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ABSTRACT

The increasing popularity of Robotic applications has seen use in healthcare, surgery,

and as an industrial tool. These robots are expected to be able to make physical

contact with the objects in the environment which allows tasks such as grasping and

manipulation, while also allowing to obtain information about the objects such as

shape, texture, and hardness. In an ideal world, a complete model of the environ-

ment would be known beforehand and robots would not need to explore objects and

surfaces since their information would be available in the model of the world. In the

real world, most environments are unstructured and robots must be able to operate

safely without causing harm to themselves or objects while taking into account en-

vironmental uncertainties and building models for the environment and its objects.

To overcome this, the trend has been to use computer vision to detect objects in the

environment. Although computer vision has seen great advancement in this regard,

there are some problems that cannot be solved by using vision alone. Objects that

are occluded, transparent, or do not have rich visual features cannot be detected by

using vision. It is also impossible to estimate features such as hardness or tactile

texture using vision. To this end, we use a bio-inspired tactile sensor consisting of

a compliant structure, a MARG sensor, and a pressure sensor along with a robotic

manipulator to explore surfaces with the only assumption that the general location

of the surface is known. This sensing module allows the robotic manipulator to have

a predetermined angle of approach which is essential when exploring unseen surfaces.

The robotic manipulator is carefully controlled while probes are made onto the surface

while the deformation of the sensing module is used to collect orientation data along

the normals of the surface. We calculate control points that define the curvature of

the surface in between contact points which allow for fewer probes. We then create an

estimate of the surface in 3D using Bezier surfaces. Once an estimate of the surface

is obtained, we also demonstrate that the texture of the surface can be explored from

the vibrations obtained by sliding the sensing module over the surface.
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Chapter 1

Introduction

Nowadays, robots are being used in healthcare, surgery and as an industrial tool for

tasks such as manufacturing. The intention is to use these robots in such a way that

they interact safely with humans and objects in the environment while also causing no

harm to themselves. Achieving this is a much simpler task if a complete model of the

environment is available beforehand and the robot can execute commands perfectly

with respect to the known environment. But in most real-world scenarios, it is not

possible to obtain a complete model of the environment. Therefore, it is required to

plan the robots without any prior knowledge other than the general knowledge of the

location of the object while also taking into account any uncertainties of the environ-

ment and the building model of the environment and its objects. Historically, this

has been achieved through vision, by attaching cameras to robots. Although vision

is a viable way of achieving this, it has some limitations which can be solved using

tactile sensing. In unstructured environments, the field of view can be obstructed by

other objects or the robot itself which renders vision useless. There are also cases

where vision could be misleading such as the presence of transparent objects in the

environment. It is also impossible to detect properties such as texture or hardness

using vision. To overcome these situations, robotic systems are being equipped with

tactile sensors to carry out tactile exploration.

The sense of touch is an essential component that humans use to efficiently explore

their surroundings and handle various objects. Using the feedback obtained from

touch, humans are able to identify properties such as pressure, temperature, and

texture. Using this information, it is possible to manipulate and identify objects and
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also react to potential danger. The property of human skin that allows for such tasks

is the softness or the physical conformability of the skin. It enables the grasping of

objects with different shapes, detects and stops slippage, allows fast reaction if any

danger such as high or low temperature is detected, and also enables the handling of

fragile objects which may break if too much force is used.

Drawing inspiration from humans, the sense of touch has been partially replicated

as tactile sensing and used in robotic systems. These systems allow robots to make

physical contact with objects which is essential for safe and efficient exploration.

Tactile sensing allows the estimation of contact parameters such as shape, texture,

and hardness which in turn allows for action-related tasks such as slip detection [2]

and control-related tasks such as grasping and manipulation [3].

Tactile exploration can be categorized into static tactile exploration and dynamic

tactile exploration [4, 5]. Static exploration is done by pressing the tactile sensor

on the object and then removing it and pressing it on a new place on the object.

Using this method, the global shape of the object can be obtained. Once this initial

estimate is obtained, static exploration can be done to perform manipulation tasks

and even obtain local features depending on the size of the sensor.

Dynamic exploration deals with sliding the sensor on the object which can be used to

obtain local features of the object such as texture. To perform dynamic exploration,

the shape of the object must be known. In dynamic exploration, the contact between

the sensor and the object changes and the signals obtained from this change can be

used to describe local features of the object.

To use tactile exploration to its fullest potential, static and dynamic exploration

should be used to complement each other. Using static exploration, the global shape

of the object can be estimated. Using this estimation, dynamic exploration could be

carried out on the object to uncover its local features.

In order to carry out real-world applications as discussed above, an estimate of the

environment must first be obtained. As this environment is most likely unstructured,

care must be taken to protect the robot and the environment and therefore static tac-

tile exploration must be used. Once this estimate is obtained, tasks such as grasping

and texture recognition can be carried out by using dynamic tactile exploration.
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1.1 Objectives

This thesis aims to use tactile sensing to explore unseen surfaces in semi-structured

environments and obtain their estimates. We also aim to show that this estimation

can be used to perform tasks such as texture exploration.

The environments that robots interact with can be divided into structured, unstruc-

tured, and semi-structured environments. Structured environments assume that a

complete model of the environment and its objects can be obtained which is imprac-

tical in real-life scenarios. Unstructured environments fall into the category where

nothing about the environment and its objects are known. Semi-structured environ-

ments are similar to unstructured environments except for the fact that the general

position of the object to be explored is known although the orientation of the object is

unknown. In this thesis, we perform our explorations in semi-structured environments

which closely relate to real-life scenarios.

In the context of semi-structured environments, the approach taken by the robot to

touch the surface must be carefully planned. It needs to have a predetermined angle of

approach and must be precisely controlled so that there is no harm done to the robot,

tactile sensor or the environment. Usually, to get the best tactile data, the angle of

approach must be normal to the surface. In the most challenging scenarios, it is

impractical for robots to approach the surface along its normals as prior information

about the surface normals may not be available. To overcome this, we use a bio-

inspired tactile sensor that has adapted the cutaneous tactile properties of human

skin.

The tactile sensor used in this thesis consists of a compliant structure along with a

MARG (Magnetic, Angular Rate, and Gravity) sensor and a pressure sensor. The

compliant structure allows the sensing module to deform when it comes into physical

contact. The MARG is used to collect orientation data relative to the deformation

of the sensing module. The pressure sensor collects pressure data when the sensing

module comes into physical contact. A constant angle of approach for the robotic

end-effector holding the sensing module is used for each contact with the surface.

This allows the sensing module to deform along the surface normals at each contact

point to obtain good orientation data. Once contact is made, the pressure sensor can

detect when to stop the robot to protect itself and the environment from harm.



4

To this end, the following objectives facilitate the achievement of this aim.

1. Use static tactile exploration to obtain a global estimate of the surface. We use

probes to collect points on the surface which are used to obtain an estimate of

the surface.

2. Use a constant angle of approach to collect the points. This is important as we

are collecting data using the deformation of the sensor. As the surface normal at

a given contact point is unknown, we keep a constant angle of approach before

deformation when collecting data on different places on the surface. Using this

technique, the surface normal could be obtained. Using a constant angle of

entry also helps to reduce any damage that could occur to the robot or sensor

when entering an unstructured environment as the robot could be stopped when

the sensor feels pressure.

3. Calculate control points between the contact points which reflect the curves

between the contact points. This allows the use of fewer probes to obtain a

similar estimate of the surface. Using fewer probes means that less effort is

used which can save time and resources.

4. Using the obtained estimate, use dynamic tactile exploration to show that the

texture of the surface can be explored.

1.2 Methodology

This thesis explores the task of estimating a surface in 3D using a robot equipped

with a bio-inspired multi-modal sensing module. We use the gripper of a 4-DOF

(degree of freedom) robotic manipulator to hold the sensing module to collect points

on a surface by using static tactile exploration while keeping the orientation of the

gripper constant. Using this experimental setup, we are able to explore surfaces in

unstructured environments. The deformation of the sensing module is used to collect

pose data. We use the position of the end effector of the robot and the orientation of

the MARG sensor to collect the data. Using the surface normals and the knowledge

of geometric operations, we calculate control points that reflect the curve in between

the contact points which allows for a better estimation using fewer probes. Using a

combination of the collected contact points and the calculated control points, we use

Bezier surface patches to obtain a similar estimate of the surface. Using the estimate
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of the surface, we use the robot to slide the sensing module over the surface to obtain

information about the texture of the surface.

1.3 Thesis Organization

The thesis is organized into the following chapters:

Chapter 2: Literature Review

A comprehensive review of the literature is presented in this chapter. It is broken

down into 3 main sections; pose estimation, shape perception, and texture recogni-

tion.

Chapter 3: Experimental Setup

A thorough explanation of the sensing module and the robotic manipulator is pre-

sented in this chapter. It also contains the method used to align the sensing module

with the robotic manipulator.

Chapter 4: Surface Estimation

This chapter dives into how data is collected using the sensing module along with the

manipulator and how that data is leveraged to estimate the surfaces. We also look

into how control points are calculated by using various geometric equations.

Chapter 5: Results and Discussion

The results obtained through surface estimation are shown and discussed here. A

small demonstration of texture recognition is also shown.

Chapter 6: Conclusion

The work done in this thesis is summarized here and it also gives insight into future

work.
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Chapter 2

Background

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Shape Perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Local Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 Global Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Pose Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Texture Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1 Introduction

Tactile perception is an emerging field that imitates the sense of touch in humans. It

has been inspired by the success of computer vision and hence visuo-tactile approaches

are becoming increasingly popular. Tactile perception is essential in tasks such as

grasping [6, 7] and slip detection. It is also used to measure features such as hardness

[8] and texture [9, 10]. For such tasks, an initial estimate of the object must first

be obtained. As such, tactile perception has been used in Shape Perception, Pose

Estimation, and Texture Recognition. Their related work is discussed in the following

sections.
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2.2 Shape Perception

Shape perception aims to recognize the shape of an object. In tactile sensing, this is

of utmost importance as it directly correlates to the accuracy of manipulation and ex-

ploratory strategies. Historically, shape perception has been achieved using computer

vision techniques. However, computer vision has a few problems which it cannot solve

by itself such as the presence of occluded objects, either by the environment or by

the robot itself and the presence of objects which are not rich in visual features [11].

Shape perception through tactile sensing is not affected by these issues.

Similar approaches which closely resemble the surface estimation method used in this

thesis have been proposed which were successful in surface estimation [12, 13, 14].

However, it was assumed that the surface to be estimated was known and a method

to estimate unknown surfaces was not considered.

Tactile perception can be divided into local tactile perception and global tactile per-

ception. Local perception of an object aims to identify properties in a small area

of the object and these features are usually extracted using a single touch. Global

perception aims to extract features from the object to fully recognize the object. It

is usually done by collecting multiple points on the object by taking into account the

data from the tactile sensor as well as the position of the robotic end-effector.

2.2.1 Local Methods

Many local shape perception tactile systems have been proposed which can be di-

vided by the shape descriptors used such as raw tactile readings, statistical readings,

principal component analysis (PCA) based features, vision-based descriptors, and

self-organizing features [15].

Raw Tactile Readings

Earlier applications saw raw tactile readings being used as features for shape percep-

tion. A robot with touch-sensitive fingertips was used to identify objects in [16]. The

training data which was a collection of tactile images was clustered using k-means

and a histogram was created for each touch from the touch-sensitive fingertips using

the clusters and the frequency of the predicted clusters. The histograms were then

used as bag-of-features which minimized the number of touches needed to identify the
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object. A similar bag-of-features model which used appearance-based features was

proposed in [17]. Tactile pressure sensing was used by [18] to recognize the shape of

an object that is in contact with a robot hand. A multi-element pressure array sensing

system called ”Tekscan” was used on a ”Shadow” robot hand for this purpose. The

output of this system was a pressure map. A 512-feature vector was extracted from

this pressure map which was used in a neural network to classify the shape. These

methods were susceptible to pose variations and therefore might give different results

for the same object. An active contour following method to shape recognition was

proposed by [19]. An iCub fingertip was used in an action-perception cycle in which

the fingertip taps the object and the data obtained was processed and classified to

figure out the next position to tap. Local shapes were classified using the path of the

taps.

Statistical Features

The advantage of statistical features is that they are very easy to obtain but on the flip

side their effectiveness is not guaranteed. Statistical features consisting of maximum,

minimum, and mean pressure were used in [20] to form a 155-dimension vector which

showed a low accuracy of 60%. In [21], the statistical features of tactile arrays were

used to measure the object class and the internal state of bottles and cans.

Computer Vision Descriptors

Inspired by computer vision, several tactile shape perception adaptations treat tac-

tile arrays as images so that image descriptors could be applied to them. Several

approaches considered image moments as feature descriptors [17, 22, 23, 24, 25]. In

these approaches, a tactile reading was considered as f(x, y) where x and y stand

for the horizontal position and vertical position of the tactile image respectively. Its

image moment of order p+ q was defined by mpq where

mpq =
∑
x

∑
y

xpyqf(x, y) (2.1)

Many other vision descriptors were explored in tactile sensing such as Scale-Invariant

Feature Transform (SIFT) [17, 26, 27, 28], SURF [29] and the 3D descriptor SHOT

[30]. Drawing inspiration from SIFT [31], a novel shape descriptor called Tactile-

SIFT was proposed in [27]. The descriptor decomposed tactile images into subpatches
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which were represented using gradient vectors. A bag-of-features model was used to

classify the shapes. It was found that 3 subpatches with 8D descriptors showed the

best performance. These descriptors were resistant to object movement and rotation

but the scale-invariance factor is redundant in tactile systems. A robust and noise

resistant algorithm to edged and edge-less shape recognition used a gradient-based

analysis of tactile images [32].

PCA Features

Principal Component Analysis (PCA) has been used in tactile systems by using the

Principal Components (PCs) as features. These features are easy to implement and

reduce the redundancy of tactile data but it lacks physical meaning. In [33], PCs

with the largest Eigenvalues were computed onto a lower-dimensional feature space

using readings from a 16x16 tactile array. A different approach to compute the data

taken from a pressure array was proposed by [34] in which the tactile image was

processed using PCA to produce a computationally efficient and rotation invariant

shape classification. A kernel-based PCA was used in [28] which used a fusion of

Fourier descriptors along with geometric descriptors for shape perception.

Self-Organizing Features

Raw tactile sensor data has been used in deep neural networks where they learn

self-organizing features. This is in contrast to the other features above which are

pre-defined and handcrafted. Temporal tactile data was used to develop a generative

model which integrated a recursive kernel with a Gaussian process to classify objects

in [35, 36]. Features were extracted from raw tactile data by using a sparse coding

model of unsupervised hierarchical feature learning in [27, 37]. Another sparse coding

model was proposed by [38] in which a joint kernel was used to classify tactile data

from multiple fingers. A 20% improvement in accuracy for classifying 20 objects was

observed in [39] compared to shallow networks by applying a denoising autoencoder

with a dropout function. An efficient neural network for learning tactile features was

proposed by [40] which was named the Randomizing Tiling Convolutional Network

(RTCN).

Self-organizing features show promising results but their computational costs are very

high while it is also very hard to tune the parameters to get good results consis-

tently.
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2.2.2 Global Methods

Methods to identify the global shape of objects can be categorized into point based

methods, tactile pattern based methods, and deep learning methods.

Point Based Methods

Point based methods adapt techniques from computer vision to fit the obtained con-

tact tactile data into a geometric model to identify objects. In the past, point based

methods were used often due to the available tactile sensors being low resolution and

single-point contact force sensors [41, 42]. In [41], the tactile readings were fit to

super quadratic surfaces while in [42] a polyhedral model was defined to estimate ob-

ject shapes. Contact points were used to describe curvatures using polynomial fitting

of curves in [43, 44]. These approaches highlight the importance of surface normals

when estimating curvature.

Taking advantage of the high frame rates of new tactile sensors, a tactile point cloud

representation was created in [45]. The point cloud was a probabilistic model created

using Kalman filters. The Iterative Closest Point algorithm was used to calculate

the distance between 2 point clouds which was used to classify the object. ”Iterative

Closest Labeled Point” (iCLAP) [46] fused tactile data and kinesthetic cues to rec-

ognize the global shape of objects. A bag-of-words model was used and each feature

was assigned a label using k-means clustering. Using the label as the 4th dimension,

4D point clouds were created to use for training. To predict the shape, an iterative

method was used to calculate the closest distance from the obtained partial 4D point

cloud to the learned representations.

Point based methods suffer from the fact that a large number of contact points must

be obtained to obtain good results. They are very time consuming especially when

working on large objects.

Tactile Pattern Based Methods

The global shape of objects could also be found by using the pressure distribution

in tactile arrays. A widely used and popular method in this category is to use a

codebook of tactile features and use it in a Bag-of-Words model [16, 17, 37]. In

[16], the tactile readings of contact features were clustered to form a dictionary. The

cluster centroids were taken as the codewords and the dictionary was used with these
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codewords to assign each tactile feature to a fixed-length vector. These vectors were

used to represent the shape of the object.

These methods achieve respectable results but they do not represent features in 3D

space as they only take local features into account.

Deep Learning Methods

A Deep CNN (DCNN) was used in an object recognition task that used the contact

shape of the object to classify it [47]. High-resolution pressure tactile sensors were

used to obtain tactile data which was fed into a pre-trained DCNN to extract features.

These features were then used in the DCNN with added custom layers to classify the

shape of the object. A very similar approach was taken by [48] in which features

were learned using transfer learned CNN and classification was done using a custom

network created from scratch called ”TactNet”. This study was extended in [49]

by using a gripper in which the palpation process is autonomous which allowed the

classification of objects with different elasticities and internal inclusions.

The global based methods are able to obtain the global shape of the object but the

methods used are very time consuming and use more resources. The method proposed

in this thesis allows the global estimation of surfaces using fewer contact points.

The estimation is also accurate as control points are calculated to help estimate the

surface.

Combination of Vision and Touch

The recent trend in shape perception is to use vision-based systems and complement

them using tactile sensing [50, 51]. This aims to fix the inherent problems of vision

using a low number of tactile touches to augment the information obtained using

vision. A probabilistic approach to object recognition using both visual and tactile

data was proposed by [51]. A model was created using only vision which was mod-

eled with uncertainty. The highest uncertain regions were then touched with a tactile

sensor to obtain tactile information which was used to refine the model. It was found

that around 10 touches were enough to create models for object recognition. An

interesting study on cross-modal visual-tactile object recognition was carried out by

[52]. A model was trained using only visual data and was used to perform object

recognition using tactile data. It was found that a visual-tactile point cloud repre-
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sentation was a good unified representation of visual and tactile data. A method to

learn full 3D shapes of objects using vision, touch, and pre-trained object shape pri-

ors was proposed by [50]. Using a single RGB or RGB-D image on a neural network

trained on the shape priors, a 3D object shape was predicted. Tactile sensing was

then used to refine the object shape. An exploration policy that actively selected

points that maximize uncertainty was used to reduce the number of touches taken. A

contour following tactile sensing system showed better performance when the contour

following was assisted by a vision-based system instead of blindly following randomly

determined contours [53].

2.3 Pose Estimation

The pose of an object refers to the orientation or position of the object. The method

used to determine this orientation and position is known as pose estimation. This

estimate is done with reference to a global coordinate system or in robotics, with

reference to the robot end-effector. Pose estimation is an important task in robotics

especially in object manipulation tasks such as grasping. Earlier applications tended

to use single-point contact-based systems as the hardware was not up to standard.

These systems were not very efficient as the number of contacts needed is very high.

As the performance of tactile sensors increased, it became possible to estimate the

pose of an object using the tactile array data obtained after grasping it with a robot

hand.

Bayesian Filtering

The information gained from single-point contact data was used to perform 6DOF

pose estimation in [54]. The problem was divided into 2 sections called over-constrained

and under-constrained. In the over-constrained case, the information obtained from

the tactile sensor is enough to perform localization and it was done using gradient

descent. In the under-constrained case, a modified Monte Carlo filtering technique

called ”Scaling Series” was proposed. This technique uses an iterative method to

approximate solution regions into samples which reduces computational costs and

efficiently estimates the 6DOF pose of the object. This approach could be used to

estimate the pose of objects which can be represented as polygonal meshes. The

Scaling Series approach was used to perform object localization on under-constrained
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and over-constrained scenarios in [55].

Particle filtering was used by [56] to obtain the pose of an object touched by the robot

”Robonaut 2”. After touching the object, the pose is calculated before grasping the

object. A measurement model was created that shows the likelihood of the contact

points being on the surface of the object. It also estimates the tactile positions which

are not touching the object. The Robonaut 2 was also used in [57] to localize features

of flexible objects.

Contact manipulation is where a robot manipulates an object by touching it con-

tinuously. The information obtained from contact sensors in such a task is very

discriminative between contact and no contact states and therefore performs poorly

when used in particle filters. A modified particle filter called ”Manifold Particle

Filter” (MPF) was proposed by [58] to overcome this problem. The MPF allows mul-

tiple manifolds in which different sampling techniques can be used to avoid particle

starvation and give better pose estimates.

A Monte Carlo approach was used to globally obtain the pose of an object in [59].

This system can be used in 2 ways; to predict the pose of an object without any

prior estimation or to improve a prior estimation. The object polygon mesh must be

known in advance to use this approach. A novel algorithm called ”Memory Unscented

Particle Filter” (MUPF) was proposed by [60] to 6DOF pose estimation using tactile

sensing. MUPF uses past measurements to preserve particle quality. As this leads

to increased complexity, a sliding window with the most recent measurement is used

which could be changed according to the computational power available.

Covariance Analysis

A tactile array sensor attached to the tip of a robot finger was used by [34] to calculate

the shape and pose of a local contact area. The information from the tactile array was

extracted using Covariance Analysis which led to a computationally fast algorithm.

The shape and pose was calculated using a Naive Bayes classifier A global technique to

perform 6D pose estimation of grasped objects was carried out by [61]. The covariance

matrix of the tactile data was extracted and used to perform Principal Component

Analysis to reduce the dimensionality of the data.
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Tactile Feature Mapping

Tactile sensing was used to localize an object in a robot gripper in [62]. A key contri-

bution was a tactile map created prior to object manipulation. During manipulation

of the object, the tactile information obtained is sent to the tactile map which is used

to obtain the pose of the object relative to the robot gripper. A Gelsight sensor was

used to perform tactile sensing in this system.

Many pose estimation systems have been brought forth that deal with challenges such

as clutter, occlusion, scaling, illumination, and symmetry extremely well. Although

these systems deal with these challenges well, they do not perform well when multiple

challenges have to be solved at once. Efficient pose estimation using tactile sensing

requires a prior estimation of the surface. The pose estimation methods discussed

in this section could be integrated with the work done in this thesis to get better

estimates.

Combination of Vision and Touch

As the 3D point data generated from tactile and vision systems are very similar, they

have been combined to achieve better results in pose estimation. In most of these

hybrid systems, an initial estimate of the pose is first obtained using vision and is

then refined by using tactile sensing.

One of the earliest systems to use visual and tactile data to predict a 6-DOF pose

was a real-time system that used a multi-fingered hand [62]. An initial estimate

of the pose of the object was first obtained using a vision system. The pose of the

occluded objects was then refined using the tactile data obtained from the multi-finger

hand touching the object. An initial pose estimate obtained using Microsoft Kinect

camera was refined using tactile data obtained from the fingertips of a Shadow arm

in [63]. Using forward kinematics and the tactile data obtained from the fingertips,

an iterative 3D transformation called ”Levenberg-Marquardt” was used to refine the

object’s pose so that the fingertips will match the surface of the object. This work

was extended by using a novel pose correction algorithm in [64]. The robot DARCI

was used to create a haptic map of its surroundings by fusing tactile and visual data

[65]. A global optimization method to pose estimation was proposed by [59] in which

tactile and force sensing was used to identify the pose of an object by itself or to

improve an initial pose obtained by vision. Two recent studies approached in-hand
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pose estimation of grasped objects by combining tactile and vision data. An initial

estimate obtained from vision was improved using the tactile data obtained from the

grasped object using a particle filtering method called ”Bootstrap Particle Filtering”

in [66] and a deep learning network called ”Deep Gated Multi-Modal Learning” in

[67].

2.4 Texture Recognition

Texture is an important property of a surface that describes the patterns and the

feel of the surface. Dynamic tactile sensing can be used to explore surfaces to recog-

nize their texture [68]. However, to apply this to real-life scenarios, the textures of

unknown surfaces must be found which must be considered by the researchers.

Statistical Methods

A polymer-based microelectromechanical tactile array system called MEMS was used

in [69] to classify textures. The single-point data obtained from the MEMS tactile

array was assumed to be Gaussian and was estimated using the Maximum Likelihood

estimation. The Probability Density Function of each array was calculated to classify

the texture. Texture recognition was performed in [70] by using an artificial finger

with a microphone to detect frictional sound by tapping on a surface. The detected

sounds were used to create a library which was then mapped to the frequency do-

main using Fast Fourier Transforms (FFT) for texture analysis. The features were

transformed using PCA and classified using the K-Nearest-Neighbours algorithm. A

biomimetic finger was used in [71] to extract texture, compressibility, and thermal

data from an object. PCA was used on the data to extract features. 7 different

classifiers were used to test material recognition and it was found that a two-stage

Support Vector Machine performed the best. A texture sensor alongside a micro-

phone was used for texture recognition by [72]. FFT was used on the raw data to

create a spectrogram of 2049 frequencies which was represented as a feature vector

and was classified using Self-Organising Maps. A Polyvinylidene Flouride (PVDF)

embedded silicone finger with randomly distributed strain gauges was used in [73, 74]

for texture recognition. The regions where the finger touches the surface were seg-

mented and converted to the frequency domain using FFT. The Fourier coefficients

were used as features to classify textures using a Naive Bayes classifier. By mimicking
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how humans touch objects to identify texture, a robotic fingertip was used to slide

over objects to identify their texture in [75, 76]. In [75], the fingertip was knitted with

electro-conductive tension sensitive yarns and it was found that the Discrete Wavelet

Transformation gave the best classification accuracy.

In [76], a dynamic friction model was introduced which performed the best with the

Naive Bayes classifier. Using humanoid robot hands, the vibrations that occurred

from sliding along the hands was captured using accelerometers and used as features

to learn textures in [77, 78]. The heightmap obtained from a GelSight sensor was

used in [79] for texture classification. The heightmap was considered as an image

and Local Binary Pattern (LBP) histograms were extracted as features. A multiscale

Gaussian pyramid was used to reduce the dimensions of the image before apply-

ing LBP. Classification was done by comparing the similarity between images using

Hellinger distance. By using a highly-discriminative tactile probe which was sensitive

to surface texture, [80] showed that unsupervised texture recognition was possible.

Using the triple-axis accelerometer tactile probe proposed in [81], textures were clus-

tered using the ”Expectation-Maximization” algorithm combined with the ”Minimum

Description Length” principle.

Deep Learning Methods

Neural Networks were used for texture classification by using the time series data ob-

tained from a pressure sensor and a 6-axis accelerometer in [82, 83]. A Convolutional

Neural Network was used in [82] and a Recurrent Neural Network was used in [83] to

analyze the data which showed similar results. A novel neuromorphic optical tactile

sensor called ”NeuroTac” was proposed by [84] for texture classification. 4 spike train

encoding methods were used and it was found that the temporal encoding method

performed the best. Texture classification was done using a K-Nearest-Neighbour

classifier.

Similar to pose estimation, texture recognition requires a prior estimate of the object.

Using the work done in this thesis, once the surface is estimated, the contact points

collected could be used to program the robot to follow the contact points and then

use the data of the pressure sensor to obtain an understanding of the texture of the

surface.
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Combination of Vision and Touch

Even though tactile sensing is very successful in texture recognition, there is still

room to improve it by combining it with vision. For example, with tactile sensing,

you cannot realize the color of the surface.

A joint CNN was used in [85] to integrate vision and tactile images to recognize the

physical properties of fabrics. A camera was used to obtain color images and depth

images and a GelSight sensor was used to obtain the tactile images. The joint CNN

was created using these 3 modalities and classification was done by calculating the

similarity using a distance measure.

A method to fuse visual and tactile data for texture recognition was proposed in

[86, 87]. Two sets of features were learned from camera image and from a GelSight

sensor using deep neural networks. These features were fused together using a novel

method called ”Deep Maximum Covariance Analysis” (DMCA) which greatly reduced

the dimensionality of the features.

By using a Kinect Camera and a GelSight sensor, a method to train a robot to explore

unknown clothes autonomously was proposed by [88]. The Kinect sensor was used to

guide the robot to actively select points on the clothes to touch. Two neural networks

were created; one to select the points on the clothes and the other to estimate the

properties of the clothes that were touched using the GelSight sensor.

2.5 Discussion

Various methods used for shape perception, pose estimation, and texture recognition

have been studied in the above chapters.

Most Shape Perception methods use local methods and cannot estimate the global

shape of objects. The global methods used require a large number of contact points

or do not represent the tactile features in 3D. These methods also assume that prior

knowledge of the object is known so that the points can be collected safely. In this

thesis, we propose a global estimation method that does not require the surface or

its environment to be known. Using this estimation, it is possible to perform Pose

Estimation and Texture Recognition on these surfaces. The literature has also shown

that it is possible to combine vision and tactile sensing to create combined models.
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Extending our work to incorporate vision is for future work.
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Chapter 3

Experimental Setup

3.1 Tactile Perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
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3.3.3 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.4 Transformation between Module and Base-Link Frames . . . . 32

3.1 Tactile Perception

Tactile Perception refers to the use of tactile sensing to gain an understanding of the

environment or the objects being touched. It is needed to estimate features such as

hardness and texture and can be used to the geometric features of touched objects

which is essential is tasks such as grasping and manipulation. In real-life scenarios,

robots are often expected to operate in unstructured environments. Robots need to

operate safely without causing harm to themselves or the objects in the environment
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while taking into account environmental uncertainties and factors such as the fragility

of the objects.

In this context, we propose a method to obtain the estimate of unknown surfaces in

an unstructured environment. We use a multi-modal tactile sensing module alongside

a robotic manipulator for this purpose. The tactile sensing module is a compliant

structure that consists of a MARG (Magnetic, Angular Rate, Gravity) sensor and

a pressure sensor. Using rigid sensors the angle of approach must be normal to the

surface of the object being explored which is impossible to do if the object is un-

known. Using the tactile sensing module used in this thesis, we are able to approach

the surface with a pre-defined angle for the end-effector which is essential in explor-

ing unknown surfaces while also accounting for unexpected disturbances. We use the

gripper of the robotic manipulator to hold the sensing module and we collect orienta-

tion data obtained from the MARG sensor and the position data from the end effector

of the robot. Using this data we calculate control points and estimate the surface

using Bezier Curves which is explained in Chapter 5. The tactile sensing module and

the robotic manipulator used in this thesis are explored in this chapter.

3.2 Tactile Sensing Module

Figure 3.1: Sensing Module Figure [1], 1-MARG, 2-Flexible Structure, 3-Barometer

3.2.1 Structure

The bio-inspired multi-modal sensing module proposed in [89, 90] is used in this

work. It is comprised of a STMicroelectronics© LSM9DS0 MARG (Magnetic, An-
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gular Rate, Gravity) sensor and a Freescale Semiconductor© MPL115A2 Barometer

pressure sensor. The MARG consists of a triple-axis accelerometer, a triple-axis gy-

roscope, and a triple-axis magnetometer. These sensors are embedded in a Smooth-

On© VytaFlex© Shore 20 Hardness flexible polyurethane and its structure is shown

in Figure 3.1.

This sensing structure was inspired by the tactile perception of human skin. The hu-

man skin contains mechanoreceptors that help humans identify the features (texture,

elasticity, topology) of the touched object. There are 4 types of mechanoreceptors;

Meissner’s corpuscles, Merkel disks, Pacinian, and Ruffini corpuscles. Merkel disks

and Ruffini corpuscles are slow adapting receptors which means they are good at

detecting constant stimuli such as pressure. Meissner’s corpuscles and Pacinian cor-

puscles are fast adapting receptors and can detect short pulses such as the initial

touch. These mechanoreceptors work together in synergy to correctly percept the

different stimuli that come into contact with the human in various tasks such as

touching, grasping, or gliding.

The components of the tactile sensing module adapt the functions of these mechanore-

ceptors. The MARG is a shallow sensor that measures vibrations by emulating the

function of Merkel disks and Meissner’s corpuscles. The barometer is a deep pressure

sensor that measures deep pressure and pressure changes by emulating the function

of Pacinian corpuscles. The hardness allows for a compliant pyramidal structure that

connects the shallow sensors and the deep sensors. This structure mimics the in-

tersecting area between the receptive fields of a Merkel disk, a Ruffini corpuscle, a

Meissner’s corpuscle, and a Pacinian corpuscle.

3.2.2 MARG Sensor

The 9-DOF (Degree-of-Freedom) MARG Sensor contains a 3-DOF Accelerometer,

3-DOF Gyroscope, and a 3-DOF Magnetometer.

Accelerometer

The module contains a triple-axis accelerometer which is an inertial-frame sensor

that measures the acceleration of all 3 orthogonal axes. If the device is laying on

a surface, the acceleration in the z-direction is the negative value of gravity. If the

device is falling downwards towards the ground, the acceleration in the z-direction is



22

0m/s2. According to Newton’s Second law of motion, F = ma where F is the force

in Newtons, m is the mass of the body and a is the acceleration. Accelerometers use

a force-detection method to measure the Force and divide it by the mass of the sensor

to obtain the acceleration a = F/m.

Gyroscope

The module contains a triple-axis gyroscope which is a sensor that measures the

angular velocity of all 3 orthogonal axes. The main advantage of a gyroscope is that

it can measure rotation which the accelerometer cannot. A gyroscope contains a

vibrating proof of mass and when the sensor is rotated around an axis, the generated

force can be measured by using the Coriolis force. The size of the generated Coriolis

force is proportional to the rate of rotation.

Magnetometer

The module contains a triple-axis magnetometer is a sensor that measures the flux

of earth’s magnetic field. Magnetometers are sensitive to outside magnetic influence

which can be divided into hard-iron distortions and soft-iron distortions. Hard-iron

sources are the magnetic sources that are in the fixed frame of the magnetometer

and these only cause a fixed offset in the measurement. Soft-iron sources are outside

magnetic sources that cause distortions in the magnetic field which causes errors in

the measurement.

3.2.3 Orientation Representation

The data obtained from the MARG sensor is in the form of a quaternion which

represents a rotation in 4 dimensions. Quaternions are more accurate and are easier to

manipulate than Euler angle rotation matrices. They are also more efficient compared

to computationally expensive matrix multiplications.

A quaternion is defined by a scalar qw and 3 imaginary vector components qxi, qyj

and qzk.

q = qw + qxi+ qyj + qzk (3.1)

which has the following properties,
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ii = jj = kk = −1 (3.2)

ij = −ji = k (3.3)

jk = −kj = i (3.4)

ki = −ik = j (3.5)

To describe a quaternion with relative frames, a notation using leading superscripts

and subscripts is used. The frame being described is denoted using the leading sub-

script and the frame to which it is referenced is denoted using the leading super-

script.

A
Bq = qw + qxi+ qyj + qzk (3.6)

The above equation describes the orientation of frame B with reference to frame

A.

The conjugate quaternion swaps the relative frames and is denoted below.

A
Bq
∗ = B

Aq = qw +−qxi+−qyj +−qzk (3.7)

Quaternion multiplication of two quaternions q1 and q2 can be expressed as fol-

lows,

q1 ⊗ q2 =


q1
w −q1

x −q1
y −q1

z

q1
x q1

2 −q1
z q1

y

q1
y q1

z q1
w −q1

x

q1
z −q1

y q1
x q1

z



q2
w

q2
x

q2
y

q2
z

 (3.8)
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3.2.4 Estimating Contact Orientation

We use the Madgwick filter [91] on the data obtained by the MARG to estimate an

orientation in quaternion form. The initial orientation estimation of the filter is based

only on gravity and the angular rate data obtained by the MARG’s accelerometer and

gyroscope. The Madgwick filter fuses the data from the accelerometer and gyroscope

by using gradient descent to optimize a quaternion that orients the data from the

accelerometer to a known reference of gravity. This quaternion is then weighted and

integrated with the data obtained from the gyroscope and the initial estimate which

compensates for the gyroscope drift.

Angular Orientation Estimate

The triple-axis gyroscope measures the angular velocity about the x, y and z axes

where the angular rate is defined as ωx, ωy and ωz respectively.

These parameters can be arranged into a vector Sω.

sω = [0, ωx, ωy, ωz] (3.9)

The quaternion that describes the rate of change of orientation of the earth frame

relative to the sensor frame S
E q̇ can be described as follows.

S
E q̇ = (1/2)SE q̂ ⊗ sω (3.10)

The quaternion that describes the rate of change of orientation of the earth frame

relative to the sensor frame at time t SEqω,t can be described by integrating S
E q̇ω,t.

S
E q̇ω,t = (1/2)SE q̂est,t−1 ⊗ sωt (3.11)

S
Eqω,t = S

E q̂est,t−1 + S
E q̇ω,t∆t (3.12)

where ∆t is the sampling period and S
E q̂est,t−1 is the previous estimate of orienta-

tion.
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The subscript ω indicates that the quaternion is estimated using angular rate; i.e

using the gyroscope.

Vector Orientation Estimate

To obtain an initial orientation, it is assumed that the triple-axis accelerometer only

measures gravity and the triple-axis magnetometer only measures the earth’s mag-

netic field.

Consider S
E q̂ to be the orientation of the sensor, E d̂ to be the reference direction of

the field in the earth frame and S ŝ to be the measured direction of the field in the

sensor frame.

S
E q̂ = [q1, q2, q3, q4] (3.13)

E d̂ = [0, dx, dy, dz] (3.14)

S ŝ = [0, sx, sy, sz] (3.15)

An optimization problem is proposed where S
E q̂ can be found as the solution.

min f(SE q̂,
E d̂, S ŝ) (3.16)

The objective function f is defined as follows,

f(SE q̂,
E d̂, S ŝ) = S

E q̂
∗ ⊗ E d̂⊗ S

E q̂ − S ŝ (3.17)

Using gradient descent, this function can be optimized which gives S
Eq∆,t at time t

and the previous estimate of orientation S
E q̂est,t−1.

S
Eq∆,t = S

E q̂est,t−1 − µt(
∆f

∆‖f‖
) (3.18)
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µt = α‖SE q̇ω,t‖∆t, α > 1 (3.19)

∆t is the time period, SE q̇ω,t is the angular rate quaternion measured by the gyroscope,

and α is a variable which accounts for noise in the accelerometer and magnetometer

measurements.

Fusion Orientation Estimate

The madgwick filter outputs a fusion of the vector orientation estimate S
Eq∆,t and the

angular orientation estimate S
Eqω,t as the fusion quaternion estimate S

E q̂est,t.

S
E q̂est,t = γt

S
Eq∆,t + (1− γt)SEqω,t, 0 <= γt <= 1 (3.20)

where γt and 1− γt are the weights applied to the orientation calculations.

The contact orientation estimated from using the Madgwick filter on the MARG data

is S
E q̂est,t

Calibration

After the sensor is initialized, we keep the sensor still for 10 seconds to remove the

level 0 bias. However, the gyroscope will still drift over time because of motion and

temperature. This needs to be accounted for in the orientation estimate.

If the angular measurement is Sω, the bias is Sωb and the compensated measurement

is Sωc.

Sωc,t = Sωt − Sωb,t (3.21)

where

Sωb,t = ζ
∑
t

Sωε,t∆t (3.22)

where ζ is the gain and,
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Sωε,t = 2SE q̂
∗
est,t−1 ⊗ S

E
˙̂qε,t (3.23)

The compensated measurement Sωc can be used instead of the angular measurement
Sω.

3.3 Robotic Manipulator

3.3.1 Manipulator

The robotic manipulator used in this work is the OpenMANIPULATOR-X RM-X52-

TNM. It contains 5 Dynamixel actuators, with 4 of them being joints and the last

one being the gripper as seen in Figure 3.2. Joint 1 allows the robot to move around

the base while the other joints can only move in the plane defined by the position of

joint 1. This allows for 4 Degrees of Freedom (DOF).
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Figure 3.2: Robotic Manipulator with the Sensing Module

3.3.2 Software Used

ROS

To control the robot and integrate it with the sensing module to perform experiments,

we used Robot Operating System (ROS) on a Linux computer. ROS has many useful

libraries that were made use of in this thesis. ROS is an integrated platform in

which robotic systems can be controlled. The main components of ROS are nodes,

topics, services, and messages. The major functionality of the robot is divided and

stored as nodes. Each node is typically a process that performs a task. These nodes

communicate with each other by sending and receiving messages. A message is a

standard data structure in where primitive data types are supported. Topics are

named buses to which nodes can subscribe or publish to. There can be multiple
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publishers and subscribers concurrently on a single topic. A single node can also

publish or subscribe to multiple topics. On the other hand, services are one on one.

A node can offer a service and other nodes may request an action on that service.

Information about the action can also be received.

Rviz

Rviz is a ROS library that was used in this thesis to perform experiments. Rviz allows

3D visualization of the robot and the robot model can be visualized in Rviz using a

URDF (Unified Robot Description Format) file. The other main use of Rviz is that

the published topics can be visualized. In our case, the data of our MARG sensor

was visualized in Rviz along with the robot.

TF

The Transformation Frames (TF) library was used to align the robot with the sensing

module and also for visualization purposes. TF is a core ROS library that keeps track

of coordinate frames. This library is helps describe the pose of an object or the pose

of a robot link in space. Every link has a coordinate frame and they are connected

to each other. Thus, any link can be described with respect to another connected

reference frame. Tf allows to obtain these poses easily and it can also be visualized

in Rviz.

3.3.3 Kinematics

Kinematics deals with obtaining the geometrical representation of a coordinate frame

of any link on a robot with respect to a fixed coordinate frame. On a robotic manip-

ulator, this coordinate frame is usually the tip of the robot which is the end-effector

and the fixed coordinate frame is the base link. Forward kinematics is a method to

obtain the pose of the end effector by utilizing the angles of the joints of the robot.

To explain the forward kinematics of the manipulator used in this project, Denavit-

Hartenberg (DH) notation is used. Each link is described by two angles and two

distance parameters. The entire structure of the manipulator can be defined using

this notation once all the joints and link lengths are described.

The kinematic chain of n links is given by,
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0Tn =
n∏
i=1

i−1Ti(θi) (3.24)

where

i−1Ti = [Zi][Xi] (3.25)

where

[Zi] = TransZi
(di)RotZi

(θi) (3.26)

[Xi] = TransXi
(ai,i+1)RotXi

(αi,i+1) (3.27)

where di, θi, ai,i+1, αi,i+1 are the DH parameters.

The matrices associated with these are

TransZi
(di) =


1 0 0 0

0 1 0 0

0 0 1 di

0 0 0 1

 (3.28)

RotZi
(θi) =


cos θi − sin θi 0 0

sin θi cos θi 0 0

0 0 1 0

0 0 0 1

 (3.29)

TransXi
(ai,i+1) =


1 0 0 ai,i+1

0 1 0 0

0 0 1 0

0 0 0 1

 (3.30)
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RotXi
(αi,i+1) =


1 0 0 0

0 cosαi,i+1 i sinαi,i+1 0

0 sinαi,i+1 cosαi,i+1 0

0 0 0 1

 (3.31)

Using the above notation, the Kinematics from the world to the end effector of our

robot can be found.

eTw = wTl1 ∗ l1Tl2 ∗ l2Tl3 ∗ l3Tl4 ∗ l4Tl5 ∗ l5Te (3.32)

Here, w, e, l1, l2, l3, l4, l5 refer to the world, end effector, link1, link2, link3, link4,

link5 respectively.
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Figure 3.3: OpenMANIPULATOR-X Kinematic Chain

3.3.4 Transformation between Module and Base-Link Frames

To obtain the pose of the contact points, the transformation between the quaternion

estimated from the MARG system and the base-link reference frame must be found.

This is done by leveraging the forward kinematics of the robot and the quaternion

representation from the MARG.

First, the Madgwick filter initiates the estimation.
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Sq = [Sqw,
Sqx,

Sqy,
Sqz] (3.33)

Next, we move the robot such that the x-axis of the end effector is aligned with the

x-axis of the world frame.

Using forward kinematics, the translation te and orientation qe of the end effector

with respect to the base-link frame can be found.

te = [xe, ye, ze] (3.34)

Eq = [Eqw,
Eqx,

Eqy,
Eqz] (3.35)

As the gripper is used to hold the sensing module, we are able to calculate the

translation of the sensing module ts with respect to the world frame of the robot.

ts = [xe + 0.02, ye, ze] = [xs, ys, zs] (3.36)

We take this translation and orientation of the sensor and publish a new TF broadcast

filter orientation.

filter orientation = [ts, q
s] (3.37)

To collect data using the sensor, we first need to align the sensor with the base of the

robot. In our case, this is the world frame.

To align the orientation of the MARG to the world frame, we take the conjugate

quaternion Sq∗ of the initial MARG orientation estimate and multiply it with the

orientation of filter orientation where the robot is positioned so that the x-axis of

the end effector is aligned with world.

Sq∗ = [Sqw,
S − qx, S − qy, S − qz] (3.38)
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We then publish this TF broadcast as imu world aligned.

imu world aligned = [ts, q
sqs∗] (3.39)

Figure 3.4: Sensor aligned TF
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Chapter 4

Surface Estimation

4.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Control Point Calculation . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Surface Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1 Data Collection

To collect a data point on an unknown surface, the manipulator moves the robotic

manipulator holding the sensing module down while keeping a constant angle of

approach for the end effector. Once the sensing module makes contact with the

surface, the module deforms as seen in Figure 4.1 and a data point is collected.

A collected data point i has a translation and an orientation. The translation is

represented as a 3d vector point oi = [xi, yi, zi]. The orientation is represented as

a quaternion qi = [ai, bi, ci, wi] which we convert into the orthogonal normal (ni) to

the contact surface and two tangent vectors (ui,vi). This is represented as a matrix

Vi = [ni, ui, vi]. The tangent plane Pi of this contact point is defined by oi and

ni.
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Figure 4.1: Data Collection

4.2 Control Point Calculation

Once 2 data points are collected, we calculate a control point between them that

indicates the direction of the surface curvature. By calculating control points, we

reduce the number of probes needed to estimate a surface. These control points are

calculated by leveraging the surface normals and the knowledge of geometry.

Given 2 contact points oi = [xi, yi, zi] and oj = [xj, yj, zj] and their respective reference

frames denoted by the matrices Vi = [ni, ui, vi] and Vj = [nj, uj, vj], our objective is

to calculate a control point cij. To calculate this control point, the tangents vi and vj

must be aligned without reorienting the planes that describe the contact. Figure 4.2,

shows the contact points oi and oj respective reference frames.

The plane Pi is defined by the point oi = [xi, yi, zi] and the normal ni = [ai, bi, ci]
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and the plane Pj is defined by the point oj = [xj, yj, zj] and the normal nj =

[aj, bj, cj].

To calculate cij, first, the point oi must be projected onto the plane Pj. Let’s call

this projected point o′i.

Consider a vector γi drawn between oi and oj which is on the plane Pj. This vector

can be written as

γi = oi − oj (4.1)

Expanding this into coefficients,

γi = [(xi − xj), (yi − yj), (zi − zj)] (4.2)

We can get the scalar distance from oi to the plane Pj along it’s normal nj by taking

the dot product of γi and nj.

dist = (xi − xj) ∗ aj + (yi − yj) ∗ bj + (zi − zj) ∗ cj (4.3)

To get the projected point o′i, we multiply the normal nj by the distance and subtract

this vector from oi

o′i = oi − dist ∗ nj (4.4)

We draw a vector φj between o′i and oj to calculate the angle θj between vj and φj.

We then rotate vj around the normal nj by the angle θj to align itself to φj, while

keeping it on Pj.

To perform this rotation, we take the rotation matrix Rj of the vector vj and the

angle θj.
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Rj =

 t ∗ xj ∗ xj + c t ∗ xj ∗ yj − zj ∗ s t ∗ xj ∗ zj + yj ∗ s
t ∗ xj ∗ yj + zj ∗ s t ∗ yj ∗ yj + c t ∗ yj ∗ zj − xj ∗ s
t ∗ xj ∗ zj − yj ∗ s t ∗ yj ∗ zj + x ∗ s t ∗ zj ∗ zj + c


Here, vj = [xj, yj, zj], c = cos(θj), s = sin(θj) and t = 1− c

The rotated vector is the dot product of the above rotation matrix Rj and the normal

nj.

vj = Rj.nj (4.5)

We then take a point along the rotated vector φj and attach the normal nj to this

point. To find the intersection point ti between the (φj − nj) vector and the plane

Pi, we use the line-plane intersection equation.

Consider a point p on the plane Pi. As oi is also on the plane, the equation of the

plane can be written as

ni.(p− oi) (4.6)

Considering the line (φj − nj), the equation of this line passing through p can be

written as

p = nj + u(φj − nj) (4.7)

Then, the equation of the intersection of this line (φj − nj and the plane Pi can be

written as

n.(nj + u(φj − nj))− oi) = 0 (4.8)

n.(nj + u(φj − nj) = n.oi (4.9)
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where

u = (n.(p− oj))/(n.(ok − oj) (4.10)

We draw a vector φi between ti and oi to calculate the angle θi between vi and φi.

We then rotate vi around the normal ni by the angle θi to align itself to φi, while

keeping it on Pi.

To perform this rotation, we take the rotation matrix Ri of the vector vi and the

angle θi.

Ri =

 t ∗ xi ∗ xi + c t ∗ xi ∗ yi − zi ∗ s t ∗ xi ∗ zi + yi ∗ s
t ∗ xi ∗ yi + zi ∗ s t ∗ yi ∗ yi + c t ∗ yi ∗ zi − xi ∗ s
t ∗ xi ∗ zi − yi ∗ s t ∗ yi ∗ zi + xi ∗ s t ∗ zi ∗ zi + c


Here, vi = [xi, yi, zi], c = cos(θi), s = sin(θi) and t = 1− c.

The rotated vector is the dot product of the above rotation matrix Ri and the normal

ni.

vi = Ri.ni (4.11)

Now that the tangents vi and vj lie on the plane determined by the points oi, o
′
i, oj,

ti, we can calculate the control point between these 2 contact reference frames as the

intersection between lines defined by vi and vj and respective contact points oi and

oj. This point can be found using the 3D line-line intersection equation.

The intersection of 2 lines in 3D is the shortest distance between the 2 lines.

Consider a point ol which lies on vi and a point ok which lies on vj.

We can then consider 2 lines; a defined by the 2 points ol and oi and b defined by the

2 points ok and oj.

The line a can be defined by the equation
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pa = oi +mua(ol − oi) (4.12)

The line b can be defined by the equation

pb = oj +mub(ok − oj) (4.13)

The shortest line between a and b will be perpendicular. Therefore,

(pa − pb).(ol − oi) = 0 (4.14)

(pa − pb).(ok − oj) = 0 (4.15)

Expanding these equations we get,

(oi − oj +mua(ol − oi)−mub(ok − oj)).(ol − oi) = 0 (4.16)

(oi − oj +mua(ol − oi)−mub(ok − oj)).(ok − oj) = 0 (4.17)

Expanding in term of coordinates,

dijli +muadlili −mubdkjli = 0 (4.18)

dijkj +muadkjli −mubdkjkj = 0 (4.19)

where

dmnop = (xm − xn)(xo − xp) + (ym − yn)(yo − yp) + (zm)(zn)(zo − zp) (4.20)

and
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dmnop = dopmn (4.21)

Solving for mua and mub we get,

mua = (dijkjdkjli − dijlidkjkj)/(dlilidkjkj − dkjlidkjli) (4.22)

mub = (dijkj +muadkjli)/d4343 (4.23)

Finally, the equation of the intersection point in 3D can be obtained by substituting

mua and mub in Equation 4.18 or Equation 4.19.

An illustration of this process can be seen in Figure 4.2.
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Figure 4.2: Control Point Calculation

4.3 Surface Estimation

To reconstruct the surface, we use Bezier surfaces [92]. As Bezier Surfaces rely on

control points to better approximate its shape, we use a mixture of contact points

and control points to reconstruct the surface. As there isn’t any meaningful way to

differentiate between contact points and control points, we cannot reconstruct the

entire surface at once. Instead, we create 3*3 surface patches that make up the full

surface.

Consider 4 contact points oi, oj, ok and ol. Using the method specified above, we can

obtain the control points cij, cjk, clk and cil.
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To obtain the control point in the middle, we have a few options.

1. We can take the mean of the 2 control points cil and cjk which can be annotated

as ciljk.

2. We can take the mean of the 2 control points cij and clk which can be annotated

as cijlk.

3. We can calculate a new control point cjl by taking the diagonal contact points

oj and ol.

4. We can calculate a new control point cik by taking the diagonal contact points

oi and ok.

These 4 methods give similar results and therefore we consider all 4 control points

and choose the control point which has the highest value on the z-axis. This leads

to a conservative estimate of the surface, that can prevent robots from advancing

beyond the surface limits in dynamic exploration tasks.

Figure 4.3: A 3*3 Surface Patch
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Using these 9 points, we create a surface patch in a 3*3 grid as seen in Figure 4.3. In

this example, the highest value in the z-axis is the control point cijlk.

To further elaborate on the notion of taking the highest z-axis value, a small test

was done on 2 extreme cases where 4 points were taken around a convex surface and

around a concave surface.

Consider the following convex surface shown below in Figure 4.4. The 4 black dots

represent where the contact points were taken on the surface.

Figure 4.4: Convex Surface

The Bezier surfaces obtained using the above 4 methods for calculating the mid control

point are shown below. Each figure contains 3 images; the first image is the view from

the top, the second and third images are side views with some rotation.

(a) View 1 (b) View 2 (c) View 3

Figure 4.5: Convex Surface - Method 1
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(a) View 1 (b) View 2 (c) View 3

Figure 4.6: Convex Surface - Method 2

(a) View 1 (b) View 2 (c) View 3

Figure 4.7: Convex Surface - Method 3

(a) View 1 (b) View 2 (c) View 3

Figure 4.8: Convex Surface - Method 4

Method 1 and method 2 which is shown in Figure 4.5 and Figure 4.6 respectively give

similar results when considering the z-axis of the mid control point. The z-value of

Method 1 and Method 2 is visibly lower than the z-value of Method 3 and Method 4

shown in Figure 4.7 and Figure 4.8 respectively. The highest z-value is in Method 4

so we choose that control point for the estimation as it will allow the robot to operate

safely when re-exploring the surface to obtain features such as texture.
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Consider the following concave surface shown below in Figure 4.9. The 4 black dots

represent where the contact points were taken on the surface.

Figure 4.9: Concave Surface

The Bezier surfaces obtained using the above 4 methods are shown below. Similar to

the figures above, each figure contains 3 images; the first image is the view from the

top, the second and third images are side views with some rotation.

(a) View 1 (b) View 2 (c) View 3

Figure 4.10: Concave Surface - Method 1

(a) View 1 (b) View 2 (c) View 3

Figure 4.11: Concave Surface - Method 2
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(a) View 1 (b) View 2 (c) View 3

Figure 4.12: Concave Surface - Method 3

(a) View 1 (b) View 2 (c) View 3

Figure 4.13: Concave Surface - Method 4

In the results obtained from the concave surface, Method 1 and Method 2 represented

in Figure 4.5 and Figure 4.6 respectively show higher z-values in their mid control

points compared to Method 3 and Method 4 represented in Figure 4.7 and Figure 4.8

respectively. In this case, we also take the higher z-value which is Method 2 for the

estimation. This leads to the robot not going beyond the limits of the surface on

re-exploration which is essential for safe operation.

The results obtained from applying the above control point calculation method and

the surface estimate method are discussed in the following Chapter.
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Chapter 5

Results and Discussion

This section shows the results of the sensing apparatus and surface estimation method

presented in this thesis.

5.1 Synthetic Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
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In this section, we show the results obtained through surface estimation on 5 synthetic

surfaces and 8 everyday objects. Points are collected as lines on the surfaces and each

surface contains more than one such line. To create a Bezier surface, we take 2 contact

points from one line and two contact points from the next line. We then calculate 4

control points between these points and a mid control point according to the methods

described in the previous chapter. These 9 points make up a Bezier surface patch.

Considering all the points, we estimate these Bezier surfaces patches to estimate the

full surface.

For each surface estimated, we show the data collected for one line of points. For

each line, we first show the data collected from the barometer, accelerometer, and

gyroscope in the x-axis. Next, we show the translation of the end effector in the x-axis

and the z-axis. Following that, we show the orientation in the form of Euler angles for

the end-effector and the sensing module. Next, we show the pose data obtained; the

orientation from the fused accelerometer and gyroscope data and the position from

the kinematics of the robotic manipulator’s end effector. Finally, the full estimation

made up of Bezier surfaces patches is shown.

5.1 Synthetic Surfaces

5.1.1 Surface 1

Figure 5.1: Surface 1
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Figure 5.2: Surface 1 Contact Points

For this surface, we collected 5 lines of points with 5 points in each line. The middle

line is shown in Figure 5.2.

Figure 5.3: Surface 1 Barometer Graph

Figure 5.4: Surface 1 Accelerometer Graph

Figure 5.5: Surface 1 Gyroscope Graph

Figure 5.3 shows pressure data collected during the exploration of this middle line of

the surface. The pressure is represented as a digital read-out value. The minimums
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of the graph represent when the sensing module makes contact with the surface.

Figure 5.4 shows the acceleration data collected from the accelerometer in meters

per second and Figure 5.5 shows the angular velocity collected from the gyroscope

in degrees per second during the exploration, both in the x-direction. Vibrations are

seen when the sensing module is moved in between probes and the vibrations become

stable when the sensing module comes into contact with the surface and stops its

movement. This is reflected in both graphs.

Figure 5.6: Surface 1 Translation Graph

Figure 5.7: Surface 1 Orientation Graphs
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Figure 5.6 shows the movement of the robotic end-effector during the exploration. The

translation is shown in 2D between the x-axis and the z-axis and a clear idea of how

the manipulator moves up and down to collect data can be observed. In Figure 5.6,

the orientation of the end-effector and the sensing module is shown in terms of the

Euler angles roll, pitch, and yaw. Here, it can be clearly seen that the pitch of the

end-effector remains constant during the exploration while the pitch of the sensing

module matches the normals of the surface. The pitch of the sensing module has a

minimum at point B where the module deforms upwards while a maximum is seen at

point D where the module deforms downwards.

Figure 5.8: Surface 1 Markers

By fusing the data from the accelerometer and the gyroscope while also taking into

account the position of the end-effector, Figure 5.8 shows the position and orientation

of the collected data points. The green points between the contact points are the

calculated control points.
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(a) (b)

(c)

Figure 5.9: Surface 1 Estimation

Figure 5.9 shows the full estimate of the concave surface. As the full surface is made

up of 5 lines of points with 5 points in each line, there will be 16 surface patches

that make up the surface. Each surface patch is shown in a different color and they

are made up of 4 contact points and 5 calculated control points. The lines indicate

the curvature of each Bezier surface patch. The estimation moves up in the middle

similar to the actual surface proving that this method is able to estimate a surface

with a peak.
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5.1.2 Surface 2

Figure 5.10: Surface 2

Figure 5.11: Surface 2 Contact Points

Figure 5.12: Surface 2 Barometer Graph

Figure 5.13: Surface 2 Accelerometer Graph
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Figure 5.14: Surface 2 Gyroscope Graph

Figure 5.15: Surface 2 Translation Graph

Figure 5.16: Surface 2 Orientation Graphs
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Figure 5.17: Surface 2 Markers

(a) (b)

(c)

Figure 5.18: Surface 2 Estimation
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Similar to surface 1, we collected 5 lines of points with 5 points in each line for this

concave surface. The middle line of points is shown in Figure 5.11. The corresponding

data obtained from the barometer, accelerometer and gyroscope of the exploration

of this middle line is shown in Figure 5.12, Figure 5.13 and Figure 5.14 respectively.

The translation of the end-effector is shown in Figure 5.15 while the orientation of

the end-effector and the sensing module is shown in Figure 5.16 and the pose of the

collected data points is shown in Figure 5.17. Conversely to the convex surface, the

pitch of the sensing module shows opposite peaks with point B having a maximum

and point D having a minimum. The estimated surface is shown in different angles

in Figure 5.18 which is quite similar to the actual surface showing that surfaces with

downward peaks can be estimated using this approach.

5.1.3 Surface 3

Figure 5.19: Surface 3

Figure 5.20: Surface 3 Contact Points

Figure 5.21: Surface 3 Barometer Graph
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Figure 5.22: Surface 3 Accelerometer Graph

Figure 5.23: Surface 3 Gyroscope Graph

Figure 5.24: Surface 3 Translation Graph
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Figure 5.25: Surface 3 Orientation Graphs

Figure 5.26: Surface 3 Markers
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(a) (b)

(c)

Figure 5.27: Surface 3 Estimation

For this surface, 2 lines of points were collected with 15 points for each line. One such

line which shows 8 such collected points is shown in Figure 5.20. The corresponding

graphs are shown in Figure 5.21, Figure 5.22, Figure 5.23, Figure 5.24, Figure 5.25

and the graphs are annotated where the 8 specific contact points were made. In

Figure 5.25, it can be seen that the end-effector does not change much while the

pitch of the sensing module changes according to the deformation of the sensor along

the surface. Contact points A and B have negative values for the pitch while C

and D have positive values as the sensing module deforms upwards and downwards

respectively. A similar pattern can be seen for the rest of the surface. The pose data

along with the calculated control points are shown in Figure 5.26 and the estimation

of surface 3 in 3 different angles is shown in Figure 5.27. The curves of this surface

can very clearly be seen in the estimation and are almost identical to the actual

surface.
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5.1.4 Surface 4

Figure 5.28: Surface 4

Figure 5.29: Surface 4 Contact Points

Figure 5.30: Surface 4 Barometer Graph
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Figure 5.31: Surface 4 Accelerometer Graph

Figure 5.32: Surface 4 Gyroscope Graph

Figure 5.33: Surface 4 Translation Graph
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Figure 5.34: Surface 4 Orientation Graphs

Figure 5.35: Surface 4 Markers
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(a) (b)

(c)

Figure 5.36: Surface 4 Estimation

This surface is very complex with many curves and bumps. To calculate its estimate,

we collected 9 lines of points with 14 points in each line. The 5th line of points

collected is represented in Figure 5.29 showing 8 of the 14 points collected. The

corresponding graphs are shown in Figure 5.30, Figure 5.31, Figure 5.32, Figure 5.33,

Figure 5.34 and the graphs are annotated where the 8 specific contact points were

made. The contact pose data along with the calculated control points are shown

in Figure 5.35 and the estimation of the surface in 3 different angles is shown in

Figure 5.36. For this surface, a total of 104 surface patches were used to estimate the

full surface. The surface was estimated quite well considering that there were many

curves with different curvatures.
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5.1.5 Surface 5

Figure 5.37: Surface 5

Figure 5.38: Surface 5 Contact Points

Figure 5.39: Surface 5 Barometer Graph

Figure 5.40: Surface 5 Accelerometer Graph
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Figure 5.41: Surface 5 Gyroscope Graph

Figure 5.42: Surface 5 Translation Graph

Figure 5.43: Surface 5 Orientation Graphs
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Figure 5.44: Surface 5 Markers

(a) (b)

(c)

Figure 5.45: Surface 5 Estimation

For surface 5, we collected 8 lines of points with 14 points in each line, and one line is

shown in Figure 5.38 showing 8 of the 14 points collected. The corresponding graphs

are shown in Figure 5.39, Figure 5.40, Figure 5.41, Figure 5.42, Figure 5.43 and the

graphs are annotated where the 8 specific contact points were made. The contact pose

data is shown in Figure 5.44 and the estimation of the surface in 3 different angles is

shown in Figure 5.45. Surface 5 is very similar to Surface 3 and shows similar results

in the graphs and estimations. Surface 5 was 3D printed with different textures which

is discussed later in this chapter.
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5.2 Everyday Objects

5.2.1 Vitamin C Bottle

(a) (b)

Figure 5.46: Vitamin C Bottle

Figure 5.47: Vitamin C Bottle Contact Points

Figure 5.48: Vitamin C Bottle Barometer Graph

Figure 5.49: Vitamin C Bottle Accelerometer Graph
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Figure 5.50: Vitamin C Bottle Gyroscope Graph

Figure 5.51: Vitamin C Bottle Translation Graph

Figure 5.52: Vitamin C Bottle Orientation Graphs
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Figure 5.53: Vitamin C Bottle Markers
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(a) (b)

(c)

Figure 5.54: Vitamin C Bottle Estimation

2 lines of points with 6 points for each line were collected during the exploration of

the vitamin C bottle. The full object is shown in Figure 5.46 and the starting point

of one such line is shown in 5.46 (a) and the ending point in 5.46 (b). The contact

points of the line are shown in Figure 5.47. The corresponding data obtained from

the barometer, accelerometer and gyroscope in shown in Figure 5.48, Figure 5.49

and Figure 5.50 respectively. Figure 5.51 shows the movement of the end-effector

and Figure 5.52 shows the orientation changes of the end-effector and the sensing

module. As the points are collected from one side to the other, it can be seen that

the end-effector pitch remains fairly constant while the sensing module pitch shows

minimums and then maximums in the graph. Figure 5.53 shows the pose data while

Figure 5.54 shows the estimated results in 3 views. The vitamin C bottle has a round

surface which has been estimated accurately. The estimation being shorter on one

side reflects that the starting point on the left side was a bit higher than the ending

point on the right when collecting points on the object.
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5.2.2 Peanut Massage Ball

(a) (b)

Figure 5.55: Peanut Massage Ball

Figure 5.56: Peanut Massage Ball Contact Points

Figure 5.57: Peanut Massage Ball Barometer Graph

Figure 5.58: Peanut Massage Ball Accelerometer Graph
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Figure 5.59: Peanut Massage Ball Gyroscope Graph

Figure 5.60: Peanut Massage Ball Translation Graph

Figure 5.61: Peanut Massage Ball Orientation Graphs
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Figure 5.62: Peanut Massage Ball Markers

(a) (b)

(c)

Figure 5.63: Peanut Massage Ball Estimation

Similar to the vitamin C bottle, 2 lines of points with 6 points for each line were

collected during the exploration of the peanut massage ball. The contact points of

one such line are shown in Figure 5.56. The corresponding data obtained from the

barometer, accelerometer and gyroscope in shown in Figure 5.57, Figure 5.58 and

Figure 5.59 respectively. Figure 5.60 shows the movement of the end-effector and

Figure 5.61 shows the orientation changes of the end-effector and the sensing module.
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Figure 5.62 shows the pose data while Figure 5.63 shows the estimated results in 3

views. The peanut has an interesting shape with a downward peak in the middle. As

seen in Figure 5.56 points are collected in a way that only the sides of the downward

peak in the middle were contacted. But as seen in the estimation, the downward

peak is pretty well estimated which is due to the control point calculated between

the contact points. The estimation also doesn’t go as deep as the actual object itself

which is the desired outcome. If the slope is too deep, the sensor may get damaged

on re-exploration.

5.2.3 Hair Trimmer

(a) (b)

Figure 5.64: Hair Trimmer

Figure 5.65: Hair Trimmer Contact Points

Figure 5.66: Hair Trimmer Barometer Graph
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Figure 5.67: Hair Trimmer Accelerometer Graph

Figure 5.68: Hair Trimmer Gyroscope Graph

Figure 5.69: Hair Trimmer Translation Graph
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Figure 5.70: Hair Trimmer Orientation Graphs

Figure 5.71: Hair Trimmer Markers
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(a) (b)

(c)

Figure 5.72: Hair Trimmer Estimation

2 lines of points were collected with 12 points for each line during the exploration of

the hair trimmer. Figure 5.65 shows 8 of the 12 points collected. The correspond-

ing graphs with the annotated contact points are shown in Figure 5.66, Figure 5.67,

Figure 5.68, Figure 5.69 and Figure 5.70. In Figure 5.70, it can be seen that the

end-effector pitch remains relatively constant while the upward slope and the down-

ward slope which has a slight dip in the middle which is not noticeable by vision is

represented by the pitch of the sensing module. The longer minimums at contact

points A and B allude to the fact that the sensor was held at those points longer.

Figure 5.71 shows the collected pose of the contact points and the calculated control

points while Figure 5.72 shows the estimated surface in 3 views. It can be seen that

at the end of the downward slope the surface narrows which is difficult to see using

vision because of the visual features of the object.
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5.2.4 Cream Bottle

(a) (b)

Figure 5.73: Cream Bottle

Figure 5.74: Cream Bottle Contact Points

Figure 5.75: Cream Bottle Barometer Graph

Figure 5.76: Cream Bottle Accelerometer Graph
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Figure 5.77: Cream Bottle Gyroscope Graph

Figure 5.78: Cream Bottle Translation Graph

Figure 5.79: Cream Bottle Orientation Graphs
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Figure 5.80: Cream Bottle Markers
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(a) (b)

(c)

Figure 5.81: Cream Bottle Estimation

2 lines of points with 7 points for each line were collected during the exploration of the

cream bottle. The corresponding graphs with the annotated contact points are shown

in Figure 5.75, Figure 5.76, Figure 5.77, Figure 5.78 and Figure 5.79. Figure 5.80

shows the collected pose of the contact points and the calculated control points while

Figure 5.81 shows the estimated surface in 3 views. The cream bottle looks to be a

pretty straightforward downward slope that was clearly estimated. In fact, the cream

bottle is soft and a small amount of pressure would deform its surface. Using this

soft sensor, we were able to estimate its surface without the bottle deforming.
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5.2.5 Transparent Bottle

(a) (b)

Figure 5.82: Transparent Bottle

Figure 5.83: Transparent Bottle Contact Points

Figure 5.84: Transparent Bottle Barometer Graph

Figure 5.85: Transparent Bottle Accelerometer Graph
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Figure 5.86: Transparent Bottle Gyroscope Graph

Figure 5.87: Transparent Bottle Translation Graph

Figure 5.88: Transparent Bottle Orientation Graphs
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Figure 5.89: Transparent Bottle Markers

(a) (b)

(c)

Figure 5.90: Transparent Bottle Estimation

2 lines of points were collected with 10 points for each line during the exploration of

the hair trimmer. Figure 5.83 shows 8 of the 10 points collected. The corresponding

graphs with the annotated contact points are shown in Figure 5.84, Figure 5.85,
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Figure 5.86, Figure 5.87 and Figure 5.88. The biggest deformation of the sensing

module is at point H which is represented in Figure 5.88 by the pitch of the sensing

module. Figure 5.89 shows the collected pose of the contact points and the calculated

control points while Figure 5.90 shows the estimated surface in 3 views. The bottle

is transparent and it is difficult to see the curves through vision and it would be close

to impossible to reconstruct using only vision. Using our approach, the curves can

be clearly seen in the estimation.

5.2.6 Screw

(a) (b)

Figure 5.91: Screw

Figure 5.92: Screw Contact Points

Figure 5.93: Screw Barometer Graph
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Figure 5.94: Screw Accelerometer Graph

Figure 5.95: Screw Gyroscope Graph

Figure 5.96: Screw Translation Graph
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Figure 5.97: Screw Orientation Graphs

Figure 5.98: Screw Markers
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(a) (b)

(c)

Figure 5.99: Screw Estimation

2 lines of points were collected with 7 points for each line during the exploration

of the screw. Figure 5.92 shows one such line. The corresponding graphs with the

annotated contact points are shown in Figure 5.93, Figure 5.94, Figure 5.95, Fig-

ure 5.96 and Figure 5.97. Figure 5.98 shows the collected pose of the contact points

and the calculated control points while Figure 5.99 shows the estimated surface in 3

views. Although only 2 lines of points were collected on either side of the screw, the

roundness of the screw has been clearly estimated. This is due to the control points

calculated between the contact points which shows the importance of our control

point calculation method.
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5.2.7 Earphone Case

(a) (b)

Figure 5.100: Earphone Case

Figure 5.101: Earphone Case Contact Points

Figure 5.102: Earphone Case Barometer Graph

Figure 5.103: Earphone Case Accelerometer Graph
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Figure 5.104: Earphone Case Gyroscope Graph

Figure 5.105: Earphone Case Translation Graph

Figure 5.106: Earphone Case Orientation Graphs
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Figure 5.107: Earphone Case Markers

(a) (b)

(c)

Figure 5.108: Earphone Case Estimation
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For the earphone case, 2 lines of points were collected with 5 points on each line

during the exploration. One such line is shown in Figure 5.101. The corresponding

graphs with the annotated contact points are shown in Figure 5.102, Figure 5.103,

Figure 5.104, Figure 5.105 and Figure 5.106. In Figure 5.106, it can be seen that the

end-effector pitch stays fairly constant while the pitch of the sensing module dips down

at the start when the deformation is upwards and stays at 0 in the middle and peaks

at the end where the deformation is downwards. Figure 5.107 shows the collected

pose of the contact points and the calculated control points while Figure 5.108 shows

the estimated surface in 3 views. The earphone case has a straight downward slope

with two curved edges at either end. The two curves are very small compared to the

sensor and as such, the estimation is not as detailed at the edges as the actual object

which is a limitation of the sensor used. With a smaller sensor, these details could

also be captured.

5.2.8 Inhaler

(a) (b)

Figure 5.109: Inhaler

Figure 5.110: Inhaler Contact Points
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Figure 5.111: Inhaler Barometer Graph

Figure 5.112: Inhaler Accelerometer Graph

Figure 5.113: Inhaler Gyroscope Graph
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Figure 5.114: Inhaler Translation Graph

Figure 5.115: Inhaler Orientation Graphs
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Figure 5.116: Inhaler Markers
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(a) (b)

(c)

Figure 5.117: Inhaler Estimation

2 lines of points were collected with 5 points on each line during the exploration of

the inhaler. One such line is shown in Figure 5.110. The corresponding graphs with

the annotated contact points are shown in Figure 5.111, Figure 5.112, Figure 5.113,

Figure 5.114 and Figure 5.115. Figure 5.116 shows the collected pose of the contact

points and the calculated control points while Figure 5.117 shows the estimated sur-

face in 3 views. A difference between the estimated surface and the actual surface

can be seen in this case. This is due to the presence of a steep step in the inhaler.

Due to the end-effector having a constant angle of approach, if there is a step along

the angle of the end-effector, it cannot be estimated which could be considered as

a limitation of our approach. Although, if the sensor was smaller and was able to

collect a point as close to the step as possible, the estimation would be much better

than the current estimation.

It is worth mentioning that the tactile data collection process used to estimate these

surfaces does not require the robot to have prior information about the surface topol-

ogy, i.e., no assumptions were made about the end-effector’s approach angle and it
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was kept constant as the robot probes the surface.

5.3 Texture Exploration

Figure 5.118: Surface 5

Figure 5.119: Surface 5 Estimation

Surface 5 was used to 3D print 4 textures with the same shape. The shape and it’s

estimation is shown above in Figure 5.118 Figure 5.119 respectively.
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Figure 5.120: Textures

The textures are named and shown in Figure 5.120. Texture A is a 3D texture while

Textures B, C, and D are 2D and have varying line spaces between their gratings

with texture B having the highest line spaces and texture D having the lowest line

spaces.

Figure 5.121: Dynamic Tactile Sensing Path

To demonstrate that textures can be explored once a clear estimation of a surface is

obtained is possible, we used the robotic manipulator to glide the sensor down the

surface as seen in Figure 5.121. The edge of the sensor needs to be in contact with the



100

surface so that the vibrations that occur from the texture can be obtained. Gliding

the sensor over the full surface is a task that cannot be done using our 4DOF robotic

manipulator as the end effector cannot perform the necessary rotation to glide over

the entire surface with only the edge of the sensor touching the surface. However, it

is possible with a robot with a higher DOF. The results obtained from the barometer,

accelerometer, gyroscope, and magnetometer are shown below.

Figure 5.122: Barometer Comparison: Texture A and Texture B

Figure 5.123: Accelerometer Comparison: Texture A and Texture B

Figure 5.124: Gyroscope Comparison: Texture A and Texture B

Figure 5.125: Magnetometer Comparison: Texture A and Texture B

The vibrations that occur during the dynamic tactile exploration can clearly be seen in

the barometer, accelerometer, and gyroscope graphs in Figure 5.122, Figure 5.123 and

Figure 5.124 respectively. However, the data obtained from the magnetometer shown
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in Figure 5.125 is a bit ambiguous. For Texture A, even though clear vibrations can be

seen, it is a bit difficult to recognize the object from the vibrations obtained from this

method as the texture is a 3D texture. However, in Texture B, the pressure changes

from the barometer and the vibrations from the accelerometer and the gyroscope are

similar to the gratings on Texture B.

Figure 5.126: Barometer Comparison: Texture C and Texture D

Figure 5.127: Accelerometer Comparison: Texture C and Texture D

Figure 5.128: Gyroscope Comparison: Texture C and Texture D

Figure 5.129: Magnetometer Comparison: Texture C and Texture D

The data obtained through dynamic tactile sensing for Texture C and Texture D from

the barometer, accelerometer, gyroscope and magnetometer is shown in Figure 5.126,

Figure 5.127, Figure 5.128 and Figure 5.129 respectively. The results look fairly

similar but the frequency of pressure changes in the barometer in Figure 5.126 and
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the frequency of the vibrations in Figure 5.127 and Figure 5.128 can be used to

identify these textures. Texture C has a lower frequency while Texture D has a

higher frequency which matches their gratings. Considering Textures B, C, and D it

can be seen that they can be ordered from increasing frequency which can be used to

identify their textures.
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Chapter 6

Conclusion

This thesis explores the estimation of surfaces in unstructured environments using a

robotic manipulator and a soft tactile sensing module. Historically, the exploration

of environments by robots has been achieved by the use of computer vision. How-

ever, there are some issues that are difficult to solve through computer vision alone

such as the presence of challenging light conditions and occlusion. In addition, it is

impossible to measure certain features of objects such as hardness and tactile texture

using computer vision. To this end, we proposed an approach using a bio-inspired

tactile sensing module and a robotic manipulator to estimate the shape of objects in

unstructured environments.

The proposed approach is able to obtain accurate poses of contact points by taking

the data from the deformation of the sensing module. The contact orientation is

obtained by applying the Madgwick filter on the data obtained from the MARG

sensor and the contact position is obtained by utilizing the kinematic chain of the

robotic manipulator. The approach taken to collect points allows the end-effector to

remain constant; in our case perpendicular to the ground. This allows us to maintain

the pitch of the end-effector at a neutral angle without having to follow the normal

of the surface while points are taken on the surface. Instead, the deformation of the

sensor is used to collect information about the normals of the surface. This approach

can be exported to real-life scenarios where robots are expected to explore surfaces
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in unstructured environments. This setup allows the robot to react to environmental

uncertainties and can be used in situations where the robot cannot control the angle

of approach. It also allows the exploration of unknown or fragile objects. Another

point to note is that we were able to collect all the necessary data from one contact

and multiple probes to the same contact point is unnecessary.

Using the collected data points and their surface normals obtained through static

tactile exploration, we were able to calculate control points to define the curvature of

the surface. These control points reduce the burden of collecting a large number of

contact points as it leverages the geometry of the collected orientations and provide

a good estimation of the curvature between contact points.

Using the collected contact points and the calculated control points, we use Bezier

surface patches to estimate the surface in 3D. We were able to obtain similar estimates

for 5 synthetic surfaces as well as 9 everyday objects including soft surfaces and

transparent surfaces proving that this work could be applied in real-world scenarios.

The obtained estimates were very similar to the actual surfaces and we were able to

obtain estimates but there were a few limitations that were observed.

Very small curves in objects were not reflected in the estimations because of the size

of the sensing module used. If the size of the sensing module was bigger than the

surface curves, it was not reflected in the estimation. The solution to this would be to

use a smaller sensor which would then be able to better reflect smaller changes in the

surfaces. Objects that contained steep steps were not reflected well in their estimation

due to the degree of freedom of the robot used. A robot with more degrees of freedom

would also be able to estimate the sides of the surfaces using our approach.

After obtaining the estimate of a surface, we used dynamic tactile sensing to slide

over the surface to obtain data about the texture of the surface. We used 4 different

textures on the same surface curvature and were able to obtain good results which

show the difference in the data collected for each texture.

The work done in this thesis is a proof of concept which proposes a method to perform

surface estimation and texture exploration on unknown surfaces. However, further

validation must be performed on a larger set of synthetic and everyday objects which

is a task for future work.

Future work may look into embedding multiple sensing modules in robots. The
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modules could be used in a hand-like structure with the sensing modules acting as

the fingertips. Using this method, more data could be collected in a single probe and

once an estimation is obtained, tasks such as grasping and manipulation will also

become a possibility.

Another avenue to consider is to embed vision to this approach. Using vision, an

initial estimate of the environment model could be obtained and probes using the

tactile sensing module could be made more accurately only onto the needed objects

which will save time and resources. Another approach would be to estimate objects

using vision and then refine the estimate using our approach.
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[80] P. Dallaire, P. Giguère, D. Émond, and B. Chaib-Draa, “Autonomous

tactile perception: A combined improved sensing and Bayesian nonparametric

approach,” Robotics and Autonomous Systems, vol. 62, no. 4, pp. 422–435, 2014.

[Online]. Available: http://dx.doi.org/10.1016/j.robot.2013.11.011
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