used to extract the dielectric constant values with the help of 

MATLAB. The results thus obtained are shown in Fig. 3.11. 

 

 

Fig. 3. 11: Simulated effective dielectric constant for change in L (5mm-15mm) while keeping 

the value of T at 0.13mm 

 

The results shown in Fig. 3.11 are interesting and at the same time quite expected. These 

simulations show that increasing the length of the metal increases the dielectric constant value but 

decreases the resonant frequency. The increase in the length of the lines increases the inductance 

of the unit cell due to which the resonant frequency is seen to be reduced with the increasing length. 

These results are important to keep an upper limit on the length of the lines. Here, the targeted 

frequency is 2 GHz, which means that one should use a length value that keeps the resonant 

frequency well above the targeted center frequency. From this inference, L = 5 mm is a good value 

for the length of the lines. However, this must be re-evaluated once the thickness of the substrate 
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is studied.  It is anticipated that the increasing thickness of the substrate would further lower the 

resonant frequency. This further rationalizes the length to be kept at 5 mm.   

After considering the effect of changing the length of the lines, it is now logical to consider the 

effective change in the dielectric constant value of the substrate due to the change in the thickness 

of the substrate. For this purpose, the thickness (T) of the substrate was varied from 0.13 mm to 

1.57 mm, while the value of L is kept constant at 5 mm. The dielectric constant values obtained 

from these simulations are shown in Fig. 3.12. The values shown in the figure for the thickness are 

the ones provided by the manufacturer. Therefore, for practical reasons the simulations are carried 

out using these values. 

 

 

Fig. 3. 12: Simulated effective dielectric constant for change in T (0.13mm-1.57mm) while 

keeping L at 5mm 

 



46 
 

The simulated results shown in Fig. 3.11 illustrate that as thickness increases, the dielectric 

constant decreases. Similarly, the resonant frequency is also seen to be decreasing with the 

increasing substrate thickness. For instance, at 2 GHz, it is observed that the dielectric value for L 

= 5 mm and T = 0.13 mm is 15 (Fig. 3.10), and as the substrate thickness increases to 1.57 mm, 

the dielectric constant value decreases to 6. For better visualization of the change in the dielectric 

constant, Fig. 3.13 shows a magnified view of the simulated results. The change in the substrate 

dielectric constant value is quite encouraging. The greater the percentage change in the dielectric 

constant value, the more control the RF designer will have on the propagation of the wave. 

 

 

Fig. 3. 13: Magnified view of Fig. 3.12 

 

One final simulation is carried out using dimensions of 3 mm with varying substrate thicknesses. 

The rationale for this simulation is to observe how compact the unit cell can be designed in this 

case. For the antenna structure, the plan is to integrate a large number of these unit cell structures. 
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Therefore, the smaller the size of these cells, the easier it is to integrate them with an RF 

component. Keeping this in view, the unit cell design of 3 mm is simulated with the maximum 

thickness of 1.57 mm. The results are added here in Fig. 3. 14. The simulated results presented in 

this section illustrate the effect of line length and substrate thickness. With these in mind, it is now 

logical to start varying the capacitor values and then study the extracted properties of the substrate.  

 

 

Fig. 3. 14: Simulated dielectric constant of unit cell with L = 3mm and T = 1.57mm 

 

3.2.3 Unit Cell Optimization with respect to Capacitance (C) 

After studying the unit cell in terms of L and T, a capacitor is added into the structure at the point 

of intersection of the two lines, shown in Fig. 3.15. A varactor diode (SMV 1232) from Skyworks 

Inc. is used for this purpose. The same varactor diode is planned to be used in the actual fabrication. 

The capacitor is added between the metal conductor line and the ground plane with the help of a 

via. The via here signifies an RF ground, which will be the anticipated termination on the other 
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side of the varactor element. While paying attention to the resonant frequency of the unit cell, the 

capacitance of the integrated varactor (modelled as a capacitor alone) is increased until the resonant 

frequency is reached. The maximum limit on the resonant frequency is kept at around 2.5 GHz, 

while analyzing the simulation results. For this purpose, the value of L and T are kept constant at 

3 mm and 1.57 mm respectively, and the change in dielectric constant is studied as shown in Fig. 

3.15. 

 

 

Fig. 3. 15: Change in dielectric and resonance frequency with change in capacitance 
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It is observed from Fig. 3.15 that with a capacitance value of 7 pF, the resonant frequency is close 

to 2.5 GHz. Furthermore, at the reference frequency of 2 GHz, the dielectric value is around 50 for 

7 pF and increases as the capacitor value increases. So, to be on the safe side and with a good 

dielectric constant range, a maximum capacitance value of 7pF has been selected. Going beyond 

7 pF brings the resonance frequency of the unit cell in the neighborhood of the frequency of interest 

i.e., 2 GHz. This is not desirable and thus the reason for the upper limit on the capacitance value. 

Although a varactor device is usually deemed to be a pure capacitor, in reality that is not the case. 

Any practical varactor has associated series inductance and resistance values to it. The resistor 

element is used to model the loss of the varactor which we can ignore in these simulations because 

generally RF varactors have very low insertion loss associated with them. However, one cannot 

ignore the series inductance which are modeled in the varactor component. Same is the case with 

SMV1232 also. The datasheet of the device shows that a 0.5 nH inductance can be used to model 

the effect of the series inductor introduced by the integrated varactors. Therefore, the next step is 

to model the effect of the parasitic inductance due to the integrated varactor elements in the unit 

cell designs. 

3.2.4 Unit Cell Optimization with respect to Inductance (L´) 

The last step in the study of the unit cell design and optimization is to add an inductive element in 

series with the capacitor block. This is modeled in Ansys HFSS using an inductor boundary and is 

shown in Fig. 3.16. The value assigned to this lumped boundary is 0.5 nH as per the datasheet of 

the SMV1232. Generally, the value of parasitic inductance does not change with the bias voltage 

and same is the case here with the varactor diode from Skyworks. The unit cell design is re-

simulated with the L = 3 mm and T = 1.57 mm with an integrated LC boundary. The capacitance 
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value is varied again while keeping the inductance constant at 0.5 nH. The extracted substrate 

parameters are plotted in Fig. 3.16. 

 

 

Fig. 3. 16: Change in dielectric and resonance frequency with introduction of Inductor (L´) 

 

It can be observed from the Fig. 3.16 that after the introduction of an inductor into the unit cell, 

the resonance frequency has turned down. For example, in the case of 7pF, without any inductor 

the resonant frequency was at 2.5 GHz (Fig.3.15), however after the introduction of the inductor, 

the resonant frequency is shifted to about 1.6 GHz for the same capacitance value. As a result, the 

highest capacitance value that can now be used is around 3.5 pF while maintaining a resonant 

frequency of around 2.5 GHz. This is the reason why it is important to model the inductive 
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properties of the varactor. Before these simulations, it was anticipated that the addition of an 

inductor can significantly alter the resonant frequency. This has been clearly verified with the help 

of the last set of simulations. 

3.3 Optimized Unit Cell 

The final optimized unit cell is shown in Fig. 3.17 that has a capacitor and an inductor attached to 

it in the form of varactor. The optimized unit cell has a length of metallization to be 3mm, substrate 

thickness of 1.57 mm and a via of radius 0.07 mm. In the next chapter we are planning to further 

increase the antenna thickness if required, but for now it is studied for a substrate thickness of 1.57 

mm. 

 

Fig. 3. 17: Optimized Unit Cell 

 

Looking at the effective simulated dielectric constant in Fig. 3.18, the maximum capacitance value 

that can be used is 4 pF with a resonance frequency of around 2.2 GHz. Looking closely at the 

dielectric constant values, the dielectric constant of the unit cell is around 20 when the capacitance 

value is 4pF and decreasing the capacitance value also results in a decrease of the dielectric 
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constant. Thus, achieving reconfigurability of the unit cell by changing the capacitance value. It 

should be emphasized here that the substrate thickness used in the unit cell design is 1.57 mm. If 

the antenna design cannot be optimized for this thickness value, then one needs to revisit the unit 

cell design with the updated substrate thickness. However, the benefit of this detailed study on the 

unit cell structure is that changing its substrate thickness to coincide with the antenna substrate 

thickness will be a trivial step and can be easily done alongside antenna simulations.  

 

  

(a) (b) 

Fig. 3. 18: (a) Simulated effective dielectric constant of unit cell (b) Magnified view 

 

3.4 Conclusion 

A brief overview of FPMS was provided, as well as its unit cell. In FPMS, each unit cell was 

configured to achieve the reconfigurable waveguide. Unit cell was then optimized to work at the 

frequency of interest at 2GHz after an in-depth explanation of the unit cell structure and how 

changing the bias voltages changes the dielectric constant. The optimization process began with a 

pursuit for the state-of-the art substrate material for substrate, which led to the selection of Duroid 

5880. Further optimization includes changes in the length of the metal used while keeping the 
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width constant, and finally, the introduction of a capacitor and inductor in the form of a varactor 

to find the maximum capacitance value that can be used while keeping the resonance frequency in 

mind. 

This chapter provides a complete insight into how the unit cell can be designed and optimized for 

a particular target design. The goal is to use these FPMS unit cells in implementation of an LWA 

radiator. With the reconfigurability provided by these active elements, it is deemed that a 

reconfigurable LWA can be realized that can steer its beam at a particular center frequency. 
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Chapter 4 

 

FPMS based Leaky Wave Antenna Design  

LWA’s belong to the class of antennas that have the merits of being low-profile, ease of fabrication 

and an inherent property of frequency beam scanning. However, it is clear from the previous 

chapters that the focus of this thesis is to steer the beam using an LWA at a single frequency. The 

primary objective of the research is to propose an FPMS based reconfigurable antenna, therefore 

it is intuitive to use a structure that relies on microstrip line technology. With the integration of 

FPMS unit cells onto the antenna structure, a novel LWA design is employed to achieve the 

radiation pattern reconfigurability in the form of beam steering while keeping the frequency fixed.  

At first, an MLWA that has been proposed in [38] is optimized to operate it at the frequency of 

interest, i.e., 2 GHz. This is followed up by the integration of the FPMS unit cells onto the antenna 

design. Doing so, it is studied that how the antenna radiation can be controlled by using the active 

FPMS unit cells. The antenna is studied for its radiation as well as impedance performance and 

the results thus obtained are illustrated in this chapter.  

4.1 MLWA Design 

A periodic half-width microstrip leaky wave antenna (MLWA) is demonstrated in [38] and is 

chosen for study of this thesis. The antenna has the ability of beam scanning to either forward 

direction or backward direction with the change of frequency. The forward and backward 

directions in this case are defined along y-axis. This is to say that the main beam can be steered 

around y-axis. The LWA structure is made up of series of half-width patches (total of 10) 



55 
 

connected by a microstrip line, as shown in Fig. 4.1. The periodic nature of the antenna structure 

is quite obvious from the diagrammatic illustration. The purpose of this periodicity is to radiate 

the slow wave out near the edges as it propagates along the structure. The integration of vias at the 

edge of the line provides the optimum impedance to the propagating wave that results in a 

particular direction of radiation. The presence of vias in this structure makes it suitable for FPMS 

unit cell integration and thus the rationale for selection of this antenna. Before the effect of FPMS 

unit cells is studied on this design, it is advisable to discuss the operating principle of the antenna. 

This is followed up in the next section. 

 

 

 

(a) (b) 

Fig. 4. 1: (a) 3D view of periodic half-width MLWA (b) The layout of the half-width MLWA 

[38] 

 

4.2 Theory of MLWA 

The periodic loading of the MLWA design is intended to provide the appropriate phase constant 

() of the propagating wave.  The structure causes  to vary from negative to positive values as 
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the operating frequency increases. For a conventional periodic LWA, its complex propagation 

constant is given by [38] 

𝑘𝑧𝑛 = 𝑘𝑧 +
2𝑛𝜋

𝑑
,       𝑛 = ±1, ±2, ±3 · · · · (4.1) 

where 𝑘𝑧𝑛 is given by Eqn. (2.2), 𝑘𝑧 is the wave number of the uniform structure, d is the period 

(distance between the repetitive half-width microstrip line) and n is the order of the space 

harmonic. 

When compared to a conventional full-width MLWA, the half width MLWA presented has the 

same radiation characteristic of beam steering with change in frequency, but with the advantage 

of being smaller in size. However, one would like to study the complex propagation constant of 

the wave moving on this LWA design. To do so, the first step in calculating the complex 

propagation constant is to obtain the equivalent extension (ΔT) of the half-width MLWA, which 

varies with operating frequency. In microstrip lines, fringing fields exists at the edge of the 

structure. These fringing fields depends on the substrate properties such as thickness and dielectric 

constant (r) of the material. By appropriately designing the antenna, the magnitude and phase of 

the fringing fields can be controlled which in turn results in antenna radiation.   ΔT of the proposed 

antenna is given by [38]: 

𝛥𝑇 = 0.412ℎ
𝑒𝑓𝑓 + 0.3

𝑒𝑓𝑓 − 0.258

𝑙
ℎ + 0.262

𝑙
ℎ + 0.813

+ ∆ (4.2) 

where h is the thickness of the substrate, a is the space between each of the vias, r is the radius of 

the vias, l is the length of the half-width MLWA, T is the width of the half-width MLWA (which 
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is close to 𝜆0/4 for this design), Δ is the expression of the parallel-plate circuit model with a series 

of vias/shorting pins as given by [38]: 

∆ =
𝑎

2𝜋
[𝑙𝑛 (

1

𝜋𝑟
) −

4𝜋2𝑟2

𝑎2
+ 0.601

𝑎2𝑟

𝜆0
2 ] (4.3) 

Also, 𝑒𝑓𝑓 is the effective dielectric constant that changes with the change in operating frequency 

and is given by: 

𝑒𝑓𝑓 =
𝑟 + 1

2
+
𝑟 − 1

2
(1 +

5ℎ

𝑇
)

−(1/2)

 (4.4) 

The complex propagation constant of a wave moving on this MLWA structure has been reported 

in literature by A. Bhattacharyya and C. Luxey [39], [40]: 

𝑦𝜔 =
ℎ

120𝜆0
+ 𝑗

𝑘0𝑟𝛥𝑇

120𝜋
 (4.5) 

exp(𝑗𝑘𝑥2𝑇) = −
𝑘𝑥 − 𝜔𝜇𝑦𝑤

𝑘𝑥 + 𝜔𝜇𝑦𝑤
 (4.6) 

Once the value of 𝑘𝑥 is calculated with the help of Eqn. (4.6), the complex propagation constant 

of the uniform half-width MLWA, can be calculated by  

𝑘𝑧 = √𝜔2𝜇𝑟 − 𝑘𝑥
2 (4.7) 

 Finally, the angle θ of the main lobe of radiation from the antenna can be calculated by  

𝜃 =
𝜋

2
− 𝑠𝑖𝑛−1 (𝑅𝑒 [

√𝜔2𝜇𝑟 − 𝑘𝑥
2

𝑘0
−

𝜆0

𝑑
]) (4.8) 

The analysis presented above basically entails that as the frequency of the wave propagating 

through the antenna is varied, the complex propagation constant (𝑘𝑧) inside the substrate will 
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change. The change in 𝑘𝑧 is due to the varying 𝑘𝑥 value. Thus, as the frequency of the input signal 

modifies, the direction of the main beam given by Eq. (4.8) will change and this direction can be 

controlled by appropriately designing the structure to provide the right value of 𝑘𝑥. 

For this work, instead of changing the frequency of the input wave, the idea is to modulate the 

substrate properties (eff) using the FPMS unit cells in Eq. (4.2). As a result, the value of fringing 

fields ‘T’ can be controlled. As the value of ‘T’ varies, the complex propagation constant of Eq. 

(4.5) and (4.6) will change. The conclusion can be drawn from Eq. (4.8) where the direction of 

radiation ‘’ depends on the propagation constant or in other words on ‘kx’. As kx changes so does 

the angle of antenna radiation. It is noteworthy to mention it here that the analysis here is being 

done considering that frequency of the antenna and the wavelength (𝜆0) are constant. One 

limitation of this model is that it can only be applied to a homogenous material with a uniform 

dielectric constant. This is different from the study that this thesis aspires to pursue. However, 

once the simulated results are presented a comparison between the theoretical model and the 

simulated results will be presented to validate the simulation model using the theory proposed in 

[38]. 

4.3 MLWA Optimization 

The theoretical understanding of the MLWA of Fig. 4.1 is important to understand the antenna 

behavior. Therefore, this can be followed up by the optimization of the antenna design, first 

without FPMS unit cells to the frequency of interest. The optimization process begins with a 

reproduction of the reference antenna design [38] into the full wave solver Ansys HFSS and a 

comparative analysis. At first, the dimensions of the antenna that are reported in [38] are used to 

model the structure in the simulator. By carefully defining the right simulation environment the 
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antenna is simulated to understand its radiation properties. For the most part, it is concluded that 

the antenna works well between 4.5 to 5 GHz for backward radiation and from 6.5 GHz to 8 GHz 

for forward radiation. This is in close agreement with the measured results of the reference article. 

In addition, it validates the simulation model that has been reproduced using HFSS and provides 

a certain degree of confidence that any results obtained here onwards are generally reliable. Once 

the design results have been largely reproduced, the actual designing process of this work starts 

with optimizing the antenna to operate at the target frequency of 2GHz. 

The antenna’s impedance and radiation characteristics depend mainly on its parameters in terms 

of L, l, T, l’, a, s and W (shown in Fig. 4.2(a)). Duroid 5880 is used for the design process with a 

substrate thickness of 0.8mm. Initially, this substrate thickness is selected to not deviate much 

from the original design. The other dimensional modifications are made in such a way that the 

antenna radiates at 2 GHz. For example, the value of ‘T’ is dependent on the wavelength of the 

signal. By basic calculations, the right value for this dimension is chosen. Similarly other variables 

are modified to achieve the desired results of radiation. A brief summary of these dimensions are 

shown in Fig. 4.2(a). In terms of radiation pattern, the simulated results show a very good gain of 

about 13.5 dBi as shown in Fig. 4.2(c). These results are encouraging as the antenna performance 

is properly established through them. Having written that, despite having a high gain, the antenna 

is not properly matched in terms of its impedance, as shown in Fig. 4.2(b). At 2 GHz, the reflection 

coefficient of the simulated antenna is about -2.5 dB, which is well above the acceptable IEEE 

norm of at least -10 dB. This needs to be corrected before the integration of FPMS unit cells on 

the antenna design. Also, the current size of the antenna shows a length of 660 mm. This is too 

long for practical handling of the antenna and its characterization. Therefore, this also needs to be 

improved while keeping in view the real-world constraints in mind. 
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(a) 

 
 

(b) (c) 

Fig. 4. 2: (a) Optimizing antenna (L = 510mm, l = 51 mm, T = 30 mm, l’ = 100 mm, a = 7.3 mm,     

s = 6 mm and W = 60 mm (b) Simulated reflection coefficient (c) Simulated radiation pattern 

with a gain of 13.5 dBi 

The next step is to reduce the antenna size (length) and optimize the reflection coefficient to at 

least -10 dB. Various methods for reducing the size of the antenna are investigated. At first the 

number of patches used in the antenna is reduced from 10 to 3. This can greatly reduce the overall 

length of the antenna. A close eye is kept on the antenna radiation pattern and the reflection 
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coefficient. Following comprehensive customization, for 3 patches having a total length of 335 

mm and a width of 120 mm, with substrate thickness of 1.5 mm, and with an increased via radius 

of 4 mm is deemed to be a good design (shown in Fig. 4.3(a)).  

 

 
 

(a) (b) 

 

(c) 

Fig. 4. 3: (a) Optimizing antenna with 3 patches with L = 265 mm, l = 85mm, T = 26 mm, l’ = 25 

mm, a = 12 mm, s = 6 mm and W = 52 mm (b) Radiation pattern with a gain of 11.3 dBi for 

2GHz (c) Simulated reflection coefficient 
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These optimization steps do allow the antenna size to come within acceptable range. However, 

despite the fact that the antenna's size has been reduced to a significant value and it has a strong 

radiation gain of about 11.3 dBi, does not mean that the antenna is operating at its best. This is 

illustrated by the antenna's impedance performance shown in Fig. 4.3(c), where the value is -4 dB 

at 2 GHz. Thus, as the antenna size is manageable now, the next focus of optimization will be on 

the antenna’s impedance. 

As mentioned before that the minimum acceptable target of -10 dB reflection coefficient must be 

achieved. The antenna design reported in [38] is designed to operate at high frequencies (all the 

way up to 8 GHz) and therefore the substrate thickness employed there is 0.8 mm. For this work, 

the designed frequency is much lower (2 GHz) and therefore to induce proper radiation from the 

antenna, it is possible that a thicker substrate can be used. Keeping this in view, the substrate's 

thickness is now given the attention. The antenna thickness is varied with the implementation of 

the Duroid 5880 to investigate its effect on the reflection coefficient. As the thickness of the 

antenna is increased from 1.5 mm to 3.96 mm, the impedance matching improves with a reflection 

coefficient of about -15 dB as shown in Fig. 4.4(c). The value of 3.96 mm is used while keeping 

an eye on the actual substrate thicknesses available from the manufacturer. Duroid provides 5880 

substrates with thicknesses of 3.175 mm and 0.787 mm. When combined together, these two 

values will result in a thickness of 3.962 mm. Also, while optimizing the antenna impedance, it is 

important to take care of the antenna’s radiation characteristics. Throughout these simulations, it 

is seen that the antenna radiation is not affected much by the substrate thickness variations.  With 

the improved matching, the antenna provides a stable gain of 11 dBi with the same beamwidth as 

is shown in Fig. 4.6(b). 
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(a) (b) 

 

(b) 

Fig. 4. 4: (a) Simulated antenna with thickness T.  (b) simulated radiation pattern with gain of 11 

dBi (c) Simulated reflection coefficient of antenna with substrate thickness of 3.96mm 

 

In this way the reference antenna is optimized to be working at 2 GHz with its miniaturized version, 

acceptable reflection coefficient and high radiation gain. With this the next logical step is to 
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incorporate the FPMS unit cell into this antenna design to achieve beam steering with a fixed 

frequency. 

4.4 Integrating FPMS Unit Cell into Antenna 

FPMS unit cells are integrated onto the MLWA structure in place of the vias at the edge of the 

structure. This is done in a sequential manner by replacing the vias with the unit cells of one patch 

at a time. Addition of too many variables in a single attempt is not advisable as it makes it hard to 

decipher the effect of each variable on the antenna results. Therefore, this strategy of replacing one 

stream of the vias at a time is used to gradually study the change in the antenna radiation pattern. 

The FPMS unit cell is re-simulated using the new 3.96mm substrate height, and the simulated 

dielectric constant is shown in Fig. 4.5. The resonance frequency has shifted to around 2.4 GHz 

for 3pF due to the increased substrate height. As a result, while studying the antenna, the 

capacitance of the varactor at maximum can be increased to around 3.5 pF or close to it. 

Fig. 4. 5: Simulated dielectric constant of FPMS unit cell with substrate thickness of 3.96mm 
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(a) 

 

(b) 

 

 

(c) 

Fig. 4. 6: (a) Antenna with 20 FPMS unit cells on one patch (b) Antenna with 20 FPMS unit cells 

on two patches (c) Antenna with 20 FPMS unit cells on all three patches 
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A few trial variations are shown in Fig. 4.6, where the FPMS unit cells are integrated in one patch 

(Fig. 4.6(a), two patches (Fig. 4.6(b), and three patches respectively (Fig. 4.6(c). A total of 20 

FPMS unit cells have been implemented in each of the three cases as shown in Fig. 4.6. The 

simulated results of the beam steering and reflection coefficient are studied for all the three antenna 

designs. The reason for using 20-unit cells is due to the size limitation of the patches. This is the 

maximum no. of unit cells that can added onto the antenna structure. Also, it is important to 

mention that, more the no. of unit cells, the better control can be achieved on the antenna 

characteristics. Therefore, maximum no. of cells that can be crowded onto the patch are used for 

simulation purposes. While looking at the results, it is seen that the integrating unit cells on one 

patch only results in minimum beam steering of the antenna radiation. As the unit cells are 

integrated onto the second patch, the beam scanning increases to 10 when same capacitance value 

is used in all the FPMS unit cells. However, the best steering results are obtained from the last 

design where a total of 32 is observed, shown in Fig.4.7. The capacitance values in all these 

simulations are varied from 2 pF up to 3.5 pF. The rationale for this choice is quite obvious from 

Fig. 4.5.  All the results reported here show beam steering in backward direction. These results 

provide the first step towards the proof-of-concept of an FPMS based antenna. However, some 

more optimization and study are needed to get to the final results.  
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Fig. 4. 7: Simulated radiation pattern of 4.6(c) 

 

Also, as discussed in Chapter 2, the objective of this work is to obtain continuous beam scanning 

in both the forward and the backward directions, or from left to right and vice versa. Thus, the 

design also needs to be explored to provide the desired continuous beam steering. 

 

Fig. 4. 8: Beam Steering of main lobe 
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4.4.1 Radiation Beam Steering in Backward (Right) Direction 

The beam steering of the main lobe is achieved after experimenting with different combinations 

and placements of unit cells along with the via of radius 4 mm. The best beam steering results are 

obtained for the case when all three patches have FPMS cells integrated on to them. However, in 

this case the antenna reflection coefficient does not show optimum impedance matching. To 

improve the antenna matching, the patch near the feed of the antenna is only integrated with unit 

cells along the half of its length. The remaining half that is right adjacent to the feedline is left 

unaltered with vias (not using FPMS unit cells). Such a design is expected to show better 

impedance results since the RF wave does not go through a sudden impedance change when it 

enters into the antenna structure. This design configuration is shown in Fig. 4.9. The geometry 

consists of 50-unit cells total, 20 on the upper patch, 20 on the lower rightmost patch, and 10 on 

the leftmost lower patch. The first half of the first patch consists of a total of 15 vias with 1 mm of 

radius each. The radius of the via attached to the design was reduced from 4 mm to 1 mm in this 

design for improved results and ease of fabrication. 

 

 

Fig. 4. 9: Antenna design with 50-unit cells and 15 vias of 1mm radius 
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The normalized radiation pattern results of the antenna (Fig. 4.9) are shown in Fig. 4.10. As the 

capacitance of the FPMS unit cell is varied, the main lobe of the antenna radiation steers from 0° 

to 32° (with reference to boresight direction). The capacitance in this case is varied from 2.2 pF to 

3.3 pF. These values of the capacitance are such that the antenna produces best radiation results. 

If different values are used, then not much of steering is observed from the antenna. This means 

that the variation of the unit cells beyond this range of capacitance does not alter the wave 

impedance of the RF signal propagating through the antenna structure. Therefore, this range is 

optimum to attain the best results of beam steering. During this steering, the maximum antenna 

gain is seen to be 11 dBi with a variation of around 3 dB in the maximum radiation direction. It is 

also worth noting that the side lobe level of the antenna radiation increases by 6 dB as the beam 

steering angle of the main beam varied from 0° to 32°. This increase in the side lobe levels is quite 

expected and causes the reduction in the gain of the main antenna beam. In this case, the antenna 

is steered until the side lobe level is at least 3 dB less than the main beam. These radiation 

characteristics are quite acceptable as per IEEE standards.  

 

Fig. 4. 10: Normalized Radiation pattern of antenna design with 50-unit cells and 15 vias of 1mm 

radius. 
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After discussing the radiation characteristics of the FPMS based MLWA, shown in Fig. 4.10, its 

quite natural to discuss the simulated reflection coefficient. That explains the impedance 

performance of the antenna. It is observed that the antenna has suitable impedance matching for 

capacitance values of 2.5 pF and 3.3 pF, with values of -19 dB and -15 dB, respectively, but not 

for capacitance value of 2.2 pF at 2 GHz as shown in Fig. 4.11. At 2.2 pF the reflection coefficient 

demonstrates a value of -7 dB. According to the IEEE standard, the minimum acceptable reflection 

coefficient value is -10 dB. Therefore, this parameter needs to be corrected for the optimized 

antenna performance. 

 

 

Fig. 4. 11: Reflection coefficient of antenna design with 50-unit cells and 15 vias of 1mm radius 

 

To accomplish the optimized antenna impedance performance, a tapered feeder, as shown in Fig. 

4.12, is added to the input of the antenna design. With the help of Ansys HFSS a parametric study 

is carried out to determine the best feeder dimensions. The optimal feeder dimensions is in the 
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form of a triangle with 7 mm in base and 18 mm in height. In addition, it is seen that increasing 

the no. of vias at the input also helps to improve the input reflection coefficient.  

 

Fig. 4. 12: Antenna design with Feeder 

 

The addition of the feeder significantly improves impedance matching as shown in Fig. 4.13. The 

reflection coefficient for a capacitance value of 2.2 pF is now -11dB, which is within the IEEE 

standard range. Further looking at the reflection coefficient values for the capacitance vales of 2.5 

pF and 3.3 pF, the values are -14 dB and -10.5 dB, respectively. When one compares these results 

with the reflection coefficient of the antenna without feeder, it can be deduced that the impedance 

matching for capacitance values of 2.5 pF and 3.3 pF have degraded somewhat. However, the 

difference for these two cases is minor when compared to the overall impedance matching for all 
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three capacitance values. Also, since the IEEE standard is met in all three cases, therefore it is 

better to use this design as compared to the last one.  

 

 

Fig. 4. 13: Reflection Coefficient of antenna design with Feeder 

 

Although the integration of the feeder helps to improve the impedance matching for all values of 

capacitance of the unit cell, one also has to pay attention to the radiation performance of the 

antenna. When looking at the effect of the feeder on the radiation pattern, it can be seen that there 

is not much change in the radiation pattern in terms of the direction of the main beam and the gain 

of the antenna. For 3.3 pF capacitance value, the antenna radiates in the boresight direction (0°) 

with a gain of 10.5 dBi. Reducing the capacitance value to 2.5 pF and 2.2 pF results in a steered 

beam of 15° and 30° with a gain of 10.5 dBi and 8.5 dBi, respectively. Thus, with a gain variation 

of 2 dB the antenna provides a beam steering of almost 30 with acceptable input matching. For 
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easy visualization, the normalized radiation pattern is illustrated on Fig. 4.14 with a beam steering 

of 30°. 

 

Fig. 4. 14: Simulated normalized radiation pattern with feeder and beam steering on backward 

(right) direction 

 

4.4.2 Radiation Beam Steering in Forward (Left) Direction 

 The steering of the main lobe of the antenna in the forward direction needs to be investigated after 

successfully steering the radiation beam to the backward direction. Different capacitance values 

of the unit cells are studied to obtain continuous beam steering to the left of the bore-sight. Instead 

of adjusting the capacitance value of all 50-unit cells together at a time, different sets of 

capacitance values are allocated, as shown in Fig. 4.15. C1 refers to the capacitance values of the 

30-unit cells on the right of the antenna axis (lower side), while C2 refers to the capacitance values 

of the 20-unit cells on the left of the antenna axis (upper side). Different possible combinations of 
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C1 and C2 are employed in order to find the best possible combination to achieve continuous beam 

steering on the left side while maintaining good impedance matching.  

 

Fig. 4. 15: Different sets of Capacitance value for FPMS unit cells 

 

A continuous beam steering of -30° on the left side is obtained by keeping C1 constant at 2.4 pF 

and varying C2 up to 0.6pF. The main radiation beam is steering with an angle of -15° and -30° 

from the bore-sight with values of C2 equal to 0.2 pF and 0.6 pF, respectively, while keeping C1 

fixed at 2.4 pF, as shown in the Fig. 4.16. The main lobe gain is 9 dBi at -15° and 8 dBi at -30°, 

with a maximum gain variation of 2.2 dB. Increasing the capacitance value above 0.6 pF results 

does not provide any further steering. To achieve acceptable antenna gain and radiation 

performance, these capacitance values are used here. The capacitance values used in this case to 

demonstrate steering on the left side is determined with the help of series of HFSS simulations. 
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For this purpose, a parametric study is performed on the values of C1 and C2. The results shown 

in Fig. 4.16 are obtained due to this set of simulations.  

 

Fig. 4. 16: Simulated normalized radiation pattern on forward (left) direction 

 

Further looking at the reflection coefficient of the radiations at an angle -15° and -30° are -10.5 

dB and -11.5 dB, respectively as shown in the Fig. 4.17. These results are again within the IEEE 

standard of at least -10 dB and exhibit that the antenna is matched under these conditions 
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Fig. 4. 17: Reflection coefficient for forward steering of MLWA 

 

 

4.5 Final Antenna Design 

The final optimized antenna design that can steer the main lobe of the radiation in ±30° is shown 

on the Fig. 4.18 with a length of 335 mm and width of 120 mm. It consists of a total of 50 FPMS 

unit cells and 25 Vias of 0.5 mm radius in the first patch. Each unit cell has an inductor and 

capacitor in the form of varactor along with a via of radius 0.07 mm. A feeder is attached into the 

design for better impedance matching. The substrate material used is Duroid 5880 with a relative 

permittivity of 2.2 and a dielectric loss tangent of 0.0009. 
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Fig. 4. 18: Final optimized antenna design with FPMS Unit cells (L = 290 mm, l = 85 mm,      

l´= 95 mm, T = 22 mm) 

 

The continuous beam steering configuration of the final optimized antenna design is shown in the 

Fig. 4.19, with steering in right-hand side (backward) and left-hand side (forward) direction. The 

maximum gain attained is at 0° with a value of 10.5 dBi and a maximum variation of 2.5 dB. This 

kind of gain variation is expected from an antenna whose main-beam is steered from the direction 

of maximum radiation due to increase in the side lobe levels. Thus, the overall antenna results are 

quite promising and validate the concept of a reconfigurable antenna using FPMS technology. 
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(a) 

   

(b) 

Fig. 4. 19: (a) Normalized radiation patter for right side beam steering (b) Normalized radiation 

pattern for left side beam steering 

 

The antenna gain can further be increased with increase in the total length of the antenna. The 

simulated normalized radiation pattern of antenna with increased length (700mm) and a total of 7 

patches, while keeping the width and thickness to be constant at 120mm and 3.962mm respectively 

is shown in Fig. 4.20. The radiation pattern shows a beam steering of ±30° with a maximum gain 
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of 13 dBi. Even though the antenna's gain has increased, the antenna's size is too large to be 

fabricated and realized. 

 

  

(a) (b) 

Fig. 4. 20: Antenna with 7 patches (a) Normalized simulated beam steering on forward direction 

(b) Normalized simulation beam steering on backward direction 

 

4.6 Comparison between the Analytical Model of MLWA and Simulated 

Results 

The analytical/theoretical model explained in [38] for a periodic MLWA structure can be applied 

to validate the simulated results presented in this work. For this purpose, the dimensions of the 

antenna shown in Fig. 4.18 are used to evaluate Eq. (4.2) to (4.8). Since these equations can only 

be applied to a uniform permittivity substrate, Ansys HFSS is used to extract the effective 

permittivity (eff.) experienced by the waves when propagating through the MLWA structure for 
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different values of capacitances on FPMS unit cells. These dielectric constant or permittivity 

values along with other antenna dimensions are then employed to determine the values of ‘kx’ and 

the direction of maximum radiation of the antenna ‘’ from the theory presented in section 4.2. As 

per the proposed theoretical model, for capacitance values of 2.2 pF, 2.5 pF and 3.3 pF, the 

extracted values of kx and  are plotted in Fig. 4.21. It is important to mention it here that these 

results are only obtained for the case when all the FPMS unit cells have same capacitance 

integrated on them. In the case where different capacitance values i.e., C1 and C2 are used on the 

two sides of the antenna, this theoretical model cannot be applied. The reason is because the 

effective permittivity for this case will be changing from one patch to the other. Therefore, a 

homogenous permittivity value cannot be used in the analytical model. Nonetheless, once the 

results for same capacitance values (2.2 pF, 2.5 pF, 3.3 pF) throughout the MLWA structure are 

obtained, it is necessary to compare them with the simulated results of Ansys HFSS model. To do 

so, Fig. 4.22 is shown here. A comparison between the theoretical values of  and the simulated 

values is shown here. An excellent agreement can be observed between the theory and simulations, 

validating the proof of concept of an MLWA design based on FPMS technology. 
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Fig. 4. 21: Theoretical results of antenna direction of radiation for different capacitance values of 

FPMS unit cell 

 

 

Fig. 4. 22: Comparison between the theory and simulations of FPMS based MLWA 
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4.7 Conclusion 

A novel micro-strip-line based LWA design was demonstrated with reconfigurability in the form 

of radiation pattern with the implementation of FPMS unit cells. The reference antenna design is 

explained with the help of simulated results as well as its theoretical understanding is illustrated 

through this work. The optimize antenna has a total length of 335 mm and a width of 120 mm, 

showing a beam steering of ±30° with a maximum gain of 10.5 dBi and a minimum gain variation 

of 2.5 dB. The antenna has acceptable impedance matching for all its radiation values with a 

minimum reflection coefficient value of -11 dB. The gain of the antenna can further be doubled 

with the increase in length but will be hard to fabricate and realize. 
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Chapter 5 

 

Conclusion and Future Work 

5.1 Conclusions 

The future of modern applications is uncertain without the inclusion of antenna design that is field 

reconfigurable, compact, and, last but not the least, efficient. This thesis presents one such modern 

antenna design with all of the aforementioned capabilities in the form of radiation pattern 

reconfigurability. A novel antenna design based on a microstrip line-based leaky wave antenna 

(MLWA) with integrated FPMS unit cell integration is reported in this thesis. For the first time, 

FPMS unit cells have been explored for their application in antenna designs. Therefore, this work 

can be considered as the stepping-stone towards a new class of antenna designs that can be 

regarded as ‘Field Programmable Microwave Antennas (FPMA)’. 

The antenna has a total length and width of 335 mm and 120 mm, respectively and is designed on 

a Duroid 5880 substrate. With effective integration of FPMS unit cells and by virtue of variable 

varactor values the antenna is allowed to steer its beam effectively at 2 GHz. A maximum gain of 

10.5 dBi is achieved from the antenna with a gain variation of 2.5 dB.  

The main lobe of the radiation can steer continuously from backward to forward direction by 

changing the capacitance values of the FPMS unit cells. A total beam steering of 30 is obtained 

from Ansys HFSS full-wave simulations. Throughout the steering of antenna radiation, the antenna 

impedance remains matched which is highly desired for any antenna system. At the end, the 

theoretical model of an MLWA structure is used to validate these simulation results. The analytical 

model used here is presented in [38] and has already been proven using actual prototyping. This 
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gives a high degree of confidence that the proposed antenna design will provide the beam steering 

results as predicted by the simulation model. 

5.2 Future Work 

The first step to move forward in presenting a proof-of-concept of an FPMA design is the actual 

realization of the proposed FPMS based MLWA design. For this purpose, two vendors have been 

contacted to fabricate the antenna design.  These vendors are Syber Circuits and Candor Inc. 

located near Toronto, ON. The quotation obtained from the first vendor is more feasible in terms 

of timeline and cost. The plan is to fabricate the antenna design using the facility of Syber Circuits 

after which the characterization will be carried out. For antenna measurements/characterization, it 

is desired to use the facility of Georgian College in Barrie, ON. However, at present the antenna 

anechoic chamber present at this facility is not ready for far-field measurements. It can only be 

used for Electromagnetic Compatibility (EMC) testing in its present state. Having said that, with 

some modifications the chamber can be employed for the far-field measurements of any antenna. 

Therefore, it is anticipated that the antenna design can be tested here. Secondary options include, 

Polytechnique Montreal (University of Montreal) and University of Waterloo both of which have 

operational anechoic chambers.  

Once this design has been validated using actual antenna radiation pattern measurements, it is 

anticipated that more of other class of antennas are to be studied using FPMS technology. These 

include horn, lens and reflector antennas. On characteristic common among all the three antenna 

designs proposed here is that they rely on substrate properties to control the propagation of the 

wave through them. Also, their implementation is such that one can easily use the FPMS unit cells 

onto the body of the antenna to achieve the desired results. This can be easily explained by 

considering the example of a reflector antenna. A reflector antenna/surface is composed of many 
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antenna elements which are usually made up of same structure. The direction of main beam in 

such a design can be controlled by smartly maneuvering the relative phase shift between the 

antenna elements.  If these elements are implemented using FPMS unit cells, then one can control 

the phase difference between consecutive elements by modulating the varactor diodes on each unit 

cell. As a result, a dynamic range of relative phase shift can be achieved that will allow the designer 

to conveniently steer the antenna beam. This concept is diagrammatically represented in Fig. 5.1. 

 

 

Fig. 5. 1: Reconfigurable RF reflector design and the physical model of the FPMS unit cell 

 

The same concept can be applied to other antenna elements to provide reconfigurability in terms 

of antenna radiation, polarization, or impedance. Thus, this work opens the door for a completely 

new class of antenna that can be developed using FPMS technology.  
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