Light-weight Federated Learning with Augmented
Knowledge Distillation for Human Activity Recognition

by

Gad Gad

A THESIS
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE FACULTY OF GRADUATE STUDIES
OF LAKEHEAD UNIVERSITY
IN PARTTAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
MASTER OF SCIENCE (SPECIALIZATION IN ARTIFICIAL
INTELLIGENCE)

2023
Lakehead University
Thunder Bay, Ontario, Canada

Supervisors

Dr. Zubair Fadlullah

s Adjunct Professor, Department of Computer Science, Lakehead University, Thunder
Bay, Ontario, Canada

s Associate Professor, Department of Computer Science, Western University, London,
Ontario, Canada.

Dr. Mostafa Fouda (co-supervisor)

s Assistant Professor, Department of Electrical and Computer Engineering, College of
Science and Engineering, Idaho State University, Pocatello, USA

ifi

ABSTRACT

The field of deep learning has experienced significant growth in recent years in various
domains where data can be collected and processed. However, as data plays a central role in
the deep learning revolution, there are risks associated with moving the data from where it is
produced to central servers and data centers for processing. To address this issue, Federated
Learning (FL) was introduced as a framework for collaboratively training a global model on
distributed data. However, deploying FL comes with several unique challenges, including
communication overhead and system and statistical heterogeneity. While FL is inherently
private as clients don’t share local data, privacy is still a concern in the FL context since
sensitive data can be leaked from the exchanged gradients.

To address these challenges, this thesis proposes the incorporation of techniques such as
Knowledge Distillation (KD) and Differential Privacy (DP) with FL. Specifically, a model-
agnostic FL algorithm based on KD is proposed, called the Federated Learning algorithm
based on Knowledge Distillation (FedAKD). FedAKD utilizes a shared dataset as a proxy
dataset to calculate and transfer knowledge in the form of soft labels, which are then sent
to the server for aggregation and broadcast back to clients to train on them in addition
to local training. Additionally, we elaborate on applying Local Differential Privacy (LDP)
where clients apply gradient clipping and noise injection according to the Differentially Pri-
vate Stochastic Gradient Descent (DP-SGD). The FedAKD algorithm is evaluated utilizing
Human Activity Recognition (HAR) datasets in terms of accuracy and communication ef-

ficiency.

o In chapter 2, various concepts that are employed in the following chapters of this
thesis are covered, including HAR. Deep Learning (DL) models, FL, and Empirical
Loss Minimization (ELM).

s Chapter 3 introduces FedAKD, a communication-efficient FL. method, and evaluates
its performance using the Human Activity Recognition (HAR) application with four
datasets.

s Chapter 4 discusses the communication efficiency challenge of deploying federated
learning on IoT networks and evaluates the communication overhead of Fed AKD.

e Chapter 5 focuses on the privacy analysis of FL by presenting a realistic FL threat
model and providing privacy guarantees based on DP.

Experimental results demonstrate that Fed AKD achieves better performance than other
KD-based FL algorithms and comparable performance to model-based FL methods. Fur-
thermore, decreasing the privacy budget causes a slight degradation in performance, as DP
clips the gradients during training and adds noise to them to limit per-sample contribution

iv

to model weights, thus protecting privacy. In conclusion, communication-efficient FL algo-
rithms with privacy-preserving techniques present a viable solution for distributed learning
while tolerating system heterogeneity and providing formal privacy guarantees, particularly

in [oT applications.

ACKNOWLEDGEMENTS

Thanks to many individuals, the success of this thesis is largely dependent on their
support and guidance

I am very grateful to the following funding sources for financially supporting my research:

o Lakehead University Faculty of Graduate Studies
e Dr. Zubair Fadlullah

s Vector Institute scholarship in Al

I am grateful to my supervisor, Dr. Zubair Fadlullah, for his guidance and encourage-
ment throughout my academic and research endeavors.

I am also thankful to my research collaborators and co-authors, including Dr. Mostafa
Fouda from [daho State University, for their valuable insights and contributions to my
research. Moreover, I extend my appreciation to my fellow lab members from the ACCESS
Lab for engaging in research discussions.

Finally, I am sincerely grateful to my family members for their unwavering support.

PUBLICATIONS

Parts of this thesis have been submitted for peer review, published, or accepted for

publication:

o Gad, G., Fadlullah, Z. (2022). Federated Learning via Augmented Knowledge
Distillation for Heterogenous Deep Human Activity Recognition Systems.
Sensors, 23(1), 6.(part of Chapter 3)

o Gad Gad, Zubair Md Fadlullah, Khaled Rabie, and Mostafa M. Fouda, Communication-
efficient Privacy-Preserving Federated Learning via Knowledge Distillation
for Human Activity Recognition Systems, Proc. of the 2023 IEEE International
Conference on Communications (IEEE ICC'23), Rome, Italy, May 18-June 1, 2023.
(part of Chapter 4)

Apart from the manuscripts mentioned above, during my MSc, I also first authored
another paper outside the scope of the thesis, on the topic of video analysis. Following is
the published paper:

o Gad, G., Gad, E., Cengiz, K., Fadlullah, Z., Mokhtar, B. (2022). Deep Learning-
Based Context-Aware Video Content Analysis on IoT Devices. Electronics,
11(11), 1785.

Contents

Abstract
Acknowledgements
Publications

Table of Contents
List of Tables

List of Figures

1 Introduction

iii

vii

-

1.1 Research Objectives and Significance
1.2 Contributions e e e
1.3 Thesis Organization i i ittt it
2 Background
2.1 Human Activity Recognition
2.2 Machine Learning e e e
2.21 K-Nearest Neighbor,
222 Random Forest
2.3 DeepLearning L L e e e
2.3.1 Multi Layer Perceptron 0 ittt
2.3.2 Convolutional Neural Network
2.3.3 Recurrent Neural Networks
2.3.4 Long Short-Term Memory
235 Knowlede Distillation
2.4 Federated Learning e e e
2.4.1 Knowledge Distillation-based Federated Learning

2.42 Federated Learning in Human Activity Recognition

L

=N =T = T v]

viii

3 Federated Learning via Augmented Knowledge Distillation 19
3.1 Imtroduction L e e e e e e e 20
3.1.1 Deep Learning-Based HAR Systems 20
3.1.2 BSensors Used in Sensor-Based HAR Systems. 20
3.1.3 Chapter Organization 21
3.2 Background e e e e 21
3.2.1 Human Activity Recognition 21
3.2.2 BSensor Fusion in Human Activity Recognition 22
3.2.3 Federated Learning in Human Activity Recognition 22
3.3 Empirical Risk Minimization 23
3.3.1 Limitations of Empirical Risk Minimization 24
3.4 Vicinal Risk Minimizationo ... 24
341 Gaussian Vicinities Lol 24
342 Vicimal Risk e 25
3.5 Mixup Augmentation L0 L e e e e e 25
3.5.1 Using Mixup Augmentation for Knowledge Distillation 26
3.6 Proposed Federated Learning via Augmented Knowledge Distillation (FedAKD) 27
3.7 Performance Evaluation 29
3.71 HARBDataset o o i i it et et e e e e e e 29
3.72 HARSDataset e e e e 32
3.7.3 Dataset Preprocessing 0 i ittt 33
3.74 Model Architecture Selection 35
3.8 HResults and Discussion oo 36
3.9 Conclusions L e e e e e e e 40
3.10 Limitations and Future Work, 41
4 Enhancing Communication Efficiency in Federated Learning: Chal-
lenges and Approaches 42
41 Imtroduction L e e e e e e 42
4.2 Background L e e e e 43
4.2.1 Communication Efficiency in Federated Learning 43
4.2.2 Model-based Federated Learning and Knowledge Distillation-based
Federated Learning 45
4.2.3 Federated Learning with Augmented Knowledge Distillation 47
4.3 Proposed Compressed Federated Learning with Augmented knowledge dis-
tillation L e e e e 48
4.4 Use Case: Implementing CFed AKD on Low-Bandwidth LoRa Networks . . 49

4.4.1 Model-based Federated Learning traficmodel 53

4.4.2 Knowledge Distillation-based Federated Learning traffic model . .. 54

4.5 Performance Evaluation, 55
451 Datasets L . i e e e e e e e e e e e e 55

4.5.2 Baseline Federated Learning algorithms 67

4.5.3 Heterogeneous Local Model Architectures 58

4.6 Results and Discussion e 58
4.6.1 Performance Results, 50

4.6.2 Communication Results 50

4.7 Conclusion @ e e e e e e e e 63

5 Privacy in Federated Learning 64
5.1 Imtroduction @ @ e e e e e e (if!
52 Background L e e e e 65
5.3 Differential Privacy 0 e e e e e 66
53.1 DP Properties e e e e e 66

5.4 Federated Learning Threat Model 68
5.5 Knowledge Distillation Federated Learning Differential Privacy 71
5.6 Differential Privacy Implementation 71
5.7 Experiments and Results. 71
5.8 Conclusion e e e e e e e 73

6 Conclusion 75
6.1 Future Work e e 6

A List of Abbreviations 77
B Examiner’s Comments and Responses 78

Bibliography 80

List of Tables

Table 3.1
Table 3.2
Table 3.3

Table 3.4

Table 3.5

Tahble 4.1
Tahle 4.2
Tahble 4.3
Tahble 4.4
Tahble 4.5

dataset sizes L. e 32
dataset characteristics L. L. 33
Architecture details of the deep learning models participating in the

HARB dataset FL experiment 39
Architecture details of the deep learning models participating in the

HARS dataset FL experiment 39
Accuracy of FL. methods on HARS and HARB datasets 40
Communication overhead of FL algorithms 45
Data partitioning L e e e 46
Datasets characteristics 46
LoRa parameters 0 i i it i e e e e 61

List of Figures

Figure 1.1 federated learning challenges 5
Figure 1.2 Organization of all the chapters of the thesis. i
Figure 3.1 Standard Model-based Federated Learning. 7
Figure 3.2 Knowledge Distillation-based Federated Learning. 7
Figure 3.3 Deep learning model templates 31
Figure 3.4 HARB Human Activity Recognition dataset equipment 32
Figure 3.5 HARB dataset overview 34
Figure 3.6 HKnowledge Distillation Federated Learning 34
Figure 3.7 Non-iid distribution of HARS and HARB datasets 35
Figure 3.8 Performance of FedAKD vs FedMD on HARS 37
Figure 3.9 Performance of FedAKD vs FedMD using KL va MSE 38
Figure 3.10 Models accuracy gain of FedAKD vs FedMD 30
Figure 4.1 Federated Learning challenges 44
Figure 4.2 Compressed KD-based FL. 49
Figure 4.3 Drone-aided FL network overview &0
Figure 4.4 Heterogeneous model architectures 58
Figure 4.5 Accuracy of Fl algorithms 1 50
Figure 4.6 Accuracy of Flalgorithms 2 50
Figure 4.7 Scaling public dataset and KD-based FL accuracy 60
Figure 4.8 Using different public dataset and KD-based FL accuracy 60
Figure 4.9 communication overhead of FL methods 1 61
Figure 4.10 communication overhead of Flmethods 2. 61
Figure 4.11 Accuracy of FLmethods 1, 62
Figure 4.12 Accuracy of FLmethods 2 62
Figure 4.13 Impact of compression on FL accuracy 63
Figure 5.1 Local Differential Privacy. 68
Figure 5.2 Extending LDP privacy guarantee to soft labels 70
Figure 5.3 Differential Private Stochastic Gradient Descent (DP-SGD). 70

Figure 5.4 Test accuracy using various protection levels 72

Figure 5.5 accuracy of different weighting schemes without using DP
Figure 5.6 accuracy of different weighting schemes with DP

Chapter 1

Introduction

The rapid proliferation of wearable devices, such as smartwatches and fitness bands, has
led to a paradigm shift in edge applications [1]. These devices have become an integral
part of modern life and are widely used for health monitoring, fitness tracking, and human
activity recognition (HAR) [2,3]. These edge applications utilize sensory data generated by
wearable devices to train machine learning (ML) or deep learning (DL) models to recognize
specific user activities.

Machine learning (ML) is a subset of artificial intelligence (AI) that focuses on creating
algorithms that can learn from data without being explicitly programmed. One of the most
popular types of ML is supervised learning, which involves training a model on a labeled
dataset. In contrast, unsupervised learning involves training a model on an unlabeled
dataset, relying on the model to discover patterns or relationships in the data.

Deep learning (DL) is a subset of ML that involves training models called artificial neural
networks (ANNs) with multiple layers of interconnected nodes. DL has become increasingly
popular in recent years because it has achieved remarkable success in various applications,
including speech recognition, image classification, and natural language processing.

Despite the potential benefits of ML and DL in HAR systems, a simplistic approach
to training these models involves allowing users to share their data with a central server.
However, this method has several disadvantages that limit its scalability and effectiveness.
Firstly, it requires massive centralized computational power to process and analyze data
from a large number of users. Secondly, it incurs high communication costs to move raw
data from edge devices to a central server for processing. Thirdly, it poses potential privacy
risks since sensitive user data is stored in a central repository.

To overcome these limitations, federated learning (FL) [4] has emerged as a promising so-
lution that allows decentralized learning procedures while keeping each client’s data private.
This approach enables model updates to be aggregated on the server into global weights,
which are then broadcasted to clients for further training without violating user privacy. In

addition to privacy, FL has several other benefits, including reducing communication costs
and improving scalability.

Apainst this backdrop, this thesis aims to explore the application of FL to train dis-
tributed HAR systems while preserving user privacy. We also address core FL challenges,

such as
1. Communication overhead
2. System heterogeneity

3. Statistical heterogeneity

4. Privacy

While these challenges are generic to any FL scenario, deploying FL on IoT networks,
which usually have constrained resources, presents unique challenges. Therefore, we pro-
pose a communication-efficient FL algorithm based on Knowledge Distillation (KD) [5] and
integrate this algorithm with differential privacy (DP) [6] to overcome these obstacles.

In Federated Learning (FL), sharing weights/gradients is a more communication-efficient
approach than sharing raw data and then performing centralized training/analysis in the
data center. However, communication in federated networks can be significantly slower than
local computation due to the large number of devices involved [7]. Therefore, it is crucial to
reduce communication overhead to scale up FL algorithms. Recent methods have employed
compression schemes [8] and allowed a flexible number of local updates to achieve a better
communication-computation tradeotf.

In federated learning settings, heterogeneity presents itself in various forms. System
heterogeneity refers to significant variability in system characteristics across the network
due to differences in hardware, network connectivity, and battery power among devices [7].
Approaches such as asynchronous communication [9] and fault tolerance have been proposed
to address this issue. Statistical heterogeneity arises when data is not identically and
independently distributed (non-1ID) across devices, making data modeling more challenging.
FedAvg was found to diverge when applied to non-IID data, and FedProx [10] proposes a
modified and reparameterized version of FedAvg to ensure convergence.

Lastly, preserving privacy in Federated Learning is not sufficient as gradients can still
reveal information about the actual data [11]. Differential Privacy (DP) [6] can provide the
necessary guarantees and well-defined bounds to prevent the aggregated model from leaking
sensitive information. To keep a model private under the differential privacy framework,
noise must be injected either into the gradients during the training procedure or into the
final learned model parameters after the procedure concludes [12]. However, injecting too
much noise can lead to accuracy deterioration. Developing differentially private machine
learning models is, therefore, a non-trivial task.

This thesis proposes a novel approach that tackles the challenges associated with system
heterogeneity and communication bandwidth in Federated Learning (FL). Specifically, we
leverage Knowledge Distillation (KD) [13] as a communication medium among FL devices
instead of model weights or gradients. To this end, we propose a KD-based FL algorithm
called Fed AKD for training distributed Human Activity Recognition (HAR) systems [14].
FedAKD utilizes a proxy dataset that is shared across the network, and instead of weights
or gradients, it calculates and shares soft labels on a Mixup augmented [15] version of the
proxy dataset.

The use of FedAKD confers several benefits to clients compared to the standard Feder-
ated Averaging (FedAvg) approach. Firstly, clients can design unique model architectures
that cater to the specific resource requirements of their devices. Secondly, clients can control
their communication bandwidth by choosing the number of samples in the proxy dataset
used to calculate soft labels.

To address the privacy concerns inherent in FL, we employ Differential Privacy (DP) as
a mechanism for bounding the sensitivity of the learned function (deep model) to private
data, thereby providing a rigorous privacy guarantee.

The advantages of our approach are summarized as follows:

1. We use Knowledge Distillation to enable communication across FL devices, thus ad-

dressing the challenges of system heterogeneity and communication bandwidth.

2. FedAKD enables clients to design unique model architectures that cater to their de-

vices’ resource requirements and control their communication bandwidth.

3. We utilize Differential Privacy to address the privacy concerns of FL, thereby providing
a rigorous privacy guarantee.

This approach demonstrates promising results in the evaluation of distributed HAR sys-
tems, outperforming other KD-based FL algorithms and achieving comparable performance
to model-based FL methods.

1.1 Research Objectives and Significance

This research presents a novel approach to Human Activity Recognition using Federated
Learning via Augmented Knowledge Distillation and differential privacy. The proposed
approach addresses the challenges of heterogeneity, communication cost, and user privacy.
The objectives and significance of this research can be summarized as:

Flexibility in model design: The proposed Federated Learning via Augmented
Knowledge Distillation (FedAKD) algorithm enables collaborative training of clients with

independently designed models, addressing the challenge of model heterogeneity in Feder-
ated Learning. This allows for more Hexibility in designing deep learning models, which can
be adapted to different applications and domains.

Effective Human Activity Recognition: The proposed Federated Learning via Aug-
mented Knowledge Distillation (FedAKD) algorithm is evaluated on five different datasets
for Human Activity Recognition, one of which is self-collected and covers a variety of modal-
ities. This demonstrates the generalizability of the proposed approach, as it can effectively
recognize human activities in different applications and domains. The results also show that
the approach is relatively more robust under heterogeneous statistical scenarios, increasing
its potential for real-world applications.

Low communication cost: The proposed approach has a low communication cost,
which is an important factor in many applications. This allows the proposed approach to
be more efficient and scalable, making it more applicable in real-world scenarios.

Privacy Preservation: Differential privacy is employed with the proposed algorithm
to limit the contribution of individual data points to preserve privacy. Simulations were
performed to investigate the privacy-utility trade-off of heterogeneous and standard Feder-
ated Learning with differential privacy. This addresses the privacy concerns associated with
the collection and sharing of data, which is a critical issue in many applications.

Robustness under statistical heterogeneity: The proposed approach is shown to
be relatively more robust under statistical heterogeneous scenarios. This demonstrates the
potential of the proposed approach for Human Activity Recognition in scenarios where the
data is not perfectly distributed across clients.

1.2 Contributions

The contributions of this work can be summarized as follows:

s The proposed FedAKD algorithm is a model-agnostic Federated Learning method
that incorporates Knowledge Distillation to enable collaborative training of clients
with independently designed models. It utilizes a shared dataset to calculate soft
labels, which are sent to the server for aggregation and broadcasted back to clients
for training in addition to local training

o To address privacy concerns, the proposed algorithm utilizes Differential Privacy by
clipping gradients and adding noise to limit the contribution of individual data points
to local model training. The trade-off between privacy and utility is explored empiri-
cally under different protection levels.

o The proposed algorithm is evaluated using the human activity recognition (HAR)
application with four datasets, and the experiments show that it achieves better per-

Federated Learning challenges

System Statistical
heterogeneity heterogeneity

Privat ti
Tolerating clients Flexible local . u‘: .Itg:;::f m Compression
dropping out updates S——) schemes
Alluwmg a fraction Differential Privacy
of clients to (DP)
participate.
Asynchronous Secure Multiparty
communication Computation [SMC)

Figure 1.1: The main challenges and directions in federated learning that are discussed in
this thesis: Communication overhead, System heterogeneity, Statistical heterogeneity, and

Privacy.

Communication owerhead

using model-

AENOSTIC low
bandwidth updates

formance than other KD-based FL algorithms and comparable performance to model-
based FL methods.

1.3 Thesis Organization

Fig. 1.2 outlines the organization and the main concepts discussed in the remaining chapters.
The subsequent chapters of this dissertation are structured as follows:

Chapter 2 furnishes an overview of the fundamental concepts that underpin the tech-
nologies and methodologies emploved in the ensuing chapters of this thesis. These concepts
encompass human activity recognition, deep learning, and federated learning.

Chapter 3 introduces FedAKD, a communication-efficient federated learning method
based on knowledge distillation, which is evaluated using the human activity recognition
(HAR) application as a use case throughout this thesis. Four datasets comprising sensor and
image data are utilized to evaluate the performance of Fed AKD against other model-based
and model-agnostic baseline algorithms.

Chapter 4 of this thesis explores communication efficiency as a significant challenge for
the deployment of federated learning (FL) solutions on an Internet of Things (IoT) appli-
cations due to low-bandwidth networks. In this chapter, the challenge of communication
cost is introduced, and the background works that addressed this challenge are explored.

Chapter 1: Introduction, Chapter 2: —
objectives, Contribution Background, Preliminaries

Chapter 3: Federated Learning with Augmented Knowledge
Distillation

moyy siaydeyd sisayl

Chapter 4: Communication- | Chapter 5: Privacy-preserving
efficient Federated Learning Federated Learning

Chapter 6: Conclusion and future work

Figure 1.2: Organization of all the chapters of the thesis.

The chapter starts by providing a detailed explanation of FL and its various applications.
Then, it delves into the communication overhead involved in FL and how it can hinder its
performance. To address this challenge, the communication-efficiency aspects of Knowledge
Distillation-based FL algorithms in general, and FedAKD, in particular, are highlighted.
Moreover, this chapter presents a compressed version of FedAKD that is even more effi-
cient by introducing some modifications to reduce the size of the soft labels and make them
resilient to unreliable/lossy communication protocols that are sometimes used in IoT appli-
cations, such as the LoRa communication module. To evaluate the communication overhead
of FedAKD and its compressed child algorithm relative to other baseline FL algorithms,
Federated learning simulations involving HAR datasets are conducted. The results demon-
strate that knowledge distillation-based FL algorithms are more suitable than model-based
FL algorithms for IoT applications due to their communication efficiency.

Chapter 5 discusses the application of differential privacy in federated learning algo-
rithms, specifically in the context of model-based and knowledge distillation-based ap-
proaches. It covers the mathematical foundations of differential privacy, its key properties
like composability and post-processing immunity, as well as the different threat models con-
sidered in federated learning. The chapter delves into the implementation of differential
privacy in federated learning algorithms, focusing on local differential privacy. Finally, the
experiments and results section evaluates the effectiveness of these privacy-preserving tech-
niques on HAR datasets using different protection levels and federated learning algorithms.

Finally, chapter 6 presents the conclusion of the thesis. The chapter visits the main con-

cepts discussed like federated learning knowledge distillation and the techniques proposed
like FedAKD and CFedAKD. The chapter discusses differential privacy in deep learning
and federated learning contexts. The chapter also presents the main findings of this the-
sis across three categories: Knowledge Distillation performance analysis, communication

overhead comparison, and local differential privacy obtained utility-privacy trade-off under
different FL algorithms.

Chapter 2
Background

This chapter depicts an overview of the preliminaries of the concepts and techniques used
in this Thesis to lay a foundational understanding of the building blocks that are used
throughout this work to build algorithms and conduct analysis.

The Background chapter starts with the topic of Human Activity Recognition (HAR).
Since we are interested in addressing communication overhead and system heterogeneity in
IoT applications, we consider Wearable-based HAR for evaluating federated learning (FL)
algorithms in terms of performance and communication overhead. Machine Learning (ML)
and Deep learning (DL) are two related data-driven frameworks comprised of a set of al-
gorithms that can be broadly categorized into supervised and unsupervised learning. In
supervised learning, ML /DL models use labeled data for training, then the trained model
can be used to infer the prediction, given similar data. On the other hand, unsupervised
learning includes tasks like clustering where labeled data is not required. In this thesis, we
focus on supervised DL-based models. We explore recent techniques applied in both do-
mains: ML and DL in HAR. The deep learning section ends with a discussion of Knowledge
Distillation, a recent DL technique that can be applied in central and federated settings.
KD is the technique behind our proposed FL algorithms that we present in chapters 3 and
4.

In this thesis, we focus on supervised DL-based models. We explore recent techniques
applied in both domains: ML and DL in HAR. The deep learning section ends with a
discussion of Knowledge Distillation, a recent DL technique that was originally proposed
for the central setting to train a DL model (called the student) using another pre-trained
DL model (called the teacher). KD has also been applied in federated settings [13].

Finally, the background chapter ends with an introduction to federated learning includ-
ing a formal definition, then it extends this definition to the KD-based FL algorithms and
provides a background on recent FL techniques proposed for HAR.

2.1 Human Activity Recognition

Human Activity Recognition (HAR) [16,17] recognizes human actions or movements from
a sensor or vision-based data. The goal of HAR is to develop models that can accurately
identify and classify human activity in various applications such as healthcare [18] and
human-computer interaction [19]. The advancement in sensor technologies has led to var-
ious wearable devices continuously monitoring human activity. However, wearable sensors
have limitations such as limited battery life, privacy concerns, and user discomfort. As an
alternative, vision-based systems have been proposed for human activity recognition [20];
they use cameras to capture visual data of human movements. These systems are typically
used in surveillance, video monitoring, and human-computer interaction systems [21]. The
visual data collected from cameras are then used to train models that recognize and classify
human activities based on features such as postures and gestures, and facial expressions.
Recently, deep learning-based methods have been widely used in human activity recog-
nition. These methods use neural networks to learn representations of the sensor or vision-
based data that can be used to classify human activity [22]. In particular, convolutional
neural networks (CNNs) effectively learn spatial and temporal features from data [23]. Ad-
ditionally, sensor fusion techniques are also used to combine the information from multiple
sensors to improve the performance of human activity recognition models [24, 25]. This
can help overcome individual sensors’ limitations and provide a more robust and accurate
human activity recognition. Furthermore, there is a growing interest in developing models
for recognizing activities in real-world scenarios, which often involve multiple people, clut-
tered backgrounds, and variations in lighting and camera viewpoint. To overcome these
challenges, recent works have proposed using multi-modal data, such as audio and depth

data, to improve recognition performance [26].

2.2 Machine Learning

In this section, we present two of the most popular machine learning algorithms: The K
Nearest Neighbor (KNN) and Random Forest (RF). These supervised learning algorithms
have shown success in many IoT applications including HAR due to their light weight
(relative to their deep learning counterparts) and efficiency [27,28].

2.2.1 K-Nearest Neighbor

The K Nearest Neighbor (KNN) algorithm [27], is a simplistic, yet powerful machine learning
method that can be utilized for classification and regression predictive tasks. While it has
been applied in numerous domains, it is primarily utilized for classification problems. The

KNN algorithm works by assigning a class to a test instance based on the majority vote of

10

its K nearest neighbors. The neighbors are determined by calculating the distance between
the test instance and all of the training instances. A variety of measures can be employed
to compute the distance, including Fuclidean distance, Manhattan distance, Minkowski
distance, Hamming distance, etc. The value of K is generally a positive integer and is
typically small. If K equals one, the object is directly classified as the nearest neighbor’s
class. However, if K is equal to n, the number of instances in the training data, the algorithm
transforms into an eager learning algorithm, as it will explore all of the examples. In order
to select the optimal value of K, hyperparameter tuning is traditionally performed. Omne
major drawback of the KNN method is its relatively high prediction time, as it calculates
the distance between a single point and all other data points. Some commonly used distance
measures, such as Minkowski distance and Fuclidean distance, can be expressed as shown
in Eq. 2.1 and 2.2, respectively:

n l/p
du(2,y) = (Dzi - mﬂ) (2.1)

i=1

de(z,y) =/ Y i=1" (i — 5)? (2.2)

Additionally, the Manhattan distance can be used to measure the distance between
two points. The Manhattan distance is calculated as the sum of the absolute differences
between the coordinates of two points. The equation for Manhattan distance can be written

as follows:

T

dMaﬂhﬂftﬂ-ﬂ{:r? y} = Zlm‘i - !.I"il {2‘3}

i=1

2.2.2 Random Forest

Random Forest [28] is a popular machine-learning algorithm that uses an ensemble of deci-
sion trees to make predictions. It is widely used for classification and regression problems
and has shown great success in a variety of domains including finance, healthcare, and image
recognition.

The algorithm works by constructing a multitude of decision trees, each of which is
trained on a random subset of the training data. The final prediction is then made by
combining the predictions of all the individual trees. The result is a robust and accurate
model that is less prone to overfitting than a single decision tree.

Each decision tree in the Random Forest is constructed using a subset of the features in
the training data. This is done to prevent any one feature from dominating the model and

to ensure that the trees are diverse and independent. The features are randomly sampled

11

at each node in the tree, and the best split is selected based on a criterion that maximizes
the information gain.

The two most commonly used splitting criteria are the Gini impurity and the entropy.
Both of these criteria measure the degree of impurity or disorder in a set of samples and
aim to split the data in a way that maximizes the homogeneity of the resulting subsets.

The Gini impurity is defined as follows:

[
Gini = pi(1—p:) (2.4)

i=1

where ' is the number of classes, and p; is the proportion of samples in class i.

The Gini impurity ranges from 0 to 0.5, where 0 indicates a completely pure node (i.e.,
all samples belong to the same class), and 0.5 indicates a completely impure node (i.e.,
samples are evenly distributed across all classes). The goal of the splitting criterion is
to minimize the Gini impurity and split the data in a way that maximizes the difference
between the impurity of the parent node and the sum of the impurities of the child nodes.

The entropy criterion, on the other hand, is defined as follows:

c
Entropy = - p;logy p (25)

i=1

where ' is the number of classes, and p; is the proportion of samples in class i.

The entropy ranges from 0 to 1, where 0 indicates a completely pure node, and 1 indicates
a completely impure node. The goal of the splitting criterion is to minimize the entropy
and split the data in a way that maximizes the difference between the entropy of the parent
node and the sum of the entropies of the child nodes.

In general, both Gini impurity and entropy are effective splitting criteria for decision
trees, and the choice between them is often a matter of personal preference or empirical
performance. Random Forest uses both criteria to construct a diverse set of decision trees
and combines their predictions using a weighted average to produce the final output.

In conclusion, Random Forest is a powerful and flexible machine-learning algorithm
that uses an ensemble of decision trees that are trained on random subsets of the data and
combines their predictions to produce a robust and accurate model. The Gini impurity and
entropy are two commonly used splitting criteria that aim to maximize the homogeneity of

the resulting subsets and are essential components of the Random Forest algorithm.

2.3 Deep Learning

In this section, we present some of the deep learning models that have shown the superior

ability to extract patterns from raw data [29,30]. These layers are often integrated with

12

each other and with activation functions as building blocks of more complex Deep Learning
maodels.

The section ends with the topic of Knowledge Distillation (KD) which is not a layer,
but a training technique that benefits from a previously trained model (called the teacher)
to train a to-be-trained model (called the student).

2.3.1 Multi Layer Perceptron

The Multi Layer Perceptron (MLP) is a type of deep learning algorithm that has gained
significant attention in recent years due to its ability to learn complex non-linear relation-
ships between the input and output data and its capability to generalize well to new data.
MLPs have been applied to HAR to effectively model the dynamics of human activities [31],
which are often characterized by subtle variations and transitions.

The architecture of an MLP typically consists of multiple layers of interconnected neu-
rons, with each layer transforming the input data into a higher-level representation that
captures increasingly complex features of the data. The output layer of the MLP produces
the predicted activity label, based on the learned relationships between the input data and
the corresponding activity.

The training of an MLP involves adjusting the weights and biases of the neurons to
minimize a chosen loss function, such as cross-entropy or mean squared error. This is
typically achieved using an optimization algorithm, such as stochastic gradient descent.

While MLPs have demonstrated impressive performance in HAR applications, they
also have some limitations. One major challenge is that it is only suitable for structured
data. Another challenge is the computational complexity of training and testing MLPs,
particularly for large datasets.

2.3.2 Convolutional Neural Network

Convolutional Neural Networks (CNNs) are a critical type of neural network that excels
in image processing and computer vision tasks [29]. They are particularly effective in
detecting features and patterns within images, such as edges, shapes, and textures. CNNs
have emerged as one of the most powerful deep learning architectures due to their ability
to learn representations automatically from data.

Inspired by the structure and function of the visual cortex in the brain, CNNs consist
of multiple layers, each with a specific purpose in processing the image data. The first layer
is typically a convolutional layer that applies a set of filters to the input image to extract
feature maps. These filters are learned by the network during training, and their values are

updated through backpropagation.

13

The second layer is usually a pooling layer, which downsamples the feature maps ob-
tained from the previous layer to reduce their dimensionality. This helps to prevent overfit-
ting and reduce the number of parameters in the network. Max-pooling and average pooling
are the two most commonly used pooling operations in CINNs.

Subsequent layers may include additional convolutional and pooling layers, followed by
one or more fully connected layers. The fully connected layers are responsible for classifica-
tion or regression tasks, depending on the nature of the problem being solved. They take
the output from the preceding layers and transform it into a final output that represents
the predicted class or value.

CNNs are capable of handling translation invariance and noise, making them robust
to real-world conditions. They are widely used in various computer vision applications,
including image classification, object detection, segmentation, and recognition. One of
their significant advantages is their ability to learn features antomatically, without the need

for manual feature engineering.

2.3.3 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) [30, 32] are a type of neural network commonly used
in natural language processing, speech recognition, and other sequence-based tasks. Unlike
traditional feedforward neural networks, RNNs can take into account the temporal depen-
dencies between inputs. This allows them to model sequences of arbitrary length, making
them a powerful tool for handling time-series data.

At each time step, an RNN takes an input x; and the output h;_; from the previous
time step as input, and produces a new output y, and hidden state h;. The hidden state
serves as a memory unit that stores information about the previous inputs in the sequence.

The equations governing the computation of the output and hidden state are as follows:

he = f(Wh-he 1+ We -2 4 bp) (2.6)
Yt = g(Wy - he + by) (2.7)

where f and g are activation functions, Wy, W, W, by, and b, are learnable weights
and biases, and - denotes matrix multiplication.

RNNs have shown great success in many sequence modeling tasks. However, they suffer
from the vanishing gradient problem, where the gradients become too small to effectively
update the weights during backpropagation. This problem arises due to the repeated mul-
tiplication of the same weight matrix in the hidden state computation, which causes the
gradient to shrink exponentially over time.

Recent research has explored the use of RNNs for Human Activity Recognition (HAR)

14

from sensor data, with promising results. For example, [32] proposed an RNN-based model
for HAR using smartphone sensor data, achieving high accuracy in identifying activities
such as walking, running, and cycling. Other studies have explored the use of RNNs for
HAR using wearable sensors such as smartwatches and fitness trackers [33].

2.3.4 Long Short-Term Memory

Long Short-Term Memory (LSTM) [23] is a type of RNN architecture designed to address
the vanishing gradient problem. LSTMs use a set of specialized memory cells that allow
the network to selectively remember or forget information over time. Each memory cell has
three gates: the input gate, the forget gate, and the output gate.

The input gate controls the flow of information into the memory cell, and the forget gate
controls the amount of information retained in the cell. The output gate controls the flow of
information from the memory cell to the output. The equations governing the computation

of the gates and memory cell are as follows:

it = o(Wi - [he_1, 2] + i) (2.8)
fe = a(Wy - [he_1, 2] + by) (2.9)
or = o(W, - [he—i, z¢) + bo) (2.10)
ce = fi - c_1 + i¢ - tanh(W - [he_1,] + be) (2.11)
he = o - tanh(cy) (2.12)

where o is the sigmoid activation function, tanh is the hyperbolic tangent function, and
[ht—1, 7¢| represents the concatenation of the previous hidden state h;_1 and the current
input .

L5TMs have been shown to be highly effective in modeling long-term dependencies in
sequences, and have achieved state-of-the-art performance in a variety of tasks such as
speech recognition and machine translation. They have also been widely used in HAR,
with many studies reporting improved performance compared to traditional RNNs. For
example, [34] proposed an LSTM-based model for HAR using accelerometer data from
smartphones, achieving high accuracy in identifying activities such as walking, sitting, and
standing. Other studies have explored the use of LSTMs for HAR using wearable sensors
such as smartwatches and fitness trackers [23,34).

Owerall, RNNs and LSTMs are powerful tools for modeling sequential data and have
shown great promise in the context of HAR. By taking advantage of the temporal depen-
dencies in sensor data, these models can accurately identify human activities, making them

valuable in a wide range of applications such as healthcare, sports performance tracking,

and home automation.

2.3.5 Knowlede Distillation

Knowledge Distillation (KD) [5,35] is a technique used to train a model using a trained
model utilizing smoothed predictions from the trained model (called the teacher model). In
KD, the student model is trained to match the output of the teacher model by minimizing a
loss function that compares the soft labels produced by the teacher model to the predicted
probabilities of the student model.

The soft labels are obtained by modifying the temperature parameter T of the softmax
function applied to the logits (pre-softmax outputs) of the teacher model. The temperature
scaling allows the teacher model to produce a smoother and more informative output, which
can help the student model learn better. Alternatively, the soft labels can also be obtained
by applying a dense layer on the output of the teacher model.

In the context of Federated Learning (FL), KD can be used [14, 36] to train models
on distributed devices, each with its private local data. The knowledge distillation process
is divided into two stages: in the first stage, clients calculate the soft labels on a shared
dataset using a modified version of their local model; in the second stage, the soft labels
are aggregated at the server and used to train the local models of all clients.

The loss functions used to train the student model in KD can vary, but two common
ones are the Kullback-Leibler (KL) divergence and the Mean Squared Error (MSE) loss.
The KL divergence loss can be defined as:

KL(pla) =) _p lug% (2.13)

where p and q are probability mass functions, and p; and g; are the probabilities of the

ith outcome under p and q, respectively.
The MSE loss can be defined as:

1 i
MSE = —) —u:)? 2.14
- ;Ef{md %) (2.14)
Knowledge Distillation is a powerful technique that can help improve the performance
of models by transferring knowledge from a well-trained model to another model. The soft
labels produced by the teacher model play a crucial role in the knowledge transfer process,
and the loss function used to train the student model depends on the specific application.

16

2.4 Federated Learning

In this section, we present federated learning, a distributed training paradigm that keeps
private data on the users’ side, and shared training updates to train a global model on
distributed data in a private manner. We formally define FL, and then extend the definition
to Knowledge Distillation-based FL where the shared updates are not model weights but
soft labels. Finally, we explore recent FL algorithms in HAR that address the challenges of
system heterogeneity.

Federated learning [7,37] has emerged as a promising approach for training machine
learning models on distributed data without the need for data centralization. By allowing
each participating device or entity to train its own local model using its own data, feder-
ated learning can mitigate privacy concerns and enable data-driven applications in various
domains such as healtheare, finance, and the Internet of Things (IoT). In federated learn-
ing, [38,39] each participating device or entity has a local dataset D;, where i is the index
of the device or entity. The goal is to train a global model f that can make predictions for

any input data point x using the following equation:

U= f(x) (2.15)

To train the global model. each participating device or entity trains a local model f;
using its own local dataset D);. The local model is updated using the following equation:

: = argmin L(f:, Ds) (2.16)

where L(f;, I);) is a loss function that measures the error of the local model on the local
dataset.

The local models are then sent to the central server, which aggregates the updates to
produce the global model using the following equation:

f=23" 1 (2.17)

where n is the number of participating devices or entities.

The global model is then sent back to the participating devices or entities, which use it
to update their local models. This process is repeated until the global model converges to
a satisfactory level of accuracy.

2.4.1 Knowledge Distillation-based Federated Learning

Knowledge Distillation (KD) [5] is a technique used to train a model (called the student
model) by training them using the output of a trained model (called the teacher model).

17

The teacher model output (called the soft labels) is a smoothed probability distribution (by
modifying the softmax function’s temperature parameter), or the output of a dense layer.
In the context of Federated Learning (FL), KD can be used to train distributed devices each
with its private local data [14,38]. This is achieved by dividing the knowledge distillation
process into two stages. Moreover, KD-based FL methods assume that, in addition to the
local dataset possessed by each client, all clients share another unlabeled dataset which is
used to transfer knowledge gained by local training among clients. In the first stage of
KD-based FL, clients calculate soft labels on the shared dataset, and soft labels are sent
to the server. In the second stage, the aggregated soft labels broadcasted back to clients
to train them using KD loss functions like Kullback Leibler (KL) loss function Ly or
Mean Squared Error (MSE) loss Lysse [35]. A Knowledge Distillation Federated Learning
(KD-FL) algorithm can be described as follows:

Each participating device has a deep learning model f;. The last layer of the model f; is
the softmax layer which converts the input into a probability distribution. To calculate the
soft labels 5], we remove the softmax layer from f; to get g;, which has a more smoothed
output than that produced by f;, which helps distill knowledge more efficiently. Each client
calculates soft labels Z7 on a shared public dataset [, using the model g;:

Z; = (Dy) (2.18)

For weighting clients’ contributions, we tested uniform and performance-based weight-
ing. In performance-based weighting, clients calculate the performance p] on the test dataset
Dy, using f;.

The local soft labels ZT and performance p! are sent to the central server so that clients’
contributions (soft labels) can be weighted proportionally to each client’s performance.

At the server, aggregate the local soft labels Z] to produce global soft labels 5™ using
the following equation:

N pr zr
Zr=% 3 _ (2.19)
;Ebﬁ
To distill the knowledge aggregated in the global soft labels, MSE loss Ljyssg to train
the local models.

g: = argmin Lysg (2", 9:(Dy) (220

Finally, each client performs local training on the local dataset D); using the learning
model f; and the loss function Categorical Cross Entropy (CCE) loss Locg. on his local
dataset [);.

fi = argmin Loce (Vi fi(Di)) (2.21)

18

2.4.2 Federated Learning in Human A ctivity Recognition

Few federated learning methods were proposed for training local Human Activity Recog-
nition (HAR) models on users’ edge devices instead of sharing raw data to train a central
model [14,38 40]. One example of these algorithms is the method proposed by Xiao et al.
in [40]. This method uses a perceptive extraction network (PEN) at each client, composed
of a featured network based on CINN blocks for feature extraction and a relation network
based on LSTM and attention to mine global patterns in data. Another example is the
ClusterFL [38] system, which is a similarity-aware FL system for HAR. This system uses
an alternating optimization approach to optimize model weights and a cluster indicator
matrix that quantifies the relationship between nodes. The loss function used by ClusterFL

includes the sum of empirical losses across nodes, the L2-norm, and the K-means clustering.

19

Chapter 3

Federated Learning via Augmented

Knowledge Distillation

In the initial two chapters, we introduced the concept of federated learning and explicated
its utility. Furthermore, we deliberated on the challenges that federated learning encoun-
ters, which include performance issues in heterogeneous environments, communication over-
head, and privacy concerns. In this chapter, we focus on the heterogeneity challenge from
a model architecture perspective. Our key inquiry is whether clients can independently
devise their local models. Let us consider two clients: Client A, which has powerful hard-
ware including a Graphical Processing Unit (GPU) that enables faster model execution and
larger battery capacity and memory storage. and Client B, which has limited resources.
When using a server-controlled model architecture for federated learning between the two
clients, employing a common minimum model in terms of size and execution time is neces-
sary to ensure compatibility with both clients. This approach, however, does not leverage
the optimized hardware /software capabilities available on Client A, resulting in inefficient
and slow training. Omn the other hand, knowledge distillation enables each client to de-
sign their own architecture. Thus, in this chapter, we introduce Federated Learning via
Augmented Knowledge Distillation (FedAKD), an algorithm we recently proposed [14] that
utilizes Knowledge Distillation (KD) in the context of Federated Learning. In addition to
facilitating the use of heterogeneous local models, KD-based FL entails significantly lower
communication overhead compared to weight-sharing methods. We will further discuss the
communication advantages of Fed AKD in the subsequent chapter, Chapter 4.

The Federated Augmented Knowledge Distillation (FedAKD) algorithm, which is the
subject of examination in this chapter, was initially introduced in a scholarly article pub-
lished by MDPI Sensors [14]. The primary authorship of that paper is credited to the author
of this current chapter. Certain sections of this chapter incorporate content originally dis-

seminated in the aforementioned publication.

20

3.1 Introduction

Smartwatches were first introduced in the year 2000 at the IEEE International Solid-State
Circunits Conference (ISSCC) and have since seen rapid and widespread adoption [1]. Human
Activity Recognition (HAR) (2,16, 41] is an emerging technology that utilizes the sensors
of mobile and wearable devices to detect, track, and analyze activity patterns. HAR can
automate data collection using wearables and Internet of Things (IoT) devices and can
facilitate remote health monitoring in rural communities. Though localized, distributed
computing on such resource-constrained devices in the HAR systems is challenging, it has

the potential to revolutionize medical analytics.

3.1.1 Deep Learning-Based HAR Systems

Deep learning models have been successful in many domains such as computer vision [42],
smart health [22, 43, 44], and natural language processing (NLP) [45]. Therefore, Deep
Learning (DL) has been used in HAR systems as a feature extraction method to improve
the classification accuracy of activities using fewer sensors [46-49]. Proposed DL-based
methods include using ResNet and BiLSTM to extract spatial features of multidimensional
signals and sensor fusion with ConvTransformer to achieve high-performance activity classi-
fication [25,50]. In addition to performance gains, DL-based methods require little domain
knowledge as they are able to learn directly from raw signals and fuse multi-sensor modal-
ities. On the other hand, traditional Machine Learning (ML) methods often require expert
knowledge and feature engineering, both of which are expensive and unique for a given set
of sensors. Furthermore, DL methods’ expressive power as universal approximators is supe-
rior to that of traditional ML methods [29,30]. However, deploying HAR DL-based models
on edge devices still faces challenges such as memory footprint and power consumption.
Additionally, data scarcity is another main obstacle for Deep learning as the availability of
large datasets is usually a prerequisite for training high-quality deep learning models.

3.1.2 Sensors Used in Sensor-Based HAR Systems

Sensors are crucial in HAR systems. The diversity and quality of the sensors of a HAR sys-
tem largely determine the accuracy of that system. Two widely used sensors in smartwatches
and fitness bands are the Inertial Measurement Unit (IMU) and the Photoplethysmography
(PPG) sensors. IMU is an integrated package that usually consists of an accelerometer, gy-
roscope, and magnetometer. These sensors measure the linear acceleration, rotation rate,
and earth’s magnetic fields, respectively. An IMU that has all three sensors is referred to
as a nine-axis IMU. Sometimes, an IMU does not have a magnetometer, in which case it
is called a six-axis IMU. The frequency of IMU (sampling rate) is manually tuned depend-

21

ing on the application and therefore ranges from 10 to several hundred Hz. Chung et al.
studied the impact of sensor positioning on HAR performance and compared different IMU
sampling rates; they found that a low-frequency (10 Hz) IMU signal can be effective for
recognizing activities such as eating and driving. Using a higher sampling rate yields data
with higher resolution and precision, which leads to more accurate analysis at the cost of

higher resource consumption [51].

3.1.3 Chapter Organization

This chapter is structured as follows: The Background section provides an overview of the
literature review conducted on Human Activity Recognition (HAR) and explores how fed-
erated learning can be used to train HAR systems in a distributed and private manner
without exposing users’ raw data. The Empirical Risk Minimization and Vicinal Risk Min-
imization sections introduce the concept of augmentation to enhance dataset density, which
ultimately improves the performance of models trained on augmented data. We present the
Mixup augmentation technique, proposed by [15], and introduce our proposed federated
learning algorithm, Federated Learning via Augmented Knowledge Distillation (FedAKD).
The Performance Evaluation section details the FL experiments conducted, including the
HAR datasets used for evaluation, the baseline methods, and the heterogeneous model archi-
tectures employed. The Results and Discussion section presents the test accuracy obtained
by each learning method on the HAR datasets, and we provide interpretations based on the
theoretical discussion presented earlier. The Conclusions section summarizes the methodol-
ogy and findings of this study. Finally, the Limitations and Future Work section identifies
potential limitations of our work and suggests possible directions for future research.

3.2 Background

3.2.1 Human Activity Recognition

Research has extensively explored traditional Human Activity Recognition (HAR) systems.
Anguita et al. [52] proposed a lightweight HAR system that utilizes a Support Vector
Machine (SVM) with fixed-point arithmetic to reduce computational costs. Sun et al
[53] presented another SVM-based HAR system that uses smartphone-based sensors on
smartphones. The authors tested fitting a model on various positions of smartphones.
Kaghyian et al. [27] developed a smartphone application that detects activities from phone
movement by using K-Nearest Neighbor (KINN) and the smartphone-based accelerometer
sensor. Machine Learning (ML)-based HAR methods learn shallow features from data
leading to low HAR performance.

22

3.2.2 Sensor Fusion in Human Activity Recognition

HAR systems use sensor fusion to integrate raw sensor measurements into more accurate
measurements [54]. Sensor fusion is important in many scenarios to address problems such
as limited spatial coverage and imprecision [55]. For instance, Inertial Measurement Unit
(IMU) integrates and fuses the readings of the accelerometer and the magnetometer to
obtain the accurate orientation of an IMU [56]. At the data processing level, sensor fusion
can be divided into three types: data-level fusion, feature-level fusion, and decision-level
fusion. In data-level fusion, data from multiple sensors are integrated. For example, the
self-collected HARB dataset used in this work integrates heart rate pulses from the PPG
sensor with gyroscope sensor readings in one input vector to the HAR system. In feature-
level fusion, new features are calculated from the original features to provide a different
perspective on the state being measured. For example, to prevent misalignment issues
[57], the magnitude of the accelerometer is usually calculated. Utilizing the acceleration
forces measured in the three axes: A, A,, and A., the orientation invariant acceleration

magnitude A, is calculated as follows:

Ap= /A2 4 A2 4 A2 (3.1)

Decision-level fusion combines the decision of multiple classifiers into a common decision.
Recent work [18] utilized an ensemble of deep learning models, where the predictions of many
machine learning models are combined into a more accurate prediction for elderly health
monitoring based on smartphone sensors.

Deep Learning (DL) has seen significant growth in HAR due to its superior expressive
power [30]. Mekruksavanich et al. [58] used an accelerometer and Photoplethysmographic
sensors for recognition of physical activity in a Convolutional Neural Network (CNN)-based
model. Zeng et al. [33] used temporal and sensor attention combined with Long Short-
Term Memory Units (LSTMs). Temporal attention focuses on important parts of the time
series data while sensor attention focuses on important sensor modalities. Doshi et al. [59]
proposed a computer vision approach for a Diver Activity Recognition (DAR) system on
edge devices using a camera fixed in front of the driver. Reinforcement Learning (RL)
approaches were also used in HAR. Bhat et al. [3] proposed an online training RL-based
policy gradient HAR system utilizing textile-based stretch and accelerometer sensors.

3.2.3 Federated Learning in Human A ctivity Recognition

Federated learning (FL) is a machine learning approach where a global model is trained by
collaborating with clients. The clients’ local models are updated after a few iterations of
local training. Sozinov et al. [60] investigated the effect of corrupted labels in local data
on federated learning performance for synthetic and real-world datasets. They proposed an

23

FL algorithm that can detect and reject erroneous clients. They also explored the trade-off
between communication costs and model complexity. In [61], the anthors proposed an FL
algorithm that dynamically aggregates model weights based on the statistical distribution
of each client by merging similar clients’ models in a layer-wise manner.

MNumerous federated learning algorithms have been proposed to train distributed human
activity recognition (HAR) systems without sending raw data to a server. Xiao et al. [40]
developed an FL method where each client has a perceptive extraction network (PEN). The
PEN consists of a feature network based on CNN blocks for feature extraction and a relation
network based on LSTM and attention to mine global patterns in data. ClusterFL [38] is a
similarity-aware FL system for HAR that leverages intrinsic similarities among users’ data.
ClusterFL uses an alternating optimization approach to optimize model weights wi, and a
cluster indicator matrix F that quantifies the relationship between nodes. The loss function
used by ClusterFL is given by:

M N
%}1%2 ! L(wixl,yf) +7tr (WWT) —ytr (FTWWTF) (3.2)

i=1 % r=1

where M, N;, and wi represent the number of nodes, the local dataset size of the i-th node,
and the local weights of the i-th node, respectively. The first term is the sum of empirical
losses across nodes. The second and third terms consist of the L2-norm and the K-means
clustering. In this formulation, F € RM*¥ represents an orthogonal cluster indicator
matrix. If node k& belongs to the g-th cluster, Fk,q = V’J;N—? and F'k, g = 0 otherwise, where
N, is the number of nodes in cluster g. 7 and ~ are hyperparameters, 7 = 0 and 7 = 0.
Most FL methods use gradient averaging, which assumes participating clients have the
same model architecture. However, in real-world scenarios, clients may have different archi-
tectures due to privacy concerns or limited computational and storage resources. Knowledge
Distillation (KD) [5] is a technique for transferring knowledge from a trained model to a to-
be-trained model. KD-based FL [62] offers a model-agnostic alternative for collaboratively
training heterogeneous model architectures. In this approach, each client sends its scores on
a shared dataset, and the server calculates the consensus by averaging the received scores
and broadcasts the consensus scores to clients. Clients train their models on the shared

dataset using the consensus scores as labels.

3.3 Empirical Risk Minimization

In supervised learning, the goal is to find a function f that belongs to a set F., and de-
scribes the relationship between a feature vector X and a target vector Y, based on a joint
probability distribution P(X,Y). This function f is selected by minimizing a loss function
L that calculates the discrepancy between predicted outputs f(z) and actual targets y for

24

any given examples (z, y) sampled from P. The average of the loss function over the entire
data distribution P, is referred to as the expected risk and is represented mathematically
by this equation:

R() = [£(@).9)aPay) (3.3

3.3.1 Limitations of Empirical Risk Minimization

Unfortunately, the distribution P is unknown in most practical situations. Instead, we
usually have access to a set of training data D = {(z, 1)}, where (x4, 3:) ~ P for all i.
To approximate the true distribution P, we use the empirical distribution:

-Pﬁl:m: y:l = %z 6{1‘ =I,y= y‘i:l {34}
i=1

where d(x = x;,y = 1) is a Dirac mass centered at (r;,y;). Using the empirical distri-
bution P;, we can approximate the expected risk by the empirical risk:

Rs(f) =+ 3" L(f (@), w:) (3.5)
i=1

Learning the function f by minimizing the empirical risk Hs(f) is known as the Empirical
Risk Minimization (ERM) principle. However, this method has its limitation. For example,

it can lead to memorization of the training data and poor performance on unseen examples.

3.4 Vicinal Risk Minimization

Vicinal Risk Minimization (VRM) is an alternative to ERM that aims to overcome the

limitations of memorization of the training data and poor performance on unseen examples.
In VRM, the true distribution P is approximated by the vicinal distribution F,,,(z, y):

T

Py(z,y) = %Zﬂ%ylﬂ:i,yi} (3.6)

i=1
where v(x, y|zi, 1) is a vicinity distribution that measures the probability of finding the
virtual feature-target pair (x,y) in the vicinity of the training feature-target pair (z;, u:).

3.4.1 Gaussian Vicinities

One example of a vicinity distribution used in VRM is the Gaussian vicinities vz, y|z;, y;) =
N(z—z:,0%)8(y = y:), where N'(z — z;, 0°) is the probability density function of a Gaussian

distribution with mean x; and variance o2, and d(y = ;) is the Dirac mass centered at y;.
This is equivalent to augmenting the training data with additive Gaussian noise.

For example, consider a dataset of 100 points (x;,7:) where x; represents the age of a
person and y; represents their salary. The true distribution P(X,Y") is unknown, but we can
approximate it using the empirical distribution F5(X,Y). Using this distribution, we can
calculate the expected risk R(f) and minimize it to find the function f that best describes
the relationship between age and salary. However, this method. known as Empirical Risk
Minimization (ERM), can lead to overfitting and poor performance on unseen examples.

On the other hand, using VREM, we can construct a vicinal distribution F,(X,Y") by
augmenting the training data with additive Gaussian noise. Instead of only considering the
100 points (x;,y;), we sample from the vicinal distribution to construct a new dataset of
m points (z},y!), where each point is a slightly perturbed version of a point in the original
dataset. We then minimize the empirical vicinal risk R, (f) using this new dataset. By
using a smooth vicinal distribution, VRM tries to capture the underlying density of the
data, providing a better approximation of the true risk.

3.4.2 Vicinal Risk

To learn using VRM, we sample the vicinal distribution to construct a dataset Dy, :=

(x}, 7). and minimize the empirical vicinal risk:

Ry(f) = " L(F(l), 1) (37)
i=1

3.5 Mixup Augmentation

Mixup augmentation is a technique that creates a vicinal distribution by interpolating be-
tween two feature vectors (z;, ;) randomly drawn from the training data. The interpolation
is controlled by a hyperparameter o and is defined as:

1 m
u(olr) = = 3 E\6(2= A2+ (1—A) - ;) (3.8)

n i

where A ~ Beta(a, a), for a € (0, 00).
The equation states that the mixup vicinal distribution is calculated as the average of
the expectation of the Dirac delta function over all possible j pairs of feature vectors in the

training data, where n is the number of samples in the training data.
The Dirac delta function, denoted by 4, is defined as:

fax=A-z+(1—A)-z;) (3.9)

26

This function returns 1 if the = value is equal to the interpolated value of the feature vectors
(zi,x;), and 0 otherwise.

The expectation, denoted by E, is calculated over the interpolation coefficient A, where
A ~ Beta(a, o), for a € (0, c0). Essentially, this equation defines how the mixing of the two
feature vectors is done and the mixing is controlled by the & , The smaller the o the more
similar the interpolated points are to the original points.

3.5.1 Using Mixup Augmentation for Knowledge Distillation

To implement mixup augmentation for knowledge distillation, one possible method is to
first generate a permutation of the training set and use mixup augmentation to merge the
original and permuted datasets. This can be done by creating a new set of synthetic input
features (Z, §j) using the mixup interpolation, where A is a sample from a Beta distribution
with hyperparameter a.

The new loss function is defined as:

Liigtin = (1 —) - Lece(f(z),y) + v - L(f(2), T(%)) (3.10)

, where f(Z) is the student model’s predictions for the synthetic input features, § is the
corresponding hard labels, and T'(#) is the output probability distribution of the teacher
model for the synthetic input features, obtained from a dense layer or softmax with a tuned
temperature (soft labels), Loog is the cross-entropy loss, and L is the distance loss function
like KL or MSE. The parameter + is a hyperparameter that controls the trade-off between
the two loss terms.

To create synthetic input features (Z, §j) using mixup interpolation, we use the permuted
dataset and the original dataset:

F=A-z+(1—-A)-2) G=A-T(z)+(1-A)-T(z) (3.11)

where A ~ Beta(a,a) with a being the mixup hyperparameter and (z;, z}

examples selected from the original and permuted datasets respectively and (T'(x;), T(z%))
are the corresponding soft labels from the teacher model.

) are a pair of

27

3.6 Proposed Federated Learning via Augmented Knowledge
Distillation (FedAKD)

Barver Modal sharing Federated Laarning
wr-:&% PROE
o Foderstec Linaiming buina tha disiied s
a. ol B witheul sharing ik
Cilart & E’L;'_..--"'.-i:l-“ "'h‘-."'hn. BT.FT e
Optimitesed - O
..-"'*,.""" ks E‘r"“'::.._‘ Cllant B CONE
bl - X Sruarnd parasatars can sl pose prhvacy sk,
Er,."" f@ ¢ Cipsiranissiton barstwil®h & high
[X OPU-snabind adge devices unabis i s opiised
o@ °|j srchibsciurs Sum i dfsat HAVEW stask.

Figure 3.1: Standard Model-based Federated Learning.

[r— Hertrmirckyi Dilstl anthun-tased Fader sted
Local st inbeis - Lasening
§ ool s bl = Apprmgaes” = il " PROS
- - " Bt -z kel el aidie:im,
Cilant &
__.-*"':"'f "H.:H_ﬁr‘_p{ v Comrunicaton Eficent
m.__u"""‘ __..-‘_‘..-' . 5.,."--::1 Cllard B Caan ba applled 1o dilesend domaina NUP, CV, sie.
o CoME
.- Forcasbom Fesabeam mvgrmmmnting Fon Ben puitdi: dlaticest.
- -
wrchilectors
0 o
NE

Figure 3.2: Knowledge Distillation-based Federated Learning.

Standard federated learning aims to improve the performance of a global model by combin-
ing distributed models trained on decentralized data across different clients. However, in
heterogeneous federated learning, each client has an independently designed model, making
it impossible to combine weights of different architectures to create a global model. The
goal of heterogeneous federated learning is to enhance the performance of each client be-
yond their local efforts. Knowledge distillation-based federated learning was presented as
a model-agnostic distributed training approach to achieve this goal. However, the utility
of such methods may be compromised when the shared data used for knowledge transfer is
not representative or sufficient for the other local datasets to be learned. To address this
issue, we propose an augmented knowledge distillation federated learning algorithm that
provides competitive performance to model-based federated learning with significantly less
communication overhead. This is achieved by using vicinal methods to generate synthetic
public samples that increase the density of data, thus creating a richer feature-to-soft label
space that efficiently distills knowledge from limited data. The overview of Model-based
and Knowledge Distillation-based Federated learning is presented in figures 3.1 and 3.2,

28

respectively.

Algorithm 1 Fed AKD Algorithm
1: Input: Public dataset: [, Test dataset: [, Local dataset of client it D;, Inde-
pendently designed local model of client i: f;, Number of communication rounds: R,
Number of epochs for local training: Ey, Number of epochs for KD training: Exp, Loss
function for local training: L;, Loss function for KD training: Ly p, Total number of
participating clients: N, Fraction of clients participating at any given round: K
2: Qutput: Collaboratively trained local model f;
3: Initialize f;
4: for round »r =1 to K do
o Nk =K- Nc
Select Np clients randomly

6

T: ", o + server randomly generated
8: Broadcast p", a”

) for client i =1 to N, do

10 D% + permute(Dy, o)

11: Dy g + mixup(Dyp, D, a”)

12: 5{ 4 calculate soft labels on D},
13: P 4+ calculate accuracy on I,

14: Send ST, PT to Server

15: end for

16: 5" + aggregate 5] weighted by P
1T: Broadcast S7
18: for client i =1 to N, do

19: for epoch e =1 to Exp do

20:; Compute gradients gxp = VLk p(fi, ﬂzwj 57)
21: Update fi: fi+ fi—n-gkp

22 end for

23: for epoch e =1 to Ej do

24: compute the gradients goop = VLoer(fi, D, Y;)
25 Update f;: f; + fi —n-9cce

26: end for

27: end for

28: end for

The FedAKD algorithm 1 includes the following steps:

1. The server sends p" and " to clients, where p" is used to generate a permuted version

29

of the public dataset D, called D)7, and o is used for mixup augmentation.

2. Clients use p" and a" to calculate the angmented dataset I, from the permuted
public dataset D,,.

3. Clients calculate soft labels 5] and performance P on the test dataset I);.
4. Clients send 5] and P} to the server.

5. The server aggregates the soft labels ST from all clients into consensus soft labels 57,
weighted by FY.

6. The server sends the consensus soft labels 57 to all clients.

7. Clients use S" as labels for the augmented dataset [, , during knowledge distillation
training for local epochs Ey p.

8. Clients train on their local datasets [); using Categorical Cross Entropy (CCE) loss
for local epochs Ep.

g and a" are hyperparameters that control the permutation and mixup degree respec-
tively. I)p is the public dataset and D} is the permuted version of it at global round r
using

D} = permute(D,, r) (3.12)

Mixup augmentation is applied to D, and D as follows to create DY,

(zi,3) ~ Dy, (5, 9:) ~ D (3.13)

A" ~ Beta(e",a"), &=\ -z;+(1—A")-2, (3.14)

MNote that we do not need to generate §f because in our case the labels that clients use
to train on F are the global soft labels, not §.

3.7 Performance Evaluation

3.7.1 HARE Dataset

We evaluate the proposed system, FedAKD, using the HARB dataset, which is a self-
collected sensor-based time-series HAR dataset. It uses Gyroscope and Photoplethysmog-
raphy (PPG) sensors to classify three activities: walking, studying, and sleeping. The
dataset was collected using the Mi band 4 fitness band, a commercial wearable device. We
extracted Gyroscope readings and heart rate pulses calculated by the band based on the

30

PPQG sensor. To collect the data, volunteers wore the band and powered on the Raspherry
Pi (RPI) computing board via Bluetooth Low Energy (BLE), which was connected to the
Mi band 4 fitness band. They then performed the target activity for a period of time, which
we refer to as a data collection session. The session length was determined by the volunteer
and ranged between 20-400 minutes.

As shown in Figure 3.4, the data collection equipment consisted of a battery-powered
Raspberry Pi 3B and a Mi band 4. During data collection, volunteers put the RPI in
their pockets and wore the band to perform the target activity easily. Once the RPI
booted, a Python script was triggered to extract IMU and heart rate measurements using
the predefined MAC address and authentication key of the Mi band 4. IMU has a frequency
(i.e., sampling rate) of about 10-15 Hz, while the heart rate has a lower frequency of 2-3
Hz, as PPG raw data are processed by the wearable device before the calculated heart rate
is produced. Each data collection session generated a new file in a designated data folder
for that volunteer, and the data were appended to it line by line. Since the frequency is
inconsistent between the two data types, each line may contain either IMU measurements
or heart rate values, in addition to the timestamp.

To address the frequency inconsistency between the two data streams, heart rate read-
ings were interpolated to increase their frequency to match that of the Gyroscope sensor.
Another challenge we encountered was noisy heart rate measurements, where the fitness
band sometimes returned negative heart rate readings. As both Gyroscope and heart rate
measurements are integers, while the timestamp is a float value, the parser ignored negative

heart rate values as noise.

31

d Template neural network for learning HARB dataset

Input [shape = (85, 2000, 4] |

v v v

Corw 10 [n_filters NF, kernel_size K5}

. . .

:
|
|
|
|

Activation function AF I

! b i

|
|
|
|
|
|

Template neural network for
learning HARS dataset

Input (shape = [BS, 561] |
Conw 10 (n_filters NF, kernal_size K5) |

l‘ v
‘*’ 4’ Dense layer D1
¥
v v
LSTM —» LSTM ——» LS#M Activation function AF
v v
Dropaut layer Dropout layer DO
|
Optimizer = 0PT ¥ L
Ll i Dense layer Dense layer D2
v v

Activation function = Softmanx

.

Output [shape = [B5, 3] |

Activation function = Softmax

|
|
|
I
I
|
I
|
|
I
I
|
|
I LSTM —» LSTM ——® L5TM
I
I
|
I
|
|
|
I
|
|
I
I
| Output {shape = [B5, §])

e |

Figure 3.3: (Left) A template deep learning model used to derive heterogeneous models with
various learning capacities for learning the HARB dataset in both centralized and federated
learning settings; (Right) A template deep learning model is used to derive variant models
to train on the HARS dataset in centralized and federated settings.

32

Original Signal) . Augmented Signal Augmented Signal

1409
—— WL I1,PO0: 5 — WL 110, FO: 7 — WL 1%, PO: 7

2m
ELLE]

.
7

2004

Lon

Magniude

Magnikude

g
Wagniuidn

e
g 8 §
-

2
—

=100

..........

b3 5 R R TGS PR

14, - 183, 185 1453305305, 8219184
37, 264, 89, 1663805085 . 6519186
-13, 384, -39, 1563305885, 6519186

-15,253,54 , 1663035835 . GES 7084
=6, 185,153, 1663095005 . 6657004
15,177,170, 1663003605 , (857004
6,236,128, 1663005085 . 6663493

- %, 251, 184, 1663085005 , 6663402

Figure 3.4: (Top) From left to right: Raw signal from the self-collected HARB dataset.
An augmented version of the raw signal using a Sav—Gol filter using a window length of
11 and a polynomial order of 5. An augmented version of the raw signal using a Sav—Gol
filter with a window length of 110 and a polynomial order of 7. The goal of augmentation is
to balance the dataset. (Bottom) Right: Human Activity Recognition with fitness Band
(HARB) dataset sample file format; (Bottom) Left Data collection equipment.

3.7.2 HABRS Dataset

The HARS dataset is a Human Activity Recognition (HAR) dataset that maps smartphone-
embedded inertial sensors to six activities: Walk, Walk up-stairs, Walk down-stairs, Stand,
Sit, and Lay. This dataset is tabular and consists of a 561-feature vector calculated using
time and frequency domain variables from fixed-width sliding windows of 128 readings with
an offset of 64 readings, after applying noise filters to the raw signal [63]. The dataset is
publicly available [63]. Table 3.2 summarizes the details of the HARS dataset. The dataset
employs 50 Hz sensors, and it is distinet from the HARB dataset in terms of data modality
and sensors used [63]. The HARB dataset is a time-series dataset, which relies on a de-
vice that uses low-frequency sensors (2-15 Hz), the Gyroscope, and Photoplethysmography
(PPG) sensors [64]. Table 3.1 and Table 3.2 present a comparison between the two datasets.

Table 3.1: HARB and HARS datasets sizes

Dataset HARS HARB
Train set size 6616 samples 3000 samples
Test set size 2047 samples 2000 samples
Local dataset size (per client): 1i.d 20 % 6 = 120 samples 20 x 3 = 60 samples

Local dataset size (per client): non-i.i.d W classes (< 6) 20x classes (< 3)

33

Table 3.2: HARB and HARS datasets characteristics.

Dataset HARS HARB

Availability Public dataset Self-collected.

Source Waist-mounted Wrist-mounted

Sensors Inertial sensors Photoplethysmography and Gyroscope
Sensors frequency 50 Hz Hear rate: 2 Hz, Gyroscope: 15 Hz
Data modality Tabular Time-series

Number of Activities 3]

3.7.3 Dataset Preprocessing

Figure 4.3 presents an overview of the federated learning (FL) experiment conducted on
the HARB dataset. The experiment involved sampling the raw time-series data of each
volunteer, labeling the data, and splitting it subject-wise into train and test sets. To prevent
an information leak that causes high test accuracy but poor performance on new subjects,
all subjects were included in either the train or test sets, but not both. This issue was
highlighted in [65]. Table 3.1 displays the sizes of the train and test sets for both datasets.
To balance the HARB dataset, we used the Savitzky-Golay filter [66] to double the size of
the walk data before centralized training. We trained 10 models for 20 epochs with a batch
size of 32 for centralized training of the HARB FL experiment. Similarly, the deep models
for the HARS FL experiment were trained with the same number of epochs and batch size
in a centralized manner. Since both datasets are balanced, accuracy was used to evaluate
the performance of the models during both centralized and FL training. For unbalanced
datasets, metrics such as macro-F1 score and balanced accuracy should be used to reflect
the model’s performance on minority classes [67]. Figure 3.6 provides a closer look at the
proposed heterogeneous FL algorithm.

The accuracy of each model during centralized training on the HARB and HARS
datasets, along with the models’ hyperparameters, is reported in tables 3.3 and 3.4, re-
spectively. After centralized training, the FL experiment began, with each of the 10 clients
using only 20 samples per class as their local dataset. However, the entire test set shown in
table 3.1 was used as the test set to calculate the model’s test accuracy during the FL exper-
iment. Figure 3.7 shows the non-i.i.d distribution of the HARB and HARS datasets, with
some classes being dropped from the local datasets due to their non-i.i.d nature. For exam-
ple, the local dataset of the second client /party (P1) contained only four classes, resulting
in a total of 80 samples in their local dataset, assuming 20 samples per class.

34

— Data collection and spiit Haterogensoss Faderated Learning
1=
o | o
4 = = “rain datasst
p— - B = —- Llj Srarwd pubiic et
i | = B E;' ”‘_h || P Dinriudind kool dabisati
I - . teltr BT R
Sy § gunl netnis
{ D5 prrsn-wiss sl
- d<k xR }
Pamon-sis ;
o Dy Op I

0,8, B welE), 0,00} sweenca-an sorow
Figure 3.5: An overview of data preprocessing and splitting of the self-collected HARB
dataset, and how each component is being utilized in the proposed heterogeneous Federated
Learning system. The dotted box in the bottom explains the augmentation mechanism used
in this work which is based on mixup augmentation and permutation. Signal colors and the
associated number represent the index of each sample.

Client #1 Client #2 Client #N,
wen Caloulata
Train on O sofl labols 4 ™
‘—|_C:] B oo
= baard
0 0 Wearable
dewice
e Sodt isbels
calculated by

B8® pach client on o,

(1] Aggregated soft
labels

c-"! Hederogenous
madel architectures.

Local dataseds: O;

I__ Might have
° different
distributions.
Train an Oy, with Train on Oy, with — i Unlabelad public
sol kabels rain on datanet
se Hgregabed ss | Bgragated scft latals . regua%mﬂ e Dy,
I | =

Figure 3.6: An overview of the proposed heterogeneous federated learning with knowledge
distillation architecture. Each client owns a local dataset, an independently designed model,
and a shared dataset. By utilizing knowledge distillation, clients use the shared dataset to
transfer the knowledge they learned from local datasets by communicating their soft labels
on the shared dataset with all clients. We propose an additional step where the shared
dataset [), is augmented to be Dﬁug in order to enhance performance.

HARB local datasets distribution (Mon-i.i.d case) HARS local datasets distribution {Mon-i.i.d case)
seep| ® . & & & 8 ® WALKING_UIPSTAIRS | .] . .
WAOLKING_DOWNSTAIRS | & & @ .
H ' WALKING | * 8 s » .
ﬁ malkk] ® W - & = = [?:n
z 2 STANDNG | I .
SMTING| & & LI I -
study | ® & & @ . " . L LEvING | & ®
M Pl ¥ P3 B PSS P O PT M PO [I Pr P31 P PSS P& P PE PO
Partims Parties

Figure 3.7: From left to right, the figures show the non-i.i.d distribution in the federated
learning experiments of HARB and HARS datasets, respectively. Points show whether a
party/client possesses a particular class in his local dataset I); or not. For example, in the
HARS dataset, the party P2 has three classes out of six. All clients are tested against all
classes (The test dataset D is the same for all parties). Each color in the scatter plot refers
to a client.

To distill the knowledge between clients, we need a shared dataset that has a distribution
similar to the local datasets’ distributions that the clients are trying to collaboratively
learn. In both datasets, 100 sample points from the train set were employed as a public
dataset where they are shared between clients and used to calculate soft labels for knowledge
distillation. In a real-world scenario, the public dataset is shared and broadcasted at the
beginning of the FL processing by the server (e.g., fitness band company) as a medium for

communication.

3.7.4 Model Architecture Selection

There are various reasons to apply Federated Learning (FL) on heterogeneous model archi-
tectures. For instance, a smartwatch manufacturer may release a new device annually with
more resources, and thus, it can run more expensive deep Neural Networks (NN). To make
use of the data generated on users’ devices while protecting their privacy, this manufacturer
may want to apply FL among these devices. We tested our FL system, Fed AKD, on a group
of heterogeneous NNs with a varying number of parameters for two datasets, HARB and
HARS [68]. We build ten heterogeneous models using different sequence processing units
such as Long Short Term Memory (LSTM) units [69] and one-dimensional Convolutional
Neural Network (1DCNN) layers [70] with different types of activation functions including
Relu, Sigmoid, and Tanh, and a dropout layer [71] to prevent overfitting. A distinct feature
of FedAKD is that it allows clients to choose the optimizer, which is usually controlled
by the server in gradients/weights-based FL methods. We set the optimizer in the model
variants to be built to be one of the following three optimizers: Stochastic Gradient Descent
(SGD) [72], Adam [73], and RMSprop [74].

The models participating in the HARB experiment were selected based on a custom

36

template deep learning model for each dataset. One hundred variant models of that template
were generated, and we used hyperparameter tuning to sample ten models that cover the
range of performance and learning capacity of the whole group. A correlation can be
observed between the number of parameters and the models’ performance. Other factors
that impact the performance of the model in addition to the number of parameters and the
model architecture include the used learning rate and the optimizer. Tahble 3.3 shows the
architecture details of the HARB models.

In model selection for the HARS experiment, we built a model with random hyperpa-
rameters based on the template model and manually tuned its hyperparameters until we
obtained good performance on the HARS dataset. The other models were derived from the
initial model by randomly changing numerical values such as the number of units in dense
layers and the drop rate, and randomly selecting other categorical hyperparameters such as
the optimizer and the activation functions. Table 3.4 shows the architecture details of the
HARS models.

The goal of the model selection step is to obtain ten models that have distinct learning
capacities to evaluate Fed AKID)Y's ahility to collaboratively boost the performance of these
models. Instead of tuning model hyperparameters to find a good balance between size and
performance, another approach called feature selection trains a particular model architec-
ture on different feature sets. Feature selection is also used in centralized training of DL
models; however, this is out of the scope of this work as we are interested in evaluating
FedAKD in the FL setting [68].

3.8 Results and Discussion

In this section, we evaluate the proposed Federated Averaging Knowledge Distillation
(FedAKD) algorithm on two Human Activity Recognition (HAR) datasets, namely HARS
and HARB. The template models employed for the HARS and HARB datasets are shown
in Figure 3.3, with the HARS template model on the right and the HARB template model
on the left. Ten variant models with various sizes and hyperparameters are derived from
these template models to evaluate Fed AKD on both datasets using heterogeneous model
architectures.

First, models are trained in a centralized manner on their respective datasets to assess
their learning capacity. The training data used in centralized training is distributed, and
each client receives 20 samples per class as their local dataset. It is important to note that
the number of classes available to each client is different in the non-i.i.d case. Each model is
trained in a centralized manner on its own local dataset and trained on the collected local
datasets. Models’ performance under these two training settings forms the lower and upper
bound for our Federated Learning (FL) experiment.

a7

The goal of FL is to push the performance of each model beyond its local effort and
towards the performance that would be achieved if all local datasets were combined and
made available for training. These lower and upper bounds are shown as horizontal dashed
lines to the left and right, respectively, on the plots of the figure 3.8.

FedMD accuracy HARS dataset (Mo . Ld) Fed&KD accuracy HARS dataset (Kan-Lid)
ae . -
9 Pra ~ R
Pl | . S Ty .,
Mdel 7 P o i N _/
a it | 1 Fi e - .J-.:‘:_\-_ o
- . e e
5 e ", P . _."'J —_—
H H e _/r — Madeld
. R e, = o . o e
...... ! o - - A el 3
"" P o e S N =] /i =
LI gy o i i wode3
A L2 Yz
bz {'_,- |
a m M n o e a P & & o 22
Fpactn —_—

Figure 3.8: Ten heterogeneous models are trained in an FL setting using FedAKD and
FedMD [13]. From left to right, the plots show five models (out of ten) trained collabora-
tively using Fed AKD and FedMD, respectively, under the non-i.i.d case. It can be observed
that models achieve better using our method. The five models shown here are the first
five models in table 3.4. The dashed line to the left and the right of each graph represents
models’ performance on their local private dataset and models’ performance on all the local
datasets combined, respectively. In all experiments, every client has 20 samples only per
activity (as shown in Figure 3.7) as his I);, and |Dy|= 100. The lines are smoothed using
the Sav—Gol filter to show the trend more clearly.

The tables 3.3 and 3.4 show the model architectures, sizes, and centralized training per-
formance (accuracy) for the HARB and HARS datasets, respectively. The best-performing
model on the HARS dataset achieved 95.4% accuracy, while the least-performing model
achieved 34.5%. These two models had 17K and 242K parameters, respectively.

Tahle 3.5 summarizes the numerical results of our proposed FL system FedAKD and
FedMD [13] on both datasets. FedAKD achieves better average accuracy gains than FedMD,
particularly under the non-i.i.d case. On the HARS dataset, Fed AKD obtained 25.4% and
27.5% under the i.i.d and non-i.i.d cases, respectively. On the other hand, FedMD achieved
24.5% and 7.2% under the i.i.d and non-i.i.d cases, respectively. For the HARB dataset,
FedAKD obtained 12.7% and 0.4% under the i.i.d and non-i.i.d cases, respectively, while
FedMD obtained 11.5% and —2.7% under the i.i.d and non-i.i.d cases, respectively. FedAKD
outperforms FedMD on the HARB dataset by achieving a positive average accuracy gain
under the non-ii.d case.

The bar plot 3.9 shows a bar plot comparing test accuracy between two KD-based
FL algorithms: FedMD and FedAKD on the loss functions: Mean Squared Error (MSE)
and Kullback-Leibler (KL). It can be observed that using MSE as the loss function for
the Knowledge Distillation (KD) mechanism produced the highest average accuracy gains

35

compared to using Kullback-Leibler divergence loss. While FedMD also uses MSE for KD,
our method FedAKD applies mixup augmentation to the shared dataset to increase the
variance of the shared soft labels resulting in higher accuracy than FedMD. Overall, MSE
loss was found to be a better choice than KL loss for KD, which is also reported by [35].

90 1
B iid
80 A B noniid

63.1

Lh =) |
= = =
L L L

Accuracy gain (%)
o
=

p—i [s
= = =
1 1 1

FedAKD (KL) FedAKD (MSE) FedMD
Methods

Figure 3.9: The performance of FedAKD vs FedMD using two loss functions: Kull-
back-Leibler (KL) divergence loss and Mean Squared Error (MSE)

Our experiments show that both FedAKD and FedMD outperform FedMD [13] under
non-i.i.d scenarios. Figure 3.8 shows the test accuracy performance of the first five het-
erogeneous models in table 3.4 using FedMD [13] (to the left), and our proposed method
FedKD (to the right). The bar plots in Figure 3.10 show the accuracy gains of each of the
ten models in the FL experiment on the HARS dataset. The performance of individual
models under FedAKD is better than their performance under FedMD, especially under the
non-i.i.d case (left).

Table 3.3: Architecture details

dataset FL experiment

of the deep

learning models

39

participating in the HARB

Model ID | NF | K§ | NCL | NLL | AF OPT LR | Siwe | Accuracy (%) [iid Non-i.id
FedMD | FedAKD | FedMD | Fed AKD

Model 0 [20 | 5 3 2 HRelu Adam le-4 | 28016 | 586 0 20 -6 -3
Model 1 [20 | 5 1 1 Sigmoid | Adam Te-b | TOG4 | 67.8 22 Ja -3 -5
Model2 [20 |9 2 1 HRelu Adam de-5 | 11004 | 60 -11 13 -12 -0
Modeld [1D |9 2 2 HRelu RMSprop | 1e-5 | ZI5G6 | 60.9 -1] o 12
Modeld [20 |9 2 2 Sigmoid | RMSprop | 7e-b | B4 | 611 B -7 2 G
Model b [5 L] 3 3 Tanh Adam le-4 | J0G01 | 589 42 0 2 5
Model G [20 | 9 3 1 HRelu RMSprop | 1e-h | B74d | 68 18 20 -20 -17
Model 7 [1D |18 | 2 3 Sigmoid | Adam le-5 | 3bdd | 509 14 2 -14 -11
Model 8 [5 L] 1 3 Sigmoid | 8GD de-5 | 12180 | 61.2 22 3 5 -]
Modeld [20 |9 1 3 Sigmoid | 8GD de-5 | 1044 | 575 1 -15 15 18

Table 3.4: Architecture details

dataset FL experiment

of the deep learning models participating in the HARS

=

Accuracy gain per model (%6)
Model ID | D1 | AF1 | DO | D2 | OPT LR | Size | Accuracy (%) | Li.d MNon-i.i.d

FedMD | FedAKD | FedMD | FedAKD
Model O 200 | relu | 0.1 | 340 | Adam le-3 | 291k | 85.1 -T 45 + 25
Model 1 240 | elu 0.25 [300 | Adam le—d | 242k | 345 -11 [1] [19
Model 2 200 | selu | 015 | 270 | Adam le-5 | 207k | 724 47 7 [-7
Model 3 93 [relu |02 | 200 | RMSprop | le-5 | 131k | 871 a5 61 [1] 42
Model 4 9 | tanh | 0.1 170 | RMSprop | le-d | 113k | M4 9 13 1 41
Model 5 9 | eln 015 | 120 | Adam le-3 | 78k | 4.9 -5 -16 -16 22
Model 6 20 [relu | 02570 [RMSprop | le-3 | 40k | 869 -2 -1 21 43
Model 7 7 selu [0.1 [30 | Adam led | 17k | 95.4 52 18 13 28
Model 8 5 tanh | 0,15 | 10 | S3GD le-3 | 5.5k | 39.1 50 64 14 56
Model 9 5 tanh | 0.25 [8 SGD le-5 | 4.5k | 87.4 54 63 23]

Acguray gains per modal {Non-iid) Accuracy gains per modal {1.1.4) - ApeTige aouriy gains ol FedD v FalskD
- e 0 g | == rem : :_‘_I‘_:‘I"I .
50 -] W FeSNED el W FerlAiD (oaars]
0 “
-
i o iw '
" "1 1

L L]] L]

Moo
Partars

2]

Le)])

2] &

L3 L]

]

Partin

[

[

it kvt

Figure 3.10: Comparison of individual models’ accuracy gains achieved by our proposed
method: FedAKD and FedMD [13] under i.i.d (middle) and non-i.i.d (left) cases on the
HARS dataset. The bar plot to the (right) shows the average accuracy gains (across models)
under both statistical conditions. Fed AKD performs significantly better than FedMD in the

non-i.i.d case

40

Table 3.5: Summary of the numerical results of the FL experiments on both the HARB

and HARS datasets. Our proposed FL algorithm Fed AKD outperforms FedMD on both
datasets under ii.d and non-i.i.d statistical scenarios.

Average accuracy gains of Federated Learning experiments (%)
Dataset HARS HARB
Data distribution iid | Non-iid | iid | Non-iid
Method FedMD 245 | 7.2 11.5 | 2.7

ethod ' TedAKD [254 [275 12.7 | 04

3.9 Conclusions

In this chapter, we introduce Fed AKD, a federated learning algorithm that employs knowl-
edge distillation to collaboratively train heterogeneous deep learning models. We evaluate
FedAKD on two human activity recognition datasets: HARS, a tabular dataset extracted
from smartphone-embedded inertial sensors, and HARB, a self-collected time-series dataset
extracted from the gyroscope and photoplethysmography sensors of a fitness band. The
FL experiments employ heterogeneous deep learning models with sizes ranging from 1.9k
to 30k parameters for the HARB dataset, and from 4k to 291k parameters for the HARS
dataset. FedAKD is also evaluated under extreme statistical heterogeneity, in which some
clients are tested on activities/labels whose corresponding samples are not found in their
local datasets; therefore, the knowledge needed to classify these labels has to be distilled
from the other clients.

Compared to FedAvg [39], our proposed FL algorithm has much lower communication
costs. In the FL experiments on the HARS dataset, Fed AKD is shown to be 200 times more
communication-efficient than FedAvg; Fed AKD devices communicate a total of 8.8 KB vs.
1.8 MB on average if devices were to use FedAvg.

Compared to other knowledge distillation-based FL algorithms [13] that enable FL of
heterogeneous models, our proposed algorithm Fed AKD achieves higher accuracy gains for
most participating models and significantly higher average accuracy gain across models
on both datasets under i.i.d and non-i.i.d conditions. Specifically, for the HARS dataset,
FedAKD obtains 25.4% and 27.5% under the i.i.d and non-i.i.d cases, respectively, while
FedMD achieves 24.5% and 7.2% under the same statistical scenarios. Thus, FedAKD
achieves an additional 20% of average accuracy gains compared with FedMD. This perfor-
mance boost is attributed to the fact that Fed AKD uses augmentation to generate a new
variant of the public dataset in each communication round, which helps distill knowledge

more efficiently.

41

3.10 Limitations and Future Work

In our FL experiments, the public dataset I, was taken from the training set of the respec-
tive dataset. A better approach would be to select), from a different dataset that has a
similar distribution to the local dataset. For example, in [13], the authors used MNIST as
a public dataset to train heterogeneous models on the local dataset FEMINIST. In another
experiment, when training models on CIFAR100, they used CIFAR10 as the public dataset.
In our approach, we assumed that the public dataset (which contains only 100 samples) is
made available to clients by the server at the beginning of Fed AKD. In a real-world scenario,
a company would collect some data and store them on its devices to be used as a public
dataset during FL. This way, the company can protect users’ data (by not using part of
these data as a public dataset), and at the same time, the stored public dataset will have
a distribution that is similar to the distribution of the local data that will be collected by
users (since they are both collected using the same sensors).

In future work, we plan to integrate privacy-preserving techniques such as Differential
Privacy (DP) with our Augmented Knowledge Distillation (AKD) algorithm. Additionally,
we will conduct more analysis on class-level performance under this knowledge-distillation
FL paradigm. Finally, we will evaluate Fed AKD on other data modalities

42

Chapter 4

Enhancing Communication
Efficiency in Federated Learning:

Challenges and Approaches

Chapter 4 expands upon the concepts introduced in the previous chapter on Federated
Learning through Augmented Knowledge Distillation (FedAKD) by focusing on communi-
cation efficiency in FL. This challenge is particularly relevant in IoT applications, where
low-bandwidth networks can lead to significant communication overhead and slow, ineffi-
cient training. We examine prior work addressing this issue and explore how Knowledge
Distillation-based FL algorithms can offer a communication-efficient solution. The chap-
ter starts with an overview of FL and its applications, followed by an explanation of the
communication overhead in FL. We then discuss the communication efficiency aspects of
Knowledge Distillation-based FL algorithms, including Fed AKD, and introduce a more ef-
ficient compressed version of FedAKD. To evaluate these algorithms, we conduct federated
learning simulations using HAR datasets, demonstrating that Knowledge Distillation-based
FL algorithms are more suitable for [oT applications due to their communication efficiency.

4.1 Introduction

In federated networks, consisting of potentially massive numbers of devices, communication
is often orders of magnitude slower than local computation. Therefore, minimizing com-
munication overhead is crucial for scaling up FL algorithms. Communication-efficient FL

methods strive to optimize two key aspects of FL communication:

1. Total number of communication rounds

2. Size of client /server exchanged updates

43

In the background section, a review of the literature on communication efficiency in
federated learning, comparing model-based federated learning algorithms with Knowledge
Distillation (KD) FL algorithms in terms of communication overhead. After that, we intro-
duce an efficient FL algorithm, Compressed Federated Learning with Augmented Knowledge
Distillation (CFedAKD), which employs compression techniques on soft labels, similar to
FedAKD. Then, we discuss a use case resembling a low-bandwidth drone-assisted network
scenario, utilizing LoRa modules for exchanging federated learning updates between the
server (drone) and clients (houses). In the performance evaluation section, a detailed de-
scription of the FL experiments conducted, including the HAR datasets used for evaluation,
the baseline methods, and the heterogeneous model architectures employed.

The Results and Discussion section provides a Presentation and analysis of the test
accuracy and communication cost for each learning method on the HAR datasets, taking
into account soft label compression.

Finally, in the conclusion section, a summary of the chapter’s methodology and findings,
emphasizing the benefits of Knowledge Distillation-based FL algorithms for IoT applica-

tions.

4.2 Background

4.2.1 Communication Efficiency in Federated Learning

Effective communication is a fundamental aspect when designing methods for federated
networks. In this section, we examine various contemporary works addressing this challenge,
which can be broadly categorized into two primary areas: 1) Adaptable local updating, and
2) Compression techniques.

Server
/7 /
= f’; x{*j
I
-~ L E— = /fjf; — = /,a'f
4G = I !.F = ﬂ
!
! f

240 Hoel
u
|
|

Server /{}. ff’
7 74
P !
f
4G =f/ E_ffﬁ
/ !
-

Figure 4.1: System heterogeneity and communication challenges in federated learning.

Mini-batch optimization methods process multiple data points simultaneously [75, 76],
necessitating a fixed batch size to maintain a balance between computation and communi-
cation [77]. On the other hand, local-updating methods permit a varying number of local
updates on each machine, offering a more adaptable balance between computation and
communication, as depicted in Figure 4.1.

In the context of federated learning, where data is dispersed across numerous devices,
FedAvg is a prevalent method that enables local updates to be computed on each client de-
vice and subsequently averaged to produce a global update. However, FedAvg may diverge
when data is heterogeneous, meaning that data distribution across client devices differs sig-
nificantly. To tackle this issue, various methods have been proposed, such as FedProx [78],
which introduces a regularization term to the objective function to promote similarity be-
tween local models on each client device. In general, these optimization methods are vital
for achieving efficient and effective machine learning in distributed environments.

While local updating methods can reduce the total number of communication rounds,
model compression techniques like sparsification, subsampling, and quantization can con-
siderably decrease the size of messages exchanged during each round [8,79].

Table 4.1: Communication overhead between model-based and model-agnostic FL meth-
ods. Here Z, S, @ refers to FedMD soft labels, FedAKD, soft labels, and model weights,
respectively.

Method | Weighting | Communication overhead
uw 1Z{ 1+ 127
FedMD
PW 1Z7 |+ 1P [+ 127
W ST+ 157
FeAARD rw SAEALARAE
Uw |87 + |67
redive rw AEaYAE A

4.2.2 Model-based Federated Learning and Knowledge Distillation-based
Federated Learning

Federated learning is a technique for training machine learning models on decentralized
datasets where data is distributed across a network of clients. Given a set of clients C =
Cy,Cy,...,Cy,, where N, represents the number of clients and C; denotes the i*! client,
each client C; possesses a local dataset D;, where D = D;i = 1M, and a local model f;
parameterized by weights #,. The global model f is initialized with a set of weights fy.

In federated learning with Knowledge Distillation, the clients each have their private
datasets, I);, and a shared public dataset, [),, that is used to transfer knowledge. The
clients also have independently designed models, f;. The goal of federated learning is to
train the models f; on the private datasets [); without explicitly sharing the data, in order to
achieve the performance that would be obtained if the models were trained on the combined
private dataset) = D,-:.'";ﬂl.

In centralized Knowledge Distillation (KD), given an unlabeled dataset and a trained
teacher model, the aim is to use the soft labels generated by the teacher model to train
a student model. To apply KD to the FL context, we utilize a proxy dataset), shared
among all clients to calculate their soft labels. Then, these local soft labels are transmitted
to the server for aggregation into global soft labels, which are subsequently sent back to the
clients to train on the labeled dataset (Dp, S™). This process helps improve the performance
of the federated learning models while maintaining communication efficiency.

Table 4.1 compares the communication overhead of various Federated Learning (FL)

algorithms, emphasizing the importance of communication efficiency in FL. Specifically, it
juxtaposes two model-agnostic FL algorithms, FedMD and Fed AKD, known as Knowledge
Distillation-based FL algorithms, with one model-based FL algorithm, Fed Avg.

The table presents the communication overhead for two weighting schemes: uniform
weighting (UW) and performance-based weighting (PW). In the PW scheme, the perfor-

46

Table 4.2: Train/test splitting and local sets partitioning of the HAR datasets used in this
work.

Dataset HARS Depth Harbox IMU

Total train set size 10,800 3,544 22 657 683

Total test set size 2,947 - - -

Local train size (per client): 200 x 6 = 415696 B0-T3T 133-146
1,200

Local test size (per client): 2,947 805-902 55-317 58-63

Public/Shared set size: 736 449 185 136

Table 4.3: The characteristics of the four HAR datasets used to evaluate the FL algorithms
considered in this work.

Dataset HARS Depth Harbox IMU

Num of activities 6 5 5 3

Activities Wallk, Walk Good, Ok, Vie- Walking, Hop- Walking in
up-stairs, Walk tory, Stop, and ping, Phone corridor, Walk-
down-stairs, Fist calls,; Waving, ing upstairs,
Sit, Stand, and and Typing and Walking
Lay downstairs

Sensors Smartphone Depth camera 9-axis IMU IMU
Intertial Sen-
SOTS

Data modality Tabular Image Tabular Tabular

Data dimension (561) (30,30.1) (900) (900)

Num of clients 0 8 115 6

mance of each client (F]) in round r is utilized to determine the weight assigned to that
client.

For FedMD and Fed AKD, the communication overhead is measured in terms of the size
of the soft labels (Z or S) that need to be transferred between the server and clients. The
overhead is smaller in comparison to FedAvg. which measures communication overhead in
terms of the size of the model weights (#) that need to be transferred. This highlights how
Knowledge Distillation-based FL algorithms can contribute to more efficient communication
in federated learning scenarios.

In the case of FedMD and Fed AKD with PW, the communication overhead is the sum of
the sizes of the soft labels for each client (Z]), the personalized weight for each client (FT),
and the global soft labels (Z7). By reducing the size of the data exchanged during each
communication round, these algorithms can substantially enhance communication efficiency,
particularly in low-bandwidth networks or IoT applications.

47

4.2.3 Federated Learning with Augmented Knowledge Distillation

The authors in [14] proposed a KD-based FL algorithm that employs mixup augmentation
[15] to generate a dataset D, during each global round r. This algorithm demonstrates
the potential of Knowledge Distillation-based FL algorithms to improve communication
efficiency by leveraging smaller data transfers between the server and clients.

By applying Mixup augmentation to D, and D7, the synthesized dataset D;ug Con-
tributes to reducing communication overhead while maintaining consistency across all clients.
Moreover, the utilization of mixup augmentation [15] and the permutation of the public
dataset not only helps prevent overfitting but also enhances generalization, thereby improv-
ing the efficiency and performance of FL algorithms in distributed settings.

In summary, Knowledge Distillation-based FL algorithms, such as FedMD and Fed AKD,
can offer a communication-efficient solution for federated learning, especially in IoT appli-
cations or other scenarios with low-bandwidth networks. By minimizing communication
overhead and optimizing the balance between computation and communication, these algo-

rithms can greatly improve the scalability and performance of FL systems.

4.3 Proposed Compressed Federated Learning with Augmented

knowledge distillation

Algorithm 2 Compressed FedAKD Algorithm

1: Input: Public dataset: [),, Test dataset: D). Local dataset of client i: D;, Inde-
pendently designed local model of client i: f;, Number of communication rounds: R,
Number of epochs for local training: E;, Number of epochs for KD training: Exp, Loss
function for local training: L;, Loss function for KD training: Ly p, Total number of
participating clients: N, Fraction of clients participating at any given round: K

2: Qutput: Collaboratively trained local model f;

3: Client i designs f; and initializes #,

4: for round »r =1 to K do

o Nk =K- Nc

fi: Select Np clients randomly

T: ", a" + server randomly generated

8: Broadcast p", a”

o: for client i =1 to N, do

10 D + permute(Dy, p")

11: Dy g + mixup(Dyp, DY, a”)

12: 5{ 4 calculates soft labels on D,
13: OS] + Quantize(S])

14: P! 4+ calculates accuracy on I,

15: Client i sends C'ST and P’ to the Server
16: end for

17: CS5" + Ef‘;“l gf%

18: Broadcast C'S™
19: for client i =1 to N, do

20 for epoch e =1 to Exp do

21: 3’}.- — 0 —n- m E(z,yje(ﬂ;ug,csr] VLkp(Oy, fi(z),y)
29 end for

23: for epoch e = 1 to E;, do

24: H}i {_ H_fl - ?? - ITll-l E{I1H:IEDi vﬁCCE{B_fi: fil:m}! y:l

25: end for

26: end for
27: end for

49

([Foromt=Rameary)
torase o - .

Do Waarnbia dovicos

{& ‘_E} = sy Comproasod 5ot
labals caiculatod by
ILnH.lmodl.l- = ﬁ:’f e | ot
drong Fl acourncy) of cliont |

Esrw
comprossad soft labais

1 Blustoos Low

| Enargy [BLE} link

* + Y] Lonn uphoadicwniond
Lo communication distance = 50 medas lk I ¥ lnks

vy

Figure 4.2: An overview of the proposed Compressed Federated Learning via Augmented
Knowledge Distillation algorithm (CFedAKD) on a drone-aided LoRa network.

In this section, we present the Compressed Federated Learning with an Augmented knowl-
edge distillation algorithm (CFedAKD), which is built on top of FedAKD and uses a com-
pression scheme to reduce the size of soft labels. While Fed AKD uses soft labels S} as the
basis for communication between the clients and the server, CFedAKD applies quantiza-
tion to S7. This is done by normalizing 57 using Min-Max normalization, multiplying by
255, and then casting type from floating point (46 bits) to unsigned integer (8 bytes). The
compressed local soft labels, C'S], are then sent to the server to be aggregated as:

CS™ + Z OS5 (4.1)
k_D

The server broadcasts C'S™ to all clients to train on it. Before that, C'S" is normalized and
cast back to float. After receiving the global soft labels, each client undergoes two training
processes. The first training process for Ej p epochs uses the KD loss to digest the distilled
knowledge C'57, we use MSE loss for KD. The second training process for E; epochs is
the standard local training using the Categorical Cross Entropy (CCE) loss to fine-tune
the model on the local dataset [J);. The complete algorithm for CFedAKD is depicted in
algorithm 2.

4.4 Use Case: Implementing CFedAKD on Low-Bandwidth
LoRa Networks

Drone-assisted LoRa networks have found numerous applications in the Internet of Things
(IoT), particularly in monitoring rural areas. Examples of such applications include lo-
calization [80] and forestry monitoring [81]. To overcome the challenges of limited internet
connectivity in rural health monitoring, we propose a Drone-assisted LoRa network (DORA)

a0

M X M map of the considered squared Target Area (TA)

Drone B Eliok iz Nodes
e
=p
— v —— 1 e
o Y § Lo emming L
Iﬁ_ _____ bkt Mode 1.CA 1

Point A

-
i
i
1
ke i
Mode 2 CA | —
/ﬁ £ -\‘\- n=Hf2 _‘_‘_‘_‘_‘_‘_‘_‘_‘_‘_‘—‘ 1 U
| [Hee=r E y Mode 2 D5L
- t A i F 1 modez KDL
\Q-‘- / |
I
= . - - Mode 1A ! o= 1o
ﬁ Hode 3 Cfuernze i 1
L aren (CA] riode 2 C4 : Mode: 1 KDL
I il 1 =
I b 1 n=N
o . Y
N

Figure 4.3: Left: The drone traverses an optimized path while performing KD-based FL over
two passes across the considered Target Area (TA). The drone communicates lightweight
messages via LoRa link only if it is inside the Coverage Area (CA). Right: Timeline of the
FL communication phases for a map of 1 drone and 2 nodes.

and evaluate the performance of CFedAKD for training distributed deep learning models on
edge devices. The proposed Drone-aided LoRa network is designed to enable smart health
applications utilizing wearable devices and lightweight FL.

We consider a target area (TA) represented by an M x M map, containing N} houses /nodes,
each denoted by K € K = 1,2,..., Nj, with house k& having spatial coordinates py =
(zk, yx). The map is divided into M 2 blocks, each with a side length of s meters, resulting
in a total side length § = M - s. Each house has an access point AP, which consists
of a Raspberry Pi board and a LoRa Module. Each AP, connects to one or more wear-
able devices via BLE to extract sensory data and train a local model using the proposed
communication-efficient FL algorithm.

A drone equipped with an access point AF; travels across the TA starting from point
A at pa = (ra,ya) and returning to the same point. The drone flight consists of two
phases: The upload Soft Labels (I/SL) phase and the Download Soft Labels (DSL) phase,
as shown in figure 4.3. In the /5L phase, the drone visits each node py, ¥k € K to receive
FL updates in the form of Soft Labels (S5L) via LoRa communication. Once the drone has
collected updates from the last node, the DSL phase begins in which the drone returns
along the USL path, stopping at each node to download the aggregated SL via LoRa
communication before returning to the starting point A. Let Tysr and Thsy denote two
equal time durations in which the drone completes the USL and DSL phases, respectively,

al

while traversing linear distances of Dy g and Dpgp.

T=Tys.+Tps., D= DysiL+ Dpsi (4.2)

The drone completes one global FL round per journey, divided between two identical
paths for uploading and downloading FL. messages between AP} (the server) and APk €
K (the clients). The total time T is divided into N; equal time slots n € {1,2,..., N;}, each
lasting ¢ seconds, such that T = N, -t and Tyrgp = Ther = % -t. The drone’s speed V' and
height V' D are fixed, and it follows a trajectory Pg = {pan} € B2 ¥n c {1,2,...,N¢}, a
sequence of coordinates throughout its path. pi represents the drone’s coordinates at time

n. The first and last points have the same coordinates: pa = pdo = panN, = (T4.y4).
And the horizontal distance between the drone and node k is given by:
d(k,pan) = \/ (Zdn — Tk)? + (Ydn — vk)? (4.3)

We define a circular Coverage Area C'A;. with radius r = 5 centered at pyVk € K. The
drone access point AF; can communicate with an access point AF; only if the distance is
below the threshold distance »:

Ry, ifd(k,pan) <7

dr(k, pa.n) = { (4.4)

0, otherwise

Table 4.4: The used Lora, distance, and Reliable Data Transfer (RDT) parameters in our
experiments.

Parameter Value
Spread Factor 12
Bandwidth 125 KHz
Carrier frequency 015 MH=z
Coding rate 4/5
Programmed Preamble | T
Lora engine SX1276
CA radius 50 meters
VD 8 meters
Delay 3 seconds
Window size 3 packets
Timeout 3 seconds

Here, dr(k, pan) represents the data rate for client k at time n, and Hj is the nominal
data rate. Because of the low bandwidth of LoRa and its high drop rate, we define a
coverage area (CA) with radius r in which the signal quality is above the sensitivity of the

receiver antenna and therefore is acceptable for sending FL messages. This ensures that the

a2

drone access point AP; communicates with an access point AP, only when the distance is
below the threshold distance r as shown in equation 4.4. We set the radius of CA r = 50
meters based on our drone-loRA distance test shown using the parameters specified in table
4.4.

Due to the limited resources of the drone, it is essential to minimize the total trip time
T. To address this optimization problem, we tackle the minimization of the total linear
distance [) covered by the drone and the message size M5 as two distinct problems.

For the first problem, we formulate the goal of minimizing the distance D covered
by the drone as a path optimization problem in which the drone aims to traverse a graph
G = (V,E), where V = {v1,v9,...,vn,} is the set of N, = K +1 vertices (home access points
AP, %i € I and the starting point A which has location {z4,y4}): E = {e;;},¥i,je Vi #j
is the set of edges; and wy;; is the weight (distance) of edge e;; between vertex v; and vertex
vj.

In the USL phase, the drone starts from point A and follows a trajectory Pg which
passes through and stops to send and receive updates at, all house locations. In the DSL
phase, the drone starts from the last house visited in the USL . the drone access point APy
agpregates the received local soft labels 5Ly, ¥k € K and travels back its USL path, this
time downloading the aggregated soft labels SL. to AP, ¥k € K until it reaches the starting
point.

We realize this whole trip which lasts time T over distance I) and includes both phases, is
similar to the Traveling Salesman Problem (TSP) with modification and can be approached
in two steps: First, formalizing the drone path optimization as a TSP problem and finding
a Hamiltonian cycle H. Second, we apply post-processing steps, described later in this
sub-section, to derive G from H where (74 is the path (order of vertices) the drone should
follow to perform the two FL phases USL and DSL with minimum D).

The Hamiltonian cycle H is a permutation of vertices forming a closed loop that visits
each path once. To ensure that this permutation minimizes the distance D covered by the
drone, TSP minimizes the sum of distances masked by modeling the edges included in H
using a binary decision variable z;;, corresponding to each edge e;; € E, where

1, if e is included in H
T = (4.5)
0, otherwise
The Traveling Salesman Problem (TSP) is formally defined as
No Ny
ll'lhlr]l Z Wi = ﬂ;llljnz . Z -‘tl.r;jﬂ.‘.ij {46}
e(ijjeH i=1 j=15+#i

under the constraints:

53

1. Each node is visited exactly once:

Ny
z;=1, VieV (4.7)

ij
j=1#i
2. No mini-cycles (sub-tours) are allowed, meaning any cycle in the solution must include
all nodes:

Y z; <|S]-1, VSCV,2<|S|<N, -1 (4.8)
ije8

NMNotice that the first constraint states each node is visited once, however in our case,
each node is visited twice (one time in the USL phase and another in the DSL phase). To
address this, We manually remove the last edge connecting the starting vertex to the last
vertex (vy,) in the solved H, we then append the vertices from the second-to-last vertex
(va, —1) to the starting vertex following the same path in reverse order. This will produce
the drone path ; which can be used to produce the drone trajectory Py.

With regards to the second goal of minimizing M5, we utilize a KD-based FL algorithm
that leverages soft labels like Fed AKD or CFedAKD for sending updates with significantly
smaller sizes compared to model weights used in standard FL. Figure 4.2 demonstrates the
implementation of CFedAKD over the proposed Drone-LoRa system (DORA).

In the case of CFed AKD, the local updates, denoted as C'S™, are compressed soft labels.
The time required to exchange updates with each home access point under CFedAKD is
measured as 4.8 minutes for sending the compressed soft labels, as per Table 4.5, which
means a total of 2x4.8 = 9.2 minutes for sending and receiving updates. To minimize
waiting time, the appropriate drone model should be chosen based on the time needed to
exchange updates with all homes. Our proposed CFedAKD approach demands less waiting
time compared to FedMD /FedAKD and FedAvg, which require 41.2 minutes and over 30
hours, respectively, due to the relatively large size of the model file and the low bandwidth
of LoRa.

The traffic models for both the model-based and communication-efficient KD-based FL

are presented in the following sections.

1

4.4.1 Model-based Federated Learning traffic model

Each global round in model-based FL [82] consists of three ordered phases: The download
phase (DL), the Learning phase (L), and the Upload phase (UL).

In the DL phase, each node downloads the weights of the server-controlled global model
f denoted as #", where r is the current global round. In the L phase, each client updates
his local copy of weights using

a4

O 0 —nre 3 VL1, f(6,2),y) (4.9)

D (zw)eD;
where 17 is the learning rate and £ is the loss function. In the case of a classification problem,
a Categorical Cross Entropy function is usually used £ = Lecs.
Finally, in the UL phase, clients upload the locally trained weights to be aggregated at

the server as

N,
1
r+1 r
A > 6 (4.10)

i=1

This process is repeated until convergence or until a predetermined number of rounds
have been completed.

Uploading and downloading model weights requires high bandwidth communication. In
our drone-based system, the drone flight time is limited, therefore, we use a different FL
approach that is based on the concept of KD.

4.4.2 Knowledge Distillation-based Federated Learning traffic model

In centralized settings, Knowledge Distillation (KD) is a technique used to train a student
model using a trained teacher model, i.e. given an unlabeled dataset and a trained teacher
model, the goal is to use the soft labels produced by the teacher model to train a student
model. To apply KD to the FL context, we use a proxy dataset [), shared with all clients
to calculate their soft labels on it. Then these local soft labels are sent to the server to be
aggregated into global soft labels and sent back to clients to train on the (D,, SL") labeled
dataset.

In FL with KD, each node has its private dataset, Dy, and another public dataset, Dp,
that is shared with all other nodes and is used to transfer knowledge. A major advantage
of KD-based FL over model-based FL, which was presented in the previous section, is that
the former gives nodes the freedom to design their own model architecturef,.. On the other
hand, model-based FL [39, 82| assumes a server-controlled model architecture.

The global cycle in KD-based FL consists of four ordered phases: Local Learning phase
(LL), Upload Soft Labels phase (USL), Download Soft Labels (DSL), and Knowledge Dis-
tillation Learning phase (KDL).

Both the USL and DSL phases are described earlier. In these phases, soft labels are
uploaded from nodes/clients to the server (the drone), then the server aggregates and down-
loads the global soft labels to nodes, respectively.

In the LL phase, Cross Entropy Loss (CCE) is used to train the locally designed model

fi. on the locally labeled dataset.

D
| k | (z.y)eDy

After the local clients have trained their models on the local data, each client uploads his
local soft labels SL, to the drone in the USL phase. In the DSL phase, the drone traverses
back its USL path and downloads the aggregated soft labels SL™ to be used for training in

the KDL phase.
Nie

SL™ Y % (4.12)
i=1 k=0 PE

In the KDL phase, distance functions like the Mean Squared Error (MSE) or Kullback-
Leibler divergence loss (KD) are used to train f; on the public unlabeled dataset leveraging

the downloaded soft labels.

o o — - ﬁ S Vikn(fi(2).v) (4.13)
Pl (z.y)e(Dp.SLT)
where ﬂz‘r,ﬂz‘"?andfi‘[m} represent, the model weights after local dataset training, the
model weights after knowledge distillation training, and a similar architecture to fi. con-
structed by removing the last layer [62] or increase the SoftMax temperature [35] to smooth
the distribution of the output vector, which is the soft labels 5L, = f(D;).

4.5 Performance Evaluation

4.5.1 Datasets

In this chapter, four Human Activity Recognition (HAR) datasets are used to evaluate
the proposed FL algorithms. First, three datasets (HARS, Depth, and IMU) are used to
evaluate the performance of the different considered FL methods, and a larger fourth dataset
(HARBox) is used to evaluate the performance of KD-based FL methods while scaling the
public dataset [y, on which the soft labels are calculated and KD is performed. We already
used HARS in the previous chapter to evaluate FedAKD algorithm, in this chapter, more
datasets are utilized to test the generalizability of FedAKD and its compressed relative
CFedAKD. Table 4.3 shows the characteristics of the four datasets. The datasets cover
different modalities: tabular/structured and image-based. Three of these datasets: Depth,
IMU, and HARBox are collected by [38] with decentralized training in mind, therefore these
datasets are pre-partitioned into clients, as shown in table 4.2. The number of clients of
each dataset range from 6 to 115 clients.

il

1. IMU-based dataset:

The IMU-hased dataset was created using an off-the-shelf Inertial Measurement Unit
(IMU) module to record three different walking activities. Seven participants, com-
prising 4 males and 3 females, were recruited to perform the activities, which included
walking in the corridor, walking upstairs, and walking downstairs, in two different
buildings. The IMU was set to a sampling rate of 50 Hz, resulting in each frame of
data containing 9-axis IMU data. To capture the activity, a time window of 2 seconds
was chosen, resulting in each recording being a 900-dimensional vector. This dataset
presents a challenge due to its heterogeneity, as it includes data from various subjects

and environments.

2. Depth-camera dataset:

The Depth-camera dataset was created using depth cameras, which are preferred
for activity monitoring and gesture control because of their ability to preserve user
privacy. The dataset includes records of five types of gestures (good, ok, victory, stop,
and fist) performed by two subjects in three different environments (outdoor, dark,
and indoor) using a depth camera. To create the dataset, the region of interest (ROI)
for each depth gesture was first obtained, and the depth values were then normalized
to a range of 0-1. The resulting depth images were resized to 36%36 pixels. This
dataset has a large number of records and each record has a relatively high number
of dimensions, making activity recognition more challenging.

3. Smartphone-sensors dataset:

The Smartphone-sensors dataset is a collection of recordings made by 30 individuals
performing daily activities while wearing a waist-mounted smartphone with built-in
inertial sensors. The goal of the dataset is to classify the recorded activities into one of
six categories: WALKING, WALKINGUPSTAIRS, WALKINGDOWNSTAIRS, SIT-
TING, STANDING, and LAYING. The dataset was collected from a group of 30
volunteers with ages ranging from 19 to 48, using a Samsung Galaxy S II smartphone
equipped with an accelerometer and gyroscope. Data were collected at a rate of 50
Hz and labeled by watching the recorded video. The dataset was then divided into a
training set and a test set, with 70% and 30Y% respectively. Data was preprocessed by
applying noise filters and the sensor signals were divided into windows of 2.56 seconds
with 50% overlap. Various time and frequency domain variables were calculated from

each window to create a vector of features.

4. HARBox dataset: An Android App named "HARBox” was developed and released

in this dataset to collect human activity recognition (HAR) data using users’ own
smartphones in a crowdsourcing manner. The App collects 9-axis IMU data from

a7

users’ smartphones while they perform five activities of daily life (ADL), including
walking, hopping, phone calls, waving, and typing. The users label the activities
themselves by clicking the "start” and "end” buttons in the App before and after each
activity. After removing invalid and repeated data, valid submissions were obtained
from 121 users (ranging in age from 17 to 55) with 77 different smartphone models.
The original IMU data was resampled at 50Hz and a sliding time window of 2 seconds
was used to generate a 900-dimensional feature for each data sample. This dataset
is larger and more heterogeneous, making it useful for evaluating the scalability and
robustness of different methods.

4.5.2 Baseline Federated Learning algorithms

We compare the performance and communication overhead of several Federated Learning
(FL) algorithms, including:

1. FedAvg: A traditional FL approach where the server aggregates client model weights

after they have undergone a certain number of local training iterations.

2. FedMD: A model-agnostic FL algorithm where clients share their soft labels Z7. which
are calculated on a shared public dataset. This method is well-suited for IoT appli-
cations with limited communication resources or applications where clients need to
have control over the design of their local model.

3. FedAKD: A KD-based FL algorithm that improves accuracy by augmenting the shared
public dataset I); using Mixup augmentation in each global round. Clients commu-
nicate their soft labels 5], which are calculated from the augmented version of the
shared public dataset 1)y, .. The augmentation variables are controlled by the server

to ensure consistency across clients.

a8

4.5.3 Heterogeneous Local Model Architectures

Time series input Image input Tabular input
sShape: |BS, SeqLen, MumFeat) Shape: (BS, Height, Width, Channels) Shape: [BS, NumFeat)
T S
ConvZD I
I LSTM —* LSTM — LSTM I | ; I
| I
B R o
| I | ConvZD 1
| |
! l | com2p |
S ————._ p— J T ————
Relu l-
l Max Pool
l Relu

Figure 4.4: Left: Time series data template deep learning model architecture. Middle:
Image data template deep learning model architecture. Right: Tabular data template deep

learning model architecture. Because these architectures are used as templates for their
respective datasets/tasks, the dashed box on each model highlights the variable layers that
are modified to construct new variants of template models..

The evaluation of the proposed federated learning algorithms is based on the template
deep learning model architectures depicted in Figure 4.4. These architectures, specifically
designed for time series, image, and tabular data, are adapted to create new variants of
template models by modifying the variable layers within the dashed boxes. By leveraging
these template architectures, we can rigorously assess the effectiveness, peneralizability,
and robustness of the proposed federated learning algorithms in diverse real-world IoT

applications.

4.6 Results and Discussion

In this section, we present the results of applying federated learning algorithms on HAR
datasets. The considered baseline FL algorithms are shown in section 4.5.2 and the datasets

a9

are shown in section 4.5.1. This section is split into two parts: Performance results and

Communication results.

4.6.1 Performance Results

In this part, we present the test accuracy obtained by different FL algorithms on HAR
datasets. The two figures 4.5 and 4.6 show the relative accuracy of two model-agnostic
FL methods FedAKD and FedMD, and one model-based FL method. The scatter plots
show the accuracy of these FL algorithms on four HAR datasets. The weighting schemes
considered are uniform weighting and performance-based weighting. In performance-based
weighting, each client calculates her test accuracy and sends it to the server to weigh each
client’s contribution according to her performance. We can observe that model-agnostic
achieves comparable performance to model-based FL. methods. Additionally, FedAKD and
FedAvg outperform FedMD.

Aggregate - 0,808 Aggragate EI]
DB31 & FeaMD L ’ + FecMD o . ®
. x FecdAKTH
* Fedhkn " nars{
nan{ * feoAw + Fedig -
! Weighling Waighticeg
& unifarm - 0,850{ & uniform
ol el asouracy = Dikt aCouracy ™
0,825
Kl
g“ o IE“':Iu.almn
z 2
0.65 0,775 -
1
0.8 - 0750 .
. 0,725
0.55 x
-
® noe] =
052 064 0566 068 000 0,92 004 078 0,75 2,80 0,85 0,90 0,95 1.0
Depth 1ML

Figure 4.5: Test accuracy of the federated Figure 4.6: Test accuracy of the feder-
learning methods on HARBOX and Depth ated learning methods on HARS and IMU
datasets. Points are styled according to the datasets. Points are styled according to the
weighting scheme used. weighting scheme used.

In our explanation of how KD-based FL methods work, we discussed the importance
of the public dataset to distill clients’ knowledge obtained from training on the distributed
local datasets. Figure 4.7 compares the impact of scaling the public dataset on the test
accuracy. The performance increases as we increase the public dataset up until a certain

point where the performance is constant.

4.6.2 Communication Results

In this section, we present and discuss the communication cost of various baseline FL algo-
rithms. Figure 4.9 shows the sending time of model-agnostic (Fed AKD /FedMD /CFed AKD)

00 B gy FLLTR— B FeMD
20 i i B FdAED
70
£ 60
E! 50
E 0]
2 30
20
101
pl—— medium large

Size of the public set

Figure 4.7: The test accuracy of the KD-
based federated learning methods on the
HARBOX dataset, while scaling up the pub-
lic dataset (HARBOX) from one to four and
eight times the average local dataset size.

=
<

Accuracy gain (%a)
= How e w
=2 £ 2 3 7

(=]
i

small large
Size of the public set

Figure 4.8: The test accuracy of the KD-
based federated learning methods on the
HARBOX dataset, while utilizing the IMU
dataset as a public dataset.

61

Table 4.5: Sending deep model files vs soft labels using LoRa + Reliable Data Transfer
(RDT) communication details. The proposed RDT method avoids losing packets as the
LoRa communication protocol is originally unreliable (lossy communication). The file size
of FedMD’s Soft Labels (Z) and CFedAKD’s Compressed Soft Labels (CS) is significantly
smaller than the size of model files therefore they are more suitable for federated learning
in bandwidth-limited environments.

Federated Learning algorithm FedAvg CFedAKD FedMD
Basis of Communication Model 0 Model 1 Model 2 [CS Z

File size (KiloBytes: KB) 256 KB 638 KB 466 KB JKE 12 KB
Num packets 12,005 30,066 21,907 |49 210
Packets preparation time (second:s) | 0.4 s 0.77 = 0.6 s <1 ms <1 ms
Sending time (minute:m) 1178 m 2047 m 2147 m 4.8 m 20.6 m
Data rate (bits/second: b/s) 20 h/s 20 b/s 20 b/s 83 b/s 7T b/s
Packet rate (Packet/s) 0.17 0.17 0.17 0.17 0.17

vs model-based (FedAvg) FL methods. And figure 4.10 shows the file sizes of the same FL
methods, where the file size represents the size of the message exchanged between the server
and the clients each round.

Comparison of File Sizes

538

Sanding Time Comparison
- 300

e m— Sendeng Time
A= 500
AT
- 2000
8-
- 1170
2+ I .
o [] o aa nan 208 |

Fediyg i Feddeg ml Fedieg m2 CRedAKD FadAkD
Communication Method Moae] O Sodd 1 Miode| 2 =1

=] n
a =
=] =

File Size (KB]

=
=
&

Preparation Time {mirubes)
n
=
=
Sending Time {minutes]

=
=

12

z

Figure 4.9: Preparation and Sending time Figure 4.10: Client/Server Update sizes of
of different federated learning methods. different federated learning methods .

In this chapter, we proposed a Knowledge Distillation-based FL method that uses com-
pression to reduce the size of soft labels. The scatter plots shown in figures 4.11 and 4.12
show the impact of compression on the test accuracy of FL algorithms. Additionally, figure
4.13 shows the accuracy of model-agnostic FL. methods on different HAR datasets and how
they compare to the accuracy obtained by FedAvg which is a model-based FL method.
Compression is only applied to model-agnostic algorithms that use soft labels as the basis
for communication converting FedAKD /FedMD to CFedAKD/CFedMD. The figure sug-
gests that compression does not reduce accuracy. The figure also confirms that KD-based
FL algorithms achieve comparable performance to model-based FL. methods

Aggragate .

T

e [+) BB .68 0.7 0372 74
Depth

Figure 4.11: Test accuracy of the federated
learning methods on HARBOX and Depth

datasets.

Points are styled according to

whether soft label compression is applied.

62

0,900
0,073
0.B50
0,825

Z n.ano

E
0,775
0,750

0.735

L

aggregate

.

o.a

oTs

[E:1] 0.85 D.an 0.85
ML

100

Figure 4.12: Test accuracy of the feder-
ated learning methods on HARS and IMU
Points are styled according to
whether soft label compression is applied.

datasets.

63

Soft labels compression impact on performance

Depth HARS MU

Lo 1.0 1.0
0.8 1 0.8 0.8 1
0.6 1 0.6 1 0.6 1
0.4 1 0.4 0.4 1

Comprassed
0.2 1 N FALSE 0.2 0.2 1

N TRUE

N N

0.0-

0.0 -
FedMD FedAKD Fedivg FedMD FedAKD Fedawvg FedMD FedAKD FedAwg

Figure 4.13: Test accuracy of the federated learning methods on Depth, HARS, and IMU
datasets. Bars are grouped based on whether soft label compression is applied. For FedAvg,
a N/A label is given since it does not use soft labels.

4.7 Conclusion

In this chapter, we propose to use compression on top of Knowledge Distillation to save
communication bandwidth in federated learning. Instead of calculating soft labels and send-
ing them as floats, we propose to first normalize and convert the soft labels to unsigned
int resulting in 8 times less size. The proposed algorithm: Compressed Federated Learn-
ing with Augmented Knowledge Distillation (CFedAKD) modifies the Fed AKD algorithm
presented in the previous chapter. We evaluated the performance of CFedAKD on four
Human Activity Recognition (HAR) datasets with different modalities against model-based
and model-agnostic FL. methods and found that the communication overhead of CFed AKD
is significantly less than other FL methods, especially model-based algorithms while main-

taining accuracy.

64

Chapter 5

Privacy in Federated Learning

5.1 Introduction

In this thesis, we study Federated Learning (FL) and the challenges associated with the
development and deployment of FL algorithms such as communication overhead; statistical
and system heterogeneity; and privacy concerns. We present knowledge distillation-based
FL algorithms such as FedMD/FedAKD as an alternative paradigm to standard federated
learning (fedAvg). While in FedAvg clients send locally trained model weights and receive
aggregated model weights, clients in KD-based FL share local soft labels calculated by inde-
pendently designed models trained on private local datasets. The server in FedMD /Fed AKD
aggregates local soft labels and broadcasts the global soft labels to clients to train their local
models for a few epochs called knowledge distillation training using distance loss functions
like Kullback-Leibler (KL) or Mean Square Error (MSE). In the previous chapters, we pre-
sented two versions of Knowledge Distillation-based Federated Learning: 1) FedAKD and
2) CFedAKD where both algorithms employ a shared public dataset to calculate soft labels
which are then sent to the server, aggregated, and the consensus soft labels are broad-
casted back. In FedAKD, we apply an augmentation technique called Mixup augmentation
on the public dataset with server-controlled parameters to generate a new version of the
public dataset at each global round and thus help distill knowledge more efficiently. We
discuss the performance and communication characteristics of the proposed algorithm. In
the previous chapter, we take another step in our discussion of communication-efficient FL
algorithms and propose CFed AKD, which employs compression techniques to cast the unit
of soft labels from float (8 Byte) to Unsigned Int (1 Byte).

In this chapter, we discuss privacy concerns associated with training deep learning mod-
els in the central and the FL contexts. We start by laying out some of the recent work
that presents privacy attacks and counter-defense mechanisms. Differential privacy is a
privacy analysis framework that protects against numerous attacks by injecting calibrated

noise. We discuss the proposed mechanisms to construct DP training pipelines for deep
learning models. The Gaussian mechanism to apply noise for DP is introduced as well as
relevant DP properties such as the composition property and the post-processing immunity
property. The Differentially Private Stochastic Gradient Descent (DP-SGD) algorithm [83]
to train deep learning models with differential privacy using a noise-adding mechanism is
presented in figure 5.3.

We then focus more on the difference between applying DP in the contest of model-based
FL and KD-based FL algorithms. The experiments performed in this thesis to train DP
models under different FL algorithms and privacy protection levels are detailed, and the
implementation details are described. Finally, we present the results obtained from running
the experiments which include reporting and plotting test accuracy of training different FL
baselines with different noise scales resembling privacy protection levels.

5.2 Background

There is a need for Deep Learning to ensure the privacy of training data because deep
learning models learn by memorizing patterns and data [84]. Differential Privacy (DP) [85]
has become the de facto framework for privacy guarantee and privacy analysis in Deep
Learning and FL to protect against data leaks and privacy attacks. In particular, differential
privacy has been shown to effectively protect against Membership Inference Attacks (MIA)
in which an adversary is interested to know whether a given sample was used to train
a neural network [86]. Recent works have also demonstrated that by exploiting implicit
memorization, sensitive data can be revealed not only from the model parameters but
also from the model output. For example, Fredrikson et al [87] retrieved training samples
(individual faces) by exploiting the output probabilities of a computer-vision classifier. The
anthors in [88] evaluate the efficiency of DP to protect against membership inference attacks
as well as backdoor attacks, in which rogue clients inject a backdoor task in the client. It
was found that applying Local Differential Privacy (LDP) can protect against backdoor
attacks (e.g., data and label poisoning attacks).

Because the ML training process is an iterative process, with each iteration a batch of
samples is fed into the model, gradients are calculated, and model weights are updated, the
risk of memorizing data is higher for each iteration.

Differential Privacy introduces concepts to estimate the privacy loss as training pro-
gresses and employs noise addition mechanisms that link noise magnitude to the estimated
privacy loss to achieve a given Privacy level. In FL settings, DP properties like composi-
tion are necessary to analyze the privacy risk imposed by training distributed functions on
sensitive distribute datasets. According to the assumed threat model, DP can be realized
in different ways. For example, in local differential privacy (LDP), the server is assumed to

66

be untrusted. While in central DP (CDP, the server is trusted and responsible for adding
noise to the aggregated clients’ updates. While implementing LDP and analyzing the global
guarantee might be harder than in CDP, LDP-trained models achieve better privacy-utility
tradeoffs which is always the biggest concern in applying Differential Privacy.

5.3 Differential Privacy

Differential Privacy (DP) [85] is a mathematical framework for quantifying and managing
the privacy risks associated with the release or sharing of statistical data. It provides
strong privacy guarantees by ensuring that the addition or removal of a single data point
in a dataset does not significantly impact the output of a statistical analysis.

Formally defined, a randomized mechanism M : X — R with domain X and range K
satisfies (e, §)-differential privacy for all sets § C R and adjacent datasets D, D' C X if:

Pr[M (D) € §] < e Pr[M(D') € 8]+ 6 (5.1)

where € is the privacy budget controlling the amount of privacy leakage and 4 is a small
positive value that controls the probability of deviation from the guarantee. The smaller
the value of € and &, the stronger the privacy guarantee.

A commonly used method for applying differential privacy via injecting noise is the
Gaussian Mechanism (GM). The GM is designed to approximate a function s while pro-
tecting the privacy of the samples in D) by adding noise that is calibrated to the function’s
sensitivity As of s given by

As = max||s(D) - s(D)]| (5.2)

To satisfy (e, §)-differential privacy, properly calibrated Gaussian noise n ~ N (0, 02} can
be added to a real-valued function s by setting the noise standard deviation o = cAs/e and
the constant ¢ > +/21In(1.25/4) for € € (0, 1) [85].

5.3.1 DP Properties

In this section, we discuss two key DP properties: composability and post-processing im-
munity. The composition properties allow privacy guarantees to be maintained even when
combining multiple mechanisms or queries. We discuss two important composition scenar-

ios: sequential and parallel compositions.

s Sequential Composition. Sequential composition refers to the case where we have k
mechanisms, M, each providing (e;, 4;)-differential privacy, and we want to use the
outputs from the first mechanism as inputs to the second, and so on, without sacrificing
privacy too much. If for i € 1,2,...,k, we let M;(d) be an (e, d;)-differentially

67

private mechanism executed on database d, then the function composition F of these
mechanisms, F = (MjoMao...o M), is [ELI £i. 21{;1 d;)-differentially private.

Parallel Composition. The serial composition discussed earlier assumes that the out-
puts are correlated, resulting in a more pessimistic total privacy budget value € and a
higher probability of failure §. Parallel composition considers the situation where we
have a single database d partitioned into k disjoint subsets d;. If we compute mecha-
nisms My, Ma, ..., M; on these disjoint subsets (i.e., M;(d;)), with privacy guarantees
€1.€2,...,€ and &, d9, d; respectively, then any function composition F' of these
mechanisms, F = (MjoMyo...o M), is [maxLl €5, max:.’:l d;)-differentially private.

Immunity to Post-Processing. The post-processing property of DP states that the
output a (g;, §;)-DP mechanism is also (¢;, §;)-DP private.

We denote M : NI —+ R as a randomized algorithm that satisfies (e, §)-differentially
private. Additionally, f : R — Ry represents another function. Then, fo M : NIX| =
Ry also satisfies (e, §)-DP.

Proof. For a deterministic function f: R — HRp.

For any neighboring databases z, y with ||z — y||i< 1, and event S C Rp. Let
T={re R: f(r) € §5}. We then have:

Pr[f(M(z)) € S] = Pr[M(z) € T|
< exp(e) Pr[M(y) e T] + 6
= exp(€) Pr[f (M (y)) € S|+ 6

This result demonstrates that the probability Pr[f(M(z)) € S] is bounded by
exp(e) Prf(M(y)) € 5]+ (5.3)

, showing that applying the deterministic function f to the output of the (e 4)-
differentially private algorithm M maintains the (e, §)-differential privacy guarantees.
The result follows for randomized mapping as any randomized mapping can be de-

composed into a convex combination of deterministic functions.

68

Local Differential Privacy
clients

Calculabe per- gradient Adding nolse 1o gradients aggregation weights Update weaights
Sampie clipping
1
! i "
i i +N{m:—,z] 8] — B+ e Z g
i [K
i !

Figure 5.1: Local Differential Privacy.

5.4 Federated Learning Threat Model

In the context of FL, there are different threat models each of them having different potential
privacy risks associated with the learning process [12]. Two of the practical and widely
considered FL threat models are :

1. Honest-but-curious server: In this scenario, the central server follows the prescribed

FL protocol but may attempt to infer information about clients’ data from the received
model updates.

2. Malicious server: The central server deviates from the prescribed protocol and actively

attempts to compromise the privacy of the clients’ data.

Based on the threat model adopted, Differential Privacy can be applied by different
actors to guarantee privacy in the context FL process.

In case the server is assumed to be a trusted entity, Central Differential Privacy [88] could
be applied where the server is responsible for adding noise to the aggregated model updates,
ensuring that the global model’s output does not reveal information about individual clients’
data.

In the Malicious server threat model, privacy protection is applied at the client level.
Local Differential Privacy (LDP) is applied where each client adds noise to their local
updates before sharing them with the server, making it difficult for the server or other clients
to infer information about their local data. In LDP [89], each client controls the privacy-
utility trade-off according to its own privacy requirements, without relying on a centralized

69

authority. For example, a client that has more sensitive data may choose to add more noise
to its data to ensure higher privacy, while a client with less sensitive data may choose to
add less noise to preserve more utility. This adaptability makes LDP particularly useful in
scenarios where data owners have different privacy needs, such as in FL or in healthcare

applications where different patients may have different levels of privacy sensitivity.

Algorithm 3 Local Differential Privacy using PD-SGD in FedAvg
1: function Main
2; Input: Client k owns a local dataset: D)., Initial global model weights: fy, Number
of communication rounds: R, Number of epochs: E. Total number of participating
clients: Ny, Fraction of clients participating each round: g, DP parameters € and 4,

Gradient Clipping norm 5

R Output: Collaboratively trained global model %

4: Initialize model #;

a: W+ FE-R = Number of steps
fi: z + OpacusPrivacyEngine(5, W) I noise scale
T oo4+2-3

8: for round r=1,2,..., R do

o: K" + randomly select K participants with probability g

100: for each participant k € K™ do

11: 0, +— DP-5GD(S, o) t= Clients train in parallel
12: end for

13: 07— 3 perr =0 b ng is the size of k’s dataset
14: end for

15: return 6%

16: end function

17: function DP-S5GD(5, o)
18: Initialize model f with weights fg
19: for epoch i from 1 to E do

20:; for (x,y) € in each batch from dataset [} do

21: 9 = Vo L(8;, (z.v))

29; end for

23: = A 3. min [1, = N(0. o2
: qoF (e E':Ebatch g; min Tallz + (2T }

24 tir1 = 6; — n{gpp)

25 end for

2i: return fg

27: end function

Figure 5.1 represents an overview of the Local Differential Privacy algorithm shown in
algorithm 3. In this setting, noise is applied at the client’s side since we assume an honest-
but-curious server, i.e. we don't trust the curator to add the noise. Each client calculates
per-example gradients and clips them using a clipping norm specified by the user. After
clipping, we use the Gaussian Mechanism to add noise with a standard deviation o calibrated
by the chosen clipping norm 5.

Client i

Model-based Federated Learning (e.g., FedAvg)

Client i (,&) — DP using DP Post-
nrocessing immuntty

Knowledge Distillation-based Federated Learning (e.g., FedMD)

Figure 5.2: The privacy guarantee applied by a client with DP-SGD is preserved by the
soft labels generated by that client.

m:‘“’ s 3) Weights update
‘Com 10 (n_fkems = NF, immal_size = K3}
v
g i e
*
Drpout lnyar — —
-.“.’Eﬂ - Adding noise to gradients

CCE L

| | —
EMiwlog(i) s— — L : :+ N{[:L:—:zj

m==m oy
}
faare -

Figure 5.3: Differential Private Stochastic Gradient Descent (DP-5GD).

1) Forward pass | 7) Gradients calculation

71

5.5 Knowledge Distillation Federated Learning Differential

Privacy

In KD-based FL algorithms [13,14], instead of weights, clients share knowledge in the form
of soft labels. Adversaries in this case become interested in extracting private data from
shared model predictions. As the shared soft labels are used for knowledge distillation
training of clients, it is hard to maintain an acceptable utility-privacy balance with noise
injection mechanisms that add noise to these predictions. An alternative is to use the DP
property of postprocessing immunity which was discussed earlier. The privacy guarantee
which is attained by LDP where noise is injected into the gradients by each client during
local training is inherited by any other algorithm applied to the output of these LDP-trained
models, as shown in figure 5.2.

5.6 Differential Privacy Implementation

We implemented Local Differential Privacy (LDP) where each client applies DP to its
calculated gradients. LDP has many advantages over Central Differential Privacy (CDP)
like adapting the amount of noise added at each client to achieve a customized protection
level per client depending on the sensitivity of his data and the desired utility-privacy
balance. Furthermore, LDP is more realistic as it assumes an honest-but-curious server
threat model, whereas CDP assumes a trusted curator.

We use the Opacus library [90] which provides a Differential Privacy training pipeline for
Pytorch models. We investigate how changing the privacy protection level affects the perfor-
mance of FL algorithms. The considered FL algorithms are available in section 4.5.2. These
baseline FL. methods are evaluated on the Human Activity Recognition (HAR) datasets
which are presented in the section 4.5.1. Opacus provides functions to calculate the amount
of noise that needs to be applied over a specific number of epochs to achieve a certain
privacy protection level (e, §)-differential privacy. We try three € values: inf (no Differential
Privacy), 20, 5. Where 5 is the strongest protection level and inf means normal training
without DP. We set § to le-4.

5.7 Experiments and Results

In this section, the accuracy obtained by the FL algorithms FedAKD [14], FedMD [13],
and FedAvg [39] when trained under different privacy protection levels. We consider three
Differential Privacy (DP) protection levels: No DP, (20, 1e-5)-DP, and (5, 1e-5)-DP. We
utilized the same four HAR datasets as in the previous chapter.

Figure 5.4 shows three bar plots. From left to right, the accuracies obtained under
the three privacy protection levels: No DP, (20, 1e-5)-DP, and (5, 1e-5)-DP are shown,
respectively. For the Depth dataset in left most bar plot, we can see Knowledge Distillation-
based FL methods FedAKD /FedMD outperform FedAvg by over than 15 percentage points.
Applying differential privacy resulted in significant accuracy loss in all algorithms until they
reach about 20 % accuracy. For the other two datasets, HARS and IMU, balancing utility-
privacy is easier than in the Depth dataset, under both protection levels (e = 20 and € = 5).
The accuracy was less severe for HARS and IMU datasets than the accuracy drop observed
in the Depth dataset for all FL algorithms. One of the reasons for this is the large dimension
size and complexity of the Depth dataset relative to the two other datasets.

The figures 5.6 and 5.5 show the test accuracy obtained by model-agnostic (FedMD /Fed AKD)
and model-based (FedAvg) FL algorithms on Three HAR datasets. The first figure 5.6 re-
ports the accuracy while applying LDP. On the other hand, 5.5 shows the accuracy without
applying DP. The first bar plot of the two figures from the left depicts the performance
on the image dataset: Depth. We can ohserve that the drop in accuracy of FedAvg was
significant compared to the two other model-agnostic FL. methods. However, applying DP
resulted in an accuracy drop across datasets with varying severity due to the differences in
data complexity, model architecture, training parameters, etc.

Fl.mmnpm FL methods with (20, le-5) DP

o = Fodhg

20 I FodMD
g?n as £ £
.gm 1 i i
i 1 g
23 g g

0

10

[}

Deph

Depth

Datasets Datasets

Figure 5.4: Test accuracy of the FL. methods on Depth, HARS, and IMU datasets with
different differential privacy protection levels.

Weighting Scheme Comparison

Depth HARS MU
1.0 1.0 1.0
Weighting
I performance_based
0.6 B uniform 0.8 - 0.8 -
0.6 1 0.6 1 0.6 4
0.4 1 0.4 0.4 4

0.2 1 0.2 1 0.2 1

0.0-

0.0- 0.0 -
FedAKD FedAvg FedMD FedAKD FedAvg FedMD

FedAKD FedAwg FedMD

Figure 5.5: Test accuracy of the FL. methods on Depth, HARS, and IMU datasets. Bars are
grouped based on whether the weighting scheme employed: uniform vs Performance-based
weighting while not applying DP.

Weighting Scheme Comparison

Depth HARS

LD Lo
Welghting

B performance_based

0.B- BN wniform 0.8

0.6 0.6

044 0,4

0.2 1 0.2

0.0- 0.0-

FedAKD Fedfwg FedMD FedAKD Fedfvg FedMD FedAxD Fedbwg FedMD

Figure 5.6: Test accuracy of the FL. methods on Depth, HARS, and IMU datasets. Bars are
grouped based on whether the weighting scheme employed: uniform vs Performance-based
weighting while applying DP.

5.8 Conclusion

In this chapter, we first provide a brief background on privacy challenges and solutions in
the federated setting. Then, we focused on Differential Privacy as a privacy analysis tool
by providing a formal definition for DP and discussing some of its important properties
that make DP appealing to work with in machine learning. After that, we studied Lo-
cal Differential Privacy (LDP) and discussed the threat model in which LDP is preferred

74

over Central Differential Privacy (CDP). Privacy in Knowledge Distillation-based federated
learning is also discussed in light of DP. To implement DP, we employ the Opacus python
library and consider two DP protection levels. The simulations were run considering model-
based and model-agnostic FL algorithms on the datasets listed in 4.5.1. Results show that
for the same protection level, the accuracy obtained by FL algorithms on datasets with
higher input dimensionality/complexity is more severely impacted than on datasets with

lower complexity.

Chapter 6
Conclusion

In the previous two chapters of this thesis, we studied Federated Learning (FL) as a dis-
tributed learning paradigm and focused on addressing three key limitations of FL. These
challenges include system heterogeneity, communication overhead., and privacy concerns.
The first challenge is concerned with the heterogeneous nature of the participants of FL
which stems from their different computational capabilities and requirements. The second
challenge studies the communication cost incurred by different FL approaches during up-
loading local updates and broadcasting global updates to them. The third challenge focuses
on protecting users’ privacy from attacks such as the Membership Inference Attack (MIA)
in deep learning and FL.

We introduce a novel FL approach based on the Knowledge Distillation (KD) tech-
nique and Mixup augmentation. The proposed FL algorithm, called Federated Learning
via Augmented Knowledge Distillation (Fed AKD), employs knowledge distillation for the
collaborative training of heterogeneous deep learning models. The algorithm was evaluated
on human activity recognition datasets HARS and HARB, with results showing significant
communication efficiency and accuracy gains compared to other algorithms like FedAvg and
FedMD. This improved performance is due to Fed AKD's use of augmentation for generating
new variants of the public dataset in each communication round, facilitating more effective
knowledge distillation.

To support the deployment of FL algorithms on low-bandwidth IoT networks. A drone-
aided LoRa (DORA) network is proposed to perform lightweight FL across a network of
scattered houses. Each house resembles an FL client with the local dataset. The communi-
cation is performed using a LoRa low-bandwidth link that can’t support model-based FL
where model weights are sent each round from clients (houses) to the server (the drone) and
vice versa. We propose a two-fold solution. First, we train a Self-Organizing Map (SOM) to
optimize the drone path to minimize distance and save energy. Second, the traffic model for
KD-based FL algorithms (e.g., FedMD, FedAKD) and the traffic model of model-based FL

76

methods (e.g., FedAvg) are presented and we conduct experiments to show the significant
communication advantage of KD-based F1 algorithms over the model-based counterparts.
The performance achieved by FedAKD was also comparable to that obtained by FedAvg.
KD-based FL algorithm leverages a shared public dataset to distill knowledge learned by
clients on the local private datasets.

Moreover, we proposed Compressed Federated Learning via Augmented Knowledge Dis-
tillation (FedAKD) CFedAKD, a compressed version of Fed AKD, which reduces commu-
nication overhead by normalizing and converting soft labels into unsigned integers. Our
evaluation demonstrated that CFedAKD maintains accuracy while significantly decreasing
communication overhead, especially when compared to model-based algorithms.

Privacy challenges in FL were addressed using Differential Privacy (DP) which is the De
facto statistical framework for privacy analysis. We explored the implementation of DP in
the FL setting by applying Local Differential Privacy. We also present the key DP properties
like sequential composition and post-processing immunity. The latter property also extends
the DP protection level achieved by LDP to soft labels in knowledge distillation-based FL.
Finally, we conduct simulations to assess how applying different protection levels impacts
the accuracy obtained on datasets of various modalities using KD-based FL algorithms vs
model-based F1 algorithms.

6.1 Future Work

There are several directions for future work, including:

1. Enhancing the selection of the public dataset I); by choosing a dataset with a similar
distribution to the local datasets, rather than using the training set of the respective
dataset. This approach would better preserve users’ privacy and ensure the public
dataset has a distribution akin to local data.

2. Investigating the class-level performance achieved by the KD-based FL paradigm to
better understand the characteristics of KD and the potential improvements of its
efficiency on a class level.

In this work, we focus on the Human Activity Recognition (HAR) domain and evaluate
FedAKD only on HAR datasets. We aim to evaluate Fed AKD on other data sources and
modalities to validate its versatility and effectiveness across a wider range of applications.

Owerall, this work contributes to the development of FL algorithms that achieve high
accuracy and communication efficiency while addressing privacy concerns. As more data is

generated and shared across devices, these advances become increasingly vital in realizing
the full potential of FL.

Appendix A

List of Abbreviations

FL
HAR

Federated Learning

Human Activity Recognition
Independent and identically distributed
Knowledge Distillation

The number of local epochs

The number of global communication rounds

An integer used to seed the permutation of I); at round r

constant € [0, 1] used to calculate D,

a set of clients/devices participating in FL

The i*® client

Independently designed deep model of the ith client
fi minus the last softmax activation layer

The it* local dataset of the i*® client

The j* sample pair in a local dataset

test dataset (shared)

the public dataset (shared)

The j* sample in D,

D,, permuted using the seed 57

aungmented public dataset. [), and D} weighted by o”.
is the accuracy of f; on Dy at global round r

soft labels of i*® client on IV, at global round r
soft labels aggregated by the server at global round r

Appendix B

Examiner’s Comments and

Responses

Examiner Comment: One key objective of the work seems to be giving the clients
better control. The issue, in this case, is that if the clients are given better control of
the mechanism, there are chances of collusion among the rogue clients. Ewen if a single
one’s input is ignored, there could be a team/group of clients and those clients can collude
to influence the data or training mechanism or the overall outcome. How are the clients
authenticated properly to participate in the system? This should be clarified. Again, are
not the clients overloaded with data and calculation tasks? Is it a good trade-off for this case
compared to the other traditional methods and models? Why? Some cogent rationale is
needed. Memory and computational requirements may be analyzed a bit more, if possible.
If that adds more work, at least you can address the issues with some good discussion.
Student Response:

Thank you for your question.

First, I would like to clarify that KD-based FL algorithms like the one proposed in this
thesis (FedAKD) have two main characteristics: They give clients control over the design
of their local models, and clients share soft labels predicted on a public dataset instead of
sharing model weights.

It is worth mentioning that Differential Privacy (DP) addresses privacy attacks and not
attacks that aim to harm the performance of the model. Therefore, even if several clients
colluded (the adversaries), they would try to exploit the local updates released by some
client (the victim), which according to the Local Differential Privacy (LDP) algorithm,
will be protected via calibrated noise injection. Therefore, Independently designing the
local model doesn’t give colluding rogue clients an advantage to extract sensitive data from
local updates. Furthermore, since local updates are in the form of locally trained model
weights in the case of FedAvg and soft labels in the case of FedMD /Fed AKD, KD-based

FL algorithms are less vulnerable to privacy attacks than standard F1 algorithms. While
there are studies that show that DP has a limited advantage when it comes to protecting
against attacks that target model performance [88], DP is known to be effective against
inference attacks and will be less effective against data poisoning attacks. The reason is
that DP ensures privacy by injecting noise which generally harms utility but is useful in
hiding the individual contribution of each training sample. While injecting noise to achieve
a certain (€,d) — DP will not prevent corrupt weighted from malicious users from harming
the overall performance when included in the aggregation process, one direction that is
worth exploring in this regard is to treat potentially malicious users as valuable assets and
inject more noise into their model to mitigate the negative impact that these corrupt weights

have on performance if aggregated as they were received.

Examiner Comment 2: Your work focuses on Knowledge Distillation (KD). What are
the challenges that this approach addresses? and what is the motivation for integrating this
technology in the FL context?

Student Response: KD was originally developed for central training and knowledge trans-
fer from a trained model (the teacher) to another to-be-trained model (the student). KD
defines the internal representation that a model learns when trained for a specific task
as kmowledge and provides a mechanism to transfer this knowledge from one model to an-
other. If the KD process is efficient, the student model can be much smaller than the teacher
model and still achieve comparable performance to the teacher [?]. In the FL context, KD is
used to transfer local model representations (knowledge) usually by incorporating a public
dataset [14,62] making the KD-based FL methods model-agnostic. This gives KD-based FL
two main advantages over model-based FL algorithms. First, clients under a KD-based FL
algorithm can design their local model unlike model-based methods (e.g., FedAvg) on which
a server-controlled architecture is imposed. Second, the communication cost of KD-based
FL methods which communicate soft labels [62] is generally less than that of model-based
FL algorithms which communicate local/global model weights [39, 78].

a0

Bibliography

[1] “About one-in-five Americans wuse a smart watch or fitness
tracker.” [Online]. Awailable: https://www.pewresearch.org/fact-tank/2020/01,/09/

about-one-in-five-americans-use-a-smart-watch-or-fitness-tracker/

[2] C. Jobanputra, J. Bavishi, and N. Doshi, “Human activity recognition: A survey,”
Procedia Computer Science, vol. 155, pp. 698-T03.

[3] G. Bhat, R. Deb, V. V. Chaurasia, H. Shill, and U. Y. Ogras, “Online human activ-
ity recognition using low-power wearable devices,” in 2018 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). IEEE, pp. 1-8.

[4] Q. Yang, Y. Liu, Y. Cheng, Y. Kang, T. Chen, and H. Yu, “Federated learning,”
Synthesis Lectures on Artificial Intelligence and Machine Learning, vol. 13, no. 3, pp.
1-207.

[5] J. Gou, B. Yu, S. J. Maybank, and D. Tao, “Knowledge distillation: A survey,” Inter-
national Journal of Computer Vision, vol. 129, no. 6, pp. 1780-1819.

[6] C. Dwork and A. Roth, “The Algorithmic Foundations of Differential Privacy,”
Foundations and Trends®) in Theoretical Computer Science, vol. 9, no. 3-4, pp.
211-407. [Online|. Available: https://dx.doi.org/10.1561,0400000042

[7] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated Learning: Challenges,
Methods, and Future Directions,” IEEE Signal Processing Magazine, vol. 37, no. 3,
pp. 50-60.

[8] Y. Lin, 5. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep Gradient Compression:
Reducing the communication bandwidth for distributed training.” in The International
Conference on Learning Representations, 2018.

[9] W. Wu, L. He, W. Lin, R. Mao, C. Maple, and S. Jarvis, “SAFA: A Semi-Asynchronous
Protocol for Fast Federated Learning With Low Owerhead,” IEEE Transactions on
Computers, vol. T0, no. 5, pp. 655-668.

https://www.pewresearch.org/fact-tank/2020/01/09/about-one-in-five-americans-use-a-smart-watch-or-fitness-tracker/
https://www.pewresearch.org/fact-tank/2020/01/09/about-one-in-five-americans-use-a-smart-watch-or-fitness-tracker/
https://dx.doi.org/10.1561/0400000042

81

[10] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith, “Federated
optimization in heterogeneous networks,” Proceedings of Machine learning and systems,
vol. 2, pp. 420-450.

[11] J. Geiping, H. Bauermeister, H. Drisge, and M. Moeller, “Inverting Gradients - How
easy is it to break privacy in federated learning?” wvol. 33. Curran Associates, Inc.,
pp. 16937-16947. [Online|. Available: https://proceedings.neurips.cc/paper/2020/
hash /c4ede56bbd98819ae6112b20actbf145- Abstract.html

[12] K. Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farckhi, S. Jin, T. Q. S. Quek,
and H. Vincent Poor, “Federated Learning With Differential Privacy: Algorithms and
Performance Analysis,” IEEE Transactions on Information Forensics and Security,
vol. 15, pp. 3454-3460.

[13] D. Li and J. Wang. FedMD: Heterogenous Federated Learning via Model Distillation.
[Online]. Available: http://arxiv.org/abs/1910.03581

[14] G. Gad and Z. Fadlullah, “Federated Learning via Augmented Knowledge Distillation
for Heterogenous Deep Human Activity Recognition Systems,” Sensors, vol. 23, no. 1.
[Online]. Available: https://www.mdpi.com/1424-8220/23/1/6

[15] D. L-P. Y. N. D. Hongyi Zhang, Moustapha Cisse, “Mixup: Beyond empirical
risk minimization,” International Conference on Learning Representations. [Online].
Available: https://openreview.net/forum?id=r1Ddpl-Rb

[16] F. Demrozi, G. Pravadelli, A. Bihorac, and P. Rashidi, “Human activity recognition us-
ing inertial, physiological and environmental sensors: A comprehensive survey,” IEEFE
access : practical innovations, open solutions, vol. 8, pp. 210816-210836.

[17] O. D. Lara, A. J. Pérez, M. A. Labrador, and J. D. Posada, “Centinela: A human
activity recognition system based on acceleration and vital sign data,” Pervasive and
maobile computing, vol. 8, no. 5, pp. T17-729.

[18] D. Bhattacharya, D. Sharma, W. Kim, M. F. [jaz, and P. K. Singh, “Ensem-HAR: An
ensemble deep learning model for smartphone sensor-based human activity recognition

for measurement of elderly health monitoring,” Biosensors, vol. 12, no. 6, p. 393.
[19] S. Love, Understanding mobile human-computer interaction. Elsevier, 2005.

[20] R. Poppe, “A survey on vision-based human action recognition,” Image and vision
computing, vol. 28, no. 6, pp. 976-990, 2010.

[21] Z. Lv, F. Poiesi, Q. Dong, J. Lloret, and H. Song, “Deep learning for intelligent human—
computer interaction,” Applied Sciences, vol. 12, no. 22, p. 11457, 2022,

https://proceedings.neurips.cc/paper/2020/hash/c4ede56bbd98819ae6112b20ac6bf145-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c4ede56bbd98819ae6112b20ac6bf145-Abstract.html
http://arxiv.org/abs/1910.03581
https://www.mdpi.com/1424-8220/23/1/6
https://openreview.net/forum?id=r1Ddp1-Rb

82

[22] D. A. Wood, S. Kafiabadi, A. Al Busaidi, E. L. Guilhem, J. Lynch, M. K. Townend,
A. Montvila, M. Kiik, J. Siddiqui, N. Gadapa et al., “Deep learning to automate the
labelling of head MRI datasets for computer vision applications,” Furopean Radiology,
vol. 32, no. 1, pp. T25-T36.

(23] Y. Chen, K. Zhong, J. Zhang, Q. Sun, and X. Zhao, “Lstm networks for mobile hu-
man activity recognition,” in 2016 International conference on artificial intelligence:
technologies and applications. Atlantis Press, 2016, pp. 50-53.

[24] W. Elmenreich, “An introduction to sensor fusion,” Vienna University of Technology,
Austria, vol. 502, pp. 1-28.

[25] Y. Zhang, L. Wang, H. Chen, A. Tian, S. Zhou, and Y. Guo, “IF-ConvTransformer:
A framework for human activity recognition using IMU fusion and ConvTransformer,”

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,
vol. 6, no. 2, pp. 1-26.

[26] D. R. Beddiar, B. Nini, M. Sabokrou, and A. Hadid, “Vision-based human activity
recognition: a survey,” Multimedia Tools and Applications, vol. T9, pp. 30 509-30 555,
2020.

[27] S. Kaghyan and H. Sarukhanyan, “Activity recognition using k-nearest neighbor algo-
rithm on smartphone with tri-axial accelerometer,” International Journal of Informat-
ics Models and Analysis (IJIMA), ITHEA International Scientific Society, Bulgaria,
vol. 1, pp. 146—-156.

[28] L. Xu, W. Yang, Y. Cao, and Q. Li, “Human activity recognition based on random
forests,” in 2017 13th international conference on natural computation, fuzzy systems
and knowledge discovery (ICNC-FSKD). IEEE, 2017, pp. 548-553.

[29] D.-X. Zhoun, “Universality of deep convolutional neural networks,” Applied and com-
putational harmonic analysis, vol. 48, no. 2, pp. T87T-T94.

[30] A. M. Schifer and H. G. Zimmermann, “Recurrent neural networks are universal ap-
proximators,” in International Conference on Artificial Neural Networks. Springer,
pp. 632-640.

[31] J. Talukdar and B. Mehta, “Human action recognition system using good features and

multilayer perceptron network.,” in 2017 International Conference on Communication
and Signal Processing (ICCSP). IEEE, 2017, pp. 0317-0323.

[32] A. Murad and J.-Y. Pyun, “Deep recurrent neural networks for human activity recog-
nition,” Sensors, vol. 17, no. 11, p. 2556, 2017.

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

83

M. Zeng, H. Gao, T. Yu, O. J. Mengshoel, H. Langseth. I. Lane, and X. Liu, *Under-
standing and improving recurrent networks for human activity recognition by continu-
ous attention,” in Proceedings of the 2018 ACM International Symposium on Wearable
Computers, pp. 56-63.

F. Herndndez, L. F. Sudrez, J. Villamizar, and M. Altuve, “Human activity recogni-
tion on smartphones using a bidirectional lstm network,” in 2019 XXIT symposium on
image, signal processing and artificial vision (STS5IVA). IEEE, 2019, pp. 1-5.

T. Kim, J. Oh, N. ¥. Kim, 5. Cho, and 5.-Y. Yun, *Comparing Kullback-Leibler
Divergence and Mean Squared Error Loss in Knowledge Distillation,” in Proceedings of
the Thirtieth International Joint Conference on Artificial Intelligence. International
Joint Conferences on Artificial Intelligence Organization, pp. 2628-2635. [Online].
Available: https://www.ijcai.org/proceedings/2021 /362

A. Afonin and 5. P. Karimireddy, “Towards model agnostic federated learning using
knowledge distillation,” arXiv preprint arXiv:2110.15210, 2021.

Q). Li, B. He, and D. Song, “Model-contrastive federated learning.” in Proceedings af
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10713
10722,

X. Ouyang, Z. Xie. J. Zhou, G. Xing. and J. Huang, “ClusterFL: A clustering-based
federated learning system for human activity recognition,” ACM Transactions on Sen-
sor Networks (TOSN).

B. McMahan, E. Moore, D. Ramage, 5. Hampson, and p. u. family=Arcas,
given=Blaise Aguera, “Communication-efficient learning of deep networks from de-
centralized data,” in Artificial Intelligence and Statistics. PMLR, pp. 1273-1282.

Z. Xiao, X. Xu, H. Xing, F. Song, X. Wang, and B. Zhao, “A federated learning system
with enhanced feature extraction for human activity recognition,” Knowledge-Based
Systems, vol. 229, p. 107338.

K. Chen, D. Zhang, L. Yao, B. Guo, Z. Yu, and Y. Liu, *Deep learning for sensor-
based human activity recognition: Owerview, challenges, and opportunities,” ACM
Computing Surveys (CSUR), vol. 54, no. 4, pp. 1-40.

K. Bjerge, H. M. Mann, and T. T. Heve, “Real-time insect tracking and monitoring
with computer vision and deep learning,” Remote Sensing in Ecology and Conservation,
vol. 8, no. 3, pp. 315-327.

https://www.ijcai.org/proceedings/2021/362

[43] L. K. Ramasamy, F. Khan, M. Shah, B. V. V. 8. Prasad, C. Iwendi, and C. Biamba,
“Secure smart wearable computing through artificial intelligence-enabled internet of
things and cyber-physical systems for health monitoring,” Sensors, vol. 22, no. 3, p.
1076.

[44] A. Bouguettaya, H. Zarzour, A. M. Taberkit, and A. Kechida, “A review on early
wildfire detection from unmanned aerial vehicles using deep learning-based computer
vision algorithms,” Signal Processing, vol. 190, p. 108309.

[45] 1. Lauriola, A. Lavelli, and F. Aiolli, “An introduction to deep learning in natural
language processing: Models, techniques, and tools,” Neuwrocomputing, vol. 470, pp.
443-456.

[46] F. Kulsoom, S. Narejo, Z. Mehmood, H. N. Chaudhry, A. K. Bashir ef al., “A review

of machine learning-based human activity recognition for diverse applications,” Neural
Computing and Applications, pp. 1-36.

[47] S. Zhang, Y. Li, S. Zhang, F. Shahabi, S. Xia, Y. Deng, and N. Alshurafa, “Deep
learning in human activity recognition with wearable sensors: A review on advances,”
Sensors, vol. 22, no. 4, p. 1476.

[48] O. D. Lara and M. A. Labrador, “A survey on human activity recognition using wear-
able sensors,” IEEE communications surveys & tutorials, vol. 15, no. 3, pp. 1192-1209.

[49] A. Bulling, U. Blanke, and B. Schiele, “A tutorial on human activity recognition using
body-worn inertial sensors,” ACM Computing Surveys (CSUR), vol. 46, no. 3, pp.
1-33.

[50] Y. Li and L. Wang, “Human activity recognition based on residual network and Bil-
STM.” Sensors, vol. 22, no. 2, p. 635.

[51] S. Chung, J. Lim, K. J. Noh, G. G. Kim, and H. T. Jeong, “Sensor positioning and data
acquisition for activity recognition using deep learning.” in 2018 International Con-
ference on Information and Communication Technology Convergence (ICTC). 1EEE,
pp. 154-150.

[52] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “Human activity recog-
nition on smartphones using a multiclass hardware-friendly support vector machine,”
in International Workshop on Ambient Assisted Living. Springer, pp. 216-223.

[53] L. Sun, D. Zhang, B. Li, B. Guo, and S. Li, “Activity recognition on an accelerometer
embedded mobile phone with varying positions and orientations.” in International
Conference on Ubiquitous Intelligence and Computing. Springer, pp. 5458-562.

[54]

[55]

[56]

[57]

[58]

[60]

[61]

[62]

[63]

5. Diaz, J. B. Stephenson, and M. A. Labrador, “Use of wearable sensor technology in
gait, balance, and range of motion analysis,” Applied Sciences, vol. 10, no. 1, p. 234

0. Dehzangi, M. Taherisadr, and R. ChangalVala, “Imu-based gait recognition using
convolutional neural networks and multi-sensor fusion,” Sensors, vol. 17, no. 12, p.
2735, 2017.

D. Laidig, T. Schauer, and T. Seel, “Exploiting kinematic constraints to compensate
magnetic disturbances when calculating joint angles of approximate hinge joints from

orientation estimates of inertial sensors,” in 2017 International Conference on Reha-
bilitation Robotics (ICORR). IEEE, pp. 971-976.

C. Zampieri, A. Salarian, P. Carlson-Kuhta, K. Aminian, J. G. Nutt, and F. B. Ho-
rak, “The instrumented timed up and go test: Potential outcome measure for disease
modifying therapies in Parkinson’s disease.” Journal of Neurology, Neurosurgery &
Psychiatry, vol. 81, no. 2, pp. 171-176.

5. Mekruksavanich and A. Jitpattanakul, “CNN-Based deep learning network for hu-

man activity recognition during physical exercise from accelerometer and photoplethys-
mographic sensors,” in Computer Networks, Big Data and IoT. Springer, pp. 531-542.

K. Doshi and Y. Yilmaz, “Federated learning-based driver activity recognition for
edge devices,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 3338-3346.

K. Sozinov, V. Vlassov, and 5. Girdzijauskas, “Human activity recognition using fed-
erated learning.” in 2018 IEEE Intl Conf on Parallel & Distributed Processing with
Applications, Ubiquitous Computing & Communications, Big Data & Cloud Com-
puting, Social Computing & Networking, Sustainable Computing & Communications
(I5PA /TUCC /BDCloud/SocialCom/SustainCom). 1EEE, pp. 1103-1111.

L. Tu, X. Ouyang, J. Zhou, Y. He, and G. Xing, “Feddl: Federated learning via
dynamic layer sharing for human activity recognition,” in Proceedings of the 19th ACM
Conference on Embedded Networked Sensor Systems, pp. 15-28.

D. Li and J. Wang, “Fedmd: Heterogenous federated learning via model distillation,”
arXiv preprint arXiv:1910.05581, 2019.

D. Anguita, A. Ghio, L. Oneto, X. Parra Perez, and J. L. Reyes Ortiz, “A public do-
main dataset for human activity recognition using smartphones,” in Proceedings of the
21th International European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning, pp. 437442,

86

[64] M. Boukhechba, L. Cai, C. Wu, and L. E. Barnes, “ActiPPG: Using deep neural net-
works for activity recognition from wrist-worn photoplethysmography (PPG) sensors,”
Smart Health, vol. 14, p. 100082,

[65] Z. D. Tekler, R. Low, Y. Zhou, C. Yuen, L. Blessing, and C. Spanos, “Near-real-time
plug load identification using low-frequency power data in office spaces: Experiments
and applications,” Applied Energy, vol. 275, p. 115391.

[66] A.Savitzky and M. J. Golay, “Smoothing and differentiation of data by simplified least
squares procedures.” Analytical chemistry, vol. 36, no. 8, pp. 1627-1639.

[67] R. Low, L. Cheah, and L. You, “Commercial vehicle activity prediction with imbal-
anced class distribution using a hybrid sampling and gradient boosting approach,”
IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 3, pp. 1401-
1410,

[68] Z. D. Tekler and A. Chong, “Occupancy prediction using deep learning approaches
across multiple space types: A minimum sensing strategy,” Building and Environment,
vol. 226, p. 109680,

[69] A. Graves, Long Short-Term Memory. Springer, 2012.

[70] S. Kiranyaz, T. Ince, O. Abdeljaber, O. Avci, and M. Gabbouj, “1-D convolutional
neural networks for signal processing applications,” in ICASSP 2019-2019 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSFP). 1EEE,
pp. 8360-8364.

[71] P. Baldi and P. J. Sadowski, “Understanding dropout,” Advances in neural information

processing systems, vol. 26, 2013.

[72] P. Netrapalli, “Stochastic gradient descent and its variants in machine learning,” Jour-
nal of the Indian Institute of Science, vol. 99, no. 2, pp. 201-213.

[73] Z. Zhang, “Improved adam optimizer for deep neural networks,” in 2018 IEEE/ACM
26th International Symposium on Quality of Service (IWQoS). leee, pp. 1-2.

[74] M. C. Mukkamala and M. Hein, “Variants of rmsprop and adagrad with logarithmic
regret bounds,” in International Conference on Machine Learning. PMLR, pp. 2545
2553.

[75] Z. Qu, P. Richtarik, and T. Zhang, “Quartz: Randomized dual coordinate ascent with

arbitrary sampling,” Advances in neural information processing systems, vol. 28,

[76]

[77]

(78]

[79]

[80]

[81]

[82]

[83]

[34]

[85]

87

0. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao, “Optimal distributed online

prediction using mini-batches.” Journal of Machine Learning Research, vol. 13, no. 1.

V. Smith, 5. Forte, M. Chenxin, M. Takaé, M. 1. Jordan, and M. Jaggi, “CoCoA: A
general framework for communication-efficient distributed optimization,” Journal of

Machine Learning Research, vol. 18, p. 230.

T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated Optimization in Heterogeneous Networks,” in Proceedings of Machine
Learning and Systems, 1. Dhillon, D. Papailiopoulos, and V. Sze, Eds., vol. 2,

pp. 429-450. [Online|. Available: https://proceedings.mlsys.org/paper,/2020/file/
38af86134b65d0f10fe33d30dd 7644 2e- Paper.pdf

H. Wang, 5. Sievert, 5. Liu, Z. Charles, D. Papailiopoulos, and 5. Wright, “Atomo:
Communication-efficient learning via atomic sparsification.” Advances in Neural Infor-

mation Processing Systems, vol. 31.

V. Delafontaine, F. Schiano, G. Cocco, A. Rusu, and D. Floreano, “Drone-aided local-
ization in lora iot networks,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2020, pp. 286-292.

5. Park, S. Yun, H. Kim, R. Kwon, and J. Ganser, “Forestry monitoring system using
lora and drone,” in Proceedings of the 8th International Conference on Web Intelligence,
Mining and Semantics, 2018, pp. 1-8.

1. Donevski, N. Babu, J. J. Nielsen, P. Popovski, and W. Saad, “Federated learning
with a drone orchestrator: Path planning for minimized staleness,” TEEE Open Journal
of the Communications Society, vol. 2, pp. 10001014, 2021.

M. Abadi, A. Chu, [. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and
L. Zhang, “Deep learning with differential privacy,” in Proceedings of the 2016 ACM
SIGSAC conference on computer and communications security, 2016, pp. 308-318.

D. Arpit, S. Jastrzebski, N. Ballas, D. Krueger, E. Bengio, M. S. Kanwal, T. Maharaj,
A. Fischer, A. Courville, Y. Bengio et al., “A closer look at memorization in deep
networks,” in International conference on machine learning. PMLR, 2017, pp. 233-
2432,

C. Dwork and A. Roth, “The Algorithmic Foundations of Differential Privacy,”
Foundations and Trends(®) in Theoretical Computer Science, vol. 9, no. 34, pp. 211-
407. [Online]. Available: https://www.nowpublishers.com/article/Details /T'CS-042

https://proceedings.mlsys.org/paper/2020/file/38af86134b65d0f10fe33d30dd76442e-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/38af86134b65d0f10fe33d30dd76442e-Paper.pdf
https://www.nowpublishers.com/article/Details/TCS-042

88

36| H. i, M. Stronati, C. Song, an . ikov, ership inference at

R. Shokri, M. S C. So d V. Shmatikov, “Membership infe tacks
against machine learning models,” in 2017 IEEFE symposium on security and privacy
(5P). IEEE, 2017, pp. 3-18.

[87] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that exploit con-
fidence information and basic countermeasures,” in Proceedings of the 22nd ACM

SIGSAC conference on computer and communications security, 2015, pp. 1322-1333.

[88] M. Naseri, J. Hayes, and E. De Cristofaro, “Local and central differential privacy for
robustness and privacy in federated learning.” arXiv preprint arXiv:2009.05561, 2020.

[89] L. Sun and L. Lyu, “Federated Model Distillation with Noise-Free Differential
Privacy,” wol. 2, pp. 1563-1570. [Online]. Available: https://www.ijcai.org/
proceedings /2021 /216

[90] A. Yousefpour, I. Shilov, A. Sablayrolles, D. Testuggine, K. Prasad, M. Malek,
J. Nguyen, S. Ghosh, A. Bharadwaj, J. Zhao et al., “Opacus: User-friendly differ-
ential privacy library in pytorch,” arXiv preprint arXiv:2109.12298, 2021.

https://www.ijcai.org/proceedings/2021/216
https://www.ijcai.org/proceedings/2021/216

	Abstract
	Acknowledgements
	Publications
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Research Objectives and Significance
	Contributions
	Thesis Organization

	Background
	Human Activity Recognition
	Machine Learning
	K-Nearest Neighbor
	Random Forest

	Deep Learning
	Multi Layer Perceptron
	Convolutional Neural Network
	Recurrent Neural Networks
	Long Short-Term Memory
	Knowlede Distillation

	Federated Learning
	Knowledge Distillation-based Federated Learning
	Federated Learning in Human Activity Recognition

	Federated Learning via Augmented Knowledge Distillation
	Introduction
	Deep Learning-Based HAR Systems
	Sensors Used in Sensor-Based HAR Systems
	Chapter Organization

	Background
	Human Activity Recognition
	Sensor Fusion in Human Activity Recognition
	Federated Learning in Human Activity Recognition

	Empirical Risk Minimization
	Limitations of Empirical Risk Minimization

	Vicinal Risk Minimization
	Gaussian Vicinities
	Vicinal Risk

	Mixup Augmentation
	Using Mixup Augmentation for Knowledge Distillation

	Proposed Federated Learning via Augmented Knowledge Distillation (FedAKD)
	Performance Evaluation
	HARB Dataset
	HARS Dataset
	Dataset Preprocessing
	Model Architecture Selection

	Results and Discussion
	Conclusions
	Limitations and Future Work

	Enhancing Communication Efficiency in Federated Learning: Challenges and Approaches
	Introduction
	Background
	Communication Efficiency in Federated Learning
	Model-based Federated Learning and Knowledge Distillation-based Federated Learning
	Federated Learning with Augmented Knowledge Distillation

	Proposed Compressed Federated Learning with Augmented knowledge distillation
	Use Case: Implementing CFedAKD on Low-Bandwidth LoRa Networks
	Model-based Federated Learning traffic model
	Knowledge Distillation-based Federated Learning traffic model

	Performance Evaluation
	Datasets
	Baseline Federated Learning algorithms
	Heterogeneous Local Model Architectures

	Results and Discussion
	Performance Results
	Communication Results

	Conclusion

	Privacy in Federated Learning
	Introduction
	Background
	Differential Privacy
	DP Properties

	Federated Learning Threat Model
	Knowledge Distillation Federated Learning Differential Privacy
	Differential Privacy Implementation
	Experiments and Results
	Conclusion

	Conclusion
	Future Work

	List of Abbreviations
	Examiner's Comments and Responses
	Bibliography

