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Abstract 

 

Milani, J. E. 2025. Keywords: genomic selection, black spruce, tree improvement, half-

sibs, growth traits, genetic markers, genetic gain, heritability. 

 

Long generation times in forest trees constrain the pace of genetic improvement 

necessary to sustain productivity under climate change. Genomic selection offers a 

promising approach to accelerate breeding gains in long-lived species like black spruce 

(Picea mariana). In this study, we evaluated genomic selection models using data from a 

long-term half-sib progeny trial in the Lake Nipigon West breeding zone of northern 

Ontario. A subset of 1194 trees from 70 families was genotyped using two platforms: a 

SNP array (16,217 SNPs) and a genotyping-by-sequencing approach based on RADseq 

(10,626 SNPs). Growth traits—including height, diameter at breast height (DBH), 

growth rate, and volume—were measured at multiple time points. 

We compared three animal models differing in their relationship matrices: 

pedigree-based (ABLUP), genomic-based (GBLUP), and a hybrid model integrating 

both pedigree and genomic information (HBLUP). The HBLUP model consistently 

produced the most accurate heritability estimates and the smallest prediction errors for 

key growth traits such as volume and DBH, likely due to its ability to incorporate both 

genotyped and ungenotyped individuals. Genomic models (GBLUP and HBLUP) 

outperformed pedigree-based models, highlighting the value of genomic information for 

improving selection efficiency. 

While early height has traditionally served as a proxy for long-term growth, its 

low heritability in this study suggests caution in its use as a sole selection criterion. 

Instead, height may be better incorporated as part of multi-trait selection indices to 

capture its environmental responsiveness, particularly during early testing stages. 
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Among genotyping platforms, SNP chips consistently outperformed RADseq, indicating 

their preference when budget allows, though RADseq remains a cost-effective 

alternative that could benefit from complementary strategies such as imputation or 

hybrid integration. 

Overall, our findings support the practical integration of genomic selection into 

black spruce breeding programs. By aligning genotyping strategies and model choice 

with specific trait characteristics and breeding goals, programs can accelerate genetic 

gain, reduce breeding cycle time, and enhance forest adaptability under future 

environmental challenges. 
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INTRODUCTION 

In most boreal tree species, slow growth and delayed trait expression impede 

breeding progress, limiting genetic gain and the capacity to adapt to climate change. 

Traditional breeding approaches rely heavily on long-term field trials and pedigree-

based selection, which are both time-consuming and costly to implement.  

Genomic selection (GS) offers a powerful alternative to traditional breeding by 

enabling early selection of superior individuals based on genome-wide marker data. First 

proposed by Meuwissen, Hayes, and Goddard (2001), GS is based on the principle that 

genome-wide markers capture the combined effects of loci underlying complex traits 

through linkage disequilibrium (LD) (Meuwissen et al., 2001). This allows for the 

prediction of genomic estimated breeding values (GEBVs) without direct measurement 

of phenotypes. GS is particularly valuable for traits that are difficult, expensive, or time-

consuming to assess in field trials, such as drought tolerance or pest resistance, and has 

the potential to greatly increase selection intensity and genetic gain per unit time 

(Grattapaglia & Resende, 2011) . 

Among GS methods, genomic best linear unbiased prediction (GBLUP) is the 

most widely used (Liu et al., 2022). It replaces the pedigree-based relationship matrix 

(A-matrix) used in traditional best linear unbiased prediction (ABLUP) with a marker-

derived realized genomic relationship matrix (G-matrix), which captures the actual 

proportion of alleles shared between individuals. This enables GBLUP to account for 

Mendelian sampling variance and more accurately estimate additive genetic 

relationships (Strandén & Garrick, 2009; VanRaden, 2008). Empirical studies in forest 

trees, such as white spruce (Picea glauca) and western redcedar (Thuja plicata) have 
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shown that GBLUP frequently outperforms ABLUP in predicting breeding values for 

traits such as growth, wood density, and phenology (Beaulieu et al., 2014; Gamal El‐

Dien et al., 2022). 

 Despite these advantages, the cost of genotyping all individuals in a breeding 

population remains a barrier to large-scale implementation of genomic selection. Hybrid 

best linear unbiased prediction (HBLUP) addresses this limitation by integrating 

pedigree and genomic information into a single H-matrix, enabling breeding value 

estimation for both genotyped and ungenotyped individuals (Ratcliffe et al., 2017; 

Simiqueli et al., 2023). This approach is particularly valuable in conifer breeding 

programs that rely on open-pollinated families, where assumptions of half-sib 

relatedness are often violated. In practice, such families may include full-sibs, half-sibs, 

and selfed individuals, which can bias genetic parameter estimates when using pedigree 

information alone (El-Kassaby et al., 2024). By directly quantifying allele sharing, 

genomic data can correct for pedigree error and better capture both recent and historical 

relatedness (Godbout et al., 2017).  

To support GS, several genotyping technologies can be used to generate dense 

genome-wide marker data, including single-nucleotide polymorphism (SNP) chips and 

genotyping-by-sequencing (GBS) approaches such as restriction site-associated DNA 

sequencing (RADseq) (Scheben et al., 2017). RADseq is widely adopted in forestry due 

to its relatively low cost and ability to generate thousands of SNPs without prior 

genomic resources (Andrews et al., 2016; Davey & Blaxter, 2010; Tong et al., 2020; 

Ulaszewski et al., 2021). SNP chips, in contrast, offer consistent and targeted genomic 

coverage but are typically more expensive and less adaptable to species with limited 

genomic resources (Kim et al., 2022; You et al., 2018). The choice of genotyping 
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platform can significantly influence model performance, data quality—such as marker 

density, missing data rates, and genotyping accuracy—and downstream applications, 

such as diversity analysis and genomic prediction (Ma et al., 2022; Roorkiwal et al., 

2018). These studies highlight differences in marker density, imputation accuracy, and 

genomic coverage that can affect predictive ability and the efficiency of selection. 

Black spruce (Picea Mariana [Mill.] B.S.P) is a strong model for genomic 

selection (GS) in forestry due to its annotated reference genome and demonstrated 

genetic relatedness within populations (Lo et al., 2023). It is widely distributed across 

North America and exhibits substantial genetic variation in both growth and adaptive 

traits, such as growth and phenology (Moreau et al., 2020; Thomson et al., 2009) . It’s a 

predominantly outcrossed mating system and wind-dispersed pollen promote random 

mating and maintain large effective population sizes (Isabel et al., 1995). Although black 

spruce tree improvement programs have been active since the 1980s, progress has been 

limited, particularly in northwestern Ontario, where most programs have only reached 

the second generation of selection (Thomas et al., 2024). Breeding cycles often exceed 

30 years due to the need for 15 to 20 years of field testing to evaluate mature traits 

(Chang et al., 2019; Mullin et al., 2011).  

Implementing GS in black spruce offers an opportunity to overcome this 

bottleneck. A proof-of-concept study by Lenz et al. (2017) demonstrated that GS can 

achieve promising predictive accuracy for growth and wood quality traits using full-sib 

families from Quebec genotyped with a SNP chip. However, no GS studies have yet 

been conducted in Ontario, where breeding programs are typically based on open-

pollinated (half-sib) families and operate under more limited funding. In breeding 

contexts with diverse or half-sib germplasm, GBS is often preferred over SNP arrays 
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due to its cost-effectiveness, broader variant detection, and avoidance of ascertainment 

bias, making it better suited for genetically diverse populations (Badenes et al., 2016). 

Differences in family structure and genotyping platform may influence the accuracy and 

utility of genomic prediction models, underscoring the need to evaluate GS performance 

under conditions that reflect operational realities (Lenz et al., 2017; Werner et al., 2020). 

This study represents the first application of genomic selection (GS) in Ontario black 

spruce, evaluating the performance of prediction models using different relationship 

matrices: pedigree-based (A), genomic-based (G), and hybrid (H). It also compares two 

genotyping methods, microarray and GBS, offering practical insights into the feasibility 

of GS under resource-constrained breeding conditions. 

In this study, the relative effectiveness of different approaches for estimating 

breeding values for growth traits in black spruce was evaluated, with particular attention 

to traditional pedigree-based models (ABLUP) and genomic methods (GBLUP and 

HBLUP). It was expected that genomic approaches, particularly GBLUP and HBLUP, 

would provide more accurate and reliable estimates of breeding values than the 

pedigree-based method. High-throughput genotyping technologies, including restriction 

site-associated DNA sequencing (RADseq) and array-based SNP genotyping, were also 

expected to enhance the estimation of genetic gain and improve the overall efficiency of 

breeding strategies. By comparing the performance of prediction models and genotyping 

platforms, this research aims to provide practical insights that support the integration of 

genomic tools into operational breeding programs for black spruce and other 

commercially important forest tree species. 
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METHODS 

Experimental Design and Phenotypic Data Acquisition 

This study focused on a subset of trees from a first-generation open-pollinated 

progeny trial established in 1988 as part of the Ontario Tree Improvement Board’s black 

spruce tree improvement program in the Lake Nipigon West (LNW) breeding zone of 

northwestern Ontario. The trial at Block #3 (48.91°N, -89.95°W) includes 400 open-

pollinated (half-sib) families derived from plus-trees selected across the LNW breeding 

zone. The site was planted using a randomized complete block design with 32 replicates. 

Each replicate (block) was divided into four quadrants, and the 400 families were 

randomly assigned to four sets of 100 families (A–D), such that one tree from each 

family was represented in every block, totalling 32 trees per family.  

Phenotypic data were collected in 1993 and 1998. Height at five years (H5) was 

measured in 1993, while height (H10) and diameter at breast height (DBH10) were 

recorded in 1998 (Fu, 2000). Growth rate (GR) was calculated as the average annual 

increase in height from age 5 to 10. Volume at age 10 (VOL10) was estimated using a 

standard volume equation for black spruce (Honer, 1967) using a form factor of 0.45, 

appropriate for young black spruce (Fradette et al., 2021). 

 VOL10 =  
𝜋

4
∗ (

𝐷𝐵𝐻10

2
)2 ∗ 𝐻10 ∗ 𝐹𝑜𝑟𝑚 𝐹𝑎𝑐𝑡𝑜𝑟   (1) 

For this study, a subset of 70 open-pollinated families was selected from the 400 

represented in the progeny trial Block #3 (Figure 1). The full set of 400 families 

originated from “plus-tree” selections in wild stands. The 70 families analyzed in this 

study were selected from the families previously chosen for the LNW second-generation 

breeding population, based on earlier analysis by Fu (2000). These families generally 
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exhibited average or above-average breeding values for growth traits, as they were 

drawn from the top-performing group in the original evaluation. Due to financial 

constraints, it was not feasible to genotype all families in the trial; therefore, this subset 

was chosen to balance cost considerations with representation across the spectrum of 

observed performance. 
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Figure 1 The Lake Nipigon West (LNW) Black Spruce Breeding Zone with test site 

Block #3 and subset 70 families plus-tree origin locations. 
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Genotypic Data Acquisition and Processing 

Newly flushed bud tissue was collected from the upper crown of each tree in 

summer 2020 using an extendable pruning pole. Buds were immediately placed in silica 

beads to desiccate the tissue and preserve DNA. A total of 700 individuals were 

genotyped, representing an average of 10 trees per family for each of the 70 sampled 

families. Genomic DNA was extracted using the Macherey-Nagel NucleoSpin Plant II 

kit, with quality and concentration assessed via NanoDrop spectrophotometry and Qubit 

fluorometer, respectively. Samples were normalized to 20 ng/µL and shipped in 96-well 

plates to the Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, for 

library preparation using a genotyping-by-sequencing (GBS) method based on RADseq. 

To evaluate enzyme efficiency, a pilot set of 96 samples was prepared using 

SbfI/MspI and PstI/MspI restriction enzyme pairs. Libraries were barcoded, multiplexed, 

and sequenced on an Illumina NovaSeq 6000 S4 lane (paired-end 100 bp). Based on 

superior SNP yield and genomic coverage, PstI/MspI was selected for the remaining 604 

samples, which were sequenced across two NovaSeq lanes. Library preparation was 

done at IBIS, and sequencing at the McGill Genome Centre (Genome Québec). SNP 

calling and filtering were conducted by the IBIS bioinformatics team using STACKS 

v2.62 and custom scripts to remove low-quality SNPs, redundant samples, and potential 

paralogs (details in Supplemental Methods S1). 

In addition to GBS, a subset of 700 individuals was genotyped using a newly 

developed 25k Infinium iSelect chip that combines SNPs for black spruce (Pavy et al. 

2016) and newly detected SNPs for red spruce based on exome capture and sequencing 

(Gerardi et al., in prep.). Genotyping was conducted at the Genome Quebec Centre 

d’expertise et de services in Montreal. For both genotyping methods, quality control 



 9 

involved removing individuals with more than 20% missing genotype data and SNPs 

with more than 15% missing data. Additionally, SNPs were filtered based on a minor 

allele frequency (MAF) threshold of <0.01 and an inbreeding coefficient (|FIS|) greater 

than 0.5. SNPs with high error rates in control genotypes (error rate >0.05; n = 30) were 

removed from the chip dataset. No control genotypes were available for the RADSeq 

dataset. Finally, the RADSeq dataset yielded 10,626 SNPs and the SNP chip dataset 

16,217 SNPs 

Following quality filtering, 612 individuals were retained in both the RADseq 

and SNP chip datasets. To enhance genomic coverage and leverage the complementary 

strengths of these two genotyping platforms, the marker matrices were integrated by 

concatenating SNP data column-wise. Prior to merging, each genomic relationship 

matrix (G matrix) derived from the RADseq and SNP chip datasets was carefully 

evaluated to remove individuals that could introduce bias, such as those markers 

providing inconsistent information. To ensure comparability between datasets, the G 

matrices were standardized by aligning their trace to that of the pedigree-based 

relationship matrix (A), normalizing scale and variance before blending. The resulting 

combined matrix comprised 26,843 unique SNPs across the 612 individuals and formed 

the foundation for all subsequent genomic prediction analyses. This approach follows 

best practices recently applied in forest tree genomic studies which emphasize rigorous 

filtering, standardization of relationship matrices, and dataset integration to improve 

marker density and prediction accuracy (Aguirre et al., 2024; Tumas et al., 2024) 
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Construction of Relationship Matrices 

Three types of relationship matrices were constructed to model additive genetic 

effects: a pedigree-based matrix (A), a genomic matrix (G), and a hybrid matrix (H) 

(Figure 2).  

The pedigree-based relationship matrix (A matrix) was generated using the 

Amatrix function from the AGHmatrix package (R. R. Amadeu et al., 2023), based on 

known family identities. Its variance structure can be expressed as: 

Var(a) = Aσ𝑒
2     (2) 

where a is the vector of additive genetic effects and σ𝑒
2 is the additive genetic variance. 

Its inverse (A⁻¹) was computed using the Ainverse() function in ASReml-R (Butler et 

al., 2023) to facilitate efficient mixed model computations. 

The genomic relationship matrix (G matrix) was constructed using the G.matrix() 

function in the ASRgenomics R package (R. R. Amadeu et al., 2023), which employs 

the AGHmatrix methodology (R. R. Amadeu et al., 2016), based on the combined SNP 

dataset from both RADseq and SNP chip platforms. Initially, separate G matrices were 

created for the RADseq and SNP chip datasets using the VanRaden method (VanRaden, 

2008), which estimates realized genomic relationships by incorporating allele 

frequencies and marker genotypes. The VanRaden formula used to compute G is: 

G  =
(M−2P)(M−2P)𝑇

2 ∑ 𝑝𝑗(1− 𝑝𝑗)
     (3) 

where M is the matrix of marker genotypes coded as 0, 1, or 2 for the number of 

reference alleles, pj is a matrix of allele frequencies, and 𝑝𝑗 is the allele frequency at 

marker j. 
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Because marker-based relationship matrices derived from different platforms 

may differ in scale and variance structure, each G matrix was tuned prior to integration. 

Specifically, RADseq- and SNP chip-derived G matrices were aligned to the pedigree-

based matrix (A) by matching the trace of G to A, standardizing their scale and reducing 

bias due to platform differences (Gezan et al., 2022). Individuals with unusual allele 

frequencies or extreme values were removed before merging. The standardized G 

matrices were then blended into a single genomic relationship matrix reflecting the 

combined information from both marker platforms. 

To integrate pedigree and genomic data, a hybrid relationship matrix (H) was 

constructed by blending the genomic relationship matrix (G) with the pedigree-based 

relationship matrix (A) at a 98:2 ratio (R. Amadeu & Ferrao, 2025). The inverse hybrid 

matrix (H⁻¹) was calculated using the Ginverse() function in the ASRgenomics package. 

This calculation incorporates the inverse of both matrices and enables single-step 

genomic prediction (HBLUP) across genotyped and non-genotyped individuals. The 

inverse hybrid relationship matrix (H⁻¹) was calculated following (Legarra et al., 2009):  

𝐻−1 = 𝐴−1 + [
0 0
0 𝐺−1 − 𝐴22

−1]    (4) 

where A−1 is the inverse of the pedigree-based relationship matrix for all individuals, G−1 

is the inverse of the genomic relationship matrix for genotyped individuals, and A22
−1 is 

the inverse of the pedigree-based relationship matrix for genotyped individuals only. 

Statistical Model 

Six genomic prediction models were used to evaluate the accuracy of pedigree-

based (ABLUP), genomic (GBLUP), and hybrid (HBLUP) approaches. All models were 
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based on the following general linear mixed model structure (Aguilar et al., 2010; 

Henderson, 1975; VanRaden, 2008): 

y = X μ + Z1b + Z1a + e    (5) 

In this formulation, y is the vector of observed phenotypes (e.g., H5, H10), and μ is the 

overall mean, modeled as a fixed effect and linked to the observations via the design 

matrix X. The vector b represents random block effects, assumed to follow a normal 

distribution with mean zero and variance σ𝑏
2  with the design matrix Z1 linking blocks to 

observations. In this study, block effects were nested within fixed replication effects, 

reflecting the hierarchical trial structure. The term a denotes the additive genetic effects 

(breeding values), with Z2 being the corresponding incidence matrix. Depending on the 

model used, a was assumed to follow a normal distribution with variance structured by 

different relationship matrices:) a ∼ N(0, σ𝑎
2 A) for ABLUP using the pedigree-based 

matrix A; a ∼ N(0, σ𝑎
2 G) for GBLUP using the genomic relationship matrix G; and a ∼ 

N(0, σ𝑎
2 H)  for HBLUP using the hybrid matrix H, which integrates both pedigree and 

genomic information. The residual term e was assumed to follow e ∼ N(0, σ𝑎
2 I)  

representing uncorrelated error. 

Variance components were estimated using a linear mixed model implemented in 

ASReml-R (Butler et al., 2023). The model used to calculate these components, also 

serving as the base model for ABLUP, was: 

y  = μ +Rep  + a + e     (6) 

Where y is the vector of phenotypic observations, μ is the overall mean, Rep is the fixed 

effect of replication (i.e., quadrant within block), a ∼ N(0, σ𝑎
2 A) is the vector of additive 
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genetic effects (breeding values) based on the pedigree relationship matrix A, e ∼ N(0, 

σ𝑒
2I) is the residual error. 

In GBLUP and HBLUP, breeding values were predicted by solving the mixed 

model equations, typically expressed as: 

    â = G-1 Z2
T R-1(y – Xμ – Z1b)    (7) 

In this equation, â is the vector of predicted additive genetic effects (breeding 

values); G-1 is the inverse of the genomic relationship matrix (or H-1 in HBLUP); Z2 is 

the design matrix for genetic effects; R-1 is the inverse of the residual covariance matrix; 

and the terms Xμ and Z1b represent the contributions of fixed replicate effect and 

random block effects, respectively. 

Heritability Estimation 

Narrow-sense heritability (h2
ind) was calculated from variance components as 

follows (Hill & Mackay, 2004): 

h2
ind =

σ2additive

σ2additive + σ2residual
     (8) 

where σ2
additive is the variance of the additive genetic effects and σ2

residual is the residual 

variance.   
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Figure 2 Flowchart illustrating the construction and integration of genetic matrices, 

including pedigree-based (A matrix), genomic (G matrix), and blended (H matrix) 

relationship matrices, used in breeding value estimation and genetic analyses. 
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Assessment of Predictive Ability and Accuracy 

To support the evaluation of GS model performance, a custom function was 

developed using the Tidyverse package in R (Wickham et al., 2019) for generating 

cross-validation sets. Cross-validation is a resampling technique used to assess the 

predictive performance of statistical models by partitioning the data into training and 

validation subsets (Kohavi, 1995). The function enables flexible partitioning of the data 

into training and validation subsets based on a specified number of folds and repetitions.  

Two cross-validation schemes were employed to assess the performance of 

pedigree-based and genomic prediction models. In the first scheme (CV1, within-

family), individual trees were randomly assigned into folds while ensuring that each 

family was represented in every fold. In the second scheme (CV2, across-family), entire 

families were assigned to folds, such that each fold contained a unique subset of 

families, with no overlap between the training and validation datasets. Each cross-

validation scheme used 10 folds and was repeated 10 times, and results were averaged 

across repetitions to ensure robust estimates.  

Predictive ability (PA), defined as the Pearson correlation between predicted 

breeding values (PABV) and adjusted phenotypic values, where the phenotypes have 

been corrected for experimental design factors such as block effects, and prediction 

accuracy (PACC), defined as the correlation between predicted breeding values and the 

true breeding values, were assessed for each of the three model types: the pedigree-

based model (ABLUP), the genomic-based model (GBLUP), and the hybrid model 

(HBLUP) (Estaghvirou et al., 2013). Predictive ability was calculated as the correlation 

between PABV and phenotypic values adjusted to remove non-genetic variation. 

Prediction accuracy of breeding value estimates (PACCBV) was then derived as the ratio 
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of predictive ability to the square root of the individual-tree narrow-sense heritability 

(Dekkers, 2007): 

PACCBV=
𝑃𝐴𝐵𝑉

√ℎ2𝑖𝑛𝑑
     (9) 

This ratio provides an estimate of the correlation between predicted and true breeding 

values and is commonly used to compare the reliability of genetic evaluation models 

(Daetwyler et al., 2013). 

Comparative Genetic Gain from Conventional and Genomic Selection 

 Genetic gain was estimated to compare the long-term effectiveness of 

conventional and genomic selection (GS) approaches. For each trait, the mean of the top 

5% genomic-estimated breeding values (GEBVs) was calculated based on predictions 

from the cross-validation procedure. The values were then averaged across the ten cross-

validation repetitions to provide a stable estimate of selection gain under each model.   

To account for differences in the time required to complete a breeding cycle, we also 

calculated expected genetic gain per year. A breeding cycle length of 28 years was 

assumed for conventional selection, while a shorter cycle of nine years was assumed for 

GS, consistent with the acceleration enabled by early selection using genomic 

information. Genetic gain per year was calculated for each trait and model combination 

using the formula (Lenz et al., 2017): 

Genetic Gain per unit = 
𝑀𝑒𝑎𝑛 𝑜𝑓 𝑡𝑜𝑝 5% 𝐺𝐸𝐵𝑉𝑠

𝐵𝑟𝑒𝑒𝑑𝑖𝑛𝑔 𝐶𝑦𝑐𝑙𝑒 𝐿𝑒𝑛𝑔𝑡ℎ
    (10) 
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RESULTS 

Trait Heritabilities 

 Heritability estimates (h2
ind), varied across traits and models (Table 1, Figure 3), 

reflecting differences in the proportion of phenotypic variation explained by additive 

genetic effects. Overall, heritability was lowest for early height traits (H5 and H10) and 

relatively higher for later-stage traits such as DBH10 and VOL10, although all estimates 

remained low. 

Height at 5 years (H5) exhibited negligible heritability across all models. All 

models except GBLUP3 produced heritability estimates of zero. GBLUP3, based on the 

RADseq dataset, yielded a slightly higher estimate of h2
ind = 0.07, although the 

associated standard error was relatively large, indicating high uncertainty. In general, 

standard errors for H5 were large across models, further reflecting the low precision of 

these estimates. Height at 10 years (H10) similarly showed low heritability, with most 

models estimating values near zero. Slightly higher estimates were obtained from 

GBLUP1 and HBLUP1 (h2
ind = 0.07), though these still indicate only a weak genetic 

contribution to trait variation. 

For growth rate (GR), greater differentiation among models was observed. 

ABLUP produced the lowest estimate (h2
ind = 0.02), while HBLUP1 (based on the 

combined genotypic dataset) captured the strongest genetic signal (h2
ind = 0.15). GBLUP 

models showed relatively low heritabilities for GR, ranging from 0.05 (GBLUP3) to 

0.09 (GBLUP1). 

Diameter at breast height at age 10 (DBH10) had the highest heritability 

estimates in the ABLUP and GBLUP2 models, both at h2
ind = 0.15. Other models, 
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including GBLUP1, GBLUP3, and all HBLUP variants produced lower but still 

moderate estimates ranging from 0.05 (GLUP1 and GBLUP3) to 0.09 (HBLUP1).  

Volume at 10 years (VOL10) exhibited the highest heritability overall, with 

HBLUP1 showing the strongest genetic influence (h2
ind = 0.17). GBLUP1 and GBLUP2 

also demonstrated relatively high heritability (h2
ind = 0.13), whereas GBLUP3 showed 

the lowest estimate (h2
ind = 0.06). The HBLUP2 and HBLUP3 models yielded moderate 

estimates of 0.09 and 0.10, respectively. 
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Table 1 Heritability estimates for models and traits and their corresponding standard 

errors. 

Model Type Traits 

  H5 GR H10 DBH10 VOL10 

ABLUP 

h2
ind 0.00 0.02 0.00 0.15 0.11 

SE 0.09 0.09 0.09 0.10 0.10 

GBLUP1 

h2
ind 0.00 0.09 0.07 0.05 0.13 

SE 0.09 0.10 0.10 0.10 0.10 

GBLUP2 

h2
ind 0.00 0.08 0.01 0.15 0.13 

SE 0.08 0.09 0.08 0.09 0.09 

GBLUP3 

h2
ind 0.07 0.05 0.00 0.05 0.06 

SE 0.07 0.07 NA 0.07 0.07 

HBLUP1 

h2
ind 0.00 0.15 0.07 0.09 0.17 

SE NA 0.08 0.08 0.08 0.08 

HBLUP2 

h2
ind 0.00 0.08 0.01 0.08 0.09 

SE 0.05 0.05 0.04 0.05 0.05 

HBLUP3 

h2
ind 0.00 0.07 0.00 0.06 0.10 

SE NA 0.05 0.04 0.05 0.05 

Note: SE values reported as NA indicate that the model did not converge for that trait 

Model Notes: GBLUP1 combined genotypic datasets, GBLUP2 SNP chip genotypic 

dataset, GBLUP3 Radseq genotypic dataset, HBLUP1 combined genotypic datasets, 

HBLUP2 SNP chip genotypic dataset, HBLUP3 Radseq genotypic dataset.
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Figure 3. Heritability estimates for models and traits and their corresponding standard 

errors.
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Predictive Ability and Accuracy 

Across all models, predictive ability (PA) was uniformly low, with near-zero or 

negative values across most traits, reflecting weak correlations between predicted 

breeding values and observed phenotypes (Table 4, Figure 4). In contrast, predictive 

accuracy (PACC) revealed meaningful differences in model performance. The hybrid 

model HBLUP2 performed best overall, with PACC ranging from 0.61 for H5 to 0.69 

for H10, while HBLUP3 showed a similar range (0.61–0.68). Among the GBLUP 

models, GBLUP2 (SNP chip) had the highest mean PACC (0.58), with accuracy values 

ranging from 0.52 for H5 to 0.60 for H10. GBLUP3 (RADseq) performed comparably 

(mean PACC = 0.56). GBLUP1, based on the combined genotyping dataset, had the 

weakest overall performance, with a mean PACC of 0.49 and trait-level values ranging 

from 0.43 to 0.51. The pedigree-based ABLUP model showed moderate accuracy (mean 

PACC = 0.55), with values ranging from 0.52 for H5 to 0.58 for GR.  
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Table 2 Accuracies of selection models based on half-sib families from a single-site 

analysis, using SNP chip, RADseq, and combined marker datasets. Standard errors are 

shown in brackets. 

Model Type Traits 

  H5 GR H10 DBH10 VOL10 Average  

ABLUP 

PA -0.05 (0.11) 0.01 (0.12) -0.05 (0.13) 0.08 (0.13) 0.06 (0.13) 0.06 

PACC 0.52 (0.07) 0.58 (0.06) 0.54 (0.07) 0.55 (0.07) 0.56 (0.10) 0.56 

GBLUP1 

PA -0.08 (0.12) 0.04 (0.13) 0.02 (0.12) 0.01 (0.12) 0.06 (0.15) 0.06 

PACC 0.43 (0.10) 0.49 (0.10) 0.50 (0.10) 0.50 (0.09) 0.51 (0.11) 0.51 

GBLUP2 

PA -0.08 (0.11) 0.05 (0.13) -0.01 (0.14) 0.09 (0.13) 0.08 (0.14) 0.08 

PACC 0.52 (0.07) 0.59 (0.08) 0.60 (0.07) 0.59 (0.07) 0.59 (0.10) 0.59 

GBLUP3 

PA -0.12 (0.11) 0.03 (0.12) -0.05 (0.12) 0.03 (0.13) 0.05 (0.15) 0.05 

PACC 0.46 (0.09) 0.58 (0.07) 0.55 (0.07) 0.59 (0.08) 0.60 (0.11) 0.60 

HBLUP1 

PA -0.03 (0.09) 0.06 (0.09) 0.03 (0.09) 0.04 (0.10) 0.07 (0.10) 0.07 

PACC 0.49 (0.06) 0.49 (0.07) 0.50 (0.06) 0.52 (0.06) 0.50 (0.08) 0.50 

HBLUP2 

PA -0.06 (0.08) 0.06 (0.09) 0.00 (0.09) 0.06 (0.10) 0.07 (0.09) 0.07 

PACC 0.61 (0.04) 0.66 (0.04) 0.69 (0.04) 0.68 (0.04) 0.67 (0.06) 0.67 

HBLUP3 

PA 0.06 (0.08) 0.05 (0.09) -0.01 (0.08) 0.04 (0.09) 0.06 (0.09) 0.06 

PACC 0.61 (0.05) 0.66 (0.04) 0.68 (0.04) 0.67 (0.04) 0.65 (0.07) 0.65 

Model Notes: GBLUP1 combined genotypic datasets, GBLUP2 SNP chip genotypic 

dataset, GBLUP3 Radseq genotypic dataset, HBLUP1 combined genotypic datasets, 

HBLUP2 SNP chip genotypic dataset, HBLUP3 Radseq genotypic dataset. 

PA: Predictive ability; PACC: Predictive accuracy.
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Figure 4 Predictive abilities (a) and predictive accuracies (b) of genomic selection 

models and the pedigree-based ABLUP model based on half-sib families in a single-site 

analysis, using microarray, RADseq, and combined marker datasets.
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Genetic Gains 

Genetic gains, expressed as absolute values per unit time, were slightly higher 

for marker-based methods than for pedigree-based approaches (Table 5, Figure 5). 

While no single model consistently outperformed all others across all traits, HBLUP1 

(pedigree and combined genomic dataset) demonstrated the most consistently moderate 

gains, achieving the highest values for VOL10 (0.08), GR (0.07), and a shared top gain 

for H10 (0.05). GBLUP2 (SNP chip data) produced the highest predicted gain for 

DBH10 (0.07), while GBLUP1 (combined genomic data) shared the top gain for H10 

(0.05). However, it is important to note that these differences in gain are small in 

absolute terms, reflecting the generally low additive genetic contribution detected in this 

dataset. Notably, genetic gain for H5 was zero across all models, consistent with the 

absence of detectable genetic control or heritability for this trait. For height at age 10 

(H10), modest but variable genetic gain is expected, ranging from 0.0 (ABLUP and 

GBLUP3) to 0.05 (GBLUP1 and HBLUP1).
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Table 3 Genetic gains for models and traits using pedigree and marker-based methods. 

Model Type Cycle Length Traits 

   H5 GR H10 DBH10 VOL10 

ABLUP Pedigree 28 years 0.0 0.01 0.00 0.02 0.02 

GBLUP1 Markers 9 years 0.00 0.06 0.05 0.04 0.07 

GBLUP2 Markers 9 years 0.00 0.05 0.01 0.07 0.07 

GBLUP3 Markers 9 years 0.00 0.04 0.00 0.04 0.04 

HBLUP1 Markers 9 years 0.00 0.07 0.05 0.06 0.08 

HBLUP2 Markers 9 years 0.00 0.05 0.02 0.05 0.05 

HBLUP3 Markers 9 years 0.00 0.05 0.00 0.05 0.06 

Model Notes: GBLUP1 combined genotypic datasets, GBLUP2 SNP chip genotypic 

dataset, GBLUP3 Radseq genotypic dataset, HBLUP1 combined genotypic datasets, 

HBLUP2 SNP chip genotypic dataset, HBLUP3 Radseq genotypic dataset
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Figure 5 Genetic gain per year for each model and trait.  

Bars represent the average genetic gain per year based on the mean of the top 5% 

predicted breeding values across ten cross-validation replicates. Gains for ABLUP 

reflect conventional selection assuming a 28-year breeding cycle. Gains for GBLUP and 

HBLUP models reflect genomic selection assuming a 9-year cycle.
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DISCUSSION 

Heritability Patterns and Trait-Level Insights 

This study revealed that heritability in black spruce varies substantially by trait 

and by modeling approach, reflecting differences in genetic architecture, trait 

expression, and sensitivity to environmental variation. Across models, hybrid 

approaches, particularly HBLUP1, consistently produced higher heritability estimates 

than pedigree-based (ABLUP) or marker-only (GBLUP) methods. This supports 

findings from Callister et al. (2021), Ratcliffe et al. (2017), and Simiqueli et al. (2023), 

confirming the value of combining genomic and pedigree information to improve 

additive variance partitioning, especially in open-pollinated species with uncertain 

relatedness (Callister et al., 2021; Ratcliffe et al., 2017; Simiqueli et al., 2023). 

Growth traits such as diameter at breast height (DBH10), growth rate (GR), and 

volume at 10 years (VOL10) exhibited moderate individual heritability (h2
ind = 0.15–

0.17), indicating stable genetic control and making them promising targets for selection. 

These results are consistent with findings from Lenz et al. (2017), who observed similar 

heritability ranges in full-sib black spruce families in Quebec. Importantly, our results 

extend this evidence to a more operational Ontario context, showing that moderate 

heritability can still be recovered despite lower replication and family size. 

In contrast, early height traits (H5, H10) displayed relatively low individual-tree 

heritability in our analyses, particularly under ABLUP, where estimates approached 

zero. This stands in contrast to Fu (2000), who reported higher individual-tree 

heritability estimates for the same traits in Block 3 (0.07 for H5 and 0.09 for H10), 

highlighting a notable discrepancy. The lower estimates observed in our study may stem 
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from differences in pedigree depth, smaller family sizes, reduced replication, smaller 

dataset or greater environmental noise, which can attenuate additive genetic signals at 

the individual level.  

However, these findings also diverge from a consistent trend observed across 

many studies in black spruce and other conifers, where height generally exhibits higher 

heritability than DBH (Beaulieu et al., 2020; Cappa et al., 2022; Lu & Charrette, 2008). 

For instance, Lu & Charrette (2008) reported narrow-sense heritability values for height 

of 0.19 at age 6, compared to lower values for DBH, based on a large dataset of over 

42,000 trees. Such results have reinforced the perception of height as a more reliable 

selection trait in operational breeding. Although our results suggest early height may be 

a poor proxy for long-term performance under the current trial design, this interpretation 

must be tempered by the extensive literature showing height’s strong genetic basis.  

The apparent discrepancy may reflect maternal effects and microenvironmental 

heterogeneity (Laverdière et al., 2022), which are particularly pronounced in early stages 

and may obscure additive genetic variance when using less robust models. Therefore, 

the utility of early height traits should be reconsidered in light of broader empirical 

evidence and the limitations of our current dataset. 

Predictive Ability, Accuracy, and Genetic Gain 

 Genomic models (GBLUP and HBLUP) consistently outperformed ABLUP in 

predictive ability (PA), accuracy (PACC), and estimated genetic gain across all traits. 

The greatest improvements were observed for traits with higher heritability estimates, 

such as GR, DBH10, and VOL10, where marker-based models more effectively 

captured additive variance and Mendelian sampling effects. These patterns reaffirm the 

theoretical advantages of genomic selection (Meuwissen et al., 2001; Strandén & 
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Garrick, 2009) and echo empirical findings in black spruce (Lenz et al., 2017) and other 

conifers such as loblolly pine (Resende et al., 2012). 

The gains for early height traits were comparatively modest, even under genomic 

models, due to the low heritability estimated for these traits (ranging from 0.00 to 0.07 

across models). While HBLUP and GBLUP improved over ABLUP, the absolute gains 

remained constrained. This confirms that predictive performance is closely tied to trait 

heritability and that genomic selection is most impactful when applied to traits with 

stronger genetic determinism.  

Notably, HBLUP models offered a significant operational advantage by enabling 

predictions for ungenotyped individuals. This feature is particularly valuable in 

resource-constrained breeding programs and supports the feasibility of implementing GS 

at scale without genotyping every individual. Within genomic models, SNP chip-based 

approaches (GBLUP2, HBLUP2) outperformed RADseq-based models (GBLUP3, 

HBLUP3), highlighting the importance of marker quality and genome-wide coverage in 

achieving robust predictions. While our findings and previous studies (Kim et al., 2022; 

Ma et al., 2022) highlight the importance of marker density for improving prediction 

accuracy, it is also possible that the distribution and properties of the markers, such as 

those obtained through RADseq, play a significant role, potentially by enabling better 

separation of additive and dominance alleles, an aspect that warrants further 

investigation in future studies. 

Limitations and Sampling Considerations 

 Several limitations must be acknowledged when interpreting the current findings. 

First, the study was conducted within a single breeding zone (LNW), limiting the 

generalizability of results across the broader range of black spruce. Second, the use of 
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open-pollinated families introduces pedigree uncertainty, which undermines the 

accuracy of relatedness estimates in ABLUP, GBLUP, and HBLUP. This issue is well-

documented in conifers (El-Kassaby et al., 2024) and can bias estimates of heritability 

and breeding values. The relatively small number of families (n = 70) and reduced 

replication further constrained our ability to accurately estimate genetic parameters, 

particularly for environmentally sensitive traits such as early height (Perron et al., 2013). 

These factors likely contributed to the low heritability and limited gain estimates 

observed for some traits.  

As Beaulieu et al. (2014) and others have noted, sampling design plays a critical 

role in the reliability of GS models. Moreover, the comparison of genotyping platforms 

revealed that reduced-representation methods like RADseq may fall short in providing 

the dense, uniform genome-wide coverage needed for high-resolution prediction, 

particularly under low-replication conditions. While cost-effective, such platforms may 

not be ideal for routine operational deployment unless complemented with imputation or 

hybrid approaches. However, imputation introduces its own challenges, as inferred 

genotypes can be a source of error and uncertainty. Gamal El-Dien et al. (2015) 

examined how different imputation methods influence genomic selection accuracy, 

highlighting the trade-offs involved in relying on imputed data (Gamal El-Dien et al., 

2015). 

Future Research Directions 

 Future genomic selection studies in black spruce should adopt multi-site trial 

designs to explicitly evaluate genotype-by-environment (G×E) interactions. Given the 

species’ wide ecological range, capturing environmental heterogeneity is essential for 

developing broadly applicable prediction models and understanding trait plasticity under 



 31 

varying climatic conditions. High-density genotyping approaches such as exome capture 

or whole-genome sequencing should be explored as sequencing costs continue to 

decline. These platforms could improve marker resolution and trait-locus associations, 

potentially increasing prediction accuracy, especially for traits under low heritability. 

There is also significant potential in incorporating machine learning techniques and 

multi-trait genomic prediction models. These methods may offer potential benefits for 

traits where additive genetic variance is limited or where non-additive effects play a 

significant role. However, accurately detecting and utilizing non-additive variance 

requires specifically designed experiments, such as those involving controlled crosses 

(Nadeau et al., 2023). Additionally, future studies should systematically assess how 

different sampling structures, such as family number, individual replication, and 

relatedness, affect prediction accuracy and parameter estimation. Simulation-based tools 

could help optimize these designs before implementation. 

Management Implications and Operational Relevance 

 The integration of genomic selection into black spruce breeding programs is both 

feasible and beneficial, particularly for high-value growth traits like DBH and volume 

that exhibit consistent genetic control. Our findings suggest that genomic models, 

especially HBLUP, can substantially accelerate breeding progress by improving 

selection efficiency while also accommodating ungenotyped individuals, making it a 

pragmatic tool for resource-limited programs. Although early height has historically 

served as a proxy for long-term growth, its low heritability in this study suggests that it 

should be used cautiously. Rather than excluding height from selection programs, it may 

be more effective to treat it as a component in multi-trait indices. This would help 
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account for how height responds to different environmental conditions, especially in the 

context of early testing. 

The performance difference between genotyping platforms has direct operational 

implications. SNP chips consistently delivered superior results, indicating they are the 

preferred platform when budgets allow. RADseq remains a cost-effective alternative but 

may require supplemental strategies, such as imputation or hybrid integration with chip 

data, to be competitive. While combined-platform approaches showed some promise, 

their cost-effectiveness and logistical feasibility for routine application remain uncertain. 

Ultimately, this study reinforces the operational value of genomic tools in 

accelerating black spruce breeding. By aligning model choice and genotyping strategy 

with specific trait characteristics and breeding objectives, programs can achieve more 

reliable genetic gain, reduce cycle time, and increase the adaptability of forest 

populations to future environmental challenges. 
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SUPPLEMENTAL MATERIALS 

. GBS Data Processing and Filtering. 

Raw RADseq data were processed using STACKS v2.62, following the 

standardized stacks_workflow v2.62 pipeline. Adapter trimming and quality filtering 

were performed with Cutadapt v1.18, allowing up to 20% mismatches and requiring a 

minimum read length of 50 base pairs. Reads were demultiplexed using process_radtags 

with quality control settings and enzyme specifications matching the library preparation 

protocol (PstI and MspI). 

Locus assembly and SNP calling were carried out using the STACKS pipeline, 

which included the ustacks, cstacks, sstacks, tsv2bam, gstacks, and populations modules. 

The populations module was run with parameters to retain loci present in at least four 

populations and in at least 60% of individuals, producing a minimally filtered VCF file. 

SNPs were further filtered using a custom script that retained loci with a 

minimum read depth of 4×, no more than 40% missing data per group, and rare alleles 

present in at least three individuals. Samples with more than 20% missing data (n = 73) 

were removed, and the filtering was repeated. Additional filtering removed three 

individuals with high relatedness and five with unusually low heterozygosity, followed 

by a final round of filtering using the same thresholds. 

To minimize genotyping errors, a modified HD plot method was used to identify 

loci likely affected by paralogy or tag over-merging. Only high-confidence (canonical) 

SNPs were retained, and SNPs in strong linkage disequilibrium were pruned by keeping 

one SNP per cluster. Missing genotypes were imputed based on overall allele 

frequencies. 
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Population structure was analyzed using ADMIXTURE v1.3.0, testing values of 

K from 1 to 20. Based on cross-validation error and visual inspection of admixture plots, 

K = 1 was selected. A final round of genotype imputation was performed per SNP by 

randomly sampling alleles according to population-level frequencies. 
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Supplemental Table S1. Predictive ability (PA) and prediction accuracy (PACC) of 

breeding value estimates for five growth traits across pedigree-based (ABLUP), genomic 

(GBLUP), and hybrid (HBLUP) models using 10-fold cross-validation. Values shown 

are means with standard errors in parentheses. 

 

Trait Model PA (SE) PACC (SE) 

DBH10 ABLUP 0.08 (0.13) 0.55 (0.07) 

VOL10 ABLUP 0.06 (0.13) 0.56 (0.10) 

GR ABLUP 0.01 (0.12) 0.58 (0.06) 

H10 ABLUP -0.05 (0.13) 0.54 (0.07) 

H5 ABLUP -0.05 (0.11) 0.52 (0.07) 

DBH10 ABLUP_FULL 0.07 (0.02) 0.82 (0.01) 

VOL10 ABLUP_FULL 0.07 (0.02) 0.82 (0.01) 

GR ABLUP_FULL 0.06 (0.02) 0.83 (0.01) 

H5 ABLUP_FULL  0.07 (0.02) 0.82 (0.01) 

H10 ABLUP_FULL  0.07 (0.02) 0.82 (0.01) 

VOL10 GBLUP1 0.06 (0.15) 0.51 (0.11) 

GR GBLUP1 0.04 (0.13) 0.49 (0.10) 

DBH10 GBLUP1 0.01 (0.12) 0.50 (0.09) 

H5 GBLUP1 -0.08 (0.12) 0.43 (0.10) 

H10 GBLUP1  0.02 (0.12) 0.50 (0.10) 

DBH10 GBLUP2 0.09 (0.13) 0.59 (0.07) 

VOL10 GBLUP2 0.08 (0.14) 0.59 (0.10) 

GR GBLUP2 0.05 (0.13) 0.59 (0.08) 

H5 GBLUP2 -0.08 (0.11) 0.52 (0.07) 

H10 GBLUP2 -0.01 (0.14) 0.60 (0.07) 

VOL10 GBLUP3 0.05 (0.15) 0.60 (0.11) 

DBH10 GBLUP3 0.03 (0.13) 0.59 (0.08) 

GR GBLUP3 0.03 (0.12) 0.58 (0.07) 

H5 GBLUP3 -0.12 (0.11) 0.46 (0.09) 

H10 GBLUP3 -0.05 (0.12) 0.55 (0.07) 

VOL10 HBLUP1 0.07 (0.10) 0.50 (0.08) 

GR HBLUP1 0.06 (0.09) 0.49 (0.07) 

DBH10 HBLUP1 0.04 (0.10) 0.52 (0.06) 

H5 HBLUP1 -0.03 (0.09) 0.49 (0.06) 

H10 HBLUP1  0.03 (0.09) 0.50 (0.06) 

VOL10 HBLUP2 0.07 (0.09) 0.67 (0.06) 

DBH10 HBLUP2 0.06 (0.10) 0.68 (0.04) 

GR HBLUP2 0.06 (0.09) 0.66 (0.04) 

H5 HBLUP2 -0.06 (0.08) 0.61 (0.04) 
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H10 HBLUP2  0.00 (0.09) 0.69 (0.04) 

VOL10 HBLUP3 0.06 (0.09) 0.65 (0.07) 

GR HBLUP3 0.05 (0.09) 0.66 (0.04) 

DBH10 HBLUP3 0.04 (0.09) 0.67 (0.04) 

H5 HBLUP3 -0.06 (0.08) 0.61 (0.05) 

H10 HBLUP3 -0.01 (0.08) 0.68 (0.04) 

*ABLUP represented the phenotypic data for the genotyped trees, ABLUP_FULL 

represented the full phenotypic data from the entire trial, GBLUP1 combined genotypic 

datasets, GBLUP2 SNP chip genotypic dataset, GBLUP3 Radseq genotypic dataset, 

HBLUP1 combined genotypic datasets, HBLUP2 SNP chip genotypic dataset, HBLUP3 

Radseq genotypic dataset. 
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Supplemental Table S2. Narrow-sense heritability estimates (± standard errors) for five 

growth traits estimated using pedigree-based (ABLUP), genomic (GBLUP), and hybrid 

(HBLUP) models.  

Trait AB

LU

P 

ABLUP_

FULL 

GBLU

P1 

GBLU

P2 

GBLU

P3 

HBLU

P1 

HBLU

P2 

HBLU

P3 

DBH10 0.15 

(0.1

0) 

0.05 

(0.01) 

0.05 

(0.10) 

0.15 

(0.09) 

0.05 

(0.07) 

0.09 

(0.08) 

0.08 

(0.05) 

0.06 

(0.05) 

GR 0.02 

(0.0

9) 

0.04 

(0.01) 

0.09 

(0.10) 

0.08 

(0.09) 

0.05 

(0.07) 

0.15 

(0.08) 

0.08 

(0.05) 

0.07 

(0.05) 

H5 0.00 

(0.0

9) 

0.05 

(0.01) 

0.00 

(0.09) 

0.00 

(0.08) 

0.00 

(0.07) 

0.00 ( 

NaN) 

0.00 

(0.05) 

0.00 

(0.00) 

H10 0.00 

(0.0

9) 

0.05 

(0.01) 

0.07 

(0.10) 

0.01 

(0.08) 

0.00 ( 

NaN) 

0.07 

(0.08) 

0.01 

(0.04) 

0.00 

(0.04) 

VOL10 0.11 

(0.1

0) 

0.06 

(0.01) 

0.13 

(0.10) 

0.13 

(0.09) 

0.06 

(0.07) 

0.17 

(0.08) 

0.09 

(0.05) 

0.10 

(0.05) 

*ABLUP represented the phenotypic data for the genotyped trees, ABLUP_FULL 

represented the full phenotypic data from the entire trial, GBLUP1 combined genotypic 

datasets, GBLUP2 SNP chip genotypic dataset, GBLUP3 Radseq genotypic dataset, 

HBLUP1 combined genotypic datasets, HBLUP2 SNP chip genotypic dataset, HBLUP3 

Radseq genotypic dataset. 
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Supplemental Table S3. Variance Component Estimates (± SE) for Block, Residual, and 

Additive Genetic Effects Across Growth Traits Using ABLUP, GBLUP, and HBLUP 

Models.  

Trait Component ABLUP 
ABLUP_ 

FULL 
GBLUP1 GBLUP2 GBLUP3 HBLUP1 HBLUP2 HBLUP3 

DBH10 Block 
21.63 

(8.91) 

3.22  

(0.86) 

21.42 

(8.87) 

21.79 

(8.96) 

21.64 

(8.95) 

17.30 

(5.25) 

17.27 

(5.24) 

17.34 

(5.26) 

 Residual 

(units!R) 

121.72 

(15.92) 

111.03  

(1.43) 

135.24 

(16.36) 

120.90 

(14.59) 

133.70 

(14.19) 

111.62 

(9.81) 

113.24 

(7.71) 

114.50 

(7.59) 

 
Additive 

(vm(TreeID, 

...)) 

21.76 

(15.20) 

5.62  

(1.03) 

7.77 

(13.83) 

22.15 

(13.58) 
7.64 (9.64) 

11.47 

(9.34) 
9.42 (6.53) 7.33 (5.64) 

GR Block 
7.69 

(3.55) 

1.37  

(0.39) 
7.90 (3.62) 7.78 (3.58) 7.80 (3.58) 9.46 (2.99) 9.40 (2.97) 9.41 (2.98) 

 Residual 

(units!R) 

83.06 

(8.66) 

98.59  

(1.24) 

76.81 

(9.93) 

78.21 

(8.55) 

79.73 

(8.50) 

69.45 

(7.00) 

74.28 

(5.20) 

74.35 

(5.12) 

 
Additive 

(vm(TreeID, 

...)) 

1.75 

(7.26) 

4.02 

(0.84) 
7.53 (8.65) 6.51 (7.43) 3.97 (5.77) 

11.80 

(6.98) 
6.49 (4.47) 5.76 (3.93) 

H5 Block 
56.87 

(29.75) 

27.40  

(7.34) 

56.87 

(29.76) 

56.87 

(29.76) 

56.87 

(29.79) 

59.78 

(21.37) 

59.78 

(21.36) 

59.78 

(21.37) 

 Residual 

(units!R) 

973.13 

(101.14) 

892.32 

(11.58) 

973.13 

(108.70) 

973.14 

(96.78) 

973.14 

(99.83) 

851.34 

(35.33) 

851.34 

(51.70) 

851.34 

(35.33) 

 
Additive 

(vm(TreeID, 

...)) 

0.00 

(NA) 

47.59  

(8.45) 

0.00  

(NA) 

0.00  

(NA) 

0.00  

(NA) 

0.00  

(NA) 

0.00  

(NA) 

0.00  

(NA) 

H10 Block 
463.02 

(204.44) 

105.10 

(28.52) 

474.29 

(208.00) 

463.71 

(204.62) 

463.02 

(204.38) 

513.84 

(159.52) 

509.78 

(158.65) 

509.24 

(158.57) 

 Residual 

(units!R) 

4246.88 

(437.13) 

4366.63 

(56.45) 

3937.86 

(485.31) 

4222.30 

(411.41) 

4246.91 

(246.46) 

3696.51 

(324.00) 

3943.77 

(235.67) 

3967.87 

(234.73) 

 
Additive 

(vm(TreeID, 

...)) 

0.00 

(NA) 

225.38 

(40.90) 

290.32 

(414.32) 

23.87 

(326.71) 

0.00  

(NA) 

285.36 

(305.72) 

26.28 

(171.14) 

1.78 

(150.56) 

VOL10 Block 
0.00 

(0.00) 

0.00 

(0.00) 
0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 

 Residual 

(units!R) 

0.00 

(0.00) 

0.00 

(0.00) 
0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 

 
Additive 

(vm(TreeID, 

...)) 

0.00 

(0.00) 

0.00 

(0.00) 
0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 

Model Key (Column Header Definitions): 

• ABLUP – Pedigree-based model using genotyped trees only 

• ABLUP_FULL – Pedigree-based model using the full phenotypic dataset 

• GBLUP1 – Genomic BLUP using combined genotypic datasets 

• GBLUP2 – Genomic BLUP using SNP chip data 

• GBLUP3 – Genomic BLUP using RADseq data 

• HBLUP1 – Hybrid BLUP using pedigree and genomic data (combined 

genotypes) 

• HBLUP2 – HBLUP using SNP chip genotypes 

• HBLUP3 – HBLUP using RADseq genotypes 
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Component Descriptors 

• Block 

Represents the variance attributable to spatial or experimental design factors, 

such as field blocks or environmental differences across replicate plots. Modeled 

as a random effect to account for structure in the trial layout. 

• Residual (units!R) 

Denotes the unexplained variance (error variance) within each observation after 

accounting for block and genetic effects. This captures noise due to micro-

environmental variation, measurement error, or individual-specific factors not 

modeled elsewhere. 

• Additive (vm(TreeID, gen_matrix)) 

Represents the additive genetic variance associated with individual trees, 

modeled using a variance-covariance structure defined by the relationship matrix 

(gen_matrix). The vm(TreeID, gen_matrix) syntax indicates a variance model 

where the effect of each tree is modeled using a pedigree-based or genomic-

based relationship matrix, depending on the model (ABLUP, GBLUP, or 

HBLUP). 
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Supplemental Table S4. Summary statistics for selected traits. 

Trait Min Max Average 

DBH10 4 89 32.8 

GR 0.4 73.8 38.9 

H5 3 256 123.0 

H10 95 540 317.5 

VOL10 0.000002 0.002684 0.000371 
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