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Abstract

Elliott and Su gave a classification of inductive limit type Z, actions on AF algebras
using a K-theoretic invariant. In this paper, we consider the range of invariant problem,
and give a sufficient condition for an object to be one of their invariants for such a system.
In addition, we defines some structures that will be useful for further investigation of this
problem.
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Chapter 1

Introduction

1.1 C*-Algebras

To introduce everything, we need some basic definitions about C*-algebras. To introduce
what a C*-algebra is, first we introduce what a Banach algebra is.

Definition 1.1.1. An algebra is a vector space A together with a bilinear map A x A — A,
written as (a, b) — ab, such thatVa,b,c € A, a(bc) = (ab)c.

A normed algebra is an algebra A equiped with a submulitiplicative norm, that is, Va,b € A,
labll < [lalll5]]

A subalgebra of an algebra A is a vector subspace which is closed under multiplication.
An ideal of an algebra A is a vector subspace | such that Al C | and A C .

A complete normed algebra is called a Banach algebra. A complete unital normed algebra
is called a unital Banach algebra[11]

Next, we introduce C*-Algebras.

Definition 1.1.2. An involution on an algebra is a conjugate linear map a — a* such that
a** = a and (ab)* = b*a*.

A *-algebra is an algebra with an involution on it.

A Banach *-algebra is a *-algebra A together with a complete submulitiplicative norm such

that ||a*|| = ||al|- A unital Banach *-algebra is a Banach *-algebra with a unit 1 such that
=1
A C*-algebra is a complex Banach *-algebra such that ||a*a|| = ||a||>. A unitial C*-algebra

is a C*-algebra with a unit.



A C*-subalgebra of a C*™-algebra A is a closed subalgebra B of A such that B* = B.

A C*-algebra A is simple when 0 and A are its only closed ideals.

If ¢ : A— B is a homomorphism of *-algebras A and B and ¢(a*) = (¢(a))*, then we say
¢ is a *~homomorphism. [11]

Here are some examples of C*-algebras.

Example 1.1.3. Matrix algebras M,(C) are C*-algebras with * the Hilbert adjoint.
Commutative C*-algebras are of the form Gy(X) for a locally compact Hausdorff space X.

The following theorem characterizes the finite-dimensional C*-algebras.

Theorem 1.1.4. If A is a non-zero finite-dimensional C*-algebra, it is x-isomorphic to
M, (C) & M, (C) & ... & M, (C) for some integers ny, ny, ..., ng. [17]

There are two special classes of C*-algebras built from finite-dimensional C*-algebras
that we will discuss a lot.

Definition 1.1.5. A uniformly hyperfinite algebra, or UHF algebra, is a unitial C*-algebra A
that has an increasing sequence (A,)%2., of finite-dimensional simple C*-subalgebras each

containing the unit of A such that | 7 A, = A. An approximately finite-dimensional, or
AF, algebra is a C*-algebra A that has an increasing sequence (A,)2., of finite-dimensional

- n=1

C*-subalgebras such that | >, A, = A. [11]

1.2 K functor

K-Theory plays an important role in this subject. There are a lot of different way to define
the Kp functor. We choose one convenient way to define it for the algebras in this thesis.
First, we introduce the projections in a C*-algebra.

Definition 1.2.1. An element p € A for a C* algebra A is a projection if p = p* = p?. [11]

Next, we introduce stable equivalence of projections.

Definition 1.2.2. If p, g are projections in a C*-algebra A, they are called Murray-v. Neu-
mann equivalent, which is written as p ~ q, if there exists u € A such that u*u = p and
uu* = q. Write 1, for the unit of M,(A) where A is the unitisation of A. We view M,(A)

as a subalgebra of M,,1(A) included as the upper left corner. If there exists n, k € N such

that 1, ®p ~ 1,® q in M(A), then p, g are called stably equivalent. For the equivalence
classes, we difine the sum [p|+[q]l=[p® q]. [17]
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Next, we introduce the Grothendieck group.

Definition 1.2.3. For a cancellative abelian semigroup i.e. one where x+y=z+y =
x = z, N with a zero element, we define an equivalence relation ~ on N x N by setting
(a,b) ~ (¢, d) ifa+d = b+c. Let|a, b] be the equivalence class of (a, b). The Grothendieck
group of N is defined to be the collection of equivalence classes [a, b] under the operation
[a,b]+[c.d]=[a+c, b+d] [11]

For a *-algebra, we have this:

Definition 1.2.4. For a unital *-algebra A, denote by Ko(A)* the semigroup of all the stable
equivalence classes of projections of A. This is a cancellative abelian semigroup, so we may
define Ky(A) to be the Grothendieck group of Ky(A)t. [11]

Example 1.2.5. For a C*-algebra A = M,(C), K(A)t = Z*, Ko(A) = Z, where the = is
given by the trace.

There is a very useful property:

Theorem 1.2.6. For two C*-algebra, A, B, Ky(A ® B) = Ko(A) & Ko(B).

1.3 Partially Ordered Abelian Groups

The main objects of this thesis are partially ordered abelian groups. First, we introduce
what these are:

Definition 1.3.1. A partial order of an abelian group G is called translation-invariant if
given any x,y,z € G with x < y it follows that x + z < y + z. A partially ordered abelian
group is an abelian group equipped with a specified translation-invariant partial order. We
call an element x € G positive when x > 0. The positive cone of a partially ordered abelian
group G is the set G* of all positive elements of .. A positive homomorphism is one that
maps positive elements to positive elements. An order-unit in a partially ordered abelian
group G is a positive element u € G* such that for any x € G, there is some positive
integer n for which x < nu. For two partially ordered abelian group G and H with order
units u and v, a normalized positive homomorphism from (G, u) to (H,v) is any positive
homomorphism f : G — H such that f(u) = v. [§]

For a partially ordered abelian group G, if the partial order on it is a lattice, we call
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it a lattice order abelian group. If a,b € G* are such that a A b =0, we write a L b.
For a partially ordered abelian group G, for all a € G, we write x = x* + x~, in which
xt=xV0and x  =xA0.

For AF algebras, we have:

Example 1.3.2. For an AF algebra A, (Ko(A), Ko(A)t,[14)) is a partially ordered abelian
group Ko(A) with positive cone Ko(A)* and order unit [14].

Theorem 1.3.3. Every unitial x-homomorphism «a : A — B for unitial AF algebras A and B
induces a normalized positive homomorphism of partially order abelian groups with order
units a, : (Ko(A), Ko(A)",[14]) = (Ko(B), Ko(B)*.[14))- [17]

Here is a special kind of order:

Definition 1.3.4. Let {G; | i € I} be a nonempty collection of partially ordered abelian
groups. There is a natural partial order, called the product order, on the abelian group
G = [l Gi in whichVx,y € G, x <y ifand only ifVi € |, x; < y;. [5]

Then we introduce some properties of some partially ordered abelian groups:

Definition 1.3.5. A partially ordered abelian group is said to have the interpolation prop-
erty, if given x1,x2,y1,y2 € G such that x; < y; for all i, j, there exists z in G such that
xi <z < yjforalli,j. A directed abelian group is any partially ordered abelian group
G which is upward directed. That is, Va, b € G,3c € G such that ¢ > a and ¢ > b. An
unperforated abelian group is a partially ordered abelian group G such that for all positive
interger n, nx >0 — x > 0. [§]

1.4 Direct Limits

Direct limit is an idea connecting a lot of subjects together. We can express it in category
theory. First, we introduce some basic notation of category:

Definition 1.4.1. A category is a quadruple A = (O, hom, id, o) consisting of

(1) a class O, whose members are called A-objects. The class O of A-objects is often
denoted by Ob(A),

(2) for each pair (A, B) of A-objects, a set hom(A, B) whose members are called A-morphisms
from A to B,



(3) for each A-object A, a morphism ids € hom(A, A) called the A-identity on A,

(4) a composition law associating with each A-morphism f : A — B and each A-morphism
g : B — C an morphism go f : A — C, called the composition of f and g, subject to the
following conditions:

(a) composition is associative; i.e. for morphisms f : A —- B, g: B — C,and h: C - D,
the equation ho(gof) = (hog)of holds, :

(b) A-identities act as identities with respect to composition; i.e. for A-morphismsf : A — B
the equations idg - f = f = f - id, hold,

(c) the sets hom(A, B) are pairwise disjoint[]]

Example 1.4.2. There are some examples we will mention:

(a) Let O be the class of all partially ordered abelian groups, hom be the class of positive
homomorphisms, id be the class of identity map, and o denote the composition of group
homomorphisms. Then, (O, hom, id, o) forms a category.

(b) Let O be the class of all partially ordered abelian groups with units, hom be the class
of normalized positive homomorphisms, id be the class of identity map, and o denote the
composition of group homomorphisms. Then, (O, hom, id, o) forms a category.

(c) Let O be the class of all C*-algebras, hom be the class of all *~homomorphisms, id be
the class of the identity maps, and o denote the composition of *~homomorphisms. Then,
(O, hom, id, o) forms a category.

Next, we have the definition of functor:

Definition 1.4.3. If A and B are categories, then a (covariant) functor F from A to B is
a map that assigns to each A € Ob(A) an F(A) € Ob(B) and to each f € hom(A, B) an
F(f) € hom(F(A), F(B)), so that the following conditions hold:

(1) F(g o f) = F(g) o F(f) whenever g o f is defined, and

(2) F(ida) = idFa) for all A € Ob(A)[1]

Next, we have the definition of direct system:

Definition 1.4.4. A direct system in a category C consists of an ordered pair {M;, ¢;;},
where (M;)c; is a family of objects in C indexed by a partially ordered set (I, <) and
(¢ij : Mi = M})ic; is a family of morphisms, such thatVi < j< k € I, ¢pji 0 ¢yj = duc[73]

Finally, we have the definition of direct limit:

Definition 1.4.5. Let | be a partially ordered set, and let {M;, ¢;;} be a direct system over
I in category C. The direct limit is an object imM; and a family of morphisms (o; : M; —
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[L_rgl\/li)ie, such that

(i)aj¢ij = op whenever i < j.

(ii)for every object X € Ob(C) having maps f; : M; — X satisfying f;¢;; = f; for all i < j,
there exists a unique map 6 : li_)li- — X making 8o a; = f; for all i € 1.[13]

Example 1.4.6. Consider the categories of partially ordered abelian groups, partially or-
dered abelian groups with units, C*-algebras, or Elliott-Su systems (to be introduced
shortly). In these cases, the direct limit always exists[7[[8][11]

Remark 1.4.7. AF-algebra can be defined in another way: if A is a direct limit of a direct
sequence {A,, ¢;j} of C*-algebras, where the A, are finite-dimensional, then A is an AF-
algebra[17]

1.5 Classification and Dimension Groups

The following theorem describes the Ky functor for non-zero matrix C*-algebras:

Theorem 1.5.1. IfA4: M, (C)d M, (C)® ... & M, (C) for some integers nq, ny, ..., ng, then
the map t : Ko(A) — Z* given by traces is an order isomorphism, in which Z¥ is equipped
with product ordering, and (ny, na, ..., ne) = T([1]a)[17]

Below, we will introduce several classification theorems. These theorems share a com-
mon point: they were all proved using a similar method, which we call Elliott’s intertwining
argument. The pattern of this argument is as follows. Given two objects A and B, which
is given by a sequence of {A;}.eny and {B;}ien and a kind of functor F that maps every
- Inv(:), if we have Inv(A) = Inv(B) like the diagram below.

A > Ay y Az > . > A Inv(A)
B, y B y B3 > > B Inv(B)
We can get:
Inv(A;) —— Inv(A;) —— Inv(A;) > > Inv(A)
Inv(By) —— Inv(By) —— Inv(B3) > » Inv(B)
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Then, we pull back the map from Inv(A) = Inv(B) to a commuting diagram:

Inv(A;) —— Inv(A;) — Inv(A > > Inv(A)
[ 27 e 27 / i
Inv(By) —— Inv(By) —— Inv(B3) > ... > Inv(B)

Next, we prove two lemmas:

(1) (Existence lemma) For C,D € {Ai}ien U{Bi}ien, if there is a morphism ¢ : Inv(C) —
Inv(D), we will have a morphism ¢ : C — D such that F(¢) = ¢.

(2) (Uniqueness lemma) For C, D € {A;}ien | U{Bi}ien, if there are two morphisms b1, ¢, :
C — D such that F(¢;) = F(¢), then Ju € D such that $» = Ad(u) o 1.

Then, we use the existence lemma to show there exists this diagram:

‘Az >

i/l/l/ L

N
7T e

Finally, we use uniqueness lemma to modify this diagram above to make it commute. Then
we can prove that these objects can be classified by the functor F.

In 1976, Elliott classified unitial AF-algebras by their Ky groups, by expressing AF-algebras
as direct limits of sequences of finite-dimensional C*-algebra[6]:

Theorem 1 5 2. Two unital AF-algebra A and B are isomorphic if and only if the triples
(Ko(A), Ko(A)*,[14]0) and (Ko(B), Ko(B)*.[18lo) are isomorphic[1/]

In [6], Elliott called (Ky(A), Ko(A)*) for an AF-algebra A a dimension group. These are
inductive limits of sequences of simplicial groups Z". After some years, Effros, Handelman
and Shen gave an axiomatisation of a more general class of groups, which are now called
dimension groups[>}:

Theorem 1.5.3. An ordered group G is a dimension group if and only if it is a Riesz group.[3]

Then, we can define:

Definition 1.5.4. A dimension group is a directed, unperforated, interpolation partially
ordered abelian group.[S]



What Elliott called dimension groups are now countable dimension groups. Effros,
Handelman and Shen found that the range of the Elliott classification is the countable
dimension groups[5] After this, Handelman and Rossmann showed that for a UHF algebra
A, (Ko(AC),[1]), as an ordered Ky(G)-module, classifies the product type actions up to stable
conjugacy [9]:

Theorem 1.5.5. Suppose that (Ko(A%%),[1)) =~ (Ko(A%P),[1]) as ordered Ky(G)-modules,
where o and B are outer product type actions of the finite group G on the UHF algebra A.
Then « is stably conjugate to B.[9]

Just one year later, Handelman and Rossmann showed that for an AF algebra A, lo-
cally representable actions a of a finite group G can be classified by Ky(A x4 G) with a
condition[10]:

Theorem 1.5.6. For the AF algebra A, let a, B : G — Aut(A) be two locally representable
actions of the finite group G. Then o and B are stably conjugate if and only if there is an
order isomorphism p : Ky(A X o G) — Ko(A xg G) such that p([AulXreq) = [AplXreg- [10]



Chapter 2

The Elliott-Su Classification of AF type
Z» actions

After Handelman and Rossmann’s works, Elliott and Su dropped the locally representable
condition but restricted the group to Z,. They found that AF-type inductive limit actions
of Z; can be classified by an invariant consisting of: (Ky(A), a.), (Ko(A x4 Z3), &), the map
between them and a pair of special elements: the class of the unit and the class of the
projection that comes from averaging the unitaries of Z; in the cross product. We call this
the Elliott-Su invariant:

Theorem 2.0.1. Let (A, a,Z;) = im_(A,, ,, Z,) and (B, B,Z,) = lim_(B,, Ba. Z,) be two
inductive limit C*-dynamical systems, let F be an order-preserving group isomorphism
from (Ko(A), a) to (Ko(B), B«) mapping [14] to [1g], and let ¢ be an order-preserving group
isomorphism from (Ko(A X 4 Z3), &) to (Ko(B x g Z5), B.) mapping the special element to the
special element. Suppose that the following diagram commutes:

Ko(A) e — Ko(A X Zz)

Fl ¢
K()(B) —_— K()(B XpB Zz)

Then there is an isomorphism ¢ from (A, a) to (B, B) such that o, = F and such that the
extension of a map from A X, Z; to B xg Z; gives rise to the map ¢.[7]

In theorem above, we can find the most important object that we research:



Definition 2.0.2. For a C*-dynamical systems (A, a,Z,),

we call Ko(A) AN Ko(A x o Z3) , along with [1] and [(1 + ¢)/2]ax,z, where g is the non-
identity element of Z,, an Elliott-Su invariant.

8 A

€ )

We call Ky(A) AN Ko(A x4 Z;) an Elliott-Su system.

Given two dimension groups G and H, Z, actions a and B and equivariant homomor-

5, O
phisim ¢, we call G s H a Z; dimension group system.

identify flip flip identify

Wecall 728872 o 72 XYY o7 g basic Elliott-Su system.
We call a direct sum of finitely many basic Elliott-Su systems a simplicial Elliott-Su system.

Remark 2.0.3. We can see that if A = M, & M, for some n with a Z, action a :

Oy [+

) )

(x,y) = (y,x) on it, AXy Zy = My,. We find Ky(A) AN Ko(A X Z3) is isomorphic to

flip identify
(x.y)ox+y
A 7
Remark 2.0.4. We can see that if A = M, for some n with a Z, action a inner on it, Ax o Zy =
a A, identify flip

M, ® M,. We can find Ko(A) —— Ko(A xo Z2) is isomorphic to 7 =% 72

Remark 2.0.5. Similarly, we can see that a simplicial Elliott-Su system is isomorphic to

[¢ 5% d\*

) )

Ko(A) AN Ko(A x o Z3) for some finite dimensional C*-algebra A with a Z, action «a.

After Elliott and Su gave their classification, Choi and Dean modified the Effros, Han-
delman and Shen theorem[4]:
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Theorem 2.0.6. /f a Z? action is given on a countable lattice-ordered dimension group, then
it can be expressed as an inductive limit of Z? actions in simplicial groups.[4]

Theorem 2.0.7. Let G be a countable lattice-ordered dimension group, and let a be a Z;
action on G. Then E = {a € G*|Vb € G* s.t. b < a,b = a(b)} is a convex submonoid of
G, and E + (—E) is an ideal of G.

Proof. Suppose a,b € E,and let c=a+b. If d € G, d < ¢ = a + b, by interpolation
properties of G, there exist xy, x, € G* such that x; < a, x, < b with d = x; + x2. By E’s
property, a(x;) = xy, a(x2) = x3. So a(d) = a(x1 + x2) = x1 + x2 = d, which means ¢ € E.
Thus E is a submonoid.

We see that E is convex because Ya € E, Vb € G such that 0 < b < a, Vc such that
0<c<b0<c<b<asoalc)=c. Thus E + (—E) is convex subgroup, and because
E = (E + (—E))", by proposition 1.3. of [8], E + (—E) is directed.

Thus E + (—E) is an ideal of H. O

Definition 2.0.8. Let G be a countable lattice-ordered dimension group, and let a be a Z,
action on G. We call the monoid E defined in Theorem 2.0.7 the super fixed submonoid.
We call the subgroup E + (—E) defined in Theorem 2.0.7 the super fixed subgroup, denoted
by G**. Each element which is in the super fixed subgroup is called a super fixed element.

Definition 2.0.9. We say that an Z; dimension group system (G, ) LN (H,B) satisfies
the magic conditions if the following hold.

(1)
$(G*) = (H*)F

H(GT) = {x+ B(x)|x € H'}
ker(¢) = G(—1) = {x € G|x + a(x) = 0}

and there exists a map n from H to G which satisfies
n(H*) = (G")*
n(H?") = {x + alx)|x € G*}
ker(n) = H(—=1) = {x € H|x + B(x) = 0}

and:
nogp=ga

11



pon=1~¢&

where 0 : G — G is given by o(x) = x + a(x), and & : H — H is given by &(x) = x + B(x).

a B
)
| T

n

(2) For all a € G* such that a A a(a) = 0, ¢(a) € H* will be in the super fixed submonoid
of H.
(3) For all y € H* such that B(y) L y, Ix € G, such that ¢(x) = y + B(y).

Remark 2.0.10. /t is easy to see that a inductive limit of simplicial Elliott-Su systems
satisfies (1) of magic conditions.

Theorem 2.0.11. Suppose (G, a) —¢ (H, B) is an inductive limit of simplical Elliott-Su
systems, and that x € G satisfies x L a(x). Then @(x) is a superfixed element of H*.

Proof. We have a commutative diagram expressing (G, a) —¢ (H, B) as an inductive limit

(G, 1) 225 (G, o) =2 (Gy, o) — ... — (G, a)

b !

Viz V23

(Fh, B1) — (H2, B2) — (H3, 3) — ... ——(H, B)

in which each column is a simplicial Elliott-Su system. By passing to subsequences
and renumbering, in any such system we may assume that ker(pn.) = ker(u,n+1) for all
n, and similarly for the vs.

Let J, be the direct summand of G, generated by those simplicial basis elements e
such that p, ni1(€) = 0, and let [, be the ideal of H,, generated by ¢,(J). Since py mi1 is
equivariant, J, is an « invariant ideal of G, so G,//, is a simplicial group with an action &
given by a(x + Jn) = a(x)+ J». By commutativity of the squares, I, C ker(vp,m+1), and 1, is
B invariant. Thus H, /I, is a simplicial group with action B8 given by B(x + In) = B(X) + .
Define @y : (Gulln) = (Hulln) by &(x + Ju) = @u(x) + In. This makes ((Gu/ln), &) —%

((Hm/ln), B) into a simplicial Elliott-Su system. We get a commutative diagram
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(Gm' am) — (Gm/jmr ) — (Gm-M: QA1)

l Pm l Pm l P41

(Hm: Bm) —_— (Hm/lmr Bm) I (Hm+1r Bm+1)

In which the compositions along the top and bottom rows are the maps pp mi1 and
Vmm+1 respectively. Proceeding left to right through our diagram, we can insert such an
intermediate step at every stage. Then passing to subsequences, we can express our original
limit with a sequence in which if g € G and g # 0, then iy oo(g) # 0.

Now suppose that x € G* is such that x L a(x). Assume that we have our system
expressed as an inductive limit with the above property that if g € G} and p,(g) = 0,
then g = 0. We may choose an m and g € G} with p,.(g) = x. If Kk > m and h € Gf
satisfies h < pn(g) and h < ppi(an(g)), then 0 < e oo(h) < x and 0 < i oo(h) < alx),
S0 troolh) =0, and h = 0. Thus pn(g) L ak(nk(g)) for all k > m. It follows that for all
k > m, we have ¢ (tmi(g)) € H:BB, in other words, @(tn«(g)) is superfixed in H;". Now
consider ¢(x) € H*. Suppose we have y € H* with 0 < y < ¢(x). We can choose a kK > m
and a v € H; with vio(v) = 4y, v < @r(Umi(g))- It follows that Bi(v) = v, so Bly) = y.
Since y was arbitrary, ¢(x) is superfixed. a

Corollary 2.0.11.1. Suppose (G, a) —¢ (H, B) is an inductive limit of simplicial Elliott-
Su systems, and that y € H* satisfies B(y) L y. Then there exists x € G such that

é(x) = y + Bly).

Proof. Suppose y € H™ and B(y) L y. Let x = n(y). Then y + B(y) = ¢(n(y)) = ¢(x).
Suppose 0 < z < x. Let w = z—zAa(z). Then 0 < w < x. Also, w L a(w), so ¢(w) € HFE+
from theorem 2.0.11 above. We have 0 < ¢(w) < y + B(y), so by interpolation there exist
Y1,y with 0 < y1 < y, 0 < y2 < Bly), and ¢(w) = y1 + y>. We have y; L B(y1) and
0 < y1 < p(w) € HPEF, so y; = 0. Similarly y, = 0, so ¢(w) = 0, and w = 0. Thus
z=12zA a(z), so z € G“. Since z was arbirtary, x € G***.

t

Remark 2.0.12. The above proof only used magic condition (1) and (2).

Combining the results above, we have shown:

Theorem 2.0.13. A inductive limit of simplicial Elliott-Su system satisfies magic conditions.
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Corollary 2.0.13.1. If (G, a) AN (H,B) is anZ, dimension group system that satisfies
the magic conditions, $(G*) = {x + B(x)|x € H}

Proof. For all Vx € G?%, write x = xt + x7, ¢(x) = ¢(x* + x7) = ¢(x*) + ¢(x7). Since
xt € G, there exists y* € H* such that ¢(x*) = y* + B(y™) by magic condition (1).

Applying map — : G — G,x — —x to second condition, we can show ¢(G*7) = {x +
B(x)|x € H™}, so there exists y~ € H™ such that ¢(x") =y~ + B(y~). Thus y = y* +y~,
y + Bly) = o(x). O

Corollary 2.0.13.2. If (G, a) AN (H.B) is anZ, dimension group system that satisfies
the magic conditions, ¢(G) = HP

Proof. Forallg € G, g = g*+g~ ¢(g*) € (H*)?, dually, ¢(g~) € (H7)%, s0 ¢p(g* +¢g~) €
HE O
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Chapter 3

Main Theorem

The range of invariant problem of the Elliott-Su Classifation has not been solved. In this
section, we give a sufficient condition under which a Z, dimension group system will be an
inductive limit of simplicial Elliott-Su systems. First, we introduce a structure which we
call a flank monoid of a countable lattice-ordered dimension group with Z, action.

Theorem 3.0.1. Let H be a countable lattice-ordered dimension group, and let B be a Z,
action on H. There exists a maximal subset F C H* that satisfies:

Ya,b € F,aAB(b) =0

Proof. Let P be the collection of all the subsets G C H satisfying Va, b € G, a AB(b) =0,
and order P by C. (Note, this implies G C H*.) To apply Zorn’s Lemma, take a chain
T ={Gi}ie; in P. If T is empty, then {0} is an upper bound for T in P. Assume then that
T is non-empty. Let F' = | J{ G}/ be the union of all subsets in T. We just need to prove
Va,b € F',a NB(b) = 0. Forall ¢ € F' it 3b € F’ such that a A B(b) # 0, then there
exist i,j € I such that a € G;, b € G, which means a,b € Gpaxqijy, 50 a A B(b) = 0 by
Gmax{i,jy € P, which makes a contradiction. Thus Va,b € F’, a A B(b) = 0. Thus by Zorn’s
Lemma, there exists a maximal element F in P. |

Theorem 3.0.2. Let H be a countable lattice-ordered dimension group, and let B be a
Z;, action on H. Every subset F satisfying the conclusion of Theorem 3.0.1 must be a
submonoid of H.
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Proof. By Lattice-ordered groups: an introduction Prop 1.1.5.(page 3)[2], since H is a
dimension group, it must have the interpolation property[8]. Thus VYa, b, c € F such that
aAB(c) = 0, bAB(c) = 0, using the property, (a+b)AB(c) < (aAB(c))+(bAB(c)) = 0+0 = 0.
From a A B(a) = 0,bAB(b) = 0and cAB(c) =0, a,b,c >0, we have a + b > 0,
(a+b)AB(c) > 0. Thus (a+b)AB(c) =0 and cAB(a+b) = 0. Also, 0 < (a+b)AB(a+b) <
aNBla+b)+bABla+b)<anBla)+anBb)+bABa)+bABb)=0+0+0+0=0,
so (a + b) A B(a + b) = 0. By the maximality of F, f a + b ¢ F, F U {a + b} satisfies
Ve, d € FU {a+ b}, c A B(d) = 0, which makes a contradiction, so a + b € F. O

Definition 3.0.3. Let H be a countable lattice-ordered dimension group, and let B be a Z,
action on H. Every subset F satisfying the conclusion of Theorem 3.0.1 is called a flank
monoid of H.

Corollary 3.0.3.1. If (G, a) AN (H.B) is an Z; dimension group system that satisfies
the magic conditions, and F is a flank monoid of H, then &(F) C ¢(G™).

Theorem 3.0.4. [2](page 3)For a latticed ordered group G:

(a)Va,be G,a+b=aVb+aAb,

(b) the lattice (G, V, N\) of the lattice-ordered group G is always distributive,
(c)la+c)AN(b+c)=aAb+cand(a+c)V(b+c)=aVb+ec

Theorem 3.0.5. For a latticed ordered group G, let g € G. Then for g* = g vV 0 and
g~ =gAO0, we have g* AN (—g~) =0.

Proof. We cansee gt A(—g7)=(g*+¢g —g )N (—g7) = (gt +9g )ANO0—g~ =gAO—g~ =
g~ —g =0 =

Theorem 3.0.6. Let H be a countable lattice-ordered dimension group, and let B be a Z;
action on H. Let F be a flank monoid of H. For all a, b € F satisfying a + B(a) = b+ B(b),
a=b.

Proof. Because F is a flank monoid of H, we have a AB(a) =0, aAB(b) =0, bAB(a) =0,
bAB(b) =0. Let a + B(a) = b+ B(b) = c. By theorem 3.0.4(a), a+ B(a) = a ABla)+aV
Bla) =0+ aV B(a) = a Vv B(a) = c. Similarly bV B(b) = c. We have ¢ > a, ¢ > b.

By theorem 3.0.4(b), this lattice is distributive. Therefore: B(b) A (a V b) = (B(b) A a) V
(Bb)Ab)=0vO0=0and B(b)V(aVb)=Bb)VbVa=cVa=rc.

Thus by theorem 3.0.4(a), B(b)A(aV b)+ B(b)V{(aV b) = B(b)+(aVb)=c+0 = B(b)+b,
so b= aV b. By similar a process, a =aVb,soa=b=aVb. d
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Example 3.0.7. These are some examples of flank monoids:

(a) For H =Z & Z in product ordering, B : (a,b) — (b, a) an action on H, F = {(a,0) €
Hla € Z*} is a flank monoid of H.

(b) For H = Z][1/2] & Z[1/2] in product ordering, B : (a,b) — (b, a) an action on H,
F = {(a,0) € H|la € Z[1/2]*} is a flank monoid of H.

(c) For H =Z[1/2]® Z & Z in product ordering, B : (a,b, ¢) — (a,c, b) an action on H,
F ={(0,0,0) € H|la € Z*} is a flank monoid of H.

Theorem 3.0.8. Let H be a countable lattice-ordered dimension group, and let B be a Z,
action on H. Let F be a flank monoid of H. For all a € F,b € H satisfying 0 < b < g,
b e F. That is, F is convex.

Proof. Let a € F,b € H satisfy 0 < b < a. Then for all ¢ € F, B(c) A a = 0, therefore,
Blc)ANb < B(c)ANa=0,but b >0, and cAB(c) =0, so B(c) >0,s0 Blc)Ab >0, so
B(c)Ab=0and cAB(b) =0. Also, 0 < B(b)Ab < Bla)Aa =0, so B(b)Ab = 0. Because
of the maximality of F, if b ¢ F, F U {b} satisfies Vd,e € F U {b}, d A B(e) = 0, which
makes a contradiction, so b € F. d

Theorem 3.0.9. Let H be a countable lattice-ordered dimension group, and let B be a Z;
action on H. Let F be a flank monoid of H. Then F + (—F) is an ideal of H.

Proof. Since F is an submonoid, Va,b € F,c,d € —F, (a + ¢) — (b + d) = (a + (—d)) +
(b + (—c)) € F 4+ (—F), so it is a subgroup of H. To show it is convex, we need to show
(F + (—F))*" is convex. Suppose a € F,.b € —F and a+ b > 0. We have b < 0,
so 0 < a+b < a e F, and by theorem 3.08, a+ b € F, and F C (F + (—F))*, so
F = (F + (—F))*. By theorem 3.08, (F + (—F))* is convex. Thus F + (—F) is convex
subgroup. Because F = (F + (—F))", by proposition 1.3. of [8], F + (—F) is directed, so
F + (—F)is an ideal of H. d

Using the action B, B(F) + (—B(F)) is an ideal of H.

Corollary 3.0.9.1. Let H be a countable lattice-ordered dimension group, and let B be a
Z, action on H. Let F be a flank monoid of H. Then F = F + B(F) + (—F) + (—B(F)) is
an ideal of H.

Proof. The sum of two ideals in an interpolation group is an ideal. ([&] prop 2.4) d

Theorem 3.0.10. Let H be a countable lattice-ordered dimension group, and let B be a Z,
action on H. Let F be a flank monoid of H. Then (F + (—F)) N (B(F) + (—B(F))) = {0}
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Proof. Suppose a € (F + (—F))N(B(F)+(—B(F))). Since (F+(—F)) and (B(F)+ (—B(F)))
are directed groups, a* = a A0,a™ = a V 0 exist in both of them. We have a € F + (—F),
at=aN0 e (F+(=F)"=F, at =an0 e (B(F)+ (—B(F))*t = B(F) (by the proof
of theorem 3.0.9). Thus there exists b € F such that B(b) = a*. By the definition of flank
monoid, a* A B(b) = a* Aat =0, so a* = 0. In addition, ¢ is dually equal to 0. So
at+a =a=0. O

Next, we need a special theorem:

Theorem 3.0.11. Suppose H is an countable latticed ordered-dimension group with 7Z;
action B with a flank monoid F. If a € F + (—F),b € B(F) + B(—F) are such that
a+b >0, thena,b>0.

Proof. By the proof of theorem 3.0.10, o™, (—a™) € F,b*,(—b™) € B(F) and by theorem
3.0.5, a*A(—a~) = 0. Similarly, b* A(—b~) = 0. We also have a*A(—=b") =0, atAbT =0,
(=a7)Ab* and (—a")A(—b") = 0. By a*, b*,(—a”) and (—b~) are positive, 0 < (a* +
bYYA((—a7)+(=b7)) < a* A(—a" )+ at A(=b7))+ bt A(—a™)+ bt A(—b7)) = 0. Since
(@" +b")A((—a7)+(=b7)) =0, (a"+bT)V((—a7)+(=b7)) = (¥ +bT)+((—a7) +(—b7)).
It follows that (¢ + b) VO = ((a* + b)) — ((—a™ )+ (=b7))) VO = (a* + b))V ((—a™) +
(=b7) = (a7 )+ (=b7)) = (0¥ + b*) +((—a7) + (=b7)) = ((—07) + (=b7)) = a* + b* =
(a+b)t =a+b=at+b*+a +b". Thusa +b~ =0. Bya~ Vb =0and a " Ab™ =0,

a” =b"=0. We have a,b > 0. O

Definition 3.0.12. Suppose H is a countable latticed-ordered dimension group, and B is a
Z, action on H. If there exists a flank monoid F and F = F + B(F) + (—F) + (—B(F)), and
there exists a subgroup E C H such that

Vx € E, x = B(x)
EnF ={0}
E+F=H

Then we call E a fixed subgroup for the flank monoid F in H. We call H an easy countable
latticed-ordered dimension group with action B.

Definition 3.0.13. For H a countable latticed-ordered dimension group, B a Z, action on
H, and a flank monoid F such that {a € H|a A B(a) = 0} C F + B(F), we call F a major
flank monoid. If there exists a fixed subgroup for the flank monoid F in H, we call it a major
fixed subgroup.
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Corollary 3.0.13.1. Suppose H is an easy countable latticed-ordered dimension group
with action B with a flank monoid F and a fixed subgroup E for F. Then if a € H,
Junique be E,e € F+ (—F)+ B(F)+ B(—F) such that a = b+ e, and 3 unique c €
F 4+ (=F).d € B(F)+ B(—F) such that e = c + d.

Proof. First, We show there exist unique b € E,e € F such that b+e = a. f3by, b, € E,
e, e, € F, such that by + e; = b2+ez = a, we have b1—b2 € Ee1~e2 e F,
(by —bs)+(e1—e)) =0,0€ ENFsoby—bre;—es € ENF. BWENF =0, so
0 = by — by = e1 — ey. By the same reason(theorem 3.0.10), 3 unique c € F + (—F),d €
B(F)+ B(—=F)suchthatc+d=e. Thusa=b+e=b+c+d. O

Corollary 3.0.13.2. Suppose H is an easy countable latticed-ordered dimension group
with action B with a flank monoid F and a fixed subgroup E for F. Then if a € H,
Junique b € E,c € F + (—F) such that a = b + ¢ + B(c).

Proof. Using corollary 3.0.13.1, Junique b € E,c € F+(—F),d € B(F)+ B(—F) such that
a=b+c+d. Since a € H?, a = B(a). B(b) = b, so B(c+d) = B(c)+B(d) = c+d. B(c) €
B(F)+B(—F), B(d) € F+(—F), and by uniqueness of corollary 3.0.13.1, @ = b+ B(d)+ B(c)
with b € E,B(d) € F + (—F), Blc) € B(F) + B(—F), so B(c) = d, B(d) = c. O

Corollary 3.0.13.3. Suppose H is an easy countable latticed-ordered dimension group with
action B with a flank monoid F and a fixed subgroup E for F. Then F must be a major
flank monoid.

Proof. Suppose a € H with a A B(a) = 0. Since a € H = E + F, there exists unique
beE,ce F+(—F),de B(F)+ B(—F) such that a = b+ ¢+ d. We have a A B(a) =0
and b = B(b) by definition. Then (b+c+d)AB(b+c+d) = (b+c+d)A(b+B(c)+B(d)) =
b+(c+d)A(Blc)+B(d)=0. By0e EnF,beE so(c+d)A(Blc)+pld) € E
But (c + d) A (B(c) + B(d)) € F, so (c + d) A (B(c) + B(d)) = 0, and so b = 0. By theorem
3.011, a € F + B(F). a

Now, we are going to state our main theorem.

Theorem 3.0.14. Suppose G is a countable latticed-ordered dimension group with a Z;
action a, H = E ® (F + (—F)) @ B(F + (—F)) is an easy countable latticed-ordered

dimension group with action B, and (G, a) AN (H,B) satisfies the magic conditions.

Suppose further it satisfies:
(i) $(G=") = {a + B(a)la € H,a A B(a) = 0}
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(ii) For every a € G*,3b € E*,c € F + B(F) such that ¢(a) = b + c.

(iii) For all a € E™, there exists b € G* such that ¢(b) = a and b A a(b) = 0.

Then this Z, dimension group system will be an inductive limit of a sequences of simplicial
Elliott-Su systems.

Proof. We are going to construct a diagram like this:

(G1, a1) 25 (G, o) =25 (G, ot3) 22> (G, a)
P1T l¢1 PZT lfﬁz P3T l¢3 ‘4
V12 V2.3 V34

(Hh, B1) == (H2, B2) == (H3, B3) = ... — (Hw, Bx) iy

T3 T
T

Given (G, a), by the proof in [4], we may write
> G

G =2m 224 G, =7m 2,

where for each simplicial basis element e € G;, we have pi.(€) = a{lio(€)) OF Lino(€) A
a(Uio(€)) = 0. Because each «; is a Z; action, we can write each G; = E;® F; & F/, in
which o; : E; — E; is the identity, and o, : F; ® F] — F; & F] where Vx € F,,y € F/
we have ai(x,y) = (y,x) and F; is isomorphic to F/. Let each /yimk) be the identity
matrix of dimension dim(E;), lyim(r, be the identity matrix of dimension dim(F;), let ¢; =

laimey O 0

laimey O 0

0 laimFy  laim(Fy

0  lgimey O
and let H; = Z" = ¢;(G;) with action B; = | lyim(g) 0 0 |. It can be checked
0 0 liwr
directly that ¢; : G; » H; = E; ® E] ® F; is a equivariant map.
a ¢ ¢
Let pip1 = | b d e, in which ais a dim(E;) x dim(E;1) matrix, d and e are dim(F;) x
b e d

dim(F;.1) matrices, b is a dim(E;) x dim(F;,1) matrix, and c is a dim(F;) x dim(E ;1) matrix.
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a 0 c

Llet viiyqr = |0 a ¢ |, where v;,1 maps H; to Hi;4. It can be checked directly that
b b d+e

the following diagram commutes and each map is an equivariant positive map:

Hii+1
Gi — G

l¢i l¢1+1
H

Vii+1 Hi+1
O )
Bi Bis

Now we are going to define a pair of maps: ¢’ and ¢'. First we need to show some decom-
position properties. By condition(ii), for each m € G*, In € E*,w € F + B(F) such that
$(m) = n + w. By Magic condition (1), $(m) € HB", so by Corollary 3.0.13.2 there exists
unique n’ € E* and p € F + (—F) such that ¢(m) = n"+p+B(p) = "+ (p+B(p)) = n+w.
By Corollary 3.0.13.1, n = n” and p + B(p) = w > 0. By theorem 3.0.11, p > 0, p € F.
Assume that m € G°*. By magic condition (1), 3r € H* such that ¢(m)=n+p+ B(p) =
r+B(r). Apply Corollary 3.013.1tor, lets € E,h € F+B(F)+(—F)+B(—F), r = s+h and
(s+h)+B(s+h) = n+(p+B(p)) = (2s)+(h+B(h)). By the uniqueness in Corollary3.0.13.1,
2s = n, and because it is a dimension group, it is unperforated, so s > 0. Therefore, for
every m € G°*, there are unique s € E* and p € F such that ¢(m) = s+ p + B(s + p)
and s + p > 0. Similarly, from Corollaries 2.0.13.1, 2.0.13.2, for every m € G°, there are
unique s € E and p € F + (—F) such that ¢(m) = s+ p + B(s + p). For all m € G°,
let ¢!(m) = s+ p. For u,v € G% let s, s, € E, p,,p, € F + (—F) be the elements
in the decompositions above. We have s, +s, € E and p, + p, € F + (—F). Consider
((su+sv)+ (pu+pv)+ Bll(su + 50} + (pu + pv) = ¢(u) + ¢(v) = ¢p(u + v). From the proof
above, the choice of these two element is unique, so s, + s, and p, + p, are the elements in
the decompositions for ¢(u + v). Thus ¢'(u + v) = ¢'(u) + ¢'(v), so ¢' is a homomorphism.
Because for all m € G*, ¢'(m) > 0 it is also a positive group homomorphism. We define
¢’ (m) = B(s + p) = B(¢'(m)) for m € G4, which is a positive homomorphism.

Now we are going to define a sequence of maps 7, : H; — H.

Let f' be a simplicial basis element for G; in F;. Because pi(f') A a(tio(f’)) = 0, by the
magic condition (1)(2): @(Lico()) = P(Lico(i(f'))) is in HPB, 50 @ (Liso(f’)) + DP(Lico(ai(f))) =
Plioo(f) + Plico(f)) = Pluicolf’ + ai(f))) € HPP. Because f' > 0, so ¢(pico(f')) 2 0.
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Because ' + ai(f') € G, pio(f’ + ai(f’)) € G If s € E* and p € F are such that
O(Uioo(f' + a:(f'))) = s+ p+ B(s + p), because 0 < p < d(UioolF’ + ai(f’))), p is also in super
fixed submonoid of H. Thus p A B(p) = 0 and p = B(p), so p = 0 in this situation. Then
¢! (Hico(f" + ai(f)) = ¢"(Hico(f' + ai(f)) = s = B(s). Because P(uioo(f")) = P(uico(ai(")))
by magic conditions and @(io(f’ + ai(F))) = 25, P(lie(f’)) = PHiol(ai(f))) = s =
O (Uico(F + ai(F))) = ¢ (oo’ + a;(f’))) in this situation.

laimey Maimey O }
Let p; : H; — G; be the map p; = 0 laimFy |-

0 0 ldimry

Let each 7; : H; = H be the linear map defined as follows:
If f is a simplicial basis element for H; in E;, 7(f) = ¢'(ico(pi(F)))-
If f is a simplicial basis element for H; in E], 7,(f) = ¢"(Hiso(pi(f)))-
If f is a simplicial basis element for H; in F;, 7({f) = ¢ (tico(0i(F))) = & (Liso(pi(T)))-
Because ¢', ¢", 0o and p; are positive maps, T; is positive. Because it is defined on basis
elements, it is a homomorphism.

Now, we are going to show 7; is a equivariant map. If e, is a simplicial basis element
for H; in E; and e; is a simplicial basis element for H; in E] such that e; = Bi(ez), then

B(t(e1)) = B(¢'(Hiso(pi(e1)))) = ¢ (Hio(pi(er)) = ¢ (Hico(pi(e2)) = Ti(e2), and if  is a sim-
plicial basis element for H; in F;, then f = B;(f), so 7; is a equivariant map.

Now we should check this diagram commutes:

Bi Bi+1
OO
Hi = Hi+1

7

Suppose f is the jth simplicial basis element for H; in E; let a; and b; be the jth
columns of the matrices a and b. We have 7;(f) = ¢! (i (0i(F)) = &' (Wiz100(Liiz1(pi(F)))) =
¢[(H,’+1'oo(0T bT bT)), Viit (f) = (U/T,O,O, c ,O, bIT), and T,'+1(Vii+1 (f))

P

jrEjrTy
dim(E;1)
= ¢ (20a(a], 0,0,...,0,0,0,...,0)) + ¢ (is100(0. 0, ..., 0, ], b])) = $!(urroolar] ], b])).
dim(Fiyr)  dim(Fian) dim(Ei 1)
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so T;(f) = Tip1(vis1(f)). If f is a simplicial basis element for H; in E], the proof is similar.
Suppose f is the jth simplicial basis element for H; in F;. Let ¢;, d; and e; be the jth
columns of the matrices ¢, d and e. We have 7,(f) = ¢!(tio(pil(f))) = qb’(umoo(ZcIT, (d +
e)/,(d + e)])). Because 0 < ¢(Hir1eo(c].0,0,...,0,0,0,...,0)) < Pbis100(2¢], (d +

dim{Fi41) dim(Fis1)
e)] . (d + e)])), and P(uir100(2¢] . (d + )], (d + €)]) = P(tico(pi(f))). which is in HPE, by
the defination of super fixed submonoid, ¢(tii1100(c/.0,0,...,0,0,0,...,0)) is also in HP#

dim(Fier)  dim(Fien)
and $(uis1e0(c],0,0,...,0,0,0,...,0)) € G% so ¢(irea(c].0,0,...,0,0,0,...,0)) =
dim(Fiyr)  dim(Fis) dim(Fiyr)  dim(Fipn)
¢ (Hirieo(c] . 0,0,...,0,0,0,...,0)). Because viu(f) = (c]. ¢f.(d + e)]), Tui(vis(f)) =
dim(Fir)  dim(Fiaa)
¢ (is100(c]0,0,...,0,0,0,...,0)) + ¢ (tis1colc], 0,0, ..., 0,0,0,....,0))
din(Fir)  din(Fie) dim(Fir)  dim(Fpen)

+ ¢ (1i4100(0,0, ..., 0, (d + €)[, (d + e)])) = ¢/ (ti1100(¢], 0,0,...,0,0,0,...,0))

N e’ ~ ~~

dim(Eis1) dim(Fi1)  dim(Fis)

+ ¢'(ir100(¢], 0,0,...,0,0,0,...,0)) + ¢ (1i110(0, 0, ..., 0, (d + €)/, (d + e)jT)) =
y \

dim(Fip1)  dim(Fipr) dim(E;1)
¢ (Hir100(2¢] . (d + €)], (d + €)])). It follows that 7;(f) = Ti11(vis1(f)), so the diagram com-
mutes.

Consider:
B

OO S

vi2 v23
H1 > Hz > ..

H
B

8

H,
We are going to show that 7 is an equivariant isomorphism.

First, we prove  is surjective, and T(H}) = H™.

lgimey 0 0
letgi=| 0 0 o

0 ldimry O
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Recall that we have maps n: H — G and o : G — G in magic condition (1).

For each x € F, n(x) € G°*, so ¢(n(x)) = x + B(x) and ¢!(n(x)) = x.

By condition(i) and F being a flank monoid, xAB(x) = 0, so x+B(x) € ¢(G***). There exists
y € G such that ¢(y) = x + B(x), so ¢(y) = ¢(n(x)). Then y — n(x) € ker(¢). By magic
condition (1), y — n(x)+ a(y — n(x)) = 0 = 2y — n(x) — a(n(x)), therefore 2y = n(x) + a(n(x)).
Because n(x) + a(n(x)) € G and n(x) > 0, n(x) = a(n(x)). so 2n(x) = 2a(n(x)) = 2y.
Because G a dimension group, it is unperforated, so n(x) = y and n(x) € G*°.

Assume z € G;* is such that p(2) = n(x). Because n(x) is a simplicial basis element in
G ifwe Gissuchthat 0 < w<zand w € F; or w € F/, because 0 < (W) < n(x)
we have pi(w) € G Because ioo(W) A a(liso(W)) = 0, tico(W) = 0, S0 pino(z — W) = n(x).
If z =2 4+ z; + z3 such that zy € E;,z; € F; and z3 € F], then pio(z1) = n(x). Thus
Pl (z1) € Hi* and 1(@l(z1)) = x, s0 x € T(Hs"). Similarly, for each x € B(F), x € T(HZ).

Consider ¢ € H*. By Corollary 3.0.13.1, there exist b € E,c € F+ (—F) and d &
B(F) + B(—F) such that ¢ = b+ ¢+ d. We can see ¢ > 0 and B(a) > 0, therefore
aABla)=(b+c+d)A(b+B(c)+ B(d) = b+ (c+ d)A(B(c) + B(d)) > 0. We can
see a A B(a) = B(a A B(a)), so a A Bla) € HE. By magic conditions (1), there exists
t € G* such that ¢(t) = a A B(a). Thus we can find i € N such that we can lift t to
t € Gf, such that 7,(¢i(?)) = ¢(t) = P(Lio(T)) € H and ¢; : G; — H; is a positive map, so
7(¢:i(t)) = aAB(a) € T(HY). Because (c+d)A(B(c)+B(d)) € F+(—F)+B(F)+B(—F) and
a > alAB(a),0 < a—aAB(a) = c+d—(c+d)A(B(c)+B(d)) € F+(—F)+B(F)+B(—F). By
Corollary 3.0.13.1, there exists e € F+(—F), f € B(F)+B(—F) such that e+f = a—aAB(a).
By theorem 3.0.11, e, f > 0, therefore, e € F and f € B(F). By what we have proved above,
e,f € t(HX). Therefore, a = e+ f+ a A B(a) € T(HY). Then we have H* C t(HZ) and
because 7 is a positive map, T(H}) € H™, so we have H* = 7(H}X). We can use the map
— on H to see H™ = t(H)). Because each element x € H can be written as x = x* + x™,
x~ € H, x* € H*, H = 1(Hy). Now we have T is surjective.

Next, we prove 7 is injective.

First, we prove E = HP. From condition (iii) and magic condition (2), E C HPE. Suppose
z € HPE. Assume u € E,v € F 4+ (—F) and w € B(F) + B(—F) are the elements given
by Corollary 3.0.13.1 such that z = u + v + w. Since u € E C HPf, and HPf is an ideal,
v4w =z—u € HPB, so (w+v)* € HBB". By (w+V)* € F+(—F)+B(F)+B(=F), we have
v e F+(—F)and w € B(F)+ B(—F) such that w + v/ = (w + v)* > 0, and by Theorem
3.0.11, w’, v > 0. Therefore, we have w’ € B(F), v’ € F and w4+ V' = (w+v)* € HPF". By
definition of H#8" and flank monoid, we have w’ = B(w’) which forces w’ = 0 and v/ = 0,
which makes (w + v)* = 0. Similarly, (w + v)~ = 0. Therefore, w + v = 0, then we have
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HBB C E. Thus, HPE = E.

For all g1,92 € G° if ¢(g1) = ¢(g2), g1 — g2 € ker(@), s0 g1 — g2+ a(g1 — g2) = 0.
Therefore g1 + a(g1) = g2 + a(g2) = 291 = 2g,. Because G is unperforated, g1 = g,. We
knew that 0 € G* and ¢(0) =0, so Vg € G such that ¢(g) =0, g = 0.

For all h € H; such that 1;(h) = 0, pi(h) € G, so d(Lilpi(h))) = Ti{di(e:i(h))) =
i(h + Bi(h)) = 0+ B(0) = 0 and pio(pi(h)) € G so pico(pi(h)) = 0, so pir1(pi(h)) = 0
by Choti and Dean paper. Thus ¢ 1(pir1(pi(h))) = vis1(@i(pi(h))) = virr(h + Bi(h)) = 0,
so YN > i+ 1, vin(h + Bi(h)) = 0. If vin(h) = x+ y such that x € Fn,y € EN® EJ,
x4+ y+ Bnix + y) = y+ Bnly) + (2x) = 0, and because x is orthogonal to y and Bn(y),
x = 0. Thus 3t € E;41 C Gi4q such that viq(h) = f+1(t)—B,~+1( f+1(t)). It can be checked
directly by matrix product that Vs € E;y1 C Gip1, Vipan(dL4(5)) = dh(bivin(s))-

Consider ty, = liy100(t) € G* C G. By magic condition (1) and Corollary 2.0.13.2, ¢(tx) €
HE. By Corollary 3.0.13.2, there exist e € E, f € F+(—F) such that ¢(t.,) = e+f+B(f). By
condition (i), f A B(f) = 0, and the map — is dual, so Jc € G* such that ¢(c) = f + B(f).
Since (t, — ¢) € G (tw — c)* € G%*. By magic condition (1), Je’* € H* such that
d((teo — ¢)¥) = e* + B(e'"). Similarly, Je'= € H™ such that ¢((t, — ¢)7) = e~ + B(e).
Setting ' = et + €7, we get ¢(t, — ¢) = e = e + B(e'). Since E* is a super fixed
submonoid, 0 < et < et and 0 > ¢~ > e, we have ¢ = et +e~ € E. Bye' € E
and condition (iii), there exists &t € G™* such that é* A a(é*) = 0 and ¢(é*) = €.
Dually, 36~ € G~ with ¢(é7) = e~ and é" V a(é™) = 0. Let é* + & = &. Be
Plc+ &+ a(8)) = P(tw), to € G and ¢ + & + a(é) € G% we have t,, = c +

D>
+
Q

We can lift é*,87,c¢*, ¢~ to elements e*,e7,¢*, ¢” € G; for some j > i+ 1 such that
tp=ct+e +et+e +B(e)" +B(8)". Thus vy(h) = vierj(@r(t) = But(di4 (1)) = $i(1))—
Bi(¢j(1)) = ¢j(c* +c+e"+e"+B(8)" +B(e)) —By(gj(ct + e+ +e” +B(e)" +B(e)7))
Since é*Aa(é*) = 0in G, if b is a simplicial basis elementin E; in G; such that0 < b < ¥,
Hjso(b) = 0. The case of &~ is similar. Every basis elements in E; which is used to express
é* and @~ must map to O finally, and 0 € G**. Because ¢ € G, if b is a simplicial
basis element in E; in G; such that 0 < b < ¢*, since the super fixed monoid is convex,
Hjoo(b) € G**. The case of ¢~ is similar. Similarly if b is a simplicial basis element in E;
in G; such that 0 < b < —¢7, since the super fixed monoid is convex, pjo(b) € G*°.

Suppose {b,;},—123,.s is a list of simplicial basis elements for G; such that t; = ¢+ + ¢~ +
et+e 4+ B(e) +B(e)” =) ab,. If b, € Fj, ¢i(b,)—Bj(¢}(b,)) = 0. Let {b;},=123..1 C
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{b:}r=1,23,..s be the simplicial basis for £; C G;. We have h; = Z£:1 a,qﬁ]’-(b,) -

11 a,Bi(d)(br) = Yoy argl(b) — X7y a,Bj(¢](b.). Since each pio(b;) € G, by Con-
dition(i), F being a major flank monoid, and Corollary 3.0.13.1, we have Tj(qb]’-(b,)) e F. Itfol-
lows that 7;(Y_,_, a,$}(b,)—Y_1_y a:Bi({b)) = X1_y art((br) =31y arB(x;($}(b.) =
0and Y, a,7i($(b)) € F + (=F), ¥_,_; a,B(t;($!(b)) € B(F + (—F)). By Corollary
3.0.13.1, Zia a,‘r,-(qbl’-(b,)) = 0. Since B(0) = 0, T,-(Zf:1 a,qb]’.(b,) + Z£:1 a,B,(qu’.(b,))) =
(b1 arby)) = Bltjoo(Y_—y arbr)) = 0. Because pjoo(3_,_; arb;) € G7, s0

ﬁ’jj+1(Z£=1 a,b,) = 0 by passing to subsequences, as we have done. Because

¢/[’+1(U/’j+1(}:£:1 arbr))_8j+1(¢1['+1(N/'i+1(}___£x1 arbr))) = hjy1 and ¢;+1(U1‘i+1(2£=1 a:b;)) =0,
hit1 =0in Hiq. It h € H* and t(h) = 0, then 3h; € H; for some i with h = v, (h;) and
7;(h;) = 0. Thus T is injective.

We have that this diagram

GG
lqﬂoo l¢
Hoy —— H
O O
Boo B

commutes by construction and (id, t) is an isomorphism of Z, dimension group systems.
Now we have that (G, a) AN (H, B) is an inductive limit of a sequences of simplicial
Elliott-Su systems. (]

Remark 3.0.15. For main theorem, given any random order unit u € G that satisfies u € G*
-~ and v € H that satisfies v + B(v) € HP, this Z, dimension group system can be identified
as an Elliott-Su invariant with these two special elements.
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