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Abstract 

Carbonation negatively affects the durability of steel-reinforced concrete structures by 

causing a decrease in pore solution pH, thus facilitating corrosion which eventually leads to 

cracking and spalling. Different analytical methods for assessing carbonation depth were 

compared on carbonated cement mortar samples, including blended samples in which up to 40% 

of the ordinary portland cement (OPC) were substituted by Type C coal fly ash (FA). The 

methods included the measurement of CaCO3 concentrations by FTIR, the dust digestion method 

which provided an apparent pH profile, the traditional phenolphthalein method, and 

computerized image-processing methods based on the use of different pH indicators 

(thymolphthalein, phenolphthalein, and alizarin) or changes in mortar colour due to carbonation.  

The traditional phenolphthalein method, which measures the average advancement of the 

carbonation front, significantly underestimated the carbonation depth when compared with the 

FTIR, dust digestion, and all the image-processing methods, which measure the maximum 

advancement of the carbonation front. The dust digestion method provided carbonation depths 

which were essentially equivalent to those provided by the FTIR method. The diffusion-limited 

unreacted core model generally fitted well the carbonation depth versus time data measured by 

all analytical methods. When used in conjunction with the model, all analytical methods, except 

the traditional phenolphthalein method, gave consistent estimates of the times required for total 

sample carbonation. By contrast, the traditional phenolphthalein method significantly 

underestimated times for total carbonation. Partial replacement of cement by FA caused the 

carbonation front to advance faster and decreased the time required for complete carbonation of 

the mortar samples. 
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Glossary 

 

Carbonation Reaction Compounds:  

Calcium-silicate-hydrate (C-S-H) xCaO·SiO2·nH2O 

Calcium hydroxide (Portlandite) Ca(OH)2 

Carbon dioxide    CO2 

Calcium carbonate   CaCO3 

 

Other Terms: 

A    Alizarin pH indicator 

ASTM    American Society for Testing and Materials 

ATR     Attenuated Total Reflectance  

DD    Dust digestion method 

FA    Fly ash 

FTIR     Fourier-transform infrared spectroscopy method 

IM     Imaging method 

OPC    Ordinary portland cement 

P    Phenolphthalein pH indicator 

RH    Relative humidity 

    Time for total carbonation 

T    Thymolphthalein pH indicator 



xii 
 

Trad-P method  Traditional phenolphthalein pH indicator method 

U    Unsprayed sample 

UR-Core model  Unreacted-core model 

w/c    Water/cement ratio 
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1. Introduction 

 

1.1 Steel Corrosion in Concrete Structures 

Among durability requirements, resistance to carbonation is especially important for steel-reinforced 

concrete. Corrosion of the commonly used steel reinforcement is normally inhibited because the 

protective oxide film on the surface of the steel is chemically stable in the usual, alkaline environment 

within concrete. However, the oxide film can be destroyed if the concrete pore solution becomes less 

alkaline. Calcium hydroxide, Ca(OH2), one of the main products of the hydration of cement, buffers the 

pH of the concrete pore solution and is consumed during the carbonation reaction with environmental 

carbon dioxide. As a result, the pH of pore solution drops from approximately 13 to less than 9. If the 

carbonation front reaches the reinforcement and there is adequate moisture present around the steel 

surface, then corrosion is likely to be initiated (Parrot, 1990). When steel corrodes, the resulting rust 

occupies a greater volume than steel. The expansion creates tensile stresses in the concrete, which can 

eventually cause cracking and spalling (Portland Cement Association, 2010). Spalling, in its most 

general form, is defined as the breaking off of layers or pieces of concrete from the surface of a 

structural element (Khoury and Anderberg, 2000).  

 

1.2 The Traditional Phenolphthalein Method  

The traditional method for assessing carbonation depth in hardened concrete is based on a visual 

inspection of a broken sample sprayed with the pH indicator phenolphthalein which gives a pink color 

to the surface area whose pore solution pH is higher than approximately pH 9, whereas the area whose 

pH is lower than 9 remains gray (Chang and Chen, 2004; Anstice et al., 2005). The carbonation depth 

is determined by measuring the distance from the edge of the sample to the color boundary. It has been 

widely reported, however, that the phenolphthalein method significantly underestimates the 
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carbonation depth due to the presence of a partially carbonated zone which has a pore solution pH 

between 9 and 13 and is undetectable by this method (Jung et al. 2004; Chang et al., 2004). 

Underestimating the carbonation depth can lead to an overestimation of the lifespan of concrete 

structures which contain steel reinforcements. 

 

1.3 The FTIR Method  

Fourier transform infrared spectroscopy (FTIR) can detect the CaCO3 formed during the 

carbonation reaction by virtue of its two C-O bond characteristic absorption peaks at 1420 and 850 cm-

1. Previous studies have shown that FTIR is more sensitive than the phenolphthalein method for 

detecting the advancement of carbonation fronts (Lo and Lee, 2002; Chang and Chen, 2006).   Because 

the FTIR method directly detects the carbonation product CaCO3, it can be considered an accurate 

method for measuring carbonation depth and can provide early warnings of CaCO3 formation. 

However, the main problem associated with the FTIR method is its high cost due to equipment and 

specialized training. Hence, more affordable methods to assess the carbonation depth are needed. 

 

1.4 The Dust Digestion Method  

The dust digestion method determines the apparent-pH profile of carbonated samples by assessing the 

pH of slurries made with powder collected from consecutive layers of the sample. The resulting pH 

profiles depend on both the type of binder and the duration of exposure to environmental CO2. The dust 

digestion method is an inexpensive and simple method for establishing the effect of carbonation on 

concrete (McPollin et al, 2007).   

 

1.5 The Effect of Cement Replacement by Fly Ash 
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Fly ash (FA) is a finely divided residue from the combustion of pulverized coal in electric power 

generation plants (Kosmatka SH et al., 2002). FA belongs to the class of pozzolan materials defined as 

siliceous or aluminosiliceous materials that, in finely divided form and in the presence of moisture, 

chemically react with the calcium hydroxide released by the hydration of portland cement to form 

calcium silicate hydrate (CSH) and other cementing compounds. FA is the most widely used 

supplementary cementing material in concrete. For blended concretes containing FA, the resistance to 

carbonation decreases as cement replacement by FA increases (Papadakis, 2000; Burden, 2006). When 

cement is replaced by FA, the calcium hydroxide content of concrete is reduced due to the pozzolanic 

reaction, thereby reducing the pH buffering capacity of concrete and causing the carbonation front to 

advance faster. On the other hand, aggregate replacement by FA slows down carbonation because the 

total amount of carbonatable constituents (calcium hydroxide and CSH) remains approximately the 

same while permeability decreases. (Papadakis, 2000; Bouzoubaa and Foo, 2005).   

 

1.6 Models Describing the Advancement of the Carbonation Front 

Modeling the carbonation process is relevant in terms of lifespan estimations for concrete structures. 

The advancement of the carbonation front is often described as a function of the square root of time: D 

= C t 0.5, where D is the carbonation depth, C is the carbonation coefficient and t is the period of 

exposure (McPolin et al., 2007; Khunthongkeaw et al., 2006). Empirical exponents smaller than 0.5 

(power model) have, however, been found to describe the process more accurately (Sisomphon and 

Franke, 2007). More complex theoretical models such as the unreacted core model  (Levenspiel, 1999) 

have been applied to the carbonation of concrete. Several studies found that the diffusion-limited 

unreacted core (UR-Core) model fits experimental data from a number of mortars relatively well 

including binders such as OPC and OPC-FA (Bernal et al.,2010; Castellote and Andrade, 2008 and 

2009). A description of the UR-Core model is provided in Section 4. 
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1.7 Opportunities for Further Studies and Research Objectives  

Previous studies have been published regarding the use of different pH indicators to assess the 

carbonation depth in concrete. Jung et al. (2003) conducted a field study on five different bridges in 

South Korea. They sprayed four different pH indicators (phenolphthalein, thymolphthalein, alizarin and 

tropaeolin) on core samples cut by means of an autodrill from different sections of the bridges. The 

results showed that pH indicators with a higher pH threshold detected larger carbonation depths. The 

carbonation depths ranged between 3.7 and 28.6 mm using phenolphthalein, between 6.6 and 32.5 mm 

using thymolphthalein, between 7.5 and 35.7 mm using alizarin, and between 8.3 and 39.2 mm using 

tropaeolin. No comparisons were made, however, with other analytical methods such as FTIR or dust 

digestion. The present work is the first to provide a thorough comparison between several pH indicator 

methods and other analytical methods. 

To date, the visual inspection of samples sprayed with pH indicators has been done manually by 

using a ruler. Because the carbonation front is irregular, this technique requires averaging several 

carbonation depths measured at various locations and suffers from lack of precision and the possibility 

of human error. In this study, an imaging-based technique is used for the first time to deal with both 

issues. Moreover, because the carbonation reaction itself results in a slight colour change, the imaging 

technique can also be applied without the use of pH indicators.   

Most of the previous studies on modeling of the advancement of the carbonation front in cement 

mortars have relied on the simplistic square-root or power models. In the present work, the diffusion-

limited UR-Core model has been used to fit the time dependence of carbonation depths obtained by 

several methods and to estimate the times required for total carbonation of cylindrical mortar samples. 

The UR-Core model was selected because it accounts for the cylindrical geometry of our mortar 

samples, unlike the square-root or power model.  
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2. Materials and Methods  
 

2.1 Materials 

Ordinary portland cement (OPC) type 10 (Lafarge, Calgary, Alberta) was used in all mortar 

admixtures. All the cement used in this study was taken from the same bag, which was sealed in 

a plastic container after each use. All mortar samples were prepared within a period of 14 days. 

The Type C fly ash was derived from lignite coal and was provided by the Atikokan Generating 

Station (AGS), Atikokan, Ontario, Canada. A full characterization of this fly ash is given in 

Johnson et al. (2010). Graded sand (Hoskin Scientific, Burlington, Ontario) was used in all 

mortar samples and met the sieve passing requirements of ASTM C778 (2003). A detailed 

characterization of the sand is also provided in Johnson et al. (2010). Nanopure water (18.2 MΩ, 

Barnstead D11911 Nanopure Diamond) was used to prepare all mortar samples. 

 Three different pH indicators solutions were prepared: 0.2 wt% phenolphthalein; 0.5 wt% 

thymolphthalein; and 0.2 wt% alizarin. The transition pH ranges over which colour changes are 

8.1–10.0 for phenolphthalein, 9.5–10.5 for thymolphtalein, and 11.1–12.4 for alizarin (Zumdahl 

and Zumdahl, 2007). All indicator solutions had an ethanol-water volume ratio of 70-30.  

 

2.2 Preparation of Mortar Specimens 

All mortar samples were prepared according to ASTM C109 (2003) using a five quart Hobart 

mixer (Hobart Corporation, Troy, Ohio). Three different mortar mixes were prepared containing 

0%, 20% or 40% cement substitution by FA. Nanopure water was placed in the mixing bowl, 

followed by either OPC or a blend of OPC and FA. The mixture was mixed at slow speed for 30 

seconds and at medium speed for another 30 seconds. Then, mixing was stopped for 90 seconds; 
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the first 15 seconds were used to scrape down the wall and base of the bowl to enhance 

homogeneity, and the admixture was left alone for the last 75 seconds. Next, mixing was 

resumed for 60 seconds at medium speed.  

 Flow table tests were performed according to ASTM C1437 (2003) to determine the 

amount of water needed to achieve constant consistency for the different mixes. Additional 

details on flow table testing are provided in Appendix A. Table 2-1 shows the proportions of 

OPC, FA, sand and water used in each mix. The water requirement decreased with increasing  

FA content because the lower reactivity of FA compared with cement results in more free 

residual water for flow. Moreover, the flow of mixes containing FA is enhanced by the spherical 

and smooth shape of fly ash particles, while cement particles have more angular shapes.     

Table 2-1 Proportioning of mortar mixes 

Mix OPC (g) FA (g) Sand (g) Water (g) 

0% FA 500 0 1375 242 

20% FA 400 100 1375 228 

40% FA 300 200 1375 206 

 

 Immediately after mortar was prepared, it was placed in 2-in x 4-in cylindrical molds 

capped at the base.  Molds were filled to one third of their height and then tamped 20 times to get 

rid of air bubbles. This step was repeated two more times until the mold was completely filled. 

Excess mortar was cut off from the top of the cylinder with a straight edge. The open molds were 

cured in a humidity chamber (ESL-3CA, ESPEC Corp., USA) for 24 hours at 23 °C and 100% 

relative humidity (RH). Then, the samples were demolded and submerged in saturated lime 

water for 27 days further curing at room temperature.   
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2.3 Carbonation of Mortar Samples 

After 28 days of curing, the mortar cylinders were put in a sealed chamber and exposed to a 

controlled environment of 50 ± 5 vol% CO2 concentration and 61.7 ± 3.4% RH.  The CO2 flow 

to the chamber was regulated by a needle valve and bubbled through a saturated NaCl solution 

which maintained a stable RH (Anstice et al., 2005). According to ASTM R104-02 (2007), 

saturated NaCl solution in a temperature range of 25 to 30 °C provides 75.2 ± 0.3% RH at 

equilibrium; however, equilibrium was likely not reached in the carbonation chamber due to the 

difficulty of achieving a perfect seal. To measure the CO2 concentration, gas samples were taken 

from inside the chamber and analyzed by gas chromatography on a daily basis. The calibration 

curves and results pertaining to the gas chromatography measurements are shown in Appendix 

B. Two portable fans were put inside the chamber to enhance homogeneity of the CO2-air 

admixture. The heat released by the fans maintained a temperature ranging from 26.2 to 30.7 °C. 

An environmental station (Vantage Pro, Davis Instruments, Hayward, California) measured both 

RH and temperature values on a daily basis inside the chamber. Mortar samples were carbonated 

for six different times: 1; 3; 7; 14; 21; and 28 days.  

 

 

 

2.4 Measurement of Carbonation Depth 

After carbonation, the mortar cylinders were cut in half along their length, and the carbonation 

depth was assessed by various methods.  

 

2.4.1 Fourier Transform Infrared Spectroscopy (FTIR) 
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IR spectra were obtained with a Bruker Tensor 37 FTIR spectrophotometer (Bruker Optics Inc, 

Billerica, Massachusetts) equipped with the OPUS 3.1 software. Mixtures containing various 

proportions of  pure CaCO3 (Sigma-Aldrich, St. Louis, Missouri) and sand were prepared to 

determine calibration curves relating the area of the characteristic CaCO3 absorption peaks 

obtained by attenuated Total Reflectance (ATR) to the concentration of CaCO3. The pure CaCO3 

and sand were ground together for 50 minutes using an automatic mortar and pestle (Geoscience 

Pulverit comminution equipment type RP-202, Geoscience Corp, New York). To ensure a 

uniform particle size distribution, the grinding process was done in four steps, two of 15 minutes 

each and two more of 10 minutes each, where 1 minute was taken between steps to scrape down 

the pestle and the wall and base of the mortar. Each calibration sample was analyzed eight times 

and the replicate peak areas were averaged and plotted versus the CaCO3 content in the range 0 – 

50 wt%. Calibration data for the characteristic absorption peaks at 1420 and 850 cm-1 showed 

linear behavior with R2 values higher than 0.98. Calibration curves determined at various dates 

throughout the research are shown in Appendix C1.    

 To measure the CaCO3 content of mortar cylinders as a function of depth (measured from 

the cylinder surface), a drill press was used to sample consecutive layers of material  (Figure 2-

1). Each sample channel measured approximately 80 mm in length, 10 mm in width, and 2 mm 

in depth. The cylinders were kept in plastic bags during the drilling process to collect most of the 

powder that was released. Once the powder from a single layer was collected and stored in an 

air-tight 20 mL plastic container, the groove was extended by approximately 4 mm in width and 

length to prevent cross-contamination from upper layers during collection of the next deeper 

layer. The amount of powder collected per layer ranged from 1.0 to 1.7 g. Figure 2-2 illustrates 

the basic steps of the collection method. The powders were ground using the same procedure as 
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described above for calibration mixtures. Figure 2-3 shows the particle size distribution of the 

ground material taken from a carbonated mortar sample, as determined using a laser particle size 

analyzer (Mastersizer 2000, Malvern Instruments Ltd., Malvern, UK). The particle sizes ranged 

from 0.5 to 77 µm with a mode at 4.5 µm. 

   

 

Figure 2-1 Split mortar cylinders showing grooves from material removed by the drill press for the FTIR and dust 

digestion methods. 
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Figure 2-2 Diagram showing the consecutive steps of the powder collection method. Upper and front views: a) split 

cylinder; b) first layer is collected; c) width and length of groove from first layer are increased; d) second layer is 

collected; e) width and length of groove from second layer are increased; f) third layer is collected. 

 

Figure 2-3 Particle size distribution of a ground carbonated mortar sample. 
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  Figure 2-4a shows the FTIR spectrum of a 7-day carbonated mortar sample containing no 

fly ash. Based on the spectra of graded sand and pure calcium carbonate (Figure 2-4b), it was 

possible to identify the three main peaks in Figure 2-4a. The silica peak at 1100 cm-1 overlaps to 

some extent with the CaCO3 peaks at 1420 and 875 cm-1. The integration method for the two 

CaCO3 peaks is graphically represented in Figures 2-5a and b.   

 

 

Figure 2-4 a) FTIR spectrum of a 7-day carbonated 0%-FA mortar sample showing CaCO3 characteristic peaks at 

1420 and 875 cm-1; b) FTIR spectra of 100% sand and 100% CaCO3 samples. 

 

 

 

 

 

 

            a)                                                                                                      b) 
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Figure 2-5 Integration method for the two CaCO3 peaks in FTIR spectra of carbonated mortar samples: a) Peak at 

1420 cm-1; b) Peak at 875 cm-1. Maxima and minima are determined within the wavenumber ranges of 1650–1300 

and 900–820 cm-1, respectively. Maxima are denoted as “a” while minima are denoted as “b1” and “b2”. Baselines 

are drawn between points “b1” and “b2” 

  

 Each powder sample representing a layer of carbonated mortar sample was analyzed eight 

times by FTIR. The average integrated area of each CaCO3 absorption peak was then calculated 

and converted to a CaCO3 concentration using the appropriate calibration curve. A new 

calibration curve was determined for each new batch of mortar samples to compensate for the 

drift in FTIR measurements happening over time.  

 The method for determining the depth of carbonation is illustrated in Figure 2-6, which 

shows the CaCO3 concentration versus depth for a 7-day carbonated mortar sample containing 

20 wt% cement substitution by fly ash.  The x-axis represents the depth corresponding to the 

middle of each removed mortar layer. Hence, the average CaCO3 concentration in the 0-2 mm 

layer was assigned to a depth of 1 mm. Calcium carbonate concentrations were as high as 15 

wt% in the outer layers and decreased as a function of depth. Material taken from layers at 

            a)                                                                                                       b) 
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depths larger than 10 mm had low CaCO3 concentrations ranging from 0.11 to 0.52 wt%, which 

represent the baseline. Hence, the carbonation depth was estimated to be 10 mm for this 

particular sample. Additional examples of CaCO3 concentration profiles and determination of 

carbonation depths are presented in Appendix C2.  

 

Figure 2-6 Variation of CaCO3 concentration along the depth of a 7-day carbonated 20%-FA mortar sample. 

 

2.4.2 Dust Digestion (DD) Method 

Ground mortar powder samples collected at 2 mm depth intervals of by the methods described 

above were placed in 50 mL polyethylene centrifuge tubes along with nanopure water at a 1:20 

ratio. Air in the containers was replaced with nitrogen gas to avoid the reaction of environmental 

CO2 with the alkaline slurry. Next, the slurries were placed in a water bath and agitated at a 

constant temperature of 25 °C for 24 hours. The slurry pH at equilibrium was measured with an 

Accumet Research AR25 pH meter and a Fluka high-pH electrode. The pH meter was calibrated 

with buffer solutions at pH 7, 9 and 13 at 25 °C. The pH 13 buffer solution was prepared by 

mixing 50 mL of 0.2 M KCl and 132 mL of 0.2 M NaOH (Robinson and Stokes, 1970).  
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 The equilibrium pH of mortar slurries depends mainly on the concentration of alkaline 

compounds such as Ca(OH)2 and CSH in the mortar. Because carbonation partly converts these 

compounds into calcium carbonate, slurries containing carbonated mortar powder have a lower 

pH than those made with non-carbonated mortar. Profiles of slurry pH versus mortar depth were 

used to determine the depth of carbonation, as illustrated in Figure 2-7 for a 21-day carbonated 

mortar sample having a cement substitution by FA of 20 wt%. The slurry pH increased with 

depth up to 12 mm. At larger depths, the slurry pH was nearly constant at 12.1, which is 

therefore taken as the baseline pH for non-carbonated material. Hence, the carbonation depth 

was estimated to be 12 mm for this particular sample. Further details on the dust digestion 

method as well as examples of pH profiles and determinations of carbonation depth are provided 

in Appendix D.  

 

 

 

 

 

 

Figure 2-7 Apparent pH profile of a 21-day carbonated 20%-FA mortar sample. 
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In accordance to RILEM (1988), depths of carbonation were measured approximately 24 hours 

after spraying phenolphthalein pH indicator on the freshly exposed surface of a split cylinder. 

The part of the surface that remained gray was considered to be carbonated while the pink 

surface was considered to be uncarbonated. An average carbonation depth for a given cylinder 

was determined from 10 individual measurements done every 2 cm along the length and on both 

sides of the exposed surface of the split cylinder. Additional details on the Trad-P method are 

provided in Appendix E. 

 

2.4.4 Image Processing Methods 

The exposed surfaces of split cylinders were sprayed with different pH indicators, imaged with a 

digital camera, and analysed with the image analysis software MaximDL (Diffraction Limited, 

Ottawa, ON). The pH indicators were thymolphthalein, phenolphthalein, and alizarin. Images of 

samples that had not been sprayed with pH indicator were also analyzed. Figure 2-8 shows a 

carbonated split cylinder sprayed with thymolphthalein. The digital image is formed of an array 

of red, green and blue pixels having values between 0 and 255 which represent the light intensity 

at red, green, and blue wavelengths. Figure 2-9 shows the average values of red, green, and blue 

pixels along the X-axis parallel to the diameter of the cylinder. The X coordinate measures 

distance in number of pixels along the width of the split cylinder. Average pixel values were 

obtained by averaging the values of all pixels of a given colour for a given X value within the 

rectangle denoted as “r” in Figure 2-8. The top and bottom ends of the samples were purposely 

excluded from the analysis to avoid edge effects. Sudden changes in average pixel values at X ≈ 

340 and X ≈ 1675 correspond to transitions between the dark image background and the edge of 

the mortar sample. The non-carbonated material near the centre of the sample (X ≈ 1000) has 
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lower pixel values than the carbonated material near the surface. The difference is more 

pronounced for red and green pixels than for blue pixels because of the bluish colour of 

thymophtalein in the non-carbonated part of the sample. 

 Average pixel values are affected not only by the colour of the pH indicator but also by 

uneven illumination of the split cylinder. Because uneven illumination affects all three 

elementary colours to a similar extent, plotting the difference between blue and red pixel values 

(Figure 2-10) allows a more accurate determination of carbonation depth. The sudden drop in 

blue-red pixel values occurring between points a1 and b1 on one side, and between points a4 and 

b2 on the other correspond to the edges of the mortar sample. The precise X coordinate of the 

edges was taken to coincide with the middle points m1 and m2, respectively. Pixels between the 

local minimum b1 and the local maximum a2 belong to the carbonated zone on the left side of the 

sample. Similarly, positions between the local minimum b2 and the local maximum a3 

correspond to the carbonated zone on the right side of the sample. Since the split cylinder 

measures exactly 2 inches in diameter, the relationship between the X-axis scale and distances in 

millimetres can be accurately established. The depth of carbonation is calculated as the average 

of the distances from m1 to a2 and from a3 to m2 along the X-axis. An example of application of 

the image processing method on unsprayed samples (IM-U) is given in Appendix F.   
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Figure 2-8 Image of a carbonated split cylinder sprayed with thymophthalein showing the rectangular area “r” 

considered for image analysis. 

 

 

Figure 2-9 Profiles of average pixel values along the direction parallel to the diameter of the carbonated sample 

sprayed with thymolphthalein shown in Figure 2-8.    
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Figure 2-10 Difference between blue and red average pixel values versus pixel location along the direction parallel 

to the diameter of the carbonated sample sprayed with thymophthalein shown in Figure 2-8. The depth of 

carbonation is the average of the distances from m1 to a2 and from a3 to m2 along the X-axis.  
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3. Experimental Results and Discussion 

3.1 Comparison of Analytical Methods 

3.1.1 FTIR 

The FTIR technique showed that the carbonation depth increased with carbonation time and with 

percent cement substitution by fly ash (Figure 3-1). Samples with fly ash have less Ca(OH)2 

available to react with CO2 for two reasons. First, less CaO is added to the concrete as the CaO 

content of fly ash is substantially lower than that of cement; second, some of the Ca(OH)2 

formed during cement hydration reacts with fly ash to form CSH (Lin and Fu, 1987). The FTIR 

data used to determine carbonation depths were obtained by integrating the CaCO3 peak at 1420 

cm-1 because the reproducibility of CaCO3 concentrations was found to be higher at this 

wavelength than at 875 cm-1. Carbonation depths estimated using both wavelengths were 

comparable, but data scatter was minimized at 1420 cm-1.  

 

 

 

 

 

 

 

Figure 3-1 Depths of carbonation determined by the FTIR method versus carbonation time for mortars having 

various cement substitutions by FA. Mortars with 40% cement substitution by FA and carbonated for 28 days were 

not included because of lack of sufficient measurements to define the baseline. Best fit lines were determined using 

the diffusion-limited UR-Core model. 
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3.1.2 Dust digestion  

Depths of carbonation measured by the DD method are shown in Figure 3-2. Data scattering was 

relatively high for samples carbonated for 14 days. This may be explained by a higher 

uncertainty in the pH baseline of uncarbonated material, which was estimated over only 2 

consecutive mortar layers for these samples. By contrast, the pH baseline of the other samples 

was estimated over 3 to 5 mortar layers.   

Figure 3-3 compares the depths of carbonation measured by the DD and FTIR methods 

for the same samples. They are related by a linear relationship of the form dDD = s dFTIR + i, 

where the slope s and intercept i are reported in Table 3-1.  The value of s, which is statistically 

indistinguishable from unity (s = 0.94 ± 0.07), and the value of i, which is very close to zero (i = 

0.79 ± 0.71), reflect a very good agreement between the two methods.   

 

 

 

 

 

 

 Figure 3-2 Depths of carbonation determined by the DD method versus carbonation time for mortars having various 

cement substitutions by FA. Mortars with 40% cement substitution by FA and carbonated for 28 days were not 

included because of lack of sufficient measurements to define the baseline. Best fit lines were determined using the 

diffusion-limited UR-Core model. 
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Figure 3-3 Comparison between DD and FTIR carbonation depths. 

 

3.1.3 Traditional Phenolphtalein Method 

Figure 3-4 shows carbonation depths versus carbonation time determined by the Trad-P method, 

and Figure 3-5 compares these depths to those obtained by the FTIR method. The carbonation 

depths obtained by these methods can be related by a linear relationship such as dTrad-P = s FTIR + 

i, where the slope s and intercept i are reported in Table 3-1. Although the two methods are in 

fair agreement for small carbonation depths of 2 to 3 mm, the Trad-P method underestimates the 

carbonation depth by comparison with the FTIR method at larger carbonation depths, and the 

amount of underestimation increases as the carbonation depth increases. This is reflected in the 

slope s being much lower than unity (0.50 ± 0.05). These results are consistent with previous 

reports that the phenolphthalein method significantly underestimates the carbonation depth due 

to the presence of a partially carbonated zone having a pore solution pH between 9 and 13 

(Broomfield, 1997; Lo and Lee, 2002; Jung et al., 2004; Chang et al., 2004). This partially 
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carbonated zone is detected by FTIR but not by the Trad-P method since the pH must drop below 

10 for phenolphthalein to change color.  

The value of s lower than unity would suggest that the size of the partially carbonated 

zone increases with carbonation depth and, hence, with time (since carbonation depth increases 

with time).  There is, however, a compounding reason for the observed difference between the 

carbonation depths determined by the Trad-P and FTIR methods which is independent of the 

existence of a partially carbonated zone. Because of mortar heterogeneity, the carbonation front 

does not advance as a flat front, as is readily apparent in Figure 2-8. The Trad-P method provides 

a measurement of the average carbonation depth as it averages 10 individual depth 

measurements along the length of the sample. On the other hand, the FTIR method measures 

CaCO3 concentrations in powder samples representative of the almost entire length of the sample 

(excluding the first and last centimeters) at a given depth (see Figure 2-2).  Because the FTIR 

method defines the carbonation depth as the depth were the CaCO3 concentration is elevated 

with respect to the baseline, the FTIR measures the maximum advancement of the carbonation 

front rather than the average carbonation depth. This difference between the two methods 

contributes to the lower estimates of carbonation depth provided by the Trad-P method.          
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Figure 3-4 Depths of carbonation determined by the Trad-P method versus carbonation time for mortars having 

various cement substitutions by FA. Best fit lines were determined using the diffusion-limited UR-Core model.  

 

 

 

 

 

 

 

 

Figure 3-5 Comparison between Trad-P and FTIR carbonation depths. 
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applied to digital images of unsprayed split cylinders (IM-U method), as well as split cylinders 

sprayed with phenolphthalein (IM-P method), thymolphthalein (IM-T method), and alizarin (IM-

A method). Carbonation depths versus carbonation time determined by these methods are shown 

in Figures 3-6a-d. All image processing methods consistently show that the depth of carbonation 

increases with carbonation time and percent substitution cement by FA.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-6 Carbonation depths versus carbonation time determined by image processing methods: a) unsprayed 

mortar samples; b) phenolphthalein; c) thymolphthalein; d) alizarin. Best fit lines were determined using the 

diffusion-limited UR-Core model.  

a)                                                                                                b)  

c)                                                                                               d) 
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Figures 3-7a to d compare the carbonation depths determined by the imaging methods 

with different pH indicators to those determined by FTIR. These depths are related by linear 

relationships of the form dIM = s dFTIR + i, where the slopes s and intercepts i are reported in 

Table 3-1.  All the imaging methods consistently provide slopes s less than unity that correlate 

with the upper end of the transition pH range where color change occurs for each indicator. Thus, 

the lowest slope (s = 0.75 ± 0.07) corresponds to phenolphthalein (transition pH range = 8.1 – 

10) and the largest slope (s = 0.81 ± 0.09) corresponds to alizarin (transition pH range = 11.1 – 

12.4). Thymolphtalein provides an intermediate slope (0.77 ± 0.05) as it has an intermediate pH 

transition range of 9.5 – 10.5.  This correlation suggests that the difference between the slope s 

and unity is related to the presence of a partially carbonated zone having pore solution pH 

intermediate between that of uncarbonated mortar (approx. 13) and that of fully carbonated 

mortar (approx. 9). The higher the pH at which the pH indicator starts to change color, the least 

sensitive it is to the effect of the partially carbonated zone, and the closer s is to unity.  

Image processing methods, similar to the FTIR and the dust digestion methods, but 

unlike the traditional phenolphthalein method, measure the maximum advancement of the 

carbonation front rather than the average carbonation depth. This is because the pixel values 

(color intensities) are averaged over the almost entire length of the cylinders for each given 

depth. Hence, a change in color at any position along the cylinder length affects the positions of 

the local maxima a2 and a3 in Figure 2-10, and hence the depth of carbonation determined by the 

image processing methods. This explains why the carbonation depths measured by the IM-P 

method are generally much larger than those determined by the Trad-P method and therefore in 

better agreement with the FTIR method.   
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All imaging methods overestimate the carbonation depth compared with the FTIR 

method at low carbonation depths (i.e., when the carbonation time is small). The value of the 

intercept i in the linear relationship dIM = s dFTIR + i reflects the amount by which the imaging 

methods overestimate the carbonation depth at small carbonation times. This overestimation is 

smallest for alizarin (i = 1.54 ± 1.05) and largest for thymolphtalein  (i = 3.19 ± 0.46).  

As noted before, although FTIR can be considered the most accurate method for 

measuring carbonation depth since it directly measures the carbonation product CaCO3, its cost 

and complexity limit its practical applicability. The other methods tested in this study are both 

more affordable and easier to apply. The goodness of the fit of the linear relationship between  

carbonation depths determined by various methods and those determined by FTIR is quantified 

by the coefficient of determination R2 in the last column of Table 3-1. The dust digestion method 

and all the image processing methods, except that based on alizarin (IM-A), have R2 values 

ranging from 0.78 to 0.88, indicating that any of these methods can effectively predict the depth 

of carbonation that would be determined by FTIR, given the linear regression coefficients s and 

i. On the other hand, the traditional phenolphthalein and the alizarin-based imaging method have 

lower R2 values equal to 0.73 and 0.69, which makes them be less reliable. The DD method has 

an advantage over the image processing methods in that its s and i values are very close to unity 

and zero, respectively, making the DD method essentially equivalent to the FTIR method.  
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Figure 3-7 Comparison of carbonation depths determined by image processing and FTIR methods: a) IM-U vs 

FTIR; b) IM-P vs FTIR; c) IM-T vs FTIR; d) IM-A vs FTIR. 
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Table 3-1 Values of slope s and intercepts i of linear relationships between carbonation depths determined by 

various methods.  

 s i R2 

DD vs FT-IR 0.94 ± 0.07 0.79 ± 0.71 0.81 

 Trad-P vs FT-IR 0.50 ± 0.05 0.89 ± 0.57 0.73 

IM-U vs FT-IR 0.78 ± 0.04 1.87 ± 0.46 0.87 

IM-P vs FT-IR 0.75 ± 0.07 1.89 ± 0.75 0.78 

IM-T vs FT-IR 0.77 ± 0.05 3.19 ± 0.46 0.88 

IM-A vs FT-IR 0.81 ± 0.09 1.54 ± 1.05 0.69 
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4. Modeling the advancement of the carbonation front 

In this chapter, we evaluate how well the carbonation depth versus time data provided by each 

analytical method can be fitted by the diffusion-limited UR-core model. Also, we compare the 

methods with respect to the predicted time for complete carbonation of the cylindrical mortar 

samples.  

Figure 4-1 (Castellote and Andrade, 2008) is a schematic showing the conceptual basis of 

the UR-Core model for the advancement of the carbonation front and the concentration profile of 

solid reactant (material susceptible to be carbonated) in a cylindrical sample at three consecutive 

times. Equations describing the advancement of the carbonation front can be derived by 

assuming that the process is controlled by either 1) the diffusion rate of CO2 through the pore 

space of carbonated material or 2) the carbonation reaction rate. Castellote and Andrade (2008) 

found that their experimental carbonation data for OPC, OPC-FA and OPC-Micro silica samples 

was better fitted by the diffusion-limited model than by the reaction-limited model. We reached 

the same conclusion with our carbonation data (see Appendix G for the results of chemical 

reaction-limited UR-Core modeling); hence, only results pertaining to the diffusion-limited UR-

Core model are discussed in the following. The model equations describing the radial position of 

the carbonation front, r, are as follows: 

     (
 

 
)
 

   (1) 

 

 
    (    )  (    )          (2) 

where R is the radius of the cylinder,  Xs is the fractional conversion of the solid reactant, t is 

carbonation time, and τ is the time required for complete conversion of the reactant. 
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Figure 4-1 Schematic showing the conceptual basis of the UR-core model. (from Castellote and Andrade, 2008). 

 

The time for complete carbonation, can be estimated by plotting the right hand side of 

equation 2 as a function of t. The inverse of the slope of the best fit line is  Experimental 

values of Xs are obtained from measured carbonation depths, D, noting that r = R – D.   Figures 

4-2a to g show the fit of equation 2 to carbonation data obtained with various experimental 

methods and mortars containing 0, 20, and 40% cement substitution by fly ash. The 

corresponding values of  are given in Table 4-1.   
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Figure 4-2 RHS of equation 2 versus time and best fit lines for a) FTIR; b) DD; c) Trad-P; d) IM-U; e) IM-P;           

f) IM-T; g) IM-A carbonation data. 

 

Table 4-1 Estimated times for total carbonation using the diffusion-limited UR-Core model. 

Method FA content (%) Time for total carbonation τ (day) 

 0 225 ± 23 
Trad-P 20 122.2 ± 7.2 

 40 76.2 ± 6.1 
 0 61.3 ± 5.6 

FTIR 20 50.7 ± 2.4 
 40 31.6 ± 2.2 

 
0 65.8 ± 5.6 

 DD 20 53.7 ± 3.1 
  40 28.5 ± 3.8 

 
0 80.2 ± 5.1 

 IM-U 20 55.3 ± 2.0 
  40 35.1 ± 1.9 
 0 76.8 ± 4.1 

IM-P 20 55.4 ± 2.7 
 40 38.8 ± 1.9 

 
0 54.5 ± 5.1 

 IM-T 20 52.0 ± 3.3 
  40 27.4 ± 2.1 
 0 79 ± 12 

IM-A 20 60.0 ± 5.2 
 40 35.1 ± 3.7 
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The value of τ decreases as a function of increasing cement replacement by fly ash, which 

is consistent with faster carbonation as more cement is substituted by fly ash. The τ values 

obtained with the Trad-P method were at least twice as long as those obtained with the other 

methods, confirming that the traditional phenolphthalein method underestimates the 

advancement of the carbonation front. All the other methods provide compatible values of  

when considering statistical uncertainty. 
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5. Conclusions 

Several analytical methods were compared for measuring the advancement of the carbonation 

front and predicting the time required for total carbonation of cylindrical mortar samples. These 

methods were the measurement of CaCO3 concentrations by FTIR, the dust digestion method 

which provided an apparent pH profile, the traditional phenolphthalein method, and 

computerized image-processing methods based on the use pH indicators or changes in mortar 

colour due to carbonation.  The following conclusions can be made. 

1.  The traditional phenolphthalein method, which measures the average advancement of the 

carbonation front, significantly underestimates the carbonation depth when compared 

with the FTIR, dust digestion, and all the image processing methods, which measure the 

maximum advancement of the carbonation front. 

2. The dust digestion method provides carbonation depths which are essentially equivalent 

to those provided by the FTIR method. 

3. The diffusion-limited UR-core model generally fits well the carbonation depths versus 

time data measured by all analytical methods. 

4. When used in conjunction with the diffusion-limited UR-core model, all analytical 

methods, except the traditional phenolphthalein method, give consistent estimates of the 

times required for total sample carbonation. By contrast, the traditional phenolphthalein 

method significantly overestimates times for total carbonation. 

5. Partial replacement of cement by FA causes the carbonation front to advance faster and 

decreases the time required for complete carbonation of the mortar samples.  
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Appendix A  Water Requirement Testing 

 

Water requirement was assessed as the amount of water needed to keep the same diameter 

increase as that of the control sample in the flow table test. The control sample had a fly ash 

content of 0 wt%. The formula to calculate the diameter increase is shown next.  

                      
   (

∑   
 
   

 )   

 
     

Where F = diameter of flow table = 25.5 cm; di = distance between edge of table and 

edge of mortar at 8 locations around the flow table after test is done; M = diameter of base of 

mold = 10 cm 

Control mortar diameter increases after the flow table test are shown in Table A1.  

 

Table A1 Flow table results for control mortars. 

Sample 
Water 

(mL) 
d1 (cm) d2 (cm) d3 (cm) d4 (cm) d5 (cm) d6 (cm) d7 (cm) d8 (cm) 

Diameter 

increase 

(%) 

0% FAa 242 5.15 5.10 5.40 5.55 5.20 5.05 4.75 4.95 52.13 

0% FA 242 5.45 5.20 5.20 5.30 5.45 5.10 5.05 5.30 49.86 

0%FA 242 5.05 5.25 5.00 4.85 4.60 4.70 4.95 5.00 56.50 

 

Diameter increase average = 52.83 % 

 

a. Sample calculation for 0% cement replacement by fly ash  

                  
      (

                                       
 )    

  
     

Diameter Increase = 52.13% 
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Table A2 Flow table results for mortars containing fly ash. 

Sample 
Water 

(mL) 

d1 

(cm) 

d2 

(cm) 

d3 

(cm) 

d4 

(cm) 

d5 

(cm) 

d6 

(cm) 

d7 

(cm) 

d8 

(cm) 

Diameter 

increase 

(%) 

Pass? 

Y/N 

20% CFA 228 5.15 5.40 5.30 4.95 5.00 5.00 5.10 4.85 53.13 Y 

20% BFA 228 5.00 5.25 5.00 4.70 4.70 4.70 4.85 5.00 57.00 Y 

40% CFA 206 5.25 5.10 4.95 4.95 4.80 4.80 5.10 5.05 55.00 Y 
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Appendix B Measurement of CO2 Concentration in the Carbonation Chamber 

 

B1 Gas Sampling 

A hole was drilled on top of the chamber to place the sampling hose down to approximately the 

center of the carbonation chamber. Two fans were kept inside the chamber at all times to ensure 

the homogeneity of the gas mixture. A vacuum system was utilized to fill up the hermetically 

sealed air sampling bags.  

The gas samples were analyzed with a gas chromatograph to determine their CO2 

concentration. Gas analysis and subsequent adjustments to the CO2 flow rate were done on a 

daily basis to prevent the CO2 concentration to deviate from the targeted 50 vol%. The CO2 vol% 

was allowed to fluctuate between 45 and 55 vol%. The average CO2 concentration over the 28-

day carbonation period was 51.13 ± 2.12 vol%. 

 

B2 GC Calibration Curve 

A calibration curve was obtained by running samples of three different CO2 concentrations: air 

(0.03 vol%), 50 vol%CO2 and 100 vol%CO2. The integrated areas are in a linear relationship 

with the CO2 vol%.   

 

 

 

 

 

 

Figure B1 GC calibration curve. 
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B3 Assessment of CO2 vol%. Sample Calculations 

Since Area = 29647 * CO2 vol% + 48516; then 

CO2 vol% = (Area + 48516) / 29647 

 

Sample: 

Area = 1487220 

CO2 vol% = (1487220 + 48516) / 29647 

CO2 vol% = 51.8007 

 

B4 Summary of GC analyses Over Time 

 

 

 

 

 

 

 

Figure B2 CO2 vol% over time. 
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Appendix C FTIR Method  

 

C1 CaCO3-ASTM Sand Calibration Curves 

 

Figure C1 Calibration curve of June 1st, 2009 for peaks at 875 and 1420 cm-1. 

 

 

 

 

 

 

 

Figure C1. 

 

Figure C2 Calibration curve of July 25th, 2009 for peaks at 875 and 1420 cm-1. 

 

 

 

 

 

 

 

Figure C2. 
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Figure C3 Calibration curve of August 10th, 2009 for peaks at 875 and 1420 cm-1. 

 

 

 

 

 

 

 

Figure C3. 

 

Figure C4 Calibration curve of August 27th, 2009 for peaks at 875 and 1420 cm-1. 

 

 

 

 

 

 

 

Figure C4. 
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Figure C5 Calibration curve of September 13th, 2009 for peaks at 875 and 1420 cm-1. 

 

 

 

 

 

Figure E5. 

 

Figure C5. 

 

Figure C6 Calibration curve of October 12th, 2009 for peaks at 875 and 1420 cm-1. 

 

 

 

 

 

 

 

Figure C6. 
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Figure C7 Calibration curve of November 9th, 2009 for peaks at 875 and 1420 cm-1. 

 

 

 

 

 

 

 

Figure C7. 

 

Figure C8 Calibration curve of December 12th, 2009 for peaks at 875 and 1420 cm-1. 

 

 

 

 

 

 

 

Figure C8. 
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Figure C9 Calibration curve of January 24th, 2010 for peaks at 875 and 1420 cm-1. 

 

 

 

 

 

 

 

Figure C9. 

 

Figure C10 Calibration curve of February 26th, 2010 for peaks at 875 and 1420 cm-1. 

 

 

 

 

 

 

 

Figure C10. 
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Figure C11 Calibration curve of April 14th, 2010 for peaks at 875 and 1420 cm-1.  

 

 

 

 

 

 

 

Figure C11. 

 

Figure C12 Calibration curve of May 15th, 2010 for peaks at 875 and 1420 cm-1.  

 

 

 

 

 

 

 

Figure C12. 
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Figure C13 Calibration curve of July 19th, 2010 for peaks at 875 and 1420 cm-1.  

 

 

 

 

 

 

 

Figure C13. 

 

C2 Assessment of Carbonation Depth. Sample Calculations 

 

 

 

 

 

 

 

 

Figure C14 1-day carbonated. 0% cement replacement by FA. Replicate number 1. Calibration curve of November 

9th, 2009 was used to calculate CaCO3 concentrations. Estimated carbonation depth = 4.00 mm. 
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Figure C15 1-day carbonated. 20% cement replacement by FA. Replicate number 1. Calibration curve of February 

26th, 2010. Estimated carbonation depth = 2.00 mm 

 

 

 

 

 

 

 

 

Figure C16 1-day carbonated. 20% cement replacement by FA. Replicate number 2. Calibration curve of February 

26th, 2010. Estimated carbonation depth = 2.00 mm 
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Figure C17 1-day carbonated. 20% cement replacement by FA. Replicate number 3. Calibration curve of May 15th, 

2010. Estimated carbonation depth = 3.90 mm 

 

 

 

 

 

 

 

 

 

Figure C18 1-day carbonated. 20% cement replacement by FA. Replicate number 4. Calibration curve of November 

9th, 2009. Estimated carbonation depth = 4.00 mm 
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Figure C19 1-day carbonated. 20% cement replacement by FA. Replicate number 5. Calibration curve of November 

9th, 2009. Estimated carbonation depth = 3.60 mm 

 

 

 

 

 

 

 

 

 

Figure C20 1-day carbonated. 40% cement replacement by FA. Replicate number 1. Calibration curve of December 

12th, 2009. Estimated carbonation depth = 4.00 mm 
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Figure C21 1-day carbonated. 40% cement replacement by FA. Replicate number 2. Calibration curve of December 

12th, 2009. Estimated carbonation depth = 4.00 mm 

 

 

 

 

 

 

 

 

 

Figure C22 3-day carbonated. 0% cement replacement by FA. Replicate number 1. Calibration curve of July 25 th, 

2009. Estimated carbonation depth = 4.00 mm 
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Figure C23 3-day carbonated. 0% cement replacement by FA. Replicate number 2. Calibration curve of June 1st, 

2009. Estimated carbonation depth = 4.00 mm 

 

 

 

 

 

 

 

 

Figure C24 3-day carbonated. 20% cement replacement by FA. Replicate number 1. Calibration curve of June 1st, 

2009. Estimated carbonation depth = 7.20 mm 
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Figure C25 3-day carbonated. 20% cement replacement by FA. Replicate number 2. Calibration curve of April 14 th, 

2010. Estimated carbonation depth = 5.90 mm 

 

 

 

 

 

 

 

 

 

Figure C26 3-day carbonated. 20% cement replacement by FA. Replicate number 3. Calibration curve of June 1st, 

2009. Estimated carbonation depth = 8.00 mm 
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Figure C27 3-day carbonated. 20% cement replacement by FA. Replicate number 4. Calibration curve of April 14 th, 

2010. Estimated carbonation depth = 5.20 mm 

 

 

 

 

 

 

 

 

 

 

Figure C28 3-day carbonated. 40% cement replacement by FA. Replicate number 1. Calibration curve of May 15 th, 

2010. Estimated carbonation depth = 8.00 mm 

 

 

 

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16

C
aC

O
3

 w
t%

 

Depth (mm) 

0

2

4

6

8

0 2 4 6 8 10 12 14 16 18

C
aC

O
3

 w
t%

 

Depth (mm) 



61 
 

 

 

 

 

 

 

 

 

Figure C29  3-day carbonated. 40% cement replacement by FA. Replicate number 2. Calibration curve of December 

12th, 2009. Estimated carbonation depth = 8.00 mm 

 

 

 

 

 

 

 

 

 

Figure C30  3-day carbonated. 40% cement replacement by FA. Replicate number 3. Calibration curve of December 

12th, 2009. Estimated carbonation depth = 10.00 mm 
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Figure C31 7-day carbonated. 0% cement replacement by FA. Replicate number 1. Calibration curve of April 14 th, 

2010. Estimated carbonation depth = 8.00 mm 

 

 

  

 

 

 

 

 

 

 

Figure C32 7-day carbonated. 0% cement replacement by FA. Replicate number 2. Calibration curve of May 15th, 

2010. Estimated carbonation depth = 8.35 mm 
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Figure C33  7-day carbonated. 20% cement replacement by FA. Replicate number 1. Calibration curve of April 14 th, 

2010. Estimated carbonation depth = 6.00 mm 

 

 

 

 

 

 

 

 

 

Figure C34 7-day carbonated. 20% cement replacement by FA. Replicate number 2. Calibration curve of April 14 th, 

2010. Estimated carbonation depth = 11.85 mm 

 

 

 

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 18 20

C
aC

O
3

 w
t%

 

Depth (mm) 

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16 18 20

C
aC

O
3

 w
t%

 

Depth (mm) 



64 
 

 

 

 

 

 

 

 

 

 

Figure C35 7-day carbonated. 20% cement replacement by FA. Replicate number 3. Calibration curve of May 15th, 

2010. Estimated carbonation depth = 8.00 mm 

 

 

 

 

 

 

 

 

 

Figure C36  7-day carbonated. 20% cement replacement by FA. Replicate number 4. Calibration curve of April 14 th, 

2010. Estimated carbonation depth = 10.00 mm 
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Figure C37 7-day carbonated. 40% cement replacement by FA. Replicate number 1. Calibration curve of May 15 th, 

2010. Estimated carbonation depth = 10.00 mm 

 

 

 

 

 

 

 

 

 

Figure C38  7-day carbonated. 40% cement replacement by FA. Replicate number 2. Calibration curve of May 15th, 

2010. Estimated carbonation depth = 9.80 mm 
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Figure C39 14-day carbonated. 0% cement replacement by FA. Replicate number 1. Calibration curve of July 25 th, 

2009. Estimated carbonation depth = 7.15 mm 

. 

 

 

 

 

 

 

 

 

Figure C40 14-day carbonated. 0% cement replacement by FA. Replicate number 2. Calibration curve of July 19 th, 

2010. Estimated carbonation depth = 12.00 mm 
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Figure C41 14-day carbonated. 20% cement replacement by FA. Replicate number 1. Calibration curve of August 

27th, 2009. Estimated carbonation depth = 12.00 mm 

 

 

 

 

 

 

 

 

 

Figure C42 14-day carbonated. 20% cement replacement by FA. Replicate number 2. Calibration curve of June 1st, 

2009. Estimated carbonation depth = 9.70 mm 
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Figure C43 14-day carbonated. 20% cement replacement by FA. Replicate number 3. Calibration curve of June 1st, 

2009. Estimated carbonation depth = 12.00 mm 

 

 

 

 

 

 

 

 

 

 

Figure C44 14-day carbonated. 20% cement replacement by FA. Replicate number 4. Calibration curve of August 

10th, 2009. Estimated carbonation depth = 11.75 mm 
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Figure C45 14-day carbonated. 40% cement replacement by FA. Replicate number 1. Calibration curve of July 25 th, 

2009. Estimated carbonation depth = 15.00 mm 

 

 

  

 

 

 

 

 

 

Figure C46 14-day carbonated. 40% cement replacement by FA. Replicate number 2. Calibration curve of August 

27th, 2009. Estimated carbonation depth = 16.00 mm 
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Figure C47 21-day carbonated. 0% cement replacement by FA. Replicate number 1. Calibration curve of February 

26th, 2010. Estimated carbonation depth = 10.00 mm 

 

 

 

 

 

 

 

 

 

 

Figure E48 21-day carbonated. 0% cement replacement by FA. Replicate number 2. Calibration curve of February 

26th, 2010. Estimated carbonation depth = 12.00 mm 
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Figure C49 21-day carbonated. 20% cement replacement by FA. Replicate number 1. Calibration curve of February 

26th, 2010. Estimated carbonation depth = 14.00 mm 

. 

 

 

 

 

 

 

 

 

Figure C50 21-day carbonated. 20% cement replacement by FA. Replicate number 2. Calibration curve of February 

26th, 2010. Estimated carbonation depth = 12.00 mm 
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Figure C51 21-day carbonated. 20% cement replacement by FA. Replicate number 3. Calibration curve of July 19 th, 

2010. Estimated carbonation depth = 11.40 mm 

. 

 

 

 

 

 

 

 

 

Figure C52 21-day carbonated. 20% cement replacement by FA. Replicate number 4. Calibration curve of February 

26th, 2010. Estimated carbonation depth = 14.00 mm 
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Figure C53 21-day carbonated. 20% cement replacement by FA. Replicate number 5. Calibration curve of January 

24th, 2010. Estimated carbonation depth = 11.40 mm 

 

 

 

 

 

 

 

 

 

Figure C54 21-day carbonated. 20% cement replacement by FA. Replicate number 6. Calibration curve of January 

24th, 2010. Estimated carbonation depth = 12.00 mm 
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Figure C55 21-day carbonated. 40% cement replacement by FA. Replicate number 1. Calibration curve of July 19 th, 

2010. Estimated carbonation depth = 16.0 mm 

 

 

 

 

 

 

 

 

 

 

Figure C56 21-day carbonated. 40% cement replacement by FA. Replicate number 2. Calibration curve of July 19th, 

2010. Estimated carbonation depth = 15.90 mm 

. 
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Figure C57 21-day carbonated. 40% cement replacement by FA. Replicate number 3. Calibration curve of July 19 th, 

2010. Estimated carbonation depth = 15.85 mm 

 

 

 

 

 

 

 

 

 

 

 

Figure C58 28-day carbonated. 0% cement replacement by FA. Replicate number 1. Calibration curve of August 

10th, 2009. Estimated carbonation depth = 11.60 mm 
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Figure C59 28-day carbonated. 0% cement replacement by FA. Replicate number 2. Calibration curve of August 

10th, 2009. Estimated carbonation depth = 15.30 mm 

. 

 

 

 

 

 

 

 

 

Figure C60 28-day carbonated. 20% cement replacement by FA. Replicate number 1. Calibration curve of 

September 13th, 2009. Estimated carbonation depth = 13.70 mm 
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Figure C61 28-day carbonated. 20% cement replacement by FA. Replicate number 2. Calibration curve of 

September 13th, 2009. Estimated carbonation depth = 15.40 mm 

 

 

  

 

 

 

 

 

 

Figure C62 28-day carbonated. 20% cement replacement by FA. Replicate number 3. Calibration curve of August 

27th, 2009. Estimated carbonation depth = 14.00 mm 
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Figure C63 28-day carbonated. 20% cement replacement by FA. Replicate number 4. Calibration curve of July 25th, 

2009. Estimated carbonation depth = 16.00 mm 
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Appendix D Dust Digestion Method  

 

D1 pH-meter Calibration 

Three pH buffers solutions were used to calibrate the instrument to pH 7, 9 and 13. In all cases, 

the calibration slope of the electrode had a value ranging from 92 to 96%.  

 

D2 Environmental Conditions 

A water bath was set up at a constant temperature of 23°C. Samples and buffers were kept inside 

the water bath for a period of 24 hours before pH measurements.      

 

D3 Assessment of Carbonation Depth. Sample Calculations 

A series of steps were followed to determine the carbonation depth based on the mortar powder 

slurries. First, a baseline had to be established. The baseline represents the uncarbonated 

material. All slurries made out of uncarbonated mortar had pH values within a small range. As 

seen in Figure D1, all layers from 6-8 up to 18-20 mm depth had slurry pH averages in the 12.18 

– 12.24 range. Once the baseline has been determined, a horizontal average line is drawn (Line 

a1 in Figure D1). This line represents all the points of the baseline. For this particular case, the 

average pH is equal to 12.21. Next, pH measurements away from the baseline are fitted by a line 

(Line a2 in Figure D1). The point where lines a1 and a2 intercept is the estimated carbonation 

depth, which is equal to 5.65 mm in this case. It is important to note the location of the first point 

of the baseline since no estimated carbonation depth can extend beyond the layer corresponding 

to this point.  
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Figure D1 Assessment of the carbonation front. 

 

 

 

D4 Experimental Data 
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Figure D2 1-day carbonated. 0% cement replacement by FA. Replicate Number 1. 

Estimated carbonation depth = 5.10 mm 

 

 

 

 

 

 

 

 

 

Figure D3 1-day carbonated. 0% cement replacement by FA. Replicate Number 2.  

Estimated carbonation depth = 5.10 mm 
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Figure D4 1-day carbonated. 20% cement replacement by FA. Replicate Number 2. 

Estimated carbonation depth = 3.80 mm 

 

  

 

 

 

 

 

 

 

Figure D5 1-day carbonated. 20% cement replacement by FA. Replicate Number 3. 

Estimated carbonation depth =  4.00 mm  
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Figure D6 1-day carbonated. 20% cement replacement by FA. Replicate Number 4. 

Estimated carbonation depth =  4.00 mm 

 

 

  

 

 

 

 

 

 

Figure D7 1-day carbonated. 20% cement replacement by FA. Replicate Number 5. 

Estimated carbonation depth = 4.00 mm 
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Figure D8 1-day carbonated. 40% cement replacement by FA. Replicate Number 1. 

Estimated carbonation depth = 9.00 mm 

 

 

 

 

 

 

 

 

 

Figure D9 1-day carbonated. 40% cement replacement by FA. Replicate Number 2. 

Estimated carbonation depth = 9.50 mm 
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Figure D10 1-day carbonated. 40% cement replacement by FA. Replicate Number 3. 

Estimated carbonation depth = 10.00 mm 

 

 

  

 

 

 

 

 

 

Figure D11 3-day carbonated. 0% cement replacement by FA. Replicate number 1. 

Estimated carbonation depth = 3.50 mm 
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Figure D12 3-day carbonated. 0% cement replacement by FA. Replicate number 2. 

Estimated carbonation depth = 3.20 mm 

 

 

  

 

 

 

 

 

 

Figure D13 3-day carbonated. 20% cement replacement by FA. Replicate number 1. 

Estimated carbonation depth = 7.30 mm 
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Figure D14 3-day carbonated. 20% cement replacement by FA. Replicate number 2. 

Estimated carbonation depth = 3.60 mm 

 

 

  

 

 

 

 

 

 

Figure D15 3-day carbonated. 20% cement replacement by FA. Replicate number 3. 

Estimated carbonation depth = 8.00 mm 
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Figure D16 3-day carbonated. 20% cement replacement by FA. Replicate number 4. 

Estimated carbonation depth = 4.00 mm 

 

 

  

 

 

 

 

 

 

Figure D17 3-day carbonated. 40% cement replacement by FA. Replicate number 1. 

Estimated carbonation depth = 12.00 mm 
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Figure D18 3-day carbonated. 40% cement replacement by FA. Replicate number 2. 

Estimated carbonation depth = 12.00 mm 

 

 

 

 

 

 

 

 

 

Figure D19 3-day carbonated. 40% cement replacement by FA. Replicate number 3. 

Estimated carbonation depth = 8.00 mm 
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Figure D20 7-day carbonated. 0% cement replacement by FA. Replicate number 1. 

Estimated carbonation depth = 7.50 mm 

 

 

  

 

 

 

 

 

 

Figure D21 7-day carbonated. 0% cement replacement by FA. Replicate number 2. 

Estimated carbonation depth = 8.00 mm 
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Figure D22 7-day carbonated. 20% cement replacement by FA. Replicate number 1. 

Estimated carbonation depth = 5.65 mm 

 

 

  

 

 

 

 

 

 

Figure D23 7-day carbonated. 20% cement replacement by FA. Replicate number 2. 

Estimated carbonation depth = 8.00 mm 
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Figure D24 7-day carbonated. 20% cement replacement by FA. Replicate number 3. 

Estimated carbonation depth = 6.00 mm 

 

 

  

 

 

 

 

 

 

Figure D25 7-day carbonated. 20% cement replacement by FA. Replicate number 4. 

Estimated carbonation depth = 10.00 mm 
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Figure D26 7-day carbonated. 40% cement replacement by FA. Replicate number 1. 

Estimated carbonation depth = 10.00 mm 

 

 

  

 

 

 

 

 

 

Figure D27 7-day carbonated. 40% cement replacement by FA. Replicate number 2. 

Estimated carbonation depth = 8.00 mm 
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Figure D28 14-day carbonated. 0% cement replacement by FA. Replicate number 1. 

Estimated carbonation depth = 6.00 mm 

 

 

  

 

 

 

 

 

 

Figure D29 14-day carbonated. 0% cement replacement by FA. Replicate number 2. 

Estimated carbonation depth = 10.00 mm 
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Figure D30 14-day carbonated. 0% cement replacement by FA. Replicate number 3. 

Estimated carbonation depth = 11.70 mm 

 

 

 

 

 

 

 

 

 

Figure D31 14-day carbonated. 20% cement replacement by FA. Replicate number 1. 

Estimated carbonation depth = 9.60 mm 
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Figure D32 14-day carbonated. 20% cement replacement by FA. Replicate number 2. 

Estimated carbonation depth = 14.00 mm 

 

 

  

 

 

 

 

 

 

Figure D33 14-day carbonated. 20% cement replacement by FA. Replicate number 3. 

Estimated carbonation depth = 13.70 mm 
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Figure D34 14-day carbonated. 20% cement replacement by FA. Replicate number 4. 

Estimated carbonation depth = 11.35 mm 

 

 

  

 

 

 

 

 

 

Figure D35 14-day carbonated. 40% cement replacement by FA. Replicate number 1. 

Estimated carbonation depth = 17.60 mm 
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Figure D36 14-day carbonated. 40% cement replacement by FA. Replicate number 2. 

Estimated carbonation depth = 20.00 mm 

 

 

 

 

 

 

 

 

 

Figure D37 21-day carbonated. 0% cement replacement by FA. Replicate number 1. 

Estimated carbonation depth = 11.10 mm 
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Figure D38 21-day carbonated. 0% cement replacement by FA. Replicate number 2. 

Estimated carbonation depth = 11.25 mm 

 

 

 

 

 

 

 

 

 

Figure D39 21-day carbonated. 0% cement replacement by FA. Replicate number 3. 

Estimated carbonation depth = 12.00 mm 
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Figure D40 21-day carbonated. 20% cement replacement by FA. Replicate number 2. 

Estimated carbonation depth = 12.00 mm 

 

 

 

 

 

 

 

 

 

Figure D41 21-day carbonated. 20% cement replacement by FA. Replicate number 3. 

Estimated carbonation depth = 13.80 mm 
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Figure D42 21-day carbonated. 20% cement replacement by FA. Replicate number 4. 

Estimated carbonation depth = 11.40 mm 

 

 

 

 

 

 

 

 

 

Figure D43 21-day carbonated. 20% cement replacement by FA. Replicate number 5. 

Estimated carbonation depth = 12.00 mm 
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Figure D44 21-day carbonated. 20% cement replacement by FA. Replicate number 6. 

Estimated carbonation depth = 10.00 mm 

 

 

  

 

 

 

 

 

 

Figure D45 21-day carbonated. 40% cement replacement by FA. Replicate number 1. 

Estimated carbonation depth = 16.00 mm 
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Figure D46 21-day carbonated. 40% cement replacement by FA. Replicate number 2. 

Estimated carbonation depth = 16.00 mm 

 

 

 

 

 

 

 

 

 

Figure D47 21-day carbonated. 40% cement replacement by FA. Replicate number 3. 

Estimated carbonation depth = 16.00 mm 

 

 

 

 

10.20

10.60

11.00

11.40

11.80

12.20

0 2 4 6 8 10 12 14 16 18 20 22

p
H

 

Depth (mm) 

9.60

10.00

10.40

10.80

11.20

11.60

12.00

0 2 4 6 8 10 12 14 16 18 20 22

p
H

 

Depth (mm) 



104 
 

 

 

 

 

 

 

 

Figure D48 28-day carbonated. 0% cement replacement by FA. Replicate number 1. 

Estimated carbonation depth = 14.00 mm 

 

 

 

 

 

 

 

 

 

Figure D49 28-day carbonated. 0% cement replacement by FA. Replicate number 2. 

Estimated carbonation depth = 10.00 mm 
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Figure D50 28-day carbonated. 20% cement replacement by FA. Replicate number 1. 

Estimated carbonation depth = 14.00 mm 

 

 

 

 

 

 

 

 

 

Figure D51 28-day carbonated. 20% cement replacement by FA. Replicate number 2. 

Estimated carbonation depth = 14.00 mm 
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Figure D52 28-day carbonated. 20% cement replacement by FA. Replicate number 3. 

Estimated carbonation depth = 16.00 mm 

 

 

 

 

 

 

 

 

 

Figure D53 28-day carbonated. 20% cement replacement by FA. Replicate number 4. 

Estimated carbonation depth = 13.45 mm 
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Appendix E Traditional Phenolphthalein Method (Trad-P) 

 

The carbonation depth was determined by averaging eight individual measurements. The 

measurements were done every two centimeters along the edge of the sample towards the 

location of the visible carbonation front as shown in Figure E1. Four carbonation depth 

measurements D were done on each side of the specimen.  

 

Figure E1 Phenolphthalein-sprayed mortar sample. Assessment of the carbonation depth. 

 

                        
∑   
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Appendix F Image Processing Methods 

 

F1 Image Processing Method on Unsprayed Samples (IM-U). Sample calculation.  

The imaging method addresses changes in color intensity due to the carbonation reaction. The 

method is a multi-step process that requires the image analysis software MaxIm-DL and the data 

analysis software Microsoft Excel. For the sake of clarity, a sample calculation is shown below. 

 

Sample characteristics:  

Wt% cement replacement by fly ash: 20 

Carbonation time (day): 28  

 

A digital picture of the sample was taken and analysed with the software MaxIm-DL, as 

seen in Figure F1. The intensity of all blue, green and red pixels in the rectangular section “a” 

was measured. An average of color intensity along x-axis is reported graphically in Figure F2. 

The raw color intensity data are imported to Microsoft Excel for further calculations. A Blue-

Red color intensity profile is shown in Figure F3. This profile accounts for significant changes in 

color intensity regardless of some other factors such as room illumination and mortar matrix 

heterogeneity. 
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Figure F1 Image of an unsprayed carbonated sample. 

  

 

Figure F2 Profile of average pixel values along the width of the sample.    
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Figure F3 Difference between blue and red average pixel values versus pixel location along the width of the sample. 

 

 The carbonation depth can be assessed by looking at changes in the Blue-Red color 

intensity profile in Figure F3. In Figure F4, the corresponding edges of the sample have been 

designated as middle points m1 and m2, while the carbonation extends to the depths 

corresponding to the maxima a3 and a4. The distance between a3 and a4 represents the 

noncarbonated section of the mortar.  

 

.  

Figure F4 Location of the reference points.  

 

 The detailed calculations for this particular sample are shown below.   
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Blue-Red profile. Left-hand side. 

a1 (local maximum): 9.2506 value on the y-axis 

b1 (local minimum): -11.102 value on the y-axis 

m1 (middle point): -0.9257 value on the y-axis  254.7 pixel location on the x-axis 

a2 (local maximum)  617 pixel location on the x-axis 

 

Blue-Red profile. Right-hand side. 

a3 (local maximum): 16.9668 value on the y-axis 

b2 (local minimum): -12.194 value on the y-axis 

m2 (middle point): -2.3864 value on the y-axis  1601.8 pixel location on the x-axis 

a4 (local maximum)  1259 pixel location on the x-axis 

 

Sample width: 1601.8 – 254.7 = 1347.1 pixels = 50.8 mm 

Carbonation depth (left-hand side): 617 – 254.7 = 362.3 pixels = 13.6626 mm 

Carbonation depth (right-hand side): 1601.8 – 1259 = 342.8 pixels = 12.9272 mm 

Ave. Carbonation depth = (13.6626+12.9272) / 2 mm 

Ave. Carbonation depth = 13.2949 mm 

 

F2 Image Processing Method for Phenolphthalein, Thymolphthalein and Alizarin pH Indicators 

The principle of analysis for IM-U can be extended to the cases where pH indicators (i.e. 

phenolphthalein, thymolphthalein and alizarin) were sprayed on the split carbonated mortar 

cylinders. Similar steps can be followed to assess the carbonation depth. Since the color 
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intensities vary with the pH indicator that is employed, different elementary color subtractions 

should be applied according to the particular case. It is always desirable to pair the two 

elementary colors with the most different intensity values. For phenolphthalein, it was Red-Blue, 

while for thymolphthalein it was Blue-Red. Finally, it was determined that a Red-Green profile 

should be used for the case of the alizarin indicator.  
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Appendix G Reaction-limited UR-core Modelling 

 

In this section, we evaluate how well the chemical reaction-limited UR-core model fits the 

carbonation depth versus time data provided by each analytical method. Also, we compare the 

methods with respect to the predicted time for complete carbonation of the cylindrical mortar 

samples.  

 

G1 Model equations 

The model equations describing the radial position of the carbonation front, r, are as follows: 

     (
 

 
)
 

   (1) 

 

 
         

         (3) 

where R is the radius of the cylinder,  Xs is the fractional conversion of the solid reactant, t is 

carbonation time, and τ is the time required for complete conversion of the reactant. 

 

G2 Calculation of τ 

Similarly to what was previously shown in Section 4, the time for complete carbonation, can 

be estimated by plotting the right hand side of equation 3 as a function of t. The inverse of the 

slope of the best fit line is  Experimental values of Xs are obtained from measured carbonation 

depths, D, noting that r = R – D.   Figures G1a to g show the fit of equation 3 to carbonation data 
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obtained with various experimental methods and mortars. The corresponding values of  are 

given in Table G1.   
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Figure G1 RHS of equation 3 versus time and best fit lines for a) FTIR; b) DD; c) Trad-P; d) IM-U; e) IM-P;           

f) IM-T; g) IM-A carbonation data. 
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Table G1 Estimated times for total carbonation using the chemical reaction-limited UR-Core model. 

Method FA content (%) Time for total carbonation τ (day) 

 0 98.3 ± 10.3 
Trad-P 20 67.4 ± 4.6 

 40 54.2 ± 4.5 
 0 46.2 ± 4.8 

FTIR 20 41.1 ± 2.8 
 40 28.2 ± 3.1 

 
0 47.6 ± 4.8 

 DD 20 42.6 ± 3.1 
  40 26.2 ± 4.2 

 
0 54.0 ± 4.5 

 IM-U 20 43.6 ± 2.6 
  40 33.2 ± 2.6 
 0 54.5 ± 5.1 

IM-P 20 43.3 ± 2.8 
 40 35.3 ± 3.4 

 
0 43.5 ± 5.6 

 IM-T 20 41.5 ± 3.8 
  40 26.8 ± 3.6 
 0 54.1 ± 7.4 

IM-A 20 45.7 ± 4.1 
 40 32.0 ± 3.4 

 

 

As seen in Table G1, regardless of method, the value of τ consistently decreases as a 

function of increasing cement replacement by fly ash. The τ values obtained with the Trad-P 

method were, in average, twice as long as those obtained with the other methods. All the other 

methods provide similar values of  when considering statistical uncertainty. 

 Figure G2 shows the best fit lines to the experimental data using the chemical reaction-

limited UC model. It is clear that the diffusion-limited UR-core model has a better fit with the 

experimental data (compare Figure G2 to Figures 3-1, 3-2, 3-4 and 3-6). Therefore, the chemical 

reaction-limited model was no longer considered. 
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Figure G2 Carbonation depths versus carbonation time determined by: a) FTIR; b) dust digestion; c) traditional 

phenolphthalein method; d) unsprayed mortar samples; e) phenolphthalein; f) thymolphthalein; g) alizarin. Best fit 

lines were determined using the chemical reaction-limited UR-Core model.  
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