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ABSTRACT

Bladder cancer is a highly prevalent malignancy with substantial morbidity and mor-

tality, emphasizing the urgent need for early detection and personalized treatment

strategies. Although recent advances in cancer genomics have enhanced our under-

standing of tumor biology, the role of age-related genomic variations in bladder cancer

progression remains largely unexplored. In this study, we present a novel framework

that combines multi-omics data integration with Graph Neural Networks (GNNs)

to identify age-specific biomarkers associated with bladder cancer prognosis. We in-

tegrate copy number alterations (CNA), DNA methylation, and mRNA expression

profiles into graph-based representations, where nodes denote genomic features and

edges encode molecular interactions. Unlike conventional statistical or machine learn-

ing approaches, our method incorporates age both as a stratification factor and as a

graph-level feature, enabling the model to learn distinct molecular signatures across

different patient age groups. Using survival outcomes, we determined 64 years as the

optimal threshold for age stratification, revealing significant differences in mortality

between patients aged ≤64 years (30.46%) and those > 64 years (51.74%), thereby

highlighting the prognostic value of age in bladder cancer. To enhance model in-

terpretability and performance, we implemented a robust feature selection pipeline

involving variance thresholding, ANOVA F-scores, L1 regularization, and Recursive

Feature Elimination with Cross-Validation (RFECV). Among several models tested,

GraphSAGE consistently achieved the highest accuracy, F1-score, and AUC, demon-

strating the effectiveness of graph-based learning in capturing complex biological re-

lationships. Furthermore, SHAP (SHapley Additive exPlanations) analysis revealed

key age-associated biomarkers such as SNRPN, LINC01091, and DHX36, which are

strongly implicated in patient survival and may inform future therapeutic target-

ing. This study introduces a comprehensive, age-aware graph learning framework for

biomarker discovery in bladder cancer, offering a powerful tool for advancing per-

sonalized diagnosis, prognosis, and treatment planning. Beyond bladder cancer, this

methodology has the potential to be generalized to other cancer types where age sig-

nificantly influences disease trajectory, thereby contributing to the broader field of

precision oncology. By bridging age-specific genomic variation with multi-modal data

and explainable machine learning, our approach opens new avenues for developing

clinically actionable insights and enhancing patient-specific management strategies in

oncology.
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Chapter 1

Introduction

Cancer continues to be one of the leading causes of death globally, characterized by its

heterogeneity and complex changes that enable it to develop and progress. Bladder

cancer is also a complex cancer that is equally characterized by its recurrence and

variable prognosis, highlighting the need for enhanced diagnostic and prognostication

methods. In this chapter, the underlying rationale for the study—utilizing multi-

omics data alongside machine learning methods to support the early detection and

stratification of bladder cancer cases—is articulated. It starts by outlining the clini-

cian’s view of cancer and the biological processes that occur in tumor progression. It

then focuses on how the incorporation of multi-omics, including genomic, transcrip-

tomic, proteomic, and epigenomic features, transforms cancer biology by providing a

complete overview of the topic. Accordingly, special emphasis is placed on the ability

of machine learning in identifying meaningful patterns in this high-dimensional data,

thus enabling new biomarker discovery and design of individualized modalities of

treatment. Finally, the chapter concludes by summarizing the overall problem state-

ments, goals, and contributions of the study, which involve the evaluation of feature

selection methods, graph-based modeling, and interpretable machine learning, all in

the pursuit of advancing computational oncology.
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1.1 Cancer: An Overview

Cancer is as a heterogeneous group of diseases with uncontrolled cell mutation growth

and the ability to invade or metastasize to other parts of the body [3]. This disease

is further characterized by the very unsettling ability of such cancer cells to not only

invade nearby tissues but to metastasize and migrate to other areas in other parts of

the body. If we look into the molecular complexities underlying cancer progression,

we find that this disease is a result of a vast number of mutations in genes with a

very crucial role in regulating normal cell processes [4]. Such fundamental processes

include not only regulation of cell cycles but include processes responsible for cell

death, scientifically referred to as apoptosis, and processes responsible for repairing

damaged DNA [5]. This intricate interplay between genetic mutations and epigenetic

alterations leads to a state of uncontrolled and deregulated cell growth, eventually

culminating in malignant tumor formation. Approximately 10 million individuals die

annually from cancer, making cancer one of the most leading causes of mortality in

the world with its effects being felt in a variety of communities and populations [6].

A fundamental aspect that distinctly defines the complicated nature of cancer is

its inherent heterogeneity. This essentially refers to the fact that in the extensive

and multifarious world of cancer, there are many tumors that although all belong

to a specific type of cancer, show significant variations in their molecular changes

and their respective genomic variations. This inbuilt diversity within the tumors

itself then translates into a vast range of clinical presentations, and hence, signifi-

cant variations in how different patients react to different treatment modalities. Such

variations then results in the complexity in controlling cancer effectively [7]. With

our progressive knowledge and ability to define cancers according to their distinct

molecular characteristics, as opposed to conventional histopathological features, has

brought in revolutionary advancements in the discipline of precision oncology. With

this paradigm-shifting approach, treatments are carefully tailored to match the dis-

tinct genetic profile of each individual patient, thus greatly improving the overall

efficacy of the therapeutic interventions that are given to them [8].

Recent advancements, along with major breakthroughs achieved in high-throughput

technologies, such as next-generation sequencing (NGS), along with microarray-based
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methods and mass spectrometry, have highly empowered researchers and scientists.

These cutting-edge technologies have helped them gain a multi-faceted and integrative

understanding of intricate features that exist in the fields of genetics, transcriptomics,

proteomics, and metabolomics that occur in different types of tumors [9]. This in-

tegrative multi-omics approach has highly increased our overall knowledge regarding

cancer biology in totality, and has also introduced new research avenues. This re-

search is centered on identifying new biomarkers that can be used for early detection,

effective prognostication, and better therapeutic strategies to control cancer more

effectively [10].

A significant and serious challenge that working researchers in the field of oncology

face is the daunting and overwhelming challenge to interpret the evolution of tumors,

and to comprehend the intricate interactions that tumors have with the surrounding

microenvironment in which tumors develop and establish themselves. Tumors do not

exist in a static state and are merely not changing; instead, tumors are dynamic and

undergo a myriad of evolutionary pathways throughout time, continuously picking

up new mutations while adapting and remodeling themselves in response to selective

pressures, such as those from chemotherapy treatments and immune system attacks.

This extremely dynamic nature of cancer, and the heterogeneity within tumors them-

selves, makes it extremely difficult to predict how patients will react to treatments

and to develop effective therapeutic strategies that can effectively battle this multi-

faceted disease [11]. With such overwhelming and challenging tasks in front of them,

researchers increasingly find themselves turning to multi-omics strategies, which are

cutting-edge and innovative methodologies that integrate and synthesize information

obtained from multiple molecular levels, all in an attempt to better comprehend and

more fully interpret the intricate and complicated processes that eventually lead to

cancer progression [12].

1.2 Bladder Cancer

Bladder cancer, is a serious and serious form of cancer that arises from urothelium.

Urothelium is a specialized lining responsible for playing a crucial role in protecting

and lining the inner bladder surfaces. It is noteworthy to point out that bladder
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cancer has a distinct feature in that it is the 10th most commonly diagnosed cancer

in the world. This fact is rather alarming, considering that it is accompanied by

an estimated incidence rate of about 573,000 new cases diagnosed annually. Besides

this alarming number, one should point out that approximately 212,000 deaths occur

each year as a direct consequence of this particular illness [6]. Bladder cancer is

generally divided into two important groups depending on the degree of invasion

that individuals who have developed this kind of cancer have to undergo. These

two groups are known as non-muscle invasive bladder cancer (NMIBC) and muscle-

invasive bladder cancer (MIBC). Out of the two important groups, one should point

out that NMIBC is responsible for almost 70% of all reported bladder cancer cases,

while MIBC is a more serious form of this illness. Unfortunately, this more invasive

form is characterized by a much worse prognosis for individuals who are diagnosed

with this specific form of cancer [13].

Bladder cancer staging is necessary to determine the extent of the disease and to

decide on management. The TNM system is frequently used, in which T describes

the invasion of the tumor into the bladder wall, N informs us about lymph node

involvement, and M indicates metastasis to other parts of the body. The different

stages are shwon in Table 1.1.

Table 1.1: Bladder Cancer Staging

Stage Location Severity Description

Ta Inner bladder

lining (urothe-

lium)

Non-

invasive

Cancer is confined to the bladder lin-

ing and has not invaded deeper layers.

Usually presents as papillary growths

with a lower risk of progression.

T1 Connective tis-

sue beneath the

bladder lining

Non-

muscle-

invasive

Cancer has grown into the connective

tissue layer beneath the lining of the

bladder but has not invaded the muscle

layer. This stage carries a higher risk

of progression than earlier stages.

Continued on next page
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Table 1.1 – continued from previous page

Stage Location Severity Description

T2 Muscle layer of

the bladder wall

Muscle-

invasive

Cancer has spread into the muscle layer

of the bladder wall. It is subdivided

into: T2a, where cancer has invaded

the superficial muscle, and T2b, where

it has spread to the deeper muscle. T2

bladder cancers are muscle-invasive and

typically require more intensive treat-

ment.

T3 Fatty tissue

surrounding the

bladder

Advanced

local disease

Cancer has penetrated through the

muscle layer into the adjacent fat. It

is subdivided into: T3a, where the in-

vasion into the fat layer is microscopic,

and T3b, where the invasion is macro-

scopic and evident on imaging or during

surgery. This stage suggests more ad-

vanced disease with a higher likelihood

of regional spread.

T4 Nearby or-

gans (prostate,

uterus, vagina,

pelvic/abdominal

wall)

Most ad-

vanced local

disease

The tumor has spread beyond the blad-

der into adjacent organs or structures.

T4a indicates invasion of contiguous

organs like the prostate, uterus, or

vagina, while T4b indicates invasion

into the pelvic or abdominal wall. This

stage typically requires systemic treat-

ments and, depending on the extent of

metastatic disease, may involve pallia-

tive care.

Understanding these stages is important for clinicians to devise appropriate treatment

plans and provide patients with accurate prognostic information. As bladder cancer

progresses through these stages, the treatment options become increasingly aggressive,

and the overall prognosis generally worsens [14]. Figure 1.1 shows the progression of
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bladder cancer through various stages:

Figure 1.1: Bladder Cancer Stages.

The intricacies in dealing with and managing bladder cancer are further complicated

with alarmingly high rates of recurrences in individuals who have been diagnosed with

NMIBC. Additionally, there is a basic issue in properly assessing whether certain cases

of NMIBC will develop into the more serious variant known as MIBC or whether or

not they will be localized and not develop further [15].

The various factors that contribute to bladder cancer include a vast range of fac-

tors, with one being tobacco smoking, which is a known and potent cause for this

disease. Besides tobacco use, exposure to certain industrial dyes, working in certain

occupations within the rubber and textile industries, and exposure to certain noxious

industrial chemicals pose a significant risk for those who are in danger. Additionally,

individuals who experience prolonged infections within the urinary tract system, or

who have a history of bladder stones or chronic inflammation, have a greater chance

of developing bladder cancer as well [16]. Among all identified factors for bladder
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cancer, tobacco use is the most salient modifiable one, accounting for about half of

all reported cases for bladder cancer and thus making it a public health concern that

warrants notice and action [17]. Another important factor to take into account is age,

as studies have established that the probability for bladder cancer increases greatly

for individuals who are older than 60 years old [18]. It has been noted, further, that

bladder cancer is more apt to occur in men than in women, with a remarkable ra-

tio of 2:1 to 4:1 for different counties for different ethnicity with different diets and

lifestyles [19].

The genetic basis for the onset and progression of bladder cancer is not only multifac-

torial in nature but is highly intricate, with a vast range of genetic alterations being

responsible for causing the disease. Among them are serious mutations in important

genes, namely TP53, RB1, and FGFR3, along with a range of structural changes

within chromosomes and the presence of copy number variations [20]. Nonetheless,

apart from the above-stated mutations, extensive research has established that nu-

merous other genes, which are responsible for important processes in life such as

regulating the cell cycle, processes responsible for repairing DNA, and apoptosis,

have been found to harbor mutations. Such genetic changes are crucial, as they are

responsible for initiating the disease and promoting progression in bladder cancer [21].

However, despite mounting knowledge about the complicated molecular processes re-

sponsible for bladder cancer formation, several important challenges persist and are

still being met. These include challenges with respect to detecting biomarkers con-

sistently that could be crucial for enabling early disease detection, accurately being

able to predict responses to different treatments, and ultimately improving outcomes

in those who have been diagnosed with this specific type of cancer [22].

Multi-omics approaches, which include a variety of different types of biological data,

ranging from genomic, transcriptomic, and proteomic information, have the incredible

ability to provide information regarding intricate molecular pathways that have a cru-

cial role to play in bladder cancer pathology. Most of the research studies carried out

over the last few decades have repeatedly proved that such integrated strategies have

a ability to discover important genetic drivers as well as changes in important signal-

ing pathways that are instrumental in understanding this disease. Such breakthrough

findings have potential therapeutic targets that could be utilized for the creation of

personalized treatment regimens specifically designed to address the specific demands
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of individual patients [23].

Recent research integrating genomic and transcriptomic information has revealed new

mutations as well as extensive immune microenvironment changes linked with bladder

cancer. This find is a thrilling opportunity for the seamless integration of immune

checkpoint therapy in overall treatment regimens and thus improving their overall

efficacy and effectiveness [24]. However, despite all these advancements in bladder

cancer research, one big challenge still remains: efficiently integrating currently avail-

able omics data sets. This challenge is extremely crucial, since successful integration

is a prerequisite for developing clinically useful biomarkers and treatment strategies

that can be effectively translated to useful applications in the management and care

of individuals affected with this disease.

1.3 Multi-Omics Data in Cancer

Multi-omics is a developing discipline in the biological sciences that combines findings

from a variety of ’omics’ such as genomics, transcriptomics, proteomics, metabolomics,

and epigenomics. The integrated approach aims to provide a complete outlook

on biological systems and their complex interactions [25]. The emergence of high-

throughput technologies has revolutionized our capacity to generate large-scale datasets

in multiple omics domains, thus facilitating explanations of biological events with a

previously unparalled level of complexity and profundity [26].

The utilization of several omics methodologies has several advantages over single-

omics-based approaches. Overall, it increases understanding of cell mechanisms by

bringing together information at all biological layers ranging from DNA to RNA to

proteins and eventually metabolites [27]. Such a comprehensive understanding is

particularly important in complex disorders like cancer in which changes at multiple

biological layers combine to affect the phenotypic characteristics of the disease. In

addition to this, integration of multi-omics information can reveal emergent properties

that would be masked if single layers of omics were to be examined separately [28].

One of the key challenges in the field of multi-omics studies is the integration and

analysis of different types of data. Data from each omics layer differ in characteristics,
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scales, and noise profiles. To surmount this challenge, researchers have developed a

variety of computational methods, such as network-based approaches, machine learn-

ing methods, and statistical models for data integration [29]. The central aim of these

methods is the identification of important patterns and relationships between different

omics layers, thus providing insights into the underlying biological mechanisms.

The scope of multi-omics is advancing rapidly with the continuous advent of new tech-

nologies and analytical platforms. Multi-omics techniques are providing extremely

detailed views of cell diversity and intricate biological functions at the single-cell res-

olution. In addition, integration of multi-omics with clinic information enables to

build more customized approaches to cancer diagnosis, prognostication, and thera-

peutic intervention [30].

The integration of multi-omics information in cancer studies has been extremely ben-

eficial as it provides a more in-depth and integrated understanding of the complex

molecular mechanisms involved in tumorigenesis (the development of normal cells into

malignant cells) and metastasis (the spread of cancer cells from their point of origin

to other parts of the body). All omics aspects provide different views of the molecu-

lar characteristics of cancer cells and hence augment the integrated understanding of

mechanisms involved in cancer initiation and progression.

The discipline of genomics, particularly the study of copy number variations (CNAs),

has been vital to identify and describe cancer. Importantly, CNAs with considerable

gains or losses in genomic parts represent distinguishing markers of cancer genomes

and can have a tremendous impact on gene and cell function [31]. The detection

approaches with high resolution to identify CNAs have included array comparative

genomic hybridization (aCGH) and next-generation sequencing [32].

The integration of datasets related to copy number alterations (CNA), mRNA expres-

sion, and DNA methylation is a useful multi-omics tool in the field of cancer studies

as follows:

• Kim and Lee [33] analyzed mRNA expression profiles in breast cancer, identi-

fying 20 differentially expressed mRNAs with excellent diagnostic performance.

– 14 downregulated and 6 upregulated mRNAs were identified in breast can-

cer tissues compared to non-cancerous tissues.



10

– This study demonstrated the potential of mRNA expression analysis in

cancer detection.

• Bhattacharya et al. [34] developed the TACNA (Transcriptional Adaptation to

CNA) profiling method to analyze the transcriptional effects of CNAs across

human cancers.

– Their study revealed that CNAs can promote tumor progression by altering

gene expression levels.

– This highlights the importance of CNAs in cancer development and detec-

tion.

• Holm et al. [35] examined DNA methylation patterns in breast cancer subtypes,

identifying distinct methylation profiles for basal-like, luminal A, and luminal

B tumors.

– Their research suggested that a large fraction of genes with subtype-specific

expression patterns may be regulated through methylation.

– This emphasizes the role of DNA methylation in cancer subtype classifica-

tion and detection.

These studies collectively demonstrate how CNAs, mRNA expression, and DNA

methylation contribute to cancer biology and serve as potential biomarkers for im-

proved cancer detection and classification. By integrating these three omics layers,

researchers can explore the complex interplay between genomic, transcriptomic, and

epigenomic alterations in cancer. This comprehensive approach reveals how CNAs

influence gene expression patterns, highlights the role of DNA methylation changes

in transcriptional dysregulation, and provides insights into how these molecular al-

terations collectively drive cancer phenotypes.

The technologies and procedures being developed in this day and age is for non-

invasive cancer detection. New advances in liquid biopsy technologies have enabled

new possibilities for non-invasive cancer detection through application of omics tech-

nologies. An example is the detection of circulating tumor DNA (ctDNA), enabling

detection of cancer-related genetic and epigenetic alterations in blood samples and

thus potentially increasing possibilities of early malignancy detection and therapeutic

efficacy evaluation [36].
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The application of machine learning and artificial intelligence approaches to inter-

pret omics data has drastically improved our ability to diagnose and type cancer.

The machine learning algorithms have the capability to detect complex patterns and

associations in large omics datasets and hence lead to more accurate and efficient

cancer diagnostic instruments [37]. The development of omics technologies is poised

to augment their application in cancer detection.

1.4 Machine Learning in Cancer

Machine learning (ML), is greatly revolutionizing how we approach complex and

multi-faceted issues and high dimensional data problems. It is a branch in the wider

field of artificial intelligence, that allows computers to learn from large volumes of

data and then predict or make decisions based on information without having to

be programmed for every eventuality. Unlike conventional software systems that use

hard and pre-programmed rules to function, machine learning has the amazing ability

to learn and improve with increased experience over time. This feature renders Ma-

chine Learning extremely useful for tasks that include pattern classification, informed

decision-making, and process automation [38].

Machine learning can be broadly categorized into three main types: supervised learn-

ing, unsupervised learning, and reinforcement learning. Figure 1.2 shows the different

types of machine learning.
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Figure 1.2: Types of Machine Learning Algorithms.

Supervised learning involves training a model on labeled data, where the algorithm

learns from input-output pairs to make accurate predictions on new data. Common

supervised learning tasks include classification, such as cancer detection, and regres-

sion, like predicting patient survival rates. Unsupervised learning, on the other hand,

deals with unlabeled data, where the model identifies hidden patterns and structures

without explicit guidance. Clustering techniques, such as hierarchical clustering for

gene expression analysis, and dimensionality reduction methods, like principal compo-

nent analysis (PCA), are widely used in biomedical research. Reinforcement learning

takes a different approach, where an agent learns optimal actions by interacting with

an environment and receiving rewards or penalties based on its decisions. This type

of learning is frequently applied in robotics, autonomous systems, and treatment

optimization in healthcare. Additionally, semi-supervised learning, which combines

both labeled and unlabeled data, and self-supervised learning, where models generate

their own labels, have gained traction in recent years, particularly in domains requir-

ing large-scale data analysis, such as genomics and medical imaging. These different

types of machine learning provide diverse and powerful tools for tackling complex

problems across various fields, including cancer research and personalized medicine.
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Over the last decade, machine learning, has revolutionized a vast number of industries,

ranging from finance to retail, healthcare to autonomous systems. Within healthcare,

however, the influence of ML has been particularly significant and noteworthy, as ML

helps doctors to diagnose diseases with unprecedented accuracy, create treatments

that are specifically designed to meet individual patient needs, and even forecast the

course of different diseases with unprecedented accuracy. Of all of these significant

uses, the field of cancer detection is one of the most significant in which machine

learning can actually save lives and have a tangible impact on outcomes for sufferers

and allows us to mitigate the bias when dealing with patient solutions.

Traditionally, the diagnosis of cancer has relied on a blend of several significant meth-

ods, which include a variety of medical imaging tests, extensive pathology tests, and

a range of tests in laboratories that are aimed to scrutinize samples. Although all of

these methods have been effective in most instances, they do have certain limitations

inherent to them in terms of reliability—mistakes can and do occur, results from these

tests can often be a while in being produced, and early cancers usually pose signifi-

cant difficulties for being detected due to their elusive nature. Conversely, machine

learning is a cutting-edge solution that uses the amazing ability to scrutinize vast

amounts of medical data, to spot patterns that cannot be detected with the naked

eye, and to provide diagnoses that are not only quicker but more accurate [39].

At its most basic level, machine learning, works by taking algorithms and training

them extensively on past data so that they can learn to recognize certain and sig-

nificant features. For example, an ML model can be trained to correctly distinguish

between benign tumors, which are benign, and malignant tumors, which are cancer-

ous, by extensively studying thousands of past cases. The more data that the model

is given to process and analyze, the more proficient it will be in making accurate pre-

dictions for future cases. This amazing ability to learn from data and improve over

time places ML in a revolutionary position to revolutionize cancer detection since it

greatly enhances accuracy in diagnoses while, at the same time, lowering the overall

workload placed on medical professionals who have to interpret such results.

Developing a machine learning model for cancer detection requires a thorough and

systematic approach to ensure accuracy and reliability. First and foremost, a vast

amount of medical data is to be compiled, not just images but genetic data and

detailed patient records as well, all of which have to undergo a rigorous process of
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cleaning to eliminate any inconsistencies or mistakes that would taint the validity of

the data. After this collection process, important features like tumor size or shape are

systematically extracted to enable the model to focus on the most relevant information

to its mission. Once the model has been trained using this cleaned dataset, it is then

thoroughly tested using new and unseen data to assess how well it can perform in

detecting cancer. If the model proves to meet accuracy measures in these tests, then

it can then be deployed with confidence in actual clinical environments, where it is

an important aid in helping doctors to arrive at quicker and more reliable diagnoses

and hence improve overall efficiency in detecting cancer in medical practice [40].

That being stated, however, one should not deny that machine learning (ML) is not

without faults and limitations. One main issue that can occur is that models can

be biased, particularly when trained using data sets that have a narrow scope or do

not reflect the diversity of a real-world population. It should be noted that deep

learning models are essentially black boxes and thus explaining their decision-making

to healthcare professionals like doctors is extremely challenging. All that being said,

notwithstanding all these different challenges and barriers, it is reassuring to see

researchers working hard to improve Machine learning models interpretability. They

are working hard to see that the models generalize well to a very wide variety of

different patient populations [41].

The application of machine learning (ML) in the niche field of cancer detection is

a breathtakingly revolutionary development in oncology. This is owing to machine

learning having a distinctive capability to meaningfully leverage enormous processing

power that is readily available in modern technological resources. Through this ca-

pability, machine learning facilitates a detailed examination of exceedingly complex

datasets to significantly improve diagnostic processes entailed in cancer detection.

Machine learning has been associated with significant successes through advanced

algorithms that are skilled to make crucial differentiation between cancerous patterns

of medical images and different medical images with a rich diversity of patterns and

patterns found in complex gene expression and complicated patient histories. Indeed,

it has been proven that advanced machine learning algorithms are more effective than

traditional diagnostic methods that have been used for scores of decades. By adapt-

ing cutting-edge methods like convolutional neural networks (CNNs) and support

vector machines (SVMs), scientists and researchers have made tremendous progress
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in precisely diagnosing different forms of cancers like breast cancer, lung cancer, and

prostate cancer. They are attaining diagnostic accuracies that were considered im-

possible. One good example of this development is a recent AI-based system that

was said to register a stunning accuracy rate of 97% in lung cancer diagnosis by

extensively examining tissue specimens. This quite vividly demonstrates enormous

potential that machine learning technology has to revolutionize and fundamentally

restructure the practice of cancer diagnostics [42] [43].

One of the most significant and impactful contributions that has been developed from

the domain of machine learning, which is also popularly abbreviated as ML, is its phe-

nomenal and pioneering usage in the crucial field of medical imaging. To be more

precise, deep learning models, with a specific focus on convolutional neural networks,

which are also known as CNNs, have been widely and successfully applied to interpret

a varied assortment of radiological images. This encompasses, but is not confined to,

mammograms, CT scans, and MRIs. These extremely advanced models possess the

astounding capability of identifying faint abnormalities and irregularities that can

readily escape the sharp eyes of even the most experienced and competent human

practitioners operating in the domain of medicine. For example, CNN-based method-

ologies have outstandingly recorded sensitivity and specificity rates of more than 96%

in identifying early-stage breast cancer by scrupulously analyzing histopathological

images, as has been reported in previous studies [44]. Likewise, newer methodolo-

gies in the domain of machine learning, including radiomics, are gaining considerable

traction in their endeavors to mine high-dimensional features from various medical

images, thus revealing disease-related patterns that are not visible to the naked eye

of human observers [45].

Outside of imaging modalities, machine learning (ML) has become a revolutionary

in the genomic analysis field, especially for cancer detection. With advanced algo-

rithms having the powerful ability to thoroughly scan large gene expression data to

categorize tumors into different and particular molecular signatures. Among different

methodologies used in this context, artificial neural network (ANN) methods have

been used with great success for different cancer prediction with a high accuracy

rate of 96% for different cancers including mesothelioma [42] [44]. With this great

accuracy, it is attained by identifying key genetic markers that are informative and

relevant. Apart from this, ML models have also been found to hold great potential to
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stratify patients based on different levels of cancer risks to individual patients. This

is done through synthesising and deeply analysing trends obtained through electronic

medical records (EMRs) and other relevant clinical sources [43]. All of these devel-

opments are combined in a way to play a crucial role in enabling cancer detection in

advance and also in formulating individualized screening methods based on individual

patients’ requirements.

The exceptional scalability and impressive flexibility that are typical of machine learn-

ing (ML), make it a very powerful tool in the quest to address the complex challenges

involved in cancer detection. Unlike traditional methods that are prone to rely heav-

ily on human experts and professionals and are hence susceptible to variability and

inconsistency in their results, ML algorithms are blessed with a special advantage.

They can learn and refine themselves with each and every additional and incoming

input of information. Consequently, these algorithms become dramatically more ef-

fective with time as they get to see and deal with more information. This special

ability has been found to be highly useful in the very important mission of mini-

mizing false positives and false negatives in a variety of cancer screening programs.

Artificially powered systems, for instance, have been able to reduce the rate of false

positives in reading mammograms by a significant 6% while still maintaining a very

high diagnostic accuracy as supported by different studies [45].

Why Machine Learning Stands Out in Cancer De-

tection

• Enhanced Accuracy: Machine learning algorithms achieve high diagnostic

accuracy, often surpassing human specialists. For example, AI systems have

demonstrated up to 98% sensitivity and specificity in detecting prostate cancer

[42].

– ML models can outperform radiologists in detecting specific cancer types

with higher accuracy.

– This highlights the potential of AI in improving diagnostic performance.
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• Early Detection: ML models can identify subtle patterns or biomarkers that

indicate early-stage cancers, significantly improving patient survival rates for

aggressive cancers like pancreatic or lung cancer [43] [45].

– Early-stage cancers, such as pancreatic, can often be undetected by tradi-

tional methods, but ML algorithms can detect early biomarkers.

– This can lead to earlier interventions and significantly better outcomes.

• Personalized Medicine: By analyzing genomic and clinical data, ML enables

tailored treatment plans that optimize therapeutic outcomes while minimizing

side effects [44].

– Machine learning can predict how a patient will respond to a treatment,

leading to personalized therapies.

– This minimizes adverse effects and maximizes therapeutic efficacy.

• Efficiency: ML-powered systems process large datasets rapidly, reducing diag-

nostic time from days to minutes and expediting treatment decisions [42] [43].

– AI systems help in processing and analyzing data much faster than tradi-

tional methods, reducing turnaround times.

– This results in quicker treatment decisions, which is critical in time-sensitive

cancer cases.

• Cost-Effectiveness: By focusing resources on high-risk populations through

stratified screening programs, ML reduces unnecessary tests and improves health-

care efficiency [45].

– ML helps identify high-risk individuals early, reducing the need for costly,

unnecessary diagnostic tests.

– This leads to a more efficient use of resources and reduces overall healthcare

costs.

• Error Reduction: AI significantly lowers false positives/negatives in diagnos-

tics. For example, deep learning models have improved the accuracy of breast

cancer detection while reducing diagnostic errors [44] [45].

– Deep learning models reduce the rate of false positives in breast cancer

screening, thus avoiding unnecessary biopsies.



18

– This improves both the efficiency and accuracy of cancer detection.

Machine learning’s integration with multimodal data is transforming oncology by en-

hancing diagnostic precision, enabling early detection, and personalizing treatment

strategies. ML models surpass traditional methods in accuracy, often achieving di-

agnostic sensitivity and specificity levels exceeding those of human specialists. Their

ability to identify subtle biomarkers in genomic, imaging, and clinical data allows for

the early detection of aggressive cancers, significantly improving survival rates. By an-

alyzing multi-omics data, ML facilitates personalized medicine, optimizing treatment

efficacy while minimizing adverse effects. Additionally, AI-driven systems streamline

large-scale data analysis, reducing diagnostic turnaround times and expediting treat-

ment decisions. This not only enhances efficiency but also makes cancer care more

cost-effective by prioritizing high-risk patients and reducing unnecessary testing. Fur-

thermore, deep learning models reduce diagnostic errors, minimizing false positives

and negatives in cancer screening. Despite existing challenges like data heterogene-

ity and interpretability, advancements in self-supervised learning, federated learning,

and explainable AI will continue refining ML’s role in multimodal oncology research,

ultimately leading to improved patient outcomes and more effective cancer therapies.

1.5 Problem Statement

Bladder cancer is still a major global health problem owing to its heterogeneous

clinical presentations and heterogeneity in survival rates among patients. Despite

advancements in diagnostic methods and treatment modalities, precision in survival

prediction for patients with bladder cancer is still a major focus for future studies. Tu-

mor stage, molecular signatures, and demographic characteristics like age are among

various factors identified as survival determinants. However, age is generally regarded

as a generic risk factor in existing literature and has not been explored for what it

can do as a unique predictive factor on examination with large multi-omics data.

The integration of multi-omics data sets that consist of mRNA, CNA and DNA

methylation data has the capability to enhance our understanding of complex biolog-

ical processes connected with bladder cancer. Nevertheless, the high dimensionality
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and internal variability of these data sets and widespread missingness of points are

major challenges to refining feature choice and creation of prediction models. Conse-

quently, this has limited clinical utility of prediction models and impeded detection

of clear-cut biomarkers that would increase accuracy of prediction.

In addition, while traditional machine learning methods have been used in cancer pre-

diction, they are often unable to properly capture complex interplay between clinical

features and omics data. Advanced machine learning methods like Graph Neural Net-

works (GNNs) offer a great chance to address these limitations by having an ability to

clarify complex interrelationships and derive valuable insights from highly connected

data [46]. However, there has not been a deep exploration of using GNNs for survival

prediction in bladder cancer with special focus on age as a key prognostic factor. In

summary, the key problems that this study seeks to address are:

• The under-exploration of age as a specific prognostic indicator in bladder cancer

when integrated with multi-omics data.

• The challenges in effectively selecting and reducing features from complex, high-

dimensional multi-omics datasets to build reliable predictive models.

• The need for advanced machine learning frameworks, such as GNNs, to capture

the non-linear and complex interactions among clinical variables and omics data.

• The requirement for interpretable models that provide actionable insights into

the biological mechanisms of bladder cancer, thereby facilitating personalized

therapeutic approaches.

By addressing these challenges, this research aims to establish an optimal age cut-off

for predicting bladder cancer outcomes, develop a robust feature selection frame-

work for multi-omics data, and leverage advanced GNN architectures - enhanced by

SHAP-based interpretability - to improve survival prediction and inform personalized

treatment strategies.
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1.6 Research Objective

1.6.1 Age as a Prognostic Indicator: An Investigation

The main objective of this current study is to determine the importance of age as a

key predictive variable in predicting survival in bladder cancer patients. While most

previous studies treated age as a general risk factor, this study aims to determine the

most critical cut-off point for age when utilized as a prediction variable in combination

with multi-omics information.

Specifically, the study formalizes the following hypotheses:

• The integration of multi-omics information reveals that increasing age is a strong

survival predictor.

• There is an optimal cut point that is capable of classifying people according to

their differential survival.

• The establishment of this cut-point should improve both clinical understand-

ing and biological knowledge about the role played by aging in bladder cancer

prognosis.

To achieve this aim, the study utilized the log-rank test and Kaplan-Meier survival

analysis in order to compare various cut-off values by age. Using this iterative process,

it was ascertained that the most favorable cut-off point was 64, which demonstrated

a statistically significant difference in the survival cohorts.

1.6.2 Formulating a Solid Foundation in Feature Selection

The complexity in multi-omics data, with its high dimension, inherent biological

variability, and substantial numbers of missing values, calls for a careful approach

in feature selection. The main aim in this part of the study is developing a strong

feature selection framework that improves the dataset by ensuring that the predictive

model incorporates only the most salient and informative features.
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Firstly, we perform data cleaning to improve the quality and consistency of the data.

Then we need to apply feature selection techniques to be able to distinguish between

the relevant features which will have an impact on the final predictor variable and

the redundant variable which are adding noise to the dataset. Using the optimum

features the dimension of the dataset should be reduced by choosing the most relevant

features, thus highlighting features that play a critical role in the prediction process,

and eliminating unnecessary and redundant information.

By this way of systematic improvement in the dataset, this framework aims at in-

creasing the efficacy and predictability of the model, thus making it more robust and

relevant for clinical usage in bladder cancer prediction.

1.6.3 Utilization of Graph Neural Networks

The current study makes use of advanced Graph Neural Networks (GNNs) in order to

demonstrate the intricate relations existing in multi-omics information. GNNs offer

a strong framework in defining the biological layers and their inter-dependencies [46].

In our study we have made use of:

• Graph Convolutional Networks (GCNs) were used because of their ability to

capture neighborhood patterns through fixed weight aggregation [47].

• Graph Attention Networks (GATs) incorporate the use of the attention mech-

anism which allows them to prioritize influential neighbors, improving node

classification and link prediction accuracy [48].

• GraphSAGE was used because it employs localized neighborhood sampling and

feature aggregation to generalize to unseen nodes or entirely new graphs. By

sampling a fixed number of neighbors per node and applying pre-trained aggre-

gator functions (e.g., mean, LSTM, or pooling), it generates embeddings for new

nodes based solely on their immediate connections. This approach drastically

reduces computational overhead, enabling scalability to massive or dynamic

graphs [49].
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In our study, we identified that GraphSAGE is the best-performing model, which

showed improved capacity in predicting patient survival outcomes from multi-omics

data and age-related features.

1.6.4 Ensuring Model Interpretability

To enhance the clinical relevance of the predictions produced by the model, this

study combined a comprehensive SHAP (SHapley Additive Explanations) explanation

with the best-performing GraphSAGE model. The purpose of this interpretative

explanation was to:

• Identify critical markers that significantly influence the predictions made by the

model.

• Several genes that were particularly important in determining survival were

identified.

The results of this interpretive study emphasized the relevance of the chosen biomark-

ers, thus providing practical implications for future studies that seek to uncover the

biological determinants that predict bladder cancer prognosis.

1.6.5 List of Contributions

The main goal of this study is to bridge the gap between informatics and medical

practice by improving clinical decision-making through the use of advanced data

analysis techniques. The key contributions of this research are as follows:

• Informatics Contribution: Development and application of machine learn-

ing techniques, such as graph neural networks (GNNs), feature selection, and

survival analysis, to optimize patient stratification in bladder cancer based on

molecular and clinical data.
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• Medical Contribution: Identification of critical biomarkers (SNRPN, LINC01091,

DHX36, etc.) and determination of optimal prognostic age cut-offs, which offer

insights into bladder cancer progression and patient survival.

• Framework for Personalized Medicine: Creation of a novel methodology

that merges multi-omics analysis with survival data to improve clinical decision-

making, enabling personalized treatment approaches based on age.

• Facilitating Precision Oncology: Use of statistical modeling and machine

learning methods to uncover key biological markers, which can guide targeted

therapies, including immunotherapy and chemotherapy, for bladder cancer pa-

tients.

• Clinical Decision Support: Provision of a data-driven framework to sup-

port oncologists in categorizing patients based on risk profiles and designing

individualized treatment plans, advancing the adoption of precision medicine.

1.7 Novelty of the Research

This research introduces novel methodologies and perspectives that advance the field

of bladder cancer prognosis, particularly through the integration of multi-omics data

and the application of cutting-edge machine learning techniques. The main novel

aspects of the study are as follows:

1. Empirical Age Cutoff Determination: The current research brings with it a

new method of empirically determining an age cutoff of great prognosis relevance

for bladder cancer. Through the combination of Kaplan-Meier survival analysis

with iterative log-rank testing, 64 was determined to be the most distinguishing

threshold for survival outcomes that has not been reported in existing research

studies.

2. Comprehensive Multi-Omics Feature Selection: A feature selection tech-

nique has been proposed to tackle the intricacies related to multi-omics data.

This method promises the identification of only the most related features for
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prognosis using combined state-of-the-art approaches and thus improves model

performance without losing interpretability from the biological perspective.

3. Graph Neural Network (GNN) Advancements: This research expands

the application of GNNs in the field of medical prognosis with the improvement

of existing architecture as well as introducing their remarkable performance on

bladder cancer data. In this context, GraphSAGE is particularly innovative

with better generalization of the model as well as better predictive accuracy

compared to traditional approaches.

4. Interpretability through SHAP Analysis: A improvement of the current

study is the use of SHAP analysis to improve the interpretability of predictions

from complex machine learning models. This allows clinicians to understand

the underlying factors that influence survival predictions, thus improving trans-

parency and clinical relevance.

The novelty of the current study is that it is the first to combine advanced sta-

tistical analyses, multi-omics data processing methods, and novel machine learning

approaches with the age varaible in bladder cancer, thus constituting a significant

leap in the field of bladder cancer prognosis.
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Chapter 2

Background

This chapter lays the crucial theoretical and conceptual groundwork for the study

by investigating the literature in the fields of cancer informatics, multi-omics analy-

sis, and machine learning. It begins by investigating cancer biology, highlighting the

value of high-throughput omics technologies in unravelling the complicated nature of

tumors. It then performs a critical appraisal of previous studies that applied omics

data for cancer prognosis and classification, qualitatively identifying both strengths

and weaknesses. Next, it describes in detail feature selection methods, explaining

how their application can reduce the curse of dimensionality that often plagues omics

data. It then introduces graph neural networks (GNNs) as an efficient tool in mod-

elling interacting biological entities, especially for gene interactions and pathway-level

analysis. Finally, in response to the growing desire for interpretable results in the

clinic, it concludes by introducing the new field of explainable AI (XAI). Through

the synthesis of previous literature and identification of gaps in what is known, this

chapter lays the groundwork for later methodological developments and laboratory

procedures that are further described in later chapters.
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2.1 Literature Review and Relared Works

Bladder cancer research has seen significant advancements, driven by the integration

of multi-omics data, radiomic analysis, and machine learning techniques. These inno-

vations have led to better predictive modeling and personalized treatment approaches.

This section explores the most relevant studies and methodologies in bladder cancer

research, focusing on tumor mutation burden (TMB), the tumor microenvironment

(TME), and radiomics, as well as the integration of these elements into predictive

models and treatment strategies.

Radiomic Feature Extraction for Tumor Mutation Burden Prediction

Tang et al. [50] proposed the use of radiomic features extracted from pelvic contrast-

enhanced computed tomography (CECT) images to predict tumor mutation burden

(TMB) in bladder cancer. In their pilot study with 75 patients, six radiomic features

were selected through logistic regression with backward elimination and LASSO re-

gression. Their findings demonstrated the potential of radiomics as a non-invasive

alternative to traditional biopsy-based methods for predicting genetic features such

as TMB.

Tumor Microenvironment and TMB Integration

Cao et al. [51] explored the role of the tumor microenvironment (TME) in muscle-

invasive bladder cancer (MIBC), emphasizing its significance in the prognosis and

treatment of the disease. Their study combined TME-related signatures (TMERS)

with TMB to enhance prognostic models, revealing how TME can affect the efficacy

of immune checkpoint inhibitors (ICIs). This integrated approach suggests that the

TME is a critical factor in predicting responses to immunotherapy, and its integration

with TMB could personalize treatment strategies.

Blood-Based Tumor Mutation Burden as a Predictor

Nan et al. [52] conducted a systematic review and meta-analysis involving 1,525 pa-

tients across 11 studies, focusing on the use of blood-based tumor mutation burden

(bTMB) as a biomarker for immunotherapy response. Their analysis found that

bTMB was a stronger predictor than tissue TMB, offering a non-invasive alternative

for patient stratification. This development is particularly valuable for reducing the

need for invasive tissue biopsies, making it easier to predict a patient’s response to
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immune checkpoint inhibitors.

Multi-Omics Integration and Feature Selection Frameworks

Al-Ghafer et al. [53] introduced a multi-omics integration framework using non-

negative matrix factorization (NMF) in conjunction with genetic algorithms. This

framework facilitated dimensionality reduction and highlighted key biomarkers nec-

essary for distinguishing TMB in bladder cancer patients. Their work underscored

the potential of integrating genomic, transcriptomic, and radiomic data to enhance

predictive models, improving the accuracy of cancer prognosis.

Personalized Treatment and Multi-Omics Integration

Chen et al. [54] reviewed various strategies for integrating multi-omics data in blad-

der cancer to optimize personalized treatment. They demonstrated that combining

genomic, proteomic, and metabolomic data could significantly enhance therapeutic

outcomes by identifying specific biomarkers that guide treatment decisions. This ap-

proach is pivotal in precision oncology, where personalized therapies are tailored to

the individual tumor profile.

Graph Neural Networks for Modeling Biological Interactions

Wang et al. [55] applied graph neural networks (GNNs) to model complex biological

interactions, such as genetic mutations and protein-protein interactions. Their study

demonstrated that GNNs can effectively analyze high-dimensional data, providing

insights into cancer biology that are difficult to capture through traditional analy-

sis methods. This technique offers a promising approach for understanding bladder

cancer and enhancing the predictive power of cancer models.

Survival Analysis in Bladder Cancer Prognosis

Lee et al. [47] employed survival analysis to identify key prognostic factors for blad-

der cancer. Their work was instrumental in improving personalized treatment by

identifying biomarkers predictive of patient outcomes. Survival analysis methods are

essential for risk stratification, enabling the identification of patients who may benefit

from more aggressive treatments.

Feature Selection Techniques in Cancer Research

Kim et al. [56] and Smith et al. [49] explored various feature selection techniques in

cancer research, demonstrating their effectiveness in removing irrelevant or redundant

features from predictive models. This process improves model accuracy by retaining
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only the most relevant biomarkers, enhancing the efficiency and performance of cancer

prognosis models.

Advancements in Deep Learning and Graph-Based Approaches

Garcia et al. [57] utilized deep learning methods to identify biomarkers in oncology,

enabling the extraction of complex patterns from large datasets. This approach has

significantly enhanced our ability to analyze and interpret cancer data. Chen et

al. [58] further contributed by applying graph-based methods to improve model ex-

plainability, offering new insights into how cancer models function and making them

more interpretable.

Immunotherapy and Predictive Modeling in Cancer Treatment

Davis et al. [59] highlighted the importance of predictive modeling in determining the

effectiveness of immunotherapy. By integrating predictive models with immunother-

apy strategies, these studies have led to improved patient stratification, allowing for

better-targeted treatments in bladder cancer.

Related Works

A number of seminal works have significantly contributed to the evolution of multi-

omics integration and prognostic modeling in cancer research. Tang et al. [50] and

Cao et al. [51] laid the groundwork for integrating radiomic and TME data with TMB

predictions in bladder cancer, providing crucial insights into how these variables in-

fluence patient outcomes. Nan et al. [52] expanded this perspective by systematically

reviewing the predictive efficacy of TMB in NSCLC, highlighting potential transla-

tional applications across cancer types.

In addition, Al-Ghafer et al. [53] illustrated that the integration of non-negative

matrix factorization (NMF) and genetic algorithms is not just a feasible method but,

more importantly, a very pertinent approach towards feature enhancement, especially

in the context of multi-omics studies. This contribution has significantly enriched the

scholarly discourse in this area and provided a vital reference point for the design and

application of novel methodologies from the integrative point of view. It has set a

strong platform for future studies in the area of multi-omics integration.

Follow-up studies by Chen et al. [54] and Wang et al. [55] have investigated novel

methods for using multi-omics information in developing personalized treatment ap-

proaches that address the unique needs of cancer patients. In addition, studies by
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Lee et al. [47] and Kim et al. [56] have provided important insights into the mech-

anisms that allow for the selection and identification of prognostic markers. These

mechanisms include sophisticated statistical methods that optimize the validity and

reliability of the results.

There has been a recent trend in scholarly works in observing increased interest in

deep learning approaches, with special focus on graph-oriented approaches. Garcia et

al. [57] and Chen et al. [58] demonstrated the utility of graph neural networks (GNNs)

in capturing the complexity of biological interactions and in biomarker identification.

In addition, extensive reviews by Smith et al. [49] summarized the various approaches

utilized in multi-omics integration, supporting the progression of more complex and

explainable models.

Davis et al. [59] underscored the value of predictive modeling in the scope of im-

munotherapy responses, a consideration that relates intimately with our focus on

bladder cancer prognosis. Collectively, these studies depict the foremost strides in

cancer studies and call for further innovation in integrating multiple data sources in

order to achieve superior patient results.

Table (2.1) below summarizes the papers along with their methodologies, techniques,

and key findings:

Table 2.1: Summary of Literature Review

Author(s)
Study
Focus

Methodology/
Techniques

Key
Findings

Tang et al.

[50]

Radiomic feature

extraction from

pelvic CECT im-

ages in bladder

cancer

Logistic Re-

gression (with

backward elimina-

tion) and LASSO

regression on six

selected features

Developed a predic-

tive model for tu-

mor mutation burden

(TMB) in a feasibil-

ity study of 75 pa-

tients

Continued on next page
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Table 2.1 – continued from previous page

Author(s)
Study
Focus

Methodology/
Techniques

Key
Findings

Cao et al. [51] Exploring the

tumor microenvi-

ronment (TME)

in muscle-invasive

bladder cancer

(MIBC)

Combined TME-

related signature

(TMERS) with

TMB

Provided prognostic

information and pre-

dicted response to

immune checkpoint

inhibitors (ICI)

Nan et al. [52] Systematic review

and meta-analysis

on TMB stratifica-

tion in NSCLC

Meta-analysis

of 11 studies

involving 1,525

patients

Demonstrated that

blood-based TMB

(bTMB) is a superior

stratifier compared

to tissue TMB for

immunotherapy

Al-Ghafer et

al. [53]

Multi-omics in-

tegration for

distinguishing

TMB in bladder

cancer

Non-negative ma-

trix factorization

(NMF) combined

with a genetic

algorithm

Successfully reduced

data dimensionality

while preserving crit-

ical biomarkers

Chen et al.

[54]

Overview of multi-

omics integration

for personalized

therapy in bladder

cancer

Comprehensive re-

view of integration

techniques

Provided strategies

to optimize per-

sonalized therapy

approaches

Wang et al.

[55]

Application of

graph neural net-

works (GNNs) in

oncology

Employed GNNs

to process high-

dimensional

datasets cap-

turing biological

interactions

Highlighted the po-

tential of GNNs in

analyzing complex

cancer datasets

Continued on next page
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Table 2.1 – continued from previous page

Author(s)
Study
Focus

Methodology/
Techniques

Key
Findings

Lee et al. [47] Identification

of prognostic

biomarkers for

bladder cancer

Survival analysis

techniques

Discovered key

biomarkers for

effective patient

stratification based

on treatment needs

Kim et al. [56] Feature selec-

tion strategies in

oncology research

Review of feature

selection methods

Emphasized reduc-

ing data complexity

while maintaining

predictive accuracy

Smith et al.

[49]

Feature selection

approaches in

data-intensive

cancer research

Review of fea-

ture selection

techniques

Discussed methods

to balance data

reduction with

effective prediction

Garcia et al.

[57]

Deep learning

approaches for

biomarker discov-

ery in oncology

Application of

deep learning

methodologies

Demonstrated im-

proved biomarker

discovery and en-

hanced result inter-

pretability

Chen et al.

[58]

Graph-based

methodologies

in biomarker

discovery

Utilized graph-

based approaches

Highlighted the

potential of these

methods to enhance

biomarker discovery

in cancer research

2.2 Survival Analysis

Traditionally, survival analysis has played a central and critical role in the quest

for precise survival probability estimations. Moreover, these methods have greatly

expanded our understanding of patient outcomes across a variety of medical situations

and settings. Classic methods, such as the Kaplan-Meier estimator and the log-rank
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test, remain invaluable tools for producing accurate estimates of survival distributions

and enabling credible comparisons across patient populations.

In addition to these traditional methods, numerous recent developments in survival

analysis have emerged. Notably, the introduction of multi-state models and multi-

state frailty models has greatly expanded the range of analytical tools available to

researchers. These innovative approaches are particularly effective in detecting and

examining dynamic changes in patient status. As a result, they contribute to the

creation of more advanced risk assessment protocols and predictive tools that are

essential for clinical environments.

It is important to note that survival analysis methods also provide valuable tools for

determining relevant cut-off values, such as the cut-off age used in our study. These

cut-off values play a profound role in assessing clinical outcomes in various medi-

cal contexts. This utility is particularly striking in bladder cancer, where survival

outcomes are influenced by the complex interaction of clinical and molecular param-

eters. By leveraging advanced analytical tools with substantial expertise, our study

is well-positioned to accurately classify patients into distinct risk groups, enabling

more precise individualized assessments. This, in turn, allows for the optimization of

patient management and tailoring of treatment approaches to maximize outcomes.

2.3 Multi-Omics Data Integration

In parallel with advancements in survival analysis, the field of biological studies has

also been revolutionized by unprecedented progress in high-throughput sequencing

technologies. These advanced technologies provide researchers with the tools to gen-

erate vast and complex multi-omics datasets that are rich in biological information.

These datasets encompass a wide range of data types, including genomic sequences

that reveal the complexities of gene architecture, transcriptomic profiles that de-

scribe dynamic gene expression, and methylomic data that reveal key patterns in

DNA methylation—an important regulatory function in genes.

This vast array of biological information offers valuable insights into the complex

mechanisms of pathogenesis and aids in identifying potential targets for therapeutic
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intervention. A paradigmatic example of successful integration across multiple omics

fields is the rapidly developing and innovative field of radiogenomics. Liu et al. [60]

have made significant contributions to this discipline, which involves the systematic

integration of imaging and genomic data. This integrated approach enables the con-

struction of unified cancer models that capture a broad range of disease-related fac-

tors, greatly improving our ability to accurately characterize tumors. Consequently, it

allows for more efficient and personalized therapeutic approaches for cancer patients.

In addition, Miller et al. [61] emphasized the critical role of stringent feature se-

lection methods in overcoming the challenges posed by multi-dimensional datasets.

These methods are essential for filtering out background noise, which often contam-

inates such datasets, and for pinpointing relevant information. The use of advanced

computational techniques is instrumental in extracting important biomarkers from

complex multi-omics data, ensuring that vital information is not overlooked during

the analytical process.

2.4 Integrative Approach

By innovatively combining survival analysis methods with a multi-omics paradigm,

our study creates a comprehensive framework that effectively identifies and distin-

guishes prognostic biomarkers. This approach maximizes the efficacy of patient strati-

fication procedures, enabling more informed and targeted treatment strategies. More-

over, this multidisciplinary and integrative approach not only enhances predictive

modeling but also expands our understanding of the complex molecular mechanisms

driving bladder cancer.

The developments presented in this study ultimately lead to more clinically informed

decision-making, resulting in better patient outcomes for individuals facing this spe-

cific health challenge. Through this pioneering integration of survival analysis and

multi-omics, we aim to contribute significantly to advancing personalized medicine in

bladder cancer.
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2.5 Research Gap

In spite of the noteworthy and meaningful advances made in this specific area of

research, it is apparent that several significant gaps remain in the literature. One of

the most conspicuous gaps is the lack of adequate focus on age as a crucial prognostic

variable in bladder cancer. Although age is consistently noted and reported in clinical

observations and assessments, a well-defined and systematic cutoff for stratification

purposes—particularly in relation to age—has yet to be comprehensively developed

using advanced computational methods. Such methods could provide more sophisti-

cated and fine-grained information.

Johnson et al. [59] succinctly emphasize that molecular alterations resulting from

aging are generally under-investigated and not explored in sufficient detail. This lack

of exploration creates a considerable gap in our overall understanding of how age-

related molecular changes contribute to survival outcomes in bladder cancer patients.

Another significant research gap that has been recognized within the field is the

challenge researchers face when integrating heterogeneous multi-omics data into a

coherent and practical predictive model. Much of the past research has focused on

single-modal data, which restricts the applicability of the findings and significantly

limits their scope. Additionally, many studies have used simple feature selection

methods that fail to adequately capture the complex interactions between different

omics layers.

Moreover, while graph neural networks (GNNs) have shown vast potential in a variety

of biomedical applications [55, 57], their application in bladder cancer prognostica-

tion—particularly when combined with survival analysis methods—remains largely

unexplored and untapped.

Addressing these significant gaps is imperative in the quest to develop predictive

models that are not only more precise but also more interpretable. Such models will

enable accurate stratification of individuals, thus informing personalized treatment

strategies tailored to each patient’s specific needs. Table 2.2 summarizes all the

approaches and findings that are present in the previous studies conducted.
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Table 2.2: Summary of Key Research Gaps

Study

Age
as Prognostic

Variable
Multi-Omics
Integration

GNN
Application

Survival
Analysis

Research Gap

Requirement

Advanced

computa-

tional

determina-

tion of age

cutoff and

exploration of

age-related

molecular

changes.

Sophisticated

integration of

heteroge-

neous omics

data.

Incorporation

of GNNs.

Seamless

integration

with survival

analysis

methods.

Tang et

al. [50]

✗ ✓ ✗ ✓

Cao et al. [51] ✗ ✓ ✗ ✓

Nan et

al. [52]

✗ ✓ ✗ ✓

Al-Ghafer et

al. [53]

✗ ✓ ✗ ✓

Chen et

al. [54]

✗ ✓ ✗ ✓

Wang et

al. [55]

✗ ✓ P ✗

Lee et al. [47] ✗ ✓ ✗ ✓

Kim et

al. [56]

✗ ✓ ✗ ✓

Smith et

al. [49]

✗ ✓ ✗ ✓

Garcia et

al. [57]

✗ ✓ P ✗

Continued on next page
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Table 2.2 – continued from previous page

Study

Age
as Prognostic

Variable
Multi-Omics
Integration

GNN
Application

Survival
Analysis

Chen et

al. [58]

✗ ✓ P ✗

Davis et

al. [59]

✗ ✓ ✗ ✓

Legend:

• ✓ (Full): The study fully addresses the criterion.

• P (Partial): The study partially addresses the criterion.

• ✗ (None): The study does not address the criterion.

2.6 Contributions

The current study represents a set of novel and revolutionary developments with

important implications for bladder cancer prognosis, which is a vital component in

the improvement in patient outcomes. The main contributions in this study are

outlined below:

• Age Cutoff based on Survival Analysis: The current study demonstrates a

systematic, empirical method for the determination of the single most important

cutoff point that distinguishes individuals according to their survival status.

Using a combination of Kaplan-Meier survival assessment with iterative log-

rank testing methods, our results establish that the most critical cutoff point

is at the age of 64. This is supported by strong statistical methods and has

strong clinical implications, marking a valuable advancement in bladder cancer

prognostication.
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• Feature Selection Pipeline: The current study proposes a highly rigor-

ous and robust framework for feature selection in the context of multi-omics

datasets, involving a number of critical stages:

– Variance Thresholding: A critical feature selection process component.

– Univariate Feature Selection (ANOVA F-scores): Picking features

that play crucial roles.

– Recursive Feature Elimination with Cross-Validation (RFECV):

Enables efficient and accurate feature selection.

The suggested method successfully reduces the increased dimensionality found

in datasets without compromising biologically meaningful attributes. This im-

provement in accuracy, as well as in explainability, results in providing insight-

ful information that is highly valuable for medical practitioners and researchers

alike. Previous studies by Kim et al. [56] and Smith et al. [49] highlighted the

importance of careful feature selection in multi-omics studies.

• Utilization of Graph Neural Network (GNN) Architectures: In this

study, we employ established GNN architectures to model the complex cor-

relations inherent in multi-omics datasets for bladder cancer prognosis. Our

approach utilizes:

– Graph Convolutional Networks (GCNs): Our GCN implementation

uses a linear encoder with batch normalization and ReLU, followed by two

graph convolution layers and regularization (dropout and early stopping)

to aggregate neighboring information. The final log-softmax layer outputs

class probabilities.

– Graph Attention Networks (GATs): Building on a similar encoding

framework, the GAT model incorporates multi-head attention in two graph

attention layers to selectively focus on key neighbors. Regularization is

applied similarly, with a log-softmax activation for classification.

– GraphSAGE: Our GraphSAGE approach also employs the same encoder

structure and two graph convolution layers. Its inductive learning capabil-

ity allows for generating embeddings for unseen nodes, resulting in superior

performance in accuracy, F1-score, and AUC.
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Based on extensive experimentation, we conclude that the GraphSAGE model, with

its in-built inductive learning capability, outperforms all the rest in all major metrics

such as accuracy, F1-score, and AUC.
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Chapter 3

Preliminary Concepts and

Research Context

This chapter provides a detailed description of the experimental pipeline employed in

this study, covering all stages from data acquisition and preprocessing to model devel-

opment and evaluation. It begins by introducing the publicly available multi-omics

data obtained from The Cancer Genome Atlas (TCGA), including mRNA expres-

sion, miRNA expression, DNA methylation, and copy number alterations (CNA).

The preprocessing steps—such as impurity removal, normalization, and imputation

of missing values—are then described to ensure the consistency and quality of the

dataset. The chapter further outlines various dimensionality reduction and feature

extraction techniques, encompassing both statistical and graph-based methods, for

identifying relevant features. Subsequently, machine learning and deep learning mod-

els are introduced, with a focus on graph neural networks (GNNs) used to leverage

gene interaction structures. Finally, the chapter details model training procedures,

cross-validation strategies, performance evaluation metrics, and interpretability ap-

proaches (e.g., SHAP values and visualization tools) to promote transparency and

reproducibility of results.
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3.1 Overview

In this study, we take a systematic, data-driven approach to explore the TCGA

Bladder Urothelial Carcinoma (BLCA) dataset, leveraging multi-omics data to gain

insights into bladder cancer. The key steps in our methodology include:

• Dataset: The data, obtained from the CBIO Portal, includes clinical data,

CNA, mRNA, and DNA methylation profiles. This diverse set of omic data

provides a comprehensive view of the molecular landscape of bladder cancer.

• Data Preprocessing: We begin by cleaning and normalizing the data to en-

sure consistency across samples and omic types. This step is crucial for making

the data suitable for further analysis.

• Survival Analysis: To assess clinical outcomes, the Kaplan-Meier estimator is

used to estimate survival functions, helping to interpret the impact of selected

features on patient survival.

• Feature Selection: To reduce dimensionality and enhance model performance,

we apply several feature selection techniques:

– Variance Thresholding: Removes features with little variation, which are

unlikely to contribute to model prediction.

– Univariate Selection: Uses statistical tests (e.g., ANOVA F-Score) to select

features most related to the target variable.

– Lasso Regularization (L1-Based): A regularization technique that both

selects important features and prevents overfitting by shrinking less im-

portant feature coefficients to zero.

– Recursive Feature Elimination with Cross-Validation (RFECV): An iter-

ative method that removes the least important features based on model

performance, validated using cross-validation to ensure stability.

• Machine Learning Models: After selecting the most informative features,

machine learning models are built to identify potential biomarkers and predict

clinical outcomes. We use a variety of algorithms and validate their performance

using standard evaluation metrics.
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This combination of methods allows us to effectively handle the complexity of multi-

omics data and extract meaningful insights that could enhance our understanding of

bladder cancer biology and improve clinical predictions.

3.2 Feature Selection Methods

3.2.1 Variance Threshold

This method of feature selection is employed in high dimensional data where it is

believed that features with low-variation are believed not to be very important to the

model output. The variance of the features is calculated as follows

Var(xj) =
1

n

n∑
i=1

(xij − x̄j)
2 (3.1)

In this equation, Var(xj) represents the variance of the j-th feature, n is the number of

observations, xij is the value of the j-th feature for the i-th observation, and x̄j is the

mean of the j-th feature across all observations. Variance thresholding is a technique

used to remove features with low variance, which may not contribute significantly to

the predictive power of a model.

Features that fall below the variance threshold are then eliminated. This process helps

us to reduce the dimensionality of multi-omics data and keep only the features (genes

in this case) which contribute to the predictive power of the model so we essentially

do this to keep rid of noise in data.

3.2.2 Univariate Feature Selection

Univariate feature selection is a method of Feature selection which evaluates each

feature to find its relation with the target variable. The select k percentile of features

we have used selects the top ’k’ percentile of features based on their univariate test

scores. In our case, we utilized the ANOVA F-Score, which measures the degree of
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linear dependency between each feature and the target variable. Features with higher

F-score are considered more relevant than those with a lower F-score.

3.2.3 L1-Based Feature Selection (Lasso Regularization)

L1-Based Feature Selection (also knows as Lasso Regularization) is a very impor-

tant technique in statistical modeling and machine learning when dealing with high-

dimensional and multi-omics data. This technique works by being a method for

linear regression which performs both regularization and feature selection simultane-

ously [62]. The Lasso estimator is defined by the following optimization problem:

β̂ = argmin
β

{
N∑
i=1

(yi − x⊤
i β)

2 + λ

p∑
j=1

|βj|

}
(3.2)

In this equation, β̂ represents the estimated regression coefficients obtained by mini-

mizing the objective function, which consists of two components: the sum of squared

residuals and a regularization term. The term yi denotes the observed response for the

i-th observation, while xi is the vector of predictor variables for that observation. The

regression coefficients βj indicate the effect of each predictor on the response variable.

The non-negative regularization parameter λ controls the strength of the penalty ap-

plied to the regression coefficients. This regularization helps prevent overfitting by

encouraging sparsity in the model, allowing only the most significant features to influ-

ence the predictions. As a result, the model becomes more interpretable and robust,

particularly when dealing with high-dimensional datasets.

The model is also shown to minimize the residual sum of squares subject to the sum

of the absolute value of the coefficients being less than a constant. Because of the

nature of this constraint, it tends to produce some coefficients that are exactly 0 and

this helps us with the varaible selection. This method results in reducing the models

over-fitting and multicollinearity between the variables which is essential to stable

models and gives good results when dealing with high dimensional data.
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3.2.4 Recursive Feature Elimination with Cross-Validation

Recursive Feature Elimination with Cross-Validation (RFECV) is a feature selec-

tion framework that makes use of Recursive Feature Elimination as well as Cross-

Validation. Recursive Feature Elimination (RFE) was introduced by a researcher as

a gene selection method based on iterative feature removal [63].

The method starts of with training SVMs on complete set of features. Subsequently,

multiple models are trained and the features that are deemed less important to the

target variable are recursively removed. To make sure the features selected are stable

and to prevent the data leakage we pair the recursive feature elimination technique

with cross-validation as this makes sure the training data is divided into training and

validation set.

3.3 Machine Learning Models

3.3.1 Kaplan-Meier Estimator

The Kaplan–Meier estimator is well known and highly regarded as a highly prized

non-parametric statistic that has the useful role of estimating a survival function from

data regarding lifetimes. This useful measure in statistics, known simply as Kaplan-

Meier curve, is most commonly used for graphical representation of event times.

Additionally, this estimator can be understood in two different manners: either as

a survival rate that represents a proportion of surviving subjects over time or as

a total survival function that summarizes total survival experience [64]. Below is

mathematically stated formula defining Kaplan-Meier estimator:

Ŝ(t) =
∏
i:ti≤t

(
1− di

ni

)
(3.3)

where ti is the observed time points where events occur, di is the number of events

(e.g., deaths) at ti, and ni is the number of individuals at risk just before ti.
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3.3.2 Random Forest

The Random Forrest classifier is an ensemble learning machine learning model which

has received a lot of recognition because of its ability to improve the algorithm accu-

racy by focusing on the concept of Bootstrap Aggregation (Bagging) on the principle

that results in the algorithm growing an ensemble of trees and letting them vote for

the most popular class, this results in a better output than a single tree. In this

way aggregating the predictions of multiple decision trees, this approach provides en-

hanced accuracy, robustness, and flexibility [65]. The prediction process of a Random

Forest classifier can be represented as follows:

C = argmaxi

T∑
t=1

δ(ci, Tt(x)) (3.4)

Given an ensemble of T decision trees T1, T2, . . . , TT , each tree predicts the class label

cTi
for an instance x. The final predicted class label C for x is determined through

majority voting, where T is the total number of decision trees in the ensemble, Tt(x)

is the class label predicted by tree Tt for instance x, and δ(ci, Tt(x)) is the Kronecker

delta function that equals 1 if ci = Tt(x) and 0 otherwise.

3.3.3 Graph Neural Networks (GNN)

3.3.3.1 Graph Convolution Networks (GCN)

Graph Convolution Neural Networks, which are typically referred to as GCNs, are

one of the most important and foundational variations of graph neural networks that

have been carefully designed to efficiently process and analyze graph-like structured

data. Such sophisticated GCNs have a wonderful ability to learn and extract mul-

tiple features through a very detailed examination and observation of neighboring

nodes surrounding a given node in question. Basically, such innovative networks can

be thought of as generalized forms of conventional Convolutional Neural Networks,

typically known as CNNs, which were originally developed mainly to process grid-like

structures; however, unlike CNNs, GCNs process with a different topology in terms
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of node connections and have a capacity to process unordered nodes in a graph struc-

ture. By extending the convolution operation to be used for graphs, using GCNs

enables a process to aggregate information from a variety of different nodes and then

distribute that obtained information to all nodes available in a given graph being

processed. This extensive and sophisticated process eventually enables the networks

to build meaningful representation learning for every individual node placed in the

graph framework.

During this sophisticated operation, there are two main inputs—the normalized graph

adjacency matrix, known as A′, and the node feature matrix, known as F—which are

basic building components introduced into the layer. Additionally, a bias vector,

known as b, and a weight matrix, known as W , are recognized as trainable variables

that have a significant role in controlling the behavior and performance of the layer.

The graph convolution operation can be represented by the following formula:

H(l+1) = σ
(
ÂH(l)W (l) + b(l)

)
(3.5)

Where H(l+1) is the output feature matrix of layer l + 1, H(l) is the input feature

matrix of layer l, Â is the normalized adjacency matrix (with self-loops), W (l) is the

weight matrix for layer l, b(l) is the bias vector for layer l, and σ is the activation

function (e.g., ReLU).

This formula outlines the graph convolution operation where information is propa-

gated from neighboring nodes through the adjacency matrix and then aggregated at

each node to compute new node representations. Figure 3.1 shows a visual represen-

tation that illustrates the workflow carried out within Graph Convolutional Models,

thus providing a better understanding of how such specific types of networks work

and function efficiently.
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Figure 3.1: The workflow of GCN model.

3.3.3.2 Graph Attention Networks (GAT)

Graph Attention Network (GAT) is a neural network that also works with graph-

structured data, designed to extend the mechanism of self-attention to graphs. Un-

like Graph Convolution Networks, which rely on convolution layers for aggregating

information from neighboring nodes, GATs compute the importance of neighboring

nodes dynamically using self-attention mechanisms. This allows GATs to assign dif-

ferent attention weights to the neighbors, making them more flexible and expressive

in capturing the relative importance of nodes in a graph.

The self-attention mechanism in GAT assigns attention scores between nodes based

on their feature similarities and connectivity. Specifically, the attention score eij

between node i and node j is computed as:
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eij =
exp

(
LeakyReLU

(
aT [Whi||Whj]

))∑
k∈N (i) exp (LeakyReLU (aT [Whi||Whk]))

(3.6)

Where hi and hj are the feature vectors of nodes i and j, respectively, W is the weight

matrix, and a is the learnable attention vector. The attention mechanism allows nodes

to dynamically adjust their attention weights on neighboring nodes based on their

features.

Once the attention scores are computed, the feature vector for node i is updated as

follows:

h′
i = σ

 ∑
j∈N (i)∪{i}

αijWhj

 (3.7)

Where αij is the normalized attention score between nodes i and j, and σ is an activa-

tion function (e.g., ReLU). This equation aggregates information from the neighbors

of node i, weighted by the attention scores, and updates the feature vector of node i.

GATs enhance this capability by being able to stack a number of such attentional lay-

ers to allow nodes to selectively focus on the most informative neighbors with respect

to their own feature similarities and connectivity, all this without expensive matrix

operations such as inversion, or relying on pre-defined graph structures. The self-

attention mechanism, therefore, makes GATs better positioned to work on graphs of

various connective patterns and, therefore, more robust in tasks whose node relations

are not uniformly distributed.

Another benefit of GATs is their high scalability due to their property of not being

dependent on knowing the whole structure of the graph while training. This allows

them to perform better on tasks related to noisy, irregular structures [48]. In Figure

3.2, we get a depiction of the workflow of the Graph Attention Models.
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Figure 3.2: The workflow of GAT model.

3.3.3.3 GraphSAGE Network

GraphSAGE (Graph Sample and Aggregation) is an inductive framework used to

learn node embeddings in large graph networks. Unlike the other graph methods,

which require knowledge of the entire graph during training, GraphSAGE can gener-

ate embeddings for unseen nodes just by using the partial information it gains from

node insights. Since it generalizes to unseen parts of the graph, it is especially useful

for dynamic graphs when new nodes and edges are added continuously.

The key feature of the GraphSAGE model is to learn a function that aggregates

features from a node’s local neighborhood. GraphSAGE samples a fixed-size neigh-

borhood for each node and thus avoids processing the entire graph at once, which

is efficient for large graphs. This sampling strategy not only reduces computational

complexity but also allows the model to scale to graphs with millions of nodes and

edges.



49

GraphSAGE learns the embedding for node v by aggregating information from its

neighbors, as follows:

h(k)
v = σ

(
W (k) · AGGREGATE

(
{h(k−1)

u : u ∈ N (v) ∪ {v}}
))

(3.8)

Where h
(k)
v is the embedding for node v at the k-th layer, W (k) is the learnable

weight matrix at the k-th layer, N (v) represents the set of neighbors of node v,

AGGREGATE is the aggregation function (e.g., mean, LSTM, or pooling), and h
(k−1)
u

is the embedding of a neighboring node u from the previous layer.

GraphSAGE makes use of aggregation functions such as mean, LSTM, and pooling

to integrate the representations of neighbors, which allow the model to learn different

aspects of the local graph structure and node features. The aggregation function for

mean aggregation is defined as:

AGGREGATEmean (N (v)) =
1

|N (v)|
∑

u∈N (v)

h(k−1)
u (3.9)

These aggregation functions, together with the sampling strategy, have enabled Graph-

SAGE to be successfully applied for node classification, link prediction, and graph

classification tasks, especially in domains where graphs are large and dynamic [66].

In Figure 3.3, we get a depiction of the workflow of the GraphSAGE Models.
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Figure 3.3: The workflow of GraphSAGE.

3.4 Model Evaluation

A variety of evaluation methods are employed to assess the performance of machine

learning models, particularly in the context of classification tasks. These methods

provide valuable insights into how well a model generalizes to unseen data, identi-

fying both its strengths and weaknesses. In this section, we discuss the evaluation

metrics used to assess the performance of our model, which include accuracy, pre-

cision, recall, F1-score, and AUC-ROC. Each of these metrics offers unique insights

into different aspects of model performance, which are crucial for determining the

model’s effectiveness in real-world applications.
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3.4.1 Evaluation Metrics

Evaluation metrics are used to give us insights into the performance of machine

learning algorithms. The ones we are using are as follows:

• Accuracy: Accuracy is one of the most widely used metrics for measuring the

performance of a classification model. It is calculated by taking the ratio of

correctly classified predictions to the total number of predictions in the dataset.

The formula is given by:

Accuracy =
TP + TN

TP + TN + FP + FN
(3.10)

• Precision: Precision measures the ratio of correctly predicted positive in-

stances to the total predicted positive instances. It is calculated as:

Precision =
TP

TP + FP
(3.11)

Precision is crucial in scenarios where the cost of false positives is high, as it

reflects the accuracy of the positive predictions made by the model.

• Recall: Recall is the ratio of correctly predicted positive instances to the total

actual positive instances in the dataset. The formula is:

Recall =
TP

TP + FN
(3.12)

• F1-Score: The F1-score is the harmonic mean of Precision and Recall. It is

calculated as:

F1-Score = 2× Precision× Recall

Precision + Recall
(3.13)

The F1-score provides a single metric that balances both precision and recall,

making it useful for evaluating models on imbalanced datasets.

• AUC-ROC: The Area Under the Receiver Operating Characteristic Curve

(AUC-ROC) is a performance measurement for classification problems at var-

ious threshold settings. The ROC curve plots the True Positive Rate (Recall)
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against the False Positive Rate. AUC measures the area under this curve, where

a higher AUC indicates better model performance. The formula for AUC is:

AUC =

∫ 1

0

TPR(t) dFPR(t) (3.14)

In the equations above, TP , TN , FP , and FN stand for True Positive, True Negative,

False Positive, and False Negative, respectively. Furthermore, TPR(t) is the True

Positive Rate and FPR(t) is the False Positive Rate at the threshold t.

3.5 SHapley Additive Explanations (SHAP)

SHapley Additive Explanations (also known as SHAP) is a tool that is used to help

users interpret the predictions of complex machine learning models. SHAP assigns

each feature an importance value that quantifies its contribution to a specific pre-

diction, allowing researchers and practitioners to gain insights into complex models,

such as deep learning networks and ensemble methods. One of the key advantages of

SHAP is its ability to offer both the local (individual prediction) and global (over-

all model behavior) explanations, making it a widely used technique in high-stakes

applications like healthcare [67].

The formula for SHAP values is derived from the concept of Shapley values, which

come from cooperative game theory. The Shapley value for a feature fj in a given

instance is calculated as:

ϕj(f) =
∑

S⊆N\{j}

|S|! (|N |−|S|−1)!

|N |!
[f(S ∪ {j})− f(S)] (3.15)

Where the SHAP value for feature j, denoted as ϕj(f), is computed by considering

all possible subsets S of features excluding feature j. In this context, N represents

the set of all features, and S is any subset of features that does not include feature

j. The term f(S) refers to the prediction made by the model using the subset S

of features, while f(S ∪ {j}) is the prediction made when feature j is added to the
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subset S.

The model is also shown to minimize the residual sum of squares subject to the sum

of the absolute value of the coefficients being less than a constant. Because of the

nature of this constraint, it tends to produce some coefficients that are exactly 0 and

this helps us with the variable selection. This method results in reducing the model’s

overfitting and multi-collinearity between the variables, which is essential for stable

models and gives good results when dealing with high-dimensional data.
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Chapter 4

Materials and Methods

This chapter details the methodological framework employed in this study, with a

focus on the systematic development of predictive models for bladder cancer clas-

sification using multi-omics data. It outlines each stage of the process—from data

acquisition and preprocessing to feature engineering, model training, and interpreta-

tion—providing a comprehensive, reproducible, and scientifically rigorous foundation

for the research. By integrating high-throughput data types such as mRNA, miRNA,

DNA methylation, and copy number variations, the study seeks to construct machine

learning and deep learning models that are not only accurate but also biologically and

clinically meaningful. The approach emphasizes the careful curation of input features

through advanced selection techniques, followed by the implementation of graph-

based neural networks that leverage biological interactions for enhanced prediction.

Evaluation strategies, including standard classification metrics and interpretability

methods like SHAP, are incorporated to assess model performance and ensure trans-

lational relevance. This chapter serves as the technical backbone of the study, bridging

computational techniques with biomedical insights to support actionable outcomes in

cancer research.
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4.1 Dataset

The dataset, comprising 413 samples, was obtained from the CBIO Portal and corre-

sponds to the TCGA Bladder Urothelial Carcinoma (BLCA) cohort. The source data

was processed and provided by GDAC Firehose, ensuring high-quality structured ge-

nomic information suitable for in-depth analysis [68]. The dataset description is given

by Table 4.1 which outlines the structure and key attributes of each data type.

Table 4.1: Dataset description

Omic Name Description

Clinical Data Clinical data contains 410 samples, they

contain the Diagnosis Age, Overall Sur-

vival Status and the Overall Survival

Months.

CNA Contains the genes for CNA omics for each

Sample ID with 408 samples with 24,776

features.

mRNA Contains the genes for mRNA omics for

each Sample ID with 408 samples with

20,531 features.

DNA Methylation Contains the genes for DNA methylation

omics for each Sample ID with 413 samples

with 16,221 features.
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4.2 Age Strata Selection

In our study, we began by finding the optimal age strata that we will be using at the

target variable moving forward. In our approach, we used a combination of Kaplan-

Meier survival analysis and the log-rank test. The dataset included survival time

(measured in months), patient age as a continuous variable, and the survival indicator.

Iteratively, we evaluated a range of potential age cut-offs at regular intervals (51, 52,

53, etc.) dividing the patients into two groups: patients aged less than or equal to the

age threshold and those above the age threshold. Using Kaplan-Meier to calculate

the survival curves, and then the log-rank test, allowed us to statistically compare

the survival distributions by calculating the p-values for each cut-off.

The optimal age threshold was found by iteratively comparing the different age thresh-

olds, as mentioned before, and choosing the threshold that resulted in the most sig-

nificant log-rank p-value, indicating the maximum difference in survival probability

between the two chosen groups. The results for this approach can be found in Figure

5.1, and it helped us decide the threshold for the age of our patients, leading to the

selection of a threshold with statistically greater prediction power in our model.

4.2.1 Kaplan-Meier Survival Analysis

Kaplan-Meier survival analysis was performed to estimate the survival function and

visualize the survival curves for different age groups. This non-parametric statistic

allowed us to evaluate the probability of survival over time for each group defined by

the age threshold. The Kaplan-Meier estimate provides insight into the survival dis-

tribution, which is crucial for identifying meaningful differences between the selected

groups.

4.2.2 Log-Rank Test

The log-rank test was applied to compare the survival distributions between the two

groups created based on the chosen age threshold. The p-value obtained from the
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log-rank test was used to determine the statistical significance of the difference in

survival times between the two groups. This comparison ensured that the selected

threshold was the most effective in predicting survival outcomes for our model.

4.3 Feature Selection and Elimination Pipeline

4.3.1 Data Preparation

In our study, as we were dealing with multi-omics data, it was crucial to employ

feature selection and elimination techniques to remove noise from the dataset and

increase the model’s performance, interpretability, and efficiency. The cornerstone of

our approach is the feature selection pipeline we used to identify the optimal relevant

features for model training. This selection process improved not only the predictive

accuracy of our models but also facilitated a deeper understanding of the underlying

biological processes by highlighting key features (genes).

4.3.2 Feature Scaling

The importance of feature scaling lies in ensuring that all features contribute equally

to the model, preventing dominance by features with larger magnitudes. The follow-

ing steps were performed for feature scaling:

1. Compute the minimum value:

xmin = min(X), (4.1)

2. Apply a shift if the minimum value is non-positive:

S =

0, if xmin > 0

|xmin|+1, if xmin ≤ 0
, (4.2)
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X ′ = X + S (4.3)

3. Apply the log transformation:

Xlog = log(1 +X ′), (4.4)

4. Standardize the transformed data:

Z =
Xlog − µ

σ
, (4.5)

where µ and σ are the mean and standard deviation of Xlog, respectively.

4.3.3 Feature Elimination Methods

To enhance the model’s generalization ability and reduce overfitting, we employed

various feature elimination techniques. These methods aim to identify and retain

the most informative features while eliminating redundant or irrelevant ones. The

techniques used are as follows:

• Variance Threshold: A threshold of 0.2 was applied to remove features with

low variance, as features with minimal variation typically carry less information

and may introduce noise into the model.

• Univariate Feature Selection: We employed statistical tests such as the

ANOVA F-score to select features that exhibit the strongest statistical relation-

ship with the target variable, ensuring that only the most relevant features are

retained.

• L1-based Feature Selection: By using Lasso regularization (L1 penalty)

in logistic regression, we eliminated less important features by driving their

coefficients to zero, thereby focusing the model on the most predictive variables.

• Recursive Feature Elimination (RFE): RFE was used in combination with

cross-validation (RFECV) to iteratively remove the least important features
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based on their impact on model performance. This process ensures that only

the most influential features are selected, leading to a more robust and efficient

model.

4.4 Model Training Architecture

4.4.1 Overview of Model Architecture

Our model architecture was designed to classify age using multi-omics data. The

process starts with loading the pre-processed data after the feature selection pipeline.

We then use the K-Nearest Neighbor Algorithm (KNN) to construct graph structures

that capture the relationships between data points. Subsequently, three types of graph

neural networks (GNNs) — Graph Convolutional Networks (GCN), Graph Attention

Networks (GAT), and GraphSAGE — were trained to build comprehensive graph-

based models.

4.4.2 Graph Construction with k-Nearest Neighbor (KNN)

The K-Nearest Neighbor (KNN) algorithm was used to create graph structures by

connecting each data point with its K nearest neighbors. This construction enables

the model to capture the underlying relationships and connectivity between data

points, enhancing the ability of the model to learn from the data’s inherent structure.

4.4.3 Graph Neural Networks (GNNs) Models

4.4.3.1 Graph Convolutional Network (GCN)

The GCN model begins with an encoder that applies a linear transformation, followed

by batch normalization and a ReLU activation function. This allows the model to be

less sensitive to the scale of inputs. The model includes two graph convolution layers
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for aggregating information from neighboring nodes. Regularization techniques such

as dropout and early stopping are employed to prevent overfitting. The final output is

passed through a log-softmax activation function to compute the class probabilities.

4.4.3.2 Graph Attention Network (GAT)

The GAT model also starts with an encoder, applying a linear transformation, batch

normalization, and a ReLU activation function. The model then includes two graph

attention layers that use multi-head attention mechanisms to capture the importance

of nodes in the graph and focus on the most relevant neighbors. Dropout and early

stopping are applied to reduce overfitting. As in the GCN model, the final output is

passed through a log-softmax activation function for classification.

4.4.3.3 GraphSAGE Model

The GraphSAGE model follows a similar structure, with an encoder that applies a

linear transformation, batch normalization, and a ReLU activation function. The

model includes two layers of GraphCONV to learn node embeddings. GraphSAGE is

capable of generating embeddings for unseen nodes by using partial information from

their neighbors. Dropout and early stopping are again used for regularization, and

the output is passed through a log-softmax activation function for classification.

4.4.4 Training Strategy and Evaluation

The training strategy involved using optimization techniques such as Adam, applying

the appropriate loss function (cross-entropy loss for classification), and regularization

methods like dropout and early stopping to avoid overfitting. We employed Stratified

K-Fold Cross-Validation to evaluate the model’s performance, ensuring that each

fold had a balanced representation of the target classes. Performance metrics such as

accuracy, precision, recall, and F1-score were used to evaluate the effectiveness of the

model in classifying age groups.
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4.4.5 Model Hyperparameter Tuning

To optimize the performance of the models, hyperparameter tuning was performed

using Grid Search. We tuned parameters such as learning rate, number of layers, and

dropout rate to find the optimal combination that minimized overfitting and max-

imized model performance. Cross-validation was employed during tuning to ensure

the model generalizes well across different subsets of the data. Table 4.2 summarizes

the hyperparameters that were tuned using Grid Search.

Table 4.2: Hyperparameter Tuning Results

Model Tuned Hyperparame-
ters

Best Parameters Found

GCN Learning Rate, Hidden
Dim, Dropout

LR=0.005, Hidden=32,
Dropout=0.2

GAT Learning Rate, Hidden
Dim, Dropout, Attention
Heads

LR=0.01, Hidden=16,
Dropout=0.4, Heads=4

GraphSAGE Learning Rate, Hidden
Dim, Dropout

LR=0.005, Hidden=32,
Dropout=0.2

Random Forest n estimators, max depth,
min samples split

Estimators=200, Depth=10,
Split=4

For model evaluation, we chose the Area Under the Curve (AUC) as the primary met-

ric due to its ability to measure the trade-off between true positive rate (sensitivity)

and false positive rate (1-specificity). AUC is particularly valuable in binary clas-

sification problems as it provides a comprehensive view of the model’s performance

across all classification thresholds, making it a reliable metric for models that need

to be optimized for both precision and recall. This is especially crucial in imbal-

anced datasets, where traditional metrics like accuracy may not fully reflect model

performance.
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4.4.6 Cross-Validation Strategy

We employed Stratified K-Fold Cross-Validation to assess model performance. This

technique ensures that each fold contains a proportionate distribution of the target

classes, making it particularly useful for imbalanced datasets. Cross-validation helped

evaluate the model’s generalization ability by training and testing the model on differ-

ent data subsets, reducing the likelihood of overfitting and providing a more reliable

estimate of its real-world performance.

4.4.7 Model Interpretability

To ensure that the results were interpretable and to understand the contribution of

each feature, we employed techniques such as SHAP (Shapley Additive Explanations)

values and feature importance ranking. For graph-based models, we also explored

attention mechanisms within GAT and GraphSAGE to understand how the model

focused on different nodes and edges in the graph, providing insights into the most

influential factors driving model predictions.
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Chapter 5

Experimental Results and

Discussion

This chapter presents a detailed account of the experimental outcomes obtained

through the computational models introduced earlier. The objective is to not only

report the results but also to interpret their significance in the context of biological

relevance and clinical applicability to bladder cancer. We begin by analyzing survival

trends using statistical tools such as the Kaplan-Meier estimator and the Log-Rank

test to determine age thresholds that significantly impact patient outcomes. Through

this approach, we identify age 64 as a critical cutoff, which subsequently guides the

stratification of patients for downstream analysis. Next, we describe our feature en-

gineering pipeline, which played a pivotal role in managing high-dimensional multi-

omics data. By implementing techniques like Variance Thresholding, ANOVA F-score

selection, L1-regularization, and Recursive Feature Elimination with Cross-Validation

(RFECV), we were able to substantially reduce noise and isolate the most informa-

tive features across CNA, mRNA, and DNA methylation datasets. The chapter then

transitions into performance evaluation of multiple machine learning models, with a

strong emphasis on graph-based approaches including Graph Convolutional Networks

(GCN), Graph Attention Networks (GAT), and GraphSAGE. Each model is assessed

using robust evaluation metrics such as Accuracy, F1-Score, Precision, Recall, and

AUC under a 10-fold cross-validation scheme. Notably, GraphSAGE demonstrated
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superior performance, attributed to its inductive learning strategy that allows effec-

tive generalization to unseen nodes.

5.1 Age-thresholding Experimental analysis

5.1.1 Kaplan-Meier and Log-Rank Test

As shown in Figure 5.1, we have used Kaplan-Meier to calculate the probability of

survival over time, stratified by different thresholds of age of the patient. The log-

rank test was then used which lets us statistically compare the survival distributions

by calculating the p-values for each cut-off, and then finding the optimal log-rank

p-value. Using this approach, we identified the optimal threshold that maximally

separates the survival curves, which in this case corresponds to patient age 64.

Figure 5.1: Finding Optimum Age Threshold using Kaplan-Meier and Log-Rank Test.

In Figure 5.2, we can see that the age 64 serves as a significant determinant of survival

outcomes, with patients above and below this threshold show statistically different
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survival patterns. This is a good indication of having 64 as as threshold as this gives

a good indicator of the predictive power of this threshold in the dataset.

Figure 5.2: Kaplan-Meier Survival Curve based on Age 64 Cut off.

5.1.2 Age Threshold

In Table 5.1, we get insights on the patient mortality based on different age groups

thresholds. The Patients have been divided into two groups in this study: Patient

aged less than or equal to 64 and patients above the age of 64.

Table 5.1: Mortality statistics based on age groups

Condition Patients Deceased Total Patients Percentage Deceased

Age ≤ 64 46 151 30.46%

Age > 64 134 259 51.74%
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Using these statistics, we can confirm that the age variable is a significant factor in

determining the survival outcome in patients with bladder cancer as the percentage

increases.

5.1.3 Feature Analysis

In our study, as we were dealing with multi-omics data, we had to employ feature

selection and elimination techniques to remove noise in the dataset, thereby increas-

ing the model’s performance, interpretability, and efficiency. The cornerstone of our

study is our feature selection pipeline as demonstrated and referenced in Figure 5.3.

in the pipeline we prepare the dataset by catering to missing data. After that we

employ our Feature scaling to make sure that the data is normalized thereby pre-

venting the dominance of features with larger magnitudes. After feature scaling we

employed various techniques for feature selection such as Variance Thresholding, Uni-

variate Feature Selection (ANOVA F-score method), L1-based feature selection (Lasso

Regularization), and Recursive Feature Elimination with Cross-Validation (RFECV).

These steps helped us remove features with low variance, eliminate those with weak

statistical relationships to the target variable, thereby giving us strongly correlated

genes with the target variable.

Figure 5.3: Feature Engineering Pipeline Diagram.
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Table 5.2: Number of Features Before and After Feature Selection for CNA, mRNA,
and Methylation Data.

Data Type Before Feature Selection After Feature Selection

CNA 24,776 11

mRNA 20,531 30

Methylation 16,221 76

The effectiveness of our Feature selection pipeline can be observed in Table 5.2 as

it turns out not all features are critical in affecting the target variable as significant

features are drastically reduced when comparing with the original number of features.

Originally, the datasets contained a large number of features 24,776 for CNA, 20,531

for mRNA, and 16,221 for Methylation. However, after applying our feature selection

pipeline, the number of retained features drastically reduced to 11 for CNA, 30 for

mRNA, and 76 for DNA methylation. This significant reduction highlights the ability

of our pipeline to remove redundant or irrelevant features while preserving the most

informative ones.

5.2 Model Results and Analysis

5.2.1 Performance Metrics

Table 5.3 presents the results of our models, using performance metrics obtained

after 10-fold cross-validation with an 80-20 train-test split. Table 5.3 summarizes

Accuracy, F1-Score, Precision, Recall, and Area Under the Curve (AUC) for each

model evaluated.

Of all the different models we developed, the GraphSAGE model evidently outshone

and was found to be best and most effective among all other alternatives, with a
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Table 5.3: 10-Fold Cross-Validation Results for Graph Models.

Model Accuracy F1 Score Precision Recall AUC

GCN 0.7264 0.7197 0.7225 0.7264 0.7404

GAT 0.7485 0.7409 0.7558 0.7485 0.7738

GraphSAGE 0.8257 0.8226 0.8289 0.8257 0.8743

Random Forest 0.7340 0.7094 0.7357 0.7340 0.7504

accuracy rate of 82.57%. This performance was further complemented with an F1-

score of 82.26% and an area under the curve (AUC) score of 0.8743. Such impressive

performance measures evidently reflect GraphSAGE’s greater ability to generalize

and successfully capture all the intricate patterns within the data, and is most likely

due to its cutting-edge inductive learning strategy. This innovative strategy enables

it to create meaningful embeddings for unseen nodes within the graph.

5.2.2 Feature Importance

For the best-performing model, GraphSAGE, we conducted a SHAP analysis to iden-

tify the top 10 most informative features, as shown in Figure 5.4.

Figure 5.4: SHAP Analysis for top 10 features.



69

5.3 Discussion and Insights

5.3.1 Age-Threshold Analysis

Our primary research objective was to identify biomarkers linked to age, with a

focus on bladder cancer patients. To achieve this, we performed an extensive dataset

analysis to determine the optimal age threshold that significantly impacts survival

rates.

We utilized the Kaplan-Meier method and the Log-Rank test to identify the optimal

threshold that maximally separates survival curves within the sample population.

From this analysis, we established that the best threshold is 64 years old.

Individuals aged 64 and below have significantly different survival curves compared

to those above 64. The results show a 51.74% mortality rate for individuals above

64 years, compared to 30.46% for those below this threshold. This stark contrast

underscores the role of age in bladder cancer prognosis, highlighting how aging-related

physiological processes impact treatment outcomes and survival chances.

5.3.2 Model Performance Insights

Among the evaluated models, the GraphSAGE model demonstrated the highest per-

formance across all metrics. With an accuracy of 82.57%, an F1-score of 82.26%, and

an AUC of 0.8743 (Table 5.3), GraphSAGE effectively captured complex relationships

within the dataset.

GraphSAGE’s superior performance can be attributed to its inductive learning ap-

proach, which enables better generalization to unseen nodes. Given our dataset’s im-

balanced nature, relying solely on accuracy is insufficient. Consequently, we assessed

model performance using F1-score, Precision, Recall, and AUC to ensure balanced

evaluation.
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5.3.3 Comparing Graph Models

We observed a clear trend: increased model complexity resulted in improved perfor-

mance. The GCN model, being simpler in design, recorded the lowest performance,

with an F1 score of 71.97% and an AUC of 0.7404. In contrast, the GAT model, which

leverages an attention mechanism, achieved improved scores—74.09% (F1) and 0.7738

(AUC)—highlighting the benefits of selective node weighting.

GraphSAGE outperformed all other models due to its inductive learning capabilities,

which facilitate better generalization for unseen nodes. Although the Random Forest

model achieved an AUC of 0.7504, its lower F1 score of 70.94% reflects struggles with

precision and recall, likely due to dataset imbalance.

5.3.4 SHAP Analysis Insights

The SHAP plot (Figure 5.4) illustrates the contributions of individual genes in the

GraphSAGE model’s predictions. Notably, genes such as SNRPN, LINC01091, and

DHX36 emerged as highly significant, strongly influencing the model’s decision-making.

Higher values for these features were linked to an increased likelihood of a patient

being classified as older than 64. Further investigation into the biological roles of

these genes may offer deeper insights into the survival disparities observed between

younger and older bladder cancer patients.

Our study highlights the potential of GraphSAGE in effectively identifying key biomark-

ers linked to age in bladder cancer patients. By integrating survival analysis, feature

importance techniques, and advanced graph models, we provided insights that could

inform targeted treatment strategies and improve patient outcomes.
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5.4 Biological Insights

Our study identified SNRPN, LINC01091, DHX36, GFOD2, KIF15, SRRM4,

C8orf55, HSN2, BPTF, and TMEM229B as the top genes influencing survival

outcomes in bladder cancer, with age-specific implications. These genes are involved

in various biological processes such as RNA processing, metabolic regulation, chro-

matin remodeling, and cell cycle progression [69].

The following genes have previously been linked to cancer and may serve as potential

biomarkers or therapeutic targets:

• SNRPN: Altered methylation patterns of SNRPN have been associated with

the development of germ cell tumors, reflecting abnormal cell differentiation

commonly observed in cancer [70] [71].

• LINC01091: This gene promotes gastric cancer progression through its in-

volvement in the miR-128-3p/ELF4/CDX2 pathway, suggesting its potential as

a therapeutic target [72].

• DHX36: As a nucleic acid helicase, DHX36 is linked to cancer progression; in

breast cancer, its expression correlates with patient survival, while its knock-

down in lung cancer models enhances tumor growth and drug resistance by

modulating multiple signaling pathways [73] [74].

• KIF15: Overexpression of KIF15 promotes the G1/S phase transition and tu-

mor progression in breast cancer, correlating with larger tumor size, metastasis,

and poor prognosis. Its knockdown suppresses proliferation and key oncogenic

signaling pathways [75] [76].

• SRRM4: Critical for microexon inclusion during RNA splicing, SRRM4 is

consistently silenced in tumors, leading to enhanced proliferation. In neuroen-

docrine prostate cancer, its expression correlates with aggressive disease and

poorer survival outcomes [77] [78].

• C8orf55: Identified via proteomic analyses, C8orf55 shows higher expression in

colon, stomach, and breast cancers, supporting its role as a potential diagnostic

and prognostic biomarker [79].
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• BPTF: Implicated in regulating cell proliferation and survival, BPTF is overex-

pressed in bladder and lung cancers, where it is associated with poor prognosis

and may represent a novel therapeutic target [80] [81] [82].

• TMEM229B: Upregulated in bladder cancer, TMEM229B is part of a macrophage

M1-related gene signature. Its expression is associated with prognosis and may

help guide immunotherapy and chemotherapy decisions [83].

Further investigation into the biological roles of these genes may offer deeper insights

into the survival disparities observed between younger and older bladder cancer pa-

tients, suggesting potential biomarkers for targeted treatments. These genes could

provide deeper insights into survival differences between younger and older bladder

cancer patients, suggesting potential biomarkers for targeted treatments.

5.5 Technologies and Tools

The following tools and technologies were employed in this study:

• Python: The primary programming language used for data processing, ma-

chine learning, and visualization.

• Pandas: A powerful library for data manipulation and analysis, particularly

for handling tabular data.

• NumPy: A library for numerical operations, enabling efficient array and matrix

computations.

• SciPy: Utilized for statistical tests, including the logrank test for survival

analysis.

• Seaborn: A statistical data visualization library based on Matplotlib, used for

creating informative and attractive plots.

• Matplotlib: A widely used library for generating plots and figures in Python.
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• Scikit-learn: A library for machine learning in Python, providing tools for

feature selection, preprocessing, and model training. Specific functions used

include:

– StandardScaler: For scaling features to have zero mean and unit variance.

– VarianceThreshold: For removing low-variance features.

– SelectPercentile: For univariate feature selection based on statistical

tests.

– StratifiedKFold: For cross-validation with stratified sampling.

– LogisticRegression: Used for L1-penalized feature selection.

– RFECV: For recursive feature elimination with cross-validation.

– RandomForestClassifier: Used for classification.

• Lifelines: A library for survival analysis, including tools like KaplanMeierFitter

and logrank test for survival curve estimation and statistical testing.

• Torch (PyTorch): A deep learning framework used for building and training

Graph Neural Networks (GNNs) with models such as GCN (Graph Convolu-

tional Network), GAT (Graph Attention Network), and GraphSAGE (Graph

Sample and Aggregation).

• PyTorch Geometric: A library built on top of PyTorch for deep learning on

graph-structured data, including the use of GCNConv, GATConv, and SAGEConv

layers for graph convolution operations.

• KNN (k-Nearest Neighbors): A method used for constructing the graph

edges based on feature similarity in the dataset.
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Chapter 6

Closing Remarks and Future

Research

6.1 Conclusion

This work underscores the pivotal role of using data-driven analysis for the stratifi-

cation of bladder cancer patients according to their ages and provides critical prog-

nostication values. By applying Kaplan-Meier survival analysis and log-rank testing,

we concluded that 64 years was the most appropriate threshold. We found a 30.46%

mortality rate for those 64 years and below compared with 51.74% for those older

than 64 years, thus establishing the relevance of age as a prognostic factor.

In addition, we implemented a rigorous feature selection pipeline, reducing the high-

dimensional datasets from tens of thousands of features to a manageable subset.

Techniques such as variance thresholding, ANOVA F-scores, L1 regularization, and

RFECV were used to improve computational efficiency and model interpretability.

Our work also employed graph neural networks (GNNs)—specifically GCNs, GATs,

and GraphSAGE—to capture complex feature interactions. Among these, the Graph-

SAGE model outperformed others in accuracy, F1-score, and AUC, highlighting the

power of graph-based learning strategies.
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To improve model interpretability, we conducted SHAP analysis, which identified key

biomarkers like SNRPN, LINC01091, and DHX36 that influence survival based on

age. These findings provide crucial insights into potential biological mechanisms and

suggest promising directions for future studies.

The current research introduces a new methodology that merges multi-omics anal-

ysis with survival analysis to derive the optimal prognostic age cut-off for bladder

cancer. This approach improves patient stratification and provides a platform for

studying the interrelationship between molecular and clinical factors, enabling per-

sonalized therapy design. Importantly, our model’s ability to integrate multi-omics

data with advanced graph neural network techniques provides a powerful tool for

clinical decision-making. By accurately stratifying bladder cancer patients according

to age and molecular profiles, our approach facilitates early intervention and guides

the selection of targeted therapies, including immunotherapy and chemotherapy. This

precision oncology framework promises to enhance treatment efficacy, reduce adverse

effects, and ultimately improve patient outcomes in clinical practice.

Furthermore, our study’s biological insights talks about the molecular underpinnings

of bladder cancer. Key biomarkers—including SNRPN, LINC01091, DHX36, KIF15,

SRRM4, C8orf55, BPTF, and TMEM229B—have been identified as critical factors

influencing patient survival. These markers are involved in essential processes such

as RNA splicing, chromatin remodeling, and cell cycle regulation, thereby offering

promising targets for future therapeutic interventions. Their integration into our

analysis not only enhances our understanding of the disease’s progression but also

underscores the potential for molecular stratification in personalizing patient care.

In conclusion, this research defines 64 years as a significant prognostic factor for

bladder cancer. Our findings—achieved through advanced feature selection meth-

ods, graph neural networks, and SHAP analysis—provide valuable insights into the

molecular complexities of bladder cancer and offer a strong foundation for developing

personalized therapeutic strategies.
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6.2 Limitations

While this specific research gives us a vast number of important observations about

the different biomarkers present in individuals afflicted with bladder cancer, and how

these biomarkers relate to individuals’ ages, it is both necessary and responsible that

we spend a moment to recognize the limitations present in our research due to being

inherent. The dataset we used for our research comes from a single point, and this

creates serious questions as to whether or not it actually represents or can be extrap-

olated to the larger and more heterogeneous population of bladder cancer sufferers

present in society in general. Additionally, the nature of our research places certain

limitations on what conclusions we can draw regarding causal relationships between

the biomarkers we have discovered and survival rates in such patients, specifically

in light of their respective ages. This fact serves to emphasize, in a very vivid way,

the serious need for further research to be undertaken in order to fully corroborate

the results we have outlined, and to advance our knowledge in this important and

influential field of research. Building upon what has already been established in the

framework of this specific study, it is apparent that there is a vast and fertile ground

for additional research to be conducted. Such research should specifically target the

exploration and elucidation of the intricate and multifaceted relationship between

age-related biomarkers that are implicated in the field with regard to patients af-

flicted with bladder cancer. To better illustrate, the particular genes that have been

discovered throughout the research process can provide a foundation for additional

investigations designed to create highly sophisticated and highly developed predic-

tive models. Such models could contribute greatly to the early detection of bladder

cancer, thereby potentially enhancing patient outcomes.

Through carefully studying how the discovered genes correlate to the different states of

the disease, and to what outcomes are present with those states, researchers would be

able to contribute greatly to a greater understanding of how bladder cancer progresses

over time. Such information acquired can then be used to better develop treatments

that are specifically designed to address the individual needs and demands of different

ages afflicted with this specific disease. Additionally, by widening the dataset to

include a greater number of patients, specifically one that is more heterogeneous and

diverse, researchers would be well-suited to provide greater insight into the complex
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interplay between factors like patient age, genetic factors, and survival rates with

bladder cancer.

6.3 Future Directions

The results derived in this study suggest many directions for future studies that could

increase the understanding of bladder cancer and lead to better outcomes in patients.

Firstly, increasing the dataset to include a wide range of patient demographics across

various geographical regions and healthcare settings would increase the study’s overall

generalizability. Having a diverse dataset would allow for the determination of the

global applicability of the 64-year age cutoff, and if other parameters like ethnicity,

genetic predisposition, or environmental factors could influence its predictive value.

Additionally, longitudinal studies that follow up on survival and treatment outcomes

of the patients after intervals of varying lengths of time may yield better data that

can be used in model training, allowing for model adaptation as new patient data

arrive.

In the field of modeling, the application of state-of-the-art graph-based methods,

such as Temporal Graph Neural Networks (TGNNs) and heterogeneous graph mod-

els, holds promising potential in better depicting cancer progression-related dynamic

processes. These methods are uniquely poised to tackle both the temporal aspects

of cancer initiation and the complex interactions between different omics layers (like

genetic, epigenetic, and transcriptomics data) and individual-specific traits over time.

Further studies of the biological roles of the identified biomarkers—especially SNRPN,

LINC01091, and DHX36, among others—could allow for the identification of new

therapeutic targets. Validation of the biomarkers by in vitro and in vivo studies

would provide better insight into their functional significance in bladder cancer disease

progression, which may eventually lead to the identification of specific treatment

options.

Additionally, the addition of ancillary data types, e.g., imaging data (radiomics and

CT/MRI scans), clinical intervention data, and patient-reported outcomes, can sub-
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stantially benefit predictive modeling. Utilizing a multi-modal approach is expected

to better address the heterogeneity of bladder cancer and possibly lead to better

prognostication and treatment planning models.

In summary, as machine learning continues to evolve, there is a need to incorporate

explainability and interpretability into predictive modeling systems. While models

like GraphSAGE have shown promising results, more efforts to make such models

more interpretable for clinicians may help their adoption in real clinical settings. This

could involve developing user-friendly interfaces that allow clinicians to visualize the

contribution of each feature to the model’s predictions, thus empowering them to

make better-informed decisions.

In conclusion, this study provides significant insight into how survival in bladder

cancer relates to age. Future directions point to potential developments towards

improving predictive models, discovering new biomarkers, and eventually designing

individualized therapies for bladder cancer.
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