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Abstract

Non-invasive brain-computer interface (BCI) systems rely on brainwave activity, predomi-

nantly captured through Electroencephalography (EEG), to facilitate seamless interactions

with digital platforms. Throughout its development, EEG-driven BCIs have touched in-

dustries as diverse as entertainment, healthcare, and cybersecurity. However, despite im-

provements in functionality and accuracy, the critical issue of securing the vast amounts of

sensitive EEG data collected by these systems has remained largely overlooked, posing sig-

nificant privacy risks. While techniques like data anonymization, encryption, masking, and

perturbation aim to protect privacy, they often degrade the quality of the data and fail to

fully eliminate the risk of re-identification. In response, we have developed multiple privacy-

preserving frameworks: a quantum-inspired Differential Privacy-based generative model, a

Rényi Differential Privacy (RDP) based Federated model, and a privacy-adaptive Federated

Split Learning framework, featuring Secure Aggregation and Autoencoders. Each framework

is designed to generate synthetic EEG data that comply with privacy protection standards

while ensuring robust data utility for downstream analysis. Modern defenses that focus on

privacy frequently sacrifice performance or depend on large amounts of external data, which

can limit their practicality. Our approach not only mitigates these limitations, but also

significantly strengthens defenses against membership inference and reconstruction threats.
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1
Introduction

Brain-computer interface (BCI) technology is rapidly evolving and has allowed the creation

of intricate neuroprosthetics and applications in the fields of healthcare, entertainment and

even personal security. BCIs based on electroencephalography (EEG) register electrical

activity in the brain and provide a bridge between human cognitive states and computerized

procedures. EEG recordings were first demonstrated by Hans Berger in 1924 [1, 2] and have

since provided a new way of interacting and controlling the human brain [3, 4, 5, 6]. BCIs

were developed in the 1970s with the intention of capturing and analyzing brain signals

from a user and translating them into actions to control external devices [4]. Brain-machine

interface (BMI) systems, in turn, use only embedded sensor signals for input, excluding

external equipment [4].

1



1.1 Landscape: EEG Data Privacy

BCI technologies that use EEG data range from cutting-edge brain-controlled prosthetics

for people with severe motor disabilities to unique real-time mood forecasting systems in

personalized entertainment and mental health coaching. All of these developments illustrate

the increased use of EEG data across domains and represent a major advancement in user

interface techniques [7, 8, 9].

The increasing reliance on EEG data for emerging BCI applications introduces significant

privacy issues. Recent EEG data breaches have exposed many vulnerabilities and threats

associated with current data protection measures, leading to identity theft, privacy viola-

tions, and unwarranted surveillance. Many researchers show that wearable BCI devices pose

a significant risk to user privacy and could be detrimental if brain data is not adequately

encrypted [7, 8, 10]. For example, unauthorized access to EEG data can expose user’s mental

health or emotional states to targeted advertising, or more harmful ones, such as coercion

or manipulation [9, 11].

Beltran et al. [12] identified various cumulative threats indicating that noise-based at-

tacks can occur in BCI systems that rely on P300 waves. To mitigate these threats, increasing

the number of electrodes to monitor the EEG output of such systems is advantageous. Bernal

et al. [13] found that these threats could also influence the natural activity of neurons. Their

research demonstrated the use of neuronal scanning attacks and neuronal flooding attacks

within a neuronal simulator.

The security landscape is further made complex by the integration of BCIs with other

technologies such as cloud computing and IoT devices. Thus, it is necessary to protect privacy

at the key stages of data collection, transmission, and storage [8, 10, 14]. The ongoing

efforts to ensure the anonymity of EEG data to preserve its utility for BCI applications

include techniques such as encryption, anonymization, and differential privacy preservation

principles [7, 8, 15, 16].
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1.2 Motivation

This thesis is mainly motivated by the need to address the fundamental problem of striking

a balance between strong privacy guarantees and data value. Even state-of-the-art solutions

such as differential privacy still have room for development. Traditional privacy-preserving

techniques sometimes fail to preserve the usefulness of data while applying adequate privacy

protections [16, 17, 18, 19]. More specifically, any privacy-preserving method must guarantee

minimum loss in data quality in the context of BCI applications to facilitate trustworthy and

insightful analysis. The goal of this thesis is to provide privacy assurance while maintaining

the usefulness of EEG data through the development of privacy-preserving frameworks.

1.3 Objectives

The primary objective of this thesis is to develop and validate novel frameworks that ensure

the privacy-preserving generation and processing of EEG data in brain-computer interfaces

(BCIs), while maintaining high data utility. This thesis specifically seeks to achieve the

following goals:

• To develop new privacy-preserving frameworks through the generation of synthetic

EEG data that closely resemble the original data for subsequent BCI operations while

addressing the gaps of privacy concerns.

• To systematically explore the privacy-utility trade-off by quantifying how varying pri-

vacy budgets ϵ and the amount of noise added affect the usability and accuracy of

generated synthetic EEG data in our proposed frameworks.

• To develop secure communication protocols ensuring that sensitive EEG data remains

protected even during network communication without exposing raw data.

• To validate the effectiveness of the proposed privacy mechanisms by testing them

against adversarial attacks and comparing them to existing state-of-the-art techniques.

3



The section provides details on each of the objectives achieved in the subsequent chapters

and the specific contributions.

1.4 Thesis Contributions

Focused on addressing the limitations of existing approaches, we reconfigure the architec-

ture of generative adversarial networks (GANs) and present various novel privacy-preserving

frameworks. Our approach seeks to achieve an equilibrium between privacy and utility in

EEG-based BCI applications. The primary objective is to generate synthetic EEG data

that preserve the fundamental attributes of the original EEG dataset while substantially

mitigating the risk of privacy violations.

The main contributions of this study are:

• Quantum inspired noise dynamics integration: Our study is one of the pioneering

efforts to integrate quantum inspired noise dynamics into the GAN training process by

emulating the phenomenon of quantum decoherence. Dynamically adjustable noise not

only meets, but significantly improves the criteria for differential privacy. It effectively

reduces the risks of information leakage by demonstrating a transition from a quantum

state with high uncertainty to a classical state with reduced uncertainty across multiple

epochs in the training, which starts with a high noise level that gradually decreases.

• Advanced privacy budget management: To comply with the quantum uncertainty

principle, the privacy budget is calculated by adding the decay factor to the total

amount of the privacy budget accumulated during training epochs. The contribution

of each epoch to the total privacy budget decreases as the model stabilizes, resulting

in a more predictable privacy budget which is manageable for practical use where

long-term data security is very important.

• Privacy attacks evaluation: We evaluate our system against membership inference

in white-box and black-box configurations, as well as reconstruction attacks. These

4



tests confirm the model’s effectiveness in masking real data sources. Our model is one

of the early works in the field showing resilience to reconstruction attacks on EEG

data.

• Federated learning with Spiking Neural Networks: We built a Federated Spiking

GAN framework combining Spiking Neural Networks (SNNs) and Generative Adver-

sarial Networks (GANs) with an advanced noise model for EEG data synthesis. The

temporal dynamics of SNNs improve the authenticity of synthetic EEG data, while the

ANN-based discriminator ensures accuracy for utility (classification). Incorporating a

temporally correlated noise model with Renyi Differential Privacy (RDP) provides reli-

able privacy and high data utility. Our federated learning architecture enhances privacy

by training models decentralized across client nodes without raw data exchange. Our

assessments validate the privacy-utility trade-offs and effectiveness of the framework.

• Federated Split Learning with anonymized latent variables : We built a unique

a framework using Hierarchical encoder-decoder networks, GFlowNet, and Federated

Split Learning (FSL) for privacy-preserving EEG data creation. It ensures privacy

by exchanging only anonymized latent variables with the server, keeping raw EEG

data on the client. The hierarchical encoder-decoder network uses a multi-level latent

space with RDP for privacy-utility balance. Secure Aggregation lets the server ana-

lyze only aggregated data, thus protecting individual contributions. Lastly, GFlowNet

generates synthetic EEG data, ensuring temporal and spatial consistency with privacy.

Our method offers better privacy-utility trade-offs and maintains high data quality for

sensitive EEG data compared with existing models.

1.5 Thesis Roadmap

This dissertation is organized as follows:

• Chapter 2 provides a comprehensive overview of foundational concepts and theories
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essential for understanding the subsequent analysis. It provides the necessary context

for the research discussed in the later chapters. It also reviews and discusses existing

literature and previous research pertinent to the thesis topics. It highlights key findings

and identifies gaps that the current research aims to address.

• Chapters 3, 4, and 5 explore various techniques designed to preserve the privacy of

EEG data. Each chapter presents and analyzes different methods and approaches to

safeguarding sensitive information.

• Chapter 6 concludes the dissertation by summarizing the key findings, discussing

their implications, and reflecting on the contributions of the research.

• Chapter 7 outlines potential directions for future research and proposes areas for

further investigation.
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2
Background and Literature Review

2.1 Generative Models:

2.1.1 Generative Adversarial Network (GAN)

Generative Adversarial Networks (GANs), introduced by Goodfellow et al. in 2014 [20],

represent a significant innovation in machine learning by facilitating the generation of highly

realistic synthetic data. GANs are composed of two competing neural networks: generator

(G) and discriminator (D). The generator’s objective is to create data that appear indis-

tinguishable from real data, while the discriminator’s task is to differentiate between real

and synthesized data. This adversarial interaction encourages both networks to continuously

improve, resulting in the generation of highly realistic data.

Mathematically, GANs operate on a minimax game principle. The generator (G) gen-
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erates data samples G(z; θg) from a noise distribution z ∼ pz(z), while the discriminator

(D) evaluates these samples to determine their authenticity. The value function V (G,D)

defining this adversarial game is expressed as [20]:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2.1)

In this setup, D(x) indicates the probability that x is a real sample. The generator (G) aims

to minimize log(1−D(G(z))), whereas the discriminator (D) seeks to maximize logD(x) +

log(1−D(G(z))) [20].

The training process alternates updates to the generator and discriminator parameters,

θg and θd, respectively, typically employing stochastic gradient descent. To improve training

dynamics, the generator can maximize logD(G(z)) rather than minimizing log(1−D(G(z))),

providing more robust gradients during initial training phases:

max
G

Ez∼pz(z)[logD(G(z))] (2.2)

This adversarial framework ensures that the generator progressively enhances its ability to

produce realistic data, while the discriminator refines its capability to distinguish real from

synthetic data. Theoretically, with adequate capacity and training time, the generator’s

distribution pg converges to the real data distribution pdata [20].

2.1.2 Sequential Generative Adversarial Networks (SGANs)

Sequential Generative Adversarial Networks (SGANs) [21] extend the GAN architecture

to handle sequential data such as time series or text. SGANs are particularly useful for

generating sequences that exhibit temporal dependencies, making them suitable for applica-

tions in natural language processing and bioinformatics.The primary innovation in SGANs

is the integration of recurrent neural networks (RNNs) or long short-term memory (LSTM)

networks within the generator and discriminator to capture temporal dependencies. The ob-
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jective function remains similar to the original GAN formulation but is adapted to account

for sequential data:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x1:T )] + Ez∼pz(z)[log(1−D(G(z1:T )))] (2.3)

where x1:T denotes a sequence of data points, and G(z1:T ) represents the generated se-

quence [21].

2.1.3 Wasserstein Generative Adversarial Networks (WGANs)

Wasserstein GANs (WGANs) introduce a novel objective based on the Earth Mover’s (Wasserstein-

1) distance, which enhances training stability and mitigates mode collapse. The WGAN

objective is defined as [22, 23, 24]:

min
G

max
D∈D

Ex∼pdata(x)[D(x)]− Ez∼pz(z)[D(G(z))] (2.4)

where D denotes the set of 1-Lipschitz functions. This approach encourages the discriminator

to learn a meaningful metric for comparing real and generated samples [22].

To enforce the Lipschitz constraint, WGANs utilize a gradient penalty. This penalty is

expressed as:

Ex̂∼px̂ [(∥∇x̂D(x̂)∥2 − 1)2] (2.5)

where x̂ is sampled uniformly along straight lines between pairs of points drawn from the

real data distribution and the generator distribution. This technique ensures stable training

and reduces issues such as vanishing gradients and mode collapse [23].

WGANs have been successfully applied in various fields, including addressing data im-

balance in classification tasks. Bhatia and Dahyot [25] demonstrated the effectiveness of

WGANs in enhancing classifier performance on imbalanced datasets by generating realistic

synthetic samples that help balance the class distribution.
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2.1.4 Conditional Generative Adversarial Networks (CGANs)

Conditional GANs (CGANs) extend the GAN framework to conditional settings, where

both the generator and discriminator receive additional information y (e.g., class labels).

The objective function for CGANs is [26]:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x|y)] + Ez∼pz(z)[log(1−D(G(z|y)))] (2.6)

By incorporating conditional information, CGANs can generate samples that adhere to

specific conditions, making them suitable for a variety of applications, including image-to-

image translation and data augmentation [26].

2.2 Privacy-Preserving Mechanisms

2.2.1 Differential Privacy (DP)

Differential Privacy (DP) [27] offers a framework to quantify and control the loss of privacy

incurred when releasing information derived from a dataset. By ensuring that the removal

or addition of a single data point does not significantly affect the outcome of any analysis,

DP provides strong privacy guarantees that are crucial in the context of sensitive data such

as EEG records. The integration of DP into data analysis processes, particularly in machine

learning models, has become a cornerstone for developing privacy-preserving technologies,

underscoring the importance of balancing data utility with privacy considerations.

Here, we define the core concepts and theorems essential for our proposed methodology:

Definition 2.1 (Differential Privacy): A randomized algorithm M with domain D

and range R satisfies (ϵ, δ)-differential privacy if for any two adjacent datasets d, d′ ∈ D

(differing by one element), and for all subsets S ⊆ R,

Pr[M(d) ∈ S] ≤ eϵ Pr[M(d′) ∈ S] + δ (2.7)
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where ϵ (epsilon) represents the privacy loss, δ (delta) is the probability of this guarantee

not holding, essentially allowing for a small chance of failure [28].

Theorem 2.2 (Gaussian Mechanism): For any function f : D → Rk with sensitivity

∆f , and parameters ϵ, δ where 0 < ϵ < 1 and c2 > 2 ln(1.25/δ), the Gaussian Mechanism

adds noise with standard deviation σ ≥ c∆f
ϵ

to the output of f to ensure (ϵ, δ)-differential

privacy [28].

Theorem 2.3 (Composition Theorem): For a series of independent randomized

mechanisms M1,M2, . . . ,Mk, each providing (ϵ, δ)-differential privacy, the sequence of

mechanisms provides (kϵ, kδ)-differential privacy [29].

Theorem 2.4 (Enchanced Composition Theorem): For any ϵ, δ, δ′ > 0, the class

of ϵ-differentially private mechanisms satisfies (ϵ′, kδ + δ′)-differential privacy under k-fold

adaptive composition [27], where:

ϵ′ =
√

2k ln(1/δ′)ϵ+ kϵ(eϵ − 1) (2.8)

This theorem provides a tighter bound on cumulative privacy loss when multiple differ-

entially private mechanisms are composed [27].

2.2.2 Rényi Differential Privacy

Rényi Differential Privacy (RDP) [30] is a relaxation of the standard differential privacy

definition that allows for tighter privacy guarantees when combining multiple differentially

private mechanisms. RDP uses the Rényi divergence to quantify the privacy loss, providing

a more refined analysis of privacy guarantees.

Definition 2.5 (Rényi Differential Privacy): A randomized algorithm M satisfies

(α, ϵ)-Rényi differential privacy if for any two adjacent datasets d, d′ ∈ D, the Rényi diver-

gence of order α > 1 between the outputs ofM on d and d′ is at most ϵ. Formally,

Dα(M(d) ∥ M(d′)) ≤ ϵ (2.9)
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where the Rényi divergence Dα(P ∥ Q) for two probability distributions P and Q is

defined as [30]:

Dα(P ∥ Q) =
1

α− 1
logEx∼Q

[(
P (x)

Q(x)

)α]
(2.10)

This definition provides a framework that can offer tighter privacy bounds under com-

position compared to the traditional (ϵ, δ)-differential privacy [30].

Theorem 2.6 (Advanced Composition for RDP): If an algorithm satisfies (α, ϵi)-

RDP for i = 1, 2, . . . , k, then the composition of these algorithms satisfies (α,
∑k

i=1 ϵi)-RDP

[30].

2.2.3 Local Differential Privacy

Local Differential Privacy (LDP) is a variant of differential privacy that ensures privacy

at the level of individual data contributors before any aggregation occurs. This model is

particularly relevant for decentralized data collection scenarios where the data provider does

not fully trust the data collector.

Definition 2.7 (Local Differential Privacy): A randomized algorithm M satisfies

ϵ-local differential privacy if for any two inputs x, y ∈ X , and for all outputs z ∈ Z,

Pr[M(x) = z] ≤ eϵ Pr[M(y) = z] (2.11)

LDP ensures that the randomized response provided by each individual does not reveal

too much about their input, thereby protecting their privacy [31, 32, 33].

Theorem 2.8 (Gaussian Mechanism for LDP): For a function f : X → R with

sensitivity ∆f , the Gaussian mechanism adds noise drawn from a Gaussian distribution with

mean zero and standard deviation σ = ∆f
ϵ

to the output of f to ensure ϵ-local differential

privacy [31, 33, 34].
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2.3 Quantum Principles

Quantum computing uses the principles of quantum mechanics to perform computations

in ways that are fundamentally different from classical computing. Fundamental princi-

ples include quantum bits (qubits), superposition, entanglement, quantum interference, the

uncertainty principle, quantum decoherence, and quantum tunneling [35, 36, 37]. Each of

these principles has profound implications for computational efficiency and data security.

We specifically incorporated quantum decoherence and the quantum uncertainty principle

due to their direct applicability to enhancing privacy in data synthesis.

2.3.1 Quantum Uncertainty Principle

The Heisenberg Uncertainty Principle is a fundamental concept in quantum mechanics, stat-

ing that certain pairs of physical properties, such as position (x) and momentum (p), cannot

be known precisely simultaneously. This principle is mathematically expressed as [38]:

∆x∆p ≥ h̄

2
(2.12)

where ∆x and ∆p are the uncertainties in position and momentum, respectively, and h̄ is

the reduced Planck constant. In quantum computing, the uncertainty principle ensures that

attempts to measure quantum states can disturb those states. This principle is exploited

in quantum cryptographic systems to detect eavesdropping, since any measurement by an

eavesdropper would disturb the quantum states and reveal their presence [39].

2.3.2 Quantum Decoherence

Quantum decoherence [40] describes the loss of quantum coherence as the quantum system

interacts with its environment, causing the quantum system to transition from a coherent

superposition state to an incoherent classical mixture. This process can be described by

the evolution of the density matrix ρ of the quantum state, given by the Lindblad master

equation [41].
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dρ

dt
= − i

h̄
[H, ρ] +

∑
n

ςn

(
LnρL

†
n −

1

2
{L†

nLn, ρ}
)

(2.13)

where H is the Hamiltonian of the system, Ln are the Lindblad operators representing

interactions with the environment, and {·, ·} denotes the anticommutator. Decoherence is

a major challenge in quantum computing as it can destroy delicate quantum states that

are needed for computation. However, understanding and controlling decoherence is key to

developing quantum error correction techniques [42].

2.4 Federated Learning

With Federated Learning (FL), several clients may train together to build a common model

without sharing their raw data due to a decentralized ML technique. By keeping the data on

the local servers, lowering the possibility of security breaches, and guaranteeing adherence

to the data protection laws, FL protects the privacy of user data. FL uses a variety of

distributed datasets to improve the generalization capabilities of models [43].

In FL, each client trains locally on their own private data and only shares updates to

the model with a central server (that aggregates these updates in order to update the global

model). The federated averaging algorithm that is at the heart of FL, is defined as [44, 45]:

wt+1 = wt − η

N∑
i=1

ni

n
ut
i (2.14)

where wt represents the model parameters at round t, η is the learning rate, ut
i is the

update from client i, ni is the number of samples held by client i, and n is the total number

of samples across all clients.

FL simultaneously tackles challenges such as the high communication cost, data diversity

or heterogeneity and security. In addition to healthcare, other applications, such as privacy-

aware traffic flow prediction, have been explored using FL by Liu et al. [46]. Mothukuri et

al. The research by Mothukuri et al. [47] provides an overall survey on the security and
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private issues in FL, arguing that a strong privacy preservation method must be integrated

into FL systems.

2.5 Existing Privacy Preserving Approaches

Despite numerous efforts, existing methods face several challenges and limitations that hinder

their effectiveness in protecting sensitive EEG data.

Homomorphic encryption is a popular technique that allows computations to be per-

formed on encrypted data without decrypting it [48]. Popescu et al. [17] applied it to obtain

privacy-preserving EEG data classification. However, the computational inefficiency and

high latency of their method constrain its application for real-time EEG data processing in

BCI applications.

Differential privacy (DP) provides a framework for adding noise to data or queries to

prevent the disclosure of individual-specific information [49]. Debie et al. [50] proposed

a method with Generative Adversarial Networks (GAN) to produce synthetic EEG data

resembling real EEG data. Their GAN framework developed using a differential privacy

approach, implemented a privacy budget to strike a balance between data utility and privacy.

However, their model achieved slightly lower but similar performance to those of trained on

original EEG data. Although DP is effective in ensuring privacy, the EEG data-specific

mechanisms [16, 17] face difficulties in preserving the utility of the data, which significantly

affected the accuracy of the downstream machine learning models [18, 19].

Federated learning (FL) enables the training of the decentralized model on local devices,

ensuring that the raw data remain on the user’s device, thus enhancing privacy [51]. How-

ever, FL also faces challenges related to communication overhead, model convergence, and

heterogeneity of data between devices. Xia et al. [14] highlighted these limitations in their

review of privacy-preserving brain-computer interfaces, noting that while FL reduces the risk

of data breaches, it struggles with scalability and efficiency in processing large-scale EEG

datasets.
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Wang et al. [52] proposed a novel privacy-preserving domain adaptation approach (PPDA)

for intracranial EEG classification that addresses individual differences and privacy concerns

without accessing source data. This method showed promise in reducing domain shifts and

preserving patient privacy but relies on pseudolabeling techniques introducing inaccuracies,

which accumulate and degrade the model’s performance over time, particularly when dealing

with complex and noisy EEG signals.

Agarwal et al. proposed cryptographic techniques to ensure the confidentiality of multiple

users [53]. Their approach relies on secure multiparty computation (SMC) [54], which

ensures that no party has access to an individual’s brain/EEG signal. However, this method

involves substantial effort to make it feasible on less powerful machines, which presents a

major disadvantage. Hanisch et al. [55] also noted the complexity of implementing SMC in

EEG-based BCI, which poses a significant barrier to its widespread adoption.

Focusing on AI-driven cybersecurity solutions, Schiliro et al. [56] introduced a novel

cognitive privacy technique that can protect EEG data from cyber threats. To ensure the

security of brain data within the BCI architecture against unauthorized credentials, a nor-

malized correlation analysis approach was used, which was also referenced in [2]. Pazouki

et al. [57] built a model to mitigate common cyber threats such as flooding or jamming

associated with the control of smart home devices with brain implants. Their ANN-based

model showed effective performance against false date injection attacks and scanning attacks

[13].

Bidgoly et al. [58] suggested a privacy protection technique for BCI authentication sys-

tems where instead of using raw brain signals, confidential user data can be conserved as

an EEG fingerprint, similar to a cryptographic hash. Gui et al. [59] introduced a de-

tection mechanism based on residual noise characteristics to determine replay attacks and

input modifications. Initially, it recognizes the user using a convolutional neural network

(CNN)and then classifies the replay attacks. By mixing the EEG channels, abnormalities

in the communication channel caused by hacking can be determined. Mezzina et al. [60]
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found vulnerabilities between the BCI device and the framework, and addressed them using

a versatile cyber-secure architecture resistant to noise-based attacks.

Maiorana et al. [61] discovered a hill climbing attack, which is achieved by iterative

modification of EEG data until success with the BCI-based biometric system. To protect

the features of the EEG against such attacks, Wang et al. [62] proposed a system based

on polynomial transformation with cosine functions that modulate the features of the graph

and devised a template-corrupting process to improve to provide cancelable templates for

improved EEG security.

Although synthetic data generation and privacy-preserving tools have advanced signifi-

cantly recently, some notable limitations remain. Numerous studies highlight the consider-

able potential of employing SNNs to process EEG data [63, 64], yet none have successfully

provided a comprehensive approach to preserving all forms of private information. For exam-

ple, PATE-GANs have been developed to address privacy concerns but face challenges with

scalability and high-dimensional data [65]. Furthermore, despite progress in the generation

of temporal data with GANs [66, 67], these methods lack the incorporation of differential pri-

vacy. Several studies examined the self-adaptiveness of SNNs and federated frameworks for

tasks such as anomaly detection (AD) and human activity recognition [68, 69], but indicated

the need for privacy-preserving mechanisms.

Various studies have been conducted on privacy-preserving techniques for SNNs, for

example, in homomorphic encryption and energy efficiency; however, this area of research

typically does not offer direct applications to EEG data or include advanced temporal coding

[70, 71]. Similarly, continuous sequential data GANs, including Spiking GANs, have reported

significant progress in data generation quality, but do not address privacy concerns [72,

73]. Recent studies on GANs, equipped with temporal dynamics and differential privacy

mechanism, showcase effectiveness while highlighting the need for further integration of

federated learning and advanced temporal coding [74, 75].

Yan et al. [63] empirically proved that spiking neural networks (SNN) are energy effi-
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cient and well-suited for real-time processing systems compared to classical artificial neural

networks (ANN) for EMG/EEG classification, where SNN accuracies were competitive with

state-of-the-art ANNs while leading to far lower power consumption. Based on this, Xu

et al. [64] used the temporal properties of SNN to capture the intricate temporal charac-

teristics possessed by the EEG data and used them for emotion recognition. To address

privacy-related issues, a GAN model, named PATE-GAN, was proposed in [65], which ap-

plies differential privacy in the generative domain using the framework of private aggregation

of teacher ensembles. Although this model achieved strong privacy guarantees, it was chal-

lenging to scale and introduced additional complexity via an ensemble of teacher models, as

well as the need for secure aggregation. Moreover, PATE-GAN had difficulty working with

high-dimensional data because the student discriminator needs to see at least somewhat re-

alistic generated samples from the beginning, which becomes difficult in higher-dimensional

spaces. McKenna et al. with the AIM algorithm [76], noted the importance of a balance

between data utility and privacy, contributing an adaptive iterative strategy for differentially

private synthetic data generation.

Esteban et al. [66] introduced RCGAN – a recurrent conditional GAN to generate realistic

time series medical data, which showed the ability of GANS to work with temporal sequences.

This work paved the path for follow-up studies like Yoon et al.’s [67] exploration, which was

the first one, an implementation of TimeGAN with embedding and recovery functions to treat

mixed datasets containing temporal data along with non-time-aware features. Both studies

were able to process temporal data but did not include privacy-preserving technologies,

creating an opportunity for additional improvement to secure data generation. Bäßler et

al. extended the use of SNNs through an unsupervised anomaly detection framework over

multivariate time series while focusing on its adaptive properties for online data streams [68].

Complementing this, Khan et al. [69] proposed a federated framework for human activity

recognition, combining privacy and energy efficiency to process data from distributed edge

devices. Together, these studies demonstrated the promise of using SNNs with federated
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learning to increase privacy and efficiency.

In [70] a homomorphic encryption scheme for privacy-preserving SNN was proposed to

provide strong secrecy guarantees by encrypting the input while leveraging the benefits of

SNN in processing temporal data. Arsalan et al. [71] focused on energy efficiency and privacy

preservation in forecasting user health data streams using SNN to demonstrate the trade-offs

between accuracy and energy savings. Rather, in the GAN world, Mogren [72] introduced C-

RNN-GAN to adversarial training from continuous sequential data such as music generation.

This paper showed that these GANs have the potential to process temporal data. In this

sense, Rosenfeld et al. [73] extended the concept with Spiking GANs to incorporate local

training and Bayesian models, as well as continuous meta-learning to enhance adaptability

and efficiency. This research underscored that continued advancements in GANs and SNN

led to more efficient generation of synthetic data examples.

Shen et al. introduced temporal spiking GANs [74] for heading direction decoding, a form

of EEG signal processing, and showed the importance of temporal dynamics in this research

stream. Similarly, Wang and Zhao [75] proposed DPSNN to address the differential privacy

of temporal data processing by using temporal enhanced pooling to improve utility and

robustness with respect to differentially private training. These experiments showcased the

power of privacy-preserving mechanisms when coupled with GANs while dealing particularly

with temporal data. Furthermore, the concept of PPGAN by Liu et al. [77] deliberately

combines differential privacy with GANs by adding noise to the gradient during generator

training. Later, Xie et al. [78] extended this work as DPGAN, introducing differential

privacy in data generation through noise addition, demonstrating that both privacy and the

usefulness of the generated data are crucial.

2.6 Quantum Computing’s Emerging Role

Although significant progress has been made in developing privacy-preserving techniques

for EEG data, existing methods face several challenges that limit their effectiveness and
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practicality. The dynamic nature of EEG data, characterized by its high dimensionality

and temporal dependencies, poses unique challenges to preserving privacy. Many existing

techniques fail to adequately address these characteristics, leading to oversimplification of

the data or inadequate protection measures, especially with small datasets [79].

Quantum algorithms provide a unique advantage for their potential to implement differ-

ential privacy in a more secure manner, employing quantum noise mechanisms that naturally

align with the probabilistic and unpredictable nature of quantum mechanics [10, 80].

The intersection of quantum computing and privacy is an emerging field, with ongoing

research aimed at addressing the unique challenges posed by integrating quantum principles

into existing privacy-preserving frameworks. The application of quantum computing in BCI

has been explored in hybrid models, combining classical and quantum computing elements

to enhance performance and security. For example, quantum neural networks (QNN) are

being developed to improve the accuracy and robustness of EEG data processing, utilizing

quantum properties to handle complex patterns and noise more effectively than traditional

neural networks [80, 81].

Quantum enhanced BCIs can potentially revolutionize the way we approach brain signal

processing, enabling faster and more secure data handling, which is crucial for applications

such as neuroprosthetics and brain-controlled interfaces [82, 83, 84]. As technology matures,

quantum-enhanced privacy techniques are expected to become increasingly viable to protect

sensitive data, particularly in high-security applications such as EEG-based BCIs [85, 86, 82].

Limited research on the application of differential privacy, GANs, and quantum principles

specifically to EEG data underscores a gap in the literature that requires further exploration

of methods that can effectively protect EEG data without compromising their integrity.

2.7 Summary

The chapter discussed concepts essential to the thesis, including Generative Adversarial Net-

works (GANs), Sequential Generative Adversarial Networks (SGANs), Wasserstein Genera-

20



tive Adversarial Networks (WGANs), Conditional Generative Adversarial Networks (CGANs),

Differential Privacy (DP), R’enyi Differential Privacy (RDP), Local Differential Privacy

(LDP), Gaussian Mechanism, Quantum Uncertainty Principle, Quantum Decoherence, Fed-

erated Learning (FL). We highlight related works on privacy-preserving learning, generative

models in the EEG-based BCI field along with existing privacy-preserving methods. In

Chapter 3, the development of Quantum-Inspired Differential Privacy-Based GAN is cov-

ered, with the motive to obtain high-quality private EEG data that previous approaches

failed to produce with a tight privacy budget.
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3
Quantum-Inspired Differential

Privacy-based GAN

The proliferation of Brain-Computer Interfaces (BCIs) using EEG data introduces significant

privacy risks, particularly due to the susceptibility of these data to inference and reconstruc-

tion attacks. Traditional privacy techniques such as data anonymization, encryption, and

data perturbation often compromise the utility of the data or fail under sophisticated at-

tack scenarios. Recognizing the limitations of existing approaches, which often result in

trade-offs between data utility and privacy, we developed a quantum inspired, differential

privacy based generative adversarial network (Q-DP-GAN). Although classical GANs can

generate high-quality synthetic data, they usually lack in dynamically modifying the privacy

parameters during training, which leaves them open to privacy violations over time. By

emulating inherent randomness of quantum processes in the noise adjustment, our findings
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demonstrate the Q-DP-GAN’s ability to protect EEG data against both membership in-

ference and reconstruction attacks compared to traditional privacy-preserving methods. It

effectively generates synthetic EEG data that maintain high utility while ensuring confiden-

tiality and security of the underlying training data during BCI classification tasks validated

with seminal BCI datasets.

3.1 Methodology

3.1.1 Hybrid quantum inspired differential privacy Model

The Q-DP-GAN model uniquely combines differential privacy, enforced by stochastic gradi-

ent descent (DP-SGD), with dynamically adjusted quantum-inspired noise dynamics within

a generative adversary network (GAN) designed for the synthesis of EEG data. This inte-

gration is designed to achieve robust privacy guarantees while maintaining the utility of the

generated EEG data. Our methodology is outlined in Algorithm 3.1 and depicted in Figure

3.1.

Generator and Discriminator Architecture

The generator (G) and the discriminator (D) form the backbone of our model, in which the

generator is tasked with creating synthetic EEG data and the discriminator is responsible

for the validation of its authenticity.

Generator Architecture: The generator is designed to convert a latent noise vector into

synthetic EEG data that resembles the real EEG recordings both in structure and dynamics.

It comprises a series of transposed convolutional layers, each designed to progressively upscale

the input vector into a full EEG data structure. The generator function G(z; θG) maps

the latent space vector z to the data space, where θG denotes the generator parameters.

The output is activated by a tanh function to ensure the output matches the amplitude

characteristics typical of EEG signals. The generator architecture is designed as shown in

Table 3.1.
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Figure 3.1: System architecture of the proposed Q-DP-GAN (quantum-inspired differential
privacy) model.

Discriminator Architecture: The discriminator assesses the authenticity of EEG data,

classifying it as either real or generated. It utilizes convolutional layers to extract features

from the input data, which are then used to compute the probability of the data being

real. The function D(x; θD) evaluates the input x, with θD representing the discriminator

parameters. A sigmoid function at the output layer provides a probabilistic estimate of

authenticity. The discriminator architecture is designed as shown in Table 3.2 and depicted

in Figure 3.2.
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Table 3.1: Generator architecture details of our proposed model

Block Layer Name Units/Size Activation Output Shape

1 Input (latent vector) - - (100, 1)
2 Dense 128 LeakyReLU (128, 1)
3 Reshape - - (64, 2, 1)
4 GRU Layer 1 256 Tanh (64, 256)
5 GRU Layer 2 64 Tanh (64, 64)
6 Flatten - - (4096,)
7 Dense 3000 ReLU (3000,)
8 Reshape/Output Layer - Tanh (3, 1000)

Figure 3.2: Discriminator architecture of the proposed model. For simplicity we omitted the
activation and dropout layers.

Table 3.2: Discriminator architecture details of our proposed model

Block Layer Name Unit Kernel Size Activation Output Shape

1 Input - - - (3, 1000)

2 Reshape - - - (1, 3, 1000)

3 2D Convolution 10 (1,10) ReLU (10, 3, 991)

4 2D Convolution 10 (3,1) ReLU (10, 1, 991)

5 Dropout [Dropout

rate: 0.25]

- - - (10, 1, 991)

6 Batch Normalization - - - (10, 1, 991)

7 Max Pooling 2D - (1,2) - (10, 1, 495)

8 2D Convolution 16 (1,10) ReLU (16, 1, 486)
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Table 3.2: Discriminator architecture details of our proposed model (continued)

Block Layer Name Unit Kernel Size Activ-ation Output Shape

9 Max Pooling 2D - (1,3) - (16, 1, 162)

10 2D Convolution 32 (1,10) ReLU (32, 1, 153)

11 Max Pooling 2D - (1,2) - (32, 1, 76)

12 2D Convolution 64 (1,10) ReLU (64, 1, 67)

13 Dropout [Dropout

rate: 0.25]

- - - (64, 1, 67)

14 Batch Normalization - - - (64, 1, 67)

15 Bidirect- ional LSTM 64 - Tanh (64, 67)

16 Bidirect- ional LSTM 128 - Tanh (128, 67)

17 Flatten - - - (8704,)

18 Dense 64 - ReLU (64,)

19 Dropout [ Dropout

rate: 0.5]

- - - (64,)

20 Dense (Output Layer) 1 - Sigmoid (1,)

Quantum Decoherence and Noise Dynamics

Reflecting the behavior of quantum systems, where interaction with the environment leads

to a loss of quantum coherence, the model initially applies variable high-intensity noise that

adapts over time, analogous to the uncertainty in quantum measurements.The mathematical

formulation of noise dynamics is;

σ(t) = σinitiale
−λt (3.1)

C(t) = Cinitiale
−βt (3.2)
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where σ(t) represents the standard deviation of the noise applied to the gradients at epoch

t. This noise is dynamically adjusted, decreasing as t increases from 1 to epochstotal. This

decrease simulates the transition from a quantum state (characterized by high uncertainty)

to a more classical state (characterized by reduced uncertainty). Similarly, C(t) denotes

the clipping threshold for the gradients at each epoch t. It is also adjusted dynamically,

ensuring that the influence of any individual training sample remains bounded throughout

the training, which helps to mitigate the risk of revealing individual contributions in the

synthesized data. Here, λ and β are the decay rates. We performed several trials, changing

λ and β to examine how different rates affected the model’s accuracy and privacy, in order

to find the optimal values. In this study, λ and β were set to 0.05 and 0.03, respectively, as

these values showed the right balance between privacy and accuracy (Section 3.2.3).

Quantum Uncertainty Principle in Later Phases:

To ensure persistent privacy protection as the model stabilizes, the Quantum Uncertainty

Principle maintains a baseline level of indeterminacy, preventing an exact determination of

individual data contributions. The constant privacy parameters are defined as follows:

σ = σfinal (3.3)

C = Cfinal (3.4)

These parameters remain unchanged after the transition (described in the following section).

By maintaining a steady level of noise and minimizing the influence of individual data points,

they reliably ensure data privacy.

3.1.2 Transition Algorithm and Privacy Budget Computation

Transition Algorithm:

The model employs an algorithmic approach to determine when to switch from dynamic to

static privacy parameters based on the stabilization of the model’s performance.
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• Algorithm Details:

– if ∆Loss < θ for n consecutive epochs, then transition to static phase.

This condition checks if the change in loss ∆Loss falls below a threshold θ over

n epochs, indicating that the model has reached a sufficiently stable state and

requires reduced dynamism in privacy controls.

To ensure effective execution of these parameters, ∆Loss is calculated as follows:

∆Loss =
1

n

t∑
i=t−n+1

|Lossi − Lossi−1| (3.5)

This formula calculates the average absolute change in loss over n epochs, providing

a smooth and representative measure of the changes in loss in this period. It effectively

captures both the magnitude and consistency of loss changes, providing a reliable trigger for

the parameter transition.

Privacy Budget Computation:

To incorporate quantum noise while ensuring consistency with the principles of differential

privacy, the privacy budget [87, 88, 89] at a given epoch t is modified as follows:

ε(t) =
√

2 log(1.25/δ) ·
t∑

i=1

ω(i) · q · C(i)

σ(i)
, (3.6)

where, w(i) is a weighting function defined as w(i) = e−γi, with γ representing the decay

rate. This rate controls how rapidly the influence of each epoch reduces, highlighting the

diminishing privacy risk as the model stabilizes. Here, γ = 2λβ/(λ + β). σ(i) and C(i)

are dynamically adjusted noise and clipping parameters, respectively, up to the stabilization

point, after which they remain constant, and q represents the proportion of the dataset used

in each training batch.
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Algorithm 3.1 Training Q-DP-GAN with dynamic privacy

1: Input: EEG dataset, total number of epochs Epochtotal, initial and final privacy pa-
rameters (σinitial, Cinitial, σfinal, Cfinal), transition threshold (θ), number of stable epochs
required (n), learning rates for discriminator (lrD) and generator (lrG)

2: Output: Trained GAN model with privacy guarantees
3: Initialize parameters: Generator parameters θG, Discriminator parameters θD
4: Initialize σcurrent = σinitial, Ccurrent = Cinitial

5: Initialize λ (decay rate for σ), β (decay rate for C)
6: Initialize loss stabilization counter = 0, previous loss = ∞
7: for each epoch t = 1 to Epochtotal do
8: Shuffle and batch the dataset
9: for each batch do
10: Sample noise vector z from a normal distribution
11: Generate synthetic data G(z; θG) using generator
12: Train discriminator (D) on both real and generated data:
13: Compute discriminator loss LD on real data and G(z; θG)
14: Clip gradients of LD by norm Ccurrent

15: Add Gaussian noise ∼ N(0, σ2
current) to the gradients

16: Update θD using gradient descent with learning rate lrD
17: Train generator (G) to fool discriminator:
18: Compute generator loss LG using D’s response to G(z; θG)
19: Update θG using gradient descent with learning rate lrG
20: end for
21: Compute and record the discriminator loss for this epoch (current loss)
22: Assess model stability:
23: if |previous loss− current loss| < θ then
24: loss stabilization counter += 1
25: else
26: loss stabilization counter = 0
27: end if
28: if loss stabilization counter ≥ n then
29: Transition to static privacy parameters:
30: σcurrent = σfinal

31: Ccurrent = Cfinal

32: end if
33: Update previous loss :
34: previous loss = current loss
35: if not yet transitioned then
36: Adjust privacy parameters dynamically:
37: σcurrent∗ = e−λ

38: Ccurrent∗ = e−β

39: end if
40: end for
41: Return: trained GAN model (θG, θD)
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3.2 Experimental Setup

3.2.1 Dataset Description

To improve the reliability, robustness, and generalizability of our model on various datasets,

we selected two different datasets. Our study focuses on the detailed examination of the BCI

Competition IV 2008 datasets, 2A [90] and 2B [91], which are seminal in the field of BCI.

These datasets are not only validated through numerous research applications, but also pro-

vide a reliable benchmark for motor imagery tasks, facilitating insightful comparisons with

other similar datasets. Collecting an original EEG-based BCI dataset was not feasible within

the scope of this work due to several constraints. Building a new EEG dataset requires sub-

stantial resources, including time, funding, and specialized equipment such as EEG recording

hardware, fMRI scanners, and MEG systems, which are expensive and difficult to acquire.

In addition, there are major logistical concerns in arranging human subject studies for the

duration of this thesis work.

Dataset 2A contains EEG recordings of nine participants who participated in four dis-

tinctive motor imagery tasks that included movements of the left hand, right hand, both

feet, and tongue during multiple sessions. These sessions are meticulously structured, offer-

ing insight into neural patterns associated with motor tasks. Dataset 2B also contains EEG

data from 9 subjects performing left- and right-hand movements, with and without feedback

mechanisms, unlike dataset 2A. A detailed comparison of these two datasets is shown in

Table 3.3.

Table 3.3: Comparison of BCI Competition IV Dataset 2A and 2B

Attribute Details for BCI-2A Details for BCI-2B

Dataset

Origin

Graz University of

Technology, 2008

Graz University of

Technology, 2008
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Attribute Details for BCI-2A Details for BCI-2B

Subjects 9 healthy subjects 9 right-handed subjects

with normal or corrected

vision

Motor

Imagery

Tasks

4 tasks: Left hand, right

hand, both feet, tongue

2 tasks: Left hand, right

hand

Number of

Sessions

2 per subject 5 per subject

Runs per

Session

6 runs Screening: 6 runs,

Feedback: 4 runs

Trials per

Run

48 trials (12 per task) Screening: 20 trials (10 per

task), Feedback: 40 trials

(20 per task)

Total Trials

per Session

288 trials Screening: 120 trials,

Feedback: 160 trials

Total Trials

per Subject

576 trials (2 sessions × 288

trials)

720 trials per subject (240

from screening, 480 from

feedback)

EEG

Electrodes

22 electrodes 3 bipolar electrodes (C3,

Cz, C4)

EOG

Channels

3 monopolar electrodes, for

artifact processing

3 monopolar electrodes, for

artifact processing

Sampling

Rate

250 Hz 250 Hz
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Attribute Details for BCI-2A Details for BCI-2B

Filtering Bandpass 0.5-100 Hz, 50

Hz notch filter

Bandpass 0.5-100 Hz, 50

Hz notch filter

Feedback

Provided

No Yes, in last 3 sessions

Artifact

Handling

Expert visual inspection,

trials with artifacts marked

Trials containing artifacts

marked, required artifact

removal

Data File

Format

GDF (General Data

Format)

GDF (General Data

Format)

File Distri-

bution

Training and evaluation

sets separate

First 3 sessions for

training, last 2 sessions for

evaluation

Data

Access

Software

BioSig toolbox (Oc-

tave/FreeMat/MATLAB,

C/C++)

BioSig toolbox

(Octave/MATLAB,

C/C++)

3.2.2 Data Preprocessing

For Dataset 2A, our focus was on three channels, C3, Cz, and C4, which efficiently capture

brain patterns associated with identifying imagined movement states [92]. Among the four

initial motor imagery tasks, the movements of the feet and tongue were omitted, and the

study focused solely on the movements of the left and right hands. To ensure data quality, we

excluded trials labeled with event type 1023, which were marked as artifacts in the dataset

by expert reviewers [90, 91]. Table 3.4 shows the accepted and rejected trials for Sessions I

and II of all subjects. Session I was used as the train set and Session II as the test set.

For Dataset 2B, we used all three EEG channels (C3, Cz and C4) and tasks (left- and

right-hand movements). Artifacts are also present in this dataset and we again excluded
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Table 3.4: Accepted and rejected/artifact trials by subject and task of Dataset 2A

Dataset: 2A Session I (train set)
Task Status A1 A2 A3 A4 A5 A6 A7 A8 A9

Left Hand
Accepted 69 67 69 62 63 56 67 66 53
Rejected 3 5 3 10 9 16 5 6 19

Right Hand
Accepted 69 69 68 67 66 57 66 66 63
Rejected 3 3 4 5 6 15 6 6 9

Dataset: 2A Session II (test set)

Left Hand
Accepted 71 71 67 59 70 59 71 66 65
Rejected 1 1 5 13 2 13 1 6 7

Right Hand
Accepted 70 71 70 57 65 55 69 68 65
Rejected 2 1 2 15 7 17 3 4 7

Table 3.5: Accepted and rejected/artifact trials by subject and task of Dataset 2B

Dataset: 2B Session I (train set)
Task Status B1 B2 B3 B4 B5 B6 B7 B8 B9

Left Hand
Accepted 51 48 47 57 51 35 55 52 43
Rejected 9 12 13 3 9 25 5 8 17

Right Hand
Accepted 51 50 43 60 52 41 52 40 48
Rejected 9 10 17 0 8 19 8 20 12

Dataset: 2B Session II (train set)

Left Hand
Accepted 48 51 43 56 58 42 55 49 45
Rejected 12 9 17 4 2 18 5 11 15

Right Hand
Accepted 50 49 45 53 58 43 56 41 46
Rejected 10 11 15 7 2 17 4 19 14

Dataset: 2B Session III (train set)

Left Hand
Accepted 60 64 56 78 74 65 68 54 69
Rejected 20 16 24 2 6 15 12 26 11

Right Hand
Accepted 64 67 62 75 69 69 70 52 66
Rejected 16 13 18 5 11 11 10 28 14

Dataset: 2B Session IV (test set)

Left Hand
Accepted 51 51 62 78 79 71 51 69 56
Rejected 29 29 18 2 1 9 29 11 24

Right Hand
Accepted 61 51 55 75 77 66 56 57 59
Rejected 19 29 25 5 3 14 24 23 21

Dataset: 2B Session V (test set)

Left Hand
Accepted 58 71 60 76 55 52 63 50 65
Rejected 22 9 20 4 25 28 17 30 15

Right Hand
Accepted 58 72 53 78 62 62 62 54 65
Rejected 22 8 27 2 18 18 18 26 15
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trials labeled with event type 1023. Table 3.5 shows the accepted and rejected trials for the

five sessions. Sessions I, II and III were used as train sets, and rest as test sets.

In the preprocessing stage of our study, initial analysis was performed using 7.5-second

trials to capture a broad spectrum of neural activity. To improve the efficiency of model

training and optimize the use of computational resources, we systematically tested the effi-

cacy of shorter time windows. Our methodological approach involved segmenting the data

into 6- and 4-second intervals. This segmentation was intended to identify the time frames

that are most critical for motor imagery classification tasks. Specifically, the 6-second seg-

ments were obtained by excluding the first 1 second and the last 0.5 seconds of the trials,

reducing the data from 1875 (7.5 X 250) data points to 1500 (6 X 250) data points. Further

refinement led us to test 4-second segments, where the initial 2 seconds and the final 1.5

seconds were removed, leaving 1000 data points. These truncated segments were analyzed

to determine if they contained sufficient information for accurate classification.

Our initial findings validated the 4-second window, as it provided classification accu-

racy comparable to longer durations. This indicates that the key neural signatures of the

motor imagery tasks are within this interval. Using these segments, we achieved improved

model training and real-time processing efficiency without compromising classification qual-

ity. Thus, the 4-second window was chosen for the subsequent analysis, balancing computa-

tional efficiency and empirical effectiveness.

3.2.3 Model Training: details, hyperparameters, and configura-

tions

Selecting the appropriate parameter values is crucial to balance the effectiveness of the pri-

vacy mechanism and the model’s learning capability. The following paragraphs explain the

parameters selected for the hybrid quantum-inspired model that were empirically determined

through extensive experimental trials.
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Initial Phase (quantum decoherence)

• We chose the initial noise standard deviation (σinitial) as 2.0. The chosen value provides

robust privacy protection at the beginning of the training process, where the model is

most susceptible to leaking information. A higher initial noise level effectively obscures

the contributions of individual training samples, thereby reducing the risk of overfitting

to specific data points, which could compromise privacy.

• We have set the initial clipping threshold (Cinitial) to 1.0, a value determined through

experimentation. Beginning with a higher clipping threshold also ensures that the

impact of any single data point remains constrained during the early stages of training.

This configuration helps to mitigate the risk of outliers exerting undue influence on

the model’s learning process, thereby enhancing privacy protection.

Decay Rates (λ for noise and β for clipping)

• Similarly, following our experimental testing, we set decay rates, λ to 0.05 and β to

0.03. The decay rate of 0.05 for noise ensures that the model gradually transitions to

less noisy updates as it stabilizes, balancing privacy protection with learning efficiency.

The slightly lower decay rate of 0.03 for clipping helps prevent the model from becoming

overly sensitive to individual samples too quickly, thereby maintaining a conservative

approach to privacy for a longer duration during training.

Stabilization Phase (quantum uncertainty)

• We have defined the final noise standard deviation (σfinal) as 0.5. It provides sufficient

privacy protection as the model stabilizes without significantly impairing the model’s

fine-tuning capabilities. The reduced noise level prevents precise inferences about in-

dividual data points while allowing the GAN to generate high-quality synthetic EEG

data.
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• We have set the final clipping threshold (Cfinal) to 0.1. This lower threshold refines the

model’s sensitivity to the training data during stabilization. It improves the quality

of generated outputs by limiting the influence of individual training samples without

overly constraining model learning.

Privacy Guarantee (δ)

• We set δ at 1/ N , where N is the total number of data-points. For our 4-seconds data

window, N is 1000 (4 x 250).

Privacy Budget (ϵ)

• For our method, the final ϵ values for Dataset 2A were 4.291, 4.365, 4.246, 4.381, 4.309,

4.226, 4.317, 4.403, and 4.192 for Subjects A1 through A9, respectively. For Dataset

2B, the final values for Subjects B1 through B9 were 4.457, 4.324, 4.355, 4.410, 4.493,

4.445, 4.397, 4.382, and 4.363, respectively.

Total epochs and number of consecutive epochs (n)

• We set the Epochtotal as 1000.

• For a total of 1000 epochs, n should be large enough to ensure that the detection of

model stabilization is robust against normal fluctuations in training loss but not so

large that it delays the transition unduly. A reasonable choice for n is about 1% to

2% of Epochtotal, which translates to 10 to 20 epochs. This range typically offers a

good balance by smoothing out regular variations in loss while being responsive enough

to changes indicating true model stabilization. Setting n = 20 allowed the model to

demonstrate consistent stabilization over a sufficient period to mitigate the effects of

short-term fluctuations but is short enough to ensure timely adaptation to stabilized

conditions.

Loss Stabilization Threshold (θ)
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• Considering a typical GAN loss scale, values such as θ = 0.0001 to 0.1 are effective in

ensuring model stabilization. After initial experiments, we chose θ = 0.005. This value

guarantees that reductions in privacy parameters are triggered only by stabilization

during training. Thus, aligning decrements with a steady phase of the model.

3.3 Results and Discussion

3.3.1 Classification Performance: Varying Original (real) and Syn-

thetic Data

We first examined the effects of varying proportions of original (train data) and synthetic

EEG data to train the model and evaluate its classification performance (utility) only on

real EEG samples from the test data. Dataset 2A’s original training data comprises only

session I, while Dataset 2B’s original training data include sessions I-III. We used four neural

network models: ATCNet[93], EEGNet[94], ShallowNet [95] and CapsNet [96] to recognize

hand movements using (1) original EEG data and (2) mixed data (original and synthetic

EEG). The experiment, shown in Figure 3.3, aimed to assess how these data proportions

impact the performance of the model.

We tested five specific ratios of original to synthetic data for training the model:

• 100% original data and 0% synthetic data. This model was trained exclusively on the

original training dataset (Tr) for optimal comparison with augmented models.

• 50% original data and 50% synthetic data. This model used a balanced combination

of 50% original training data and 50% synthetic data (S) to augment the training set

while maintaining the total number of samples constant.

• 30% original data and 70% synthetic data.

• 20% original data and 80% synthetic data.

• 10% original data and 90% synthetic data.
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Figure 3.3: Overview of our experiments using original and synthetic data. The quantity of
synthetic data (S) that we produced was equal to the number of original training samples
(Tr). We then used varying proportions of Tr and S, merging them as training data for
further analysis.

The classification performance of each model was evaluated over 20 runs to ensure the

reliability and robustness of our results. For training, we used the training dataset speci-

fied in the original publication of the dataset resource (For Dataset 2A: Session I, and for

Dataset 2B: Sessions I-III.) and tested it with the remaining sessions. Using this dataset,

we applied our method to generate synthetic data and then trained via four different neural

network models (ATCNet, EEGNet, ShallowNet, and CapsNet) with different combinations

of original train and synthetic data , then tested on the original test dataset. Specifically, we
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selected k% from original train data and l% from synthetic data, where k = 100, 50, 30, 20,

and 10, and l = 0, 50, 70, 80, and 90. Given the variations in sample sizes across different

subjects and datasets, we implemented a rounding procedure to determine the exact number

of data points to use. The percentages were rounded to the nearest whole number using a

threshold of 0.50.

The results of this experiment are illustrated in Figures 3.4 and 3.5. Model accuracy

changes were more noticeable when the percentage of synthetic data is increased progres-

sively, as discussed below:

• Models trained on 100% original data with performed similarly to those trained on

50% original data and 50% synthetic data, with the accuracy dropping by only 1-2.5%

on the test data.

• The model accuracy was reduced between 2.1-4.1% using 30% of original data mixed

with 70% synthetic data.

• A ratio of 20% of original data mixed with 80% synthetic data resulted in 3.2-5.6%

accuracy drops.

• The greatest change was observed using 10% of the original data mixed with 90%

synthetic data resulting in 5.1-7.2% change in model accuracy.

These findings suggest that while a balanced mix of 50% original and 50% synthetic data

can effectively augment EEG datasets while maintaining robust model performance, other

configurations such as 30% or 20% original data with synthetic data are also viable, although

with slightly higher accuracy drops. The correct balance between the original and synthetic

data depends on the error-rate tolerance of the BCI applications. Our findings show that

varying proportions of synthetic EEG data is helpful to achieve comparable results in training

processes that use real EEG data.
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(a) Model trained on 100% original training data (Tr)

(b) Model trained on 50% original training data (Tr) and 50% synthetic data (S).

(c) Model trained on 30% original training data (Tr) and 70% synthetic data (S).

Figure 3.4: Classification performance of BCI Dataset IV 2A using various training scenarios.
All models are evaluated on test data using 100% of real EEG data samples composed of
session II. (Part 1)
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(d) Model trained on 20% original training data (Tr) and 80% synthetic data (S).

(e) Model trained on 10% original training data (Tr) and 90% synthetic data (S).

Figure 3.4: Classification performance of BCI Dataset IV 2A using various training scenarios.
All models are evaluated on test data using 100% of real EEG data samples composed of
session II. (Part 2)

3.3.2 Privacy Analysis: attack scenarios

After evaluating the classification performance, we conducted simulations focusing on two

specific attack scenarios to explore the preservation of privacy. To assess the effectiveness

of these methodologies, we evaluated and compared four state-of-the-art methods - WGAN

[24], CGAN [97], DPGAN [78], and LDPGAN [98].

We ensured that every model was set using the ϵ values derived from our method, so that

each model maintained the same privacy budget for each subject, allowing a fair comparison
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(a) Model trained on 100% original training data (Tr)

(b) Model trained on 50% original training data (Tr) and 50% synthetic data (S).

(c) Model trained on 30% original training data (Tr) and 70% synthetic data (S).

Figure 3.5: Classification performance of BCI Dataset IV 2B using various training scenarios.
All models are evaluated on test data using 100% of real EEG data samples composed of
sessions IV and V. (Part 1)
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(d) Model trained on 20% original training data (Tr) and 80% synthetic data (S).

(e) Model trained on 10% original training data (Tr) and 90% synthetic data (S).

Figure 3.5: Classification performance of BCI Dataset IV 2B using various training scenarios.
All models are evaluated on test data using 100% of real EEG data samples composed of
sessions IV and V. (Part 2)
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across the datasets. For each method, synthetic data was generated in quantities equivalent

to the original training dataset and then exposed to the two attack scenarios.

Membership Inference Attacks

To assess the privacy preservation capabilities of our Q-DP-GAN, we implemented member-

ship inference attacks (MIA) under black box (BB) and white box (WB) conditions [99, 79].

These attacks are designed to assess if an attacker can identify whether specific data were

part of the model’s training set. Three subsets of data were used to gauge the model’s ability

to secure EEG data against potential inference threats.

• S - Synthetic data generated by different models.

• Tr - Real training data used to train different models (Dataset 2A session I and Dataset

2B sessions I-III).

• Te - Real data not used in training, serving as test data (Dataset 2A session II and

Dataset 2B sessions IV-V)).

To improve training, we combine 100% of the original training data (Tr) with a cor-

responding amount of synthetic data (S), essentially doubling the amount of the dataset

to train the model. The effectiveness of the model is assessed using the unaltered testing

dataset (Te). We are able to precisely evaluate the model’s capacity to generalize from the

training set to new untested data.

MIAs are conducted in two main modes based on the attacker’s access level:

• Black-Box Membership Inference Attacks: The attacker does not have access to Q-

DP-GAN ’s internals. Black-Box (BB) scenarios simulate an external adversary using

shadow models trained on various subsets of S and Tr, mimicking the target model’s

behavior without accessing its actual parameters. The BB attack is detailed in Algo-

rithm 3.2.
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Algorithm 3.2 Black-Box Membership Inference Attack

Require: Real training data Tr, Synthetic data S, Real test data Te, Number of shadow
models Ns

Ensure: Attack model to predict membership inference
1: Combine Tr and S to create Tcombined

2: Split Tcombined into Ns subsets: {Tcombined1 , Tcombined2 , . . . , TcombinedNs
}

3: for each subset Tcombinedi (i = 1 to Ns) do
4: Train shadow model Si on Tcombinedi

5: end for
6: Generate Predictions:
7: for each shadow model Si (i = 1 to Ns) do
8: Predict probabilities on Te: P

test
i = Si.predict(Te)

9: Predict probabilities on S: P syn
i = Si.predict(S)

10: end for
11: Create and Label Attack Dataset:
12: Combine all P test

i to form Xtest { Xtest contains the predictions for the real test data}
13: Combine all P syn

i to form Xsyn { Xsyn contains the predictions for the synthetic data}
14: Label Xtest with 1s (real) and Xsyn with 0s (synthetic)
15: Form attack dataset Xattack = {Xtest, Xsyn} and labels Yattack = {1s, 0s}
16: Train Attack Model:
17: Split Xattack into training and testing sets
18: Train binary classifier AttackModel on the training set
19: Evaluate Attack Model:
20: Test AttackModel on the testing set
21: Output accuracy of AttackModel
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• White-Box Membership Inference Attacks: In this scenario, the adversary uses com-

plete information about Tr and the structure of Q-DP-GAN to examine the influence

of training data on the model’s outputs for Te and S. It can reveal vulnerabilities in

the model’s processing and learning from Tr. The WB attack is outlined in Algorithm

3.3.

The results for both types of MIA are imperative for evaluating the ability of Q-DP-

GAN to obfuscate the origin of data points, particularly from Tr and S, as well as its

efficacy in preventing adversaries from deducing the membership status of Te. The MIA

results, depicted in Figures 3.6, 3.7, 3.8, and 3.9, illustrate that Q-DP-GAN offers robust

protection against both external and internal threats, thereby ensuring the confidentiality

of EEG data. The low predictive accuracy observed in the BB and WB scenarios indicates

substantial data protection, which highlights the effectiveness of the model in protecting

privacy.

Figure 3.6: Black Box attack simulated on Dataset 2A. The accuracy indicates whether or
not the model is able to identify the test data (Te). Reduced accuracy scores signify a more
robust model against potential attacks. By adding an equivalent quantity of synthetic data
(S) to 100% original data (Tr), the total amount of original training data is doubled.
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Algorithm 3.3 White-Box Membership Inference Attack

Require: Real training data Tr, Synthetic data S, Real test data Te, Labels yr (for Tr) and
ye (for Te), Trained discriminator model discriminator, List of intermediate layer names
intermediate layer names

Ensure: Attack model to predict membership inference
1: Load the trained discriminator model discriminator
2: List the layers of discriminator to choose appropriate intermediate layers
3: for each layer in discriminator do
4: Print the layer index, name, and output shape
5: end for
6: Choose intermediate layers for feature extraction based on the output from step 2
7: Split the real training data into training and testing sets:
8: Split Tr and yr into Trtrain , Trtest , yrtrain , yrtest with a test size of 20%
9: Prepare attack data:
10: Extract intermediate outputs from the chosen layers of discriminator for Trtrain , S, and

Te

11: Build an intermediate model with the chosen layers
12: Predict the features using the intermediate model on Trtrain , S, and Te

13: Concatenate features from multiple intermediate layers
14: Create and Label Attack Dataset:
15: Combine features from Te and label as 1 (real test data)
16: Combine features from S and label as 0 (synthetic data)
17: Form attack dataset Xattack = {Xt, Xs} and labels Yattack = {1s, 0s}
18: Build the white-box attack model:
19: Define the input shape based on the shape of Xattack

20: Build the attack model with several dense, batch normalization, and dropout layers
21: Compile the attack model with Adam optimizer, binary cross-entropy loss, and accuracy

metric
22: Train the white-box attack model:
23: Split Xattack and Yattack into attack training and testing sets
24: Train the attack model on the attack training set with validation on the attack testing

set
25: Evaluate the attack model:
26: Evaluate the attack model on the attack testing set
27: Output the accuracy of the attack model
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Figure 3.7: Black Box attack simulated on Dataset 2B. Our model’s reduced accuracy scores
signify that it is robust against potential attacks compared to other GAN models.

Figure 3.8: White Box attack simulated on Dataset 2A. The accuracy indicates whether
or not the model is able to identify the test data (Te). Reduced accuracy scores signify a
more robust model against potential attacks. We are using 100% synthetic data from each
model. By adding an equivalent quantity of synthetic data (S) to 100% original data (Tr),
the training dataset is doubled.

48



Figure 3.9: White Box attack simulated on Dataset 2B. Our model demonstrated similar
performance as the Black Box attack results (lower accuracy scores), indicating its robustness
to potential attacks in comparison to other GAN models.

Reconstruction Attacks Analysis

The second phase of our privacy assessment involved conducting reconstruction attacks [100]

to test the resilience of Q-DP-GAN against attempts to recreate the original EEG data from

synthetic output. These attacks present a significant challenge, as they aim to reverse the

generative mechanism of Q-DP-GAN to retrieve or infer the original training data. The

methodology for these attacks incorporates sophisticated models designed to approximate

the inverse function of Q-DP-GAN’s generator, scrutinizing the synthetic data’s fidelity to

its original counterpart and revealing potential weaknesses in the anonymization process.

We used advanced deep learning models to emulate the reverse generation process. It

involved optimizing a latent space representation to match the synthetic data output back to

its presumed original form. The attack model architecture was meticulously designed with

dense layers for feature extraction, dropout layers to prevent overfitting, batch normalization

for consistent training performance, and regularization to ensure generalization beyond the

training data. This comprehensive setup was pivotal in evaluating Q-DP-GAN’s capability to

produce synthetic EEG data that not only retain utility but also resist direct reconstruction

attempts for data privacy.

For reconstruction attacks, a higher mean squared error value is desirable. It signifies
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challenges and complexity in accurately reconstructing original data from synthetic data,

which provides increased privacy [100]. Figures 3.10 and 3.11 show the superior performance

of Q-DP-GAN against this attack compared to other state-of-the-art methods.

Figure 3.10: Reconstruction attack simulated on Dataset 2A to assess the model’s ability to
reconstruct original input data x from its outputs M(x). Synthetic data (S), equivalent in
quantity to the original dataset (Tr) is used for this assessment.

Figure 3.11: Reconstruction attack simulated on Dataset 2B. A higher mean squared error
value achieved by our model, similar to Dataset 2A, shows resilience against reconstructing
original data from synthetic data.

3.4 Summary

We designed a new generative adversarial network (GAN) model using quantum uncertainty

and decoherence principles to ensure the privacy of EEG data in BCI applications. The un-
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predictability of quantum uncertainty introduces randomness that is hard to reverse-engineer,

enhancing security. Quantum decoherence allows dynamic noise adaptation during train-

ing, progressively aligning privacy measures with the model’s learning and stability. This

integration enhances the privacy of EEG data without sacrificing utility, addressing trade-

offs between privacy-utility. Our quantum inspired differential privacy model (Q-DP-GAN)

showed resilience to membership inference and reconstruction attacks, effectively obscuring

data origins and preventing accurate reconstruction. The proposed model demonstrated that

generated synthetic EEG data maintain high utility for BCI applications while hiding EEG

data sources. Thus, the success of our model in balancing utility, privacy, and adversarial

threats makes it a valuable resource for BCI researchers and practitioners.

Chapter 4 explores privacy techniques with the help of the Federated Learning approach.

The Federated Privacy in Spiking GANs manages the pitfalls of the single-layer privacy

framework by distributing the data processing at multiple nodes, and limiting access to

raw data by the central server, which in turn reduces the risk of intrusion. This transition

addressed the need for a federated structure capable of enhancing security without affecting

the quality of EEG data. Using Spiking GANs with Federated Learning, we investigate the

privacy preservation approach and the effects on the utility of the data.
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4
Federated Privacy using Spiking

GANs

This chapter provides a unique approach that uses temporal noise correlation and a Federated

Generative Adversarial Network (GAN) architecture with Spiking Neural Networks (SNNs)

to generate synthetic EEG data that preserve anonymity. Our method guarantees data

privacy and produces high-quality synthetic data utilizing the federated learning paradigm,

the intrinsic temporal dynamics of SNNs, and an Artificial Neural Network (ANN)-based

discriminator for effective classification. Unlike conventional GANs, which employ CNNs

in both the generator and the discriminator, our method employs SNNs in both scenarios,

enabling efficient analysis of temporal data, such as EEG signals. We implement Renyi

Differential Privacy (RDP) by introducing controlled noise into spike trains and membrane

potentials to provide robust privacy guarantees. Quantitative evaluations through extensive
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testing show that the proposed method can effectively synthesize realistic EEG data and

therefore preserves both data privacy and utility. This research adds to the disciplines

of neural network-based synthetic data creation and privacy-preserving machine learning,

providing a potential option for applications that need privacy in addition to data fidelity.

4.1 Methodology

Our proposed methodology introduces an advanced GAN framework designed to generate

privacy-preserving synthetic EEG data. This framework uniquely integrates a Spiking Neural

Network (SNN)-based generator with an Artificial Neural Network (ANN)-based discrimi-

nator. Our model excels in producing high-fidelity synthetic EEG signals with the temporal

dynamics of SNNs and the computational efficiency of ANNs. The spiking neurons within the

generator simulate the behavior of biological neurons, while the discriminator’s multi-layered

ANN architecture is optimized to assess the authenticity of the generated data.

The architecture of the GAN involves several layers in generator and discriminator, each

designed to play a critical role in processing and capturing the complex patterns of EEG

signals. The SNN-based generator is built on a modified Leaky Integrate and Fire (LIF)

neuron model, which is ideal for capturing the temporal dynamics of EEG signals. The

ANN-based discriminator complements this by efficiently distinguishing between real and

synthetic EEG data through a series of fully connected layers. Our methodology is detailed

in Algorithm 4.1.

We developed a federated learning framework that allows several clients to use their

own private EEG datasets to independently train Spiking GAN models. This methodology

guarantees the decentralization of sensitive EEG data, safeguards privacy, and facilitates

the improvement of collaborative models. At the beginning of every communication round,

the server sends the global model parameters to each client. Then, using spike-timing-

dependent learning algorithms and temporally correlated noise mechanisms to mimic the

spiking behavior of neurons, the client processes the EEG data by training a local Spiking
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GAN model. Sensitive information is kept localized because, upon completion of the local

training, the client sends the updated model’s parameters (gradients) back to the server

without releasing any raw EEG data.

The fundamental component of this framework, the server, is in charge of combining

the local updates from every client. Without gaining access to any client’s raw data, the

server uses Federated Averaging to merge the locally updated model parameters into a

single global model. Over several rounds, this method iteratively improves the global model,

with each communication cycle improving model performance. The server incorporates RDP

privacy-preserving technique and temporally correlated noise into the updates to secure EEG

data without compromising data security, ensuring that sensitive data is secured while still

achieving effective model training.

4.1.1 Data Generation Process

The data generation process in our framework is composed of several stages, each crucial to

ensure that the synthetic EEG data produced is realistic and preserve privacy. These stages

begin with the theoretical foundation and model design, which are deeply rooted in the

principles of spiking neural networks. In contrast to traditional neural networks that rely on

continuous activation functions, spiking neurons operate based on discrete events—spikes.

This discrete nature allows SNNs to capture the temporal dynamics inherent in EEG signals

more effectively.

4.1.2 Membrane Potential Dynamics of the Neurons

The neurons in our generator are modeled using a modified version of the Leaky Integrate-

and-Fire (LIF) model [101, 102]. The membrane potential ui of the neuron i at any time t̄

is described by Equation 4.1:

τm
dui

dt̄
= −(ui − urest) +RIi(t̄) (4.1)
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where, τm is the membrane time constant, urest is the resting potential, R is the input

resistance, and Ii(t̄) is the input current.

When the membrane potential ui reaches a threshold ϑ, the neuron fires a spike, and

the potential is reset to urest. The spike generation and reset mechanism are incorporated

through the spike train Si(t̄), leading to the following equation [102]:

τm
dui

dt̄
= −(ui − urest) +RIi(t̄) + Si(t̄)(urest − ϑ) (4.2)

where, the spike train Si(t̄) is defined as:

Si(t̄) =
∑
k

δ(t̄− t̄ik) (4.3)

where t̄ki represents the k-th spike time of neuron i.

4.1.3 Discretization of Membrane Potential for Implementation

To implement the neuron dynamics in discrete time, we approximate the continuous-time

differential equation using small time steps ∆t̄. The discretized update rule for the membrane

potential at time step q is given by [102]:

ui[q + 1] = β̃ui[q] + Ii[q]− Si[q] (4.4)

where β̃ ≡ exp
(
−∆t̄

τm

)
, Si[q] represents the spike at the q-th time step, and Si[q] = 1 (if

spike), Si[q] = 0 (if no spike).

The input current Ii[q] is updated similarly:

Ii[q + 1] = α̃Ii[q] +
∑
j

WijSj[q] (4.5)

where α̃ ≡ exp
(
−∆t̄

τs

)
, and Wij is the synaptic weight between neuron j and neuron i.
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4.1.4 Spike Generation and Membrane Reset

When the membrane potential ui reaches the threshold ϑ, the neuron generates a spike,

modeled by the Dirac delta function δ(t̄− t̄ik), and the potential is reset to urest. The spike

reset process is represented by:

ui[q + 1] = β̃ui[q] + Ii[q]− Si[q] (4.6)

where Si[q] indicates whether the neuron spikes at time step q. This formulation allows

the neuron to fire multiple spikes in response to sustained input. Si[q] = 1 forces the reset

after the spike.

4.1.5 Synaptic Filtering for Spike Trains

To convert discrete spike trains into biologically plausible continuous signals, a double expo-

nential synaptic filter [103, 102] is applied. The filtered response rj of neuron j is governed

by:

ṙj = −
rj
τd

+ hj (4.7)

ḣj = −
hj

τr
+

1

τrτd

∑
t̄j<t̄

δ(t̄− t̄kj ) (4.8)

where, τr and τd are the synaptic rise and decay time constants, hj is an intermediary

signal, δ(t̄− t̄kj ) is the spike train of neuron j.

This synaptic filtering process produces continuous signals from discrete spikes, mimick-

ing the biological processes of real neurons.

4.1.6 Privacy Preservation Using Temporally Correlated Noise

To maintain the privacy of the generated EEG data, temporally correlated noise is intro-

duced into the dynamics of the membrane potential during the training process. The noise

Noisen(µ) for neuron n is modeled as Equation 4.9:
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Noisen(t̄) = ζ · Noisen(t̄−∆t̄) + ξ(t̄) (4.9)

where, ζ is the correlation coefficient determining the degree of temporal correlation in the

noise, ξ(t̄) ∼ N (0, σ2) is Gaussian noise with mean 0 and variance σ2.

This noise is then incorporated into the membrane potential equation as follows:

un(t̄+∆t̄) = β̃un(t̄) + In(t̄)− Sn(t̄) + Noisen(t̄) (4.10)

This noise is crucial to ensure that the generated data remain private, as it obscures

the specific details of the input data while preserving the overall structure and temporal

dynamics of the EEG signals.

4.1.7 Federated Learning and Model Aggregation

In this work, we implemented a federated learning framework by simulating both client-

side and server-side processes on a single personal laptop. Although federated learning

typically involves separate devices, we replicated the federated environment entirely on one

machine for practical purposes. The dataset was partitioned between five simulated clients,

each receiving an equal portion of the data. Each client initialized local instances of the

SNN-based generator and ANN-based discriminator models, synchronized with the global

model at the start of each training round. Clients trained their local models for five local

epochs, processing data in mini-batches of size 64. After training, each client computed its

contribution to the global model by evaluating the performance of its local discriminator,

quantifying its contribution through a function that measures the difference between real

and generated spike train outputs.

The server-side aggregation was simulated on the same machine. After receiving updates

from all clients, we used contribution-weighted aggregation to update the global model, en-

suring that clients with higher contributions had a greater impact. This process was repeated

over 300 global epochs. We also dynamically adjusted each client’s privacy budget based on
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their contribution, ensuring a fair balance between data privacy and model contribution. To

maintain privacy, we incorporated Rényi Differential Privacy (RDP), calculating the RDP

epsilon value at the end of each epoch (described in the next subsection). By setting ap-

propriate parameters, we ensured strong privacy guarantees while simulating a federated

learning environment on a single laptop.

In our federated learning setup [104], the EEG dataset X = {X1,X2, . . . ,Xm} was parti-

tioned into multiple subsets among clients m, ensuring that each client only has access to its

own local data. This decentralized structure improves privacy by keeping the raw EEG data

localized, and only model updates are communicated to the central server. In the beginning,

the global generator G and discriminator D were initialized on the central server, with initial

weights ΘG
0 and ΘD

0 . The noise parameters ζ and σ2 were applied during the generation of

synthetic EEG data to obscure sensitive information while preserving the temporal structure

of the signals.

Each client trains its own local copy of the generator Gm and discriminator Dm using its

local subset X (m)
t of the EEG dataset. During local training, the generator produces synthetic

EEG data by sampling latent vectors Z from a predefined distribution P(Z). At the same

time, the local discriminator Dm was trained to differentiate between real and synthetic EEG

data. Real Lreal and fake EEG data losses Lfake were computed using binary cross-entropy

loss functions. The discriminator was updated using gradient descent to minimize these loss

functions, allowing it to improve its ability to classify real and synthetic data. The real and

fake losses are given by [105, 106, 107]:

Lreal = Lbce(D(m)
bt (X (m)

bt ), 1) (4.11)

Lfake = Lbce(D(m)
bt (X̃ (m)

t ), 0) (4.12)

After training the discriminator, the generator was updated based on the feedback from
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the discriminator. The generator’s goal is to improve the realism of its generated EEG data

so that the discriminator cannot easily distinguish between real and synthetic data. The

generator loss was calculated similarly using binary cross-entropy loss, defined as

LGm
bt = Lbce(D(m)

bt (X̃ (m)
t ,L(m)

t ), 1) (4.13)

Once local training was completed, the updated model weights ΘGm
bt and ΘDm

bt were sent

to the central server, where they were aggregated. The central server [43] performs model

aggregation by averaging the weights received from each client, updating the global generator

and discriminator as follows.

ΘG
t =

1

M

M∑
m=1

ΘGm
bt , ΘD

t =
1

M

M∑
m=1

ΘDm
bt (4.14)

This aggregation process allowed the global model to improve without the central server

needing access to the actual EEG data. After aggregation, the updated global models were

sent back to the clients, and the process was repeated over multiple global epochs T . The

entire process is repeated until the model converges or until a predefined number of global

epochs are completed.

4.1.8 Differential Privacy with Renyi Differential Privacy (RDP)

To quantify the loss of privacy during training, we employ Renyi Differential Privacy (RDP)

[30], which provides a formal measure of privacy leakage. The RDP loss is calculated as

Equation 4.15:

LRDP =
∑
α>1

(
α · P2 · L
2 · σ2

eff

+
log(1/δ)

α− 1

)
(4.15)

where, α is the order of Renyi divergence, P is the is the sampling rate, L is the number

of local epochs, σeff is the effective noise scale, which controls the balance between privacy

and utility, and δ is the privacy parameter, related to the probability of re-identification.
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This approach ensures that the synthetic data generated through this model preserves

the essential features of the original EEG data while providing strong privacy guarantees

against potential re-identification attacks.

4.2 Experimental Setup

4.2.1 Dataset

We used the BCI IV 2A dataset, which contains EEG recordings of nine subjects identified

as A1 through A9, performing four motor imagery tasks (MIT) [90]. The data of each

subject are divided into two sessions: Session I and Session II. For Dataset 2A, both Session

I and Session II are characterized by the same data shape (including artifacts), denoted

(Eld,TrialN,Dtp). In this notation, Eld represents the number of electrodes or EEG channels,

which is 22. The signals are filtered using a bandpass filter (bpf) between 0.5 Hz and 100

Hz, and a notch filter (nf) is applied at 50 Hz. TrialN signifies the total number of trials per

session, which is 2,592 including artifacts. Dtp refers to the number of data points per trial,

calculated as Dtp = times× sf, where sf is the sampling rate. Given that the MIT lasts for 4

seconds with a sf of 250 Hz, Dtp is 4 × 250 = 1000. Therefore, for each session (containing

nine subjects), the shape of the dataset including artifacts is (22,2592,1000), where for each

subject’s data, the shape is (22,288,1000).

We used C3, C4, and Cz EEG channels in our study instead of 22 EEG channels as

these channels are effective in capturing brain patterns associated with the recognition of

imaginary movement states [92]. We removed artifacts from both sessions, and used Session

I as train data (Tr), and Session II as test data (Te). Therefore, each subject had a variable

shape of input data for train and test sets as shown below:

• Subject A1: Tr – (273, 3, 1000), labels – (273, 1), Te – (281, 3, 1000), labels – (281, 1)

• Subject A2: Tr – (270, 3, 1000), labels – (270, 1), Te – (283, 3, 1000), labels – (283, 1)

• Subject A3: Tr – (270, 3, 1000), labels – (270, 1), Te – (273, 3, 1000), labels – (273, 1)
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Algorithm 4.1 Privacy-Preserving Synthetic EEG Data Generation using Federated Spik-
ing GAN
Require: EEG dataset X = {X1,X2, . . . ,Xm}, noise parameters ω, ζ, σ2, model parameters:

global epochs T , local epochs L, number of clientsM, learning rate η, sampling rate P ,
privacy parameter γ, batch size B, initial weights ΘG

0 ,Θ
D
0

Ensure: Synthetic EEG dataset Xsynthetic

1: Initialize global generator G(ΘG) and discriminator D(ΘD) with ΘG
0 ,Θ

D
0

2: Initialize temporally correlated noise parameters
3: Initialize Renyi Differential Privacy (RDP) parameters
4: Federated Learning Setup:
5: Partition X intoM subsets: X1,X2, . . . ,Xm → X (m)

1 ,X (m)
2 , . . . ,X (m)

t for each client m
6: For each client m, initialize local models Gm(ΘGm

0 ),Dm(Θ
Dm
0 )

7: for each global epoch t ∈ {1, 2, . . . , T } do
8: for each client m ∈ {1, 2, . . . ,M} do
9: Local Training on Client m:
10: for each local epoch ℓ ∈ {1, 2, . . . ,L} do
11: for each batch of data (X (m)

bt ,L(m)
t ) ∈ X (m)

t do

12: Generate latent vector Z(m)
bt ∼ P(Z)

13: Generate temporally correlated noise:
14: Initialize noise at time 0: Nn(0) ∼ N (0, σ2)
15: for each timestep µt do
16: Nn(µt) = ζ ·Nn(µt−1) +N (0, σ2)
17: end for
18: Forward pass through the local generator Gm:
19: Synthetic EEG data X̃ (m)

t = G(m)
bt (Z(m)

bt ,L(m)
t ; ΘGm

bt ) +Nn(µt)
20: Train the local discriminator Dm:
21: Real data loss: Lreal = Lbce(D(m)

bt (X (m)
bt ,L(m)

t ), 1)

22: Fake data loss: Lfake = Lbce(D(m)
bt (X̃ (m)

t ,L(m)
t ), 0)

23: Total discriminator loss: LDm
bt = Lreal + Lfake

24: Update ΘDm
bt via gradient descent: ΘDm

bt ← ΘDm
bt − η∇LDm

bt

25: Train the local generator Gm:
26: Generator loss: LGm

bt = Lbce(D(m)
bt (X̃ (m)

t ,L(m)
t ), 1)

27: Update ΘGm
bt via gradient descent: ΘGm

bt ← ΘGm
bt − η∇LGm

bt

28: end for
29: end for
30: Send updated weights ΘGm

bt ,ΘDm
bt to the central server

31: end for
32: Aggregation at Central Server:
33: Compute global parameters:

ΘG
t =

1

M

M∑
m=1

ΘGm
bt , ΘD

t =
1

M

M∑
m=1

ΘDm
bt

34: Update RDP Privacy Loss:
35: Compute RDP loss:

LRDP =
∑
α>1

(
αP2L
2σ2

eff

+
log(1/δ)

α− 1

)
36: end for
37: Generate Synthetic EEG Data:
38: Generate new latent vector Znew ∼ P(Z)
39: Forward pass through global generator G to produce synthetic EEG data:

Xsynthetic = G(Znew,Lnew; Θ
G)

40: Output: Final synthetic EEG data Xsynthetic
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• Subject A4: Tr – (262, 3, 1000), labels – (262, 1), Te – (228, 3, 1000), labels – (228, 1)

• Subject A5: Tr – (262, 3, 1000), labels – (262, 1), Te – (276, 3, 1000), labels – (276, 1)

• Subject A6: Tr – (219, 3, 1000), labels – (219, 1), Te – (221, 3, 1000), labels – (221, 1)

• Subject A7: Tr – (271, 3, 1000), labels – (271, 1), Te – (277, 3, 1000), labels – (277, 1)

• Subject A8: Tr – (264, 3, 1000), labels – (264, 1), Te – (271, 3, 1000), labels – (271, 1)

• Subject A9: Tr – (237, 3, 1000), labels – (237, 1), Te – (264, 3, 1000), labels – (264, 1)

The labels in the dataset correspond to four motor imagery tasks. These tasks are

classified as follows [90]: Class 1 (left), represented by event type 769 (0x0301) and referred

to as CL1; Class 2 (right), represented by event type 770 (0x0302) and referred to as CL2;

Class 3 (foot), represented by event type 771 (0x0303) and referred to as CL3; and Class 4

(tongue), represented by event type 772 (0x0304) and referred to as CL4. For the purpose

of generating synthetic data, only the train data from Session I was utilized.

4.2.2 Data Pre-processing

The EEG data for each channel is normalized to the range [0, 1] using the min-max normal-

ization method. The normalized value, Ei, is calculated as follows:

Ei =
Xi −Xmin

Xmax −Xmin

(4.16)

where Xi represents the data point from channel i, and Xmin and Xmax are the minimum

and maximum values of the EEG data for channel i, respectively.

4.2.3 Model Architecture

The Spiking GAN architecture consists of a Spiking generator and a ANN-based discrimina-

tor. Using the temporal patterns present in spiking neurons, the Spiking Generator creates

synthetic EEG data. It preserves important temporal properties that resemble biological
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cerebral activity, while it converts a low-dimensional latent space, a 100-dimensional vector,

into high-dimensional EEG signals. Starting from a typical normal distribution, this latent

vector is then concatenated with a label embedding to guarantee that the generator outputs

EEG data specific to a class. By adding pertinent information to the latent space, this

combination conditions the generating process on the intended label.

Three fully connected layers make up the architecture of the generator. In order to begin

the transformation into a high-dimensional EEG representation, the first layer processes the

concatenated latent vector and label embedding, increasing the dimensionality of the input.

The second layer continues this process by increasing the complexity of the features. The

third layer, which peaks at 1000 neurons, fully contains the features required to generate the

EEG signal. Leaky Integrate-and-Fire (LIF) neurons generate spiking behavior after each

fully connected layer, simulating the dynamics of membrane potentials and guaranteeing that

the resulting data resemble actual EEG signals. The last layer utilizes a Sigmoid activation

function to scale the output to the range [0, 1], corresponding to the normalized EEG data

format. It has 3000 neurons, or 3 channels with 1000 datapoints each.

The generated EEG data authenticated by the ANN-based discriminator gradually re-

duces the dimensionality of the input while extracting important features that differenti-

ate real from fake data. In the first fully connected layer, it starts with the entire 3000-

dimensional EEG vector, concatenates it with the label embedding, and reduces it to 1000

neurons. Subsequent layers of this downsampling technique concentrate on fine-tuning the

features suggestive of data authenticity, with the second layer lowering the dimensionality to

750 neurons and the third layer to 500 neurons. Before the final layer brings the dimension-

ality back to 1000 neurons, the fourth layer modifies the dimensionality significantly to 750

neurons, enabling a wider exploration of the feature space. Before the final categorization,

this symmetric structure guarantees a rich representation of the input data. The output

layer, which consists of a single neuron, uses a Sigmoid activation function to output a value

between 0 and 1. This value indicates the chance that the input data is real and signals the
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generator to produce more realistic synthetic data.

4.3 Results and Discussion

We modified several existing GAN-based models to align with the Renyi Differential Privacy

(RDP) framework, ensuring privacy preservation. Among these models were TimeGAN [67],

RCGAN [66], CRNN-GAN [72], and Clare-GAN [108]. By incorporating gradient clipping

and Gaussian noise into their original architectures, we developed RDP-TimeGAN, RDP-

RCGAN, RDP-CRNN-GAN, and RDP-Clare-GAN, respectively. A clipping norm of 1.0

was employed with varying noise multipliers [0.100, 0.311, 0.522, 0.733, 0.944, 1.156, 1.367,

1.578, 1.789, 2.000] in all methodologies. The other parameter details are shown in Table 4.1.

This configuration allowed for the evaluation of the privacy-preserving objective, facilitating

a fair comparison among the adapted RDP models.

Table 4.1: Common parameters used in this experiment.

Parameter Value
Privacy loss parameter (δ) 10−3

Rényi divergence order α 10
Number of local epochs (L) 5
Number of global epochs (T ) 300

Sampling rate (P) 0.2
Number of clients (M) 5

Batch size (B) 64
Learning rate (η) 0.0002
Noise scale (σ) [0.100, 0.311, 0.522, 0.733, 0.944, 1.156,

1.367, 1.578, 1.789, 2.000]
Data split among clients Equally among the clients

Total epochs for other models 300

4.3.1 Evaluation Scenarios

We performed the following tests to evaluate the usability of the generated EEG data us-

ing two well-known classification architectures; EEGNet [94], which generalizes across the

BCI paradigms, and ATCNet [93], which shows excellent performance with motor imagery

Dataset 2A.
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• Train(Tr+Sy), T est(Te): Trained on real EEG samples of train set plus the synthetic

dataset (augmented dataset), and tested on real EEG samples of test dataset.

• Train(Tr50+Sy50), T est(Te): Trained on 50% real EEG samples from train set plus the

50% synthetic dataset, and tested on real EEG samples of test dataset.

• Train(Tr), T est(Sy): Trained only on the real EEG samples of train dataset, and tested

on synthetic dataset.

• Train(Sy), T est(Tr): Trained on synthetic dataset, and tested on real EEG samples of

train dataset.

• Train(Sy), T est(Te): Trained on synthetic dataset, and tested on real EEG samples of

test dataset.

We evaluated the classification performance of each model over 30 runs to ensure the

validity of our findings. The real test set (Te) and the real training set (Tr) for each subject

were denoted by the A0PE and A0PT datasets, respectively, with ’P’ representing the subject

identifier. We created synthetic data using the entire A0PT dataset for our proposed method

and the comparison approaches. Following the creation of the synthetic data, we used the

EEGNet and ATCNet classifiers for training and analyzed them in a variety of scenarios.

We conducted experiments using various temporal correlation coefficients (ρ values) ranging

from 0.1 to 0.9. Our observations indicated that data quality, measured in terms of accuracy

for the five different evaluation scenarios, from Train(Tr+Sy), T est(Te) to Train(Sy), T est(Te),

was optimal at a ρ value of 0.55. Consequently, we used this value of ρ for all subsequent

comparisons with other methods.

The experimental results for our proposed Spiking GAN model, RDP-TimeGAN, RDP-

RCGAN, RDP-CRNN-GAN, and RDP-Clare-GAN are shown in Figures 4.1,4.2,4.3,4.4, and

4.5. These figures show the comparison of four state-of-the-art models evaluated using ATC-

Net and EEGNet for subject A1. These figures illustrate the models’ performance across
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various noise multipliers for subject A1, and these also illustrate how different levels of noise

impact the models’ ability to preserve privacy while maintaining efficient data generation

capabilities. The rest of the graphs for other subjects evaluated with both models are shown

in Appendix A. These evaluations highlight the crucial trade-off between privacy (quantified

by ϵ ) and model accuracy. We observed that both architectures give comparable perfor-

mance for most of the subjects but with a high degree of variability highlighting the need

for individualized utility optimization (deep learning models) for similar privacy budgets.

Secondly, our model achieves a balance of privacy and utility for the noise multiplier range

of 1.1 to 1.6, with corresponding privacy budget values ranging from 1.88 to 2.63.

We also found that for our method, the accuracy of both classifiers (EEGNet and ATC-

Net) for scenario 1, Train(Tr+Sy), T est(Te) was comparable to or slightly less than that for

scenario 2, Train(Tr50+Sy50), T est(Te). This suggests that reducing the real training data by

50% and augmenting with 50% synthetic data maintains or even slightly improves accu-

racy. This indicates that our privacy-preserving model can be deployed in BCI environ-

ments which are less sensitive to accuracy variability, such as BCI games. In contrast, other

models such as RDP-TimeGAN, RDP-RCGAN, RDP-CRNN-GAN, and RDP-Clare-GAN

showed a decrease in accuracy under similar conditions. The difference in accuracy between

Train(Tr), T est(Sy) and Train(Sy), T est(Tr) is more noticeable compared to other methods.

However, in our approach, this difference is smaller, indicating the high quality of the syn-

thetic EEG data generated. Furthermore, in the case of Train(Sy), T est(Te), our method

produces better accuracy than other approaches, suggesting a better data utility.
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Figure 4.1: Comparison of different models under various privacy budgets and noise multi-
pliers for subject A1 (Train(Tr+Sy), T est(Te)).

Figure 4.2: Comparison of different models under various privacy budgets and noise multi-
pliers for subject A1 (Train(Tr50+Sy50), T est(Te)).
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Figure 4.3: Comparison of different models under various privacy budgets and noise multi-
pliers for subject A1 (Train(Tr), T est(Sy)).

Figure 4.4: Comparison of different models under various privacy budgets and noise multi-
pliers for subject A1 (Train(Sy), T est(Tr)).
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Figure 4.5: Comparison of different models under various privacy budgets and noise multi-
pliers for subject A1 (Train(Sy), T est(Te)).

4.3.2 Data Fidelity

The fidelity and usability of the generated EEG data is evaluated using Dynamic Time

Warping (DTW) [109, 110] and Spectral Similarity (SS) [111] techniques. DTW aligns the

sequences to minimize the overall distance in order to determine how similar the actual and

synthetic EEG signals are to each other. DTW is useful for assessing the temporal dynamics

of the data. Low values indicate that the temporal dynamics of the synthetic data closely

follows the real data. SS gives a comparison of the power spectral density (PSD) between

synthetic and actual EEG data. A high value of spectral similarity means that the synthetic

data maintain the frequency characteristics of the genuine data. The SS score ranges from

0 to 1. The range of DTW and SS metrics obtained for the generated EEG data, shown

in Figures 4.6 and 4.7, demonstrates that our method produces high-fidelity synthetic data

that closely resemble the real data [112]. The inter-subject variability observed in the DTW

and SS scores suggests that the synthetic data may not have fully integrated the individual-

specific characteristics of the EEG signals. This variability could potentially be reduced by

using more subject-specific modeling approaches in the synthetic data generation process.

Overall, the fidelity of the synthetic data is high, despite considerable variation between

subjects. This implies that our technique preserves the essential features of EEG signals,
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such as frequency content and temporal dynamics, while adapting well to different subjects.

Figure 4.6: The plots shows the mean Dynamic Time Warping (DTW) values with standard
deviations and ranges obtained for the generated EEG data of all subjects, A1 to A9.

Figure 4.7: The plot shows the mean Spectral Similarity Score (SS) values with standard
deviations ranges obtained for the generated EEG data of all subjects, A1 to A9.
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4.3.3 Visualization of High-Dimensional EEG Data Using 3D t-

SNE

In order to compare the original with generated EEG data, we used t-Distributed Stochas-

tic Neighbor Embedding (t-SNE), which visualizes high-dimensional datasets by projecting

from higher dimensions to lower ones [113]. Through the t-SNE visualizations, the degree

of convergence of the synthetic data generation process can be assessed, facilitating the

identification of similarities or dissimilarities between the real and synthetic datasets.

Figure 4.8a illustrates the spatial distribution of the real and synthetic EEG data points

generated by our proposed Spiking GAN model and Figures 4.8b to 4.8e of four other models

including RDP-TimeGAN, RDP-RCGAN, RDP-CRNN-GAN and RDP-Clare-GAN. Due to

the large number of images and their file size, only one subject’s results are shown as a

representation of the dataset. Additional figures for other subjects are included in Appendix

B.
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(a) Real data vs. proposed Spiking GAN (b) Real data vs. RDP-TimeGAN

(c) Real data vs. RDP-CRNN-GAN (d) Real data vs. RDP-Clare-GAN

72



(e) Real data vs. RDP-RCGAN

Figure 4.8: 3D t-SNE visualization of high-dimensional EEG data for subject A1. Each
point in red color represents a real EEG data sample, and other synthetic data color-coded
by the model used for generation. (a) Real data vs. proposed Spiking GAN (b) Real data vs.
RDP-TimeGAN (c) Real data vs. RDP-CRNN-GAN (d) Real data vs. RDP-Clare-GAN
and (e) Real data vs. RDP-RCGAN.

The clusters and patterns observed in the t-SNE plots demonstrate that our Spiking

GAN model generates synthetic EEG data that closely approximate the distribution of

authentic EEG data, ensuring privacy preservation while maintaining high data fidelity.

The performance is also considerably better than that of the RDP-CRNN-GAN and RDP-

RCGAN models, which exhibit a greater degree of homogeneity relative to those of RDP-

TimeGAN and RDP-Clare-GAN.

Experimental results consistently indicate that our proposed Spiking GAN model strikes

a balance between privacy and accuracy more effectively than the baseline models. Further-

more, the lower epsilon values achieved signify enhanced privacy preservation while main-

taining high data fidelity and usability.
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4.4 Summary

In this chapter, we introduce a novel methodology for generating privacy-preserving syn-

thetic EEG data through the application of a Federated Spiking GAN framework, which

incorporates Spiking Neural Networks (SNNs) in the generator, an Artificial Neural Net-

work (ANN)-based discriminator, and a temporally correlated noise model. Unlike other

methods, ours takes advantage of the temporal dynamics inherent in SNNs to effectively

capture the essential characteristics of EEG signals. By integrating Renyi Differential Pri-

vacy (RDP) within the federated learning paradigm, we ensure robust privacy guarantees

without compromising the utility of the data. Our experiments demonstrate the efficacy of

our approach in producing high-fidelity synthetic EEG data while maintaining the balance

of privacy-utility. Extensive comparative analysis with other GAN-based privacy-preserving

methodologies, such as RDP-TimeGAN, RDP-CRNN-GAN, RDP-RCGAN, and RDP-Clare-

GAN, underscores the performance of our method in preserving the temporal dynamics of

EEG signals and providing strong privacy.

Although we presented a federated framework that incorporates Spiking GANs to de-

centralize and strengthen EEG data security, there is a growing demand for more granular

and adaptive privacy control mechanisms. This need lays the foundation of the next chap-

ter which proposes a Hierarchical Privacy Framework using GFlowNet and Federated Split

Learning (FSL). Chapter 5, built upon federated privacy concepts discussed in this chapter,

introduces hierarchical privacy layers which allow abstraction of at different levels, adjust-

ing privacy at multiple latent levels, showing a more enhanced balance between privacy and

utility while maintaining privacy concern. GFlowNet’s generative capabilities further extend

the communication security and its overheads with the help of dividing the learning process

among clients and servers. Thus, addressing current limitations through multi-layered pri-

vacy mechanisms, with adaptive sensitivity factor incorporated at these levels.
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5
Hierarchical Privacy using GFlowNet

and Federated Split Learning

In this work, we present a novel approach to privacy-preserving EEG data generation, com-

bining Federated Split Learning (FSL) with Hierarchical Privacy-Adaptive Autoencoders,

Secure Aggregation, and Generative Flow Networks (GFlowNet). Our method is designed

to ensure strong privacy guarantees while maintaining high data utility, specifically tailored

for the complex, spatio-temporal nature of EEG data. The hierarchical architecture of the

autoencoder enables multi-level feature extraction, effectively capturing both spatial and

temporal dependencies in the EEG signals. By leveraging Rényi Differential Privacy (RDP)

and adaptive noise scaling, our model anonymizes sensitive brain signals during the data gen-

eration process. The FSL architecture allows client-side processing of raw EEG data, followed

by server-side reconstruction and synthetic data generation using GFlowNet. To enhance
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privacy further, Secure Aggregation is applied, ensuring that individual data contributions

are protected even during communication between clients and the server. We evaluate our

approach under various privacy budgets, demonstrating a balanced privacy-utility trade-off.

Our findings show that this method provides robust privacy protection, maintaining both

spatial and temporal coherence in the generated synthetic EEG data, while offering flexibility

in real-world privacy-sensitive applications such as healthcare and neuroscience.

5.1 Methodology

This section outlines our approach for generating privacy-preserving synthetic EEG data

using Federated Split Learning (FSL) [114] employing a hierarchical encoder-decoder archi-

tecture inspired by [94, 115] and Generative Flow Networks (GFlowNet) [116]. To achieve

a balance between high data utility and strong privacy guarantees, we integrate Rényi Dif-

ferential Privacy (RDP) [30] and Secure Aggregation [117], protecting sensitive EEG data

while enabling the generation of high-quality synthetic data. The methodology is outlined

in Algorithm 5.1.

5.1.1 Federated Split Learning (FSL)

Federated Split Learning (FSL) divides the learning process between the client and the server.

Clients process raw EEG data locally, ensuring that the data never leave the client’s device

[114]. Only anonymized latent representations are shared with the server, which performs

the remaining computation without accessing the raw EEG data.

In our FSL setup, both the server and client components were simulated on a personal

computer, to replicate a federated learning environment. We simulated 5 clients, each repre-

senting an independent entity in the network, with each client handling its unique subset of

the EEG dataset. The raw EEG data was divided into non-overlapping segments, ensuring

that each client processed a different portion of the dataset. This configuration simulates

real-world situations in which various devices gather data independently.

Using the hierarchical encoder, each client processed its local data to create latent vari-
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ables l1, l2, l3 that captured various temporal and spatial characteristics of the EEG data.

These latent variables were then anonymized using RDP to ensure that they could not be

traced back to the original EEG signals. To further improve privacy, each client added a

random mask mi to anonymized latent variables after implementing RDP. After that, a cen-

tralized server received the masked latent variables (l′i + mi) for aggregation. The server,

also simulated on the same machine, acted as the central aggregator. It executed secure

aggregation after receiving the masked latent variables from each client to guarantee that

no client’s data was revealed. After aggregation, the server reconstructed the EEG signals

using the hierarchical decoder. Finally, the server used GFlowNet to create synthetic EEG

data while preserving the original EEG data’s temporal and spatial structure.

5.1.2 Client-Side: Processing EEG Data with Hierarchical En-

coder

On the client side, the raw EEG data is processed using a hierarchical encoder architecture

inspired by [94, 115], designed to capture both spatial and temporal features of the EEG

data across multiple levels of abstraction.

The encoder processes the data in three stages, producing latent variables l1, l2, l3, which

capture different aspects of the EEG signals:

• First Block (Temporal Filter): The initial stage captures basic temporal patterns

using depth-wise temporal convolution, producing the latent variable l1, modeled as:

l1 ∼ N (µ1, σ
2
1) (5.1)

where µ1 and σ1 are the mean and variance learned from the data.

• Second Block (Spatial Filter): This stage applies parallel convolutions to capture
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spatial features across EEG channels, resulting in the latent variable l2:

l2 ∼ N (µ2, σ
2
2) (5.2)

• Third Block (Separable Convolution): The final block refines both spatial and

temporal features, producing l3, which captures the remaining dependencies in the

EEG data:

l3 ∼ N (µ3, σ
2
3) (5.3)

These hierarchical latent variables, l1, l2, l3, capture progressively more abstract represen-

tations of the EEG data. These variables are then prepared for transmission to the server

after privacy mechanisms are applied. For details on the encoder configuration, refer to

Table 5.1.

5.1.3 Anonymization with Rényi Differential Privacy (RDP)

To protect latent variables before transmission, Rényi Differential Privacy (RDP) [30] is

applied. RDP ensures that latent representations cannot be traced back to the original EEG

data by adding controlled Gaussian noise. The privacy budget is distributed evenly across

the latent spaces to balance privacy and utility.

The total privacy budget ϵtotal is divided equally across the three latent spaces:

ϵ1 = ϵ2 = ϵ3 =
ϵtotal
3

(5.4)

This approach ensures a consistent privacy guarantee across the different levels of feature

abstraction.

Noise Addition to Latent Variables: Noise is added to each latent variable li (where

i = 1, 2, 3) as follows:

l′i = li +N (0, σ2
i ) (5.5)
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where N (0, σ2
i ) represents Gaussian noise with variance σ2

i . The noise scale σi is deter-

mined by the privacy budget ϵi and the data sensitivity ∆f :

σi =
∆f

ϵi
(5.6)

Here, ∆f represents the sensitivity of the data, ensuring that each latent variable is protected

while preserving data utility.

5.1.4 Ensuring Privacy with Secure Aggregation

To further enhance privacy, we implement Secure Aggregation [117], which ensures that

individual client data remains protected during communication with the server. Each client

applies a random mask mi to anonymized latent variables before transmission. The uniform

distribution over the range [−1, 1] was used to generate the random masks mi. This ensures

that even if the server or an adversary attempts to intercept the communication, it cannot

access the latent variables of any individual client.

The masked latent variables are sent as:

l′′i = l′i +mi (5.7)

Upon receiving the masked latent variables l′′i from all clients, the server aggregates the

masked variables and removes the masks using a process called mask cancellation [118]. The

server only works with the aggregated data, preserving client privacy:

n∑
i=1

l′′i −
n∑

i=1

mi =
n∑

i=1

l′i (5.8)

This process ensures that the server can never access individual client data, as it only deals

with the aggregated results of the masked latent variables, further enhancing the overall

privacy of the system.
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5.1.5 Server-Side: Decoding and Reconstruction

Once the anonymized latent variables are received by the server, the hierarchical decoder,

mirroring the encoder structure, reconstructs the original EEG signals. The decoder is

designed to ensure accurate reconstruction of the temporal and spatial features.

• First Block (Separable Convolution): This stage uses separable transposed convo-

lutions to upsample the latent variables and reconstruct the spatial-temporal features.

• Second Block (Spatial Filter): Applies parallel transposed convolutions to recon-

struct spatial features.

• Third Block (Temporal Filter): Reconstructs temporal dynamics in the EEG data

using transpose convolution.

The reconstruction loss is computed as:

L = Lrecon +DKL(q(l|d)∥p(l)) (5.9)

where Lrecon measures temporal alignment using Dynamic Time Warping (DTW) [119],

and DKL is the Kullback-Leibler (KL) Divergence [120], ensuring that the latent variables

follow a Gaussian distribution.

5.1.6 Generating Synthetic EEG Data with GFlowNet

After verifying the quality of the latent variables, the server uses Generative Flow Networks

(GFlowNet) [116] to generate synthetic EEG data. GFlowNet models the generation process

as a flow through latent states, ensuring that the generated data is spatially and temporally

coherent.

The generative process for the entire sequence of EEG data points is defined as [121, 122]:

P (y1, y2, . . . , yn|l′) = P (y1|l′)
n∏

i=2

P (yi|yi−1, l
′) (5.10)
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where, the first data point y1 is generated independently based on latent variables l′, and

each subsequent data point yi is generated conditionally based on the previous point yi−1

and the latent variables l′. This structure ensures that the generative process begins with

the independent generation of y1 and then follows a conditional sequence for the subsequent

points.

Table 5.1: Encoder Layer Configuration

Block

No.

Blocks SL

No.

Layers Kernel I/P

depth

O/P

depth

1 First block

(temporal

filter)

1 Convolution 2D

[Depth-wise convo-

lution (Temporal

Filter)]

(1, 125) 1 8

2 Batch Norm 2D [De-

fault parameters]

- - -

3 Attention Layer [Adds

temporal attention

scores]

- 8 8

2 Second

block (spa-

tial filter)

4 Convolution 2D (Par-

allel 1) [Depth-wise

convolution (Spatial

Filter)]

(1, 3) 8 16

5 Batch Norm 2D [De-

fault parameters]

- - -

6 Activation [ELU] - - -

7 Dropout [p = 0.5] - - -

Continued on next page
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Block

No.

Blocks SL

No.

Layers Kernel I/P

depth

O/P

depth

3 Third Block

(Separable

Conv.)

8 Convolution 2D

[Depth-wise convo-

lution (Separable

Conv.)]

(1, 32) 16 16

9 Convolution 2D

[Pointwise convolu-

tion]

(1, 1) 16 16

10 Activation [ELU] - - -

11 Average pooling [De-

fault parameters]

(1, 8) - -

12 Dropout [p = 0.5] - - -

4 Sample layer 13 Convolution 2D

[Pointwise convolu-

tion]

(1, 1) 16 32

Table 5.2: Decoder Layer Configuration

Sl.

No.

Blocks SL

No.

Layers Kernel I/P

depth

O/P

depth

1 Third Block

(Separable

Convolu-

tion)

1 Dropout [p = 0.5] - - -

Continued on next page
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Sl.

No.

Blocks SL

No.

Layers Kernel I/P

depth

O/P

depth

2 Upsample [Default pa-

rameters]

(1, 8) - -

3 Activation [ELU] - - -

4 Batch Norm 2D [De-

fault parameters]

- - -

5 Transpose Convolu-

tion 2D [Pointwise

convolution]

(1, 1) 32 16

6 Transpose Convolu-

tion 2D [Depth-wise

convolution]

(1, 32) 16 16

2 Second

Block (Spa-

tial Filter)

7 Dropout [p = 0.5] - - -

9 Activation [ELU] - - -

10 Batch Norm 2D [De-

fault parameters]

- - -

11 Transpose Convolu-

tion 2D [Depth-wise

convolution (Spatial

Filter)]

(1, 3) 16 8

3 First Block

(Temporal

Filter)

12 Batch Norm 2D [De-

fault parameters]

- - -

Continued on next page
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Sl.

No.

Blocks SL

No.

Layers Kernel I/P

depth

O/P

depth

13 Transpose Convolu-

tion 2D [Depth-wise

convolution (Tempo-

ral Filter)]

(1, 125) 8 8

5.2 Experiments and Results

5.2.1 Dataset

We used the BCI IV 2B dataset, which contains EEG recordings of nine subjects identified as

B1 through B9, performing two motor imagery tasks (MIT) with and without feedback [91].

We used the recordings from all the EEG channels (C3, Cz and C4).The signals were filtered

using a bandpass filter between 0.5 Hz and 100 Hz, and a notch filter was applied at 50

Hz. All subjects participated in five sessions. Three sessions, SIII through SV, had real-time

feedback, while the first two, SI and SII, consisted of training data without any feedback.

Each subject completed 60 trials for each MI class during the non-feedback motor imagery

(MI) sessions, for a total of 120 trials. During the feedback sessions, there were 80 trials for

each MI class, for a total of 160 trials in a session. The average duration of the trial was 4

seconds. Each participant completed 720 tests in total, although some were not completed

due to differences in the experiment. Signal data from each trial were collected, with a focus

on a segment of approximately 4 seconds. A 4-second frame sampled at a frequency of 250

Hz corresponded to 1000 data points each trial.

5.2.2 Experimental Setup

We divided the overall dataset D̄ into training and testing subsets, denoted as Tr (for the

real training data) and Te (for the real test data), respectively. Here, (1) D̄ : sessions (SI
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Algorithm 5.1 Privacy-Preserving EEG Data Generation Using FSL, Hierarchical Encoder-
Decoder, and GFlowNet

1: Input: EEG data D = {d1, d2, . . . , dK} for K clients
2: Output: Synthetic EEG data Y generated by GFlowNet
3: Initialization:
4: Initialize hierarchical encoder-decoder at clients and server
5: Initialize GFlowNet model at server
6: Set privacy budget ϵtotal for RDP, divide as ϵ1 = ϵ2 = ϵ3 =

ϵtotal
3

7: Set sensitivity ∆f for each latent space
8: Set communication rounds R̄
9: Federated Split Learning (FSL) - For each round r ∈ R:
10: for each client k do
11: (i) Input EEG data dk into hierarchical encoder to compute latent variables:
12: lk1 , l

k
2 , l

k
3 = Encoder(dk)

13: (ii) Apply RDP to anonymize latent variables:
14: l′i

k = lki +N (0, σ2
i ), σi =

∆f
ϵi

for i = 1, 2, 3
15: (iii) Apply secure aggregation by adding random masks:
16: l′′i

k = l′i
k +mk

i for i = 1, 2, 3
17: (iv) Transmit masked, anonymized latent variables l′′1

k, l′′2
k, l′′3

k to server
18: end for
19: Server-Side:
20: (i) Aggregate masked latent variables from clients using secure aggregation:
21: Aggregatel′i =

∑K
k=1 l

′′
i
k −

∑K
k=1 m

k
i for i = 1, 2, 3

22: (ii) Decode aggregated latent variables to reconstruct EEG data:
23: d̂ = Decoder(Aggregatel′1 ,Aggregatel′2 ,Aggregatel′3)
24: (iii) Compute reconstruction loss:
25: Lrecon = DTW(DAggregate, d̂)
26: GFlowNet Training:
27: for each time step i in EEG sequence do
28: Generate next EEG point yi using flow transition
29: Update GFlowNet parameters to minimize flow-based loss
30: end for
31: Model Update:
32: (a) Update client encoder weights using Lrecon

33: (b) Update server decoder and GFlowNet weights using Lrecon and Lflow

34: Output:
35: Output synthetic EEG data Y generated by GFlowNet
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through SV), (2) Tr : sessions (SI through SIII), (3) Te : sessions (SIV and SV). After

splitting D̄ into Tr and Te, we removed the trials with artifacts. Figures 5.1, 5.2, 5.3, 5.4

and 5.5 represent the accepted and rejected trials for Session I, II, III, IV and V, respectively.

We used the subset Tr for training and created synthetic data, Sy, equal in number to the

training data samples in Tr. In addition, we combined Sy with Tr to create an augmented

dataset Aug. We tested our approach and other state-of-the-art techniques with a range of

ϵ values: 0.5, 1, 3, 6, 9, 12, and 15. The experiments were carried out using CUDA 11.8,

cuDNN 9.3.0, PyTorch 2.4.1+cu118, Python 3.8.19, and an NVIDIA GeForce RTX 4050

GPU.

Figure 5.1: 2B (Session I): Accepted and Rejected/Artifact Trials by Subject and Task

Figure 5.2: 2B (Session II): Accepted and Rejected/Artifact Trials by Subject and Task
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Figure 5.3: 2B (Session III): Accepted and Rejected/Artifact Trials by Subject and Task

Figure 5.4: 2B (Session IV): Accepted and Rejected/Artifact Trials by Subject and Task

Figure 5.5: 2B (Session V): Accepted and Rejected/Artifact Trials by Subject and Task
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5.2.3 State-of-the-art Methods

We evaluated our proposed method against two popular state-of-the-art methods as discussed

below.

• DP-GAN [50]: To create synthetic EEG data, DP-GAN employs a GAN (consists of a

generator, a discriminator) with Differential Privacy which uses DP-SGD (Differentially

Private Stochastic Gradient Descent). To reduce the influence of individual data points,

the model limits training by adding noise to the gradients. To improve data quality

and privacy, it uses convolutional neural networks in the discriminator to learn spatio-

temporal EEG patterns.

• RDP-CGAN [97]: It uses Convolutional GANs (CGANs) with Rényi Differential Pri-

vacy (RDP) for data generation. It includes Convolutional Autoencoders (CAEs) to

handle discrete and continuous data, capturing temporal and feature correlations.

5.2.4 Classification Performance

The computational evaluation is broken down into three distinct scenarios: Tr → Sy:

(Train(Tr), T est(Sy)), Sy → Tr: (Train(Sy), T est(Tr)), and Aug → Te: (Train(Aug), T est(Te))

[66].

• Tr → Sy: (Train(Tr), T est(Sy)): Deep learning models are first trained on Tr (real

EEG train subset), and then tested on the corresponding Sy (generated synthetic

EEG). This scenario provides insights into how well the model generalizes from real-

world samples to synthetic ones, which is critical to understanding the effectiveness of

synthetic data for inference tasks when training is done on real datasets.

• Sy → Tr: (Train(Sy), T est(Tr)): In contrast, this scenario involves training the same

models using Sy data and testing them with Tr data. This test is particularly impor-

tant because it shows whether the synthetic data are robust enough to be useful for
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training models that can later perform well on real-world data. The model’s perfor-

mance in this configuration would indicate whether or not the synthetic data produced

by the privacy-preserving frameworks is of a high quality suitable for real-world use.

• Aug → Te: (Train(Aug), T est(Te)): Here, the models are trained on augmented data

Aug (Tr+Sy). The model is then tested on Te (real EEG samples of the test subset).

This scenario helps to evaluate the model’s generalization ability after training on a

mixed dataset. The use of augmented data makes the model robust by diversifying the

training set, while testing on unseen data Te evaluates the model’s ability to handle

new, real-world variations.

A comprehensive understanding of the performance of models trained with synthetic, real,

and enhanced data was achieved in various settings by examining the results in three evalua-

tion scenarios. These evaluations provide valuable information on the practical applicability

of Sy data in real-world situations, the efficacy of augmented data, and the overall depend-

ability of our proposed privacy-preserving method. In all instances, the ShallowNet [95] and

CapsNet [96] models were utilized for classification tasks. Their performance was compared

with those of other state-of-the-art methods (DP-GAN and RDP-CGAN). To ensure a fair

comparison of all techniques, we used 500 rounds (R̄) for our method and 500 total epochs

for the other models, along with an identical clipping norm C = 0.5, α = 10, and the privacy

parameter δ = 10−3.

Figure 5.6 illustrates the test accuracy of the raw data (baseline scenario, (Train(Tr), T est(Te))),

where deep learning models were trained on Tr (real EEG) and tested on Te (real EEG).

Table 5.3 shows the test accuracy for the three evaluation scenarios - (Train(Tr), T est(Sy)),

(Train(Sy), T est(Tr)), and (Train(Aug), T est(Te)) - across different subjects and methods with

ϵ = 3. Our method achieves higher accuracy in all three scenarios compared to the popular

methods, DP-GAN and RDP-GAN.
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(Train(Tr), T est(Sy)) (Train(Sy), T est(Tr)) (Train(Aug), T est(Te))
ShallowNet CapsNet ShallowNet CapsNet ShallowNet CapsNet

B1
Our Method 85.54 86.82 82.47 83.71 75.11 77.43
DP-GAN 75.21 76.49 70.82 72.26 67.42 68.78
RDP-CGAN 72.74 73.66 67.19 69.32 64.27 63.56

B2
Our Method 80.42 81.88 77.53 76.61 59.27 61.79
DP-GAN 68.26 70.80 62.40 63.55 48.12 49.68
RDP-CGAN 70.93 69.21 58.74 56.48 47.65 46.59

B3
Our Method 78.71 79.33 74.85 73.47 60.92 61.26
DP-GAN 66.15 65.87 59.31 60.50 47.61 45.22
RDP-CGAN 61.76 63.48 56.94 54.20 43.57 44.83

B4
Our Method 91.39 92.84 90.51 88.72 92.28 92.63
DP-GAN 79.22 80.69 69.75 71.86 77.41 78.58
RDP-CGAN 74.87 76.16 66.52 65.87 76.31 78.74

B5
Our Method 85.61 84.37 82.82 81.55 84.29 82.74
DP-GAN 76.20 74.78 66.59 68.95 68.41 67.67
RDP-CGAN 73.12 75.66 69.83 67.38 65.94 68.50

B6
Our Method 80.52 78.84 77.29 76.76 71.41 72.68
DP-GAN 63.39 65.28 59.77 61.44 55.69 57.55
RDP-CGAN 62.71 64.14 56.88 59.30 53.64 54.92

B7
Our Method 81.43 83.57 80.89 80.66 75.31 75.74
DP-GAN 66.94 64.37 62.62 61.51 57.79 56.21
RDP-CGAN 63.86 65.28 58.55 59.90 59.12 61.77

B8
Our Method 80.82 82.41 76.67 78.53 81.29 79.75
DP-GAN 67.65 68.91 64.30 63.45 62.74 61.18
RDP-CGAN 66.29 64.77 60.54 58.85 57.33 58.92

B9
Our Method 86.57 87.82 81.41 83.69 81.28 80.94
DP-GAN 72.64 73.26 63.93 62.45 61.78 59.31
RDP-CGAN 68.18 70.72 59.53 58.90 57.22 58.67

Table 5.3: Performance comparison of models across various scenarios using ShallowNet and
CapsNet architectures. Bold values indicate the highest performance.
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Figure 5.6: the test accuracy of the raw data (baseline scenario, (Train(Tr), T est(Te))), where
the deep learning models were trained on Tr (real EEG) and tested on Te (real EEG).

5.2.5 Full Black-box Attack

To thoroughly evaluate the privacy guarantees of our synthetic EEG data generation model,

we performed a Full Black-Box Attack (FBA) similar to [98]. Here, an adversary has very

restricted access, solely to the synthetic data generated by the model. The objective of the

adversary is to infer whether a specific real data point X was used during the training of the

model by analyzing synthetic data.

R = argmin
X̂

L(X, X̂)

where, Euclidean distance, L is the metric used to calculate the difference between the

generated data point X̂ and the real data point X and R denotes the reconstructed data

point, which is the data point of the generated set that is closest to the target data point. The

adversary is informed of a potential privacy violation when the calculated distance L(X,R)
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is found to be less than a preset threshold Tκ. This is because it raises the possibility that the

original data point X was included in the training dataset. The following is a mathematical

expression for the attack:

A(X) =


1 if L(X,R) ≤ Tκ

0 otherwise

where, A(X) is a binary function that returns 1 if the distance is within the threshold

Tκ, indicating a successful inference, and 0 otherwise.

Full Black-box Attack Results

The number of samples leaked during the Full Black-box Attack is measured as a part of

the total dataset based on the output of the evaluation function, A(X). The results of the

attack are summarized in Figure 5.7. Due to the large number of images and their file size,

only one subject’s results are shown as a representation of the dataset. Additional figures

for other subjects are included in Appendix B. One important finding from the data is that

our model shows great resilience against the FBA with few successful inferences when the

ϵ is kept low, that is, below 3. In line with the anticipated trade-off between privacy and

utility in differential privacy frameworks, the model becomes more vulnerable to inference

attacks as ϵ increases.

For this evaluation, we set Tκ at 0.05, also observed in [98], which balances the trade-off

between the sensitivity of the attack and the practical utility of the generated data. Similarly,

our findings indicate that to achieve the balance between privacy and utility of the model,

ϵ should be maintained within a range. Too low ϵ values increase privacy but reduce utility,

and too high values increase susceptibility to attacks, as shown in Figure 5.7.
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Figure 5.7: Attack success rate (%) for subject B1 across different ϵ values. A higher
percentage signifies a more successful attack, whereas a lower percentage indicates better
privacy protection.

5.3 Summary

In this work, we present a framework based on a federated learning approach for the gen-

eration of synthetic EEG data. It combines Hierarchical Privacy Adaptive Autoencoders,

Secure Aggregation, and Generative Flow Networks (GFlowNet) enhanced by Rényi Differen-

tial Privacy (RDP) to achieve data utility and strong privacy. The hierarchical architecture

of the autoencoders allows for the efficient extraction of multi-level spatial and temporal

characteristics from EEG signals, essential for preserving the quality of the generated syn-

thetic EEG data. Our approach tackles the issue of safeguarding sensitive brain signals while

producing high-fidelity synthetic data.

Through Federated Split Learning (FSL), we decouple the learning process into hierarchi-

cal feature extraction on the client side and data generation on the server side. This reduces

computational resource demand on the client side and ensures that raw EEG data never leave

the client’s device. The use of adaptive autoencoders and RDP further strengthens privacy

by dynamically applying noise based on the sensitivity of the data. The Secure Aggregation

mechanism ensures that individual client contributions remain private even during commu-
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nication to the server. Our results demonstrate the effectiveness of the proposed method,

which offers a balance between privacy and utility measured with varying privacy budgets.

This makes it suitable for real-world applications where privacy is paramount, such as in

medical diagnostics, brain-computer interfaces, and other EEG-based systems. Future work

could explore the extension of this framework to other types of physiological data and the

potential for real-time privacy-preserving analytics in distributed environments.
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6
Conclusions

The problem of protecting personal data is becoming more and more pressing in a world

where AI systems are rapidly developing. Despite their strength, deep learning models carry

the risk of disclosing personal data if not properly handled. To navigate this challenge, this

thesis presents three substantial frameworks that deal with model and data privacy. These

approaches not only protect user personal information, but also promote the use of diverse

datasets, ultimately leading to stronger model performance and trust.

In this thesis, in the first part, we developed a Generative Adversarial Network (GAN)

enhanced with quantum-inspired differential privacy techniques to secure EEG data for Brain

Machine Interface applications. The GAN architecture integrates differential privacy within

the training process, applying dynamically adjusted Gaussian noise based on the principles

of quantum decoherence and uncertainty to the discriminator’s gradients. Our first method

ensures a balance between the data utility and privacy by managing the privacy budget across
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training epochs using a custom stochastic gradient descent. The discriminator, equipped with

convolutional and bidirectional LSTM layers, validates the authenticity of the synthetic EEG

data generated, while the generator is trained to produce high-utility data under privacy

restrictions. The effectiveness of the model is validated by rigorous testing against standard

privacy attacks (reconstruction attacks and membership inference attacks), demonstrating

its ability to protect sensitive EEG data while maintaining its utility for biomedical research.

In the second part of this thesis, we designed a privacy-preserving synthetic EEG data

generation framework that integrates a Spiking Neural Network (SNN)-based generator with

an Artificial Neural Network (ANN)-based discriminator deployed within a federated learning

environment. The SNN-based generator, modeled using a modified Leaky Integrate-and-Fire

(LIF) neuron, simulates the temporal dynamics of biological neurons to produce realistic

synthetic EEG signals. The ANN-based discriminator classifies the signals generated as real

or artificial through a series of FC layers. Temporally correlated noise is added throughout

the data synthesis process to protect privacy by preventing the synthetic data from being

connected to the original samples. This noise is applied dynamically across time steps,

preserving the temporal structure of the EEG signals. By aggregating local models to a

central server, federated learning ensures privacy without centralizing sensitive data while

the model is taught across numerous clients. Renyi Differential Privacy (RDP) is employed to

measure and enforce privacy guarantees throughout the training process. The results of this

method demonstrate that it can provide strong privacy guarantees and efficiently captures

the temporal dynamics of EEG signals. This method maintains secrecy while guaranteeing

that the synthetic data closely mimic the real data.

Our third approach integrates Federated Split Learning (FSL), Hierarchical Privacy-

Adaptive Autoencoders, Secure Aggregation, and Generative Flow Networks (GFlowNet)

with RDP to generate privacy-preserving synthetic EEG data. In FSL, clients process raw

EEG data locally through a hierarchical autoencoder that extracts spatial and temporal fea-

tures. The server receives anonymized latent representations, from which GFlowNet creates
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artificial EEG signals. RDP adds noise to preserve privacy depending on how sensitive the

data is, and Secure Aggregation encrypts the data while it is being transmitted. Our re-

sults demonstrate an optimal balance of privacy and utility, preserving the spatio-temporal

structure of EEG data in various privacy budgets, making the approach suitable for sensitive

applications such as healthcare and neuroscience.

The three distinct privacy-preserving frameworks were explored and compared on the

basis of their balance between privacy guarantees and data utility. Chapter 3 offers the

strongest privacy guarantees, but at the cost of slightly reduced data utility due to the

dynamic quantum-inspired noise addition. Chapter 4 allowed better data utility by keeping

raw EEG data decentralized at the client level while applying Rényi Differential Privacy

locally to maintain privacy. By distributing the privacy budget across multiple latent spaces,

Chapter 5 achieved the best trade-off between privacy and data quality, ensuring that the

generated EEG data retained both spatial and temporal coherence.

Our rigorous experiments have verified that these approaches deliver an ideal trade-off

between utility and privacy, positioning them as practical solutions for real-world BCI or

BMI applications. Optimizing these frameworks for even more versatility and effectiveness

in a range of use situations will be the focus of my future research.
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7
Future Work

Evaluating the model’s scalability in real-world scenarios is essential, despite its development

in this study with two seminal EEG-BCI datasets. A user-friendly framework or toolkit

based on Q-DP-GAN can improve its adoption among researchers and practitioners who

lack expertise in privacy-preserving technologies. Although our focus has been on BCI ap-

plications based on EEG data, applying Q-DP-GAN to finance, healthcare, and social media

is promising. These fields can benefit significantly from the privacy-preserving capabilities

of the model.

Moreover, I aim to integrate federated learning frameworks with generative models to en-

able decentralized data generation while ensuring privacy. This approach has the potential

to expand the applicability of synthetic data in privacy-sensitive domains, including health-

care and finance, where protecting data confidentiality is paramount. I am also interested in

applying these techniques to real-time data generation, which could substantially improve
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predictive modeling accuracy and decision-making processes in these critical fields.

In addition, I intend to improve the validation of the suggested models using a series

of assessment methods that emphasize the resilience, precision, and utility of the generated

data. To be more precise, I will assess how effectively the models capture dependencies

across different data dimensions using Dimension-wise prediction (DWpre) [78]. This will

enhance our understanding of inter-dimensional relationships. Evaluate the overall quality

of the newly generated data using the Generate Score [77] to make sure that it satisfies strict

accuracy requirements under differential privacy conditions. I will use dimension-wise statis-

tics and dimension-wise average (DWA) to further verify the statistical integrity of synthetic

data [98]. This will provide a thorough comparison of the statistical characteristics and

averages in each dimension of the created data with the original data. Correlation analysis

[98] can be used to verify that the resulting data preserve these dimensional relationships,

guaranteeing their utility. In order to ensure that the statistical distributions of the syn-

thetic and real data are almost identical, the maximum mean difference (MMD) [123, 97]

can provide comparisons. Lastly, an ablation study similar to [97], systematically altering

model elements such as autoencoders and convolutional layers, will help to evaluate their

respective contributions to overall performance.

Another direction for the future is to expand my research to incorporate blockchain

technologies, exploring their potential to enhance the security and traceability of synthetic

data transactions. This integration could offer a robust solution to ensure data integrity and

compliance, particularly in regulated industries such as healthcare. Furthermore, I intend to

explore privacy-preserving techniques like homomorphic encryption and secure multiparty

computation to strengthen the privacy guarantees of my models.

Lastly, the scope of my research can extend to include other types of neural data, such

as fMRI and MEG, and integrate multimodal data. This will allow for more comprehensive

neural data synthesis, potentially leading to breakthroughs in areas like neuroimaging and

personalized medicine. Finally, I plan to make these advanced techniques more accessible by
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developing user-friendly frameworks, thereby enabling a broader range of practitioners and

researchers to leverage privacy-preserving synthetic data generation in their work.
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Publications

The work presented in this thesis is being submitted for publication in IEEE, ACM, Elsevier,

and Springer journals with the following titles.

• Paul, S., Bajwa, G.: Improving EEG data privacy through quantum-inspired differen-

tial privacy-based GAN.

• Paul, S., Bajwa, G.: Enhancing thought privacy using federated learning with spiking

GANs for high-fidelity EEG data generation.

• Paul, S., Bajwa, G.: Privacy-preserving EEG data generation: A federated split

learning approach using privacy-adaptive autoencoders and secure aggregation with

GFlowNet.
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tion 2008–graz data set b,” Graz University of Technology, Austria, vol. 16, pp. 1–6,

2008.

[92] S. Hu, H. Wang, J. Zhang, W. Kong, and Y. Cao, “Causality from cz to c3/c4 or

between c3 and c4 revealed by granger causality and new causality during motor im-

agery,” in 2014 International joint conference on neural networks (IJCNN), pp. 3178–

3185, IEEE, 2014.

[93] H. Altaheri, G. Muhammad, and M. Alsulaiman, “Physics-informed attention temporal

convolutional network for eeg-based motor imagery classification,” IEEE transactions

on industrial informatics, vol. 19, no. 2, pp. 2249–2258, 2022.

[94] V. J. Lawhern, A. J. Solon, N. R. Waytowich, S. M. Gordon, C. P. Hung, and B. J.

Lance, “Eegnet: a compact convolutional neural network for eeg-based brain–computer

interfaces,” Journal of neural engineering, vol. 15, no. 5, p. 056013, 2018.

[95] R. T. Schirrmeister, J. T. Springenberg, L. D. J. Fiederer, M. Glasstetter,

K. Eggensperger, M. Tangermann, F. Hutter, W. Burgard, and T. Ball, “Deep learning

with convolutional neural networks for eeg decoding and visualization,” Human brain

mapping, vol. 38, no. 11, pp. 5391–5420, 2017.

[96] K.-W. Ha and J.-W. Jeong, “Motor imagery eeg classification using capsule networks,”

Sensors, vol. 19, no. 13, p. 2854, 2019.

[97] A. Torfi, E. A. Fox, and C. K. Reddy, “Differentially private synthetic medical data

generation using convolutional gans,” Information Sciences, vol. 586, pp. 485–500,

2022.

[98] H. Gwon, I. Ahn, Y. Kim, H. J. Kang, H. Seo, H. Choi, H. N. Cho, M. Kim, J. Han,

G. Kee, et al., “Ldp-gan: Generative adversarial networks with local differential privacy

113



for patient medical records synthesis,” Computers in Biology and Medicine, vol. 168,

p. 107738, 2024.

[99] J. Hayes, L. Melis, G. Danezis, and E. De Cristofaro, “Logan: Membership inference

attacks against generative models,” arXiv preprint arXiv:1705.07663, 2017.

[100] Z. Li, M. Yang, Y. Liu, J. Wang, H. Hu, W. Yi, and X. Xu, “Gan you see me? enhanced

data reconstruction attacks against split inference,” Advances in Neural Information

Processing Systems, vol. 36, 2024.

[101] H. Gao, J. He, H. Wang, T. Wang, Z. Zhong, J. Yu, Y. Wang, M. Tian, and C. Shi,

“High-accuracy deep ann-to-snn conversion using quantization-aware training frame-

work and calcium-gated bipolar leaky integrate and fire neuron,” Frontiers in Neuro-

science, vol. 17, p. 1141701, 2023.

[102] S. Singanamalla, S. R. Rajasekaran, K. Dinesh, and V. Narayanan, “Spiking neural

network for augmenting electroencephalographic data for brain-computer interfaces,”

in 2022 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pp. 5005–5009, IEEE, 2022.

[103] W. Nicola and C. Clopath, “Supervised learning in spiking neural networks with force

training,” Nature communications, vol. 8, no. 1, p. 2208, 2017.

[104] L. Li, Y. Fan, M. Tse, and K.-Y. Lin, “A review of applications in federated learning,”

Computers & Industrial Engineering, vol. 149, p. 106854, 2020.

[105] Y. Ho and S. Wookey, “The real-world-weight cross-entropy loss function: Modeling

the costs of mislabeling,” IEEE access, vol. 8, pp. 4806–4813, 2019.

[106] S. Li, V. Dutta, X. He, and T. Matsumaru, “Deep learning based one-class detection

system for fake faces generated by gan network,” Sensors, vol. 22, no. 20, p. 7767,

2022.

114



[107] A. Tabassum, A. Erbad, W. Lebda, A. Mohamed, and M. Guizani, “Fedgan-ids:

Privacy-preserving ids using gan and federated learning,” Computer Communications,

vol. 192, pp. 299–310, 2022.

[108] H. Arnout, J. Bronner, and T. Runkler, “Clare-gan: Generation of class-specific time

series,” in 2021 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–

8, IEEE, 2021.

[109] M. Müller, “Dynamic time warping,” Information retrieval for music and motion,

pp. 69–84, 2007.

[110] H. Li, “Time works well: Dynamic time warping based on time weighting for time

series data mining,” Information Sciences, vol. 547, pp. 592–608, 2021.

[111] K. Gupta, D. Thomas, S. Vidya, K. V. Venkatesh, and S. Ramakumar, “Detailed pro-

tein sequence alignment based on spectral similarity score (sss),” BMC bioinformatics,

vol. 6, pp. 1–16, 2005.

[112] D. Geng and Z. S. Chen, “Auxiliary classifier generative adversarial network for in-

terictal epileptiform discharge modeling and eeg data augmentation,” in 2021 10th

International IEEE/EMBS Conference on Neural Engineering (NER), pp. 1130–1133,

IEEE, 2021.

[113] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.,” Journal of machine

learning research, vol. 9, no. 11, 2008.

[114] Z. Zhang, A. Pinto, V. Turina, F. Esposito, and I. Matta, “Privacy and efficiency of

communications in federated split learning,” IEEE Transactions on Big Data, vol. 9,

no. 5, pp. 1380–1391, 2023.

[115] G. Cisotto, A. Zancanaro, I. Zoppis, S. Manzoni, et al., “hveegnet: exploiting hierar-

chical vaes on eeg data for neuroscience applications,” 2023.

115



[116] S. Lahlou, T. Deleu, P. Lemos, D. Zhang, A. Volokhova, A. Hernández-Garcıa, L. N.

Ezzine, Y. Bengio, and N. Malkin, “A theory of continuous generative flow networks,”

in International Conference on Machine Learning, pp. 18269–18300, PMLR, 2023.

[117] H. Fereidooni, S. Marchal, M. Miettinen, A. Mirhoseini, H. Möllering, T. D. Nguyen,
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Appendix A: Supplementary Figures

of Chapter 4

Evaluation Scenarios:
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Figure 1: Comparison of different models under various privacy budgets and noise multipliers
for subject A2.
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Figure 2: Comparison of different models under various privacy budgets and noise

multipliers for subject A3.
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Figure 3: Comparison of different models under various privacy budgets and noise

multipliers for subject A4.
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Figure 4: Comparison of different models under various privacy budgets and noise

multipliers for subject A5.
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Figure 5: Comparison of different models under various privacy budgets and noise

multipliers for subject A6.
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Figure 6: Comparison of different models under various privacy budgets and noise

multipliers for subject A7.
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Figure 7: Comparison of different models under various privacy budgets and noise

multipliers for subject A8.
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Figure 8: Comparison of different models under various privacy budgets and noise multipliers
for subject A9.
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Visualization of High-Dimensional EEG Data Using 3D

t-SNE:

Figure 9: 3D t-SNE visualization of high-dimensional EEG data for subject A2. Each point
in red color represents a real EEG data sample, and other synthetic data color-coded by
the model used for generation. (a) Real data vs. proposed Spiking GAN (b) Real data vs.
RDP-TimeGAN (c) Real data vs. RDP-CRNN-GAN (d) Real data vs. RDP-Clare-GAN
and (e) Real data vs. RDP-RCGAN.

126



Figure 10: 3D t-SNE visualization of high-dimensional EEG data for subject A3. Each point
in red color represents a real EEG data sample, and other synthetic data color-coded by the
model used for generation. (a) Real data vs. proposed Spiking GAN (b) Real data vs.
RDP-TimeGAN (c) Real data vs. RDP-CRNN-GAN (d) Real data vs. RDP-Clare-GAN
and (e) Real data vs. RDP-RCGAN.
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Figure 11: 3D t-SNE visualization of high-dimensional EEG data for subject A4. Each point
in red color represents a real EEG data sample, and other synthetic data color-coded by the
model used for generation. (a) Real data vs. proposed Spiking GAN (b) Real data vs.
RDP-TimeGAN (c) Real data vs. RDP-CRNN-GAN (d) Real data vs. RDP-Clare-GAN
and (e) Real data vs. RDP-RCGAN.
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Figure 12: 3D t-SNE visualization of high-dimensional EEG data for subject A5. Each point
in red color represents a real EEG data sample, and other synthetic data color-coded by the
model used for generation. (a) Real data vs. proposed Spiking GAN (b) Real data vs.
RDP-TimeGAN (c) Real data vs. RDP-CRNN-GAN (d) Real data vs. RDP-Clare-GAN
and (e) Real data vs. RDP-RCGAN.
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Figure 13: 3D t-SNE visualization of high-dimensional EEG data for subject A6. Each point
in red color represents a real EEG data sample, and other synthetic data color-coded by the
model used for generation. (a) Real data vs. proposed Spiking GAN (b) Real data vs.
RDP-TimeGAN (c) Real data vs. RDP-CRNN-GAN (d) Real data vs. RDP-Clare-GAN
and (e) Real data vs. RDP-RCGAN.
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Figure 14: 3D t-SNE visualization of high-dimensional EEG data for subject A7. Each point
in red color represents a real EEG data sample, and other synthetic data color-coded by the
model used for generation. (a) Real data vs. proposed Spiking GAN (b) Real data vs.
RDP-TimeGAN (c) Real data vs. RDP-CRNN-GAN (d) Real data vs. RDP-Clare-GAN
and (e) Real data vs. RDP-RCGAN.
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Figure 15: 3D t-SNE visualization of high-dimensional EEG data for subject A8. Each point
in red color represents a real EEG data sample, and other synthetic data color-coded by the
model used for generation. (a) Real data vs. proposed Spiking GAN (b) Real data vs.
RDP-TimeGAN (c) Real data vs. RDP-CRNN-GAN (d) Real data vs. RDP-Clare-GAN
and (e) Real data vs. RDP-RCGAN.
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Figure 16: 3D t-SNE visualization of high-dimensional EEG data for subject A9. Each point
in red color represents a real EEG data sample, and other synthetic data color-coded by the
model used for generation. (a) Real data vs. proposed Spiking GAN (b) Real data vs.
RDP-TimeGAN (c) Real data vs. RDP-CRNN-GAN (d) Real data vs. RDP-Clare-GAN
and (e) Real data vs. RDP-RCGAN.

133



Appendix B: Supplementary Figures

of Chapter 5

Full Black-box Attack Results:

Figure 1: Attack success rate (%) for subject B2 across different ϵ values. A higher percent-
age signifies a more successful attack, whereas a lower percentage indicates better privacy
protection.
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Figure 2: Attack success rate (%) for subject B3 across different ϵ values. A higher percent-
age signifies a more successful attack, whereas a lower percentage indicates better privacy
protection.

Figure 3: Attack success rate (%) for subject B4 across different ϵ values. A higher percent-
age signifies a more successful attack, whereas a lower percentage indicates better privacy
protection.
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Figure 4: Attack success rate (%) for subject B5 across different ϵ values. A higher percent-
age signifies a more successful attack, whereas a lower percentage indicates better privacy
protection.

Figure 5: Attack success rate (%) for subject B6 across different ϵ values. A higher percent-
age signifies a more successful attack, whereas a lower percentage indicates better privacy
protection.
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Figure 6: Attack success rate (%) for subject B7 across different ϵ values. A higher percent-
age signifies a more successful attack, whereas a lower percentage indicates better privacy
protection.

Figure 7: Attack success rate (%) for subject B8 across different ϵ values. A higher percent-
age signifies a more successful attack, whereas a lower percentage indicates better privacy
protection.
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Figure 8: Attack success rate (%) for subject B9 across different ϵ values. A higher percent-
age signifies a more successful attack, whereas a lower percentage indicates better privacy
protection.
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Appendix C: Code Resources

Code Availability

The code used for the experiments and methodologies discussed in this thesis is available on

request via the following link:

Google Drive Code Repository

For any further information or to request access to specific parts of the code, please feel

free to contact me at:

• spaul4@lakeheadu.ca

• shouvik28paul@gmail.com

• sp.cgec@gmail.com
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https://drive.google.com/drive/folders/1RZ1t6XOZeRYsoV1fGgAYny2o5rJjrcPM?usp=sharing
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