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Abstract 

   Compressed sensing is a novel technique where one can recover sparse 

signals from the undersampled measurements. Mathematically, measuring an 

𝑁 -dimensional signal 𝐱 ∈  ℝ 𝑁  with a 𝐾 ×  𝑁  measurement matrix  𝚽 yields a 

𝐾-dimensional vector  𝐲,   𝐲 =  𝚽𝐱, where 𝐾 < 𝑁. In recent years, many researchers 

demonstrated that a sensing matrix 𝚽 plays a vital role in recovery of sparse signals. 

In terms of the drawbacks of random sensing matrices, deterministic sensing matrices 

have been sought to apply for the measurement strategies. The deterministic sensing 

matrices can guarantee the reconstruction performance that is empirically reliable, 

with fast processing and low complexity. 

 

In this thesis, a Fourier-based deterministic sensing matrix is analyzed and 

applied for deterministic compressed sensing. Based on the construction of this 

sensing matrix, we deliberately make experiments to compare the recovery 

performance of Fourier-based deterministic sensing matrix to that of chirp sensing 

codes and random partial Fourier sensing matrices in terms of empirical recovery 

performance in noiseless and noisy scenarios. In image reconstruction, the original 

image can be sparsified by Haar wavelets and then the largest coefficients of the 

image have been kept for the image reconstructions. Then, Fourier-based 

deterministic sensing matrices have been applied to the sparsified image to compare 

the recovery performance with that of random partial Fourier and chirp sensing 

matrices. Exploiting the structure of the Fourier-based deterministic sensing matrix, 

the compressive sampling matching pursuit (CoSaMP) algorithm with an efficient fast 

Fourier transform (FFT) technique is applied for signal and image reconstruction. 

Finally, experimental results show that the Fourier-based deterministic sensing 

matrices, together with the CoSaMP greedy recovery algorithm, can empirically 

guarantee the sparse signal and image recovery with high reliability.  
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Chapter 1 

Introduction 

 

Compressed sensing (or compressive sampling) as a novel and emerging 

technology has been proposed by Donoho [1], Candes and Tao [2] [3], which provides 

a fundamentally new approach for sampling signals. Compared to the traditional 

Nyquist sampling theorem, compressed sensing predicts that certain signals or images 

can be recovered if they are sparse or compressible with respect to some basis or 

dictionary of waveforms [4].  

 

In recent years, many researchers demonstrated that a measurement matrix   

plays a vital role in recovery of sparse signals. Random sensing matrices, such as 

Gaussian and Bernoulli random matrices have been investigated for a long time with 

so many theoretical benefits [5], but the drawbacks [6] of high complexity, large 

storage, and low efficiency are obvious as well in its practical implementation. 

Considering the drawbacks, a few research activities have sought to develop a 

deterministic matrix to apply for the measurement strategies, e.g. chirp sequences [7], 

Kerdock and Delsarte-Goethals codes [8, 9] , dual BCH codes [10] and second order 

Reed-Muller codes [11]. Other techniques for deterministic construction, based on 

finite fields, representation theory, and character sequences, can be found in [12-17]. 

The deterministic matrices can guarantee the reconstruction performance that is 

empirically reliable, with fast processing and low complexity. 
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1.1  Motivation 

Recently, Yu, Feng, Zhang present a new class of near-optimal (𝑁, 𝐾) partial 

Fourier codebooks in [12]. They demonstrate that by arranging each code vector as a 

column, the new near-optimal codebook presents a 𝐾 ×  𝑁 partial Fourier matrix 

with near-optimal coherence and tightness by choosing the rows deterministically 

from the inverse discrete Fourier transform (IDFT) matrix.  

 

Inspired by the theoretical construction of a Fourier-based deterministic sensing 

matrix in [18] and motivated by the experiments in [19], we compare recovery 

performances of the Fourier-based deterministic sensing matrices to those of random 

partial Fourier and chirp sensing matrices in the noiseless, noisy scenarios and image 

reconstruction, respectively. Note that the idea behind this work is that we expect this 

Fourier-based deterministic sensing matrix to inherit the numerical reliability and low 

complexity in the practical implementation, and also to provide more options with 

various applications.  
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1.2  Contribution 

In this thesis, we first deliberately make experiments to compare the recovery 

performance of compressive sampling matching pursuit (CoSaMP) [21] and 

orthogonal matching pursuit (OMP) [44] reconstruction algorithms. Moreover, the 

Fourier-based deterministic sensing matrix has been compared to chirp sensing codes 

[7] and random partial Fourier sensing matrices in terms of empirical recovery 

performance with noiseless and noisy scenarios. The original image can be computed 

by Haar wavelets [32] and then the largest coefficients of the image have been kept 

for the image reconstructions. Then, Fourier-based deterministic sensing matrix is 

applied to the sparsified image to compare the recovery performance with that of 

random partial Fourier and chirp sensing matrix. Finally, experimental results show 

that the Fourier-based deterministic sensing matrices, together with the CoSaMP 

greedy algorithm, can empirically guarantee the sparse signal and image recovery 

with high reliability.  

 

 The contributions of analysis and applications of Fourier-based deterministic 

sensing matrix can be summarized as follows. 

 We make experiments to compare recovery performance of CoSaMP and 

OMP with the Fourier-based deterministic sensing matrix. 

 Numerical experiments demonstrate reliable reconstruction performance with 

CoSaMP recovery algorithm in noiseless and noisy scenarios, respectively. 

 Haar wavelet transform is applied to sparsify the original image  

 The Fourier-based deterministic sensing matrix is applied to image 

reconstruction.  

 The performance of Fourier-based deterministic sensing matrix is compared 

to random partial Fourier sensing matrix and chirp sensing code in image 

reconstruction. 

 

 



 4 

Chapter 2 

Background 

 

2.1 Compressed Sensing 

The traditional method to reconstruct images or signals from measured data 

follows the Shannon/Nyquist sampling theorem. It states that if the samples of a signal 

are taken at Nyquist rate or twice the highest frequency, which can be perfectly 

reconstructed from its measurements. This principle underlies most devices of current 

technology, such as analog to digital conversion, medical imaging or audio and video 

electronics [22]. However, in many important applications, Nyquist rate is so high by 

ending up with far too many samples. Due to the cost and physical limitation, the data 

acquisition and processing of signals in application areas such as imaging, video, 

medical imaging continues to be concerned. The process of traditional data 

acquisition is shown below.  

Sample Compress Transmit/Store
Input Signal 

x

y

     

                                                 

                      

Receive y Decompress x̂

     

Figure 2.1 The process of the traditional data acquisition 

 

To address these challenges to deal with the high-dimensional data, we turn our 

attention to compression, the purpose of which is to obtain the most succinct  
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 representation of the original signal and to achieve the acceptable distortion in 

data. Transform coding, one of the most popular techniques for signal compression, 

typically dedicates on finding a basis or frame that provides sparse or compressible 

representations for signals [23]. Sparse representation, in particular, is a common way 

to sparsify a signal by transforming the signal to the orthonormal basis (E.g. Wavelet 

basis [32]). Both sparse and compressible signals can be represented with high fidelity 

by preserving only the values and locations of the largest coefficients of the signal. 

For example, the commercial coding standards MP3 [25], JPEG [26], and JPEG2000 

[27] can directly exploit this sparsity. 

However, because typical signals have some structure, the process of massive 

data acquisition followed by compression is extremely wasteful. Compressed sensing 

[1], as an emerging and novel technology indicates that when the signal is sparse or 

compressible, the signal can be recovered accurately or approximately from the 

incomplete measurements, which accomplishes the combination of sampling and 

compression. Figure 2.2 is presenting the compressed sensing based data acquisition 

system. 

Compressed 

sensing

y
Transmit/Store

Input signal 

x

 

 

Receive y Reconstruct x̂

 

Figure 2.2 Compressed sensing based data acquisition system 

 

In practice, particularly the medical imaging applications such as Magnetic 

Resonance Imaging (MRI) [28], computed tomography (CT) [29] and ultrasound can 

be very well suited to compressed sensing. Specifically, we use MRI as an example to 
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illustrate that how compressed sensing works in medical application. MRI obeys two 

key requirements for successful application of compressed sensing: (1) medical 

imagery is naturally compressible by sparse coding in an appropriate transform 

domain (e.g., by wavelet transform); (2) MRI scanners naturally acquire samples of 

the encoded image in spatial frequency, rather than direct pixel samples [28]. 

Mathematically,  measuring an 𝑁-dimensional signal 𝐱 ∈  ℝ 𝑁 with a 𝐾 ×  𝑁 

measurement matrix 𝚽 yields a 𝐾-dimensional vector  𝐲,   𝐲 =  𝚽𝐱, where 𝐾 < 𝑁. 

We assume that 𝐱 can be sparsified in some orthonormal basis 𝚿. Thus, we can 

write 𝐱 as in [30] 

    𝐱 =  𝚿𝐬                            (2.1) 

where 𝐬 is a length 𝑁 × 1 column vector. We measure 𝐱 with 𝐾 <  𝑁 projections 

which have results given in the vector 𝐲. The vectors projected upon are set as the 

rows of the 𝐾 ×  𝑁 matrix 𝚽 which gives in [30] 

𝐲 =  𝚽 𝚿 𝐬  

=  𝚯𝐬                       (2.2) 

where 𝚯 =  𝚽 𝚿 is a 𝐾 ×  𝑁  matrix. We are free to design   𝚿  and thus 𝚯. 

Though, if we design 𝚯 we should remain aware that actual sensing of the signal is 

done with the orthonormal basis 𝚿. 

 

The main considerations from (2.1) and (2.2) can be highlighted as follows:  

1) For signal  𝐱 ∈ ℝ𝑁 , we need to find the orthogonal basis   𝚿 , then sparse 

representation of 𝐱 can be performed on  𝚿.   

2)  We need to design a measurement matrix which is uncorrelated with  𝚿 [2]. 

3) A reconstruction algorithm should be designed for recovering accurately the 

original input signal  𝐱. 
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2.2 Noisy Compressed Sensing 

  Now, we turn our attention to noisy compressed sensing. Sparse signal recovery in 

the presence of noise has been intensively investigated in many recent literatures 

because real-world devices are subject to at least a small amount of noise [31]. The 

noisy measurement is represented as  

𝐮 = 𝐲 + 𝐳 = 𝚽𝐱 + 𝐳                       (2.3) 

where the measurements are corrupted by 𝐳, which is the additive white Gaussian 

noise of zero mean and variance 𝜎2.  

 

 

2.3 Haar Wavelet Transform 

For image processing, most coefficients of an image are very small, and only the 

relatively few large coefficients contain most of the important information. Wavelet 

transfrom [32] is similar to Fourier transform in that it allows a target function over an 

interval to be represented in terms of an orthogonal function basis [32]. 

The Haar transform is one of the simplest and basic transformations from the 

space/time domain to a local frequency domain, which reveals the space/time-variant 

spectrum. Attracting feature of Haar transform is that it can analyze the local features. 

This property makes it applicable in electrical and computer engineering applications, 

such as signal and image compression. The Haar sequence is now recognized as the 

first known and the simplest wavelet basis [33]. 

Mathematically, we have a vector 𝐟 ∈ ℝ𝑛 in which we use a Haar wavelet 

transform basis 𝚿 = [ 𝛹1 𝛹2 … 𝛹𝑛] as follows in [34]: 

𝐟(t) = ∑ 𝑥𝑖𝛹𝑖(t)

𝑛

𝒾=1

                                                       (2.4) 

where 1 ≤ 𝑖 ≤ 𝑛, 𝑥 is the coefficient sequence of 𝐟, 𝑥𝑖  =< 𝐟, 𝛹𝑖 >.  
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Example 1. The 4×4 Haar wavelet transform matrix shown below: 

 

ℋ =
1

√4
[
 
 
 

1    1    1
1    1 −1

√2 −√2    0
          

   1
−1
   0  

  0        0      √2       − √2]
 
 
 

 

 

In image reconstruction part of our experiments, we apply the Haar wavelet 

transform matrix to an original image signal, where one can discard small coefficients 

without losing the significant information. Formally, consider 𝐟𝒔(t) obtained by 

keeping only the terms corresponding to the 𝑠  largest values in the sparsity 

representation. 

 

 

2.4 Random Partial Fourier Sensing Matrix 

First, let us discuss that a DFT matrix is an expression of a discrete Fourier 

transform (DFT) as a matrix multiplication. By collecting the DFT output samples 

into a column vector as follows.  

 

[
 
 
 
 
 
 

𝑋(𝑤0)

𝑋(𝑤1)

𝑋(𝑤2)
.
.
.

𝑋(𝑤𝑁−1)]
 
 
 
 
 
 

 = 

[
 
 
 
 
 
 

 𝐴0(0)      𝐴0(1)   …  𝐴0(𝑁 − 1)

 𝐴1(0)     𝐴1(1)   …  𝐴1(𝑁 − 1)

  𝐴2(0)      𝐴2(1)   …  𝐴2(𝑁 − 1) 
.
.
.

 𝐴𝑁−1(0)      𝐴𝑁−1(1)   …  𝐴𝑁−1(𝑁 − 1)]
 
 
 
 
 
 

 

[
 
 
 
 
 
 

𝑥(0)

𝑥(1)

𝑥(2)
.
.
.

 𝑥(𝑁 − 1) ]
 
 
 
 
 
 

  

  𝑿                        𝑁
′                       𝐱 

    

where 𝐱 is the input signal. Therefore, the inverse DFT operation can be performed 

as 

𝐱 =
1

𝑁
 𝑁 ⋅ 𝑿                                                             (2.5) 
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where  𝑁 is the 𝑁-point IDFT matrix. The 𝑛th column of  𝑁 is denoted as 𝐚𝑛 

and the 𝑘th row of  𝐚𝑛, denoted as  𝑛(𝑘), is 𝑒
2𝜋𝑗𝑘𝑛

𝑁 . 

Mathematically, the 𝑁 -point inverse discrete Fourier transform (IDFT) of a 

discrete signal 𝑿(𝑛) is defined as in [36] 

𝐱(𝑘) = ∑ 𝑒
2𝜋𝑗𝑘𝑛

𝑁

𝑁−1

𝑛=0

𝑿(𝑛) , 𝑘 = 0,1, … , 𝑁 − 1                           (2.6) 

where 𝑗 = √−1. 

 

Let 𝐷 = {𝑑0, . . . 𝑑𝐾−1} as defined in [12] be the row index set of selecting 

𝐾 distinct integers, where 0 ≤ 𝑑𝑘 ≤ 𝑁 − 1. A 𝐾 × 𝑁 partial Fourier matrix selects 

𝐾 rows from the 𝑁-point IDFT matrix. With a scaling factor of 
1

√𝐾
 , the 𝑙th column 

vector of the partial Fourier matrix is given as  

 𝒍 =
1

√𝐾
(𝑒𝑗

2𝜋𝑑0𝑙
𝑁 , 𝑒𝑗

2𝜋𝑑1𝑙
𝑁 , … , 𝑒𝑗

2𝜋𝑑𝐾−1𝑙
𝑁 ) 𝑇     , 0 ≤ 𝑙 ≤ 𝑁 − 1                     (2.7) 

Then  =  ( 𝟎,   𝟏, … ,  𝑁−1)  is constructed partial Fourier codebook. The 

coherence [39] of   is given by  

𝜇 = 𝑚𝑎𝑥
0≤𝑛1≠𝑛2≤𝑁−1

|𝐚𝑛1
𝐻 𝐚𝑛2

| =
1

√𝐾
                                             (2.8) 

where 𝐚𝑛1
 is a column vector of   and 𝐚𝑛1

𝐻  denotes its complex conjugate. The 

coherence can almost achieve the Welch bound equality [40] and sufficiently large 𝑁. 

Moreover,    forms tightness [41] as each row is mutually orthogonal.  

Finally, a random partial Fourier matrix is constructed by choosing 𝐾 rows 

uniformly at random from the 𝑁 × 𝑁 inverse DFT matrix, equivalent to the partial 

Fourier codebook proposed in [12] and [38]. In [38], they presented the codebook 

for   𝑝 = 2  from the array structure of binary 𝑚 -sequences and their Fourier 

transforms. It was then generalized for any prime 𝑝 in [12], where its proof was also 

improved by utilizing a new almost difference set.  
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2.5 Chirp Sensing Codes 

Chirp sensing code as a deterministic sensing matrix has been proposed and 

presented by Applebaum et al. [7], which is designed with chirp signals forming the 

columns. Specifically, an 𝑛-length chirp signal with chirp rate 𝑟 and base frequency 

𝑚 is given as  

𝜙𝑟,𝑚(ℓ) =
1

√𝑛
𝑒

2𝜋𝑗
𝑛

𝑟ℓ2+
2𝜋𝑗
𝑛

𝑚ℓ ,                  𝑟, 𝑚, ℓ ∈ ℤ𝑛               (2.9) 

where 
1

√𝑛
 is the coefficient to guarantee the vector to have the unit form, ℓ 

represents row index of 𝚽𝑐ℎ𝑖𝑟𝑝. For a chirp signal with 𝑛 length, there are 𝑛2 

possible pairs  (𝑟, 𝑚). Therefore, it is clear to have the full size of chirp sensing codes 

with 𝑛 × 𝑛2 as follows 

𝚽𝑐ℎ𝑖𝑟𝑝 = [𝐕1 , 𝐕2 , … … , 𝐕𝑛]                   (2.10) 

Each 𝑛 × 𝑛 submatrix 𝐕𝑖, where 1 ≤ 𝑖 ≤ 𝑛, with columns given by chirp 

signals having a fixed chirp rate 𝑟𝑖, with 𝑚 runs through 0 to 𝑛 − 1, the chirp rate 𝑟 

also varies from 0 to 𝑛 − 1. Therefore, column  𝑗 =  𝑚 +  𝑟𝑛 +  1 of 𝚽𝑐ℎ𝑖𝑟𝑝 is a 

discrete chirp with chirp rate 𝑟 and base frequency 𝑚. 

In [7], they compared the statistics of eigenvalues of the Grammitain matrices to 

those of 𝑛 columns chosen uniformly at random from the chirp matrix. Also, 𝚽𝑐ℎ𝑖𝑟𝑝 

can satisfy the UStRIP property in [6] that it can be suitable as compressed sensing 

measurement in general. 

As explained in [19, 43], because of the sparsity of signals or images and the rule 

of thumb, not only the full size of 𝚽𝑐ℎ𝑖𝑟𝑝 can be used as the sensing matrix, but a 

few sub-matrices can do as well. In practice, the compression ratio 𝑛/𝑁 is more free 

to use for the sparse signals or images. 

Example 2. The submatrix of chirp sensing codes can be  

𝚽𝑐ℎ𝑖𝑟𝑝 = [𝐕𝑟1
 , 𝐕𝑟2

,   𝐕𝑟3
,   𝐕̂𝑟4

]                                         (2.11) 
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where 𝑟1 = 1 ，𝑟2 = 2 ， 𝑟3 = 3，𝑟4 = 4， and 𝐕̂𝑟4
 is a submatrix of 𝐕𝑟4

, so 

that the column number of 𝚽𝑐ℎ𝑖𝑟𝑝 can match the signal size. For instance, the 

sensing matrix for an 128 × 128 (𝑁 = 16384) image might be taken to be of size 

(𝑛, 𝑁) = (4093, 16372). Note that 𝑛 = 4093 is the closet prime number to 25% of 

16384.  

However, the limitations of chirp sensing codes is obvious: 1) the restriction must 

be 𝑛 ≥ √𝑁. As a result, this limits the algorithm’s abilities in situation where 𝑛 

must be small. 2) 𝑛 has to be a prime number to uniquely determine r𝑗[7].  

 

 

2.6 RIP and StRIP 

The restricted isometry property (RIP) [35] of a compressed sensing matrix is an 

important necessary condition to guarantee the sparse signal recovery. 

 

Theorem 1. [35] Let 𝚽  be a 𝐾 ×  𝑁  matrix. Then 𝚽  has the Restricted 

Isometry Property (RIP) of order 𝑠, if there exists a  𝛿𝑠 ∈  (0, 1) such that 

(1 − 𝛿𝑠)||𝐱||2 ≤  ||𝚽𝐱||2 ≤  (1 + δ𝑠)||𝐱|| 2            (2.12) 

holds for all 𝑠-sparse vectors 𝐱.  

 

A sensing matrix 𝚽 satisfies the restricted isometry property (RIP) if 𝛿𝑠 is not 

too close to one [35]. The RIP is a very restrictive condition and the currently known 

measurement matrices obeying the RIP with near-optimal number of measurements 

drive into two categories [36]: 1) Random matrices such as Gaussian or Bernoulli 

matrices with the entries of Gaussian or Bernoulli distribution, 2) Random partial 

Fourier matrix or Hadamard transform matrix are obtained by choosing 𝐾 rows 

uniformly at random from a normalized 𝑁 ×  𝑁 Fourier or Hadamard transform 

matrices.  



 12 

Due to the storage limitations of random matrices, in some applications, 

deterministic sensing matrices have been put into much desire. Calderbank et al. [6] 

demonstrated an approach on deterministic sensing matrix on  𝚽 to ensure that  𝚽  as 

a nearly-isometry with high probability regarding to the 𝑠-sparse signals on a uniform 

distribution.  

 

Definition 1. [6] A 𝐾 × 𝑁 matrix 𝜱 is said to be 𝜂-StRIP-able, where 0 < 𝜂 ≤ 1, 

if the following three conditions are satisfied 

 The rows of  𝜱  are mutually orthogonal, and all the row sums are equal to 

zero. 

 The columns of  𝜱  form a group under pointwise multiplication from which 

the entries of first column of  𝜱 are set to be constant. 

 For any 𝑛 ∈ {2, … , 𝑁}, 

|∑ 𝜑𝑛(𝑘)

𝑘

|

2

≤ 𝐾1−𝜂                                                    (2.13) 

Remark 1[6]. The third condition is a bound for the absolute value of the column sum 

of the matrix. For example, we assume that a basic partial Fourier matrix 𝚽 has the 

first column of (
1

√𝐾
,

1

√𝐾
, … ,

1

√𝐾
)𝑇 , denoted as φ1, one can check that  

|∑ 𝜑𝑛(𝑘)

𝑘

| = |√𝐾φ1

𝐻
φn|. 

Thus, the column sum is actually close related to the coherence of this basic partial 

Fourier matrix.  

 

 

2.7 Orthogonal Matching Pursuit Algorithm 

This section describes an iterative greedy algorithm for signal recovery, known as 

orthogonal matching pursuit (OMP) algorithm proposed in [44]. This algorithm is a 

commonly used algorithm for recovery of sparse signals due to its low complexity 
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and simple implementation. 

 

The procedure of OMP is defined in [44] as follows. 

Input: 

− A 𝐾 ×  𝑁 measurement matrix   

− A 𝐾-dimensional measurement vector  𝐲 

− The sparsity level 𝑠 

Output: 

− An index set Λ containing 𝑠 elements 

− A signal estimate 𝐱̂ ∈  ℝ𝑁 

 

Table 2.1 OMP Recovery Algorithm [44] 

  

Procedure (OMP): 

0) Initialize a residual vector  𝟎 = 𝐲 = ( 0,     ,  𝑘−1)𝑇  
and   =  𝜙  at 

iteration  𝑖 =  0. 

1) At iteration 𝑖, compute 𝐟 =      =  ( 0,     ,  𝑁−1)𝑇 , find the peak of 𝐟, and 

record its position as  𝑖 i.e.,  𝑖 =  r     =0,    ,𝑁−1| t|. 

2) Update the index set       {𝑛𝑖} and the submatrix   +𝟏  =  [   𝐚  ]. Note 

that  𝟎 is an empty matrix. 

3) Solve a least-square problem to obtain    =  r     ||𝐲 −   +𝟏 ||2. 

4) Update the residual by    +𝟏  =  𝐲 –   +𝟏   . 

5) If 𝑖 <  𝑠 − 1, then 𝑖  𝑖 + 1 and repeat 1) − 4). If  𝑖 =  𝑠 − 1, stop the 

iteration. The nonzero entry of 𝐱̂  is set by 𝐱̂𝑛𝑗
=   𝑗 for  𝑗  ∈   , where  𝑗 

is the 𝑗th element of  𝑠−1. 
 

 

 

Note that the measurement procedure in the compressed sensing, i.e.,  𝐱 is a 

linear combination of 𝑠  columns in    . In the reconstruction part, we have to 
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determine which columns of   participated in this measurement and the coefficients 

of these columns contributed in the measurement. The idea behind this algorithm is to 

choose columns in a greedy fashion [43]. At each iteration, we choose the column of 

  that is the most strongly correlated with the remaining part of vector 𝐲. Then the 

coefficients of the chosen columns are calculated in a least-square manner. Finally, we 

subtract off these columns’ contribution to 𝐲 and iterate on the residual. After 𝑠  

iterations, the algorithm will have identified the correct set of columns together with 

their corresponding coefficients. 

 

 

2.8 CoSaMP Algorithm 

This section introduces the Compressive Sampling Matching Pursuit (CoSaMP) 

algorithm described in [21]. The algorithm is useful and general for recovery of sparse 

signal or image, which will be used in the compressed sensing empirical experiments 

in Chapter 4.  

As input, the CoSaMP algorithm requires four pieces of information: 

1) A 𝐾 ×  𝑁 measurement matrix    

2) A 𝐾-dimensional measurement vector  𝐲 

3) The sparsity level 𝑠 of the approximation to be produced. 

4) A halting criterion. 

The algorithm is initialized with a trivial signal approximation, which means that 

the initial residual equals the unknown target signal. During each iteration, CoSaMP 

performs five major steps [21]: 

 Identification. The algorithm forms a proxy of the residual from the current 

samples and locates the largest components of the proxy. 

 Support Merger. The new support set is united with the set of components that 

appear in the current approximation. 

 Estimation. The algorithm solves a least-squares problem to approximate the 
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target signal on the merged set of components. 

 Pruning. The algorithm produces a new approximation by retaining only the 

largest entries in this least-squares signal approximation. 

 Sample Update. The samples are updated so that they reflect the residual, the 

part of the signal that has not been approximated. 

These steps are repeated until the hating criterion is triggered. In our experiments, 

the halting criterion is if the norm of updated samples is very small, e.g.||𝐯|| < 10−4, 

or the iteration counter 𝐭 reaches the sparsity level. 

The main procedure of CoSaMP summarizes in Table 2.2  

 

Table 2.2 CoSaMP Recovery Algorithm [21] 

𝐱̂𝟎  𝟎  

𝐯  𝐲  

𝐭  𝟎 Iteration 

  𝟎 {Current samples=input samples}  

  

Repeat  

     𝒕  𝒕 + 𝟏  

     𝐟    𝐯 Form a signal proxy 

    𝛀  𝐬𝐮𝐩𝐩(𝐟𝟐𝐬) Identify large components 

    𝐓  𝛀  𝐬𝐮𝐩𝐩(𝐱̂𝒕−𝟏) Merge supports 

     |𝐓   𝐓
† 𝐲 Estimate signal by least-squares 

    𝐱̂𝒕   𝒔 Take the largest 𝒔 entries 

    𝐯  𝐲 −  𝐱̂𝒕 Update current samples 

Until a halting criterion is true  

 

 

This algorithm is to approximate the target signal 𝐱̂. At the first step, it forms a 

signal proxy  𝐟  and identifies a potential candidate omega of the signal support by 
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detecting the location of the largest 2𝑠 components of the proxy. Then it merges the 

support to generate a new support set 𝐓. We use the samples to estimate the target 

signal   𝐱̂  on this support, and take only the largest 𝑠 entries from the signal 

approximation  . Finally, it updates current samples 𝐯 for next iteration.  

 

In our experiments, the matrix-vector multiplication of  𝐱̂  is performed by the 

FFT algorithm since the Fourier-based deterministic sensing matrix   is based on 

DFT matrix structure, meanwhile current samples are updated at each iteration.  
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Chapter 3 

Fourier-based Deterministic Sensing Matrix 

 

3.1 Fourier-based Deterministic Sensing Matrix   

A basic 𝑝𝑟 × (𝑝2𝑟 − 1)  matrix  ̂  [12] is constructed by choosing 𝑝𝑟 rows 

deterministically from (𝑝2𝑟 − 1)-point inverse discrete Fourier transform (IDFT), 

where 𝑝 is a prime number and 𝑟 is a positive integer. It was then generalized for 

any prime 𝑝 in [12]. 

In this section, based on the basic partial Fourier sensing matrix, a Fourier-based 

sensing matrix has been studied in [18]. According to the theoretical construction, we 

analyze and apply the Fourier-based sensing matrix to our empirical experiments in 

Chapter 4. 

Now, we present a formal expression of the construction of Fourier-based 

deterministic sensing matrix   

 

Construction 1[18]: Let 𝐾 =  𝑝𝑟 be with a prime 𝑝 and 𝑎 positive integer 𝑟. 

Let 𝐷 =  {𝑑0,      , 𝑑𝐾−1} be the row index set of two cases: 𝑝 =  2, or 𝑝 >  2. Let 

𝐿 be a positive integer and 𝑁 =  (𝐾 +  1)𝐿, where 1 <  𝐿 ≤  𝐾 −  1. For a given 

integer 𝑙, 0 ≤  𝑙 ≤  𝐿 −  1, define a 𝐾 × (𝐾 +  1) submatrix 𝜎(𝑙)  =  {𝜎𝑘, 
(𝑙)

 | 0 ≤

 𝑘 ≤  𝐾 −  1, 0 ≤  𝑡 ≤  𝐾}  𝑤ℎ𝑒𝑟𝑒 𝑖  𝑝 =  2,  

 

𝜎𝑘, 
(𝑙)

=
1

√𝐾
𝑒𝑥𝑝 (−𝑗

2𝜋(𝑘 + 1)𝑡

𝐾 + 1
) ⋅ 𝛾𝑘

(𝑙)                                      (3.1) 
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or if 𝑝 >  2  

 

             𝜎𝑘, 
(𝑙)

 

   = {

1

√𝐾
𝑒𝑥𝑝 (−𝑗

2𝜋(𝑘+1) 

𝐾+1
) ⋅ 𝛾

𝑘+
𝐾+1

2

(𝑙)
  ,            0 ≤ 𝑘 ≤  

𝐾−1

2
 

1

√𝐾
𝑒𝑥𝑝 (−𝑗

2𝜋(𝑘+1) 

𝐾+1
) ⋅ 𝛾

𝑘−
𝐾−1

2

(𝑙)
  ,     

𝐾−1

2
 ≤ 𝑘 ≤ 𝐾 − 1

      (3.2) 

 

In (3.1) and (3.2), and the constant mask vector 𝛾𝜅
(𝑙)

[20] is applied to the  𝑘th row 

as 𝛾𝜅
(𝑙)

= 𝑒𝑥𝑝 (𝑗
𝜋𝑑𝜅𝑙

𝐾−1
) ⋅ 𝑒𝑥𝑝 (−𝑗

𝜋𝑑𝜅𝑙

𝐾+1
). A 𝐾 × 𝑁 sensing matrix   is constructed by 

concatenating the L submatrices by varying 𝑙, i.e.,  = (𝝈(𝟎)| 𝝈(𝟏)|        | 𝝈(𝑳−𝟏)). 

Particularly, if 𝐿 = 𝐾 + 1, then  =  ′ = (𝝈(𝟎)| 𝝈(𝟏)|        | 𝝈(𝑲−𝟐)).  

Figure 3.1 below illustrates the structure of the Fourier-based deterministic 

sensing matrix   with 𝑝 =  2 in Construction 1. For 𝑝 >  2, changing the order 

of row indices yields a similar structure. 

 

 

Figure 3.1 Concatenated structure of Fourier-based deterministic sensing matrix   

(𝒑 =  𝟐) 
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Remark 2: Choosing 𝐾 rows according to the index set 𝐷, then a 𝐾 × 𝑁 basic 

matrix  ̂ has been constructed in [12], where each entry is given by   

𝑎̂𝑘,𝑛 =
1

√𝐾
𝑒𝑥𝑝 (𝑗

2𝜋𝑑𝑘𝑛

𝑁
) ,     𝑗 = √−1                              (3.3) 

for 0 ≤ 𝑘 ≤ 𝐾 − 1 and 0 ≤ 𝑛 ≤ 𝑁 − 1 

Let 𝑙 be given for 0 ≤ 𝑙 ≤ 𝐾 − 2. From  ̂ if we take 𝐾 + 1 column vectors 

of indices 𝑛 = (𝐾 − 1)𝑡 + 𝑙 with varying 𝑡, where 0 ≤ 𝑡 ≤ 𝐾, the entries of the 

colum vectors are given by  

1

√𝐾
𝑒𝑥𝑝 (𝑗

2𝜋𝑑𝜅((𝐾 − 1)𝑡 + 𝑙)

𝑁
) =

1

√𝐾
𝑒𝑥𝑝 (𝑗

2𝜋𝑑𝜅

𝐾 + 1
) ⋅ 𝑒𝑥𝑝 (𝑗

2𝜋𝑑𝜅𝑙

𝑁
)            (3.4) 

for 0 ≤ 𝑘 ≤ 𝐾 − 1. For given 𝑙, we define a constant mask factor 𝛾𝜅
(𝑙)

 applied to 

the 𝑘th row in (3.4) as  

                                                 𝛾𝜅
(𝑙) ≜ 𝑒𝑥𝑝 (𝑗

2𝜋𝑑𝜅𝑙

𝑁
) 

                                                      ≜ 𝑒𝑥𝑝 (𝑗2𝜋𝑑𝜅𝑙 ⋅
1

2
(

1

𝐾 − 1
−

1

𝐾 + 1
))                 (3.5) 

                    ≜ 𝑒𝑥𝑝 (𝑗
𝜋𝑑𝜅𝑙

𝐾 − 1
) ⋅ 𝑒𝑥𝑝 (−𝑗

𝜋𝑑𝜅𝑙

𝐾 + 1
) 

Next, we investigate the construction of Fourier-based deterministic sensing matrix 

briefly for 𝑝 = 2 and 𝑝 > 2, respectively. More details could be found in [18]. 

Case 1: 𝑝 = 2. In this case, each element of the row index set 𝐷 in Construction 1 

is represented as  

𝑑𝑘 ≡ −(𝑘 + 1)      ( odulo 𝐾 + 1) 

for 0 ≤ 𝑘 ≤ 𝐾 − 1. Thus, 𝑒𝑥𝑝 (𝑗
2𝜋𝑑𝑘 

𝐾+1
) = 𝑒𝑥𝑝 (−𝑗

2𝜋(𝑘+1) 

𝐾+1
) in (3.4). Consequently, 

we see that while 𝑡  runs through 0 to 𝐾 for given  𝑙, the 𝐾 + 1 column vectors of 

(3.4) ultimately form a 𝐾 × (𝐾 + 1) submatrix, where each row is from a (𝐾 +
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1)-point DFT matrix excluding the row with all one, and then masked by 𝛾𝜅
(𝑙)

 of 

(3.5). In addition, if 𝑙  runs through 0 to  𝐾 + 2 , then we will obtain 𝐾 − 1 

submatrices and a variant  ′ by concatenating them.  

Case 2: 𝑝 > 2. In this case, we modify the index set 𝐷 =  {𝑑0,      , 𝑑𝐾−1} by adding 

𝑘+1

2
. Then the row indices will be reordered as  

𝑑𝑘′ =

{
 

 𝑑
𝑘+

𝑘+1
2

 ,       0 ≤ 𝑘 <
𝐾 − 1

2
                 

𝑑
𝑘−

𝑘−1
2

  ,
𝐾 − 1

2
    ≤ 𝑘 < 𝐾 − 1  

}
 

 

 

                    ≡ −(𝑘 + 1)      ( odulo 𝐾 + 1),   0 ≤ 𝑘 ≤ 𝐾 − 1 

From the equation above, we have 𝑒𝑥𝑝 (𝑗
2𝜋𝑑𝑘′ 

𝐾+1
) = 𝑒𝑥𝑝 (−𝑗

2𝜋(𝑘+1) 

𝐾+1
)  for the 

permuted row indices. Therefore, it is also clear that while 𝑡 runs through 0 to 𝐾 

for given 𝑙, the 𝐾 + 1 column vectors of (3.4) with row indices 𝑑𝑘′ also form a 

𝐾 × (𝐾 + 1) DFT-based submatrix, where each row is from a (𝐾 + 1)-point DFT 

matrix excluding with the row with all one, and then masked by a constant factor.  

 

Lemma 1: The 𝐾 × 𝑁 sensing matrix   in Construction 1 has the following 

properties. 

1) The coherence is 1 ⁄ √𝐾 

2) A pair of rows is mutually orthogonal, so   forms a tight frame. 

3) All the row sums are equal to zero. 

 

Proof: [20] From Proposition 1 and Theorem 2 of [12], it is easily checked that 1) 

is true. In addition, a pair of rows in each submatrix 𝜎(𝑙) is mutually orthogonal from 

the DFT-based structure with constant row mask vectors. Therefore, 2) is also true in 

concatenating the 𝐿  DFT-based submatrices. In Construction 1, (3.1) and (3.2) 
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ensure that no submatrix of   has all one row masked by a constant factor, which, 

due to the DFT-based structure, concludes that all the row sums of each submatrix are 

equal to zero. Thus, 3) is true from the concatenation. Also, these three properties 

have been tested and proved in the numerical way. Therefore, the main purpose of 

Lemma 1 is to prove that Fourier-based deterministic sensing matrix   requires the 

statistical restricted isometry property (StRIP). 

 

 

3.2 Statistical Restricted Isometry Property for   

Calderbank et al. demonstrated a statistical method in [6] to show that a 

deterministic sensing matrix is new-isometry on 𝑠 -sparse vectors with high 

probability in the uniform distribution. Precisely, a 𝐾 × 𝑁  Fourier-based 

deterministic sensing matrix   requires the statistical restricted isometry property 

(StRIP) as derived from Section 2.6.  

 

Corollary1[18]: Let 
𝑠−1

𝑁−1
 <  𝜖 <  1 . There exists a constant 𝑐  such that if the 

sparsity level 𝑠 satisfies 𝑠 ≤
𝜖2

𝐶
 

𝐾

log𝑁
 , then   in Construction 1 has the StRIP with 

probability exceeding 1 − δ, or 

Pr (||| 𝐱||
2

− ||𝐱||
2
| ≤  𝜖||𝐱||

2
) ≥  1 −  𝛿 

with respect to a uniform distribution of the vectors 𝐱 among all 𝑠-sparse vectors in 

ℝ𝑁, where 𝛿 = 4 𝑒𝑥𝑝 [−
(𝜖−(

𝑠−1

𝑁−1
))

2

⋅𝐾

32𝑠
]. Additionally, unique sparse reconstruction is 

guaranteed with probability exceeding 1 −  𝛿. 

Remark 3: As stated in Remark 12 of [6], if 𝑠 =  𝑂(𝐾/ lo  𝑁), then unique 

sparse recovery is guaranteed with probability 1 − 𝑁−1 for sparse signals with 
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uniform distribution 

 

 

3.3 FFT-based Signal Measurement and Recovery 

In this section, we discuss the measurement and recovery processes of 

deterministic compressed sensing with the matrix   in Construction 1. The 

Fourier-based deterministic sensing matrix   has the structure of DFT-based 

submatrix, the fast Fourier transform (FFT) technique can thus be used in the 

processes. 

 

3.3.1 Measurement 

The measurement process of compressed sensing is 𝐲 =   𝐱 , where 𝐱 =

 (𝑥0,      , 𝑥𝑁−1) ∈  ℝ𝑁  and 𝐲 =  ( 0,      ,  𝐾−1)  ∈  ℂ𝐾 . Due to the 𝐾 × 𝑁 sensing 

matrix   contains 𝐿 distinct (𝐾 + 1)-point DFT-based submatrices, the efficient 

FFT algorithm can be applied to the measurement process. 

 

For 𝑏 =  𝐾 + 1, let  𝑙  =  (𝑥 𝑙,      , 𝑥 𝑙+ −1) be a segment of 𝐱 of length 𝑏, 

where 0 ≤  𝑙 ≤  𝐿 −  1. Let 𝑥̃𝑘
(𝑙)

 be the b-point DFT of  𝑙, i.e., 

 

𝑥̃𝑘
(𝑙)

= ∑ 𝑥 𝑙+ 𝑒
−𝑗

2𝜋 𝑘
 

 −1

 =0

,   0 ≤ 𝑘 ≤ 𝑏 − 1                                (3.6) 

For fast implementation, we can employ this FFT algorithm to the 𝐿 distinct 

segments of 𝐱  in parallel at the same time. For each 𝑙 , let 𝑿𝑘
(𝑙)

= 𝑥̃𝑘+1
(𝑙)

 for 

0 ≤ 𝑘 ≤ 𝐾 − 1. From (3.1) and (3.2), we can easily check for the two cases below 

 

a. 𝑝 = 2, 
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𝐲𝑘 =
1

√𝐾
∑ 𝑿𝑘

(𝑙)
𝛾𝑘

(𝑙)

𝐿−1

𝑙=0

,                        0 ≤ 𝑘 ≤ 𝐾 − 1                      (3.7) 

 

b. 𝑝 > 2, 

𝐲𝑘 =

{
 
 

 
 1

√𝐾
∑ 𝑿𝑘

(𝑙)
𝛾

𝑘+
𝐾+1

2

(𝑙)

𝐿−1

𝑙=0

   ,             0 ≤ 𝑘 <
𝐾 − 1

2

1

√𝐾
∑ 𝑿𝑘

(𝑙)
𝛾

𝑘−
𝐾−1

2

(𝑙)

𝐿−1

𝑙=0

  ,      
𝐾 − 1

2
≤ 𝑘 < 𝐾 − 1

                    (3.8) 

                                                               

Figure 3.2 below illustrates how we apply the FFT algorithm to the Fourier-based 

deterministic sensing matrix   with 𝑝 =  2 in Construction 1, where 0 ≤  𝑙 ≤

 𝐿 −  1. For the case of 𝑝 >  2, changing the order of row indices yields a similar 

process. 
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Figure 3.2 The signal measurement with FFT algorithm  

 

3.3.2 Reconstruction 

For the input 𝑠-sparse signal reconstruction, we apply the CoSaMP algorithm 

described in Algorithm 2.1 of [21], which is summarized in Table 2.2 and the process 

details explained in CoSaMP recovery algorithm of Chapter 2. 
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In Table 2.2, a signal proxy is  𝐟 =   𝐻𝐯 = ( 0, … ,  𝑁−1), where the sample vector 

shown as 𝐯 = (𝑣0, … , 𝑣𝐾−1) and  𝐻 represents the complex conjugate of  . 𝐯 is 

initializing as a (noisy) measurement vector u. Particularly, noiseless measurement is 

showing as  𝐯 = 𝐮. At each iteration, the residual 𝐯 will be updated as 𝐯 = 𝐮 −  𝐱̂  , 

where 𝐱̂  is an estimate 𝑠-sparse vector of 𝐱 at 𝑡th iteration. The matrix-vector 

multiplication for 𝐟 can be achieved by the FFT algorithm due to the structure of the 

submatrices in  . Because we applied the mask vector 𝛾𝜅
(𝑙)

 to the Fourier-based 

deterministic sensing matrix  . First, we create a de-masked version of 𝐯 of length 

𝐾 + 1, i.e., 𝐯̃(𝑙) = (𝑣̃0
(𝑙)

, … , 𝑣̃𝐾
(𝑙)

), where 𝑣̃0
(𝑙)

= 0, and if 𝑝 = 2, 

 

𝑣̃𝑘+1
(𝑙)

= 𝑣𝑘 ⋅ 𝛾𝑘
(𝑙)∗

,        0 ≤ 𝑘 ≤ 𝐾 − 1                                         (3.9) 

 

or if 𝑝 > 2, 

𝑣̃𝑘+1
(𝑙)

=

{
 
 

 
 𝑣𝑘 ⋅ 𝛾

𝑘+
𝐾+1

2

(𝑙)        ∗

 ,               0 ≤ 𝑘 <
𝐾 − 1

2

𝑣𝑘 ⋅ 𝛾
𝑘−

𝐾−1
2

(𝑙)        ∗

,      
𝐾 − 1

2
≤ 𝑘 < 𝐾 − 1

                         (3.10) 

 

 

Then, applying the 𝑏-point IDFT to 𝐯̃(𝑙) yields a segment of 𝐟 of length 𝑏 =

𝐾 + 1, i.e., 𝐟𝑙 = (  𝑙 , … ,   𝑙+ −1) where 

  ℓ+ =
1

√𝐾
∑ 𝑣̃𝑘

(𝑙)𝑒𝑗
2𝜋 𝑘

  

 −1

𝑘=0

                                                  (3.11) 

where 0 ≤ 𝑡 ≤ 𝑏 − 1. For fast implementation, the FFT algorithm can be applied 

to the L distinct demasked versions of 𝐯 simultaneously in a parallel fashion. Finally, 

concatenating 𝐿 segments forms 𝐟 = (𝐟0|, … , |𝐟𝐿−1). For 𝑝 = 2, Figure 3.3 below 

shows the signal reconstruction with FFT algorithm for Fourier-based deterministic 

matrix  , where 0 ≤  𝑙 ≤  𝐿 −  1. Also, for the case of 𝑝 > 2, a similar process 

can be produced by changing the order of row indices 
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Figure 3.3 The signal reconstruction with FFT algorithm  

 

Along with updating current samples at each iteration, the matrix-vector 

multiplication of  𝐱̂  is also accomplished by using the FFT algorithm with a similar 

approach in the measurement process. The halting criterion of the CoSaMP algorithm 

is if the norm of updated samples is sufficiently small or the iteration counter reaches 

the sparsity level.  

 

Table 1 of [21] discussed that forming a signal proxy, the cost of the 

matrix-vector multiplication plays a main role in the algorithm complexity. 

Consequently, each iteration of the FFT-based CoSaMP recovery algorithm requires 

the complexity of 𝑂(𝐿 ⋅ 𝑏 lo 𝑏) ≈ 𝑂(𝑁 lo 𝐾). 
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Chapter 4 

Empirical Experiments 

 

In this section, we compare the reconstruction performances of CoSaMP and 

OMP recovery algorithms with Fourier-based deterministic sensing matrices  . Then, 

the Fourier-based deterministic sensing matrices are compared to chirp sensing codes 

[7] and random partial Fourier sensing matrices in terms of the empirical recovery 

performance with noiseless, noisy scenarios and image processing. Table 4.1 

summarized various parameters of  𝐾 = 𝑝𝑟 have been used in our experiments. Other 

prime parameters can be considered as well. In the experiments, we set 𝑁 = (𝐾 +

1)𝐿 for 𝐿 = 4 and 8 for the Fourier-based deterministic sensing matrices. All the 

experiments are completed in MATLAB. 

 

Table 4.1 Various parameters of 𝑲 = 𝒑𝒓 in the experiments  

 

𝒑 𝒓 𝑲 

2 6 64 

7 128 

8 256 

3 4 81 

5 3 125 

7 3 343 
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4.1  Comparison between OMP and CoSaMP 

Compressive sampling matching pursuit (CoSaMP) is the recovery algorithm 

which is ultimately based on the Orthogonal Matching Pursuit (OMP). The CoSaMP 

can also be treated as the extension version of OMP. In [44], OMP reconstructs 𝐱 

after 𝑠 iterations, except with probability 𝑁−1. In this setting, OMP might fail for 

some sparse signals, so it does not provide the same uniform guarantees as convex 

relaxation [46]. The CoSaMP algorithm, however, uses the restricted isometry 

properties of the sampling matrix to ensure that the identification step is successful. 

Figure 4.1 and Figure 4.2 show the comparison performance in successful recovery 

rate between CoSaMP and OMP algorithms incorporating with the Fourier-based 

deterministic sensing matrix when 𝐿 = 4  and 𝐿 = 8 , respectively. In our 

measurement process, each nonzero entry of an 𝑠-sparse signal 𝐱 ∈  ℝ𝑁 has the 

magnitude of 1,where its position and sign are chosen uniformly at random. For signal 

recovery, these two recovery algorithms are applied to total 2000 sample vectors 

measured by the Fourier-based deterministic sensing matrix. Moreover, the halting 

criterion of CoSaMP algorithm can be triggered if the updated samples is very small, 

i.e., ‖𝐯‖ < 10−4  or the iteration reaches the sparsity level 𝑠 . However, OMP 

reconstructs the input signal 𝐱 after 𝑠 iterations.  

 

 In the experiments, we set 𝑁 = (𝐾 + 1)𝐿  when 𝐿 = 4  and 8  for the 

Fourier-based deterministic sensing matrices. Figure 4.1 shows the comparison results 

with (𝐾, 𝑁) = (81,328)  when 𝐿 = 4 . In figure 4.2, result is displayed with 

(𝐾, 𝑁) = (256,2056)  when 𝐿 = 8 . Apparently, from the Figure 4.1, CoSaMP 

algorithm demonstrates much higher recovery rate than OMP at small sparsity levels 

when 𝐿 = 4. Also, we can easily check that CoSaMP shows much better recovery 

performance than OMP when 𝐿 = 8 in Figure 4.2. We believe that the reason why 

CoSaMP outperforms OMP in this scenario is that it has more sophisticated selection 

rule which will be led to find the nonzero entries more accurately.  
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Figure 4.1 The comparison between CoSaMP and OMP in successful recovery rate when 

𝑳 = 𝟒. 
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Figure 4.2 The comparison between CoSaMP and OMP in successful recovery rate 

when  𝑳 = 𝟖. 

 

 

4.2  Recovery Performance for Compressed Sensing 

In the experiments, we set 𝐿 = 4 and 8 for the Fourier-based deterministic 

sensing matrices. We then chose several parameters from the Table 4.1 by using 

𝐾 =  34  =  81  and 𝑁 =  (𝐾 +  1)𝐿 =  328  for 𝐿 =  4 , while  𝐾 =  28  =  256 

and 𝑁 =  (𝐾 +  1)𝐿 =  2056 for 𝐿 =  8. A random partial Fourier matrix has the 



 30 

same parameters of 𝐾  and 𝑁 as Fourier-based deterministic sensing matrix for 

comparison. To obtain it, we made 10 trials to select 𝐾 rows randomly from the 

𝑁-point IDFT matrix, where the coherence was checked at each trial. Then, we chose 

the one with the smallest coherence for our experiments. For a chirp sensing matrix, 

𝐾  has to be set as a prime number [7] close to the parameter used for the 

Fourier-based deterministic sensing matrix, and 𝑁 =  𝐾𝐿  for 𝐿 =  4 and 8. 

Precisely, (𝐾, 𝑁)  =  (79, 316)  for 𝐿 =  4,  and (𝐾, 𝑁)  =  (257, 2056)  for 

𝐿 =  8, respectively. To guarantee the UStRIP, each submatrix of the partial chirp 

sensing matrix has an alternating polarity as in [36]. Similarly, we also show the 

results of Fourier-based deterministic sensing matrix and random partial Fourier 

sensing matrix with (𝐾, 𝑁) =  (128, 520),  for 𝐿 = 4, and (𝐾, 𝑁) =  (125, 1008), 

for 𝐿 = 8.  To be compared, the parameters of chirp sensing codes are 

correspondingly set to   (𝐾, 𝑁) =  (127, 506),  and (𝐾, 𝑁) =  (127, 1016), 

respectively. Besides the above parameters, we also checked the empirical recovery 

performance with other parameters of (𝐾, 𝑁)  =  (64, 260), (343, 2752) for the 

Fourier-based deterministic sensing matrices and random partial Fourier sensing 

matrices, and (𝐾, 𝑁) =  (61, 244), (337, 2696)  for chirp sensing codes, 

respectively 

 

In this measurement process, each nonzero entry of an 𝑠-sparse signal 𝐱 ∈  ℝ𝑁 

has the magnitude of 1,where its position and sign are chosen uniformly at random. 

For signal recovery, the FFT-based CoSaMP reconstruction algorithm is applied to 

total 2000 sample vectors measured by the three sensing matrices. In Table 2.2, the 

recovery algorithm is stopped if ||𝐯||  <  10 −4 or the iteration counter reaches the 

sparsity level 𝑠. A success is declared in reconstruction if the estimate error is 

reasonably small for the estimate  ̂, i.e., ||𝐱 −  𝐱̂||  <  10 −6. 
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4.2.1 Successful Recovery Rate with Noiseless Signals  

Figures 4.3 and 4.4 display successful recovery rate of the three sensing matrices 

from noiseless measurements for 𝐿 = 4 and 8, respectively. In the figures, the 

Fourier-based deterministic sensing matrices have the slightly higher recovery rates 

than random partial Fourier matrices. Figures 4.3(a) and 4.3(b) show that the 

successful recovery rate of Fourier-based deterministic sensing matrix is obviously 

higher than that of the chirp sensing code. In the Figure 4.4 (a), the results can be 

clearly shown that the chirp sensing codes have an outstanding performance than 

Fourier-based deterministic sensing matrix and random partial Fourier sensing matrix. 

However, we believe that the difference occurred because of the larger parameter  𝐾 

of the chirp sensing code. In the case of (𝐾, 𝑁)  =  (256, 2056) from Figure 4.4 (b), 

it is revealed almost the same recovery performance with three sensing matrices. We 

made a similar observation from the other parameters that the Fourier-based 

deterministic sensing matrices outperform random partial Fourier matrices, but show 

almost the same recovery rates as chirp sensing codes. 
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(a) (𝑲, 𝑵) = (𝟖𝟏, 𝟑𝟐𝟖) 

Figure 4.3 Successful recovery rates of Fourier-based deterministic, random partial 

Fourier and chirp sensing matrices for 𝑳 =  𝟒 from noiseless measurement 
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(b) (𝑲, 𝑵) = (𝟏𝟐𝟖, 𝟓𝟏𝟔) 

Figure 4.3 Successful recovery rates of Fourier-based deterministic, random partial 

Fourier and chirp sensing matrices for 𝑳 =  𝟒 from noiseless measurement 
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(a) (𝑲, 𝑵) = (𝟏𝟐𝟓, 𝟏𝟎𝟎𝟖) 

Figure 4.4 Successful recovery rates of Fourier-based deterministic, random partial 

Fourier and chirp sensing matrices for 𝑳 =  𝟖 from noiseless measurement 
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(b) (𝑲, 𝑵) = (𝟐𝟓𝟔, 𝟐𝟎𝟓𝟔) 

Figure 4.4 Successful recovery rates of Fourier-based deterministic, random partial 

Fourier and chirp sensing matrices for 𝑳 =  𝟖 from noiseless measurement 
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4.2.2 Reconstruction SNR with Noiseless Signals  

Now, we continue to test the recovery performance of Fourier-based deterministic 

sensing matrices from the reconstruction SNR for noiseless case to compare with 

chirp sensing codes and random partial Fourier matrix. Then, we define the 

reconstruction SNR as  

SNRreconst(dB) = 10 lo 10

‖𝐱‖2

‖𝐱 − 𝐱̂‖2
   ,                                     (4.1) 

where 𝐱 is an original sparse signal and 𝐱̂ is its estimate from reconstruction. The 

reconstruction SNR is computed in average sense over all tested signals for a given 

sparsity level. From Figures 4.5 and 4.6, they show that Fourier-based deterministic 

sensing matrices have the slightly better performances than random partial Fourier 

sensing matrices, but the difference is not so significant. Again, the larger parameter 

𝐾  of the chirp sensing code seems to be the reason to make an outstanding 

performance in Figure 4.6(a). In the case of (𝐾, 𝑁)  =  (256, 2056), Figure 4.6 (b) 

displays almost the same recovery performance with three sensing matrices. We also 

observed the similar performance trend from other parameters that Fourier-based 

deterministic sensing matrices show almost the same reconstruction SNR as random 

partial Fourier and chirp sensing matrices in noiseless scenarios. 
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(a) (𝑲, 𝑵) = (𝟖𝟏, 𝟑𝟐𝟖) 

Figure 4.5 Reconstruction SNR of Fourier-based deterministic, random partial Fourier 

and chirp sensing matrices for 𝑳 =  𝟒 from noiseless measurement 
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(b) (𝑲, 𝑵) = (𝟏𝟐𝟖, 𝟓𝟏𝟔) 

Figure 4.5 Reconstruction SNR of Fourier-based deterministic, random partial Fourier 

and chirp sensing matrices for 𝑳 =  𝟒 from noiseless measurement 
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(a) (𝑲, 𝑵) = (𝟏𝟐𝟓, 𝟏𝟎𝟎𝟖) 

Figure 4.6 Reconstruction SNR of Fourier-based deterministic, random partial Fourier 

and chirp sensing matrices for 𝑳 =  𝟖 from noiseless measurement. 
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(b) (𝑲, 𝑵) = (𝟐𝟓𝟔, 𝟐𝟎𝟓𝟔) 

Figure 4.6 Reconstruction SNR of Fourier-based deterministic, random partial Fourier 

and chirp sensing matrices for 𝑳 =  𝟖 from noiseless measurement. 
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4.3  Recovery Performance for Noisy Compressed Sensing 

4.3.1 Reconstruction SNR with Noisy Signals 

In the noisy compressed sensing, the noisy measurement is represented 

as  𝐮 = 𝐲 + 𝐳 =  𝐱 + 𝐳, where 𝐳 is the additive white Gaussian noise of zero mean 

and variance 𝜎2. Then, we can define the input SNR as follows: 

SNRinput(dB) = 10 lo 10

‖𝐲‖2

𝜎2
                                               (4.2) 

The input SNR is computed in average over all sample vectors. Also, the 

reconstruction SNR is defined in (4.1) to measure the recovery performance in noisy 

compressed sensing. 

 

In this section, we consider the reconstruction performance from two aspects. 

First, Figures 4.7 and 4.8 sketch the reconstruction SNR of the three sensing matrices 

in Figures 4.3 and 4.4, respectively, from noisy measurements. In both figures, the 

input SNR is set as 15 dB. The figures revealed that Fourier-based deterministic 

sensing matrices outperform random partial Fourier and chirp sensing matrices at high 

sparsity levels, but the difference is negligible. Again, the smaller parameter 𝐾 of the 

chirp sensing code seems to be the reason to make some difference in Figure 4.7. In 

addition, in Figure 4.8(a), due to the larger parameters, chirp sensing code presents 

relatively better performance. However, in the case of (𝐾, 𝑁)  =  (256, 2056) , 

because the parameters in three sensing matrices are so close, Figure 4.8(b) displays 

almost the same recovery performance. The other parameters are also checked to get 

the similar performance trend that Fourier-based deterministic sensing matrices show 

almost the same reconstruction SNR as the others in noisy compressed sensing. 
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(a) (𝑲, 𝑵) = (𝟖𝟏, 𝟑𝟐𝟖) 

Figure 4.7 Reconstruction SNR of Fourier-based deterministic, random partial Fourier 

and chirp sensing matrices in noisy compressed sensing for 𝑳 =  𝟒 with  

𝐒𝐍𝐑  𝒑𝒖𝒕  =  𝟏𝟓 𝐝𝐁 
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(b) (𝑲, 𝑵) = (𝟏𝟐𝟖, 𝟓𝟏𝟔) 

Figure 4.7 Reconstruction SNR of Fourier-based deterministic, random partial Fourier 

and chirp sensing matrices in noisy compressed sensing for 𝑳 =  𝟒 with  

𝐒𝐍𝐑  𝒑𝒖𝒕  =  𝟏𝟓 𝐝𝐁 
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(a) (𝑲, 𝑵) = (𝟏𝟐𝟓, 𝟏𝟎𝟎𝟖) 

Figure 4.8 Reconstruction SNR of Fourier-based deterministic, random partial Fourier 

and chirp sensing matrices in noisy compressed sensing for 𝑳 =  𝟖 with  

𝐒𝐍𝐑  𝒑𝒖𝒕  =  𝟏𝟓 𝐝𝐁 
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(b) (𝑲, 𝑵) = (𝟐𝟓𝟔, 𝟐𝟎𝟓𝟔) 

Figure 4.8 Reconstruction SNR of Fourier-based deterministic, random partial Fourier 

and chirp sensing matrices in noisy compressed sensing for 𝑳 =  𝟖 with  

𝐒𝐍𝐑  𝒑𝒖𝒕  =  𝟏𝟓 𝐝𝐁 
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4.3.2 Reconstruction SNR vs. Input SNR 

Figures 4.9 and 4.10 demonstrate reconstruction SNR versus input SNR of the 

three matrices by the parameters used in Figures 4.3 and 4.4, respectively in noisy 

compressed sensing. In Figure 4.9, it contains two sub figures, the sparsity levels of 

the original signals are set to 25 and 40 for 𝐿 = 4, respectively. Similarly, 33-sparse 

and 70-sparse signals for 𝐿 = 8 have been used in Figure 4.10. At the sparsity levels, 

we observed that the relationship between reconstruction and input SNR is linear for 

medium and high input SNR. In Figure 4.9, the chirp sensing code shows relatively 

worse relationship than the others, where the smaller parameters 𝐾 seem to be the 

reason. Again, in Figure 4.10, chirp shows almost the same trend with Fourier-based 

deterministic sensing matrix, and they both display the better performance than 

random partial Fourier sensing matrix. To sum up, Fourier-based deterministic sensing 

matrices slightly outperform random partial Fourier matrices for high input SNR, but 

show almost the same trend with chirp sensing codes. Similar observations have been 

made from the other parameters. 
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(a) (𝑲, 𝑵) = (𝟖𝟏, 𝟑𝟐𝟖) 

Figure 4.9 Reconstruction SNR versus input SNR in noisy compressed sensing for 

25-sparse input signal when 𝑳 =  𝟒 
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(b) (𝑲, 𝑵) = (𝟏𝟐𝟖, 𝟓𝟏𝟔) 

Figure 4.9 Reconstruction SNR versus input SNR in noisy compressed sensing for 

40-sparse input signal when 𝑳 =  𝟒 
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(a) (𝑲, 𝑵) = (𝟏𝟐𝟓, 𝟏𝟎𝟎𝟖) 

Figure 4.10 Reconstruction SNR versus input SNR in noisy compressed sensing 

for 33-sparse input signal when  𝑳 =  𝟖 
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(b) (𝑲, 𝑵) = (𝟐𝟓𝟔, 𝟐𝟎𝟓𝟔) 

Figure 4.10 Reconstruction SNR versus input SNR in noisy compressed sensing for 

70-sparse input signal when  𝑳 =  𝟖 
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4.4  Image Reconstruction 

An original image of size 128×128 (or 256×256 and more) is sparsified by 

computing its Haar wavelet transform [30] and retaining a pre-determined fraction of 

its coefficients. In the sparsification, the largest coefficients of the pre-determined 

fraction must be kept, while the rest is set to zero. The process of sparsification of the 

original image is showing below.  

Original

image x

Haar 

transform 

matrix

Threshold 

Slection

Set all the 

absolute values 

below 

threshold equal 

to 0

Inverse 

Haar 

transform

Sparsified 

image 

 

Figure 4.11 The process of image sparsification with Haar transform 

 

According to the process of sparsification, an original 128 × 128 image and its 

corresponding sparsified image with the pre-determined sparsity can be shown below. 

Note that from Figure 4.12(b), we can observe that the relatively few wavelet 

coefficients are capturing the most of the signal energy. It also can show that many 

such images are highly compressible or sparse.  
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(a) 

 

(b) 

 

                         (c) 

 

Figure 4.12 (a) an 𝟏𝟐𝟖 × 𝟏𝟐𝟖 original image; (b) its wavelet transform coefficients 

(arranged randomly); (c) The 7%- sparsified image  
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Then, the image data is measured with Fourier-based deterministic sensing matrix, 

random partial Fourier sensing matrix and chirp sensing code of the same size (for 

chirp with the closest prime number) and then reconstructed by CoSaMP recovery 

algorithm. In the noiseless measurement of an image, we set 𝑝 = 2 and 𝐿 = 4 for 

the three sensing matrix. Specifically, the compression rate (𝐾
𝑁⁄ )  of an original 

image is set to 25% for 7%-sparse image in this experiment. To measure an 

128 × 128 =  214  image, in our experiments, we can set 𝐾 = 212  and    𝑁 =

(𝐾 + 1)𝐿 = 214 + 4, where 4 additional zero bits can be appended to the original 

image. However, for the chirp sensing codes, the closest prime number to 𝐾 should 

also be chosen, in our experiments, 𝐾 = 4093, 𝑁 = 4𝐾 =  16372, where the 12 

zero bits at the rear part should be discarded from the original image. Similarly, 

𝐾 = 210  and 214  for 64 × 64  and 256 × 256  images can be considered, 

respectively. We present the comparison of 7% sparsified images. However, they look 

merely identical to reference image. From the reconstruction SNR as illustrates in 

Table 4.2, Fourier-based deterministic sensing matrix shows slightly better recovery 

performance, but the difference is neglect.  

 

 

 

 

(a) Reference 
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(b) Fourier-based      (c) Random partial Fourier         (d) Chirp 

Figure 4.13 Reconstructed images of 7% Cameraman with Fourier-based deterministic 

sensing matrices, random partial Fourier sensing matrices and chirp sensing codes look 

merely identical to the (sparsified) reference images 

 

Table 4.2 The reconstruction SNR for 7% sparsified Cameraman 

 

Sensing Matrix Fourier-based 

deterministic 

Random partial 

Fourier 

Chirp 

Reconstruction 

SNR (dB) 

 

288.29 

 

287.49 

 

286.20 

 

It is hard to see the difference from reconstructed images measured by the three 

sensing matrices. However, from the reconstruction SNR, we can see Fourier-based 

deterministic sensing matrices present a slightly better performance than random 

partial Fourier sensing matrices and chirp sensing codes, even though the differences 

are not so important. Overall, the empirical results in image reconstruction showed 

that Fourier-based deterministic sensing matrices guarantee the reliable recovery 

performance.  
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Chapter 5 

Conclusions 

 

This thesis has studied and analyzed the empirical recovery performance of 

Fourier-based deterministic sensing matrices. We first made experiments to compare 

the recovery performance of OMP and CoSaMP reconstruction algorithms with the 

deterministic sensing matrix. Based on the construction of Fourier-based deterministic 

sensing matrices, we deliberately built our experiments of deterministic compressed 

sensing, various 𝐾 = 𝑝𝑟 and 𝑁 = (𝐾 + 1)𝐿  are possible for any prime 𝑝 , and 

positive integers 𝑟 and 𝐿 < 𝐾. Therefore, a large number of sensing matrices with a 

variety of parameters can be provided for many applications in compressed sensing. 

In addition, an efficient and fast processing in signal recovery is possible from the 

DFT-based submatrix structure. By applying the FFT-based CoSaMP reconstruction 

algorithm, we compared Fourier-based deterministic sensing matrices with random 

partial Fourier sensing matrices and chirp sensing codes in noiseless and noisy 

scenarios, respectively. For image sparsification, we applied Haar wavelet transform 

to make an original image sparsified, and then the largest coefficients of original 

images were kept for the image reconstruction. The performance of Fourier-based 

deterministic sensing matrix was compared to random partial Fourier sensing matrix 

and chirp sensing code in image reconstruction. The empirical results revealed that 

the Fourier-based deterministic sensing matrices guarantee the reliable recovery 

performance.  

 In the future work, we will continue to focus on the image processing area by 

testing the different images with the larger size, for instance, 256×256, 512×512 or 

even bigger with different sparsity levels. Moreover, other input signals will be 

considered measuring by Fourier-based deterministic sensing matrices, such as the 

zero-mean real or complex valued input signals with Gaussian random distribution. 
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