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Abstract

The sixth-generation (6G) wireless networks are expected to provide ubiquitous connectivity, high

data rate, low latency, energy efficiency, and edge intelligence for Internet of Things (IoT) appli-

cations. However, effective resource scheduling and network configuration in 6G is challenging

due to the resource-constrained devices, high quality-of-service (QoS) requirement, and high den-

sity of heterogeneous devices. Multi-layer networks are potential candidates for addressing the

challenge of resource-constrained devices to meet their tasks’ QoS requirements. Still, there is the

challenge of resource scheduling and management of multi-layer networks. Digital twin technol-

ogy is a promising solution to enable multi-layer wireless networks that incorporate IoT devices on

the ground, unmanned aerial vehicles (UAVs) as mobile edge computing (MEC) servers, and cloud

servers. Multi-layer processing can handle time-sensitive and computationally intensive tasks from

IoT devices. In this thesis, we propose a digital twin-assisted multi-layer network for low-latency

and energy-efficient communication and computation. We mathematically formulate an optimiza-

tion problem to minimize task latency and energy consumption of IoT devices by optimizing their

association with the UAV-MECs, computation resources, communication resources, and offloading

portions of tasks. The formulated problem is a non-linear and non-convex optimization problem.

We propose a two-stage scheme based on the K-means method and the deep neural network ap-

proach to solve the above optimization problem. The K-means method is utilized for the optimal

placement of UAV-MECs in the first stage, and then we associate the IoT devices with UAV-MECs

for offloading tasks. In the second stage, the deep learning architecture is utilized to optimize net-

work resources. We compare the proposed two-stage scheme with existing schemes to highlight

the scalability of the proposed solution. We perform extensive simulations by varying the number

of UAV-MECs and IoT devices in the network to look at the impact on task latency and energy

consumption by IoT devices. Fixed offloading portioning is compared with optimized offloading

portioning to highlight the usefulness of optimization in terms of latency and energy minimization.

Simulation results demonstrate the usefulness of the multi-layer network in achieving low latency

and energy-efficient computation and communication.
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Chapter 1

Introduction

The demand for low latency and energy-efficient communication has increased due to the growing

number of Internet of Things (IoT) applications. These requirements are critical in areas such as

industry automation, driverless cars, and healthcare automation, where real-time data transmission,

computation efficiency, and decision-making are crucial. These applications have computationally

complex and stringent latency requirements tasks, which require a low latency and computationally

efficient network is needed. The sixth-generation (6G) wireless networks are envisioned to provide

extreme connectivity, high data rate, low latency, energy efficiency, and intelligent edge computing

for IoT applications [1].

1.1 Preliminaries of Digital Twin-assisted Offloading in Multi-

layer Network

This section will discuss the preliminaries of digital twin-assisted offloading in a multi-layer net-

work. This includes technologies such as digital twins, unmanned aerial vehicles (UAVs) based

mobile edge computing servers (MECs), multi-layer networks, and digital twin-assisted computa-

tion offloading.
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1.1.1 Digital Twin

Digital twin technology creates copies of the physical environment in a virtual environment, which

includes the physical entities, virtual models, and a two-way data flow between them. The bi-

directional data flow allows for control of the physical entities through their virtual models. The

effective creation of a digital replica can provide intelligence and power to achieve the desired

function [2]. This process consists of three key components: (i) a physical space for capturing the

physical world, (ii) a virtual space that creates the virtual replicas of the physical world, and (iii) a

link that facilitates communication and control between the physical and virtual worlds [3]. Digital

twin enables the real-time replicas of physical systems. In the context of 6G wireless networks,

digital twin networks can be used for design, simulation, conducting what-if-analysis, and optimiz-

ing networks through machine learning and artificial intelligence algorithms [4]. Digital twin can

increase operational efficiency by generating virtual replicas of physical systems and processes.

The digital twin is an effective technology that enhances the performance of a network by

equipping it with intelligence. The digital twin processes information from the network configura-

tion and infrastructure, along with the continuous feedback from the network as input to replicate

and optimize the network, as Fig. 1.1 shows. Fig. 1.1 is an exemplary situation where the digital

twin is utilized for the effective management of disaster through the digital twin. Digital twin tech-

nology enables the selection of optimal configuration and relief actors tailored to the requirements

of the disaster situation. Fig. 1.1 shows a model structure of digital twin and multipurpose UAVs

network along with three disaster scenarios: earthquakes, floods, and fires. The digital twin center

is responsible for having all the virtual instances of UAVs and users in the affected areas. There

is a two-way information sharing for the digital twin, enabling the replication and control of the

physical network.

Digital twin is a crucial tool to achieve control of physical objects through system modeling,

real-time data processing, edge computing, and cloud computing [5]. In multi-layer networks,

digital twin technology can generate the virtual copy of the networks that can be utilized for the

adaptive edge association for users, enabling the path to 6G networks [6]. By utilizing the digital
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Figure 1.1: The digital twin-enabled network of UAVs framework for disaster management.

twin concept, the efficiency of UAVs to act as MEC server can be significantly enhanced in terms

of storage and computation resources [7]. This is achieved by optimizing the UAVs placement

and motion control using deep reinforcement learning algorithms [8]. Additionally, by using Q-

learning through digital twins, we can reduce energy consumption and latency of UAVs services

while optimizing transmit power for connection with the base station of UAVs [9]. The energy

consumption is reduced in UAVs by avoiding excessive moves during placement. Furthermore,

digital twins are also useful in optimizing service chain placement for task offloading to UAV-

MECs.

1.1.2 UAV-MECs

UAVs are highly mobile and can access remote locations, which makes them a good choice as

servers for remote location devices. Moreover, UAVs can establish a temporary communication

3



network by acting as flying relays connecting users to the communication network [10].

UAVs combined with computing capabilities are known as UAV-MECs, functional to reduce

latency and load of cloud data centers [11]. UAV-MECs are a potential technology for IoT devices

to achieve low end-to-end latency by offloading their computation tasks to nearby servers with high

processing resources. The coverage for the ground users is enhanced through using UAV-MECs

for connectivity services [12]. Also, it is utilized for fast computing the users’ time-sensitive

and intensive computational tasks by providing the computation resources in the users’ proxim-

ity. In [13], a survey is presented for different configurations of edge computation and discussed

resource scheduling in edge computation to highlight the usefulness of UAV-MECs. The UAV-

MECs assisted communication enables the task computation with stringent latency and intensive

computation resources requirement [14].

The performance of UAV-MECs can be enhanced by utilizing the digital twin in the network.

The digital twin-enabled multi-UAVs network uses the deep reinforcement learning algorithm for

optimal task offloading from the users to UAVs for computation to achieve efficient resource uti-

lization [15]. Furthermore, digital twins are crucial in optimizing service chain placement. The

real-time updates to the digital twin of MEC servers enable task sharing among the available UAVs.

This task sharing among the UAVs is called the service chain placement, which allows the UAVs

to serve as MEC servers [16]. The digital twin-enabled UAV-MECs can achieve intelligent task

offloading by optimizing the UAV’s trajectory, mobile user association with UAVs, resource allo-

cation to UAVs, and the transmission power of mobile users for offloading to minimize the energy

consumption by UAV-MECs.

1.1.3 Multi-layer Network

A multi-layer network is useful for computationally complex tasks that involve multiple layers

of UAV-MEC servers and cloud servers. These layers work together to process concurrently us-

ing computation resources available at different layers. UAVs, when combined with computing

capabilities, can reduce latency and load of cloud data centers [11]. UAV-MEC is a potential tech-

4



nology for IoT devices to achieve low end-to-end latency by offloading their computation tasks

to the nearby server with high processing resources. However, a bottleneck exists in UAV-MEC

resources due to the high rate of computational tasks arriving at UAVs offloaded from users [17].

Cloud computing is crucial in multi-layer networks to facilitate extremely high computational

tasks. In cloud computing, there is limited computational resource constraint, which makes it

an essential component of multi-layer networks. A cloud server is necessary to avoid resource

scarcity, which can cause a bottleneck in offloaded computation to UAV-MECs [17]. In a multi-

layer network, resource distribution is necessary to utilize the resources efficiently. Therefore, a

decision-making technology is needed to handle these distribution tasks. Digital twin is a promis-

ing solution for efficient resource management and optimal network configuration in multi-layer

networks [18].

In [19], the authors proposed a joint optimization in a multi-layer network with optimal offload-

ing and resource allocation to reduce energy consumption with the constraint on service latency.

For ultra-reliable low latency communication (URLLC) and edge computing, the extreme value

theory is applied in [20] by imposing the constraints for edge association to minimize the energy

consumption by the users. To minimize energy consumption by the dense multi-device system,

a joint optimization problem is solved in [21] through optimizing the device association with the

UAV-MECs, task offloading, and resource allocation to devices and servers.

1.1.4 Digital Twin-assisted Computation Offloading

Digital twin plays an important role in the computation offloading from the resource-constrained

devices in the system. Digital twin-assisted UAVs are more efficient in providing computation

offloading services as we can have the optimal aerial base station placement using reinforcement

learning at the digital twin [9]. The digital twin virtual replicas of UAVs provide the reinforcement

learning datasets and enable optimal placement by the digital twin control on the physical system.

Additionally, using Q-learning in the digital twin’s virtual space can achieve optimal placement for

aerial base stations to provide computation services. Iterations of Q-learning training in the virtual
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domain of digital twin reduced energy consumption by UAVs. The optimal placement through

Q-learning with the help of digital twin results in a higher data rate for users and reduces the total

base station’s transmission power [9].

A digital twin technology framework with UAVs can control the UAVs’ flight operations [22].

The digital twin-controlled UAVs were helpful in quickly and accurately to remote locations. The

digital twin technology with a deep learning algorithm controls the UAV’s flight operation to re-

duce their arrival time in remote locations by optimizing the UAV’s placement and motion con-

trol [8]. Digital twin addresses the resource limitations of UAVs as aerial base stations by perform-

ing reinforcement learning iterations at the digital twin to avoid frequent moves of the aerial base

station and enable time-sensitive and energy-efficient UAV base station services [23].

The digital twin technology generates a virtual replica of UAVs for managing storage and

computation resources to enhance the performance of the UAVs [7]. A digital twin is utilized

in UAVs’ networks to optimize resource allocation. For delay-sensitive tasks, this is achieved

by analyzing the availability and usage of resources of UAVs through digital twins [10]. A deep

reinforcement learning-based resource allocation approach applied through digital twin maximizes

resource utilization of UAVs to provide communication services for dense environments to achieve

low-overhead communication services [10]. A digital twin-driven deep-Q learning algorithm can

be utilized for a dynamic resource allocation scheme that minimizes the communication overhead

for UAV-MECs in a dense, high-traffic environment [24]. The algorithm controls the physical

system through bidirectional information flow between the digital twin and the physical system.

This approach enables efficient dynamic resource allocation for UAVs. A digital twin-enabled

multi-UAVs network that uses the deep reinforcement learning algorithm is useful for optimal task

offloading from the users to UAVs for computation to achieve efficient resource utilization [15].

The digital twin determines the intelligent computation offloading schemes to maximize resource

utilization [16].

From the above discussion, we observed that the digital twin plays a key role in computation

offloading by assisting in optimal UAVs placement, controlling the UAVs, and optimizing the
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resources of aerial base stations, resulting in efficient resource utilization. Through digital twin,

the performance of UAVs acting as edge servers for computation offloading can be enhanced.

1.2 Motivation

To efficiently handle computationally complex and time-sensitive services, we need a combina-

tion of digital twin, UAV-MECs, and cloud computing architecture with low latency and energy

consumption. Therefore, we propose a digital twin-assisted multi-layer network framework to

minimize the task latency and energy consumption of IoT devices. This framework incorporates

several key elements, including IoT device association with UAV-MECs, task offloading parti-

tioning, transmission power allocation for IoT devices, and their processing rates. Using this

framework, we can efficiently reduce IoT devices’ energy consumption and task latency.

1.3 Thesis Objective

The main objective of this thesis is to develop a digital twin-assisted multi-layer network frame-

work to minimize latency and enhance energy efficiency. We aim to optimize the association

of IoT devices, task offloading, communication, and computational resource utilization in digital

twin-assisted multi-layer networks to minimize both latency and energy consumption. This re-

sults in a non-linear and non-convex optimization problem. To solve this problem, we propose a

two-stage scheme based on the K-means method and deep learning architecture for latency and

energy minimization. We compare our proposed solution with two existing schemes and present

simulation results to evaluate our multi-layer network’s energy efficiency and latency minimization

performance.

1.4 Thesis Contributions

The main contributions of this thesis can be summarized as follows:
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• We mathematically formulate a non-linear and non-convex optimization problem to mini-

mize latency and energy consumption of IoT devices in the digital twin-assisted multi-layer

network by optimizing the IoT devices’ association, transmission power, offloading portion-

ing, and computation resources of IoT devices.

• We propose a two-stage algorithm to solve the optimization problem based on the K-means

method and a deep learning architecture to solve the optimization problem with low compu-

tational complexity. We divided the problem into two subproblems: optimal association de-

pending on the best channel condition after the K-means-assisted UAV-MECs placement and

optimizing communication and computation resources through the deep learning method.

• We solve the optimization problem with two existing schemes: (i) based on K-means and

outer-approximation (KOA) and (ii) K-means and interior point method (KIPM) for com-

parison with our proposed two-stage scheme in terms of performance.

• We present the extensive simulation results to evaluate the performance of our proposed

multi-layer network in terms of latency minimization and reducing energy consumption.

Also, we compare the performance of the proposed two-stage scheme with two existing

schemes in terms of the scalability of the solution.

1.5 Thesis Organization

The rest of the thesis is organized as follows: Chapter 2 covers the research on edge association

and resource scheduling, network configuration optimization, network redundancy by the digital

twin, and machine learning (ML) roles in digital-twin-assisted networks. Chapter 3 discusses the

system model adopted to formulate the low latency and energy efficiency optimization problem in

multi-layer network. Chapter 4 presents the proposed two-stage scheme to solve the optimization

problem, followed by the simulation results and their analysis. Finally, Chapter 5 concludes the

thesis and presents the future research directions.
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Chapter 2

Literature Review

This chapter presents existing studies on digital twins, multi-stage networks, and edge process-

ing technologies. We focus mainly on existing literature on adaptive edge association, resource

scheduling, network configuration optimization, digital twin-enabled Industry 4.0, network redun-

dancy, and the role of machine learning in digital twin-assisted networks. Fig. 2.1 shows the flow

of the literature review by highlighting the roles of the digital twins in networks and describing the

benefits of utilizing the digital twin in networks. We highlight how our proposed work differs from

existing research by utilizing multiple technologies such as digital twin and multi-stage networks,

applying different solutions to optimization problems, and adding value to existing research work.

2.1 Edge Association

Computationally constrained devices are used to offload their tasks for computation to deal with

highly complex tasks. The devices are associated with the edge server for offloading the tasks,

which is known as edge association. In this section, we discussed the edge association’s benefits

for resource-constrained users’ task offloading and highlights the earlier research done. In [13],

Luo et al. discussed different configurations of edge computation along with resource scheduling in

edge computation to highlight the usefulness of UAV-MECs. The researchers formulated different

optimization problems involving the edge association to achieve better performance of the network.
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Figure 2.1: Roles of digital twin in wireless networks.

Chen et al. proposed the energy minimization problem in [25] for a digital twin-empowered

MEC architecture through dependency-aware task offloading. An optimization problem is formu-

lated to optimize the offloading decisions and resource allocation to minimize energy consumption

through an asynchronous advantage actor-critic solution method. Similarly, in [26], Tan et al.

proposed an adaptive caching scheme in a digital twin-assisted multi-stage network to minimize

the energy for the heterogeneous IoT network. They applied evolutionary stability strategies to

optimize energy and delay within the constraints of the caching capacity of a multi-stage net-

work. A digital twin-empowered integrated sensing, communication, and computation network

is presented in [27] by Li et al. to minimize the offloading energy consumption and beampattern

performance of multi-input and multi-output systems. They utilized the UAVs to act as MECs.

They solved the optimization problem by optimizing the multi-agent proximal policy with service

delay constraints. A digital twin-assisted mobile edge computing architecture is presented by Duy
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et al. in [28] for IoT devices to minimize the end-to-end latency while having the constraints of

computation resources and energy utilized. The stochastic offloading in the digital twin-assisted

network for industrial Internet of Things (IIoT) devices is carried out by Dai et al. in [29] with

utilizing deep learning to reduce energy consumption. Another deep learning training was carried

out by Dong et al. in [30] through digital twin for associating the user with MECs to reduce the

normalized energy consumption while ensuring the quality of services (QoS) for users.

Huynh et al. in [31] presented a latency minimization problem in an edge-cloud multi-layer

network with ultra-reliable and low-latency communication (URLLC) protocol. The URLLC pro-

tocol ensures connectivity and low latency in future wireless networks in which multi-layer net-

works are used for parallel processing to reduce the user’s latency. In [32], Huynh et al. considered

the digital twin-assisted UAV-MECs network for latency minimization by optimizing the associ-

ation, resource allocation, and task offloading. In a multi-tier computing network with a cloud

layer in addition to the MECs layer, a latency minimization objective is achieved through opti-

mizing the offloading policies, processing rates, and user association policies [17]. In [33], Lu et

al. presented the wireless digital twin edge network for optimal edge association problem. They

considered the constraints of dynamic network states and varying network topologies to gain the

lowest system cost and better latency performance by solving the optimization problem with deep

reinforcement learning. In [34] Sun et al. solved the offloading optimization through the training

by the deep reinforcement learning (DRL) from the digital twin in the MEC network to minimize

the offloading latency. By utilizing the intelligent reflecting services aided offloading in [35], Dai

et al. utilized the federated reinforcement learning to minimize the system latency by considering

the caching capacity of edge network and communication resources constraints. In the internet of

vehicles (IoV), the digital twin-assisted MEC in [36] Yuan et al. utilized for minimizing the overall

latency through deep deterministic policy gradient (DDPG) while considering the communication

resources limitation. By utilizing the adaptive partial offloading, another latency minimization is

solved through convex optimization by Mitsiou et al. in [37].

In [38], Yao et al. considered an intelligent, cooperative task offloading and service caching
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achieved through digital twin to maximize service-based system utility quality. A graph-based

multi-agent reinforcement learning algorithm solution is presented with the constraint of compu-

tation and communication resources of the system. Another resource utilization maximization is

achieved by Tang et al. in [39] through a deep reinforcement learning approach while maintaining

the task latency deadline. An intelligent offloading framework by digital twin in the MEC network

is presented by Zhang et al. in [40] for maximizing the utility of MEC computational resources in

terms of services. The system reliability is also enhanced by the digital twin in the MEC network

through digital twin, like in [41] Van et al. utilized convex optimization. A digital twin-enabled

computation offloading is utilized by Wang et al. in [42] to enhance the system reliability by

optimizing the offloading decision under uncertainty.

Table 2.1 summarizes the above discussion and highlights the benefits of edge association

in terms of latency minimization, energy minimization, maximizing resource utilization, and en-

hancing system reliability by optimizing the offloading decision in the digital twin-assisted edge

network, describing the constraints and solution algorithm. The edge association can be done

without the utilization of digital twin. However, with digital twin, we have the real-time update of

the environment, making it adaptive and more efficient in resource utilization. Edge association is

necessary for the multi-layer network and helps users to compute computationally complex tasks

through the digital twin.

Table 2.1: Summary of edge association related work.

Ref. Research Prob-
lem

Technologies Objective Constraints Solution

[25]
Digital twin em-
powered MEC
server architec-
ture for offloading

Digital twin
and MEC
servers

Minimize en-
ergy consump-
tion

Delay require-
ment of tasks
and computa-
tion resources
constraint

Asynchronous
advantage
actor-critic
method
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[26]
Adaptive caching
scheme for multi-
layer network

Digital twin
and multi-
layer network

Optimize the
delay and
energy for
heterogeneous
IoT devices

Caching
capacity con-
straint

Evolutionary
stability strate-
gies

[27]
Digital twin
empowered inte-
grated sensing,
commmunication
and computation
network

Digital twin
and UAV-
MECs

Minimize en-
ergy consump-
tion and beam-
pattern perfor-
mance

Computation
resources
constraint of
UAVs and
users

Multi-agent
proximal
policy opti-
mization

[28]
Digital twin as-
sisted MEC archi-
tecture

Digital twin,
IoT, and MEC
server

Minimizing
the end-to-end
latency

Energy con-
sumption and
computation
resources

Distributed
solution with
alternate opti-
mization

[29]
Stochastic of-
floading in digital
twin network of
IIoT

Digital twin,
IIoT, and MEC
server

Reducing
energy con-
sumption

Data process-
ing efficiency

Lyapunov op-
timization and
actor critic al-
gorithm

[30]
Digital twin
trained deep
learning for MEC
server

Digital twin
and MEC
server

Minimized the
normalized en-
ergy consump-
tion

QoS require-
ments

DL neural net-
work

[33]
Wireless digital
twin edge net-
work

Digital twin
and MEC
server

Optimal edge
association

Dynamic net-
work states
and network
topology

DRL

[34]
Digital twin edge
networks for of-
floading dicision
training

Digital twin
and MEC
server

Minimizing
the offloading
latency

Migration ser-
vice cost con-
straint for user
mobility

Actor-critic
DRL

[35]
Intelligent reflect-
ing services aided
task offloading

Digital twin
edge network

Minimizing
the system
latency

Service
caching
capacity and
communica-
tion resources
constraints

Federated
DRL
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[36]
Digital twin-
driven vehicular
task offloading
and intelligent
reflecting services
configuration
framework

Digital twin,
MEC server,
and IoV

Minimizing
the overall de-
lay and energy
consumption

Communication
resources con-
straint

DDPG

[37]
Digital twin-
aided grant free
random access
adaptive partial
offloading

Digital twin
and MEC
server

Minimizing
the average
delay of partial
offloading

Communication
resources and
computation
resources con-
straints

Convex opti-
mization

[38]
Intelligent co-
operative task
offloading and
caching

Digital twin
and MEC
server

Maximizing
the quality of
service-based
system utility

Service
caching
capacity of
MEC server
and com-
munication
resources of
users

Graph-based
multi-agent
RL algorithm

[39]
Digital twin-
assisted task
assignment

Digital twin
and UAV-
MECs

Maximizing
the resources
intensive uti-
lization

Task time con-
straints

DRL approach

[40]
Digital twin-
driven intelligent
task offloading
framework

Digital twin
and MEC
server

Maximizing
the MECs
sytem comput-
ing services

Computation
resources limi-
tation

DRL

[41]
MEC-based
URLLC architec-
ture

Digital twin
and MEC
server

Reliablity and
latency for net-
worked meta-
verse

Communication
and computa-
tion resources
constraints

Convex op-
timization
algorithm

[42]
Digital twin-
enabled computa-
tion offloading

Digital twin
and UAV-
MECs

Optimizing
the offloading
decision under
uncertainity

Energy con-
sumption limit

Upper confi-
dence bound-
based stable
matching algo-
rithm
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2.2 Resource Scheduling

In wireless networks, optimal resource scheduling allocation is essential to maximize network

resource utilization. The digital twin is also useful for resource scheduling in the MEC network.

Here, we discussed the recent work related to resource scheduling and highlighted the benefits of

resource scheduling in networks.

Duong et al. in [14] proposed a digital twin-assisted edge-computing network with MECs.

They solved an optimization problem for low latency of IoT devices by optimizing the communi-

cation and computation resources of the network. Similarly, in [43], Huynh et al. went for latency

minimization for industrial IoT environment in the two-layer network assisted with digital twin by

optimizing the communication and computation resources. Duy et al. carried out a digital twin-

aided MEC network in [18] by optimizing the user association, processing rates of industrial IoT

devices, and intelligent task offloading to get low end-to-end latency. In [5], Li et al. proposed

a digital twin framework for the IoT network with the UAVs to act as MECs for mission-critical

services to reduce the latency through optimal offloading to UAV-MECs. Huynh et al. consid-

ered a multi-layer network in [44] to optimize communication and computation resources for low

computation latency.

The digital twin is utilized for scheduling heterogeneous edge network resources by Xu et al.

in [45]. They utilized multi-agent DRL in wireless multi-stage networks to minimize user task

completion time. A digital twin-assisted wireless network framework is presented by Yang et

al. in [46] for managing the network resources to achieve the reduced transmission delay of the

network for users. They utilized alternating optimization (AO) for the iterative solution of each

variable in optimization while considering the limits on energy consumption and model accuracy.

Digital twin plays an essential role in network resources management, like by Gong et al., a re-

sources management by digital twin in [47] is presented for the vehicular edge computing (VEC)

network. They utilized the DDPG algorithm to minimize the overall response time while con-

sidering the mobility of vehicles and time-varying environments for the network. In [48], Zhang

et al. proposed an architecture of wireless computing power networks-empowered digital twin
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for efficient resource utilization. They utilized the Shapley value and double auction scheme to

achieve low latency and digital twin error by considering the heterogeneous nature of computing

nodes. In [19], Vu et al. proposed a joint optimization in a three-layered architecture with optimal

offloading and resource allocation to reduce energy consumption with the constraint on service

latency. For the URLLC and edge computing Liu et al. applied the extreme value theory in [20]

by imposing the constraints for edge association to minimize the energy consumption by the users.

To minimize energy consumption in a dense multi-device system, a joint optimization problem

is solved by Zhou et al. in [21] by optimizing the device association with the MEC server, task

offloading, and resource allocation to devices and servers. The digital twin wireless control and

resource optimization is carried out by Li et al. in [49] for beamforming and transmission power

optimization in the network. They utilized the two-stage, convex, and iterative optimization to

minimize user transmission power.

In [50] Dai et al. presented the digital twin-assisted MEC network for the service placement

to maximize the MEC servers’ services by optimally utilizing the computational resources. They

utilized the Merkle tree to optimize while ensuring the quality of service for users. The QoS

is ensured by the digital twin in the virtual reality network by Feng et al. in [51] through the

greedy-style heuristic algorithm for fairness of resource allocation. They maximized the quality of

experience (QoE) of the worst-case head-mounted display users.

A summary of the discussion is given in Table 2.2; the advantages of resource scheduling

by digital twin, which minimizes latency, reduces energy consumption and power and enhances

service quality in digital twin-assisted MEC networks. Also, the algorithm utilized for resource

scheduling is presented with optimization constraints. The digital twin enhances the resource

scheduling in the edge network.

Table 2.2: Summary of resource scheduling related work.

Ref. Research Prob-
lem

Technologies Objective Constraints Solution
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[45]
Digital twin-
driven edge-end
collaborative
scheduling of
heterogeneous
resources

Digital twin
and wireless
multi-layer
networks

Task comple-
tion minimiza-
tion

Task deadline Multi-agent
DRL

[46]
A framework for
digital twin-based
wireless network

Digital twin,
wireless net-
work

Reduced the
transmission
delay of sys-
tem

Total energy
and model
accuracy

AO for itera-
tive solution

[47]
Digital twin
model for the
network manage-
ment

Digital twin
and VEC

Minimize
the overall
response time

Mobility of
vehicles and
time varying
environment

DDPG

[48]
An architec-
ture of wireless
computing
power networks-
empowered
digital twin

Digital twin
and wireless
computing
power net-
works

Efficient
resource uti-
lization, low
latency and
digital twin
error

Heterogeneous
nature of com-
puting nodes

Shapley value
and dou-
ble auction
scheme

[50]
Digital twin-
assisted MEC
architecture

Digital twin
and MEC
servers

Maximizing
the services
by the MEC
servers

QoS from
wireless de-
vice

Merkle tree

[51]
Digital twin-
enabled QoE
optimal prob-
lem for wireless
virtual reality
system

Digital twin
virtual reality

Maximize the
QoE of the
worst-case for
head-mounted
display users

Computational
and com-
munication
resources con-
straints

Greedy-style
heuristic algo-
rithm

[49]
Digital twin
model for the
wireless control
and resources
optimization

Digital twin
and wireless
networks

Minimize the
transmission
power

Limited range
of beamform-
ing power

Convex ap-
proximation
and iterative
optimization

2.3 Digital Twin Enabling Industry 4.0

Industry 4.0 refers to the fourth industrial revolution, which is enabled by advanced communication

technologies, digitalization, machine learning, and artificial intelligence. Digital twin technology
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enables the environment of Industry 4.0, and the earlier research work is presented here.

In [52], Han et al. presented the survey on a 6G-empowered industrial digital twin network.

They discussed the potential application of industrial digital twin like monitoring, simulation, and

network control, which is essential for the industry 4.0 environment. They also highlighted the

technologies that enable the 6G-empowered industrial digital twin network, like artificial intelli-

gence for communication and computation co-design. This proposed ecosystem powers connect-

ing the humans, machines, and data infrastructure to enable numerous novel applications. In [53],

Luan et al. proposed an intelligent industrial system based on digital twin and artificial intelligence

(AI) to improve network performance. They proposed a Dijkstra’s algorithm for reducing the load

delay of the system.

A construction of digital twin-empowered industrial Internet of things (IIoT) is presented by

Xiang et al. in [54]. The digital twin-driven IIoT can make intelligent decisions during run-time.

They proposed the unique digital twin construction by utilizing credibility-weighted swarm learn-

ing to eliminate the need for a central server for the system’s digital twin generation to enhance the

system’s reliability and minimize energy consumption while considering the limitation of compu-

tation resources.

Efficient integration of digital twins for industry 4.0 is carried out by Kherbache et al. in [55]

to optimize the performance of industrial systems. Real-time network management is achieved by

replicating IIoT sensors, actuators, and communication infrastructure in the digital twin domain.

They achieved optimal resource distribution, predictive maintenance, and diagnosis in industrial

systems. They addressed the communication challenges between the network nodes and imple-

mented the prototype through the software-defined controller (SDN) in [55].

A summary of the discussion is given in Table 2.3 highlighting the digital twin gains in the IoT

devices that pave the path for Industry 4.0. In the presented work, the digital twin improves the

latency and the reliability of IoT device networks.
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Table 2.3: Summary of digital twin for industry 4.0 related
work.

Ref. Research Prob-
lem

Technologies Objective Constraints Solution

[52]
A survey on
6G-empowered
industrial digital
twin system

Digital twin,
IoT, and indus-
try 4.0

Potential
application
of industrial
digital twin
in 6G like
monitoring,
simulation,
and control-
ling

Challenges of
digital twin in
IIoT

Enabling
technologies
like artificial
intelligence
and commu-
nication and
computation
co-design

[53]
An intelligent
industrial system
based on digital
twin and AI

Digital twin,
AI, and SDN

Improved
network per-
formance and
reduced the
delay

Allowable
load delay

Dijkstra’s
algorithm

[54]
Credibility
weighted swam
learning to con-
struct digital twin
models

Digital twin
and IIoT

Enhancing
the system
reliability and
minimizing
energy con-
sumption

Computation
and com-
munication
resources limi-
tation

Swarm learn-
ing

[55]
Efficient inte-
gration of digital
twin in industry
4.0

Digital twin
and IIoT

Predictive
maintenance,
network di-
agnosis and
resources allo-
cation

Scheduling the
communica-
tion between
nodes

Prototype
implementa-
tion by SDN
controller

2.4 Network Configuration Optimization

This section will discuss how digital twins help optimize network configuration to enhance the

network’s performance. In [56], Xie et al. presented the digital twin-assisted UAVs network.

They used mmWave radar imaging for UAVs to characterize their radio frequency to accomplish

channel modeling through three-dimensional (3D) ray tracing. They achieved the smart operation
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and administration of the UAVs network. A digital twin-based terahertz (THz) signal guidance

framework is proposed in [57] by Pengnoo et al. to utilize the metasurface reflector to model,

predict, and control signal propagation characteristics. They applied the cone selection by ensuring

the line of sight between the sender and receiver. A micro-services-based digital twin framework

is designed and implemented in [58] by Lombardo et al. for network management and control.

They applied the Dijkstra algorithm to augment the capabilities of the network managers.

An integrated data and energy transfer in a cell-free network with the help of a digital twin is

proposed in [59] by Shui et al. to achieve the energy sustainability of the network. They employed

the double-parameterized deep Q-network for data and energy transfer to enhance the network’s

energy sustainability. A digital twin-assisted area-controlled mobile ad-hoc networking is pro-

posed by Ono et al. in [60]. They achieved the efficiency of the network by reducing the traffic

volumes while ensuring the packet arrival rates by employing a relay range restriction algorithm.

In [61], active noise control is proposed for reduced frequency noise in network communication.

They employed a reference least mean square algorithm with a digital twin filter to avoid the high-

cost processors for active noise control.

Yaqoob et al. presented the digital twin-based approach to deploy the beyond fifth generation

(5G) network core function by employing the network slicing in [62]. They observed the traffic

over the deployed slices and analyzed the round-trip time observed in the network by designing

the digital twin on Open5GS.

Table 2.4 summarizes the digital twin-enabled network configuration; we observed the digital

twin adds latency minimization, energy efficiency, operation, and network control gains through

the optimal network configuration.

Table 2.4: Summary of network configuration optimization
related work.

Ref. Research Prob-
lem

Technologies Objective Constraints Solution

20



[56]
A framework
for digital twin-
based UAVs
application

Digital twin,
UAVs, and
mmWave
radar imaging

Smart op-
erating and
administra-
tion of UAVs
network

Channel mod-
elling of UAVs

3D ray-tracing

[57]
A digital twin
based THz sig-
nal guidance

Digital twin,
metasurface
reflector and
THz commu-
nication

Model,
predict and
control signal
propagation
characteris-
tics

Line of sight
(LoS) between
receiver and
sender

Digtal twin
based cone
selection

[58]
A
microservices-
based digital
twin framework
for network
management
and control

Digital twin
and artificial
intelligence
(AI)

Augmenting
the capa-
bilities of
network
manager

Network adap-
tation for dif-
ferent applica-
tions

Dijkstra algo-
rithm

[59]
An integrated
data and energy
transfer in cell-
free network

Digital twin
and cell-free
network

Energy sus-
tainability

Guaranteed
optimal solu-
tion

Double param-
eterized deep
Q-network

[60]
An area con-
trolled mobile
ad-hoc network-
ing

Digital twin
and mobile ad-
hoc networks

Reduced traf-
fic volumes

Packet arrival
rates

A relay range
restriction
algorithm

[61]
Active noise
control based
on digital twin
architecture

Digital twin
and active
noise con-
troller

Reduced fre-
quency noise

High cost pro-
cessors

Digital twin
filtered-
reference least
mean squares
algorithm

[62]
A novel digital
twin based ap-
proach to deploy
the beyond5G
network core
functions

Digital twin
and beyond5G
networks

Improved
round trip
time in all
scenarios

Packet loss
rate

Open5GS
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2.4.1 Network Redundancy

The digital twin can add network redundancy and make it adaptive for different circumstances. In

[63] Yu et al. presented a digital twin-driven self-healing mechanism for 6G edge networks. They

utilized the graph neural network (GNN) for service re-deployment during abnormal conditions.

A framework of a real-world IoT mobile virtual network operator is proposed in [64] by Geibler

et al. to enhance the network survivability under unforeseen conditions by utilizing the overload

control mechanism.

The digital twin makes the network redundant by timely detection of the faults in the network.

In [65], a digital twin architecture for sensor fault detection is proposed by Darvishi et al. to achieve

the timely detection of false alarms and classification of faulty sensors through a neural network

simulator and estimator. In [66], Hasan et al. proposed a digital twin-inspired approach for sensor

fault detection by utilizing the Wasserstein generative adversarial network (GAN). A digital twin

is utilized for sensor fault detection, isolation, and accommodation in [67] by Darvishi et al. They

proposed a multi-layer perceptron neural network for anomaly detection in sensors’ measurements.

The wireless digital twin platform for wireless software applications evaluation is proposed in [68]

by Lai et al. for real-time evaluation through the Kalman filter and recurrent neural network (RNN).

A security framework for cloud-assisted body area networks through digital twin is proposed by

Sama et al. in [69]. They achieved the low-cost cyber-physical threat prediction earlier to configure

the network accordingly. In [70] Wang et al. proposed the digital twin cyber platform based on

network function virtualization for network security and management from external threats.

A summary in Table 2.5 shows the research problem, objective, constraints, and proposed

solution for a digital twin-assisted network. The research discussed above-enabled network adapt-

ability and timely fault detection through digital twins in the networks.

Table 2.5: Summary of network redundancy related work.

Ref. Research Prob-
lem

Technologies Objective Constraints Solution
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[63]
Digital twin-
driven service
self-healing
mechanism for
6G edge networks

Digital twin
and edge net-
works

Service re-
doployment
during abnor-
mal conditions

Resources
and location
constraints

Graph neu-
ral network
(GNN)

[64]
A framework of
a real-world IoT
mobile virtual
network operator

Digital twin
and IoT

Network
survivabil-
ity under
unforeseen
conditions

IoT traffic Overload
control mecha-
nism

[65]
Sensor fault
detection archi-
tecture for digital
twin

Digital twin
and IoT sen-
sors

Timely detec-
tion of false
alarms and
classification
of faulty sen-
sors

Number of
layers and
nodes in layers

Neural net-
work simulator
and estimator

[66]
Digital twin-
inspired fault
detection ap-
proach

Digital twin
and IoT

Sensor fault
detection

Fault types
limitation

Wasserstein
GAN

[67]
Sensor fault de-
tection, isolation,
and accommoda-
tion through digi-
tal twin

Digital twin
and industry
4.0

Anomaly
detection in
measurements
of sensors

Different lev-
els of faults

Multi-layer
perceptron
neural network

[68]
Wireless digital
twin platform for
wireless software
applications eval-
uation

Digital twin
and wireless
software appli-
cations

Wireless
software ap-
plications
evaluation

Real-time
evaluation

Kalman filter
and RNN

[69]
An integrated se-
curity framework
for cloud-assisted
body area net-
works

Digital twin
and body area
networks

Cyber-
physical
security op-
timization at
low cost and
time

Digital twin
for cloud-
assisted body
area network

Digital twin
environment
prediction of
threats

[70]
Digital twin cyber
platform based on
network function
virtualization

Digital twin
and network
function virtu-
alization

Network secu-
rity and man-
agement

Design and
functions opti-
mization

A prototype of
proposed net-
work designed

23



2.4.2 Role of Machine Learning in Digital Twin-assisted Network

Here, we will highlight the benefits of machine learning in digital twin-assisted networks and the

earlier work done in this domain is discussed. The network can be optimized in real-time through

machine learning and artificial intelligence algorithms for future-generation networks using digital

twin technology [4, 6]. A survey presented by Wu et al. in [71] highlights the definition, enabling

technologies, issues, and usefulness of digital twin in different domains. The digital twin enables

the control of the physical network through the bi-directional communication link [3, 5]. Digital

twin in wireless networks generates the virtual copy of wireless networks, which can be utilized

for the adaptive edge association for the users, enabling the path to future generation networks [6].

Sun et al. solved the movement and unpredictability of users in MEC networks by utilizing the

digital twin to reduce the offloading latency in [1].

In [72], Vilas et al. utilized the untrained neural network and conditional GAN for the channel

state information through digital twin. They improved the performance of the network by pro-

viding low-overhead channel state information. An iterative optimization through particle swarm

optimization and DDPG is utilized in [73] by Cui et al. to enhance the transmission rate of users.

They managed the cell-free system with reconfigurable intelligent surfaces through digital twin.

In [74], Xu et al. presented the digital twin-empowered wireless body area networks to enhance the

network’s performance by maximizing the energy efficiency of sensors. A random graph-inspired

DDPG algorithm is utilized. The network’s performance regarding users’ mean transmission rate

is enhanced using the GNN in [75]. Zhang et al. in [75] utilized the digital twin with machine

learning to manage the THz communication resources.

Machine learning also helps to construct a digital twin; in [76] Qian et al. proposed a federated

learning-based IoT digital twin network. They minimized the energy consumption during the

construction of the digital twin. Lian et al. proposed a lightweight digital twin-empowered air-

ground network architecture in [77]. They utilized federated learning with a distributive incentive

scheme to construct digital with reduced energy consumption and enhanced model accuracy of

the digital twin. Deng et al. presented the implementation of the digital twin approach for the 6G
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wireless network in [78]. They utilized the knowledge graph and GNN for digital twin construction

to achieve high autonomy for the network. To deal with the uncertainty of the digital twin, a

Bayesian framework is proposed by Ruah et al. in [79]. They utilized the multi-agent RL algorithm

to reduce the model uncertainty of the digital twins.

Federated transfer learning is employed in a communication-assisted-sensing scenario in the

digital twin-empowered network by Mu et al. in [80]. They enhanced the communication effi-

ciency of the network by ensuring data safety. A digital twin network with asynchronous federated

learning and DDPG is utilized for data privacy and security by He et al. in [81]. They enhanced

the efficiency and accuracy of intrusion detection in networks. A digital twin-assisted wireless

network for edge-processing proposed by Lu et al. in [82]. They proposed federated learning to

enhance the system’s reliability and security in addition to the low latency of edge processing.

Table 2.6 highlights the summary of the roles of machine learning in the digital twin. Ma-

chine learning improves the digital twin-assisted network’s performance, efficiently constructing

the digital twin of the network and improving the network’s autonomy.

Table 2.6: Summary of the roles of machine learning in
digital-twin assisted networks related work.

Ref. Research Prob-
lem

Technologies Objective Constraints Solution

[72]
Channel state
information based
on digital twin

Digital twin
and machine
learning

Low overhead
channel state
information

Location of
users and base
stations

Untrained
neural network
and condi-
tional GAN

[73]
Reconfigurable
intelligent
surfaces-assisted
user-centric
cell-free system
managed by digi-
tal twin

Digital twin
and recon-
figurable
intelligent
surfaces

Enhances the
sum-rate for
users

Large and
complex solu-
tion space

Particle swarm
optimization
and DDPG
for iterative
optimization

[74]
A digital-twin-
empowered
wireless body
area networks

Digital twin
and wireless
body networks

Maximizing
the energy
efficiency of
sensors

Reliability for
emergency
critical ser-
vices

Random
graph-inspired
DDPG

25



[80]
A
communication-
assisted-sensing
scenario with
federated learning
in digital twin
empowered mo-
bile network

Digital twin
and mobile
network

Improved the
communica-
tion efficiency
of mobile
network

Data safety Federated
transfer learn-
ing

[81]
A federated con-
tinuous learning
framework based
on digital twin
network

Digital twin,
UAVs, and IoT

Higher effi-
ciency and
accuracy of
intrusion de-
tection system

Data privacy
and security

Asynchronous
federated
learning and
DDPG

[82]
A digital twin
wireless networks
for edge process-
ing

Digital twin
and 6G net-
works

Enhancing the
reliability and
security of sys-
tem

Communication
resources and
training data
limitation

Blockchain
empowered
federated
learning
framework and
multi-agent
RL

2.5 Summary

The Tables 2.1, 2.2, 2.3, 2.4, 2.5, 2.6 summarize the existing works related to the multi-layer

network, digital twin, machine learning and edge association is highlighted with the advantages

they have achieved in terms of latency, energy, reliability and adaptability of the network. So,

previous work highlights the importance of edge association, resource scheduling, and network

configuration to improve the network’s performance. Therefore, this thesis is considered a dig-

ital twin-assisted three-layer network that optimizes edge association, resource scheduling, and

network configuration for a low-latency and energy-efficient multi-layer network. We propose a

two-stage scheme to solve the optimization problem and enhance the performance of the network

in terms of latency minimization and energy efficiency.
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Chapter 3

Digital Twin-assisted Multi-Layer Network:

Resource Optimization for Low-Latency

and Energy-Efficiency

This chapter introduces the framework of a multi-layer network system model that utilizes digital

twin technology. The proposed framework minimizes latency and energy consumption through

a nonlinear and nonconvex optimization problem. In this problem, we optimize the allocation of

edge devices, power transmission of IoT devices, the offloading process, and the computation re-

sources of IoT devices. Although this optimization problem is defined in this chapter, it is nonlinear

and nonconvex due to the objective function and some constraints.

3.1 System Model and Problem Formulation

We consider a digital twin-assisted offloading in a multi-layer network with U number of IoT

devices and N number of UAV-MECs and a cloud server C for low-latency and energy-efficient

communication and computation, as shown in Fig. 3.1. We assume that IoT devices are resource-

constrained and may be unable to perform their computation tasks locally. A task of u-th IoT device
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Figure 3.1: System model for digital twin-assisted multi-layer network.

can be represented by the tuple Ju = [Du, Cu, T
MAX
u ], where the Du represent the task size, Cu the

computational CPU cycles required for the task, and TMAX
u is the maximum allowable latency for

the task. The task from u-th IoT device can be computed locally with the processing rate fL
u and

also can be offloaded to UAV-MECs with the distribution factor βu ∈ [0, 1]. The binary variable

for the association of IoT devices with UAV-MECs can be represented as xu,n, where xu,n = 1 if

u-th IoT device is associated with n-th UAV-MEC and xu,n = 0 otherwise.

The multi-layer network consists of the following layers:

Cloud layer: In the cloud layer, a cloud server is available with higher data processing rates

fC cycles/sec to deal with highly complex computational tasks.

Edge layer: The edge layer consists of N number of UAV-MECs, which are responsible for

processing the offloaded tasks of IoT devices. The processing rate of n-th UAV-MECs is denoted

by fE
n cycles/sec. To minimize the tasks’ latency from IoT devices, the task portion can be partially

offloaded through sharing factor αun ∈ [0, 1] to the cloud server.

User layer: The user layer consists of U number of IoT devices. The task of u-th IoT devices
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can be locally computed with the processing rate fL
u and also can be offloaded to UAV-MECs

with the distribution factor βu ∈ [0, 1]. We assume that the tasks of IoT devices are granular for

offloading to achieve low-latency communications [32].

Channel Model

The channel between the UAV-MECs and the IoT devices is based on the line of sight (LOS)

propagation, and there exist effects of attenuation, blockage, and shadowing [5]. We assumed

UAVs and IoT devices have direct LOS [11]. The LOS model for the link between the u-th IoT

device and n-th UAV-MEC is given as [83]:

hun = βod
−ζ
un , (3.1)

where βo denotes the reference channel gain at the reference distance of 1m and ζ ≥ 2 denotes the

path loss exponent [83]. dun represents the Euclidean distance between the n-th UAV-MECs and

u-th IoT device: dun =
√

e2un + l2k, where eun denotes the horizontal distance between the u-th IoT

device and n-th UAV-MECs, and l2n represents height of the n-th UAV-MECs from IoT devices.

The signal-to-noise ratio of the u-th IoT device connected with n-th UAV-MEC can be written

as [83]:

γun(p, x) =

∑
n∈N xunpu||hun||2

No

, (3.2)

where pu represents the transmission power and No denotes the noise floor power. The data rate of

the u-th IoT device connected with n-th UAV-MEC can be approximated as [32]:

Ru(p, xu) = B log2[1 + γun(p, xu)](bits/sec), (3.3)

where B represents the bandwidth available.

Digital Twin-based Computation Model

The digital twin model of the proposed multi-layer network can be represented as:
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DT = {Ū , N̄ , C̄}, (3.4)

where Ū , N̄ , and C̄ denote the virtual replicas of IoT devices, UAV-MECs, and a cloud server

respectively. We can control and manage the physical system through the digital twin by exchang-

ing the data between the model and the digital twin instance [18]. Different tools are available to

implement the digital twin concept like the Modelica, DELMIA, FlexSim, etc [32].

After processing the computation task, the data size is typically negligible, and the UAV-MECs

can transmit it with high power as compared to the IoT devices’ transmission power budget. Thus,

we assumed that the downlink transmission rate is higher and the downlink latency after processing

can be ignored [32].

Local processing latency

The digital twin model of the u-th IoT device is denoted by DTL
u which is given as:

DTL
u = (fL

u , f̄
L
u ), (3.5)

where fL
u denotes the estimated processing rate at digital twin and f̄L

u represents the error in the

approximation. The u-th IoT device can partially offload its task’s portion βu to the UAV-MECs

with the µL
u mean task arrival rate at users. The latency to process the task locally at u-th IoT

device is given as [17]:

t̄Lu(βu, f
L
u ) =

(1− βu)Cuµ
L
u

fL
u

. (3.6)

Assuming that the digital twin approximation error is known earlier, the error in latencies can be
computed as:

△tLu(βu, f
L
u ) =

(1− βu)Cuµ
L
u f̄

L
u

fL
u (f

L
u − f̄L

u )
. (3.7)

Thus, the actual latency of local computation can be written as [17]:

tLu(βu, f
L
u ) = t̄Lu(βu, f

L
u ) +△tLu(βu, f

L
u ). (3.8)
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Offloading latency

The latency to offload the βu task portion of u-th IoT device’s can be written as [17]:

tOu (βu, pu, xu) =
βuDu

Ru(p, xu)
. (3.9)

UAV-MECs processing latency

The digital twin model for the n-th UAV-MECs is denoted by DTE
n and given as:

DTE
n = (fE

n , f̄
E
n ), (3.10)

where fE
n represents the estimated processing rate and f̄E

n as the approximation error. As the task

sharing variable αun ∈ [0, 1] is responsible for offloading of the task to the cloud server from

UAV-MECs, the estimated processing latency at UAV-MECs can be written as [17]:

t̄E(β, α, x, fE
n ) =

∑
u∈U xunβuµ

L
u(1− αun)Cu

fE
n

. (3.11)

The error in latency value and its digital twin estimation can be calculated as:

△tE(β, α, x, fE
n ) =

∑
u∈U xunβuµ

L
u(1− αun)Cuf̄

E
n

fE
n (f

E
n − f̄E

n )
. (3.12)

As a result, the actual digital twin latency to compute the task at UAV-MECs can be expressed

as: tE = △tE + t̄E .

Offloading latency UAV-MECs to Cloud

Each UAV-MECs offloads the tasks portion specified by αun = [0, 1] to the cloud for parallel

processing. The offloading latency between the UAV-MECs and the cloud is given as [17]:

tF (β, α, x) =
∑
u∈U

xunβuαunµ
L
u

Du

RF
, (3.13)

where RF represents the data rate of offloading the task from UAV-MECs to the cloud server.
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Cloud processing latency

The digital twin model for the cloud is denoted by DTC which is given as:

DTC = (fC , f̄C), (3.14)

where fC denotes the estimated processing rate, and f̄C represents the approximation error. Thus,

the processing latency estimated by the digital twin is given as [17]:

t̄C(β, α, x) =

∑
u∈U

∑
n∈N xunβuαunCuµ

L
u

fC
. (3.15)

The error in latency estimation is calculated as:

△tC(β, α, x) =

∑
u∈U

∑
n∈N xunβuαunµ

L
uCuf̄

C

fC(fC − f̄C)
. (3.16)

Thus, the actual latency of the cloud processing given as:

tC(β, α, x) = △tC(β, α, x) + t̄C(β, α, x). (3.17)

From the above (3.6)− (3.17), the overall latency for the task of u-th IoT device can be written as:

tu(f
L
u , p, β, α, x) = tLu(βu, f

L
u ) + tCu (βu, p, x) + tF (β, α, x) + tE(β, α, x, fE

n ) + tC(β, α, x) + tSu .
(3.18)

where tSu denotes the synchronization latency to share network information from between physical
to digital twin. The total energy consumed by the u-th IoT device for the local processing and
offloading can be computed as [17]:

Eu(f
L
u , p, β, x) = (1− βu)

θu
2
Cu(f

L
u )

2 + pu
βuDu

Ru(p, x)
+ (1− βu)

θu
2
Cu

(f̄L
u )

2

(fL
u − f̄L

u )
2
, (3.19)

where the constant θu
2

is the average activity factor of the u-th IoT device [32]. There is also an

error term in energy consumption due to the approximation error of digital twin.

3.1.1 Problem Formulation

In this thesis, we focus on minimizing task latency and the energy consumption of IoT devices in

multi-layer network. We mathematically formulate the optimization problem to jointly optimize

IoT devices’ association with UAV-MECs, computational capacity, task portioning between the
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layers, and transmission powers of IoT devices for task offloading and communication.

Input

The input values which we give to this problem are:

• Number of IoT devices (U )

• Channel gains for reference distance (βo)

• Number of UAV-MECs (N )

• System bandwidth (B)

• Location coordination of IoT devices and UAV-MECs ({xu, yu} & {xn, yn, hn})

• All tasks latency deadline (TMAX
u )

• Maximum capacity of UAV-MECs association (MMAX)

• Total computational capacities of all three layers (FMAX
u )

• Minimum data rate requirement of u-th IoT device (RMIN
u )

• Maximum energy consumption by IoT devices (EMAX
u )

• Maximum transmission power available (PMAX
u )

Optimization Variables

The variables which will be optimized in this problem are:

• Task portioning (αun & βu)

• IoT devices association (xun)

• Computational capacity of IoT devices (fu)

• Communication power (pu)
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Output

In the optimization problem, we minimized the latency and energy consumption by jointly opti-

mizing the network’s computational and communication resources and association of IoT devices.

The output will be the optimized variables mentioned above, resulting in minimized task latency

and energy consumption.

3.1.2 Optimization Constraints

We consider different constraints under which to achieve the objective:

• C1: The total task computation and offloading latency in (3.18) should be less than the task’s

deadline TMAX
u .

tLu(βu, f
L
u ) + tOu (βu, p, x) + tF (β, α, x) + tE(β, α, x, fE

n ) + tC(β, α, x) + tSu ≤ TMAX
u ,∀u, n.

(3.20)

• C2: Energy consumption in the computation by IoT devices in (3.19) should be less than

the maximum allowable energy consumption limit denoted by EMAX
u . The maximum energy

consumption specified can be found by IoT devices’ mean task generation rate and the power

budget specified for the computation.

Eu(f
L
u , p, β, x) ≤ EMAX

u ,∀u. (3.21)

• C3: Quality of service ensures that the data rate of u-th IoT device in (3.3) should be greater

than the minimum data rate represented by RMIN
u .

Ru(p, x) ≥ RMIN
u ,∀u. (3.22)

• C4: Range of task sharing factor between u-th IoT device βu to UAV-MECs should be
between 0 and 1.

0 ≤ βu ≤ 1, ∀u. (3.23)
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• C5: Range of task sharing factor of u-th IoT device between n-th UAV and cloud should be
between 0 and 1.

0 ≤ αun ≤ 1, ∀u, n.

• C6: Maximum transmission power budget of u-th IoT device should be less than the maxi-
mum available transmission power budget denoted by PMAX

u .

0 ≤ pu ≤ PMAX
u , ∀u. (3.24)

• C7: Computational capacity bound of u-th IoT devices is bounded by maximum capacity
denoted by FMAX

u .

0 ≤ fL
u ≤ FMAX

u , ∀u. (3.25)

• C8: The u-th IoT device can only be associated with one UAV-MEC at a given time.

∑
n∈N

xun ≤ 1,∀ u. (3.26)

• C9: The number of IoT devices that can be associated with the m-th UAV-MEC is bounded
by the maximum association capacity of UAV-MECs represented by MMAX .

∑
u∈U

xun ≤MMAX ,∀ n. (3.27)

• C10: Binary association variable can be 0 or 1.

xun = {0, 1},∀ u, n.

3.1.3 Mathematical Formulation
We formulate the optimization problem to minimize the task latency and energy consumption for
IoT devices as follows:

min
β,α,x,p,f

:
∑
u

(ωtu(f
L
u , p, β, α, x) + (1− ω)Eu(f

L
u , p, β, x)) (3.28)

Subject to: C1− 10,
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where ω denotes the weight associated with the objective function. The weight prioritizes task’s

latency and energy consumption of IoT devices. The value of ω ranges from 0 to 1, where 0 means

that the optimization will focus only on energy consumption, and 1 means that the objective is

to minimize latency. The optimization problem in (3.28) is a mixed integer non-linear and non-

convex problem because of the constraints of C2, C4 and C8 and the non-linear multi-objectives

in terms of optimization variables.

3.2 Summary

This chapter introduces the system model for a digital twin-assisted multi-layer network. We

present a mathematical formulation for the task latency and energy consumption of IoT devices in

the network. We also define an optimization problem to minimize task latency and energy con-

sumption while optimizing the network’s association, communication, and computation resources.

We explain the objective function, inputs, optimization variables, and constraints considered in the

formulation.
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Chapter 4

Proposed Scheme and Simulation Results

This chapter introduces a two-stage scheme that utilizes the K-means method and deep learning

architecture. The proposed scheme is compared with two existing schemes, and the simulation

environment and results are presented in terms of task latency and energy consumption.

4.1 Solution Approach

In the proposed multi-layer network, IoT devices and UAV-MECs are placed in a 2-dimensional

frame with UAV-MECs positioned at a specific height. The optimization problem in (3.28) can

be solved using an exhaustive search method to find a global solution. However, this approach

could be computationally inefficient for large-scale networks. Therefore, we propose a two-stage

scheme described in Algorithm 1 based on the K-means method and deep learning architecture

approach to reduce the computation complexity. In the first stage, we apply the K-means learning

algorithm [84] to cluster IoT devices based on the number of UAV-MECs available in the system.

The centroid of these clusters is then assigned as the location of UAV-MECs to ensure a high

connectivity range for offloading tasks of the IoT devices. After the placement, we make the

association for offloading based on the best channel condition with the UAV-MECs satisfying

constraints C8−C10. Once the association is made, the problem changes to (4.1) with the optimal

association variable (x∗).
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min
β,α,p,f

:
∑
u

(
ωtu(f

L
u , p, β, α, x

∗) +(1− ω)Eu(f
L
u , p, β, x

∗)
)

(4.1)

Subject to: C1− C7.

In the second stage, we utilize a deep learning architecture to solve the optimization problem in

(4.1). The deep neural learning architecture is consists of the following layers: (i) the input layer,

which takes input of the initial values of (p, f, β, α) variables that we want to optimize. The size of

input layer depends on the length of the array containing these variables; (ii) hidden layers, which

are middle layers with different numbers of neurons to capture the insights of optimization during

training. For linear optimization with linear constraints, a neural network with one hidden layer is

useful [85].

However, since we are dealing with a non-linear and non-convex optimization pattern, we opted

for a deep learning architecture with multiple hidden layers to achieve better performance; (iii) the

output layer, which has same length as input layer, provides the optimized values (p∗, f ∗, α∗, β∗).

The activation function for the neurons in adjacent deep learning architecture layers can impact

optimization performance [85]. Thus, we select relative linear unit (RelU) as activation function.

The elementary task for deep learning architecture is training, which is carried out on previous

optimization datasets to train the weights and bases of neurons in deep learning architecture. We

trained the proposed two-stage algorithm based on dataset obtained using K-means and interior

point method (KIPM).

We compare the proposed two-stage scheme with the K-means and interior point method

(KIPM) and K-means and outer approximation (KOA). Similar to proposed two-stage scheme,

we divide the problem into two sub-problems: optimizing the association of IoT devices with the

UAV-MECs placement using the K-means algorithm and optimizing network resources using the

interior point and outer approximation algorithms.
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Algorithm 1 : Proposed Two-Stage Scheme
1: Specifying the environment
2: Initialization
3: Step 1:Initializing all variables
4: Step 2:Placement of IoT devices
5: Output: Coordinates of IoT devices
6: Stage 1: K-means UAV-MECs placement
7: Step 1: Clustering of IoT devices
8: Step 2: Placement of UAV-MECs
9: Step 3: User association (x∗)

10: repeat
11: for u← 1 to U do
12: distance matrix d(u, n) for each n
13: Assign u-th IoT device to specific UAV-MECs
14: Set xun ← 1
15: if Total connections of UAV-MECs u >Mmax then
16: Set xun ← 0
17: else
18: continue
19: end if
20: end for
21: Stage 2: A deep neural network
22: Hidden layers specified according to optimization
23: Training of deep neural network
24: Initialize the optimization variable p, x, α, β
25: Training with previous optimization results
26: Testing of deep neural network
27: Input the initial values p, x, α, β to neural network
28: Computing the results
29: Output: Optimized variables (p∗, f ∗, α∗, β∗)

4.1.1 K-means assisted Interior Point Method (KIPM)

Algorithm 2 describes the KIPM scheme. First, the K-means method [84] is utilized for the op-

timal UAV-MECs placement to achieve a high connectivity range for the IoT devices offloading.

The optimized association variable (x∗) got through making the association with the best channel

conditions while considering the constraints C8 − C10. In the final stage, the interior point algo-

rithm [86] is applied to solve the optimization problem in (4.1). The slack variables are defined for

all the constraints, and the search region is specified where slack variables are positive and within

the bounds of optimization variables.
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Algorithm 2 :KIPM
1: Stage 1: Similar to Algorithm 1
2: Stage 2: Interior point method
3: Initialization
4: Initialize x0, A, B, Aeq, beq, lb, ub
5: Step 1: Slack variables for non-linear constraints
6: Define objective function and constraints
7: Step 2: Direct step
8: repeat
9: for count← 1 until the algorithm gives minimum objective function do

10: if Convergence criteria is satisfied then
continue

11: end for
12: end if
13: Output: Optimized variables

4.1.2 K-means assisted Outer Approximation (KOA)

Algorithm 3 outlines the KOA scheme. Similar to proposed scheme and KIPM, we solved optimal

UAV-MECs placement using the K-means method. After placement, we associated IoT devices

with the best channel conditions (x∗) to achieve a higher data rate for task offloading. Then, to

solve the (4.1), we applied the outer approximation in the second stage to get the optimized energy

and latency minimization variables. In outer approximation, the non-linear optimization problem

is solved by linearizing the non-linear inequalities by making the outer approximation to these

non-linearities. Then, by satisfying the constraints, the optimization area is specified. After that,

the upper and lower bound of solutions found for the optimization problem are carried out until

the difference between them is less than the specified criteria to find the minimum points of each

optimization variable [87].

4.1.3 Computation Complexity Analysis

The computation complexity of the proposed two-stage scheme depends on both the K-means

method and the deep learning approach. The K-means placement method has the computational

complexity of O(UN) [84]. Meanwhile, the deep learning approach’s complexity is determined
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Algorithm 3 :KOA
1: Stage 1: Similar to Algorithm 1
2: Stage 2: Outer approximation optimization
3: Initialization
4: Initialize x0, A, B, Aeq, beq, lb, ub
5: Step 1: Region of optimization specified
6: Approximate the linearized problem and constraints
7: A region of optimization specified
8: repeat
9: for count← 1 until the algorithm gives minimum objective function do

10: Optimization variables updated
11: if Convergence criteria is satisfied then

continue
12: end for
13: end if
14: Output: Optimized variables

by the number of trainable parameters related to the number of IoT devices and UAV-MECs in

the multi-layer network [85]. The computational complexity of the deep learning architecture is

also O(UN), which results in our proposed two-stage scheme complexity being O(UN). The pro-

posed two-stage scheme efficiently computes the optimization problem for large-scale networks.

In comparison, the computational complexity of the sub-optimal KIPM scheme also depends on

the complexity of K-means O(UN) and interior point method complexity, which is O(U3N3) [86].

This cubic complexity of KIPM makes this scheme inefficient for larger networks. In KOA, the

accuracy of the results is compromised by using a linear approximation solution for our non-linear

problem, and certain epsilon convergence criteria are specified. The computational complexity

of KOA is O(U3.5N3.5log(1/ϵ)) [11]. The proposed two-stage scheme is significantly lower in

computation complexity than KOA and KIPM, making it a candidate for large-scale networks.

4.2 Performance Evaluation

We first compare the K-means placement with random placement of UAV-MECs to highlight the

impact of optimal placement. Additionally, we evaluate the performance of our proposed two-

stage scheme by comparing it with two existing schemes (KIPM and KOA) in terms of latency
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Table 4.1: Simulation Parameters.
Parameters Values

Number of IoT devices, U 80
Number of UAV-MECs, N 5
Task size, Du 100 KBytes
Computational cycles requirement of task, Cu 800 Megacycles
Task computation completion deadline, TMAX

u 2 sec
Energy consumption maximum limit, EMAX

u 2 J
Minimum data rate requirement, RMIN

u 1 Mbps
Maximum possible processing rate of IoT device, fMAX

L 3 GHz
Maximum allowable transmission power for IoT device,
PMAX
u

23 dBm

Noise floor power, No -174 dBm
Tasks arrival rate from IoT devices, γL

u 10 tasks/sec
Maximum associated devices with UAV-MECs, MMAX 15
Digital twin approximation error, f̂ 3 %
Speed of light, c 3 × 108 m/sec
Bandwidth available, B 10 MHz

and energy consumption. Furthermore, we consider different scenarios of empirical weights and

optimization of task portioning to highlight the usefulness of the proposed multi-layer network.

4.2.1 Simulation Parameters and Environment

We conduct the simulations on MATLAB software. A multi-layer network is considered where the

UAV-MECs, IoT devices, and a cloud server are present. We consider N= 5 UAV-MECs and U= 80

number of randomly distributed IoT devices for the simulation scenario until specified further. The

task size generated by the u-th IoT device is Du= 100 KBytes, and the required computational re-

sources are considered Cu= 800 Megacycles with maximum allowable latency TMAX
u = 2 sec. The

task generation rate at the IoT devices is γL
u = 10 tasks/sec. The maximum energy consumption

limit is considered to be EMAX
u = 2 J, and the minimum data rate requirement of RMIN

u = 1

Mbps. The noise floor’s power is No= −174 dBm, and digital twin error is considered 3 %. The

simulation parameters considered are similar to [32] and presented in Table 4.1.
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4.2.2 Simulation results

Fig. 4.1 shows the data rate (bps) versus the number of IoT devices for the random placement and

the optimal K-means placement of UAV-MECs. In this scenario, we consider five UAV-MECs (N =

5), computational cycles requirement of task from u-th IoT device (Cu = 800 Megacycles), and task

size (Du = 100 KBytes). As the number of IoT devices increases, the data rate decreases because

of interference caused by IoT devices associated with the same UAV-MECs and their association

capacity limit. Optimal K-means placement yields a better data rate than random placement since

it considers better channel conditions for IoT devices with optimal placement. Thus, it is crucial

to have an optimal placement of UAV-MECs to achieve higher data rates for IoT devices, leading

to a better end-user experience.

Task dropping can occur when an IoT device is too far away from any available UAV-MECs

in the system or when there is an outage of association capacity. Fig. 4.2 shows the percentage of

tasks dropping versus the number of IoT devices for fixed number UAV-MECs (N = 5), compu-

tational cycles requirement from u-th IoT device (Cu = 800 Megacycles), and task size (Du = 100

KBytes). The percentage of tasks dropping increases as IoT devices increase due to a fixed number

of UAV-MECs in the network. The maximum number of IoT devices that can be associated with

the five UAV-MECs is 75, thus the 25 IoT devices will dropped from the association in case of

100 IoT devices. The task drop rate can be improved by adding more UAV-MECs in the system.

The task drop is lower in the K-means UAV-MECs placement compared to the random placement.

The K-means algorithm considers the optimal location of UAV-MECs to maximize the association

of IoT devices for task offloading. Thus, the optimal placement is essential for accommodating a

maximum number of IoT devices for offloading in the system.

Fig. 4.3 shows the impact of the number of IoT devices on energy consumption of IoT devices

and task latency. We consider a scenario with five UAV-MECs (N = 5), computational cycles re-

quirement of task (Cu = 800 Megacycles), and task size (Du= 100 KBytes). We also compared

our proposed two-stage scheme with two existing schemes, KIPM and KOA. The result indicates

that energy consumption and latency also increase as the number of IoT devices increases. This
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Figure 4.1: Data Rate comparison with the random user association and K-means UAV-MECs
placement association.
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Figure 4.2: Percentage of tasks drop for IoT devices with random user association and K-means
UAV-MECs placement association.

is because more tasks are generated, leading to longer computation time and increased computa-

tion energy. The proposed two-stage scheme performs well as compared to KOA and comparable

to KIPM with less complexity. All three schemes’ follow a similar trend. KOA has the highest

latency and energy consumption due to the upper approximation of non-linearities in the optimiza-

tion problem. It is essential to consider the network’s capacity and the number of users using

the available resources to ensure that the system meets the strict allowable latency and energy

consumption requirements.

Fig. 4.4 illustrates the performance in terms of task latency and energy consumption of IoT
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Figure 4.3: Performance evaluation in terms of the impact of number of IoT devices when UAV-
MECs (N = 5), computational cycles requirement (Cu = 800 Megacycles), and task size (Du= 100
KBytes on (a) task latency and (b) energy consumption of IoT devices.

devices versus the number of UAV-MECs, ranging from 3 to 10. We consider IoT devices (U =

80), computational cycles requirement (Cu = 800 Megacycles), and task size (Du = 100 KBytes).

Fig. 4.4(a) shows the task latency for the proposed two-stage scheme and compares it with KOA

and KIPM. On the other hand, Fig. 4.4(b) shows the energy consumption of IoT devices versus

the number of UAV-MECs. The proposed two-stage scheme gives close results to the existing

scheme of KIPM with reduced complexity. The number of UAV-MECs determines the resources

available in the edge layer. As the number of UAV-MECs in the system increases, more tasks can

be offloaded to the edge layer for faster computation, resulting in lower latency and lower energy

consumption by IoT devices. However, after N = 5, the impact on latency and energy consumption

reduction becomes insignificant as the essential requirements for the IoT devices can be fulfilled

with five UAV-MECs. Thus, choosing the number of UAV-MECs based on IoT devices’ traffic is

vital to ensure optimal latency and energy requirements and a cost-efficient network design.

Fig. 4.5 illustrates the impact of computational cycles required for the tasks generated by

IoT devices on task latency and energy consumption of IoT devices. We consider a range of

computational cycles requirement (Cu = 800 - 960) Megacycles, with UAV-MECs (N = 5), IoT

devices (U = 80), and task size (Du = 100 KBytes). The task latency and energy consumption
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Figure 4.4: Performance evaluation in terms of the impact of the number of UAV-MECs when IoT
devices (U = 80), computational cycles requirement (Cu = 800 Megacycles), and task size (Du=
100 KBytes on (a) task latency and (b) energy consumption of IoT devices.

of the proposed scheme, KIPM, and KOA are plotted in Figs. 4.5(a) and 4.5(b), respectively. As

the computational cycle requirement increases, tasks require more processing time and energy,

increasing task latency and energy consumption. The proposed two-stage scheme performs better

than the KOA but is nearly as close to KIPM, with less complexity. These curves show that tasks’

computational complexity directly impacts task latency and energy consumption.

Fig. 4.6 shows the task latency and energy consumption of IoT devices versus digital twin

approximation error, ranging from 0-12%, with IoT devices (U = 80), UAV-MECs (N = 5), task

size (Du = 100 KBytes), and computational cycles (Cu = 800 Megacycles). The task latency

results of IoT devices from the proposed two-stage scheme, KOA, and KIPM presented in Fig.

4.6(a), which increase with the increment of error in the approximation of the digital twin as

per (3.7). Thus, the digital twin approximation error should be limited to reduce the latency of

IoT devices’ tasks. Fig. 4.6(b) shows the impact of digital twin approximation error on energy

consumption. The energy consumption follows an increasing trend as the approximation error

increases. We presented the result of the proposed two-stage scheme with the results of KOA and

KIPM. The proposed scheme gave close results to KIPM with low computational complexity. The

results in Fig. 4.6 demonstrate that the digital twin error directly affects the performance of our
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Figure 4.5: Performance evaluation in terms of the impact of computation cycles required when
IoT devices (U = 80), UAV-MECs (N = 5), and task size (Du= 100 KBytes on (a) task latency and
(b) energy consumption of IoT devices.

proposed network. Therefore, it is crucial to limit the error to an acceptable bound and consistently

update the digital twin from the physical world within a specific time interval.

The empirical weight factor ω in (3.28) plays a crucial role in the objective function as it

determines the extent to which latency and energy consumption should be minimized. A higher

value of ω will prioritize minimizing task latency, while a lower value will focus on reducing

energy consumption. Fig. 4.7 shows IoT devices’ task latency and energy consumption on five

different weight scenarios. We consider IoT devices (U = 80), UAV-MECs (N = 5), computational

cycles requirement (Cu = 800 Megacycles), and task size (Du = 100 KBytes). For comparison, we

have plotted the results for the proposed two-stage scheme, KOA and KIPM. Fig. 4.7(a) shows

that the higher empirical weight reduces the latency, and this trend follows in all three schemes.

The lowest latency values are for the weight values of 1 (ω = 1); there is no significant reduction

from 0.5 to 1 values of ω. Fig. 4.7(b) shows the energy consumption of IoT devices for the

proposed two-stage, KIPM, and KOA schemes versus different scenarios of weights. We observed

that energy consumption increases with higher weight values. The minimum energy consumption

is with the ω = 0. The scenarios show that the weight ω from 0.5 to 1 has no significant impact

on energy reduction. Moreover, the results show that the proposed two-stage scheme gives results
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Figure 4.6: Performance evaluation in terms of the impact of digital twin approximation error
when IoT devices (U = 80), UAV-MECs (N = 5), computational cycles requirement (Cu = 800
Megacycles), and task size (Du= 100 KBytes on (a) task latency and (b) energy consumption of
IoT devices.

nearly identical to KIPM results but with lower computational complexity.

The task partitioning factors determine the percentage of tasks that are offloaded to other lay-

ers of the network. By optimizing these factors, we can achieve the minimum possible latency.

To illustrate the usefulness of optimizing these factors, we consider four scenarios with varying

α & β values, IoT devices (U = 80), UAV-MECs (N = 5), computational cycles requirement (Cu

= 800 Megacycles), and task size (Du = 100 KBytes). We compare the results of the proposed

two-stage scheme with the KIPM and KOA schemes. Fig. 4.8(a) shows task latency for different

scenarios of α & β, and the minimum latency is observed when optimized values of α & β. The

remaining scenarios with maximum offloading to 75% result in minimum latency. However, task

latency is still higher than the optimized scenarios. This emphasizes the importance of finding the

optimal distribution of tasks in the network layers rather than a fixed portion of offloading. Fig.

4.8(b) presents the energy consumption for the different scenarios of α & β, and the minimum

energy consumption can be observed in the case of optimized α & β. The trend of decreasing en-

ergy consumption is observed with increasing the offloading portioning of tasks from IoT devices.

However, the energy consumption is still higher than the optimized scenarios. Therefore, optimal
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Figure 4.7: Performance evaluation in terms weight ω when IoT devices (U = 80) and UAV-MECs
(N = 5) on (a) scenario 1: {w = 0}, (b) scenario 2: {w = 0.25}, (c) scenario 3: {w = 0.5}, (d)
scenario 4: {w = 0.75}, and (e) scenario 5: {w = 1}.

task distribution is necessary for better energy and latency performance in multi-layer networks.

Fig. 4.8 shows that the proposed two-stage scheme results are closer to both existing schemes with

low computational complexity.

4.3 Summary

In this chapter, we discussed the proposed two-stage solution, followed by a discussion of simula-

tion results. The proposed solution involves a two-stage scheme to solve the optimization problem.

In the first stage, the K-means method is applied to cluster the IoT devices present, and the center

of clusters is selected for the UAV-MECs location. After UAV-MECs placement, the association

was made with the IoT devices. In the second stage, the communication and computation re-

sources are optimized with the deep neural network to achieve low latency and energy efficiency

in a multi-layer network. Two existing schemes are utilized to solve the optimization problem and

compare the results with the proposed two-stage scheme. The energy and latency increase with the

network’s increased number of IoT devices but decrease with the increase of UAV-MECs. Opti-

mized offloading partitioning of the multi-layer network reduces task latency and enhances energy
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Figure 4.8: Performance evaluation in terms of task partitioning factors (α & β) when IoT devices
(U = 80) and UAV-MECs (N = 5) on (a) scenario 1: α & β optimized, (b) scenario 2: α & β fixed
to 0.25, (c) scenario 3: α & β fixed to 0.5, and (d) scenario 4: α & β fixed to 0.75.

efficiency. The digital twin-assisted multi-layer network is useful for reducing task latency and

energy consumption by IoT devices.
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Chapter 5

Conclusion and Future Work

5.1 Conclusions

In this thesis, we formulated the optimization problem to minimize task latency and energy con-

sumption of IoT devices in a digital twin-assisted multi-layer network. The optimization problem

considered the communication and computation resources that need to be optimized to achieve an

energy-efficient network with minimum task latency. The minimum latency and energy-efficient

multi-layer network is achieved by optimizing the association, offloading portioning, transmit pow-

ers allocation, and processing rates of users. To achieve this, we proposed a two-stage scheme

based on the K-means and deep learning architecture to solve the optimization problem. We com-

pared the performance of the proposed two-stage scheme with two existing schemes. Compared

to existing schemes, the proposed two-stage scheme proved computationally efficient for optimiz-

ing the resources of digital twin-assisted multi-layer networks. We presented simulation results

to demonstrate the usefulness of the proposed multi-layer network and the impacts of different

factors. For future research, we plan to explore the convexification of the optimization problem for

larger-sized multi-layer networks.
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5.2 Future Research Directions

Based on the presented framework for low latency and energy-efficient multi-layer networks, sev-

eral open research issues and future research directions exist.

• Dynamic digital twin network: In this thesis, we chose the static digital twin for our multi-

layer network due to the limitations of our environment and resources. Nonetheless, we can

increase adaptability and make the network more resilient by utilizing dynamic digital twin

network technology.

• Convexification of problem: In this thesis, we opted for the two sub-optimal solutions due

to non-linear and non-convex optimization problems. For a very low-complexity optimal so-

lution, we can convexify the optimization problem and solve it through convex optimization.

• Data handling: The concept of a digital twin involves creating a virtual replica of a real

network’s infrastructure. However, handling the large amount of data required for large-

scale networks presents a significant challenge, especially regarding data analytics. We need

to gain insights into the data stored in the digital twin to make accurate predictions. This

is where AI algorithms can prove helpful, as they can help to identify patterns and trends

in the data, which can then be used to make better predictions and inform network updates.

However, the storage of large datasets remains an issue that must be addressed. To tackle this

problem, a dynamic resource allocation procedure can be introduced to manage the storage

and update the virtual structure of the digital twin instances.

• Coordination of UAVs network: The thesis assumes that placing UAV-MECs in a collision-

free environment is feasible. However, for multipurpose UAVs with high mobility and the

ability to access remote locations, managing a network of UAVs can be complex and restrict

their usage. To address this problem, a decision-making framework based on machine learn-

ing can be developed to manage the entire UAV-MECs cycle and make real-time decisions

while considering constraints related to storage and computation resources.
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