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ABSTRACT 

Cummins, M (2025), Patterns of genotype-environment association in the eastern North American 

yellow birch (Betula alleghaniensis Britt.), Master of Science in Forestry, Lakehead University. 

Advisor: Dr. A.M. Thomson.  

 

Understanding how genomic adaptation shapes species’ responses to climate change is essential 

for developing climate-resilient forests, as shifting conditions increasingly drive range shifts and 

maladaptation. This study investigates adaptive genomic variation in Betula alleghaniensis 

(yellow birch), a widely distributed hardwood of eastern North America. Genome-wide single-

nucleotide polymorphism (SNPs) variation from 27 populations was analyzed using 3D-genotype-

by-sequencing and two genotype-environment association methods: redundancy analysis (a 

multivariate ordination method) and Gradient Forest (a machine learning algorithm). 124 

putatively adaptive loci were identified, linked to extreme minimum temperature, degree-days 

below 0°C, winter precipitation, and snowfall. Functional annotation revealed roles primarily in 

stress response and transcriptional regulation. Patterns of adaptive variation showed a latitudinal 

gradient tied to winter severity and spatially heterogeneous responses to snowfall. Two distinct 

clusters of adaptive loci were identified along the climate gradients, suggesting winter climate 

plays a dominant role in shaping local adaptation. Future climate projections (SSP5-8.5, 2041-

2070) predict substantial shifts in adaptive alleles in the Northeastern Appalachians, Maritimes, 

and St. Lawrence River regions. Nevertheless, genetic offset, the Euclidean distance between the 

current and future adaptive genomic composition, across the range was relatively low, suggesting 

genomic resilience potentially supported by yellow birch’s allohexaploid genome and extensive 

gene flow, including adaptive introgression from hybridization with other Betula members. These 

findings highlight the importance of integrating genomic data into forest management strategies.  
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INTRODUCTION 

 

Climate change is rapidly reshaping forest ecosystems, altering temperature and 

precipitation regimes, with direct consequences for tree growth and survival (Allen et al., 2010). 

Forest tree populations must respond to these rapidly changing conditions through migration, 

phenotypic plasticity, or genetic adaptation. However, the rate of environmental change is expected 

to exceed the capacity of many species to adapt through standing genetic variation (Aitken et al., 

2008), potentially leading to widespread maladaptation to climate. These changes can have far-

reaching consequences for forest biodiversity, ecosystem services, and the economic value of 

timber-producing species (Liang et al., 2016; Weiskopf et al., 2020). To mitigate these risks, a 

deeper understanding of local adaptation and genetic diversity patterns across species ranges is 

needed to inform conservation strategies like assisted migration and gene flow (Aitken & 

Whitlock, 2013; Park et al., 2018).  

Broadly distributed tree species often occupy diverse environmental gradients and exhibit 

population-level genetic differentiation shaped by local climate (Savolainen et al., 2007). 

Traditional provenance trials have been foundational in studying adaptive trait variation across 

climate gradients (Sork et al., 2013), offering insights into growth, phenology, and stress 

responses. Yet such trials are limited in number and geographic scope, leaving many ecologically 

significant species underrepresented. Advances in next-generation sequencing now allow detection 

of adaptive genetic variation even in species lacking common-garden experiments. Genotype-

environment association (GEA) methods, which examine correlations between allele frequencies 

and environmental variables, have become powerful tools for identifying local adaptation and 

detecting loci under selection (Holliday et al., 2017; Isabel et al., 2020; Yu et al., 2022).  
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Multivariate approaches such as redundancy analysis and machine-learning tools like 

gradient forests are especially useful in detecting both linear and nonlinear responses to 

environmental gradients (Capblancq et al., 2020; Rellstab et al., 2016). These tools can also 

identify subtle allele-environment correlations that might otherwise go undetected, particularly in 

polygenic traits (Forester et al., 2018; Láruson et al., 2022). They also enable landscape-level 

predictions of adaptive genetic variation by integrating spatial environmental heterogeneity 

(Forester et al., 2016). Importantly, GEA models can incorporate demographic history to account 

for population structure and historic gene flow, which are crucial for accurately identifying loci 

under selection (Lotterhos & Whitlock, 2015; Tibbs Cortes et al., 2021). Importantly, they can 

predict spatial patterns of adaptive genomic variation and forecast how genotype–environment 

associations may shift under future climate scenarios (Fitzpatrick & Keller, 2015; Sang et al., 

2022). This predictive capacity is particularly valuable for species lacking comprehensive 

experimental trials and can inform conservation planning across heterogeneous landscapes. 

In addition to identifying adaptive loci, GEA-based methods can estimate the genetic 

offset, the expected disruption of genotype-environment associations under projected climate 

change (Fitzpatrick & Keller, 2015). Genetic offset quantifies the magnitude of allele frequency 

change required for populations to remain locally adapted, providing a spatially explicit measure 

of vulnerability (Rellstab et al., 2021). These models help identify both vulnerable populations and 

potential climate refugia, offering valuable guidance for seed sourcing and assisted gene flow 

(Fitzpatrick & Keller, 2015; Meek et al., 2023) and have been applied to numerous tree species, 

including Araucaria araucana (Varas-Myrik et al., 2024), Picea rubens (Lachmuth et al., 2023) 

and Plathymenia spp. (Muniz et al., 2024).  
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Yellow birch (Betula alleghaniensis Britt.), a hexaploid species (2n=6x=84; Ashburner et 

al., 2013), is a broadly distributed hardwood species of the mesophytic mixed forests of eastern 

North America (Erdmann, 1990). It is ecologically significant, providing a vital food and nesting 

source for a wide range of wildlife species (Holmes & Schultz, 1988; Menzel et al., 2004), and 

holds commercial value for its hardwood lumber (Erdmann, 1990). Yellow birch is typically 

associated with late-successional forests but occurs in a variety of successional stages and site 

conditions, demonstrating a degree of ecological flexibility. It plays an integral role in nutrient 

cycling and forest structure, influencing community dynamics throughout its range. However, 

climate envelope models project a reduction in abundance and biomass under future warming 

scenarios (Van Houtven et al., 2019), suggesting potential ecological and economic consequences.  

Previous provenance trials of yellow birch revealed clinal variation in adaptive traits across 

climate gradients (Clausen, 1968a, 1968b, 1975, 1977, 1980; Danick & Barnes 1975; Sharik and 

Barnes, 1975, 1979; Wearstler and Barnes, 1977; Leites et al., 2019; Pedlar et al., 2021; Maloney 

et al.¸2024). Clausen (1968b) documented clinal variation in growth cessation correlated with 

latitude, while Wearstler and Barnes (1977) linked total height and seed germination to growing 

season length. Recent studies have shown climate-associated variation in height growth (Leites et 

al., 2019) and leaf morphology (Maloney, 2022), highlighting environmental influence on genetic 

differentiation. However, these studies also point to substantial within-population genetic 

variation, suggesting a complex interplay of local adaptation and genetic diversity. This within-

population diversity may buffer yellow birch against environmental change, although the extent to 

which it will be sufficient under rapid climate change remains unclear.  

At the genomic level, yellow birch’s hexaploid nature may enhance its adaptive capacity 

by providing genetic redundancy and promoting greater allelic diversity (Soltis & Soltis, 2009; 
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Rice et al., 2019). Polyploidy in plants is often associated with increased evolutionary potential 

and resilience to environmental stress, facilitating adaptation to heterogeneous and changing 

conditions (Lavania, 2020). Furthermore, historic hybridization events between yellow birch and 

related species, Betula papyrifera and B. pumila (Thomson et al., 2015; Wang et al., 2016), have 

likely contributed to its genetic variation. Introgression from these species may have introduced 

adaptive alleles that facilitate resilience to climatic shifts, a phenomenon increasingly recognized 

as a driver of adaptive evolution in tree taxa (Taylor & Larson, 2019). These genomic features 

suggest that yellow birch may be particularly well equipped to respond to environmental change 

through adaptive evolution. 

This study investigates the genomic basis of local adaptation in yellow birch across its 

climatic range. Given its broad distribution, high genetic diversity, polyploid genome, and history 

of hybridization, yellow Birch is expected to exhibit significant climate-related genetic 

differentiation. Yet, the spatial patterns of this adaptation and the potential for future maladaptation 

remain poorly understood. To address this gap, genome-wide allele frequency data and genotype-

environment association (GEA) were used to characterize patterns of local adaptation. Specifically, 

the study aimed to: (i) identify the climatic drivers of genetic differentiation, (ii) detect putatively 

adaptive loci associated with climate gradients, (iii) assess the genetic offset required for 

populations to maintain local adaptation under a high-emissions climate change scenario. 

Integration of redundancy and Gradient Forest analysis enabled evaluation of the spatial 

distribution of adaptive genetic variation and population-level vulnerability to climate change. The 

findings provide a genomic framework to inform conservation planning, seed transfer guidelines, 

and assisted gene flow strategies aimed at sustaining yellow birch populations in a changing 

climate.  
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MATERIALS & METHODS 

 

Sample collection and DNA extraction  

A total of 27 populations of yellow birch were sampled across its eastern North American 

distribution (Figure 1; Supplemental Table 2). This included silica-dried leaf tissue obtained from 

a prior study (Thomson, 2013) and newly collected material gathered in 2023. Yellow birch seed 

was also acquired from the National Tree Seed Centre (NTSC). Seeds were cold stratified, 

germinated for three weeks in the Lakehead University greenhouse, and grown for 2-3 weeks 

before being frozen at -20°C.  

 

Figure 1. Sampling locations for 27 Betula alleghaniensis populations across its eastern North 

American distribution. The known species distribution is shown based on range maps from Little 

(1971).   
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Genomic DNA was extracted from 5-10 individuals per population using either 20 mg of 

silica-dried leaf tissue or whole seedlings. A modified 3% CTAB protocol adapted from Zeng et 

al. (2002) was applied to both tissue types. DNA integrity and purity were assessed using a 

NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) and Qubit 4 

Fluorometer with a dsDNA Broad Range Assay (Thermo Fisher Scientific, Waltham, MA, USA). 

Samples failing to meet the concentration threshold of 20 ng/µL or containing high levels of 

contaminants were re-extracted. Full extraction protocol details are provided in Supplementary 

Methods S1.  

 

GBS library preparation and bioinformatics processing  

A total of 243 yellow birch samples were diluted to 10 ng/µL and submitted to the Institut 

de Biologie Intégrative et des Systèmes (IBIS) at Université Laval for library preparation using 

the 3D-genotype-by-sequencing (3D-GBS) protocol (de Ronne et al., 2020). This protocol 

employs a three-enzyme digestion (PstI, NsiI, and MstI) designed to enrich for gene-rich, low-

redundancy regions while reducing repetitive content. The method is particularly well suited for 

polyploid genomes, including hexaploids, as it improves sequencing depth and SNP-calling 

accuracy while minimizing allele dropout due to complex allele dosage and redundancy.  

Libraries were sequenced at the Genome Québec Innovation Centre in Montréal using an 

Illumina NovaSeq platform to generate 35 million, 150 bp, paired-end reads. IBIS performed read 

trimming, alignment to the Betula pendula reference genome (GenBank GCA_900184695.1), and 

SNP calling with a STACKS pipeline (Catchen et al., 2013; Normandeau, n.d.). After quality 

control, adapter trimming, demultiplexing, and multi-step SNP filtering, a total of 32,295 high-
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confidence SNPs were retained across 221 individuals. Detailed steps and filtering parameters are 

provided in Supplementary Methods S2.  

To account for the hexaploid nature of yellow birch and reduce bias from potential over-

assembly of paralogous loci, an additional filtering step was implemented using the polyRAD R 

package (Clark et al., 2019, 2022). Loci with high overdispersion or excess heterozygosity (Hind/He 

> 0.833) were excluded, resulting in a final set of 29,674 loci. Population structure analysis was 

conducted using principal component analysis (PCA), and three putative hybrid individuals were 

identified and removed, leaving 218 individuals for downstream analysis. The first two PCA axes 

were averaged at the population level and used as covariates in subsequent analyses. Complete 

procedures are provided in Supplementary Methods S3.  

 

Selection of climate variables  

Climate variables were obtained from ClimateNA for the 1961-1990 normals (Wang et al., 

2016) covering the range of yellow birch. A Pearson’s pairwise correlation analysis was used to 

remove highly collinear variables (r ≥ 0.7), resulting in the retention of nine uncorrelated 

predictors: annual heat-moisture index (AHM), degree-days below 0°C (DD_0), degree-days 

above 5°C (DD5), extreme minimum temperature (EMT), mean annual solar radiation (MAR), 

precipitation as snow (PAS), summer precipitation (PPT_sm), winter precipitation (PPT_wt), and 

mean annual relative humidity (RH). These nine climate variables were retained for all subsequent 

analyses involving environmental predictors throughout the study.  
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Partitioning genetic variance  

To evaluate the relative contributions of environmental, geographic, and neutral processes 

to genetic variation across the range of yellow birch, a series of redundancy analyses (RDA) and 

partial redundancy analyses (pRDA) were performed following Capblancq et al. (2023). RDA is a 

multivariate ordination approach that models linear relationships between genetic variation and 

predictor variables, allowing for the isolation of independent (or “pure”) effects by conditioning 

on potential confounders such as geographic structure or demographic history (Capblancq & 

Forester, 2021). Local allele frequencies were used as multivariate response variables in all 

models.  

Geographic structure was modelled using the first three distance-based Moran’s 

eigenvector maps (dbMEM) axes derived from the 27 sample population coordinates. To account 

for neutral population structure, the mean PC1 and PC2 axes scores per population from the 

polyRAD principal component analysis were included as proxies for background genetic structure. 

Climate was represented by the nine selected climate variables. A full RDA was constructed using 

all predictor sets (9 climate variables, 3 dbMEM axes, and PC1 and PC2), and three pRDAs were 

run to isolate the unique effects of climate, geography, and population structure. Full modelling 

procedures are detailed in Supplementary Methods S4.  

 

Identification of putatively adaptive loci  

To identify loci strongly associated with climate variation, two complementary genotype-

environment association (GEA) approaches were employed: redundancy analysis (RDA) and 

Gradient Forests (GF). RDA’s uses in GEA’s has been shown to be particularly effective for 



9 
 

detecting subtle, polygenic signals of adaptation by identifying multivariate correlations between 

allele frequencies and environmental gradients while accounting for confounding structure 

(Forester et al., 2018). In contrast, GF is a machine-learning algorithm that models non-linear 

relationships and variable interactions and is well suited for capturing complex genotype-

environment associations (Ellis et al., 2012). When used in tandem, these methods provide a robust 

insight into local adaptation by balancing the strengths and limitations of each (Fitzpatrick & 

Keller, 2015; Capblancq et al., 2023).  

Given the potential confounding influence of neutral genetic structure, both methods were 

run in raw (RDA-raw, GF-raw) and structure-corrected (RDA-x, GF-x) formats. While accounting 

for neutral structure can reduce false positives, it may also obscure true climate-driven signals of 

adaptation, especially in species where population structure, geography, and environment are 

strongly collinear (Capblancq et al., 2023). RDA-x models were conditioned on PC1 and PC2 

from the polyRAD population structure PCA. For GF-x allele frequencies were standardized using 

a Bayesian multivariate approach implemented in JAGS (Plummer, 2003, 2024), where the 

covariance matrix was sampled via MCMC and Cholesky decomposition was applied to 

standardize allele frequencies, following the framework of Günther & Coop (2013).  

SNPs were ranked within each GEA test based on Mahalanobis distance (RDA-raw and 

RDA-x) or R2 scores (GF-raw and GF-x). From each test, the top 100 ranked SNPs were retained. 

Loci identified among the top 100 in at least two of the four tests were considered putatively 

adaptive. This consensus approach helps minimize false positives while capturing loci consistently 

associated with environmental gradients across both linear and non-linear models. The resulting 

set of adaptively enriched loci were used to construct composite adaptive indices. Complete 

detection, standardizing, and ranking procedures are provided in Supplementary Methods S5.  
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Modelling the spatial distribution of adaptive genomic variation  

To model how adaptive genomic variation is distributed across the range of yellow birch, 

an RDA was performed using the set of putatively adaptive SNPs and the nine selected climate 

variables. The loadings of these climate predictors on the first two RDA axes were combined with 

standardized climate data to construct two composite adaptive indices (RDA1 and RDA2), 

representing major axes of climate-associated genetic variation (Steane et al., 2014; Capblancq et 

al., 2020). These indices were projected across the current distribution of yellow birch at 1-km 

spatial resolution using a standardized Climate NA 1961-1990 normal dataset.  

To explore whether subsets of adaptive loci were associated with specific environmental 

gradients, k-means clustering was applied to the absolute values of SNP loadings along the first 

two RDA axes. Clusters were defined using the absolute values of adaptive locus scores on RDA1 

and RDA2, each representing loci primarily associated with one RDA axis, characterized by a high 

absolute score on one axis and a low score on the other.  

To forecast future genomic-climate relationships, projections for the nine climate variables 

were obtained from ClimateNA under the 8GCM SSP5-8.5 emissions scenario (heavy fossil-fuel 

development scenario) for the 2041-2070 period (Mahony et al., 2022). Future adaptive indices 

for both RDA1 and RDA2 were computed using the same RDA loadings and standardized climate 

projections, enabling spatial predictions of genomic adaptation under anticipated climate change. 

Full details on the index construction, clustering approach, and mapping are provided in 

Supplementary Methods S6.  
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Genetic offset and adaptive capacity  

To estimate the genomic change required for populations of yellow birch to remain adapted 

under future climate scenarios, the genetic offset was calculated across the range. This measure 

represents the Euclidean distance between present and future adaptive indices derived from RDA1 

and RDA2 (Capblancq et al., 2020). Current indices were subtracted from future projections, and 

the resulting differences across RDA1 and RDA2 were summed to generate a single genetic offset 

value for each 1-km2 cell across the distribution of yellow birch. This value reflects the degree to 

which populations would need to shift adaptive allele frequencies to maintain climatic optima and 

serves as a proxy for vulnerability to climate change (Fitzpatrick & Keller, 2015).   

To assess the evolutionary capacity of populations to respond to such changes, two metrics 

were calculated: standing genetic variation (SGV) and the population adaptive index (PAI). SGV 

quantifies the within-population variance in adaptive allele frequencies, estimated as the mean 

value of p x q at each adaptive SNP, reflecting the availability of adaptive alleles within each 

population (Chhatre et al., 2019). PAI measures the degree to which a population’s adaptive allele 

frequencies deviate from the species-wide mean, calculated as the absolute difference from the 

average allele frequency across all populations (Bonin et al., 2007). While SGV reflects a 

population’s capacity for adaptation by quantifying available variation at adaptive loci, PAI 

measures the extremeness of that capacity by capturing how far a population’s adaptive genetic 

composition deviates from the species-wide average. Full computation procedures are detailed in 

Supplementary Methods S7.  
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Gene function annotation  

To infer the potential functional roles of adaptive loci, SNPs were annotated using a draft 

Betula pendula genome  (GenBank GCA_900184695.1). Gene prediction was performed using 

AUGUSTUS v3.5.0 (Stanke et al., 2006) with the Arabidopsis gene model. SNPs were intersected 

with predicted gene regions using BEDTools v2.30.0 (Quinlan & Hall, 2010), and nearby genes 

were assigned to intergenic variants. Functional annotations were assigned through orthology-

based prediction using eggNOG-mapper v2 (Cantalapiedra et al., 2021). This approach enabled 

inference of the putative functions of climate-associated genomic regions in yellow birch. 

Complete annotation procedures are described in Supplementary Methods S8.  

 

Code development and data visualization  

  Portions of the data analysis were assisted using OpenAI (GPT-4, 2025). The model was 

used iteratively to support code development, data wrangling, and the production of figures for 

exploratory and final visualization. All code was reviewed and executed by the lead author.  
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RESULTS  

 

Drivers of genetic variation in yellow birch  

After filtering and paralog removal using polyRAD, 29,674 high-quality loci were retained 

for downstream analyses of genetic variation. Local allele frequencies at these loci formed the 

response variables in redundancy analyses (RDA and partial RDA), which revealed that a 

substantial portion of genetic variation in yellow birch was explained by climate, geography, and 

neutral population structure. The full model, which included all three groups of predictor variables, 

accounted for 64% of the total variance (Table 1; Supplemental Figure S1). The climate-only 

model, while not significant after controlling for geographic and neutral population structure, 

explained 29% of the total variance (equivalent to 46% of the explainable variance). Geographic 

structure similarly was not significant when controlling for climate and neutral population 

structure but still accounted for 10% of the total variance (16% of the explainable variance). In 

contrast, the neutral population structure model was significant even when controlling for climate 

and geography, explaining 9% of the total variance (14% of the explainable variance). A moderate 

level of shared (confounded) variance among the three predictor groups accounted for 15% of the 

total variance (24% of the explainable variance).  
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Table 1. Summary of pRDAs used to partition the genetic variance in yellow birch among climate 

(clim.; 9 select climate variables), geographic structure (geog.; 3 dbMEM axes), and neutral 

population structure (ancestry, struc.; 2 mean PC axes). Each set of predictors was tested 

individually and jointly. This presents the percentage of total genetic variance explained, the 

significance of the model, and the proportion of variance attributed to the full set of explanatory 

variables.  

RDA Models Inertia P(>F) 

Proportion of 

explainable 

inertia 

Proportion of 

total inertia 

Full model: F ~ clim. + struc. + geog. 24.4 0.001*** 1.00 0.64 (R2) 

Pure climate: F ~ clim. | (geog. + struc.) 11.1 0.197 0.46 0.29 (R2) 

Pure geography: F ~ geog. | (clim. + struc.) 3.9 0.252 0.16 0.10 (R2) 

Pure ancestry: F ~ struc. | (clim. + geog.) 3.4 0.027* 0.14 0.09 (R2) 

Confounded climate/geography/structure 5.9   0.24 0.15 

Total unexplained 13.8     0.36 

Total inertia 38.1     1.00 

 

 

Genotype-environment associations  

Many of the top 100 loci were shared across the four multivariate tests, resulting in a total 

of 263 unique top-ranking loci (Figure 2). The greatest degree of overlap occurred between the top 

SNPs from the same test performed using raw allele frequencies and with correction for population 

structure. The two RDA tests showed the highest congruence, with 84% of loci shared between 

them. Similarly, the top loci from the two GF tests exhibited a high degree of overlap (44%). In 

contrast, overlap between RDA and GF tests was low, regardless of whether population structure 

was corrected for, with only 6-7% of the top SNPs shared between these test types. Overall, 124 

loci were identified in the top 100 SNPs of at least two tests, and five loci were consistently 

detected by all four GEA tests.   
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Figure 2. Venn diagram showing the overlap of the top 100 outlier loci identified by each of the 

four GEA methods, with each ellipse representing a different detection method; RDA-raw: 

redundancy analysis using mean allele frequencies, RDA-X: redundancy analysis using mean 

allele frequencies conditioned on neutral genetic structure, GF-raw: Gradient Forest analysis using 

mean allele frequencies, GF-X: Gradient Forest analysis using standardized mean allele 

frequencies. 

 

Climate associations of adaptive loci  

The adaptively enriched RDA (conducted on the 124 putatively adaptive loci identified by 

the GEA tests) revealed that the first two constrained axes explained 61.2% of the total variance 

in allele frequencies. RDA1 accounted for 34.5% of this variance and represented a composite 

environmental gradient strongly positively correlated with extreme minimum temperature (0.92) 

and winter precipitation (0.91), and strongly negatively associated with degree-days below 0°C (-
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0.91) (Figure 3a). RDA2 explained 11.5% of the variance and was most strongly associated with 

precipitation as snow (-0.42).  

The adaptively enriched RDA also identified clusters of loci associated with the two 

primary climate gradients captured by RDA1 and RDA2 (Figure 3b; Supplemental Figure S2).  

Two distinct clusters were strongly associated with a single axis, and a group of nine loci showed 

strong correlations with both. The first cluster, linked to RDA1, comprised 25 adaptive loci whose 

mean allele frequencies showed a clear clinal trend, increasing with colder extreme minimum 

temperatures across populations (r2 = 0.48; Figure 3c). The second cluster, associated with RDA2, 

included 33 loci with only a weak clinal relationship with precipitation as snow (r2 = 0.13; Figure 

3d). Notably, a southern Appalachian population at the extreme southern range margin exhibited 

unexpectedly high allele frequencies for the RDA2 cluster.   
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Figure 3. Red and blue colours indicate SNPs associated with RDA1 and RDA2, respectively, and 

are used consistently across all four panels. (A) Biplot of SNP loadings on the first two axes of the 

adaptively enriched RDA, showing loci (points) colored by their strongest axis of association 

(RDA1 or RDA2). Arrows represent the four most strongly associated climate variables: extreme 

minimum temperature (EMT), degree-days below 0°C (DD_0), winter precipitation (PPT_wt), and 

precipitation as snow (PAS). (B) Absolute RDA1 and RDA2 scores of adaptive loci, grouped by 

primary axis of association. Convex hulls outline the clusters of loci strongly associated with each 

RDA axis. (C) Relationship between mean allele frequencies of the 25 RDA1-associated loci and 

extreme minimum temperature across 27 yellow birch populations. Shaded areas indicate the 95% 

confidence interval around the linear regression. (D) Relationship between mean allele frequencies 

of the 33 RDA2-associated loci and precipitation as snow across the same populations, including 

the 95% confidence interval. between mean 33 RDA2-associated allele frequencies and 

precipitation as snow (mm) across 27 sampled populations, with a 95% confidence interval along 
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the linear regression. Frequencies shown in C and D reflect mean non-reference alleles and reflect 

loci with both positive and negative associations along each RDA axis. 

 

Spatial projections of contemporary and future adaptive landscapes  

Mapped patterns of adaptive genetic variation, derived from the climate gradients captured 

by the first two axes of the adaptively enriched RDA, revealed distinct spatial structure across the 

range of yellow birch (Figure 4a). The RDA1-based adaptive index displayed a strong latitudinal 

gradient, with lower values corresponding to adaptation to longer, colder, and dryer winters in the 

northern part of the range. In contrast, the RDA-2-based index reflected a combination of 

latitudinal and longitudinal structure. Lower RDA2 values, associated with adaptation to higher 

snowfall, were concentrated in the Maritime provinces, the Laurentian Mountains, and high-

elevation regions of the northeastern United States (Figure 4b).  
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Figure 4. Spatial projections of adaptive indices derived from nine climate variable loadings 

produced from the adaptively enriched RDA and 1960-1991 climate data. Colour gradients 

represent a dimensionless score calculated by RDA loadings and standardized climate variables. 

(A) RDA1 contemporary adaptive landscape; (B) RDA2 contemporary adaptive landscape.  
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Future projections under a high-emissions scenario (2041-2070) suggest that the 

geographic distribution of these adaptive patterns may shift. While the overall spatial structure of 

both RDA axes remained broadly similar to present-day patterns, notable changes emerged, 

particularly for RDA1. The projected range of index values for RDA1 increased, suggesting more 

pronounced differences in adaptation to winter conditions across the landscape (Figure 5a). These 

shifts were concentrated in the northern Appalachian Mountains, the St. Lawrence River valley, 

and parts of the central and eastern Great Lakes region. For RDA2, projected increases in index 

values suggest a growing mismatch between current snowfall-associated genetic adaptation and 

future environmental conditions in the Maritimes, the northern Appalachians, southern Ontario, 

and Michigan (Figure 5b). 
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Figure 5. Spatial projections of adaptive indices derived from climate variable loadings produced 

from the adaptively enriched RDA and SSP5-8.5 2041-2070 climate data. Colour gradients 

represent a dimensionless score calculated by RDA loadings and standardized future climate 

variables. (A) RDA1 future adaptive landscape; (B) RDA2 future adaptive landscape.  
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Genetic offset & adaptive capacity of yellow birch populations  

The genetic offset revealed a broad longitudinal pattern of increasing mismatch between 

current and future adaptive variation moving eastward across the range of yellow birch (Figure 6). 

Offset values were highest in the Maritimes and northern parts of the Northeastern Appalachian 

Mountains, indicating a greater degree of change required for populations to remain adapted under 

future climate conditions. In contrast, lower offset values were observed in the western Great Lakes 

and the southern Appalachian Mountains, suggesting these regions may face less adaptive 

disruption.  

 

 

Figure 6. Genetic offset across the range of yellow birch is calculated as the Euclidean distance 

between the contemporary adaptive landscape (RDA1 + RDA2) and the projected adaptive 

landscape under the future SSP5-8.5 (2041-2070) climate scenario. Higher values indicate a 

greater genomic change required to maintain adaptive optima.   
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Standing genetic variation (SGV) was highest in yellow birch populations from the Western 

Great Lakes and declined eastward, reaching its lowest levels in the northern Northeastern 

Appalachian Mountains (Figure 7). In contrast, the population adaptive index (PAI) showed no 

clear geographic trends. Most populations exhibited moderate PAI values, with scattered outliers 

displaying lower scores across the range. The highest PAI value was observed in the southern 

Appalachian Mountain population, which also showed moderate SGV. This same population has 

been previously identified as an outlier for RDA2-associated allele frequencies.  

 

Figure 7. Standing genetic variation (SGV) and population adaptive index (PAI) for the 27 

sampled populations. The colour represents the magnitude of the PAI (adaptive deviation from the 

species-wide mean), while the circle size indicates the level of SGV (within-population genetic 

diversity at adaptive loci).  

 

Functional categories of putatively adaptive loci  

Of the 124 loci identified as putatively adaptive, 87 returned gene function annotations, 

with 24 associated with RDA1, 18 with RDA2, and 7 associated with both axes. These loci span a 

wide array of molecular functions and were classified into four broad categories: cellular processes 
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and signalling, metabolism, information storage and processing, and poorly characterized (Figure 

8; see Supplemental Table S2 for detailed gene annotations).  

 

Figure 8. Distribution of 49 putatively adaptive SNPs across COG functional categories and RDA 

axes. The stacked barplot shows the number of SNPs under selection under each COG functional 

category grouped into their respective broad category: (1) Poorly characterized, (2) Cellular 

processing and signalling, (3) Metabolism, and (4) Information storage and processing. Bars are 

colour-coded by RDA cluster: RDA-1 associated loci (red), RDA-2 associated loci (blue), and loci 

associated with both axes (grey). The accompanying legend defined each COG category and its 

corresponding biological function.  
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The largest proportion of annotated loci were found to have functions relating to cellular 

processes and signalling, with signal transduction mechanisms (COG category T) accounting for 

over 22% of all annotated loci. One such gene, a nodulation receptor kinase-like gene (SymRK) 

associated with RDA1, plays a well-characterized role in mediating environmental signalling 

responses (Holsters, 2008; Choudhury & Pandey, 2024). Additionally, four loci encoding serine 

threonine protein kinases or phosphatases were identified across all three RDA clusters, including 

the BRI1 gene, which was associated with both axes. Together, they underscore the widespread 

role of post-translational signalling pathways in regulating climate-associated responses in yellow 

birch.  

Several loci returned functions relating to metabolic processes, including energy 

production, secondary metabolism, redox regulation, and defence signalling. These loci fell 

primarily into the functional categories of carbohydrate transport and metabolism (G) and 

inorganic ion transport and metabolism (P). They include a glycosyltransferase (At5g03795) 

associated with RDA1 and a geranyl diphosphate synthase (GPPS) associated with RDA2, both of 

which contribute to secondary metabolite biosynthesis and terpenoid pathways (Hansen et al., 

2009; Ali  et al., 2020). This group also included genes involved in oxidative stress response, 

energy balance, and ion homeostasis, including those related to redox enzymes, membrane 

transporters, and cellular energy exchange. In addition, two loci were annotated with functions 

potentially involved in pathogen defence and leaf death, suggesting that some metabolic pathways 

may also contribute to biotic stress resilience in yellow birch.  

A small number of loci were associated with information storage and processing, divided 

between functions relating to transcription (K) and translation and ribosomal biogenesis (J). Within 

the transcription group, notable loci included a WRKY13 transcription factor associated with 
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RDA1 and a putative RNA polymerase II C-terminal domain phosphatase-like gene associated 

with RDA2. These genes may contribute to the regulation of stress-responsive gene expression at 

both transcriptional and post-transcriptional levels (Zhang et al., 2020; Zhang et al., 2022). Among 

the translation-related loci, one encodes a member of the RNA M5U methyltransferase family 

involved in ribosomal RNA modification, suggesting a role in translational control under climatic 

stress.  

Several loci returned poorly characterized functional annotations. These included genes 

with largely unknown functions but potentially relating to stress and hormone signalling, redox 

and metabolic stress response, and cellular structure, as well as one annotated as a sieve element 

occlusion (SEOa) gene associated with RDA2 and linked to phloem function (Ernst et al., 2012).  
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DISCUSSION 

 

Drivers of genetic structure in yellow birch  

The RDA variance partitioning revealed that climate explained the largest share of total 

genetic variance in yellow birch (nearly half of the explainable portion), suggesting that 

environmental selection has played a central role in shaping population structure. However, the 

pure climate model lost statistical significance when conditioned on geography and neutral 

structure, reflecting the well-documented spatial confounding among these predictors (Capblancq 

et al., 2023). Despite this, the magnitude of variance explained by climate remained substantial, 

especially when compared to geography and ancestry alone. This mirrors findings in other forest 

trees, such as red spruce, where climate similarly explained more than either geography or ancestry 

(Capblancq et al., 2023), but the relatively low confounded variance in yellow birch (~24%) 

suggests a stronger signal of adaptation, potentially due to its broader range and less strictly north-

south distribution. In contrast, confounded variance in red spruce exceeded 45% (Capblancq et al., 

2023), and in white pine studies by Nadeau et al. (2016), it ranged from 17-40% depending on 

methodology. This underscores how the ecological breadth of yellow birch may facilitate a cleaner 

separation of adaptive and demographic signals.  

Interestingly, neutral population structure, while explaining the smallest portion of variance 

(9%), was the only statistically significant pure predictor. This reflects the enduring influence of 

post-glacial migration and genetic drift, as observed in yellow birch and other temperate forest 

trees. Distinct haplotype groups have been revealed in yellow birch using cpDNA and linked to 

multiple southern refugia (Thomson et al., 2015), and similar dynamics have shaped genetic 

structure in species like Cercis canadensis (Ony et al., 2021), Picea sitchensis (Mimura & Aitken, 
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2007), and Pinus strobus (Zinck & Rajora, 2016). Notably, no significant substructure was detected 

at nuclear microsatellites in yellow birch (Thomson et al., 2015), supporting the idea that 

widespread gene flow, particularly via pollen in wind-pollinated species, buffers against strong 

geographic differentiation. This pattern is not unique to yellow birch; low genetic differentiation 

across broad ranges is a near-universal trend in temperate trees (Hamrick et al., 1992), primarily 

driven by long-distance pollen dispersal and large effective population sizes.  

The moderate proportion of shared variance (24%) among climate, geography, and ancestry 

highlights the spatial autocorrelation inherent in landscape genomic data, where adaptation, 

historical processes, and spatial structure are deeply intertwined. This collinearity is a known 

challenge in landscape genomics and is especially pronounced in species that recolonized from 

southern refugia after the last glacial maximum (Hewitt, 1999; Jones et al., 2013). In such contexts, 

controlling for population structure may reduce false positives, but it can also obscure real signals 

of adaptation, particularly when climate and ancestry covary (Capblancq et al., 2023). As Nadeau 

et al. (2016) noted, even advanced GEA methods struggle to partition these effects cleanly. 

Together, these results suggest that while adaptive differentiation driven by climate is strong in 

yellow birch, it remains partly entangled with geography and ancestry, as is typical of post-glacial 

temperate forest species (Hewitt 199; Aitken et al., 2008; Sork et al., 2010; Capblancq et al., 2023).  

 

Climate associations of adaptive loci  

The adaptively enriched RDA identified two primary climate gradients associated with 

genetic variation in yellow birch. The first axis corresponded to extreme minimum temperature, 

degree-days below 0°C, and winter precipitation, collectively representing a gradient of winter 
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extremeness and duration. The second axis was primarily associated with precipitation as snow, 

capturing variation in snowpack conditions across the range. These axes reflect distinct 

components of winter stress, suggesting that selection on traits related to cold tolerance, dormancy 

regulation, and snow-mediated insulation may underlie observed patterns of genomic 

differentiation. The clustering of adaptive loci along these axes mirrors patterns observed in other 

temperate species, including Picea rubens (Capblancq et al., 2023), Pinus strobus (Li et al., 1997), 

and Pinus contorta (Mahony et al., 2020), where allele frequencies tracked environmental 

variation in cold exposure and frost-related injury. Similarly, in Pinus sylvestris, genotype-

environment associations have been shaped by winter severity and growing-season temperature, 

underscoring how climatic extremes across broad latitudinal gradients can drive adaptive 

divergence (Calleja-Rodriguez et al., 2019).  

In addition to the two main clusters of loci associated with the separate axes, a third set of 

nine loci was found to be strongly associated with both climate gradients. This overlap suggests 

that certain genomic regions are influenced by multi-dimensional selection, responding 

simultaneously to variation in both winter temperature severity and snowfall. Alternatively, it is 

possible that some loci have pleiotropic effects, contributing to multiple climate-related traits 

simultaneously.  

The climate variables identified in this study, particularly extreme minimum temperature 

and snowfall, highlight adaptation to overwinter environmental conditions. This complements 

earlier provenance and trait-based studies in yellow birch that identified clinal patterns of local 

adaptation across geographic and climatic gradients. For example, Clausen (1968b) observed 

latitudinal variation in growth cessation correlated with growing season length and temperature, 

while Wearstler and Barner (1977) reported north-south clines in height and germination traits 
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across provenances. More recently, Maloney et al., (2024) demonstrated that leaf morphology and 

water use efficiency varied predictably with growing-season temperature, precipitation, and heat-

moisture balance. Taken together, these studies suggest that adaptation in yellow birch operates 

along multiple climatic axes. Whereas earlier studies emphasize responses to growing-season 

conditions, the genomic findings here point to winter climate as a key selective driver. Together, 

these findings suggest that different seasonal climate factors influence distinct components of 

adaptation in yellow birch, with functional traits responding to moisture stress during the growing 

season and genomic variation reflecting selection pressures associated with winter severity. 

 

Spatial patterns of adaptation and future vulnerability  

The spatial distribution of adaptive genetic variation in yellow birch revealed distinct 

regional patterns associated with winter-related climate variables. The RDA-1 based adaptive 

index, which reflects adaptation to winter severity, duration and precipitation, displayed a strong 

latitudinal gradient, with higher adaptation to longer, colder and dryer winters in the northern 

portion of the range. This suggests that populations in the boreal-northern zones have been shaped 

by selection for traits promoting cold and frost resilience. In contrast, the RDA-2 based index, 

linked to adaptation to high snowfall, exhibited both latitudinal and longitudinal structure, with 

higher adaptation to high snowfall in the Maritimes, Laurentians and high-elevation regions of the 

northeastern United States. Although these regions receive substantial snowfall, snowpack may be 

less persistent to due frequent mid-winter thaws, costal climatic influences, or rapid spring melt, 

leading to increased exposure to freeze-thaw cycles. As such, populations in these areas may be 

subject to stronger selection for traits that confer tolerance to ephemeral or reduced snow cover, 

such as increased freezing resistance or the ability to withstand frequent freeze-thaw transitions. 
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Alternatively, given yellow birch’s preference for moist microsites, late-season snowmelt and 

associated early-summer moisture availability may exert selection for traits that enhance early 

growth and water use efficiency in these high-snowfall environments. Similar patterns of climate-

associated adaptation have been observed in other temperate hardwoods, including Acer 

saccharum, which exhibits reduced growth in areas with low snowpack (Reinmann et al., 2019).  

Future climate projections under a high-emission scenario (2041-2070) indicate that the 

adaptive landscape of yellow birch is likely to shift, particularly along axes related to winter 

severity and snowfall. Projected increases in RDA-1 index values suggest an amplification of 

differentiation in winter adaptation across the range, with notable shifts in the Northeastern 

Appalachians, the St. Lawrence valley, and the central and eastern Great Lakes regions. For RDA-

2, projected changes indicate a growing mismatch between present-day snowfall-associated 

adaptation and future conditions in the Maritimes, Northeastern Appalachians, southern Ontario, 

and Michigan. These regions may face an increased risk of maladaptation, particularly among 

populations currently specialized for historical snowfall regimes. Comparable patterns of climate-

induced vulnerability have been reported in species such as Quercus robur (Leroy et al., 2019) and 

Pinus sylvestris (Hallingbäck et al., 2021), where population fitness declined as environmental 

conditions diverged from historical selection pressures. In yellow birch, such mismatches could 

lead to declining adaptive fit, especially if local standing genetic variation is insufficient to 

accommodate rapid environmental shifts.  

These results reinforce broader patterns observed in temperate hardwoods, where genomic 

differentiation is often tightly coupled to regional climate conditions (Keller et al., 2012; Gugger 

et al., 2021; Capblancq et al., 2023). In yellow birch, cold- and snow-adapted populations, 

especially those in northern latitudes or higher elevations, may represent vulnerable edges and 
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valuable genetic reservoirs under future climates. Prioritizing these populations for monitoring, in 

situ protection, or potential assisted migration could help maintain adaptive capacity and resilience 

within the species. As climate change continues to reshape ecological and evolutionary landscapes, 

conservation strategies rooted in genomic data will be essential for safeguarding adaptive potential 

and long-term persistence in this foundational forest species.  

 

Genetic offset & adaptive capacity  

Patterns of genetic offset in yellow birch varied geographically, with the highest projected 

shifts in adaptive allele frequencies occurring in the Maritimes and the Northeastern Appalachian 

Mountains, and the lowest offset values observed in the western Great Lakes and southern 

Appalachians. While widespread genomic change may be required to track future climates, some 

populations may already harbour alleles pre-aligned with future conditions. The overall modest 

offset across much of the range suggests that yellow birch may possess broad adaptive potential, 

possibly buffered by its allohexaploid genome, which enhances genomic plasticity and may reduce 

the magnitude of change required to maintain local adaptation. Similar buffering effects have been 

observed in other polyploid plant systems, enhancing responsiveness to environmental stress by 

facilitating the up- or down-regulation of gene expression (Chen, 2007; Jackson & Chen, 2010); 

and in Arabidopsis thaliana, polyploids have shown greater phenotypic plasticity than their diploid 

progenitors, enabling more flexible responses to climate variation (Mattingly & Hovick, 2023).  

In the western Great Lakes, where offset values were particularly low, historic and ongoing 

introgression from Betula papyrifera (Thomson, 2015) and possibly B. pumila (Danick & Barnes, 

1975b; Barnes & Danick, 1985) may have contributed to the presence of alleles aligned with future 
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climatic conditions. Additionally, ongoing hybridization in these regions may enhance the 

potential for rapid evolutionary responses by increasing standing genetic variation and facilitating 

the spread of adaptive alleles. While such processes do not directly reduce the magnitude of 

predicted offset, they may help populations track environmental change more effectively over 

time. This gene flow may be further facilitated by hexaploidy, which can relax reproductive 

barriers and enhance genomic integration (Schmickl & Yant, 2021). Similar dynamics have been 

reported in Quercus petraea, where gene flow from Q. robur introduced climate-adaptive alleles 

that contributed to clinal genomic variation (Leroy et al., 2019), and in an Icelandic birch, where 

introgression between B. nana and B. pubescens supported resilience to climate warming 

(Anamthawat-Jónsson, 2019). However, hybridization does not always result in adaptive benefits; 

crosses between B. alleghaniensis and B. lenta have shown reduced vigor and germination, 

suggesting postzygotic barriers can constrain certain hybrid combinations (Sharik & Barnes, 

1971).  

Measures of standing genetic variation (SGV) and the population adaptive index (PAI) 

offer complementary insights into yellow birch’s adaptive capacity. SGV, which reflects the 

existing genetic diversity at climate-associated loci, was highest in the western Great Lakes and 

declined eastward, consistent with the regions of past introgression (Thomson et al., 2015). In 

contrast, PAI, which measures how divergent a population’s adaptive allele frequencies are from 

the mean, showed no consistent spatial patterns, likely reflecting the influence of localized 

selection pressure or recent demographic history. Notably, a southern Appalachian outlier 

exhibited the highest PAI and relatively high SGV, despite its position at the warm, low-snowfall 

edge of the range. This unexpected combination may reflect microclimatic effects or a unique 
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historical legacy and stands in contrast to other nearby southern edge populations with lower SGV 

and moderate PAI.  

Different spatial patterns of variation in SGV and PAI highlight how these metrics capture 

different facets of adaptive potential, where SGV represents the raw material for response, while 

PAI reflects realized adaptive divergence (Capblancq et al., 2020). Evaluating both metrics 

together helps identify populations that are not only distinct but also poised or poorly positioned 

to respond to future environmental changes. These results suggest that while some populations, 

particularly in the western Great Lakes, may retain a strong capacity to respond to future change, 

others, like populations in the Northern Appalachians may be more constrained by low genetic 

variation or past selective filtering, emphasizing the uneven distribution of adaptive potential 

across the range.  

 

Gene functions & local adaptation  

Putative adaptive loci in yellow birch span a diverse array of biological functions, 

reflecting the multifaceted nature of climate adaptation. Function categories included signal 

transduction, hormonal regulation, secondary metabolism, transcriptional control and RNA 

processing, indicating that adaptation involves coordinated responses across multiple 

physiological systems. This diversity mirrors findings in other temperate trees where adaptation to 

climate gradients involves both regulatory and structural genes acting across multiple biological 

pathways (Capblancq et al., 2023; Meger et al., 2024). Several loci were linked to known stress-

related gene families, including transcription factors (WRKY13; Chen et al., 2012), receptor 

kinases (SymRK, BRI1; Ye et al., 2017), heat shock proteins (HSP70; Zhang et al., 2025), redox 
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and energy metabolism (GPPS, At5g03795; Rehman et al., 2022; Sinha et al., 2024), and post-

transcriptional regulators such as RNA methyltransferases (Cai et al., 2025) and pentatricopeptide 

repeat (PPR) proteins (Xing et al., 2018). Together, this breadth of function suggests that climate 

adaptation in yellow birch engages multiple coordinated mechanisms to manage temperature and 

moisture stress.   

Within this diverse gene pool, several key functional groups stand out as likely contributors 

to climatic resilience. Transcription factors, including WRKY13, play central roles in mediating 

abiotic and biotic stress responses and have been shown to be upregulated or functionally involved 

in drought, salt, cold, and pathogen stress in multiple species, including Oryza sativa (Xiao et al., 

2013) and Paeonia lactiflora (Wang et al., 2019). Several loci encoded serine/threonine receptor-

like kinases/phosphatases, key components of stress-responsive hormonal pathways such as 

brassinosteroid and ABA signalling (Khan et al., 2023). One of these, BRI1, a canonical 

brassinosteroid receptor, exemplifies this group’s role in abiotic stress signalling and 

developmental regulation, with demonstrated involvement in xylem differentiation and adaptation 

to drought and temperature fluctuations in Quercus (Ai et al., 2023) and Picea abies (Wang et al., 

2021). SymRK-like receptor kinases, best known for their essential role in legume-rhizobia 

symbiosis, also modulate G-protein signalling pathways via phosphorylations on RGS proteins, 

contributing to the fine-tuning of downstream responses that are increasingly recognized as 

intersecting with broader abiotic and biotic stress signalling networks in plants (Holsters, 2008; 

Choudhury & Pandey, 2024). The presence of GPPS and At5g03795 (a glycosyltransferase) among 

adaptive loci suggests a role for secondary metabolism in stress resilience, GPPS has been shown 

to contribute to terpenoid biosynthesis under abiotic stress in cotton (Ali et al., 2020), and 

At5g03795 has been linked to cell wall modification (Hansen et al., 2009). Meanwhile, regulatory 
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genes such as RNA polymerase II and RNA M5U methyltransferases highlight the importance of 

post-transcriptional and epitranscriptomic mechanisms in stress adaptation, with roles in 

modulating gene expression under salt and heat stress (Zhang et al., 2020; Zhang et al., 2022).  

The clustering of gene functions by RDA axes suggests that different climate gradients may 

select for distinct molecular strategies. Genes associated with winter temperature extremes, 

duration and winter precipitation included WRKY13 and At5g03795, while genes aligned with 

snowfall variation featured genes like GPPS and RNA regulatory elements. This separation 

implied that climate adaptation in yellow birch is both axis-specific and modular, with different 

environmental pressures targeting different aspects of the genomic response. The identification of 

genes involved in environmental sensing, signal integration, metabolic buffering, and gene 

regulation underscores that adaptation in yellow birch is polygenic and multidimensional, not the 

result of selection on a single pathway. These findings point to promising targets for future 

validation through expression profiling, functional genomics, or landscape transcriptomics and 

highlight the value of incorporating gene-level insights into broader models of climate resilience 

in temperate forest trees.  
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CONCLUSION 

 

Local adaptation in yellow birch reflects a complex interplay of demographic history and 

climate-driven selection across its range. Structured genetic variation aligned with geographic and 

climate gradients points to the combined influence of post-glacial processes and spatially varying 

selection. Climate emerged as a dominant driver of adaptive genetic structure, with clear 

associations between allele frequency shifts and winter-related stress gradients. The identification 

of diverse candidate loci, including genes involved in transcriptional regulation, signal 

transduction, secondary metabolism and RNA processing, highlights the polygenic and 

multilayered nature of local adaptation in this temperate hardwood. By linking functional genetic 

variation to biologically meaningful climate axes, this study provides a valuable foundation for 

climate-informed seed sourcing, assisted migration strategies, and adaptive forest management. 

More broadly, it underscores the importance of integrating landscape genomics and functional 

annotation to anticipate how forest tree species may respond to accelerating environmental change.  
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SUPPLEMENTAL INFORMATION 

 

SUPPLEMENTAL METHODS  

Supplemental Methods S1. DNA Extraction Protocol 

Genomic DNA was extracted from 5-10 individuals per population using either 20 mg of 

silica-dried leaf tissue or entire seedlings. A modified 3% CTAB protocol based on Zeng et al. 

(2002) was used for both tissue types. Samples were mechanically homogenized with 5 mm steel 

balls in a TissueLyser. For seedlings, homogenization was conducted in 1 mL of CTAB-free 

buffer composed of 100 mM Tris-HCl (pH 8.0), 1.4 M NaCl, and 20 mM EDTA. Following 

homogenization, samples were incubated on ice for 10 minutes and centrifuged at 9,000 rpm. 

The supernatant was discarded. DNA was extracted using 800 µL of 3% CTAB buffer containing 

100 mM Tris-HCl (pH 8.0), 1.4 M NaCl, 20 mM EDTA, 4% polyvinylpyrrolidone (PVP), and 

0.5% β-mercaptoethanol. To this, 5 µL RNase (Nucleospin RNase, Thermo Fisher Scientific) 

was added, and samples were incubated at 65°C for 60 minutes in a shaking water bath.  

An equal volume of chloroform:isoamyl alcohol (24:1) was added, mixed by inversion, 

and centrifuged at 12,000 rpm for 15 minutes at room temperature. The upper aqueous phase was 

transferred to a new 2 mL microcentrifuge tube, and DNA was precipitated by adding 1/2 

volume of 5 M NaCl and 2/3 volume of ice-cold isopropanol. Samples were incubated at room 

temperature for 1 hour and then centrifuged at 10,000 rpm for 10 minutes, the supernant poured 

off the pelleted DNA.  

DNA pellets were washed twice with 200 µL of 70% ethanol, centrifuged at 12,000 rpm 

for 2 minutes, and allowed to air-dry for 20-60 minutes. DNA was resuspended in 30 µL TE 

buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0).  
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Supplemental Methods S2: Genotyping and Bioinformatics Processing 

Raw reads were quality-filtered and adapter-trimmed using cutadapt v4.6 (Martin, 2011) 

with parameters -e 0.2 -m 50. Reads were demultiplexed using process_radtags in STACKS v2.66 

with settings to rescue barcodes and truncate reads for uniformity [-c -r -t 100 -q -s 0 --

barcode_dist_1 -E phred33 --renz_1 nsiI --renz_2 mspI].  

Sequencing reads were aligned to the Betula pendula reference genome 

(GCA_900184695.1) using BWA v0.7.17 (Li & Durbin, 2009), and alignments were filtered using 

SAMtools v1.13 (Danecek et al., 2021) with the flags [-sb -q -F 4 -F 256 -F 2048]. SNPs were 

called using gstacks with the –max-clipped flag, and variants were exported using the populations 

module [-p 2 -r 0.6 --ordered-export --fasta-loci –vcf].  

The initial dataset contained 337,491 SNPs across 243 individuals, with a mean coverage 

of 46.36x and 22.43% missing data. SNPs were filtered using 05_filter_vcf_fast.py to retain 

genotypes with a minimum 4x coverage, remove SNPs with <20% missing per group, and retain 

rare alleles in ≥3 individuals. This reduced the dataset to 31,048 SNPs. Individuals with >40% 

missing data were excluded (n=22), and a second filtering round increased the SNP count to 

44,579. Loci with FIS > 0.8 or extreme allele balance (<0.1 or >0.8) were removed using 

stacks_workflow scripts 08-10 (Normandeau, n.d.). Redundant SNPs within 100 Kbp were 

collapsed, yielding 32,295 SNPs across 221 individuals.  
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Supplemental Methods S3: Paralog Detection and Genotype Weighting in polyRAD for 

Hexaploid Genomic Data 

To account for paralogy and allele dosage in this hexaploid species, filtering was 

performed in polyRAD (Clark et al., 2019, 2022). Read data was imported with settings to avoid 

SNP phasing and accommodate multiple ploidy levels [possibleploidies = list(2,6, c(2,2,2)), 

min.ind.with.reads = 170, min.ind.with.minor.allele = 3]. Overdispersed loci were identified 

using TestOverdispersion() and filtered based on a heterozygosity threshold (ploidy-1/ploidy) of 

>0.833. Loci were retained using SubsetByLocus(), retaining 29,674 loci. Three outlier 

individuals, believed to represent putative hybrids, were identified based on population structure 

analysis and removed. Final principal component analysis was performed using 

IteratePopStruct() in polyRAD with 8 PCs and a tolerance of 0.005. The first two PC axes were 

extracted, and the mean value per population was calculated for use in subsequent models. 

Weighted mean genotypes were extracted using GetWeightedMeanGenotypes(), which returns 

the average dosage of the VCF-defined non-reference allele per population.  

 

Supplemental Methods S4: Partitioning of Genetic Variation  

To evaluate the relative influence of environmental, geographic and neutral processes on 

genetic variation in Betula alleghaniensis, a series of redundancy analyses (RDA) and partial 

redundancy analyses (pRDA) were conducted using the rda() function in the vegan R package, 

following the approach of Capblancq et al. (2023). The response variable consisted of 

multivariate local allele frequencies calculated for each population using the individual allele 

frequencies from the GetWeightedMeanGenotypes() function in polyRAD. These frequencies, 
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averaged across individuals in a population, were used as the dependent matrix in all ordination 

models.  

Climatic predictors were obtained from ClimateNA v7.21 (Wang et al., 2016)) for the 

1961-1990 normal period, extracted across the Betula alleghaniensis range and at the coordinates 

of each sampling locality. To reduce collinearity, Pearson’s Pairwise correlations were calculated 

in base R using the cor() function. From this matrix, one variable was removed from each pair 

with a correlation coefficient |r| ≥ 0.7 from the range-wide climate variables. This procedure 

resulted in the retention of nine uncorrelated climate variables that collectively captured the 

major climatic gradients across the range: annual heat-moisture index (AHM), degree-days 

below 0°C (DD_0), degree-days above 5°C (DD5), extreme minimum temperature (EMT), mean 

annual solar radiation (MAR), precipitation as snow (PAS), summer precipitation (PPT_sm), 

winter precipitation (PPT_wt), and mean annual relative humidity (RH).  

Geographic structure was modelled using distance-based Moran’s eigenvector maps 

(dbMEMs). A Euclidean distance matrix was first generated from the UTM coordinates of each 

population's centroid. The resulting distance matrix was passed to the dbmem() function in the 

adespatial package to compute Moran’s eigenvectors. The first three positive eigenvectors (those 

with positive spatial autocorrelation) were retained as predictors representing spatial structure 

across the landscape.  

Neutral genetic structure was incorporated using principal components derived from the 

polyRAD population structure analysis. The IteratePopStruct() function in polyRAD was used to 

perform a PCA on weighted mean genotypes, and the first two principal component axes were 

extracted. Mean PC1 and PC2 scores were calculated for each population and used as covariates 
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in the pRDA models to control the underlying structure unrelated to environmental or geographic 

factors.  

A full RDA model was constructed with all three sets of explanatory variables: the nine 

climate predictors, the first three dbMEM axes, and the first two population structure PC axes. 

To partition the genetic variance and assess the unique contributions of each variable set, three 

partial RDA models were also performed. In the partial models, one explanatory set was used as 

the predictor while the other two were treated as covariates using the Condition() argument in the 

rda() function. The three pRDA models were: climate conditioned on geography and neutral 

structure; geography conditioned on climate and neutral structure; and neutral structure 

conditioned on climate and geography. The statistical significance of the full and partial models 

was evaluated using 999 permutations with the anova.cca() function. Variance partitioning was 

performed using the varpart() function in vegan R, allowing both unique and shared fractions of 

explained genetic variance to be quantified and visualized.  

 

Supplemental Methods S5: Identification of Putatively Adaptive Loci  

RDA was conducted using the rda() function in the vegan R package (Oksanen et al., 

2025), with the nine uncorrelated climate variables as explanatory variables and population-level 

allele frequencies as response variables. RDA-raw included no covariates, while RDA-x was 

conditioned on the first two principal components for the polyRAD population structure PCA to 

correct for neutral genetic structure.  

GF analyses were implemented using the gradientForest R package (Ellis et al., 2012). PCNM-

based spatial covariates were derived from a Euclidean distance matrix of population 
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coordinates, and only the first half of positive PCNM axes were retained. GF models used the 

same nine climate predictors and were run with the following parameters [ntree = 2000, max tree 

depth = log2(0.368 x n / 2), corr.threshold = 0.5, nbin = 201].  

To correct allele frequencies for neutral structure in GF-x, a Bayesian standardization 

method was implemented following Günther and Coop (2013). Allele frequencies were modelled 

as draws from a multivariate normal distribution with a mean vector of zero and a covariance 

matrix Ʃ. The precision matrix Ω was sampled from a Wishart distribution using a degree-of-

freedom parameter equal to the number of loci present plus two. The posterior samples of Ω were 

inverted to obtain Ʃ. The model was implemented in JAGS (Plummer, 2003, 2024) using the rjags 

package in R. A single MCMC chains was run for 100,000 iterations, with a 5,000 iteration burn-

in. A total of 190 posterior samples of the covariance matrix were retained using the coda.samples() 

function. Each sample matric was standardized using Cholesky decomposition to transform allele 

frequencies prior to fitting the GF-x model.  

Since RDA and GF do not share a common test statistic, as per Capblancq et al. (2023) 

SNPs were ranked by Mahalanobis distance (RDA-raw and RDA-x) and by R2 importance score 

(GF-raw and GF-x). From each test, the top 100 ranked SNPs were retained. To identify robust 

signals of local adaptation, only SNPs appearing in the top 100 of at least two of the four GEA 

approaches were retained. Overlap between methods was visualized using the VennDiagram R 

Package, and the intersecting set was designated as the final set of putatively adaptive loci.  
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Supplemental Methods S6: Modelling the Spatial Distribution of Adaptive Genomic 

Variation  

To model the spatial distribution of climate-associated genomic variation in Betula 

alleghaniensis, an RDA was performed using the subset of putatively adaptive loci and the same 

nine uncorrelated climate variables previously retained for variance partitioning. The analysis was 

conducted using the rda() function from the vegan R package (Oksanen et al., 2025). Climate 

variables were first standardized (centred and scaled to unit variance) across all localities to ensure 

equal weighting during ordination (Capblancq et al., 2020). The first two axes of the RDA (RDA1 

and RDA2) were retained, and the scores (loadings of each climate variable on these axes were 

extracted.  

Composite adaptive indices were generated for each axis following the approach of 

Capblancq et al. (2020) and Steane et al. (2014). Specifically, the RDA1 and RDA2 loadings were 

multiplied by the corresponding standardized climate variables at each location and summed to 

produce a value representing the predicted allele frequency shift associated with each RDA axis. 

These indices were projected across the range of B. alleghaniensis using present-day standardized 

climate normals (1961-1990) from ClimateNA and mapped at a 1-km2 resolution to visualize 

spatial patterns in adaptive genomic variation. To identify clusters of loci associated primarily with 

one of the two RDA axes, k-means clustering was applied using the kmeans() function in base R. 

Absolute values of locus scores of RDA1 and RDA2 were used as input to reflect the strength, 

rather than direction, of axis-specific associations. Two clusters were defined, corresponding to 

loci strongly associated with one axis and weakly associated with the other.  

Future climate projections were obtained from ClimateNA under the 8GCM SSP5-8.5 

emissions scenario (a heavy fossil-fuel development scenario) for the 2041-2070 time period 
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(Mahony et al., 2022). The same composite method was applied using the projected climate 

variables and the original RDA loadings to estimate future adaptive indices across the species' 

range. This enabled comparison of present and future adaptive landscapes, providing a spatial 

framework for evaluating genomic responses to climate change.  

 

Supplemental Methods S7: Genetic offset and adaptive capacity 

To quantify the genomic change required of Betula alleghaniensis populations to remain 

aligned with future climate conditions, the genetic offset was calculated following the method of 

Capblancq et al. (2020). This measure was derived from the previously constructed RDA-based 

adaptive indices (RDA1 and RDA2) projected across the species' range. Genetic offset was 

computed as the absolute difference between the current and future adaptive index values for both 

RDA1 and RDA2. These values were then summed to generate a single genetic offset value for 

each 1-km2 cell across the distribution of B. alleghaniensis. This value represents the magnitude 

of multivariate genomic change needed for a population to maintain local climate adaptation under 

the future SSP5-8.5 climate scenario.  

To assess each population's capacity to respond to such change, standing genetic variation 

(SGV) and the population adaptive index (PAI) were calculated at each sample site. SGV was 

defined as the mean allele frequency variance across the putatively adaptive loci, calculated as p x 

q, where p is the population allele frequency and q = 1 – p, following the approach of Chhatre et 

al. (2019). Higher SGV reflects greater within-population genetic diversity at adaptive loci, 

indicating a broader capacity to respond to environmental shifts. PAI was calculated following 

Bonin et al. (2007) as the mean absolute difference between each population’s allele frequencies 
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and the mean allele frequencies across all sample populations for each adaptive locus. This 

measure captures the degree to which a population’s adaptive profile diverges from the species-

wide average and reflects its relative extremeness along climate-associated axes of genomic 

variation. Together, SGV and PAI provide complementary perspectives on adaptive capacity; SGV 

measures the raw potential for adaptation, while PAI highlights populations that already occupy 

the genetic extremes of the species’ adaptive landscape (Capblancq et al., 2020).  

 

Supplemental Methods S8: Gene Function Annotation  

To investigate the potential functions of climate-associated loci in Betula alleghaniensis, 

putatively adaptive SNPs were mapped to predicted genes in the B. pendula reference genome 

(GenBank GCA_900184695.1). Because the version of the genome used for read alignment was 

unannotated, a draft annotation was generated using AUGUSTUS v3.5.0 (Stanke et al., 2006). The 

Arabidopsis thaliana gene model was used for ab initio gene prediction due to its widespread 

application in plant genome annotation and its compatibility with downstream functional tools. 

SNPs were intersected with predicted gene regions using BEDTools v2.30.0 (Quinlan & Hall, 

2010). Variants located within predicted gene boundaries were annotated as genic. For SNPs 

located outside annotated regions, the nearest gene was assigned using the BEDTools closest 

function, which identifies the closest gene model based on linear genomic distance. The resulting 

gene models were functionally annotated using eggNOG-mapper v2 (Cantalapiedra et al., 2021), 

which assigned gene names, biological processes, and KEGG orthology terms based on orthology 

predictions from the eggNOG database. This pipeline provided functional classifications for 

climate-associated loci based on evolutionarily conserved gene families. The gene annotation 

results were used to infer the potential biological roles of loci associated with climatic gradients 
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and assess their relevance to stress response, metabolic pathways, and transcriptional regulation in 

Betula alleghaniensis.  
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SUPPLEMENTAL FIGURES  

 

 

Figure S1. RDA ordination plot showing the relationship among predictor variables used in the 

variance partitioning analysis. Vectors represent climate variables (EMT, MAR, PPT_sm, PPT_wt, 

RH, PAS, DD_0, AHM, DD5), geographic structure (dbMEM axes 1-3), and neutral genetic 

structure (Mean PC1 and Mean PC2). Blue dots represent the 27 sampled localities.  
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Figure S2. Adaptively enriched RDA ordination plot showing all nine climate predictors. Vectors 

represent the full set of climate variables used. Points represent loci identified as significantly 

associated with either RDA1 or RDA2, coloured by their respective grouping. 
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SUPPLEMENTAL TABLES 

 

Table S1. The 27 sampled population locations and associated metadata for yellow birch 

populations included in the final analysis. Localities are identified by population codes 

(YB_XXX), with corresponding coordinates, site names, province or state, the number of samples 

retained after quality filtering and hybrid removal, and the tissue type used for DNA extraction. A 

total of 218 individuals were retained across 27 populations (3 to 10 individuals per population).  

Locality Latitude Longitude Site Name Prov/State 
Sample 

Count 

Tissue 

Sampled 

YB_101 44.85768 -68.629385 Penobscot ME 10 

Dried 

Leaf 

YB_102 43.441785 -70.668625 Massabesic ME 10 

Dried 

Leaf 

YB_103 39.05127 -79.670559 Fernow WV 8 

Dried 

Leaf 

YB_104 41.597266 -78.773145 Kane PA 9 

Dried 

Leaf 

YB_105 46.359099 -87.164049 Dukes MI 10 

Dried 

Leaf 

YB_106 45.753117 -88.977224 Argonne WI 9 

Dried 

Leaf 

YB_107 35.180891 -85.6758 Foster Falls TN 7 

Dried 

Leaf 

YB_109 35.326663 -85.092092 North River TN 10 

Dried 

Leaf 

YB_110 36.741569 -81.415259 Mt. Rogers VA 10 

Dried 

Leaf 

YB_1101 45.32164 -73.09424 Gault QC 8 

Dried 

Leaf 

YB_1102 48.273194 -89.403444 Squaretop ON 4 

Dried 

Leaf 

YB_1103 47.341619 -84.567945 Superior ON 9 

Dried 

Leaf 

YB_1104 46.266671 -83.415001 Thessalon ON 5 

Dried 

Leaf 

YB_111 37.753601 -79.230005 Glenwood VA 10 

Dried 

Leaf 

YB_112 44.053137 -71.295105 Bartlett NH 7 

Dried 

Leaf 

YB_113 48.393144 -90.751057 Greenwood ON 7 

Dried 

Leaf 

YB_114 47.531132 -93.470861 Marcell MN 6 

Dried 

Leaf 
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YB_115 47.115476 -93.675717 Blandin MN 9 

Dried 

Leaf 

YB_116 43.663951 -90.574611 Kickapoo WI 9 

Dried 

Leaf 

YB_118 45.584417 -79.21455 Algonquin ON 5 

Dried 

Leaf 

YB_119 44.198676 -77.489004 Farm ON 3 

Dried 

Leaf 

YB_120 42.488922 -76.774508 Finger Lakes NY 10 

Dried 

Leaf 

YB_121 42.728327 -73.254641 Hopkins MA 9 

Dried 

Leaf 

YB_122 35.433109 -82.733587 Pisgah NC 10 

Dried 

Leaf 

YB_123 41.322044 -76.287615 Luzerne PA 9 

Dried 

Leaf 

YB_2004 45.8 -64.88 Prosser Brook NB 10 Seedling 

YB_CF 44.56741 -79.70048 

Copeland 

Forest ON 5 

Dried 

Leaf 

      Total   218   
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Table S2. Functional annotations of 49 putatively adaptive genes identified from SNPs that appeared in the top 100 ranked loci of at least two 

GEA methods and were significantly associated with one or both adaptive RDA axes. For each gene, the table provides a brief description, 

COG-based functional categories, COG-based broad category, RDA cluster assignment (based on RDA association), and the GEA methods that 

identified the underlying SNP(s). 

Gene Description Function Broad Category Cluster GEA Method(s) 

FXXK_01000282g10936 Putative death-receptor 

fusion protein 

(DUF2428) 

D - Cell cycle control, cell 

division, chromosome 

partitioning 

Cellular Processes 

and Signaling 

1 GF_raw/RDA_raw 

FXXK_01000571g17561 Callose synthase M - Cell 

wall/membrane/envelope 

biogenesis 

Cellular Processes 

and Signaling 

1 RDA_raw/RDAX 

FXXK_01000128g6145 Belongs to the heat shock 

protein 70 family 

O - Posttranslational 

modification, protein 

turnover, chaperones 

Cellular Processes 

and Signaling 

1 GF_raw/RDA_raw/

RDAX/GFX 

FXXK_01000785g21037 Cysteine-rich receptor-

like protein kinase 

T - Signal transduction 

mechanisms 

Cellular Processes 

and Signaling 

1 RDA_raw/RDAX 

FXXK_01001447g29159 Nodulation receptor 

kinase-like (SYMRK) 

T - Signal transduction 

mechanisms 

Cellular Processes 

and Signaling 

1 RDA_raw/RDAX 

FXXK_01001870g32156 G-type lectin S-receptor-

like serine threonine-

protein kinase 

T - Signal transduction 

mechanisms 

Cellular Processes 

and Signaling 

1 RDA_raw/RDAX 

FXXK_01000019g1086 Belongs to the adaptor 

complexes medium 

subunit family 

U - Intracellular 

trafficking, secretion, and 

vesicular transport 

Cellular Processes 

and Signaling 

1 GF_raw/RDA_raw/

RDAX 

FXXK_01000002g351 Pentatricopeptide repeat-

containing protein 

J - Translation, ribosomal 

structure and biogenesis 

Information Storage 

and Processing 

1 GF_raw/GFX 

FXXK_01000553g17043 Belongs to the class I-like 

SAM-binding 

methyltransferase 

superfamily. RNA M5U 

methyltransferase family 

J - Translation, ribosomal 

structure and biogenesis 

Information Storage 

and Processing 

1 RDA_raw/RDAX 
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Gene Description Function Broad Category Cluster GEA Method(s) 

FXXK_01000130g6235 transcription factor K - Transcription Information Storage 

and Processing 

1 GF_raw/RDA_raw/

RDAX 

FXXK_01001025g24403 WRKY Transcription 

Factor (WRKY13) 

K - Transcription Information Storage 

and Processing 

1 GF_raw/GFX 

FXXK_01000390g13280 Aldehyde dehydrogenase 

family 

C - Energy production and 

conversion 

Metabolism 1 RDA_raw/RDAX 

FXXK_01000997g24103 NADPH adrenodoxin 

oxidoreductase, 

mitochondrial 

C - Energy production and 

conversion 

Metabolism 1 GF_raw/GFX 

FXXK_01000023g1418 May be involved in 

modulation of pathogen 

defense and leaf cell 

death 

G - Carbohydrate transport 

and metabolism 

Metabolism 1 RDA_raw/RDAX 

FXXK_01000550g16998 CRAL/TRIO, N-terminal 

domain 

I - Lipid transport and 

metabolism 

Metabolism 1 RDA_raw/RDAX 

FXXK_01000026g1595 Domain of unknown 

function (DUF966) 

P - Inorganic ion transport 

and metabolism 

Metabolism 1 RDA_raw/RDAX 

FXXK_01000230g9539 Potassium channel P - Inorganic ion transport 

and metabolism 

Metabolism 1 RDA_raw/RDAX 

FXXK_01000579g17807 Belongs to the iron 

ascorbate-dependent 

oxidoreductase family 

Q - Secondary metabolites 

biosynthesis, transport and 

catabolism 

Metabolism 1 RDA_raw/RDAX 

FXXK_01000714g19958 glycosyltransferase 

At5g03795 

G - Carbohydrate transport 

and metabolism; M - Cell 

wall/membrane/envelope 

biogenesis; W - 

Extracellular structures 

Metabolism; Cellular 

Processes and 

Signaling 

1 RDA_raw/RDAX 

FXXK_01000046g2870 jasmonate-zim-domain 

protein 

S - Function unknown Poorly Characterized 1 RDA_raw/RDAX 

FXXK_01000302g11436 zinc finger CCCH 

domain-containing 

protein 

S - Function unknown Poorly Characterized 1 GF_raw/RDA_raw/

RDAX/GFX 
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Gene Description Function Broad Category Cluster GEA Method(s) 

FXXK_01000606g18350 Nuclear pore complex 

protein 

S - Function unknown Poorly Characterized 1 RDA_raw/RDAX 

FXXK_01000888g22625 2-alkenal reductase 

(NADP( )-dependent)-

like 

S - Function unknown Poorly Characterized 1 RDA_raw/RDAX 

FXXK_01001207g26826 Dirigent protein 

metabolism 

S - Function unknown Poorly Characterized 1 RDA_raw/RDAX 

FXXK_01000558g17144 Serine threonine-protein 

kinase 

D - Cell cycle control, cell 

division, chromosome 

partitioning; T - Signal 

transduction mechanisms 

Cellular Processes 

and Signaling 

2 RDA_raw/RDAX 

FXXK_01000384g13219 Ring finger O - Posttranslational 

modification, protein 

turnover, chaperones 

Cellular Processes 

and Signaling 

2 RDA_raw/RDAX 

FXXK_01000037g2199 isoform X1 T - Signal transduction 

mechanisms 

Cellular Processes 

and Signaling 

2 RDA_raw/RDAX 

FXXK_01001540g29979 serine threonine-protein 

phosphatase 

T - Signal transduction 

mechanisms 

Cellular Processes 

and Signaling 

2 RDA_raw/RDAX 

FXXK_01002079g33341 TMV resistance protein 

N-like 

T - Signal transduction 

mechanisms 

Cellular Processes 

and Signaling 

2 RDA_raw/RDAX 

FXXK_01002545g35112 mitogen-activated protein 

kinase 

T - Signal transduction 

mechanisms 

Cellular Processes 

and Signaling 

2 RDA_raw/RDAX 

FXXK_01000167g7985 60s ribosomal protein J - Translation, ribosomal 

structure and biogenesis 

Information Storage 

and Processing 

2 RDA_raw/RDAX 

FXXK_01000191g8655 RNA polymerase II C-

terminal domain 

phosphatase-like 

K - Transcription Information Storage 

and Processing 

2 RDA_raw/RDAX 

FXXK_01000023g1418 May be involved in 

modulation of pathogen 

defense and leaf cell 

death 

G - Carbohydrate transport 

and metabolism 

Metabolism 2 RDA_raw/RDAX 
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Gene Description Function Broad Category Cluster GEA Method(s) 

FXXK_01000281g10869 Glycosyl hydrolase 

family 10 protein 

G - Carbohydrate transport 

and metabolism 

Metabolism 2 RDA_raw/RDAX 

FXXK_01001893g32326 Belongs to the FPP 

GGPP synthase family 

(GPPS) 

H - Coenzyme transport 

and metabolism 

Metabolism 2 RDA_raw/RDAX 

FXXK_01000116g5544 ADP,ATP carrier protein P - Inorganic ion transport 

and metabolism 

Metabolism 2 RDA_raw/RDAX 

FXXK_01001087g25280 Dehydrogenase reductase 

SDR family member 

Q - Secondary metabolites 

biosynthesis, transport and 

catabolism 

Metabolism 2 RDA_raw/RDAX 

FXXK_01000037g2230 acyl-CoA--sterol O-

acyltransferase 1-like 

S - Function unknown Poorly Characterized 2 RDA_raw/RDAX 

FXXK_01000382g13178 atrnl,rnl S - Function unknown Poorly Characterized 2 RDA_raw/RDAX 

FXXK_01000578g17748 expansin-A11-like S - Function unknown Poorly Characterized 2 RDA_raw/RDAX 

FXXK_01001071g25082 Plant mobile domain S - Function unknown Poorly Characterized 2 RDA_raw/RDAX 

FXXK_01001472g29386 Sieve element occlusion 

(SEOa) 

S - Function unknown Poorly Characterized 2 RDA_raw/RDAX 

FXXK_01000142g6798 G-type lectin S-receptor-

like serine threonine-

protein kinase 

T - Signal transduction 

mechanisms 

Cellular Processes 

and Signaling 

1&2 RDA_raw/RDAX 

FXXK_01001025g24401 Belongs to the protein 

kinase superfamily. Ser 

Thr protein kinase 

family. (BRI1) 

T - Signal transduction 

mechanisms 

Cellular Processes 

and Signaling 

1&2 GF_raw/RDA_raw/

RDAX/GFX 

FXXK_01001855g32088 Cysteine-rich receptor-

like protein kinase 

T - Signal transduction 

mechanisms 

Cellular Processes 

and Signaling 

1&2 RDA_raw/RDAX 

FXXK_01000733g20262 BEACH domain-

containing protein 

U - Intracellular 

trafficking, secretion, and 

vesicular transport 

Cellular Processes 

and Signaling 

1&2 GF_raw/RDA_raw/

RDAX/GFX 

FXXK_01000163g7829 Ethylene-responsive 

transcription factor 

K - Transcription Information Storage 

and Processing 

1&2 GF_raw/GFX 
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Gene Description Function Broad Category Cluster GEA Method(s) 

FXXK_01000550g17009 Protein of unknown 

function (DUF674) 

L - Replication, 

recombination and repair 

Information Storage 

and Processing 

1&2 RDA_raw/RDAX 

FXXK_01001925g32512 Cation H( ) antiporter P - Inorganic ion transport 

and metabolism 

Metabolism 1&2 RDA_raw/RDAX 

 


