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Abstract  

 This research investigates the nonlinear aeroelastic dynamics and energy harvesting 

performance of a two-degrees-of-freedom NACA 0012 wing under varying reduced velocities and 

electrical load resistances. In the first part of this work related to two-dimensional computational 

simulations, nonlinear oscillations emerge near the critical reduced velocity U∗
r = 6, with large 

amplitude limit-cycle oscillations forming around U∗
r = 8 in the absence of an electrical loading. 

As the electrical resistance increases, this transition is delayed, indicating the damping effect of 

the energy extraction mechanism. Fourier spectral analysis reveals the presence of both odd and 

even superharmonics in the aerodynamic lift force, highlighting the strong nonlinear fluid-

structure coupling, which becomes less prominent at higher resistances. Phase portraits and 

Poincare maps demonstrate clear transitions between periodic and chaotic states, particularly 

under low resistance conditions. The voltage output is strongly correlated with fluctuations in 

the lift force, reaching a maximum at intermediate resistance before declining due to nonlinear 

suppression. Flow visualizations uncover a range of vortex shedding patterns, including single, 

paired, and multi-pair vortex configurations that weaken at high resistances and lower U∗
r . 

Building upon the insights gained from two-dimensional simulations, this study is extended to 

three-dimensional configurations by systematically increasing the wing's spanwise length to 0.3c, 

0.6c, and 0.9c. The three-dimensional analysis focuses on the conditions that yielded optimal 

voltage output in the two-dimensional simulation results, particularly at U∗
r = 10 for different 

load resistances. The objective is to examine how variations in spanwise length influence fluid-

structure interactions, alter vortex formation and organization, and impact the onset and 

intensity of nonlinear behaviors. Also, the comparative analysis of the 3D and 2D results highlight 
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the influence of spanwise flow instabilities on the energy harvesting performance. These findings 

provide valuable insights for identifying optimal spanwise length and operational parameters 

that enhance power generation efficiency in flutter-based energy harvesting systems. 
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Chapter 1: Introduction 

With the rising global demand for sustainable energy, researchers are increasingly 

exploring innovative technologies that can efficiently harvest and convert ambient energy into 

electricity. One promising area involves aeroelastic energy harvesters that rely on the dynamic 

behavior of fluttering airfoils. Unlike traditional rigid systems, these mechanisms take advantage 

of fluid-induced oscillations to produce continuous power. By embedding piezoelectric materials 

within the structure, the mechanical vibrations generated by flutter can be directly converted 

into electrical energy, making these systems well suited for a range of low-power applications. 

Over the past decade, numerous studies have worked to optimize the design and operation of 

such harvesters by investigating various structural configurations and flow conditions to improve 

their performance and energy efficiency [1], [2], [3], [4]. These investigations have collectively 

advanced our understanding of the underlying physics and improved the energy conversion 

efficiency of flapping foil-based harvesters, emphasizing their potential as a viable alternative to 

conventional wind and hydroelectric turbines. In contrast to traditional wind turbines that rely 

on rotational motion, flutter-based harvesters harness the self-sustained oscillations of airfoils 

interacting with fluid flow. This method offers several distinct advantages, such as the ability to 

operate in low velocity environments, scalability across different sizes, and improved power 

density [5], [6], [7]. 

Energy harvesting using passively flapping airfoils often associated with the phenomenon 

of flutter is fundamentally driven by the principles of fluid-structure interaction (FSI). Flutter is a 

type of dynamic aeroelastic instability that occurs in flexible structures, such as aircraft wings or 
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turbine blades, when aerodynamic forces interact with the structure’s natural modes, resulting 

in self-sustained oscillations. These oscillations can increase in amplitude over time, potentially 

leading to either steady periodic motion or structural failure. In energy harvesting applications, 

this dynamic coupling allows for the continuous extraction of energy from the fluid flow by 

converting the airfoil’s oscillatory motion into electrical power [8], [9], [10]. 

This fluid-structure coupling leads to the development of limit cycle oscillations (LCOs), 

which enable the continuous extraction of energy from the surrounding fluid flow. These 

oscillatory motions have been extensively investigated in terms of mechanical efficiency, with 

particular attention given to critical design parameters such as airfoil geometry [11], [12], mass 

ratio, moment of inertia, and the location of the pitching axis [13]. The pitching and heaving 

kinematics play a significant role in determining the overall energy conversion efficiency, as they 

are closely linked to the vortex dynamics that develop around the airfoil. In addition, the energy 

harvesting performance is strongly influenced by the Reynolds number and the reduced velocity 

[11], [13], [14]. Several studies have also reported notable variations in the energy harvesting 

capability of fluttering foils, underscoring the importance of fluid dynamic effects in optimizing 

their aeroelastic response [15]. Different types of electromechanical transducers have been 

integrated into flutter-based energy harvesting systems to enable the direct conversion of 

mechanical vibrations into electrical energy. These transducers include piezoelectric [16], [17], 

[18], [19]  piezoresistive [20], electromagnetic, and electrostatic mechanisms [21], all of which 

support sustainable micro-power generation. The growing interest in micro-power generators 

(MPGs) has also been driven by progress in micro-machining technologies and the development 

of low-power electronic devices [13], [22][23]. 
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A key factor in the performance of flutter-based energy harvesters lies in the inherent 

nonlinear dynamics that govern their behavior. Unlike conventional systems that depend on 

structural nonlinearities to trigger oscillations, recent studies have shown that fluid-induced 

nonlinearities alone can be sufficient to drive effective energy harvesting [24]. In systems with 

linear structural characteristics, nonlinear effects stemming from unsteady aerodynamic forces, 

vortex shedding, and wake interactions play a critical role in determining the amplitude, 

frequency, and stability of oscillations [25]. These fluid originated nonlinearities give rise to 

complex dynamic phenomena such as bifurcations, limit cycle oscillations (LCOs), and chaotic 

behavior, all of which significantly affect the efficiency and reliability of the energy harvesting 

process [26], [27], [28]. Moreover, the mechanical efficiency of these systems is highly sensitive 

to both structural parameters and flow conditions, making their optimization a critical focus of 

ongoing research [2], [29]. 

Despite significant progress in aeroelastic energy harvesting, most prior studies have 

primarily focused on systems with inherent structural nonlinearities, often neglecting the critical 

influence of nonlinear fluid dynamics. To address this gap, the present work investigates how 

fluid-induced nonlinearities arising solely from unsteady flow phenomena affect the energy 

harvesting performance of fluttering airfoils. A strongly coupled electro-aeroelastic model is 

developed to study the dynamics of a structurally linear system, where all observed nonlinearities 

stem from fluid-structure interactions. 

The 2D computational analysis of this study systematically explores how these fluid-

driven nonlinearities and vortex mechanics influence output power, stability, and bifurcation 

behavior as a function of reduced velocity. Particular attention is given to the onset of 
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nonlinearity, which can trigger dynamic stall and alter the nature of limit-cycle oscillations. The 

emergence of subharmonic and superharmonic frequency components is analyzed to gain 

insights into symmetry or asymmetric behavior, vortex shedding, and the resulting large-

amplitude motions phenomena that play a crucial role in determining energy harvesting 

efficiency. 

Building upon these 2D results, the study extends into three dimensions to examine how 

changes in spanwise length further influence system behavior. By analyzing results with varying 

span lengths (0.3c, 0.6c, 0.9c), the 3D investigation explains how spanwise flow structures and 

three-dimensional wake dynamics affect the harvesting performance. This extension enables a 

more realistic assessment of airfoil-based harvesters operating in unsteady low-speed flows. 

The combined 2D and 3D analysis not only provides a deeper understanding of fluid-

induced nonlinearities in flutter-based systems but also offers practical insights into optimizing 

design parameters for enhanced voltage output and system reliability. The findings contribute to 

filling a key gap in literature and enable the way for more effective deployment of energy 

harvesting technologies in real-world, unsteady aerodynamic environments. 
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Research Objectives: 

The following are the primary objectives of this research: 

- How do nonlinear dynamics and vortex mechanics influence energy harvesting from 

fluttering wings? 

- How do nonlinear dynamics and vortex phenomena affect energy harvesting with 

variations in the span of the wings? 
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Chapter 2: Numerical Methodology 

To model the coupled dynamics between fluid flow and elastically mounted structures, 

we adopt the Arbitrary Lagrangian Eulerian (ALE) formulation [13], [30]. In this framework, the 

conservation equations for mass and momentum, applicable to incompressible flows, are given 

as follows. 

∂uj

∂xj
= 0 

∂ui

∂t
+ uj

∂ui

∂xj
= −

1

ρ

∂p

∂xi
+

1

Re

∂2ui

∂xj ∂xj
 

Here ui = (u, v) are the Cartesian components of the fluid velocity, and p is the pressure. 

The indices (i, j) = (1,2) represent the two Cartesian directions, where (xi)  refers to a specific 

coordinate direction, and (xj) denotes the general spatial coordinates. The variable (p) indicates 

the fluid pressure, and (ρ) is the fluid density. 

The Reynolds number is defined as: 

Re =
ρcU∞

μ
 

 

where ‘c’ is the chord length of the NACA-0012 airfoil,  U∞ is the free-stream velocity, and ‘μ’ is 

the dynamic viscosity of the fluid. 
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In the expression below, ũj = (ũ, ṽ) represents the fluid velocity relative to the moving 

computational grid, where ugj corresponds to the velocity of the grid itself. This relative velocity 

is defined as: 

ũj = (uj − ugj) 

To accurately resolve the boundary layer behavior, a non-staggered, body-fitted O-type 

grid is employed. The grid extends up to 20 chord lengths (20c) from the airfoil surface to ensure 

sufficient spatial resolution. In this mesh layout, all primary variables including velocity 

components and pressure are stored at the centers of the computational cells, while the fluxes 

are computed at the midpoints of the cell faces. Within the ALE framework, the computational 

mesh surrounding a moving structure adapts dynamically to follow the motion of the body. This 

flexible meshing approach allows the interior grid points to move arbitrarily, enabling the grid to 

adjust its shape and configuration while preserving overall mesh quality during deformation. 

Such adaptability is especially important in simulations involving large amplitude oscillations of 

rigid or flexible structures, where considerable mesh distortion would otherwise compromise 

solution accuracy. To ensure robust grid deformation, a re-meshing algorithm is integrated with 

the flow solver. In the present study, we employ the method proposed by[31], which utilizes the 

Radial Basis Function (RBF) interpolation technique. This approach effectively transmits 

boundary displacements throughout the computational domain, maintaining mesh integrity and 

preventing element inversion, even under significant structural motion. 

The Radial Basis Function (RBF) interpolation f(xj) used to map the displacements of 

boundary nodes on the structural surface is mathematically expressed as: 



Chapter 2. Numerical Methodology                                                                        

         
 

8 

                                                     
 

f(xj) = ∑ αi∅(‖xj −xi‖) +  p1(xj),

N

i=1

 

In this formulation, p1(xj) denotes a first-degree polynomial, and αi are the coefficients 

associated with the basis functions. The RBF interpolation approach effectively transfers 

structural boundary displacements throughout the entire computational domain, enabling 

smooth and continuous mesh deformation while preserving the geometric integrity of the grid 

cells. 

The interpolation relies on a set of control points strategically placed along the structure’s 

boundary, with the total number of control points denoted by NC. The radial basis function 

∅(‖∙‖) is evaluated using the Euclidean norm. In the present study, we employ the globally 

supported Thin Plate Spline (TPS) RBF, which is mathematically defined as: 

∅(x) = x2log (x) 

Also, p1(xj) represents the following condition: 

∑ αip1 (xcj(i)) = 0

Nc

i=1

 

The coefficients are obtained by enforcing that the interpolation function f(xj) exactly 

matches the prescribed displacements at the designated control points, as described by the 

following expression: 

f(xcj) = ∆xcj 

Here, ∆xcj denotes the prescribed displacement at each control point xcj . The selection 

of control points is carried out using a greedy algorithm, as outlined in [32]. Once the 

interpolation function is constructed, the displacements of all interior mesh nodes are evaluated 
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accordingly. In the subsequent step, the velocity of each grid node is computed by dividing its 

displacement by the discrete time step ∆t. Thus, the velocity of a node located at xj is given by: 

ugj =
f(xj)

∆t
 

The computed grid velocities are subsequently used to evaluate the relative flux terms 

(Ũand Ṽ) required by the flow solver. A key challenge associated with the RBF-based remeshing 

technique lies in its computational expense, as it involves solving a dense linear system whose 

size scales with the number of control points NC. As this number increases, the resulting system 

becomes progressively ill-conditioned, making iterative solvers unsuitable for efficient solutions. 

To address this, a direct linear solver specifically Gaussian elimination with partial pivoting 

is employed to factorize the coefficient matrix during the preprocessing phase. For enhanced 

computational performance, an explicit form of the RBF method is used in conjunction with the 

greedy algorithm to precompute the coefficient matrix. This precomputation significantly 

reduces the runtime overhead. At each time step, the unknowns within the interpolation scheme 

are resolved using successive forward and backward substitutions, thereby improving the overall 

efficiency and stability of the simulation process. Although computationally demanding, the RBF 

method offers excellent mesh quality preservation during large translational and rotational 

motions, outperforming conventional re-meshing strategies such as those proposed in [33]. Our 

implementation is fully parallelized and capable of supporting three-dimensional simulations 

involving bodies of infinite span. 

However, first 2D simulations are conducted at low Reynolds numbers to suppress 

spanwise flow instabilities, ensuring flow remains effectively two-dimensional. The investigation 

of various design parameters provides critical insights into the structural response and wake 



Chapter 2. Numerical Methodology                                                                        

         
 

10 

                                                     
 

behavior of oscillating systems, which are essential for the development of efficient fluid-based 

energy harvesting technologies. 

We employ the fractional-step method to solve the governing equations for fluid flow. In 

this method, the momentum equations are initially solved separately for each velocity 

component, temporarily disregarding the continuity constraint. During this prediction step, the 

pressure-gradient terms are either neglected or treated as known values, leading to the 

calculation of an intermediate velocity field, denoted by [33]. 

To enforce incompressibility, a pressure Poisson equation is then solved, derived from the 

divergence-free condition of the velocity field. The resulting pressure field is used to correct the 

intermediate velocities, ensuring that the final velocity field satisfies the incompressibility 

constraint. 

For spatial discretization, finite difference schemes are applied. Central differencing is 

used for all spatial derivatives except for the convective terms, which are handled using the 

Quadratic Upwind Interpolation for Convective Kinematics (QUICK) scheme [34]. This scheme 

adopts a directionally biased stencil, selecting the upwind-biased interpolation based on the 

direction of the local flux expressed as: 

Ũj =
(Ũj + |Ũj|)

2
, Ũ−

j =  
(Ũj − |Ũj|)

2
  

The temporal term is discretized using a semi-implicit scheme. Specifically, the diagonal 

diffusion terms are treated using the implicit Crank–Nicolson method, chosen for its favorable 

stability properties, while the remaining terms are advanced in time using the two-step explicit 

Adams-Bashforth method. For a comprehensive discussion of the discretization techniques, 

boundary conditions, and the parallelization approach, readers are referred to [30], [35], [36]. 
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The resulting linear system is efficiently solved using the line successive over-relaxation 

(SOR) method, which is particularly well-suited for structured grid arrangements. The numerical 

scheme’s stability is governed by the Courant Friedrichs Lewy (CFL) condition, which dictates that 

the maximum CFL number within the domain must remain below one. The local CFL number is 

defined as: 

CFL = (
|u|

∆x
+

|v|

∆y
) =  ∆tJ−1(|Ũ|  + |Ṽ|) 

where u and v are the components of flow velocity in the x and y directions, respectively, and J 

denotes the Jacobian. 

 

A. Flow domain and geometry 

1. 2D Flow domain and geometry:  

In the two-dimensional flow analysis, an O-grid is employed, which is particularly for resolving 

the flow around bodies with circular or airfoil-like geometries. In this case, the grid is constructed 

around a NACA 0012 airfoil, whose chord length is normalized to unity. The airfoil is surrounded 

by concentric grid layers, forming an O-shaped structured mesh that ensures a smooth and 

continuous distribution of grid points around the surface. This configuration allows for grid 

refinement in the near-body region, where flow gradients are typically high, thereby capturing 

boundary layer effects and wake development with greater accuracy. The grid spacing increases 

gradually away from the airfoil, reducing computational cost while maintaining fidelity. The outer 

boundary of the domain is set at a distance of 20 times the chord length (20c) from the airfoil, 

which ensures that far-field boundary conditions do not interfere with the near-field flow 



Chapter 2. Numerical Methodology                                                                        

         
 

12 

                                                     
 

dynamics around the airfoil and the following boundary conditions used are mentioned in Table 

1. 

 

 

Figure 1: O-type body-fitted grid around an NACA-0012 airfoil 

 

Table 1: 2D domain boundary conditions 

        Boundary Condition Type 
Mathematical 

Expression 
Description 

          Inlet         Dirichlet ux = U∞, vy = 0 
Uniform inflow with free-stream 

velocity 

         Outlet        Neumann 

         
∂u

∂x
= 0,

∂v

∂x
= 0, 

∂p

∂x
= 0 

Zero-gradient (outflow) 



Chapter 2. Numerical Methodology                                                                        

         
 

13 

                                                     
 

Surface of the 

foil 
      No-slip Wall ux = 0, vy = 0 

              Fluid sticks to surface  

 (no slip or penetration) 

Top & Bottom Free-slip Wall vy = 0, 
∂u

∂y
= 0         No normal flow 

 

2. 3D Flow domain and geometry:  

For the 3D simulations, the 2D O-grid is extended into the spanwise direction to generate 

a fully structured 3D mesh. The baseline 2D grid, constructed around the NACA 0012 airfoil with 

a chord length normalized to unity, is extruded along the z-axis to specified spanwise lengths of 

0.3c, 0.6c and 0.9c. The corresponding spanwise discretization’s employ 24, 48, and 72 uniformly 

spaced nodes, respectively. This extrusion preserves fine near-body resolution in both the 

chordwise and normal directions essential for accurately capturing boundary-layer development 

and near-wake dynamics, while introducing the necessary spanwise extent to resolve three-

dimensional flow phenomena such as spanwise flow and wake instabilities. The grid spacing in 

the spanwise direction is kept uniform to maintain numerical stability, and the mesh is designed 

to preserve cell orthogonality and smoothness across all three dimensions, thereby minimizing 

interpolation errors. 
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Figure 2: 3D Mesh configurations and different lengths of airfoil in the spanwise direction 

B. Aerodynamic forces and moments acting on the airfoil 

The interaction between a fluid and a solid body immersed within it gives rise to forces 

primarily resulting from pressure and shear stress distributions acting on the body's surface. The 

aerodynamic behavior of such systems is commonly characterized using three fundamental non-

dimensional parameters: the lift coefficient CL, the drag coefficient CD, and the moment 

coefficient CD. These coefficients are defined mathematically as follows: 

CL =
Fy(t)

1
2

ρU∞
2 c

, CD =
Fx(t)

1
2

ρU∞
2 c

,  CM =
Mθ(t)

1
2

ρU∞
2 c2

 

Here, Fx(t) and Fy(t) denote the instantaneous drag and lift forces acting on the 

structure, respectively, while Mθ(t) represents the moment about the rotational axis located at 

xp , which corresponds to the position of the elastic supports. The chord length of the foil, 

denoted by ‘c’, serves as the characteristic length scale of the structure. These non-dimensional 
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coefficients provide critical insight into the aerodynamic performance and dynamic response of 

systems subjected to fluid-structure interactions. 

 

C. Electromechanical model 

The electromechanical coupling in the energy harvesting system, as depicted in Figure 3, 

is primarily driven by the structural motion of the airfoil, which induces electrical power 

generation through piezoelectric transducers. The governing equations of this coupled 

aeroelastic system are formulated in a non-dimensional framework to capture the dynamic 

interaction between structural displacement and the resulting electrical response. In particular, 

the non-dimensional plunging displacement is described by eq. (1) and eq. (2), as referenced in 

[30], [37]. 

 

Figure 3: Schematic diagram of an airfoil-based piezo aeroelastic energy harvester 
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ℎ∗̈ + 2𝜁ℎ (
2𝜋

𝑈𝑟
∗) ℎ∗̇ + (

2𝜋

𝑈𝑟
∗)

2

ℎ∗ − 𝑆∗(𝑐𝑜𝑠𝜃 ∙ 𝜃 ̈  − 𝑠𝑖𝑛𝜃 ∙ 𝜃2̇) − (
1

𝑈𝑟
∗)

2

𝑉∗ =
2 ∙ 𝐶𝐿

𝜋𝑚∗
       (1)           

𝜃̈ + 2𝜁𝜃𝑓̅ (
2𝜋

𝑈𝑟
∗) 𝜃̇ + (𝑓̅

2𝜋

𝑈𝑟
∗)

2

𝜃 −
𝑆∗

𝑟𝜃
2 𝑐𝑜𝑠𝜃 ∙ ℎ̈ =

2 ∙ 𝐶𝑀

𝜋𝑟𝜃
2𝑚∗

                                               (2) 

𝑉∗̇ + 𝜎1 ∙ ℎ∗̇ +
𝜎2

𝑈𝑟
∗ ∙ 𝑉∗ = 0                                                                                                (3) 

The non-dimensional heaving displacement is defined as h∗ =
h

c
, where ‘h’ denotes the 

heaving displacement and ‘c’ is the chord length of the airfoil, which is set to unity for 

simplification. The pitching motion is represented by the angular displacement ‘θ’, and reduced 

velocity is defined as  Ur
∗ =

U∞

fn∙ c
 . The radius of gyration, characterizing the mass distribution of 

the airfoil about its axis of rotation, is given by rθ =  √
Iθ

mhL2, where Iθ  is the moment of inertia, 

mh is the structural mass, and ‘L’ is a characteristic length scale. The ratio of natural frequencies 

is defined as f̅ =
fθ

fh
 , where fhand fθ  are the heaving and pitching frequencies, respectively. In 

this study, the heaving and pitching frequencies are chosen such that f̅ = 1 , ensuring that the 

heaving and pitching motions are synchronized, since both frequencies are same therefore, we 

represented by ‘fn′ called as natural structural frequency. 

The linear spring constants satisfy the constraint as 
kθ

kh
=

mh

Iθ
 outlined in [14][38]. Finally, 

the static imbalance defined as the ratio of the distance between the elastic axis and the center 

of mass to the chord length is expressed as  S∗ =
b

C
, and is fixed at a value of -0.04 throughout 

this work. 
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The structural frequency of the airfoil in the heaving direction is given by fh =
1

2π
√

kh

mh
, 

where kh is the linear structural stiffness, and mh is the mass per unit length of the airfoil.  For 

pitching motion, the frequency is defined by fθ =
1

2π
√

kθ

Iθ
 . 

The system’s linear structural damping ratio associated with the heaving degree of 

freedom is expressed as ζh =
ch

2(√khmh)
, and mass ratio is defined as m∗ =

mh

mf
, where mf =

ρπc2

4
, 

represents the mass of the fluid displaced and m∗ = 10. 

By incorporating piezoelectric coupling introduces additional non-dimensional 

parameters. The non-dimensional voltage is defined as V∗ =
V

Vo 
, where ‘V ’ is the generated 

voltage, and Vo  is the reference voltage given by Vo =
mhfh

2 L

θL
  . Also, the electromechanical 

coupling coefficient θL , valued is 1.55 ∗
10−3N

V
. Two additional non-dimensional parameters, 

σ1 and σ2 , are used to characterize the piezoelectric behavior. These are defined as σ1 =

θL
2

mhCpfh
2  and σ2 =

1

RCpfh
, where  CP is the capacitance, measured in nanofarad, which is 120 nF, 

and R is the load resistance measure in  kΩ[39]. The governing first-order ordinary differential 

equation for voltage contains three key terms: one representing the rate of voltage change, 

another indicating the strength of piezoelectric coupling, and a third capturing energy dissipation 

through the electrical circuit. Additionally, Iθ denotes the mass moment of inertia, and the radius 

of gyration ‘r’ is defined as 0.548c from the axis of rotation. 
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D. Verification 

1. 2D Verification of grid independence 

To establish mesh independence, simulations are performed using three structured grid 

resolutions: 196 × 256 (coarse), 304 × 400 (medium), and 464 × 600 (fine). The computational 

model involves a NACA 0012 airfoil subjected to combined pitching and heaving motions at a 

Reynolds number of Re = 1100. The reduced velocity is defined as U∗r =
U∞

fn∙ c
, where the free-

stream velocity (U∞)  is set to 1, and ′fn′ is the natural structural frequency. 

 

 

Figure 4: Result for the grid-independence study 
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The unsteady aerodynamic response is characterized by the lift coefficient (CL) over non-

dimensional time. As depicted in Figure 4, the medium and fine grids produce nearly overlapping 

CL profiles, indicating negligible variation with further grid refinement. To quantify the level of 

convergence, root-mean-square (RMS) values of CL are computed at statistically steady 

conditions, yielding values of 0.800165, 0.878834, and 0.884199 for the coarse, medium, and fine 

grids, respectively (refer to Table 2). The relative error in RMS CL between the coarse and 

medium grids is approximately 9.52%, while the difference between the medium and fine grids 

is only 0.61%. 

 

Table 2: Grid resolution and corresponding RMS values of 𝐶𝐿  

     Grid 𝐍𝐱 𝐍𝐲 Size 𝐂𝐋 (𝐑𝐌𝐒) 
 

Relative error (%) 
 

      G1 196 256 50176 0.800165 

 
G1 and G2 

(9.52%) 
 

      G2 304 400 121600 0.878834 
 

G2 and G3 
(0.61%) 

       G3 464 600 278400 0.884199 

 

Based on these observations, the medium grid is selected for all subsequent simulations, offering 

an optimal compromise between computational efficiency and numerical accuracy. 

 

2. 2D Verification of timestep independence 

For time step independence, additional simulations are conducted using the medium grid 

resolution. The results of this time-step sensitivity analysis are presented in Figure 5. Three 
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different time-step sizes are tested, corresponding to 5000, 8000, and 10,000 discrete steps per 

oscillation cycle of the airfoil. The oscillation period ′𝜏′ was selected based on the reference study 

by Farooq et al.[13]. All flow conditions remained consistent with those used in the previously 

described grid-independence analysis. 

 

Figure 5: Results for the time-step convergence study 

 

The root-mean-square (RMS) values of the lift coefficient (CL) for the three cases are 

found to be 0.890442, 0.892498, and 0.894194, respectively, as summarized in Table 3. The 

relative error between the 5000 and 8000 steps simulation cases was approximately 0.4196%, 

while the difference between the 8000 and 10,000 steps cases further decreased to 0.1897%. 

These results demonstrate that the solution becomes progressively insensitive to further 
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reductions in the time-step size, indicating temporal convergence. It is worth noting that 8000-

time steps per cycle correspond to a time-step size of ∆t = 0.000125 sec.  

 

Table 3: Convergence study for different time-steps 

Time steps Grid 𝐂𝐋(𝐑𝐌𝐒) Relative error (%) 

5000 

Medium 

0.890422 
T1 and T2 
(9.52%) 8000 0.892498 

1000 0.894194 T2 and T3 (0.61%) 

 

Additional validation of the numerical results obtained using the in-house solver can be found in 

Refs. [30], [35], [40] . 

 

3. 3D Verification of grid independence 

For the 3D simulations, the medium-resolution grid from the 2D configuration (304 × 400) 

is adopted as the base mesh and extruded into the spanwise direction. Three spanwise lengths 

are considered to investigate the influence by 3D. To maintain a consistent spatial resolution 

across all cases, the grid spacing in the spanwise direction is kept constant. This is achieved by 

defining spanwise spacing as x =
L

NZ
, where L is the spanwise length which is 0.3c, 0.6c and 0.9c 

and NZ is the number of nodes along the z-axis. Accordingly, NZ is set to 24, 48, and 72 for 

spanwise lengths of 0.3c, 0.6c and 0.9c respectively, thereby ensuring uniform cell dimensions 

throughout the computational domain and preserving numerical accuracy when comparing 

results across different spanwise configurations. 
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Table 4: 3D Domain size at different spanwise length 

Grid 𝐍𝐱 𝐍𝐲 𝐍𝐳 Spanwise length Total number of nodes 

G2 

304 400 24 0.3c 2,918,400 

304 400 48 0.6c 5,851,392 

304 400 72 0.9c 8,777,088 
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Chapter 3: Two-Dimensional Fluid-Structure-Electrical 

Interactions 

We investigate the flow over a two-degree-of-freedom (2DoF) NACA 0012 airfoil at a 

Reynolds number of 1100, with translational and rotational damping ratios of ζh =

0.008 and ζθ = 0.050, respectively, determined based on the mass ratio (m∗) and the moment 

of inertia ( Iθ). The simulations are performed over a range of reduced velocities ( Ur
∗) from 1 to 

12, which serves as the primary control parameter influencing both the effective damping and 

stiffness of the system. For each case, the root-mean-square (RMS) values of the non-

dimensional heaving displacement ( h∗), pitch angle(θ), lift coefficient (CL), and drag coefficient 

(CD) are computed and presented as functions of (Ur
∗) for different values of the electrical 

resistance (R), as illustrated in Figure 6. 
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Figure 6: Dependence of (a) h*(RMS), (b) θ, (c) CL, (d) CD on Ur
∗  for R = 0, 250, 500, and 750 kΩ 

 

From the plots, for Ur
∗ ϵ [1,5] , the airfoil remains in a stable state with no discernible 

oscillations, regardless of the electrical resistance. Around Ur
∗ = 6, small-amplitude motions 

appear, marking the onset of self-excited oscillations. As Ur
∗  increases to 7, these oscillations 

become sustained, with amplitudes continuing to grow until reaching a certain peak value. This 

overall trend is consistently observed in ( h∗), (θ), (CL), and (CD) . 

In Figure 6a, which shows the evolution of ( h∗), the amplitude begins to rise beyond Ur 
∗ = 

6, for R = 0 kΩ, reaching its maximum at Ur
∗ = 11. For R > 0 , oscillations also initiate near 
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 Ur
∗=6, and the peak amplitude is reached at  Ur

∗ = 11 for R = 250 and 750 kΩ , but at  Ur
∗ = 10 

, R = 0 kΩ, the heaving amplitude shifted towards the lower reduced velocity. 

In Figure 6b, the pitching amplitude attains its peak at  Ur
∗ = 8 for the case of R = 0 kΩ, 

whereas the presence of electrical resistance R > 0 shifts this peak to  Ur
∗ = 10. A comparable 

shift is evident in Figure 6c-d for the (CL), and (CD), respectively, with maxima occurring at  Ur
∗ = 

8 under zero resistance and at  Ur
∗ = 10 when a resistive load is applied. Following these maxima, 

the amplitudes of (θ), (CL), and (CD),  progressively decline, suggesting that load-induced 

damping begins to dominate, driving the system toward to lower oscillations. 

Interestingly, the heaving amplitude in Figure 6a deviates from this general pattern for 

R = 0, exhibiting a delayed response before aligning with the decay trend observed in the other 

parameters. Across all cases, increasing resistance consistently suppresses oscillation amplitudes 

and shifts the bifurcation point to higher reduced velocities. Beyond  Ur
∗ = 10, the damping effect 

introduced by the electrical load becomes the prevailing influence on the system’s response, 

substantially attenuating the oscillations and returning to steady-state motion. To gain deeper 

insight into the system dynamics, we select the reduced velocity Ur
∗ corresponding to the highest 

observed CL amplitude for each load resistance and analyze the temporal evolution of the lift 

coefficient through Temporal-history plots. 

- Temporal-history plots of 𝑪𝑳 

The temporal histories of the lift coefficient CL after the system reaches steady-state 

dynamic response are presented in Figure 7. The lift coefficient serves as a fundamental 

parameter, directly representing the fluid–structure interaction dynamics and acting as a primary 

indicator of the vortex-shedding frequency. Therefore, its behavior is critical for assessing the 
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energy harvesting performance of the system. Figure 7a illustrates the CL time history 

corresponding to Ur
∗ = 8 under R = 0 . In this case, CL exhibits large-amplitude, periodic limit-

cycle oscillations with consistent peak-to-peak variations. The signal is characterized by 

asymmetry and irregularities, which signify the presence of nonlinear effects within the system. 

These temporal profiles provide important information on the initiation and progression of 

nonlinearities under different control parameters, influencing the overall dynamic response of 

the nonlinear aeroelastic energy harvesting system. 

 

Figure 7: Temporal histories of 𝐶𝐿 with the maximum amplitude at (a)  𝑈𝑟
∗ = 8 and R = 0 Ω, (b) 

 𝑈𝑟
∗ = 10 and R = 250 kΩ, (c)  𝑈𝑟

∗ = 10 and R = 500 kΩ, and (d)  𝑈𝑟
∗ = 10 and R = 750 kΩ 
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With an increase in load resistance to R = 250 kΩ, as shown in Figure 7b, the CL becomes 

smoother and exhibits reduced distortion, accompanied by a significant decrease in amplitude. 

This behavior reflects enhanced damping introduced by the electrical load. A similar pattern is 

observed at R = 500 kΩ in Figure 7c, where the signal further smooths and the amplitude 

decreases, indicating stronger damping effects. At R = 750 kΩ, depicted in Figure 7d, the signal 

shows minimal asymmetry and skewness, demonstrating substantial suppression of nonlinear 

dynamics. The increased load-induced damping reduces the lift coefficient and shifts the system 

toward a near quasi nonlinear state through energy extraction. These findings highlight the 

critical role of resistive aerodynamic damping in attenuating nonlinear behavior, as evidenced by 

the progressive changes in signal amplitude and shape. To further examine the nonlinear 

characteristics of the system, the frequency spectra of the lift and drag coefficients are evaluated 

using Fast Fourier Transform (FFT) analysis. 

- Fast Fourier-Transform plots 

An FFT-based analysis of CL is performed for all cases across the full range of reduced 

velocities considered in this study. However, only the representative cases corresponding to the 

maximum CL amplitude for FFT plots with some neighboring reduced velocities, to illustrate how 

the system’s nonlinearity develops or decays. 

Table 5: FFT analysis for selected  𝑈𝑟
∗ 

FFT Analysis for Selected Reduced Velocities (𝐔𝐫
∗) 

R (kΩ)  Ur
∗ Sub-figure 

0 7-9 a-c 

250 10-12 d-f 
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500 10-12 g-h 

750 10-12 j-l 

 

For  Ur
∗∈ [0,5], the oscillations are extremely small, approaching zero. At  Ur

∗ = 6, a slight 

growth in oscillation is observed, although the amplitude remains limited. Consequently, the 

analysis focuses on cases at R = 0 for reduced velocities  Ur
∗∈ [7,9], capturing the onset and 

amplification of nonlinear behavior, as evidenced by the evolution of spectral peaks. R > 0, a 

similar pattern is observed in the range  Ur
∗ = [10 − 12], reflecting the transition from peak CL 

amplitudes to reduced oscillation levels. This reduction is attributed to the increased damping 

introduced by the electrical load, which mitigates the nonlinear dynamics of the system. 

At R = 0, as  Ur
∗ increases from 7 to 12, the spectra exhibit multiple frequency 

components, indicating the onset and progression of nonlinear behavior and this multi-frequency 

response, including a broadband spectrum suggestive of chaotic dynamics, is observed for cases 

with non-zero low load resistance within the same  Ur
∗ range. However, this complex response 

persists only up to a certain higher  Ur
∗ value as the load resistance increases. The fundamental 

frequency remains the dominant component in the system’s dynamic response, representing the 

primary vibration mode excited under the given conditions. This fundamental frequency closely 

approximates but does not exactly coincide with the structure’s natural frequency, the inherent 

frequency at which it vibrates freely without external forcing or damping. This slight discrepancy, 

documented in Table 6. Notably, the dominant frequency is consistent across all resistance values 

considered (R = 0, 250, 500, and 750 kΩ ), with corresponding frequency values also provided 
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in Table 6. It is important to highlight that at higher  Ur
∗ values, the fundamental frequency 

increasingly deviates from the natural structural frequency. 

Table 6: Fundamental and natural structural frequencies for 𝑅 = 0 − 750 𝑘𝛺 at various  𝑈𝑟
∗ 

 𝐔𝐫
∗ Fundamental Frequency (Hz) Natural Structural Frequency (Hz) 

6 0.1699 0.16666 

7 0.14500 0.14285 

8 0.1300 0.12500 

9 0.11500 0.11111 

10 0.10500 0.10000 

11 0.09499 0.09090 

12 0.08999 0.08333 
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Figure 8: Spectra of 𝐶𝐿 at 𝑅 =  0 𝛺: (a)  𝑈𝑟
∗ = 7, (b)  𝑈𝑟

∗ = 8, (c)  𝑈𝑟
∗ = 9; and at 𝑅 =  250 𝑘𝛺, (d) 

 𝑈𝑟
∗ = 10, (e) 𝑈∗

𝑟 = 11, (f)  𝑈𝑟
∗ = 12 

 

The FFT spectra of CL reveals prominent contributions from both odd and even harmonics 

of the fundamental frequency (fo), indicating the presence of both cubic and quadratic 

nonlinearities within the system, as shown in Figures 8 and 9. None of the spectra display 

subharmonics, suggesting the absence of period-doubling phenomena and incommensurate 
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frequencies. The observed superharmonic peaks arise from nonlinear effects associated with 

quadratic and cubic terms in the system dynamics. Specifically, quadratic nonlinearities induce 

response asymmetry and redistribute energy across superharmonics at integer multiples of the 

fundamental frequency (i.e., 2fo 3fo, etc.) [26]. Similar behavior is observed in the CL  spectra at 

higher  Ur
∗, as depicted in Figures 8 and 9. 

 

Figure 9: Spectra of 𝐶𝐿  at 𝑅 =  500 𝑘𝛺: (g–i) for  𝑈𝑟
∗ = 10–12, and at 𝑅 =  750 𝑘𝛺: (j–l) for  𝑈𝑟

∗ 

= 10–12 

 

The superharmonics and nonlinearities exhibit sensitivity to changes in load resistance. 

At R = 0, both odd and even harmonics are clearly present. As  Ur
∗ and R increase and the 



Chapter 3. Two-Dimensional Fluid-Structure-Electrical Interaction  

         
 

32 

                                                     
 

amplitudes of these harmonics gradually decrease. Within the CL spectra, the harmonic 

amplitude decay follows a distinct pattern: even harmonics diminish first, followed by the odd 

harmonics. This asymmetric decay behavior in the frequency spectrum has been previously 

reported by Hammond et al. [38]. In the present study, this trend is evident in Figures 8a-8f and 

9g-9l. At  Ur
∗ = 12 and R = 750 kΩ, the FFT spectrum is dominated by a single fundamental 

frequency with very weak superharmonics and minimal spectral energy distributed across other 

frequencies. This indicates the system transitions toward quasi-nonlinear behavior, characterized 

by weak nonlinearity and low-amplitude oscillations in the lift coefficient CL . This reduction in 

oscillation amplitude is also reflected in the corresponding temporal histories shown in Figure 7. 

To further investigate the absence of subharmonics in the system’s response, the FFT 

spectra of the drag coefficient CD are presented in Figure 10. These spectra reveal the presence 

of superharmonics only, with the second harmonic (twice the fundamental frequency) being the 

most prominent. Even harmonics consistently exhibit higher amplitudes than odd harmonics, 

indicating that even harmonics contribute more substantially to the signal’s energy and dominate 

the spectral content across varying load resistance values. Since the spectra does not show the 

emergence of additional frequencies as the control parameters increase, they provide limited 

insight into any potential transition to chaotic behavior in the system. 
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Figure 10: Spectra of 𝐶𝐷 at (a)  𝑈𝑟

∗* = 8, 𝑅 =  0 Ω; (b)  𝑈𝑟
∗ = 10, 𝑅 =  250 𝑘𝛺; (c)  𝑈𝑟

∗ = 10, 𝑅 =

 500 𝑘𝛺; (d)  𝑈𝑟
∗ = 10, 𝑅 =  750 𝑘𝛺 

 

To overcome this limitation, phase portraits plotting CL versus CD are analyzed. These 

visualizations provide qualitative insights into the system’s phase-space dynamics, revealing key 

features of its temporal evolution and offering a deeper understanding of the underlying 

nonlinearities. 

- Phase portraits 

Phase maps are constructed using CL and CD to investigate the system’s temporal 

evolution by visualizing its trajectories, as illustrated in Figures 11 and 12. The phase portraits 

reveal increasing skewness, particularly along the CD axis toward positive values, with the shape 

extending more prominently to the right compared to the left, where CL increases up to  Ur
∗ = 8. 

Beyond this point, the trajectories become narrower and less skewed as CL decreases except for 

the case shown in Figure 11a, which exhibits quasi-nonlinear behavior on a very small scale. 
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Figure 11c displays the most pronounced asymmetry, indicating strong quadratic nonlinear 

interactions. With increasing load resistance, the skewness and distortion of the phase portraits 

gradually diminish, suggesting that enhanced electrical damping suppresses quadratic nonlinear 

effects. Additionally, phase portraits are examined across varying  Ur
∗ values. At R = 0 kΩ and 

 Ur
∗ = 6, the airfoil undergoes low-amplitude oscillations dominated by a single frequency. The 

corresponding phase portrait in Figure 11a shows a thick, closed-loop trajectory with smooth 

progression, indicative of a near-periodic response governed by fluid-structure interactions. 

 

Figure 11: Phase portraits at 𝑅 =  0. (a-b) Transition phase close to quasi-nonlinear. (c–g) 

Periodic state. (h-i) chaotic behavior, as indicated by irregular trajectories 
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As  Ur
∗ increases to 7 and beyond, the amplitude of CL steadily grows. At  Ur

∗ = 8, the 

trajectory forms a thinner, well-defined closed loop, as shown in Figure 11c, indicating the 

establishment of a stable periodic limit-cycle oscillation (LCO) [17], [26], [41]. This double-looped 

pattern between CD and CL further suggests that CD oscillates at twice the frequency of CL. 

Specifically, a full loop appears for CL, while only a half loop is observed for CD, confirming that 

CD varies at double the frequency of CL, as depicted in Figure 11. The airfoil maintains high 

amplitudes of both CL and CD up to  Ur
∗ = 8 in Figure 10c. As  Ur

∗ increases toward 12, the phase 

portraits display increasingly irregular trajectories, characterized by distorted loops and 

irregularities, signaling a transition toward chaotic dynamics, as illustrated in Figures 11e-11g. 

To investigate the system’s behavior beyond this regime, a simulation was performed at 

a higher  Ur
∗. The resulting phase portraits, shown in Figures 11h-11i, exhibit non-uniform, open-

loop trajectories characteristic of chaotic dynamics. In this state, both CL and CD increase more 

rapidly, indicating that aerodynamic forces dominate the structural response, with nonlinearities 

primarily arising from fluid dynamics rather than the structure itself. 

When the electrical load resistance is introduced, the system’s transition pathway is 

altered. Initially, the trajectory thickens, with both CL and CD increasing as  Ur
∗ rises. Around 

 Ur
∗ = 10, the system enters a limit-cycle oscillation (LCO) regime, characterized by maximum 

amplitudes and a broader, closed-loop trajectory, as shown in Figure 12. At higher  Ur
∗ values and 

increased resistance, the oscillations become damped, and the airfoil’s trajectory evolves into a 

smoother closed loop. However, the time required to reach the LCO state increases with 

increasing R and  Ur
∗, indicating enhanced damping and a shift toward quasi-nonlinear behavior, 
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as also illustrated in Figure 9. The corresponding FFT spectra shows dominant frequency peaks 

with very weak superharmonics, which is reflected in the very small, closed loop observed in 

Figure 12i. It is important to note that this response is not considered strictly linear due to the 

presence of these weak nonlinear components. This method offers qualitative insights into the 

system’s behavior, enabling the distinction between periodic, quasiperiodic, and chaotic regimes 

based on the spatial patterns and distributions of points within the map. To gain deeper insight 

into the system’s state, Poincare maps are plotted for further analysis. 

 

Figure 12: Phase portraits from  𝑈𝑟
∗ = 10 to 12. (a–c) 𝑅 =  250 𝑘𝛺, (d–f) 𝑅 =  500 𝑘𝛺, (g–i) 𝑅 =

 750 𝑘𝛺  
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The highest amplitude appears at lower  𝑈𝑟
∗, and the system moves towards low amplitude as 𝑅 

increases, and the sequence progresses from left to right. 

 

- Poincare maps  

Poincare maps are generated for cases exhibiting higher CL values across different load 

resistances. For R = 0 kΩ, maps are shown at  Ur
∗ = 8 and 13. The Poincare sections are created 

by plotting CL versus CD  at three characteristic points in the oscillation cycle corresponding to 

the maximum, zero, and minimum heaving amplitudes. 

For R = 0 kΩ at  Ur
∗ = 8, Figures 13a–13c illustrate that the points initially appear widely 

dispersed but gradually converge or overlap over time. This behavior signifies a transition from 

quasi-nonlinear to periodic nonlinear dynamics, where the system repeatedly returns to the 

same point in the Poincare section, indicating a steady state with a consistent trajectory. This 

pattern is evident in Figures 13a–13c and persists for  Ur
∗ values up to 12. 

As  Ur
∗ increases further, the Poincare points shown in Figures 13d-13f initially cluster but 

then disperse into scattered distributions. This pattern indicates a transition from a periodic limit-

cycle oscillation (LCO) to chaotic dynamics via a crisis route, consistent with the distorted, open-

loop trajectories observed in the phase portraits of Figures 11h-11i. The trajectory loses its 

periodicity, exhibiting irregular bursts as  Ur
∗ surpasses a critical threshold. Corresponding FFT 

spectra shows no evidence of subharmonics, thereby ruling out period-doubling, period-n, or 

incommensurate frequencies associated with quasi-periodic states. The increase in  Ur
∗ intensifies 

aerodynamic forcing on the structure, while simultaneously reducing effective damping and 

spring stiffness. These effects cause the system to follow a non-uniform trajectory that does not 
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revisit the same points in the Poincare section, further evidence of the onset of chaotic behavior 

as illustrated in Figures 11h-11i. 

 

Figure 13: Poincare maps constructed under three different conditions. (a–c), 𝑅 =  0 𝛺 and  𝑈𝑟
∗ 

= 8, showing a periodic nonlinear state. (d–f) , 𝑅 =  0 𝛺 and  𝑈𝑟
∗ = 13, where chaotic behavior is 

observed. (g–i) at 𝑅 =  250 𝑘𝛺 and  𝑈𝑟
∗ = 10 

In contrast, for higher load resistances such as R = 250 kΩ (Figures 13g–13i), R =

500 kΩ (Figures 14a–14c), and R = 750 kΩ (Figures 14d–14f), the Poincare points converge 

more gradually. As R increases, the points become more densely clustered, indicating that the 

system requires significantly more time to transition from the transient regime to a periodic 

steady state. This behavior underscores the damping effect introduced by the electrical load 
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resistance, which inhibits the system’s progression toward chaotic dynamics. Moreover, both the 

phase portraits and Poincare maps demonstrate that the system maintains periodic behavior 

under applied load resistance, whereas in the absence of load, the system transitions to chaos 

beyond  Ur
∗ = 12 following a crisis route.  

 

Figure 14: Poincare maps at 𝑅 =  500 𝑘𝛺 for  𝑈𝑟
∗ = 10 shown in (a–c) and at 𝑅 =  750 𝑘𝛺 at  𝑈𝑟

∗ 

= 10 shown in (d–f) 

Furthermore, the phase maps are generated to characterize the system’s dynamic response over 

the entire range of reduced velocities. 
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- Phase map and vortex patterns 

 The phase map is plotted to capture the system’s behavior over the reduced velocity 

range  Ur
∗ = 6 to 13, as introduced earlier. To further investigate the dynamics at  Ur

∗ = 13 with 

R = 0, the results confirm the emergence of chaotic motion via the crisis route, as previously 

identified through phase portraits and Poincaré maps. Subsequently, a nonlinear solution map 

on the R and Ur
∗ is presented in Figure 15. For  Ur

∗ = 6, the triangle shape in the phase map 

indicates quasi-nonlinear behavior. As  Ur
∗ increases, the system transitions into a periodic 

nonlinear regime up to  Ur
∗ = 12. Beyond this  Ur

∗, the response becomes chaotic, marked by a 

circle for the R = 0 case. When R = 250 kΩ, the system initially exhibits quasi-nonlinear 

behavior and transitions to periodic nonlinear oscillations at  Ur
∗ = 13. For R = 500 kΩ, quasi-

nonlinear behavior persists up to  Ur
∗ = 7, followed by periodic nonlinear motion, and eventually 

reverts to quasi-nonlinear dynamics at  Ur
∗ = 13. With a further increase to R = 750 kΩ, the 

system shows quasi-nonlinear motion up to  Ur
∗ = 7, transitions to periodic nonlinear oscillations 

up to  Ur
∗ = 11, and again returns to quasi-nonlinear behavior. Overall, the phase maps 

demonstrate that increasing resistance progressively narrows the range of nonlinear responses 

across reduced velocities, indicating a resistance-induced modulation of the system’s nonlinear 

characteristics, which effectively introduces additional damping. 
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Figure 15: A phase map to illustrate evolution of the systems dynamics with variations in 𝑅 and 

 𝑈𝑟
∗ 

To gain deeper insight into the nonlinear states of the system described earlier, we 

examine the corresponding vortex shedding patterns. Figure 16 presents the phase map, 

illustrating the flow regimes associated with each half cycle of the oscillating foil. Distinct flow 

behaviors emerge across different combinations of electrical resistance R and reduced velocity 

 Ur
∗. The filled contour regions indicate cases where the shear layer remains attached to the foil 

surface, producing low-amplitude responses. This is consistent with the small lift coefficients 

shown in Figure 6 and corresponds to the quasi-nonlinear regime identified in Figure 15. 

In Regime 2, the wake transitions to a single-vortex (S) shedding pattern, represented by 

triangular symbols in the phase map, which aligns with the periodic nonlinear regime in Figure 

14. As the flow and system parameters vary further, the wake evolves to exhibit multiple vortex 

configurations, including single vortices (S), vortex pairs (P), and vortex triplets (T), where three 
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vortices are shed simultaneously. The coexistence of S, P, and T structures, denoted as multiple 

pair (mP), signifies an increase in flow complexity and a stronger nonlinear response. These 

multiple patterns are characteristic of the periodic nonlinear regime in Figure 15. 

In the chaotic regime, marked by circular symbol in Figures 15 and 16, the shedding 

becomes more irregular. The dominant structure remains mP, but additional hybrid 

configurations, such as P+S, emerge, as identified in Regime 4. This regime reflects the highest 

degree of nonlinear complexity in the system’s wake dynamics. 

 

Figure 16: Phase maps show the types of regimes that emerge as 𝑅 and  𝑈𝑟
∗ vary. The 

corresponding vortex shedding patterns observed during a representative half-cycle are marked, 

highlighting the vortex shedding at different states of nonlinearities. 

 

To further explain the relationship between vortex shedding patterns and the nonlinear 

behavior of the system, we examine how the wake dynamics evolve with varying  Ur
∗ and R for 
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selected cases previously analyzed. For  Ur
∗ ranging from 1 to 6, the shear layer remains attached 

to the airfoil surface, as also indicated in the phase map in Figure 15, and no significant 

oscillations are observed. Once the system reaches the critical point identified in Figure 5, vortex 

shedding initiates at  Ur
∗ = 7 for lower resistance values. In this regime, the airfoil exhibits 

synchronous heaving and pitching motions, producing a single-vortex (S) shedding pattern. As R 

increases, this S pattern weakens due to load-induced damping. 

With further increases in  Ur
∗, vortex shedding persists in phase with the oscillations, 

promoting boundary-layer separation under the influence of a strong adverse pressure gradient 

over the airfoil. This separation intensifies at higher  Ur
∗, leading to flow structures in each half-

cycle that deviate from classical configurations such as the von Kármán vortex street, 2S, or 1P. 

At larger oscillation amplitudes, the number of shed vortices increases, likely due to reduced 

effective damping. Correspondingly, the lift coefficient (CL) spectra displays multiple frequency 

components, which can be attributed to more vigorous vortex shedding. 

In this study, the observed shedding patterns include a range of distinct configurations, 

such as S, multiple-pair (mP) patterns composed of S, P, and T structures, as well as hybrid mP 

and P+S patterns, as defined earlier. These observations are consistent with the findings reported 

by Wang et al. [14].  
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Figure 17: The vortex structures labeled as S, P, and T formed during one half-cycle at (a–d),  𝑈𝑟
∗ 

= 8 and 𝑅 =  0 𝛺 and at (e-h),  𝑈𝑟
∗ = 10 and 𝑅 =  250 𝑘𝛺 

We now examine selected cases that illustrate representative vortex shedding patterns. 

At low R and  Ur
∗, vortex shedding initiates around  Ur

∗ = 7 with a single-vortex (S) pattern. By 

 Ur
∗ = 8, shedding becomes more vigorous as the airfoil attains larger oscillation amplitudes, fully 

developing nonlinear characteristics. In this regime, the unsteady aerodynamic response is 

dominated by rapid variations in the instantaneous angle of attack, leading to delayed flow 

separation, the formation and shedding of large leading-edge vortices (LEVs), and abrupt 
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fluctuations in lift and moment coefficients. This phenomenon, observed in Figure 17 and 19 for 

cases achieving maximum amplitudes, corresponds to dynamic stall. 

For the Reynolds number considered in this study, the instantaneous angle of attack 

during these events exceeds the static stall angle [42]. As shown in Figure 17a, when the foil is in 

the upstroke, a low-pressure region forms near the leading edge on the suction surface, while 

the pressure surface experiences comparatively higher pressure. This pressure gradient induces 

strong suction near the leading edge, initiating the formation of a coherent LEV. As the foil 

continues to rise, both lift and effective angle of attack increase, causing the LEV to grow in size 

and strengthen in terms of low-pressure region. 

At the peak of the upstroke corresponding to the maximum angle of attack Figure 18, the 

upper-surface boundary layer can no longer remain attached and detaches near mid-chord due 

to the rapid reversal of motion. The LEV then rolls up and separates from the foil, producing a 

sudden drop in lift. In the subsequent downstroke, the LEV convects toward the trailing edge and 

is partially reattached (recaptured) by the foil, generating a localized low-pressure region and 

temporarily restoring lift. This vortex recapture also induces a noticeable delay in subsequent 

vortex shedding, as illustrated in Figure 17 and 19, and is clearly reflected in the temporal lift 

coefficient profiles in Figure 7. At the instant of peak lift, the flow sheds a single-vortex (S) 

structure, which is subsequently followed by paired (P) and triplet (T) vortices, reflecting a 

progressive escalation in flow instability. 
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Figure 18: Plots for variations in the effective angle-of-attack of the foil for different values 

of  Ur
∗ and R 

During the upstroke, the airfoil sheds counterclockwise (CCW) vortices, while clockwise 

(CW) vortices are shed during the downstroke, maintaining symmetry with respect to the stroke 

direction. Among these, the (S) vortex consistently emerges as the dominant structure in terms 

of both size and circulation. As previously discussed, the LEV rolls up, detaches, and in some cases 

reattaches downstream near the trailing edge, where it constructively interacts with a trailing-

edge vortex of the same rotational sense. Additional vortices are generated and shed from the 

trailing edge during the downstroke as the effective angle of attack increases once again. This 

shedding pattern persists across different resistance values R. 

Comparative phase plots show that large amplitude CL oscillations correspond to the 

periodic nonlinear regime, which is frequently associated with the mP vortex shedding pattern. 
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However, as R increases along with  Ur
∗, the system progressively transitions toward a quasi-

nonlinear regime. This trend is also evident in Figures 17 and 19, where vortex activity remains 

pronounced at lower R but diminishes gradually with increasing R and  Ur
∗. 

 

Figure 19: The vortex structures labeled as S, P, and T formed during one half-cycle at (a–d)  𝑈𝑟
∗ = 

10 at 𝑅 =  500 𝑘𝛺 and at (e–h)  𝑈𝑟
∗ = 10 for 𝑅 =  750 𝑘𝛺 

 

For the case with R = 0 and  Ur
∗ = 13, which exhibits chaotic behavior, the corresponding 

vortex pattern is shown in Figure 20. The oscillation amplitude becomes markedly large, with the 



Chapter 3. Two-Dimensional Fluid-Structure-Electrical Interaction  

         
 

48 

                                                     
 

detachment of the LEV from the foil surface causing a substantial loss in lift. In this regime, a new 

vortex-shedding mode emerges, characterized by a hybrid P+S pattern in combination with 

multiple-pair (mP) vortices. As illustrated in Figure 20a-20f, the LEV undergoes sustained growth 

in size, reflecting an increase in the aerodynamic forces acting on the structure. This continuous 

enlargement of the LEV, coupled with intensified vortex interactions, signifies a transition toward 

a chaotic state driven by progressively increasing unsteady aerodynamic loads. 

 

Figure 20: (a–d) Vortex structures labeled as S, P, mP, and P + S formed during one half-cycle at 

 𝑈𝑟
∗ = 13 with 𝑅 =  0 𝛺. (e, f) subsequent variations in the flow field when the foil already begins 

its downstroke 
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As discussed earlier, Figure 6 illustrates the variation of CL with  Ur
∗, showing that the 

bifurcation region narrows with increasing electrical resistance R. This behavior indicates that 

higher resistive loading progressively limits the onset and growth range of oscillations due to 

enhanced damping effects. 

The analysis is further extended to the electrical response of the system, focusing on the 

voltage output during the onset of oscillations, the attainment of maximum amplitude, and 

across varying  Ur
∗ and R. The non-dimensional voltage (V∗), is computed at each time step by 

the solver, and once the system reaches a steady oscillatory state, the root-mean-square (RMS) 

value VRMS
∗  , is evaluated using the formulation outlined in subsection 2.2. Figure 20 presents 

VRMS
∗  as a function of reduced velocity. The voltage profile follows the bifurcation pattern 

observed in the dynamic response (see Figure 6 for CL vs.  Ur
∗), with larger oscillation amplitudes 

of CL corresponding to higher voltage outputs through the piezoelectric coupling mechanism. 

The results also show how voltage generation varies with both  Ur
∗ and R. Comparison 

with the phase portraits (Figures 12a, 12d, and 12g) and vortex shedding patterns (Figures 17 and 

19) reveal that higher voltage outputs coincide with cases exhibiting larger vortex shedding 

activity and nonlinear periodic behavior in the structural response. Conversely, as the system 

transitions toward a quasi-nonlinear state, both vortex shedding intensity and voltage amplitude 

decrease, indicating reduced energy transfer from the fluid to the structure. From the voltage 

profiles, it is also evident that the highest electrical output occurs at larger R values and at  Ur
∗ 

corresponding to the maximum CL. 
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Figure 21: RMS voltage (𝑉∗) as a function of reduced velocity (𝑈𝑟
∗) for various load resistances 
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Chapter 4: Three-Dimensional Fluid-Structure-Electrical 

Interactions 

In this chapter, the influence of nonlinear dynamics and vortex mechanics on energy 

harvesting is examined for varying spanwise lengths in the third dimension. Three spanwise 

lengths (0.3c, 0.6c, and 0.9) are considered for the 3D fluid-structure-electrical interactions. CFD 

computations are carried out, with all other parameters kept consistent with the 2D 

configuration. The only variation lies in the number of nodes in the spanwise (z) direction, which 

are set to 24, 48, and 72 for the respective spanwise lengths. This section presents an analysis of 

the system’s response through temporal-history plots, FFT spectra, phase portraits, Poincare 

maps, and vortex visualizations. 

By plotting the heaving amplitude (h∗), pitching angle (θ), lift coefficient (CL), and drag 

coefficient (CD) versus time, the results from 2D simulations are compared with the those from 

the 3D simulation at the corresponding parameters. The distinctions between the different 

signals are indicated in the legend of the figures. The first comparison is performed at R =

250 kΩ for all three spanwise lengths in Figure 22. The results from the 2D simulations show 

higher oscillation amplitudes across all quantities, whereas those from 3D simulations with the 

smallest span (0.3c) are completely damped, showing negligible oscillations. The results for the 

span of 0.6c exhibit moderate oscillations, while CL and CD for the span of 0.9c closely follow the 

trends observed in the 2D results, indicating that the 2D system effectively captures the dynamic 

characteristics of the 3D system with the largest span considered here. 
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Figure 22: Comparison of heaving amplitude (ℎ∗), pitching angle (𝜃), lift coefficient (𝐶𝐿), and drag 

coefficient (𝐶𝐷) at  𝑈𝑟
∗ = 10 and 𝑅 = 250 𝑘𝛺 for different spanwise lengths 

 

When the load resistance is increased to R = 500 kΩ, the behavior observed in all the 

plots, provided in Figure 23, is similar to that seen at R = 250 kΩ. The CL and CD signals for the 

0.9c span continue to closely match with the 2D results. From these plots, the peak-to-peak 

variations in CL exhibit slight non-smoothness, indicating the presence of nonlinear behavior in 

the system. Additionally, the signals are skewed towards the left-hand side, highlighting the 

presence of asymmetry in the aerodynamic response. 
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Figure 23: Comparison of heaving amplitude (ℎ∗), pitching angle (𝜃), lift coefficient (𝐶𝐿), and 

drag coefficient (𝐶𝐷) at  𝑈𝑟
∗ = 10 and 𝑅 = 250 𝑘𝛺 for different spanwise lengths 

 

As the load resistance is further increased at 750 kΩ and again h∗, θ, CL, and CD are 

compared with the 2D results in Figure 24, the span length of 0.9c continues to closely match the 

behavior of the corresponding 2D system, particularly in terms of CL and CD . From these 

comparisons, it is evident the response of the oscillating wing with a span of 0.9c consistently 

exhibit the closest agreement with the 2D configuration, while the smaller span lengths (0.3c and 

0.6c) show reduced amplitudes and less similarity to the 2D configuration. 
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Figure 24: Comparison of heaving amplitude (ℎ∗), pitching angle (𝜃), lift coefficient (𝐶𝐿), and 

drag coefficient (𝐶𝐷) at  𝑈𝑟
∗ =10 and 𝑅 = 750 𝑘𝛺 for different spanwise lengths 

 

- Temporal-history plots of 𝑪𝑳 

Using the CL response at  Ur
∗ = 10, temporal-history plots ae generated for each 

spanwise length (0.3c, 0.6c, and 0.9c).  Figures 25a–25c for R = 250 kΩ, represents the CL signal 

at different spans, in which Figure 25a exhibits very small oscillation amplitudes with a symmetric 

signal as we move towards the higher span of 0.6c (see Figure 25b), the amplitude increases, and 

the signal becomes non-smooth between successive peaks, indicating the presence of 

nonlinearity. Increasing the span further to 0.9c shown in Figure 25c, results in an even larger 
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amplitude, along with a distinct left-skewness of the signal, signifying the presence of asymmetry. 

For R = 500 kΩ, the span lengths in Figure 25d-25f exhibit similar qualitative trends to those 

observed in the plots for R = 250 kΩ. Besides, the oscillation amplitudes are noticeably reduced, 

reflecting the damping effect of higher electrical load resistance as well. 

 

Figure 25: Temporal histories of 𝐶𝐿 at  𝑈𝑟
∗ = 10 and R = 250 kΩ and 500 kΩ at 0.3c, 0.6c and 0.9c  

 

In Figures 26g–26h, for R = 500 kΩ at different spans, a similar trend is observed for the 

wing with a span of 0.3c, the oscillation amplitude of CL remains very low. However at 0.6c, the 

amplitude increases. For the wingspan of 0.9c, the amplitude approaches nearly unity. At R =

750 kΩ and span of 0.9c in Figure 26i has same trends as compared to other two load resistances 
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in Figures 25c and 25f. Therefore, by seeing this behavior and is consistent with all previously 

examined 0.9c cases across different load resistances and closely matches the pattern observed 

in Figure 7 of the 2D results at various load resistance values. From this, it can be concluded that 

the 0.9c 3D results at  Ur
∗ = 10 are in close agreement with the 2D analysis outcomes. To further 

investigate the nature of the nonlinearity, as well as the presence of asymmetry and higher 

harmonics, FFT analyses are subsequently performed for all three spanwise length across 

different R. 

 

Figure 26: Temporal histories of CL at  Ur
∗ = 10 and R = 750 kΩ at 0.3c, 0.6c and 0.9c 

 

- Fast Fourier-Transform plots 

In the FFT analysis, the spectral distributions for different spans and load resistances are 

examined. Figures 27a–27c shows the spectra for CL of the wing with 0.3c span at R = 250 kΩ. 

In Figure 27a, the spectrum exhibits only a single peak corresponding to the fundamental 

frequency, with no observable subharmonics or superharmonics. It indicates a predominantly 

linear system response for the wing with 0.3c span, consistent with the symmetric wave observed 

earlier in Figure 27a. However, when the span is increased to 0.6c and 0.9c (see Figures 29b-29c), 

additional peaks appear at integer multiples of the fundamental frequency, indicating the 
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presence of quadratic and cubic nonlinearities. The occurrence of quadratic harmonics suggests 

asymmetry in the system response. At R = 500 kΩ ,similar trends are observed in Figure 27d 

shows that the rersponse from the 0.3c wingspan remains linear with only the fundamental 

frequency present, while Figure 27e and 27f for the spans of 0.6c and 0.9c reveals the presence 

of superharmonics and with no subharmonics, again indicating nonlinear behavior. Overall, the 

FFT results confirm that both load resistances exhibit consistent spectral trends, with nonlinear 

effects becoming more pronounced as the span increases.  

 

Figure 27: Spectra of 𝐶𝐿 at 𝑅 =  250 𝑘𝛺: (a–c) and 𝑅 =  500 𝑘𝛺: (d–f) for  𝑈𝑟
∗ = 10 at different 

spanwise length 

 



Chapter 4. Three- Dimensional Fluid-Structure-Electrical Interaction                                                                        

         
 

58 

                                                     
 

At R = 750 kΩ, the spectra in Figures 28g–28i show that for 0.3c and 0.6c span (see 

Figure 28g-28h), the response is characterized solely by a single peak at the fundamental 

frequency, indicating a predominantly linear system behavior at these spanwise lengths. In 

contrast, for 0.9c span in Figure 28i, the spectrum contains both the fundamental frequency and 

distinct superharmonics, signifying the presence of nonlinear dynamics. A comparison of the 

spectral trends in Figures 27 and 28 reveals that the 0.9c configuration consistently displays 

nonlinear characteristics across all load resistances, showing strong similarity to the FFT peak 

patterns observed in the 2D configuration at Ur
∗ = 10 (see Figures 8 and 9). By these 

observations, phase portraits are subsequently generated for the 0.9c span at different R. These 

portraits illustrate the system’s state-space evolution over time, offering a clearer understanding 

of its dynamical behavior, and nature of nonlinearity, and the influence of load resistance on the 

trajectory characteristics. For completeness, the dominant frequencies extracted from both the 

2D and 3D simulations results are summarized in the accompanying table, enabling a direct 

quantitative comparison. 

 

 

Figure 28: Spectra of CL at R = 750 kΩ: (g–i) for  Ur
∗ = 10 at different spanwise length 

 

Table 7: Natural structural frequency and fundamental frequency of 2D and 3D results 
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Natural Structural 

Frequency (Hz) 
Fundamental Frequency (Hz) 

Simulations\ 

Resistances 
 250 kΩ 500 kΩ 750 kΩ 

2D 0.10000 0.1050 0.1050 0.1050 

3D (0.3c) 0.10000 0.0999 0.0999 0.0999 

3D (0.6c) 0.10000 0.0999 0.0999 0.0999 

3D (0.9c) 0.10000 0.1099 0.1099 0.1099 

 

 

- Phase portraits 

From the above analysis, phase portraits are constructed for R = 250, 500 and 750 kΩ, 

corresponding to the 0.9c span. As shown in Figure 29a for R = 250 kΩ, the trajectory in state 

space is very thin and tightly bound, indicating that the system repeatedly follows the same 

closed path over time. This behavior is characteristic of a periodic nonlinear response that has 

reached a stable LCO. In such a state, the oscillations of both CL and CD  remain consistent in 

amplitude and phase, and the system dynamics are highly repeatable from cycle to cycle. In 

Figure 29b, corresponding to R = 500 kΩ, the trajectory loop becomes noticeably thicker 

compared to the R = 250 kΩ phase portraits. This thickening suggests slight variations in the 

state-space path over time, pointing to changing in the oscillations. Additionally, the amplitude 

of both CL and CD   decreases relative to the higher resistance, reflecting the damping effect of 

the electrical load. Similar thickening is observed in Figure 29c for R = 750 kΩ, but here the 

effect is more pronounced. The loop shape remains broadly similar to the lower R results, but 

the oscillation amplitudes are further reduced, and the trajectory becomes less consistent from 
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one cycle to the next. Across all three load resistances, the phase portraits exhibit asymmetry, 

with the loops biased toward the positive CD  side of the plot. This asymmetry indicates that the 

mean drag is nonzero. Furthermore, the structure of the loops clearly demonstrates that the 

dominant frequency of CD  is approximately twice that of CL . Specifically, a complete loop in the 

portrait corresponds to a single CL  cycle, while each half-loop corresponds to a CD  cycle. When 

comparing these 3D and 2D results shown in Figures 29d-29f, the phase portrait patterns are 

remarkably consistent, exhibiting similar loop geometries and asymmetry. However, the effect 

of increasing load resistance is also evident in the 3D simulations, particularly in Figure 29c, where 

the system does not follow its trajectory and the oscillation amplitudes gradually decay over 

time. This indicates that, at higher load resistances, the system transitions from a periodic 

nonlinear regime toward a quasi-nonlinear state, with reduced coherence in its oscillatory 

behavior and not going toward the chaos. To further analyze the behavior depicted in these plots 

and determine whether the system exhibits nonlinear periodicity, quasi-periodicity, or chaos. 

 

Figure 29: Comparison of 3D phase portraits at 0.9c with corresponding 2D results across 

different load resistances 
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- Poincare maps  

In this section, we present a detailed comparison between the 3D results obtained for an 

span of 0.9c and the corresponding 2D results at various load resistances, focusing on the 

Poincare maps to assess the system’s nonlinear dynamical states. At R = 250 kΩ in Figure 30a, 

the Poincare points are initially positioned with a noticeable separation, indicating the quasi-

nonlinear state in the early stage. As the lift coefficient CL  gradually increases, the points begin 

to cluster closer together, and with further evolution, they eventually overlap. This progression 

signifies that the system transitions into a periodic nonlinear regime and settles into limit cycle 

oscillations. These observations are consistent with the phase portrait results, which also display 

closed, stable loops corresponding to periodic nonlinear state. For R = 500 kΩ in Figure 30b, the 

Poincare points start with smaller initial spacing compared to R = 250 kΩ. As the system evolves 

over time, the separation between points increases during intermediate stages before decreasing 

again, leading to eventual overlapping. This behavior suggests that the system reaches a periodic 

nonlinear state, but with a reduced oscillation amplitude in CL . The smaller amplitude and 

intermediate spacing variation point toward the influence of electrical damping introduced by 

the higher load resistance, which suppresses oscillation energy without fully disrupting the 

periodic nature of the motion. 
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At R = 750 kΩ in Figure 30c, the Poincare points are separated by an almost constant 

distance, even for higher CL  values and not overlap only moving slightly closer. This pattern 

indicates that the system is no longer retracing the same trajectory in state space. Instead, as the 

oscillations evolve, the system gradually drifts toward a new trajectory with thicker loop indicates 

the system is going towards the quasi-nonlinear state. The slow convergence of the points and 

the absence of closed loops in the phase space are signs of increased damping effects from the 

electrical load. Also, when comparing these findings with the 2D results in Figure 30d-30f, a 

strong qualitative similarity emerges all load resistances, where both the 2D and 3D systems 

maintain periodic nonlinear oscillations and limit cycles, with reduced amplitudes at higher 

resistances. From the Poincare maps, it is evident that the 3D results for an span of 0.9c closely 

match the 2D results, confirming the consistency of the observed nonlinear behaviors across all 

compared results. To further investigate how vortex dynamics and nonlinearity are 

interconnected in the 3D results, a detailed discussion is provided in the following section. 
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Figure 30: Poincare maps of 3D results at 0.9c and  𝑈𝑟
∗ = 10 with comparison to 2D results at 

different load resistances 

 

- Vortex mechanics 

In this section, we discuss the vortex dynamics and their connection to the observed 

nonlinear behavior, while also comparing the 3D results for spanwise length of 0.6c and 0.9c at 

 Ur
∗ = 10 with the corresponding 2D results at different load resistances. 
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Figure 31: Comparison of 2d vortex dynamics at  𝑈𝑟
∗ = 10 and 3d vortex dynamics at different 

spanwise length and 𝑅 = 250 𝑘𝛺  

 

In Figure 31a at R = 250 kΩ, represents the 2D vortex dynamics, while Figure 31b-31c 

show the 3D vortex dynamics for span 0.6c and 0.9c, respectively. A direct comparison with the 

2D results reveals that the 3D simulations exhibit a similar vortex shedding sequence: as the foil 

transitions from upstroke to downstroke, it first sheds a single (S) vortex, followed by a pair (P), 
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and then a triplet (T). The same sequence is repeated during the downstroke-to-upstroke 

transition. This combination of S-P-T structures corresponds to a multiple-pattern (mp) vortex 

shedding mode, which is typically observed only at higher oscillation amplitudes in terms of CL . 

The vortical structures illustrated in the figure represent half a cycle of motion. Notably, 

the 3D results for both 0.6c and 0.9c span lengths capture similar (mp) shedding, with even 

similar aggressive vortex formation compared to the 2D case. When these shedding patterns are 

correlated with the FFT maps at the same parameters, it emerges, the presence of such complex 

vortex shedding coincides with nonlinear system behavior, as evidenced by the appearance of 

multiple spectral peaks (superharmonics) alongside the fundamental frequency. Furthermore, 

the more intense the vortex shedding activity, the greater the number of superharmonic peaks 

observed.  

As the load resistance increases to R = 500 kΩ, a comparison between the 2D and 3D 

results Figure 32 again reveals the presence of the same multiple vortices shedding patterns 

which we observed at lower resistances. This indicates that the fundamental vortex shedding 

mechanism remains unchanged across both the resistance. However, the amplitude of the 

oscillations particularly in the lift coefficient CL  is reduced, and the overall vortex shedding 

activity becomes noticeably weaker. The reduction in vortex activity strength and frequency 

peaks suppressing with the damping effect introduced by the higher electrical load, which also 

suppresses the oscillations while still preserving the general pattern of vortex formation. 
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Figure 32: Comparison of 2d vortex dynamics at  𝑈𝑟
∗ = 10 and 3d vortex dynamics at different 

spanwise length and R = 250 k𝛺 

 

However, as we move to R = 750 kΩ, the 2D results in Figure 33a still display multiple 

vortex shedding patterns (mP). In contrast, the span of 0.6c, shown in Figure 33b, exhibits a 

significant reduction in vortex shedding intensity, with predominantly P-type (pair) vortices being 

shed. This weakening of the shedding pattern is reflected in the corresponding FFT spectrum, 
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where only a single dominant frequency is present and no superharmonics are observed, 

indicating a largely periodic response with minimal nonlinear interactions. The lift coefficient (CL ) 

amplitude is also notably reduced. 

In the 0.9c of span, shown in Figure 33c, the vortex shedding activity becomes more 

pronounced again, with multiple shedding patterns re-emerging. The associated FFT spectrum 

clearly displays multiple peaks, including higher-order harmonics, suggesting that the system has 

regained a nonlinear response at this span despite the higher load resistance. However, across 

all three comparisons in the vortex mechanics section, the 3D vortex dynamics at span of 0.9c 

closely match the 2D vortex dynamics results, a consistency that is also evident in the phase 

portraits and Poincare maps.  
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Figure 33: Comparison of 2D vortex dynamics at  𝑈𝑟
∗ =10 and 3d vortex dynamics at different 

spanwise length and R = 750 𝑘𝛺 

 

- Voltage output 

From the 3D simulation results, the non-dimensional RMS voltage output was calculated 

for different spanwise lengths at  Ur
∗  = 10. It is evident that the smallest span (0.3c) produces 

very low voltage output, while span of 0.6c shows an increased output, and 0.9c achieves the 
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highest voltage. When comparing the 3D results with the 2D case, the 0.9c 3D output is closest 

to the 2D results across most load resistances. However, at R = 750 kΩ, the 3D simulations 

exhibit a higher voltage output than the corresponding 2D results, indicating the influence of 

spanwise effects on energy harvesting.  

Table 8: Non-dimensional 3D and 2D voltage output at different ‘R’ and spanwise length 

 
L = Spanwise   

length 
R = 250 𝐤𝛀 R = 500 𝐤𝛀 R =750 𝐤𝛀 

2D infinite 0.4921 0.8888 0.9156 

3D 0.3c 0.0080 0.0039 0.0010 

3D 0.6c 0.5179 0.6779 0.3009 

3D 0.9c 0.5209 0.9074 0.9645 
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Conclusions 

This study investigates the nonlinear aeroelastic dynamics and energy harvesting 

performance of a two-degrees-of-freedom NACA 0012 airfoil under varying reduced velocities 

and electrical resistances. For the 2D simulations, the system exhibits complex responses driven 

by strong fluid-structure interactions, including quasi-nonlinear, periodic nonlinear, and chaotic 

behaviors. Oscillations begin near Ur
∗ = 6, with large-amplitude limit cycle oscillations appearing 

around  Ur
∗ = 8 in the absence of electrical loading. Increasing electrical resistance shifts the 

onset of nonlinearity to higher reduced velocities due to added load-induced damping. FFT 

analysis reveals both odd and even harmonics, indicating energy content, which gradually 

diminishes with higher resistive loads. Phase portraits and Poincaré maps capture transitions 

between different dynamic states, showing that reduced velocity and resistance govern the 

nonlinear characteristics. Voltage output follows the lift coefficient trends, peaking at an optimal 

resistance, beyond which it saturates or declines due to suppressed nonlinearities. Vortex 

shedding patterns, including single (S), paired (P), triplet (T), multiple pair (mP), and P+S (in 

chaotic states), correlate with bifurcations and reduce as damping increases. Overall, the 2D 

results demonstrate that nonlinearity enhances energy harvesting but only within specific ranges 

of reduced velocity and load resistance. 

For the 3D simulations, spanwise lengths of 0.3c, 0.6c, and 0.9c are considered to 

investigate the influence of spanwise effects on system dynamics and energy harvesting. At 0.3c 

of span, the system is predominantly damped with very low oscillation amplitudes, exhibiting 

linear behavior across all resistances. For 0.6c, nonlinear behavior emerges up to R = 500 kΩ, 



 

         
 

 

                                                     
 

but higher resistance at R = 750 kΩ, reduces the nonlinearity and associated vortex activity. At 

0.9c, however, nonlinear dynamics persist across all resistances, with multiple-pattern vortex 

shedding (S, P, T, mP) clearly observed. The 3D results for the 0.9c span show close agreement 

with the 2D configuration in terms of vortex shedding sequences, phase portraits, Poincare maps, 

and FFT spectra, indicating that larger span length shows stronger nonlinear interactions across 

different load resistances. Voltage output is higher by 0.9c span compared to smaller span 

lengths, particularly at higher resistances, demonstrating the positive influence of spanwise 

extent on energy harvesting performance. 

In summary, the study highlights how reduced velocity, electrical resistance, and 

spanwise length control the onset, amplitude, and nature of nonlinearity and vortex dynamics. 

While 2D simulations capture the general trends and mechanisms, 3D simulations reveal that 

spanwise effects are critical for sustaining nonlinearity coming from the fluid part and maximizing 

energy harvesting. These findings provide guidelines for parameter selection in experimental 

setups and the design of practical flutter-based energy harvesters. 



   
 

   
 

iii 

Future Recommendations 

      The following directions are recommended for future research based on this study: 

• Future studies should explore tandem or multiple-foil configurations to assess how wake 

interactions influence both individual and collective energy harvesting performance. * 

• Investigating the effects of structural nonlinearities, including geometric and material 

nonlinearities, alongside fluid-induced nonlinearities could provide insight into how dual 

sources of nonlinearity affect oscillation amplitudes, vortex dynamics, and voltage 

generation, and overall energy harvesting. 

• Extending the analysis to high-speed flows with flexible structures would allow evaluation 

of realistic aerodynamic or hydrodynamic conditions, helping to optimize energy 

harvesting for practical applications such as flutter-based devices, UAVs, or tidal energy 

systems. 
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