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Abstract
Medical image segmentation is pivotal in disease diagnosis and treatment planning across various imaging modalities, 
including MRI, CT, ultrasound, X-ray, dermoscopy, and histopathology. This systematic literature review, conducted using 
the PRISMA framework, provides a comprehensive analysis of Deep Learning approaches applied to medical image seg-
mentation, with a focus on dermato-pathology for skin disease diagnosis and classification. Transformer-based models 
have shown notable improvements over traditional CNN architectures, achieving up to 79.95% accuracy in multitask 
cancer detection tasks, surpassing CNN-based models that achieved 74.05%. In liver lesion segmentation using CT 
scans, attention-enhanced U-Net models achieved a 93.4% Dice Similarity Coefficient (DSC) for liver tissue and 77.8% 
for tumor segmentation. In dermoscopy, self-supervised transformer-based models like G2LL exceeded 80% accuracy, 
while U-Net-based models for skin lesion segmentation achieved up to 93.32% accuracy. Histopathology image analy-
sis further demonstrated that models incorporating attention mechanisms, such as the PistoSeg framework, improved 
segmentation precision by up to 7.15% compared to conventional methods. Across various modalities, Deep Learning 
models consistently outperform traditional methods, with improvements ranging from 5 to 15% in accuracy and seg-
mentation metrics. Despite challenges such as computational demands and the need for large annotated datasets, Deep 
Learning continues to revolutionize medical image segmentation, offering higher diagnostic precision and outlining 
future research directions to bridge existing gaps.

Keywords  Interpretable models · Medical imaging · Semantic segmentation · Deep learning · Skin histology · Skin 
lesions

1  Introduction

In computer vision and image processing, segmentation refers to the process of dividing an image into distinct segments 
or regions. The goal of segmentation is to isolate objects, making it easier to detect and recognize them individually. This 
process aims to create a more meaningful and easier-to-analyze representation of the image [1]. There are various kinds 
of image segmentation, but recent research demonstrates that semantic segmentation has been particularly successful 
in medical imaging [2]. Image segmentation involves dividing the image into distinct regions or parts, each representing 
different tissues and organs. The information represented by the distinct parts must be interpreted by the prediction 
models. Such kind of models are useful in time-critical decisions. Deep Learning (DL) is the subset of Machine learning 
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(ML) and uses an artificial neural network with a deep neural network that plays an important role in modeling the 
complex pattern and the representation of data [3]. The DL algorithms automatically learn and extract the features that 
differentiate between the various classes of objects in an image. The semantic segmentation has significantly addressed 
in computer vision along with Deep Learning models that are employed in computational pathology which is influenced 
by factors such as quality of data, type of output, and the learning methodologies [4].

Semantic segmentation plays a crucial role in medical imaging by classifying each pixel based on the region of inter-
est in the image, allowing for the identification of disease diagnosis at a semantic level [5]. It also provides solutions 
for medical imaging, autonomous driving, and satellite imagery [6]. Medical images play an important role in clinical 
monitoring and disease diagnosis. The segmentation of structured biopsy images is particularly important for automated 
diagnostic systems. Among many medical conditions, skin diseases encompass a wide range of diseases that have 
become increasingly common. They can significantly impact a patient’s overall health, mental well-being, and quality 
of life [7]. Some skin diseases, such as cancer, have the potential to become life-threatening, making early detection 
crucial for timely and effective treatment. The non-melanoma skin cancers, including squamous cell carcinoma (SCC), 
basal cell carcinoma (BCC), and intraepidermal carcinoma (IEC), account for about 90% of the cases [8]. The dermatolo-
gists emphasize that accurate semantic segmentation of skin histology images is essential for diagnosing various skin 
conditions, including cancer, as manual methods are time-consuming [9]. The main objective of the proposed work is to 
investigate the importance of medical image analysis in semantic segmentation. This paper highlights the recent work 
by considering the following questions.

•	 What’s the application of medical images in semantic segmentation?
•	 How to use Deep Learning in medical image semantic segmentation?

This paper is organized into five sections. The research methodology is explained in Sect. 2, whereas the related work 
has been summarized in Sect. 3, the explanation of medical image modalities is discussed in Sect. 4, the various evalua-
tion metrics have been discussed in Sect. 5, while the research gap is presented in Sect. 6, and the conclusion in Sect. 7.

2 � Related work

In this section, we have discussed the applicability of deep neural network architecture with reference to medical image 
segmentation.

2.1 � Image segmentation

The image segmentation is a technique used to analyze images by dividing a digital image into distinct segments and 
organizing the data meaningfully within each segment. The hierarchy of image segmentation and its sub-types are 
shown in Fig. 1.

The types of image segmentation are designed to identify specific edges and shapes of various objects and regions 
within the image and label each pixel individually. The four main types of image segmentation are:

•	 Semantic segmentation
•	 Object detection
•	 Instance segmentation
•	 Panoptic segmentation

In  Semantic Segmentation, the pixel labels are assigned to correspond to their respective regions. For instance, all pixels 
associated with a car would be labeled as the class named “automobile”. The goal is to identify and classify each pixel 
based on its specific object class, making semantic segmentation a crucial component in Deep Learning, artificial intel-
ligence, and machine learning [4, 10]. Despite its difficulties, semantic segmentation has demonstrated strong results 
across various fields, including agriculture, medicine, transportation [11]. In object detection, the semantic segmentation 
is essential as it operates at a pixel level, understanding the fine details of an image. Most techniques require labeling 
every pixel in an image with an object class, and predictions encompass both the class and the boundaries of objects 
[12]. The final output reveals the spatial relationships among objects within the image, such as sky, land, and forest [13]. 
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Instance Segmentation is akin to semantic segmentation but specifically distinguishes between different objects of the 
same class [14]. Its primary focus is on identifying and separating entities and objects within semantic categories, such 
as roads, animals, people, and cars. In computer vision, object instance segmentation is a recent development [15]. It 
can be further categorized into two types i.e.; detection-level segmentation and image-level segmentation. Panoptic 
Segmentation is a segmentation approach that combines semantic and instance segmentation, labeling each pixel and 
defining across different instances of the same class. It is particularly beneficial in safety-critical systems since it allows 
complete object identification and detection in a single frame, removing the risks related to false recognition [16]. 
Applications of panoptic segmentation include autonomous driving, where it’s essential to distinguish between road 
and sidewalk, as well as between multiple vehicles and pedestrians, and medical imaging, where precise segmentation 
of organs and tissues helps improve diagnosis.

2.2 � Semantic segmentation using deep learning

Traditional machine learning and image processing methods offer solutions to semantic segmentation problems. How-
ever, with the extensive applications and advancements in Deep Learning, its benefits for image semantic segmentation 
have attracted significant attention [17]. Recent advancements in Deep Learning have significantly improved seman-
tic segmentation through the use of neural networks [4]. Deep neural networks have proven particularly effective at 
semantic segmentation, which involves labeling each region or pixel in an image as either an object or a non-object 
[18]. Semantic segmentation is a widely used approach known for its capability to analyze complex images at the pixel 
level. It has various applications, including autonomous driving [19], object detection [12], and medical imaging [20]. 
However, this study focuses on medical images, as semantic segmentation plays a vital part in tasks including tumor 
identification [21], organ segmentation [22], and other abnormality detection to support accurate diagnosis and medi-
cal care. In medical image analysis, semantic segmentation is often referred to as pixel-level classification [23]. The use 
of artificial intelligence in medical imaging is rapidly expanding and playing an increasingly important role in this area. 
It has the potential to revolutionize healthcare services [24]. Also, it’s helping doctors to address complex problems and 
significantly improve diagnostic accuracy and efficiency in medical imaging [25]. Medical image segmentation is used 
to differentiate between various structures or regions of interest in medical images [26]. It is vital for clinical diagnosis 
and analysis, as it assists the doctors in finding the correct diagnosis [27]. It facilitates earlier identification of medical 
issues and more accurate diagnostics [28].

Our study is focused on the four important medical image modalities represented in Fig. 2. These modalities are 
radiology, ultrasound (UV), dermoscopy, and histopathology. The explanation of each modality is presented in Sect. 4.

Fig. 1   Image segmentation 
and its sub-types
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2.3 � Deep learning in medical image segmentation

Deep Learning has shown remarkable performance in medical image segmentation [29]. It leads to improved healthcare 
efficiency and lower costs. A significant area of Deep Learning study, encouraged by the increasing amount of big data, 
higher processing speeds, and rising Deep Learning algorithms, assists doctors in the detection of skin cancers [30] by 
analyzing the medical x-ray images. As mentioned earlier, medical image segmentation aims to extract regions of inter-
est (ROIs) from the image data [31] while there are several approaches available for image segmentation. Among them, 
Convolutional Neural Networks (CNNs) are commonly used for medical image segmentation, particularly with the U-Net 
architecture [32]. The CNNs strategies have significantly impacted various fields of medical research such as radiology 
[33], pathology [34], dermatology [35] that improve the accuracy of diagnosis and proved to be the significant resource in 
defining treatment plan. Several kinds of deep neural network structures have been designed to assist in medical image 
segmentation, each adapted to specific imaging modalities [36]. The Deep Learning techniques offer advantages over 
traditional machine learning models due to the structure of the neural networks [37]. Figure 3 illustrates the process of 
Deep Learning application in medical images.

The transformer network is another Deep Learning architecture that employs network architecture employs a self-
attention mechanism that excels with large datasets [38], delivering improved accuracy compared to traditional meth-
ods. The automated systems, especially those utilizing AI and Deep Learning, can diagnose skin diseases much more 
accurately than traditional, manual methods. [39]. The emphasis of this paper is on medical image segmentation spe-
cifically relevant to skin diseases [40]. The skin diseases, such as lesions, scales, and various other symptoms, can have a 
significant impact on patient’s overall health. The most common skin diseases include skin cancers, such as malignant 
melanoma (melanoma skin tumors) [41] and non-melanoma skin cancers [42], which affect approximately 90% of those 
diagnosed with this disease. Other skin conditions include acne, genetic disorders like sickle-cell anemia, bacterial infec-
tions, psoriasis, fungal infections, and leprosy. These skin diseases are typically diagnosed through biopsy procedures 
and examinations by pathologists [43]. There are various techniques available for diagnosing these skin conditions [44].

Medical image segmentation also has a key role in histology images [45]. The Diffusion Convolutional Neural Networks 
(DCNN) model is specifically designed for the histological images segmentations like U-Net [46], U-Net++ [47] and 
reported higher accuracy on the complex dataset [48]. It is evident by assessing the research work presented in the 

Fig. 2   Medical image types
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last 5–7 years that various Deep Learning methods have been applied to medical image segmentation using different 
datasets as shown in Table 1.

3 � Research methodology

We have reviewed the presented work by the PRISMA guidance. This framework optimizes the efficacy and predict-
ability of the proposed work. The PRISMA technique is a common approach for assuring completion and transparency 
in research studies. It applies a uniform flowchart for monitoring the study of identification, screening, eligibility, and 
inclusion, ensuring that the selection process is transparent and neutral. PRISMA is further divided into four categories. 
As shown in Fig. 4, the strategy started with the identification phase, whereby records were collected from numerous 
databases, including IEEE, Google Scholar, Elsevier, Springer, and Frontier. We have selected articles specifically published 
from the year 2015 to 2024 that focused on the use of medical image segmentation. But we have emphasized on the 
work presented in last 5 years. After identifying related data, the next step is to select the relevant papers and this is 
called a screening process. It consist of removing duplication by conducting an initial evaluation according to the title 
and abstract. By doing so, the papers that were not aligned with the study objectives were not considered. During the 
eligibility phase, the full-text papers were evaluated in detail, with a focus on their applicability towards medical image-
based segmentation, specifically for skin disease diagnosis. In the final inclusion process, the data chosen were added to 
the analysis, with a focus on two primary groups such as different skin diseases reported in medical images and multiple 
kinds of whole-slide skin images. The use of the PRISMA technique enabled a robust and consistent selection of papers 
for inclusion in the presented review, which improved the validity and reliability of the findings.

When evaluating the existing work, the hypothesis is developed by addressing the following research questions. 

1.	 Which methods and techniques are available for medical image segmentation?
2.	 Why medical image segmentation is important nowadays?
3.	 In terms of accuracy and efficiency, how do transformer-based architectures for medical image segmentation com-

pare with traditional CNN-based methods?
4.	 When compared to the traditional manual method, how much automated systems improve the accuracy of skin 

disease diagnosis?

These research questions cover key characteristics of medical image segmentation that have already presented in the 
literature [2, 4, 6–9, 23, 49, 50]. This study systematically reviews 79 number of papers published between 2015 and 2024, 
focusing on deep learning advancements in medical image segmentation.

3.1 � Segmentation methods for medical images

To provide a clear understanding of the key segmentation methods used, this section includes pseudo-code outlining 
the workflows of both the CNN-based and Transformer-based architectures.

Fig. 3   Depiction of deep learning applications in medical images
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3.1.1 � U‑Net architecture

U-Net is a widely used deep learning architecture for medical image analysis, particularly for tasks like segmentation 
in skin histology images. Its encoder-decoder structure, combined with skip connections, makes it highly effective 
in distinguishing between different tissue structures. The encoder captures high-level semantic features through 
successive convolutional and pooling layers, while the decoder progressively restores spatial details using upsam-
pling layers [28]. The skip connections help retain fine-grained information by directly linking early encoder layers to 
corresponding decoder layers, ensuring precise boundary detection. This is crucial in skin histology, where accurate 

Fig. 4   PRISMA schematic 
representation
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segmentation of cellular structures and tissue regions is necessary for identifying abnormalities such as cancerous 
lesions.

Another key advantage of U-Net is its ability to perform well with limited annotated medical data. Unlike traditional 
deep learning models that require extensive labeled datasets, U-Net is highly data-efficient and benefits from techniques 
like data augmentation and transfer learning. Additionally, its fully convolutional nature allows it to handle variable-sized 
input images, making it adaptable to different histology datasets. The combination of robust feature extraction and 
fine-detail preservation ensures that U-Net provides reliable and interpretable segmentation results, aiding dermato-
pathologists in diagnosing and analyzing skin diseases with high accuracy [28, 47]. Algorithm 1 summarized the steps 
considered by U-Net architecture for medical image segmentation.

Algorithm 1   U-Net for Medical Image Segmentation

3.1.2 � Transformer‑based segmentation (Swin‑UNet)

Transformer-based segmentation models like Swin-UNet have shown significant promise in medical image analysis, par-
ticularly for skin histology images. Unlike traditional CNN-based models like U-Net, Swin-UNet utilizes the self-attention 
mechanism of Transformers, allowing it to capture long-range dependencies within an image [34, 38]. This is especially 
beneficial for skin histology, where tissue structures and cellular formations have complex spatial relationships. The 
hierarchical design of the Swin Transformer preserves both global and local contexts, enabling more precise segmenta-
tion of intricate histological patterns. Additionally, the patch-based processing in Swin-UNet improves computational 
efficiency while maintaining high-resolution feature representation, which is critical for identifying fine-grained details 
in histopathological images.

3.1.3 � Mathematical justification of transformer superiority

While CNN-based architectures have been widely used in medical image segmentation, their reliance on fixed-size con-
volutional kernels limits their ability to capture long-range dependencies efficiently. CNNs learn spatial features through 
convolutional operations that focus on local neighborhoods. Each layer captures features within a specific receptive field, 
and deeper layers aggregate information from a larger area. However, this hierarchical feature extraction process results 
in a loss of fine-grained details in deeper layers and restricts the model’s ability to recognize distant dependencies. The 
computational complexity of a CNN layer for an image of size H ×W  with a kernel of size k × k is given by:

(1)O(HWk2C2)
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where C represents the number of channels. The dependency on small receptive fields necessitates deeper networks to 
capture long-range dependencies, increasing the number of parameters and computational cost.

In contrast, Transformers process images using the self-attention mechanism, which allows every pixel to interact with all 
others in a given region. The self-attention operation is mathematically defined as:

where Q, K , V  are the query, key, and value matrices, respectively, and dk is the dimensionality of the key. Unlike CNNs, 
which aggregate information through stacked convolutional layers, self-attention allows each pixel to directly relate to 
any other pixel in the image. However, the computational complexity of full self-attention in a naïve Transformer scales as:

which becomes prohibitively expensive for high-resolution medical images.
To mitigate this, Swin-UNet introduces shifted window attention, an efficient mechanism that partitions an image into 

non-overlapping windows, applying self-attention locally within each window. This method reduces computational over-
head while still allowing long-range interactions by shifting window positions across layers. The complexity of Swin-UNet’s 
windowed self-attention is given by:

where M is the window size, significantly lowering computation compared to full self-attention. By preserving hierarchical 
structures and long-range dependencies while reducing computational burden, Swin-UNet provides an optimal balance 
between efficiency and contextual awareness.

Overall, Swin-UNet’s ability to model long-range dependencies, integrate multi-scale contextual information, and dynami-
cally adapt to image variations makes it highly suitable for histopathological image segmentation. It captures both local 
tissue structures and broader histological patterns, making it more robust to staining variations and imaging inconsistencies 
compared to CNN-based models.

3.1.4 � Algorithm implementation

Algorithm 2 presents the steps for implementing a transformer-based segmentation model for medical image analysis.

Algorithm 2   Swin-UNet for Medical Image Segmentation

(2)Attention(Q, K , V ) = softmax

�
QKT

√
dk

�
V

(3)O(HWC2) +O(H2W2C)

(4)O(HWC2) +O(M2C)
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4 � Existing datasets in medical imaging modalities

There are various methods discussed and used in different structures based on a given medical condition, causing 
the design of customized algorithms. The output of these algorithms utilizes different kinds of dataset. A summary 
of the existing work discussing the algorithms for different image modalities is presented in Table 1. The medical 
image modalities we considered include, radiology, ultrasound, dermatology, and histology. Figure 5 visualizes the 
internal structures of the focused body parts that are facilitating disease monitoring.

4.1 � Radiology images

The radiology images are used to diagnose the disease and assist in patient treatment by capturing the affected part 
of the body, helping to identify illnesses [70], structural damage, or abnormalities. There are several types of images 
such as X-ray [66], magnetic resonance imaging (MRI) [69], computer tomography (CT) [54], and mammography [71]. 
These images can assist in diagnosing cancer effectively. The cancer cells can develop in any part of the body, but 
affect the lungs, brain, liver, stomach, breasts, colon, prostate, rectum, and skin. Detecting cancer at an early stage 
increases the chances of patient survival [72]. The clinicians have several modalities available for diagnosis, including 
physical examinations, biopsies, imaging techniques, and lab tests.

Fig. 5   Modality of medical 
types
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Table 2 summarizes the studies presented in radiology. Subramanian et al. [33] utilized imaging techniques such 
as CT scans and MRI for detecting cancer cells. They performed experiments using pre-trained CNN variants like 
MobileNetV3, VGGNet (Visual Geometry Group), and DenseNet (Densely Connected Networks) on ImageNet dataset 
which is divided into two tasks. In the first task, fine-tuning is applied, while the second task manipulates the model’s 
multitasking capability. As a result, the model maintains the knowledge gained from Task 1 and applies its learn-
ing to Task 2 to generate better predictions. The approach incorporates the incremental learning concept, which 
allows the model to retain previous knowledge while acquiring new information. They best accuracy was yielded 
on MobileNetV3. Seif et al. [54] also proposed a Deep Learning model that employs an additional attention-based 
UNet mechanism to enhance performance on CT images. Gite et al. [66] experimented with various Deep Learning 
architectures to evaluate chest X-ray images and reported higher accuracy to determine good segmentation results, 
the details are summarized in Table 2. Sun et al. [67] introduced semi-supervised Deep Learning methods. The perfor-
mance was measured by multiscale graph cut loss function and achieving highly efficient results on neuro-imaging. 
Pang et al. [68] proposed a two-stage multi-class architecture for MRI images to improve the results in spine parsing 
as explained in their paper. Sun et al. [69] proposed the Feature Space Message Passing Network (FSMPN) framework 
for capturing long-range dependencies. To compare it with the Deep Learning traditional models, FSMPN achieved 
the outperforming results on Brain MRI images.

4.2 � Ultrasound images

Semantic segmentation of medical images is crucial for diagnosing and treating diseases. The primary goal of ultra-
sound images is to identify abnormalities that may have a significant impact on fetal growth [17]. Despite advances 
in ultrasound technology, specifically recognizing anomalies in prenatal imaging remains challenging, requiring 
significant expertise from physicians [73]. Relevant studies utilizing Deep Learning models for disease diagnosis 
using ultrasound are summarized in Table 3. Geng et al. [51] proposed a novel method, a structured multi-scale 
residual fusion network for better semantic segmentation on UV images. In this paper, it is presented that Symmetric 
Multi-Task Network (SMNet) yielded significant performance on a small dataset as compared to the state-of-the-art 
techniques. Xu et al. [52] proposed a CNN Deep Learning-based semantic segmentation approach for 3D breast UV 
images into the four main tissues, indicating that automated systems can significantly reduce the time required for 
analysis and provide efficient results. Similarly, Vakanski et al. [53] also focused on breast UV images. To improve the 
precision and reliability of breast tumor segmentation in UV images, they presented to incorporate visual saliency 
into a DL-based model (U-Net), yielded improved performance on segmentation method.

4.3 � Dermoscopy images

Dermoscopy is another application of medical images, that is used for the examination of skin lesions [74]. Der-
moscopy is an important tool in dermatology that diagnoses and enhances the accuracy of skin diseases [75] and 
also leads to enhanced patient care and early detection of skin cancer. Melanoma skin cancer [41] is one of the 
most dangerous skin diseases, requiring precise segmentation of skin lesions in dermoscopy images for accurate 
diagnosis and treatment [76]. Recently, automated transformer-based methods for skin lesion segmentation have 
been employed, achieving higher accuracy in segmentation tasks [77]. The relevant studies are illustrated in Table 4. 
Chen et al. [59] proposed the global-to-local (G2LL) self-supervised learning approach for the transformer-based 
segmentation on skin lesions and got outstanding results on a publicly available dataset of dermoscopy. Also, the 
proposed approach gives outstanding results as compared to the state-of-the-art self-supervised approach. Kaur 
et al. [60] proposed the fully connected neural network (FCNN) Deep Learning model for the lesion segmentation 
dermoscopic skin cancer images. The proposed methods provide higher accuracy in segmentation and are used in 
clinical settings to better understand the nature of cancerous lesions. Fedorenko et al. [35] proposed the U-Net for 
the semantic segmentation of the dermoscopic images of pigment skin lesions and achieved high accuracy. Also, 
it improves the automated classification by efficiently handling the variation in skin color. Iranpoor et al. [61] also 
proposed the U-Net model on dermoscopy skin images, improving the performance of the pre-trained encoder and 
modifications of the pooling layer. This proposed method achieves high accuracy in training and testing data and 
also enhances the efficiency of the existing CNN model.
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4.4 � Histopathology images

Another primary application of medical images is histopathology, particularly within the field of pathology. This 
involves examining tissue samples under a microscope [78] to understand and diagnose diseases. It provides essential 
information for diagnosing various conditions, including cancer [79] and infectious diseases. There are few notable 
works presented in recent years [9, 50, 56, 58, 62, 63]. In histology images, researchers study the microscopic structure 
of tissue samples, examining various organs and tissue types, such as the liver, lungs, and kidneys. Some research-
ers have applied automated deep-learning models to histology images. There are a few notable works presented in 
recent years as summarized in Table 5. The visualization of skin images is possible in high-resolution images when 
applying Deep Learning approaches. The network can learn, interpret, and represent meaningful insights that help 
to better understand the model’s performance.

Li et al. [55] proposed an automated deep-learning method for detecting cell nuclei, achieving efficient results on 
tissue slices. The pathological tissue slices are crucial for determining the extent of disease progression and informing 
treatment decisions when healthcare providers diagnose complex conditions. Since manual processing of pathologi-
cal areas is time-consuming and subjective, researchers need to utilize computer-aided diagnosis as an intelligent 
support tool. Han et al. [56] proposed a model that employs whole-slide histology images of breast cancer and lung 
adenocarcinoma, utilizing patch-level classification and a weakly semi-supervised semantic segmentation approach 
for these tissue slices. Similarly, Gu et al. [57] is focused on histopathology images to identify morphological features 
of glands, such as their size and contour by using a weakly supervised learning technique. They proposed histopathol-
ogy segmentation with transformer (HistoSegRest) approach and achieved the correct segmentation on the gland 
region that uses the weak supervision with image label histopathology data. For long-range dependencies, it uses 
transfer-based self-attention and the GlaS dataset (Gland Segmentation in Colon Histology Images). They reported 
improved segmentation accuracy. Fang et al. [58] proposed to use the weakly supervised semantic segmentation on 
the histopathology images. They used the PistoSeg model to segment the histology images. Yildiz et al. [62] proposed 
to use the Deep Learning-based segmentation model in colon histology images using the U-Net model for medical 
image segmentation. They perform multi-class semantic segmentation on the provided dataset and gets enhanced 
accuracy using the semantic segmentation approach. Li et al. [64] aim is to develop a fast and accurate model that 
detects and segments the regions of breast cancer in WSI (whole-slide images) using the Camelyon16 dataset. They 
performed preprocessing by using MobileNetV2 and ResNet101 and for learning, they predicted the correct seg-
mentation by the U-Net model. Wazir et al. [48] proposed a neural network architecture for multiscale objects that 
improves segmentation accuracy on the histology images using an encoder and decoder architecture with quick 
attention and multi-loss function. Additionally, Rasool et al. [65] proposed the semantic segmentation on the oral 
cell carcinoma tissues using the 18 WSI to correctly identify and segment the micro-vessels and nerves in histology 
images. They reported encouraging results on the efficiency of cancer prognosis and diagnosis. Turhan et al. [34] also 
employed the Deep Learning-based semantic segmentation approach on histology images. Some of these histology 
images specifically focus on skin histology, where skin tissue samples are analyzed to study disorders and diagnose 
conditions and other dermatological diseases. Xu et al. [63] proposed and analyzed the unsupervised method, of tis-
sue clustering based on morphological traits. These traits are used for the segmentation of histological images such 
as tumor or non-tumor regions. Their proposed technique has been assessed using datasets related to brain and skin 
histology, demonstrating performance comparable to U-Net models. Thomas et al. [49] applied an interpretable Deep 
Learning U-Net model for skin histology images of 12 dermatological classes using the Queensland University dataset 
and reported high results. Similarly, Asaf et al. [50] proposed deep semantic segmentation methods to enhance the 
accuracy of segmentation, particularly in detection of the skin cancer. They used the transformer-based semantic 
segmentation and compared the results with the traditional model.

5 � Evaluation measures

Evaluation metrics are statistical tools used to assess the performance of Deep Learning models and data analysis 
algorithms. They play a crucial role in measuring the accuracy, precision, and overall effectiveness of algorithms, par-
ticularly in medical image segmentation tasks. A confusion matrix is commonly employed to evaluate a classification 
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model’s performance. It outlines the relationships between true positives (TP), false positives (FP), true negatives 
(TN), and false negatives (FN). True positives represent correctly identified outcomes, while false positives refer to 
instances incorrectly labeled as positive. Various evaluation metrics have been utilized in recent medical image 
segmentation studies. Each provides unique insights into model performance. The details of these metrics are sum-
marized in Table 6.

5.1 � Dice similarity coefficient

The Dice Similarity Coefficient (DSC) is a widely used metric in image segmentation, particularly in medical imaging, 
to quantify the overlap between a predicted segmentation and the ground truth. It is defined as the ratio of twice the 
intersection of the two sets to the sum of their sizes. Mathematically, it is expressed as in Eq. (1).

where X represents the predicted region and Y represents the actual region. The DSC ranges from 0 to 1, where 1 indicates 
a perfect match and 0 means no overlap. This metric is particularly useful for imbalanced datasets, as it penalizes both 
false positives and false negatives while emphasizing true positives. Compared to the Jaccard Index (IoU), the Dice score 
gives more weight to overlapping regions, making it a preferred choice for evaluating segmentation models in medical 
imaging applications such as tumor detection and organ segmentation.

5.2 � Mean intersection over union

The Mean Intersection over Union (mIoU) is another metric in image segmentation to evaluate the performance of a 
model by measuring the overlap between predicted and ground truth segmentations. It is computed as the average 
Intersection over Union (IoU) across all classes in a multi-class segmentation task. Mathematically, IoU is defined as the 
ratio of the intersection of the predicted and actual regions to their union as expressed in Eq. (2):

where X represents the predicted segmentation and Y is the ground truth. The mean IoU (mIoU) is then calculated by 
averaging the IoU values across all classes. The metric ranges from 0 to 1, where 1 indicates perfect segmentation and 
0 means no overlap. Unlike simpler accuracy metrics, mIoU accounts for false positives and false negatives, making it a 
robust evaluation measure for semantic segmentation tasks in applications like medical imaging, autonomous driving, 
and satellite image analysis.

5.3 � Precision and recall

Precision and recall are two key metrics used in image segmentation to evaluate a model’s performance in correctly 
identifying segmented regions. Precision measures the accuracy of the positive predictions by calculating the propor-
tion of correctly segmented pixels (true positives) out of all pixels predicted as positive (true positives + false positives). 
It is given by:

where TP (True Positives) are correctly segmented pixels, and FP (False Positives) are incorrectly segmented pixels. High 
precision means fewer false positives.

On the other hand, recall (also called sensitivity) measures how well the model captures all the actual segmented 
regions by computing the proportion of correctly segmented pixels out of all ground truth positives (true positives + 
false negatives). It is given by:

(5)DSC =
2|X ∩ Y |
|X | + |Y |

(6)mIoU =
|X ∩ Y |
|X ∪ Y |

(7)Precision =
TP

TP + FP

(8)Recall =
TP

TP + FN
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where FN (False Negatives) are pixels that should have been segmented but were missed. High recall means fewer false 
negatives.

In image segmentation, there is often a trade-off between precision and recall. A high precision but low recall means 
the model is conservative, predicting only highly certain segmentations, while a high recall but low precision means 
the model is over-segmenting, capturing more than necessary. To balance both, F1-score is often used as a harmonic 
mean of precision and recall.

As reported in other papers [50, 58, 59, 62, 66] Mean Intersection over Union (MIoU) is a widely used metric that meas-
ures the average between the actual and predicted segments. Furthermore, some work used Jaccard Index measure to 
measure the similarity between the predicted and actual segmentation.

5.4 � Computational trade‑offs between CNNs and transformers

While transformers such as Swin-UNet offer superior segmentation accuracy by leveraging self-attention mechanisms, 
they come with increased computational demands. Compared to CNN-based architectures like U-Net, transformer-based 
models require significantly higher memory due to the quadratic complexity of self-attention operations. This can lead 
to increased inference time and greater GPU memory consumption, particularly when handling high-resolution medi-
cal images.

Conversely, CNN-based architectures exhibit lower computational costs due to their localized convolutional operations, 
making them more suitable for real-time applications and resource-constrained environments. However, their limited 
receptive field can hinder their ability to capture long-range dependencies, which are crucial for segmenting complex 
histopathological structures. Transformers mitigate this limitation by dynamically modeling global and local context, 
albeit at the expense of higher computational overhead.

Despite these trade-offs, recent advancements such as hierarchical transformers and efficient self-attention mecha-
nisms have reduced computational complexity while retaining the benefits of long-range feature extraction. As a result, 
the choice between CNNs and transformers depends on the specific use case, balancing accuracy, computational effi-
ciency, and model interpretability in medical image analysis.

6 � Explainable AI (XAI) in medical image segmentation

While deep learning models have demonstrated remarkable performance in medical image segmentation, their black-
box nature poses challenges for clinical adoption. Explainable AI (XAI) techniques aim to address this issue by providing 
insights into model decisions, enabling medical professionals to trust and interpret predictions effectively.

6.1 � Saliency maps and Grad‑CAM for model interpretability

Saliency maps and Gradient-weighted Class Activation Mapping (Grad-CAM) are widely used techniques to visualize the 
regions that influence model predictions. Saliency maps highlight important areas in an image by computing the gradi-
ent of the output with respect to the input pixels. This helps identify which regions contribute most to the segmentation 
outcome. Grad-CAM, on the other hand, generates heatmaps over feature maps, offering a class-specific localization of 
relevant structures. These methods allow pathologists to validate whether the model is focusing on clinically significant 
regions, such as tumor boundaries or inflamed tissue.

6.2 � Enhancing clinical decision‑making with XAI

The integration of XAI in medical image segmentation enhances the interpretability of automated systems, reducing 
ambiguity in decision-making. By providing visual explanations, models can assist clinicians in verifying segmentation 
results and understanding misclassifications. This is particularly crucial in high-stakes scenarios such as skin cancer 
diagnosis, where incorrect segmentation could lead to misdiagnosis.
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6.3 � Future directions for XAI in medical segmentation

Future advancements in XAI could focus on incorporating model-agnostic interpretability frameworks to improve 
trust and transparency in deep learning-based segmentation. Techniques such as SHapley Additive exPlanations 
(SHAP) and Local Interpretable Model-agnostic Explanations (LIME) could be explored to quantify the contribution 
of individual features in segmentation outcomes. Additionally, integrating attention-based visualization methods 
within transformer architectures could further enhance explainability by highlighting long-range dependencies in 
histopathological images.

By leveraging XAI, deep learning models for medical image segmentation can transition from black-box predictors 
to clinically relevant tools that provide both accurate and interpretable results, fostering greater acceptance among 
medical professionals.

7 � Research gap

In this review paper, numerous works have been analyzed explaining the amount of work performed in medical image 
segmentation. The Deep Learning approaches were discussed with their potential role in medical disease diagnosis. 
There are numerous research gaps identified and discussed. 

1.	 Most of the recent research is focused on specific imaging modalities like CT scans, MRI, and X-rays, with limited 
exploration of multi-modal techniques. These multi-model techniques could potentially enhance diagnostic preci-
sion by incorporating information from multiple sources.

2.	 Another potential constraint is the availability of the dataset which hinders the researcher’s focus on certain cancer 
types while neglecting other critical diseases such as Chronic obstructive pulmonary disease (COPD) and pneumonia.

3.	 There is also an abundance of research focused on explainable AI (XAI) approaches, which are vital to establishing 
confidence as well as transparency in healthcare settings. But there is a need to develop XAI model that can assist in 
medical image diagnosis.

4.	 Many Deep Learning models are validated utilizing controlled datasets instead of real-world clinical validation, cre-
ating issues regarding their generalizability and utility across different patient categories. It is important to address 
these flaws for proposing reliable Deep Learning-based medical diagnostics that are trustworthy interpretable, and 
accessible at a same time in a variety of clinical settings.

5.	 We identified that, there is a lack of studies on the potential benefits of multi-task learning techniques, which could 
improve a segmentation model’s sensitivity to various types of ultrasound images.

6.	 Radiologists aren’t highly trained in using AI-based model training, which inhibits their ability to use crucial medical 
knowledge in the application domain. In addition, there aren’t many tailored loss functions that might be used to 
encode clinical data and enhance the model’s reliability and performance.

Addressing these gaps can lead to devise strategy for ultrasound algorithms for image segmentation which could be 
more effective and useful in clinical settings. Several significant gaps also exist in the segmentation of skin lesions for 
dermoscopy images. The prominent key challenge is to deal with numerous approaches that are evaluated on small 
datasets, restricting their capacity to perform effectively in real-world scenarios. Furthermore, many approaches fail 
to properly address problems such as hair interference and skin image analysis. The available techniques are often 
used as supplementary tools rather than fully integrated into diagnostic systems, emphasizing the need for more 
practical and reliable options for clinical applications.

In this paper, skin histology images are considered as a potential case study in detecting skin diseases. While 
recent studies have highlighted the potential benefits of Deep Learning models, many continue to struggle with 
class imbalance, leading to lower accuracy for those with fewer skin lesions as explained in Sect. 4. The skin cancer 
is explained through multiple classes as represented in Fig. 6.

By assessing the recently proposed work, it is evident that there is an absence of research into model inter-
pretation that may enhance diagnosis transparency, particularly for complex cases. Future studies should address 
these limitations by improving model interpretability which will eventually improve the class balance using elegant 
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augmentation methods. Recent studies have used transformer-based models to analyze histology images, but this 
option might lack in generating explanation to demonstrate how well the model performs. We have established a 
hypothesis that, if histology images were given to specialized transformer-based architecture then it could improve 
the diagnosis accuracy. The hypothesis was evaluated and produced encouraging results if we could present the 
results with correct interpretation through an explainable AI (XAI) model as depicted in Fig. 7.

Furthermore, one of the highlighted problems is transfer learning, which uses a large database to train models for 
more specific tasks. However, transfer learning often does not evaluate the model’s performance on previous tasks. 
As the models might lose information from prior learning while adjusting to new ones. This constraint can lead to 
reduced performance on previous as the algorithm focuses on new categories. To address this problem, we need to 
look for solutions that consider the prior expertise while learning from new data.

8 � Implementation and empirical analysis

To address the identified research gaps, we implemented an experimental comparison between CNN-based and 
Transformer-based architectures for skin lesion and histopathology image segmentation. The objective is to evalu-
ate the effectiveness of attention mechanisms and transformer models in improving segmentation accuracy over 
conventional CNN models.

Fig. 6   Multi-class skin cancer

Fig. 7   Proposed transformer 
architecture and explainable 
AI
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8.1 � Dataset

The experiments were conducted on three publicly available datasets. The ISIC 2018/2019 dataset was used for skin lesion 
segmentation in dermoscopy images, providing a comprehensive collection of annotated skin images for melanoma detec-
tion. The GlaS dataset focuses on histopathology images for gland segmentation, widely used for evaluating segmentation 
algorithms in colorectal cancer diagnosis. Additionally, the Camelyon16 dataset, consisting of whole-slide histopathology 
images, was utilized for tumor detection tasks, offering large-scale data for evaluating segmentation performance on com-
plex tissue structures.

All datasets used in this study are publicly accessible, ensuring reproducibility and transparency in experimental evalu-
ations. Ethical approvals of each of the abovementioned data repositories have been stated in the dataset link. However, 
dataset biases must be acknowledged, as the distribution of images may not fully represent all demographic groups, skin 
tones, or histopathological variations. Such biases could potentially affect model generalization and fairness in clinical appli-
cations. Future work should consider curating diverse datasets to mitigate these limitations and enhance model robustness 
across different populations.

8.2 � Experimental setup

For preprocessing, all images were resized to 256 × 256 pixels, normalized, and subjected to data augmentation techniques 
such as rotation, flipping, and contrast adjustments to enhance model generalization. The experimental setup involved two 
distinct architectures: a CNN-based model using U-Net with standard convolutional blocks, and a Transformer-based model 
employing Swin-UNet, which integrates self-attention mechanisms into the U-Net framework for enhanced feature extraction.

The models were trained using the Adam optimizer with a learning rate of 0.001. A batch size of 16 was used, and training 
was conducted over 50 epochs. The Dice Loss function was employed as the primary loss metric, focusing on optimizing 
overlap between the predicted and ground truth segmentations.

8.3 � Results

Table 7 presents a comparative analysis of segmentation performance between the CNN-based and Transformer-based 
models, evaluated using Dice Similarity Coefficient (DSC), Mean Intersection over Union (mIoU), and F1-Score.

8.4 � Discussion

Despite significant advancements in Deep Learning for skin histology image analysis, several challenges remain, including 
limited annotated data, high computational costs, and generalizability issues of models. To address the issue of data scarcity, 
future research should explore self-supervised learning (SSL) and synthetic data generation. SSL techniques, such as contras-
tive learning, can enable models to learn robust feature representations from unlabeled data before fine-tuning on limited 
annotated samples. Additionally, generative adversarial networks (GANs) and diffusion models can be employed to create 
realistic synthetic histopathology images, augmenting training datasets and improving model robustness. Using federated 
learning can also allow decentralized institutions to train models collaboratively while preserving patient privacy.

The high computational cost associated with transformer-based models compared to CNNs is another major bottleneck. 
Future research should focus on efficient transformer architectures, such as lightweight Vision Transformers (ViTs) and hybrid 
CNN-Transformer models, which integrate convolutional layers for low-level feature extraction with transformer layers for 
high-level spatial understanding. Model pruning, knowledge distillation, and quantization techniques can further optimize 
Deep Learning architectures, enabling their deployment in resource-constrained clinical environments. In addition, exploring 
edge computing and cloud-based AI inference systems can help distribute computational workloads efficiently, reducing 
the dependency on high-end hardware.

Table 7   Comparison of CNN 
and Transformer-based 
models

Model DSC mIoU F1-score

U-Net (CNN) 0.85 0.78 0.82
Swin-UNet (Transformer) 0.91 0.85 0.88



Vol.:(0123456789)

Discover Applied Sciences          (2025) 7:1006  | https://doi.org/10.1007/s42452-025-07138-3 
	 Review

Generalizability remains a critical challenge, as Deep Learning models often struggle with variations in staining tech-
niques, imaging modalities, and patient demographics. To improve the robustness of the model, future research should 
emphasize domain adaptation and short-shot learning. Domain adaptation techniques, such as adversarial training and 
style transfer, can help models learn invariant features across different datasets, enhancing their ability to generalize. 
Few-shot learning approaches, including meta-learning and prototypical networks, can allow models to adapt quickly 
to new cases with minimal labeled examples. Furthermore, explainability methods such as attention visualization and 
saliency mapping should be integrated to enhance model interpretability, ensuring their adoption in clinical decision 
making. By addressing these challenges, Deep Learning models can become more reliable, interpretable, and deployable 
in real-world dermatopathology applications.

Our empirical analysis indicate that Swin-UNet achieves a 7% increase in DSC and a 9% improvement in mIoU over the 
traditional U-Net. The enhanced performance can be attributed to the attention mechanisms in transformers, which bet-
ter capture long-range dependencies in medical images. However, transformer-based models have higher computational 
requirements, limiting their feasibility for real-time applications. This experimental study demonstrates the advantages 
of transformer-based models in medical image segmentation.

9 � Conclusion

This study presents a comprehensive review and experimental analysis of Deep Learning techniques applied to medi-
cal image segmentation, with a particular focus on dermoscopy and histopathology images. The research highlights 
the comparative performance of CNN-based and Transformer-based architectures, addressing key gaps identified in 
the literature. The experimental results demonstrate that Transformer-based models, such as Swin-UNet, outperform 
traditional CNN-based architectures like U-Net in complex segmentation tasks. Specifically, the Swin-UNet achieved a 
7% improvement in the Dice Similarity Coefficient (DSC) and a 9% increase in the Mean Intersection over Union (mIoU) 
compared to the CNN-based U-Net. These enhancements underscore the effectiveness of attention mechanisms in 
capturing long-range dependencies within medical images, leading to more accurate and precise segmentation.

While Transformer-based models offer notable improvements in segmentation performance, they also introduce 
higher computational complexity, which may limit their application in real-time clinical settings. Future research could 
explore hybrid models that combine the efficiency of CNNs with the representational power of transformers, aiming to 
balance accuracy with computational efficiency.

In conclusion, this study not only reinforces the potential of advanced Deep Learning models in medical image seg-
mentation but also provides empirical evidence supporting the adoption of Transformer-based architectures for more 
accurate disease diagnosis. These findings contribute to the ongoing development of automated, reliable, and efficient 
diagnostic tools in medical imaging.
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