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Abstract

With the new wave of beyond fifth generation (B5G) and sixth generation (6G) communi-

cation systems, there is a perpetual demand for more wireless services with higher data rates,

lower latency, and greater connectivity. In order to meet these growing expectations, new candi-

date technologies (e.g., small cells, millimeter wave, and massive multiple-input multiple-output)

have been introduced. Non-orthogonal multiple access (NOMA) has been presented among the

most promising strategies for wireless applications due to its effectiveness in supporting heavily-

loaded systems by serving users with diverse channel conditions in the same time-frequency

resources. NOMA makes it possible to allocate one resource (frequency, time, code, or spatial)

to serve multiple users at once by employing superposition coding at the transmitter side and

successive interference cancellation (SIC) at the receiver side, resulting in more spectral-efficient

and energy-efficient systems.

Recently, rate-splitting multiple access (RSMA) has emerged as a more generalized multiple

access technique than NOMA which can serve various under-loaded and over-loaded wireless

applications by taking advantage of the common streams to better manage the interference.

RSMA offers a flexible interference management technique by enabling an intelligent combina-

tion of transmitter-side and receiver-side interference mitigation rather than fully mitigating

the interference at the receiver side as in NOMA. The RSMA strategy involves splitting user

messages and employing a non-orthogonal transmission scheme, where common messages are

decoded by multiple users, and private messages are decoded by their respective users. This

approach enhances performance across a broader range of network loads, improving spectral and

energy efficiency as well as user fairness.

Improper Gaussian signalling (IGS) has emerged as a signal processing tool and poten-

tial alternative to the proper Gaussian signalling (PGS) to improve the spectral efficiency of

interference-limited 5G and beyond networks. IGS achieves higher degrees of freedom than PGS

due to its capability to control the interference signal dimension. IGS can be viewed as a type

of interference alignment, where interference is effectively eliminated by confining it to a single

orthogonal signal space dimension, allowing the desired signal to be decoded from the remaining

orthogonal dimension.

In this thesis, we investigate the potential performance merits of using IGS in the downlink
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interference-limited NOMA systems assuming practical scenarios including SIC imperfection in

point-to-point NOMA systems and imperfect self-interference cancellation in cooperative full-

duplex NOMA systems etc. We also investigate the potential performance merits of using IGS

in RSMA as a generalization scheme of NOMA system.

In the first part of this thesis, a point-to-point downlink NOMA system is studied, where the

IGS strategy is adopted to compensate for the performance loss caused by imperfect SIC. New

closed-form expressions for achievable user rates are derived when users employ the IGS strategy.

Joint optimization problems are then formulated to maximize the overall spectral efficiency and

energy efficiency of a two-user NOMA system, subject to minimum user-rate requirements and

total power constraints. Sub-optimal solutions for the IGS circularity coefficients and power

allocation are derived for the formulated problems. Additionally, improper constellation dia-

grams are designed using widely linear transformation (WLT) with the predefined optimized

IGS coefficients to analyze the impact of IGS on throughput and error performance.

In the second part of this thesis, a downlink cooperative full-duplex NOMA (FD-NOMA)

system employing IGS under imperfect self-interference cancellation is analyzed. Optimization

problems are formulated and solved to maximize the sum rate, achieve max-min rate fairness,

and enhance energy efficiency. These problems involve the joint optimization of the circularity

coefficients of the IGS and the power allocation at the base station, subject to each user’s

rate constraints. We propose iterative algorithms based on solving the Karush-Kuhn-Tucker

(KKT) conditions to derive sub-optimal solutions to the formulated problems. Additionally, we

illustrate the impact of the IGS circularity coefficient on the constellation diagram of each user.

In the third part of this thesis, we consider a downlink cellular system using RSMA transmis-

sion scheme at the base-station with IGS to serve multiple users. We first derive the achievable

user private rate and user common rate considering IGS is used for the common message. Then,

we maximize the private sum rate of the users’ private rates subject to certain minimum users’

common rate constraint. In this optimization problem, we optimize the IGS circularity coeffi-

cients and power allocation.

The thesis results show that the performance of IGS-based NOMA/RSMA system outper-

forms its counterpart PGS-based NOMA/RSMA system under the realistic hardware imperfec-

tions.
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Chapter 1

Introduction

1.1 Background and Motivation

For the past four generations of wireless cellular systems, the enabling technologies named

as orthogonal multiple-access (OMA) have been the fundamental access techniques [1], [2].

In principle, frequency division multiple access (FDMA) was adopted in the first gener-

ation (1G) of analog technology. Time division multiple access (TDMA) was employed

in the second generation (2G) of digital communications technology. Then, code divi-

sion multiple access (CDMA) became the powerful multiple access technique in the third

generation (3G) systems [3]. Recently, OFDMA was standardized for the fourth gen-

eration (4G), known as long term evolution (LTE) systems and for the fifth generation

(5G), known as new radio (NR) [4]. However, all OMA techniques serve only a single

user in each orthogonal time/frequency/code resource block (RB), which leads to spectral

inefficiency.

With the new wave of beyond 5G (B5G) communication systems [5] and sixth gener-

ation (6G) mobile communication systems [6], [7], there is a perpetual demand for more

wireless services with higher data rates, lower latency, and greater connectivity. In order

to meet these growing expectations, new candidate technologies (e.g. small cells, Mil-

limeter Wavelength (mmW), and massive multiple-input multiple-output (MIMO)), new
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signaling, and multiple access techniques have been introduced [9], [10]. Recently, NOMA

has emerged as one of the most promising strategies for wireless applications due to its

effectiveness in supporting heavily loaded systems with limited resources and enhancing

overall spectral efficiency [11]. Traditional OMA techniques, however, are less suited to

accommodate massive connectivity, as they allocate orthogonal resources to different users

to avoid intra-channel interference, leading to inefficient use of scarce resources.

As a potential technique to overcome the shortcomings of OMA techniques, the NOMA

strategy is introduced with the concept of serving more than one user on the same

RB. NOMA can be implemented in various domains, such as power, code, and oth-

ers [12], [13], [14]. The basic idea in power-domain NOMA is to multiplex users’ signals

on the same RB by superimposing them at different power levels. Then, the successive

interference cancellation (SIC) technique is used at the receiver to differentiate the signals

of different users [15]. This makes NOMA a more spectrally efficient technique compared

to OMA systems. It is being proposed as an emerging solution for next-generation wire-

less communication systems due to its strong ability to achieve higher rates and fairness

among users.

Rate splitting multiple access (RSMA) has been introduced as a novel technology

for optimizing multiple access and interference management strategies for future wireless

systems [16–19]. In particular, RSMA is considered a generalization of the existing four

special cases: OMA, physical-layer multicasting, precoded space division multiple access

(SDMA), and NOMA. The RSMA strategy relies on splitting user messages, as well as the

non-orthogonal transmission of common messages decoded by multiple users and private

messages decoded by their corresponding users [9]. By doing so, RSMA overcomes two

extreme obstacles in interference management strategies: fully decoding interference (as

in NOMA) and treating interference as noise (as in SDMA).

NOMA and SDMA are known to be well-suited for strong and weak interference levels,

respectively. However, both schemes still do not perform well for medium interference
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levels [9]. The RSMA scheme is proposed as a flexible approach that can adapt to different

interference levels, rather than operating at the extremes of weak and strong interference.

It has been proven that RSMA also offers performance improvements in terms of spectral

efficiency, energy efficiency, and user fairness for a wider range of network loads, including

both under-loaded and over-loaded systems [19].

Proper Gaussian signaling (PGS) has been widely used in communication systems due

to its entropy-maximizing property, which is known to achieve maximum throughput in

an additive white Gaussian noise (AWGN) channel, but not in the case of an interference

channel [20–22]. PGS relies on proper circularly symmetric complex Gaussian (CSCG)

signals, with independent and equal variance for the real and imaginary components

[23–25]. If the real and imaginary components of the complex Gaussian signals have

non-identical variances and/or are correlated, the signals are considered improper [23,25].

It has been shown that IGS achieves higher degrees of freedom than PGS due to

its ability to identify the interference signal dimension. In fact, it can be described as

a form of interference alignment technique, as it mitigates interference by aligning it

in only one orthogonal signal space dimension and extracting the desired signal from

the other orthogonal space [27]. Due to these impropriety characteristics, IGS has been

identified as a potential candidate for improving spectral efficiency in interference-limited

systems [24], [25].

Since many practical scenarios in B5G and 6G systems are interference-limited, en-

abling IGS in such systems will play a vital role in enhancing their spectral and en-

ergy efficiencies. Cooperative NOMA under imperfect self-interference cancellation, as

well as non-cooperative NOMA and RSMA systems under imperfect SIC, are considered

interference-limited systems. To mitigate the impact of self-interference cancellation and

SIC imperfections, and to improve the overall performance of these interference-limited

systems, IGS is adopted in this research work.
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1.2 Objectives and Contributions of the Thesis

The main objective of this thesis is to explore the potential performance benefits of using

IGS in downlink interference-limited NOMA and RSMA systems as viable candidates

for B5G and 6G networks. This thesis addresses several practical challenges in NOMA

and RSMA systems, aiming to improve the overall system performance. Additionally,

proposed solutions and designs are presented to enhance spectral and energy efficiencies

by adopting IGS for both cooperative and non-cooperative relaying NOMA and RSMA

systems. The main contributions of the thesis can be summarized as follows:

1. The performance of using IGS in point-to-point interference-limited NOMA systems

is investigated under the practical assumption of imperfect SIC. New closed-form

expressions for achievable user rates are derived when users adopt IGS. Joint op-

timization problems are formulated to maximize the overall spectral efficiency and

energy efficiency of a two-user NOMA system, subject to minimum user-rate re-

quirements and total power constraints. Sub-optimal solutions for IGS circularity

coefficients and power allocation are derived for the formulated problems. Further-

more, improper constellation diagrams are designed using widely linear transforma-

tion (WLT) with predefined optimized IGS coefficients to analyze the impact of IGS

on throughput and error performance.

2. We consider a cooperative full-duplex NOMA (FD-NOMA) system employing IGS

as another interference-limited system under imperfect self-interference cancellation.

We formulate and solve optimization problems for sum rate maximization, max-min

rate fairness, and energy efficiency maximization, where the circularity coefficients

of the IGS and power allocation at the base station (BS) are jointly optimized un-

der each user’s rate constraint. We propose iterative algorithms based on solving

the Karush-Kuhn-Tucker (KKT) conditions to obtain sub-optimal solutions to the

formulated problems, and we illustrate the effect of the IGS circularity coefficient
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on the constellation diagram of each user. Additionally, we design improper con-

stellations using the optimized IGS coefficients to study the impact of IGS on error

performance.

3. As an advanced newly emerged multiple access technique, RSMA in conjunction with

IGS is investigated under the impact of imperfect SIC. We derive new expressions for

the achievable user rates (common rate and private rate), assuming IGS is used for

common message signaling. Using these derived expressions, we formulate a sum rate

maximization problem for the users’ private rates, with the constraint of maintaining

the minimum users’ common rate above a certain threshold. We determine optimal

solutions for the optimized IGS circularity coefficients and power allocation at the

BS.

1.3 Thesis Outline

The structure of the thesis is organized as follows:

Chapter 2 introduces relevant background on NOMA, RSMA, and IGS. In particular,

the definition of IGS and preliminary analysis are explained.

Chapter 3 addresses resource allocation in point-to-point downlink NOMA systems

using IGS under imperfect SIC. The chapter begins with an introduction, followed by a

review of related work. Next, the system model and problem formulation are presented.

The chapter concludes with the proposed solutions and a discussion of their performance.

Chapter 4 focuses on resource allocation in cooperative FD-NOMA systems using IGS.

This chapter starts with an introduction, followed by a discussion of related works and

the contributions of the research. The system model and problem formulation are then

proposed, followed by an illustration of the proposed solutions. Finally, simulation results

are presented to evaluate the proposed solutions.

Chapter 5 discusses the RSMA scenario in a point-to-point system using IGS. This
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chapter begins with an introduction, followed by the presentation of the system model and

the problem of maximizing sum rate. Numerical results are then provided to demonstrate

the performance of the proposed algorithms.

In Chapter 6, we provide a summary of our research contributions and conclusions.

Additionally, we discuss open challenges for future research.

1.4 List of Publications

1. I. Abu Mahady, E. Bedeer, S. Ikki, and H. Yanikomeroglu, “Sum rate maximization

of NOMA systems under imperfect successive interference cancellation,” IEEE Com-

munications Letters, vol. 23, no. 3, pp. 474–477, Mar. 2019. (+156 citations)

2. I. Abu Mahady, E. Bedeer, S. Ikki, and H. Yanikomeroglu, “NOMA Spectral Ef-

ficiency Maximization with Improper Gaussian Signaling and SIC Imperfection”

IEEE International Conference on Communications (ICC), Montreal, June, 2021.

3. I. Abu Mahady, E. Bedeer, and S. Ikki, “Non-orthogonal multiple access: The case

of improper Gaussian signaling and imperfect successive interference cancellation,”

Frontiers in Communications and Networks- Communications Theory Journal, vol.

3, March 2022. (Invited Journal Paper ).

4. I. Abu Mahady, E. Bedeer, S. Ikki, and H. Yanikomeroglu, “Energy efficiency max-

imization of full-duplex NOMA systems with improper Gaussian signaling under

imperfect self-interference cancellation”, IEEE Communications Letters, vol. 26,

no. 7, pp. 1613-1617, July 2022.

6



Chapter 2

Background and Preliminaries

The B5G and 6G cellular communication systems attract significant attention from academia

and industry. The new requirements of B5G and 6G are highly demanding since they will

need to support the Internet of Things (IoT), provide wireless services with much higher

data rate (ultra-high bandwidth with Gb/s applications 3D video), ultra-high reliability

and low latency (e.g. autonomous cars, surgery operations), massive connectivity (e.g.

massive IoT ultra-low power requirements) as depicted in Fig. 2.1, beside, heterogeneous

quality-of-service (QoS), very accurate localization, and computing.

Based on mobile operators data, it is predicted that by 2030, the demand for mobile

traffic data volume will be ten thousands times more than that in 2020. Figure 2.2

shows total global monthly data (ExaBytes per month) from quarter 3 (Q3) 2017 to Q3

2024 [26], along with the year-on-year percentage change for mobile network data traffic.

It demonstrates a continued huge growth in data traffic. It also shows that data traffic

grew around 15% quarter-on-quarter and around 75% year-on-year. This growth is driven

by the exponential increase in smart phone subscriptions and average data volume per

subscription, which has been boosted primarily by more use for video content.

To achieve the requirements for the enhanced capacity, new technologies such as mmW

frequency bands, massive MIMO, and small cells (densification) are proposed. On the
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Figure 2.1: B5G applications requirements (source: ITU-R IMT 2020 requirements).

other hand, for ultra-high reliability and low latency applications, the latency in the

current LTE networks is around 15 ms, and the target is to make it less than 5 ms. To

achieve this goal, one of the potential solutions is to use shorter symbol periods, in order

of 4 µs rather than 74 µs in LTE. Another solution for ultra-low latency is to use flexible

transmission time interval (TTI) schemes, where these schemes allow for slot sizes that

can vary according to the length of the packet or transport block. Machine-to-machine

(M2M) and vehicle-to-vehicle (V2V) communications without the need for a BS to control

are typical low-latency applications.

As for the massive connectivity, B5G networks need to connect billions of sensors

and machines, from watches to refrigerators, to parking meters and cars. New multiple

access techniques e.g., NOMA and RSMA, to achieve the requirements of connecting large

number of applications with different traffic and power requirements are proposed in the

literature. However, it is still challenging to achieve different QoS, latency, and power

requirements.

Therefore, B5G and 6G networks require a more efficient utilization of the wireless
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Figure 2.2: Mobile data traffic growth predicted by Ericsson [26].

scarce resources and more powerful means to manage interference. This has triggered a

rethinking of proposing new signalling of physical layer and multiple access techniques

for wireless communication systems [2, 9]. In this research work, we focus on NOMA,

RSMA, and IGS as promising multiple access techniques and new signalling technique,

respectively.

2.1 NOMA Systems

NOMA has been introduced as a potential candidate for enabling heavily-loaded systems

using limited resources while improving the spectral efficiency [12]. NOMA proposes

the adoption of power/code domain to multiplex signal streams from multiple users to-

gether and allow them to transmit simultaneously using the same frequency/time/code

resources [14]. The popular power-domain NOMA employs the superposition coding at

the transmitter side to superimpose the signals of multiple users together by differentiat-

ing them in the power domain. At the receiver side, SIC is used to separate multiplexed

users’ signals. As illustrated in Fig. 2.3 [15], the superposition coding scheme and SIC
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Figure 2.3: Fundamental structure of power-domain NOMA system [15].

process for two users scenario can be implemented by the following steps

• At the BS, the transmitted signal is a combination of superimposed coded signals

from the two users.

• At the receiver side, U1 with the weaker channel treats U2’s signal as noise and

decodes its message from its received signal.

• U2, with the better channel, performs SIC, i.e., it first decodes U1’s message and

subtracts U1’s signal from its received signal. Afterward, U2 can decode its own

message.

2.1.1 Advantages of NOMA over OMA

Consider a downlink NOMA system where a BS transmits superimposed signal x = x1+x2

to two users (U1 and U2). The channel gains from the BS to the two users are h1 and h2,

respectively. Assume |h2| > |h1|, and both h1 and h2 are perfectly known at the BS and

receiver sides. Therefore, the received signal at each user can be written as

yi = hix+ ni, ∀i = 1, 2, (2.1)

where ni ∼ CN (0, σ2
n) is independent and identically distributed (iid) complex additive

white Gaussian noise (AWGN) with zero mean and variance σ2
n.
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According to the Shannon’s capacity formula, the data rate of U1 and U2 in a NOMA

setup can be computed in bits/sec/Hz, respectively, as

R1 = log2

(
1 +

α1P |h1|2

α2P |h1|2 + σ2
n

)
(2.2)

R2 = log2

(
1 +

α2P |h2|2

σ2
n

)
, (2.3)

where P is the assigned power on each channel. αi, ∀i = 1, 2 is the power allocation factor.

Therefore, the sum rate of a NOMA system can be written as

RNOMA = log2

(
1 +

α1P |h1|2

α2P |h1|2 + σ2
n

)
+ log2

(
1 +

α2P |h2|2

σ2
n

)
. (2.4)

In OFDMA systems, we assume OFDM with orthogonal user multiplexing. The data

rates of U1 and U2 in OFDMA systems can be, respectively, written as

R1 =
1

2
log2

(
1 +

P |h1|2

σ2
n

)
, (2.5)

R2 =
1

2
log2

(
1 +

P |h2|2

σ2
n

)
. (2.6)

Therefore, the sum rate of the two users in OFDMA system can be presented as

ROFDMA =
1

2
log2

(
1 +

P |h1|2

σ2
n

)
+

1

2
log2

(
1 +

P |h2|2

σ2
n

)
. (2.7)

Using the simulation setup values in [28], we set α1 = 0.8, α2 = 0.2, P |h1|2
σ2
n

= 0 dB, and

P |h2|2
σ2
n

= 20 dB. Assume each user has the same equal bandwidth = 1 Hz. Therefore,

ROFDMA = 3.38 bits/sec and RNOMA = 4.53 bits/sec. Hence, the gain of the sum rate of

the NOMA scheme is around 35% more than that of the OFDMA scheme. If we consider

a better channel condition with P |h1|2
σ2
n

= 10 dB, and P |h2|2
σ2
n

= 30 dB, the ROFDMA = 6.72

bits/sec and RNOMA = 9.52 bits/sec. Hence, the gain of the sum rate of the NOMA

scheme is around 42% more than that of the OFDMA scheme.
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Figure 2.4: OFDMA versus power-domain NOMA system.

Based on the above numerical example, it can be concluded that NOMA systems can

outperform OFDMA systems when there is a channel gain difference between the user

channels. Additionally, the sum rate gain of NOMA over OFDMA increases as the channel

gain difference between the two users becomes larger.

Exploiting both the superposition coding and the SIC technology makes NOMA a

more spectral efficient technique over OMA systems. Thus, NOMA is being considered

as an emerging solution for future B5G systems due to its great capability of achieving a

higher achievable rates and supporting a large number of connected users over the same

channel resources. One of the advantages of NOMA systems is that when the available

resource blocks are assigned to weak channel users, they can still be accessed by other

strong channel users, which qualifies NOMA techniques to achieve a higher overall spectral

efficiency [29,30]. Fig. 2.4 illustrates the comparison between the NOMA system and the

OFDMA system. It represents how the OFDMA system divides the frequency resources

between the two users while the NOMA system allows the two users to share the frequency

with different power levels.

Moreover, NOMA is capable of achieving a better tradeoff between system overall rate

and user fairness than OMA. This can be obtained by allocating less power to users with

strong channel conditions and more power to users with weak channel conditions. This

is quite opposite to the conventional water-filling power allocation scheme that is widely

used in OMA, where good channels get more power and vice versa. However, NOMA

techniques achieve this potential higher spectral efficiency considering perfect SIC (see,

e.g., [14, 29, 30], and the references therein). In practice, SIC technique is imperfect. So
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it is desirable to investigate the impact of imperfect SIC on NOMA systems performance

and find signal processing ways to reduce that severe impact. This is one of our objectives

in this research work.

2.1.2 Successive Interference Cancellation (SIC)

In real scenarios, the assumption of perfect SIC at the receiver might not be practical,

since there still remain several serious implementation problems by using SIC, e.g., error

propagation and complexity scaling [14]. In [31], a unified framework is presented assum-

ing imperfect SIC, which shows that the performance converges to an error floor at the

high signal-to-noise ratio (SNR) region and obtain a zero diversity order. Hence it is of

great interest to compensate the impact of imperfect SIC for the NOMA systems.

SIC is widely known as an interesting type of multi-user detector. The key procedure

of SIC is that users are decoded sequentially, with the receiver canceling interference after

each user. It allows the user having the strongest signal to be detected first, i.e., the user

with the least interference signal, then, the strongest user remodulates its signal, which

is then subtracted from the superimposed signal. The same operation is executed by the

second strongest user and so on until the weakest user decodes its information without

suffering from any interference at all [12]. Since the power-domain NOMA supports the

users via different power levels, SIC is considered a suitable multi-user detector [12].

Furthermore, SIC has also been used in various practical technologies, such as multi-

user MIMO systems [32], cooperative relaying systems [33], and in large-scale systems

modeled by stochastic geometry [34] etc. Moreover, SIC has been implemented in indus-

try, such as IEEE 802.15.4. As a practical tool, SIC has to be considered in a realistic

assumption, e.g., imperfect SIC. This issue will be one of the considered practical scenarios

in our research work.
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2.1.3 Related Works on General NOMA Systems

NOMA has received much attention recently and has been identified as a working item in

3rd Generation Partnership Project (3GPP) Release 15 (Rel. 15) [35], where NOMA is

referred to as multi-user superposition transmission. Another version of NOMA, named

as layer division multiplexing, has been proposed for next generation digital TV standard

advanced television systems committee. Comprehensive research studies for NOMA sys-

tems have been conducted in the literature [11]. In [36] and [37], the authors discussed

a combination of NOMA with MIMO technologies. NOMA has also been introduced to

be used with other technologies, e.g., visible light communication (VLC) [20] and mmW

communication [38]. In the following, we will discuss the related works according to the

following categories: performance analysis, resource allocation, cooperative NOMA, and

full-duplex NOMA, etc.

2.1.4 Related Works on Performance Analysis in NOMA Systems

Several valuable works have investigated the performance of NOMA in terms of downlink

transmission [39–44]. In [39], a two-user NOMA downlink transmission employing SIC

technique was introduced. A more general NOMA transmission scheme was presented

in [40], which examined a BS communicating with multiple randomly deployed users. It

was shown that NOMA is capable of achieving much better performance compared to

OMA in terms of both its outage probability and its ergodic rate. In [41], the fairness

issues were considered by developing suitable power allocation coefficients for the multiple

users in a general NOMA downlink transmission scenario. Considering the practical

link-adaptation implementations of the LTE, the system-level performance was evaluated

in [42] and [43]. In [44], this work focused on a simple two-user scenario, and developed

analytical and simulation results to reveal that for this considered scenario, conventional

hybrid NOMA is still an optimal transmission strategy.

Motivated by minimizing the signaling overhead required for CSI training, some works
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investigated the performance of downlink NOMA transmissions using partial CSI at the

transmitter [45–47]. More specifically, authors in [45] addressed the outage probability of

NOMA by considering either imperfect CSI or second-order statistics- based CSI. In [46],

the outage performance of NOMA was investigated assuming the knowledge of statistical

CSI and considering jointly both the decoding order selection and the power allocation

of the users. Assuming that only the average CSI was available at the BS, [47] addressed

both the optimal decoding order as well as the optimal power allocation of the users in

downlink NOMA systems, where both the transmit power of the BS and rate fairness of

users were optimized. By assuming only a single-bit feedback of the CSI from each user

to the BS, the outage performance of a downlink NOMA system was addressed by [48].

Based on the analytical expressions derived, the proposed power allocation optimization

problem was solved by reducing the outage probability.

2.1.5 Related Works on Resource Allocation in NOMA Systems

In NOMA systems, resource allocation has been studied for different performance mea-

sures. In the literature, the sum rate maximization is the most commonly adopted objec-

tive (see, e.g., [50–54], and the references therein), where the focus is on the assumption of

perfect SIC. Fairness is also an important issue in NOMA systems, where the most com-

mon fairness indication is the maximin fairness (MMF). Therefore, a number of works

has studied resource allocation for MMF, e.g., [53]. The MMF power allocation problem

enhances the rate of the weakest of all NOMA users [41,47,55]. In [55], the power alloca-

tion method was tackled under the assumptions of knowing either the instantaneous CSI

or the average CSI. Note that by adopting the MMF rate as our objective function, we

can satisfy a predefined level of rate fairness, but at the expense of sacrificing the system’s

sum rate.

In NOMA scenarios, a feasible proportional fairness strategy is to schedule users based

on the instantaneous user rates, while satisfying a certain average target rate [56,57]. The
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weighted sum rate problem is studied in [57] where an additional positive weighing factor

for each user’s achievable rate is considered, which reflects the priority of each user in

the context of resource allocation. By adopting fractional power allocation among users’

channels and equal power allocation across sub-channels, the works in [58, 59] compared

the system-level performance of the NOMA system with its counterpart OMA system,

and demonstrated that the degree of proportional fairness, cell-edge user throughput, and

overall cell throughput of NOMA scheme are all superior to their counterpart in the OMA

scheme.

With the higher desire for green communications in 5G networks, minimizing energy

consumption in NOMA systems has become of great importance for both academia and

industry An energy-efficient two-user single-cell NOMA was investigated in [60]. It showed

that for a given SE for each user, maximum energy efficiency performance can be attained.

In [49], an energy-efficiency optimization problem was developed in downlink NOMA

systems under different data rate requirements of the users. It was proved that NOMA

outperforms OMA in terms of its energy efficiency.

Table 2.1 lists the works related to the enabling technologies with NOMA systems,

including back-scatter communications [61–63], integrated terrestrial satellite networks

[64–66], mobile edge computing and caching [67, 68], and intelligent reflecting surfaces

[69,70]. Design metric and main observations of the related work are listed in this table 2.1.

For full details on existing related works on NOMA systems, the reader is referred to

[12,13,15], and references therein.

2.2 Cooperative NOMA Systems

Cooperative NOMA is introduced to enhance the overall system coverage and reliability

in addition to spectral efficiency [72], [73]. In cooperative NOMA, the near users (users

close to the base BS) act as relays for the far users (users far from the BS). The combi-

nation of cooperative relaying and NOMA is of interest since the information for the far
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Table 2.1: Literature review on using NOMA in B5G technologies

Technology Ref. Design Objec-
tive

Main Finding

Backscatter Com-
munications

[61–63] Max. sum rate,
Maxmin through-
put

NOMA outperforms
TDMA

Terrestrial- Satellite
Networks

[64, 65] Max. sum rate The sum-rate per-
formance of the
proposed optimized
UAV-location NOMA
scheme outperforms an
equivalent scheme with
OMA deployment

Mobile Edge Com-
puting

[67, 68] Max. weighted
sum rate

The WSR performance
of the proposed NOMA
scheme outperforms
OMA scheme

Intelligent Reflect-
ing Surfaces

[69, 70] Max. sum rate,
Maxmin SINR

The performance of the
proposed IRS-NOMA
outperforms three
benchmark schemes
including the con-
ventional NOMA,
IRS-OMA, and OMA

mmWave-NOMA [38] Beamforming effi-
ciency, power al-
location, and user
fairness

Hybrid mmWave-
NOMA and massive
MIMO architectures
improve user con-
nectivity and system
throughput signifi-
cantly.

VLC-NOMA [20] Spectral effi-
ciency, illumina-
tion constraints,
and data rate
maximization.

VLC-NOMA effectively
supports high-speed
communication while
maintaining proper
illumination conditions.

users is known to the near users owing to SIC. Although extra time slot is still needed,

cooperative NOMA can serve the data transmission of both near and far users using

NOMA. Cooperative NOMA can be classified based on two relaying strategies, namely

user relaying (i.e., having a user act as a relay) as in Figs. 2.5[a-b], and dedicated relaying
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Figure 2.5: Cooperative NOMA structures, user relaying (a,b), and dedicated relaying (c,d).

(i.e., employing an external entity as a relay) as presented in Figs. 2.5[c-d].

In NOMA systems that adopt the dedicated relaying technique, the BS transmits

signals to the two users via an external relay. Alternatively, the two users send data to

a common destination via an external relay [75]. With user relaying, the BS transmits

two superimposed signals to both the strong user U1 and the weak user U2. Afterwards,

U1 uses SIC to decode U2’s signal, forwarding it to U2. Depending on whether or not a

direct link exists between the BS and U2, two scenarios can exist when it comes to user

relaying in NOMA systems. The first scenario occurs when U2 receives its signal from

both relaying phases and employs a combining method to improve its reception reliability.

The second scenario involves U2 receiving its message via U1 [77].

This technique would be especially useful for short-range communication technologies

like wireless applications, where users with better channel conditions can act as relays

and forward the messages to those with poor channel conditions [72]. Similar to the

cooperative relaying in traditional OMA technique, U2 receives two versions of desired

signals, one is from the direct link (from BS) and the other one is from relaying link (from

the U1). Combining the two versions at U2 leads to what is known as spatial diversity

gain, and hence, improves the reliability.

A cooperative relaying NOMA transmission scheme was proposed in [72], [73], to
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Figure 2.6: Cooperative (a)- HD-NOMA and (b)- FD-NOMA structures.

improve spectral efficiency, where a few users have beforehand information of the other

users’ messages. In [74], a novel device-to-device (D2D)-assisted cooperative NOMA

model with a two-phase transmission scenario was proposed. A cooperative relay NOMA-

based system was emerged in [75], where the enhancement of the spectral efficiency was

proved by numerical results. A sub-carrier channel assignment and power allocation

algorithm was introduced for the cooperative NOMA system in [76]. More works are

listed in the survey papers [11,77].

2.3 Cooperative Full-Duplex NOMA Systems

To further improve the spectral efficiency of half-duplex relaying NOMA (HD-NOMA)

systems that require two time slots for receiving and relaying data, full-duplex (FD)

relaying has been recently investigated. In particular, the relay user U1 receives the su-

perimposed signals from the BS and concurrently performs relay transmission in the same

time slot as illustrated in Fig. 2.6. This overcomes the drawback of HD relaying, which

requires an extra time slot for the relaying phase. Both HD and FD relaying strategies

are considered in NOMA systems. NOMA with full-duplex relaying (FD-NOMA) further

improves the spectral efficiency. In the literature, there is an extensive research regarding

HD-NOMA systems, and many facets have been studied including system performance,

resource allocation optimization, multiple antennas, etc. (see [72] – [77] and references

therein).

Nonetheless, FD-NOMA suffers from self-interference at the FD-relay. To realize FD

relaying, practical self-interference cancellation techniques are required to mitigate the
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self-interference to tolerable limits. This, however, adds more complexity when compared

with half-duplex relaying. Therefore, from practical implementation perspective, whether

selecting FD-NOMA or HD-NOMA relaying relies on the signal processing capabilities of

the relaying nodes. For instance, HD-NOMA may be suitable for the user relaying with

limited capabilities in hardware and signal processing. In the other hand, FD-NOMA can

be used for the dedicated relaying with strong signal processing capability.

The major challenge in FD-NOMA is self-interference, which arises from simultane-

ous transmission and reception at the same node. The work in [78] discusses various

self-interference cancellation (SIC) techniques, including analog and digital domain pro-

cessing, to minimize its impact. The study in [79] explores energy-efficient designs for

FD-NOMA, emphasizing the role of power control and relay selection. It highlights re-

search efforts in designing low-power FD transceivers and integrating energy harvesting

mechanisms such as Simultaneous Wireless Information and Power Transfer (SWIPT)

to improve sustainability in FD-NOMA networks. The work in [80] cites recent studies

demonstrating that cooperative FD-NOMA outperforms traditional half-duplex NOMA in

terms of outage probability and achievable data rates. Security is a critical aspect of FD-

NOMA due to the increased risk of eavesdropping from simultaneous transmissions. [81]

reviews physical layer security techniques such as jamming-based security and artificial

noise generation to protect user transmissions. It also suggests the use of intelligent re-

flecting surfaces to enhance security and coverage. The integration of multiple antennas

and MIMO techniques in FD-NOMA is another important area covered in [82]. The study

highlights beamforming and antenna selection methods to improve signal quality while

minimizing interference.

Table 2.2 presents the main works recently handled the cooperative FD-NOMA, where

it demonstrates the relaying mode, the design objective, the system model used, and the

main finding from the proposed scheme. In common finding in all listed works is that

the performance of FD-NOMA is superior to the performance of FD-OMA and TDMA

schemes in terms of spectral efficiency [87].
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Table 2.2: Literature review on cooperative full-duplex NOMA

Relaying
Mode

Ref. Design Metric System Model Main Finding

FD-DF
(UL-DL)

[82] maxmin sum of
UL+DL rates

Relay-assisted: one BS
+ one relay + K users,
two-antenna nodes

The performance of the
proposed asymptotic
optimal algorithm out-
performs the original
standard solution

FD-DF
(UL-DL)

[83] weighted sum rate Relay-assisted: A
multi-carrier NOMA
scheme, single-antenna
nodes

The sum-rate perfor-
mance of the proposed
scheme is superior to
its counterparts with
either HD-NOMA and
HD/FD-OMA schemes

HD/FD-
DF

[84] maxmin user-rate Relay-assisted: Two
NOMA-based co-
operative broad-
casting/multicasting
schemes, single-antenna
nodes

Both proposed schemes
offer better perfor-
mance than a fixed
power allocation
NOMA scheme as
well as an optimized
TDMA scheme

FD-DF [85] max the strong
user-rate

User-assisted: Down-
link SWIPT cooper-
ative relaying NOMA
scheme, strong user:
multiple antennas,
BS/weak user: single
antenna

The proposed scheme
achieves higher data
rate performance for
the strong user com-
pared to FD-NOMA
without SWIPT, HD-
NOMA with SWIPT,
and conventional OMA
with SWIPT schemes

HD/FD-
DF, and
hybrid-
DF

[86] maxmin user-rate User-assisted: Hybrid
HD/FD cooperative
NOMA scheme with
transmit power adap-
tation, BS: single
antenna, users: two
antennas

The proposed hy-
brid scheme out-
performs HD-
cooperative NOMA,
FD-cooperative
NOMA, and con-
ventional NOMA
schemes
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2.4 Rate-Splitting Multiple Access (RSMA)

By dividing users in the power domain, power-domain NOMA can simultaneously serve

multiple users at the same resource block. Consequently, NOMA can achieve higher

spectral efficiency than conventional OMA. However, using SIC in NOMA, the users

must decode all of the interfering signals as they receive their own messages [28], which

extremely increases the computational complexity required for signal processing. To solve

this burden, the novel idea of RSMA is proposed in [16–19].

In RSMA, the signal transmitted to the users is divided into a common message and a

private message. The common part is a message decoded by multiple users and the private

part is a message that only intended to be received by specific user. At each receiver,

the common message is first decoded while treating all private signals as noise. Once the

common message is successfully decoded, it is removed from the received signal using SIC,

allowing the receiver to then decode its own private message. The original information is

successfully delivered provided that each receiver correctly decodes both the common and

its corresponding private message. Therefore, adapting the split of common and private

signals can compromise the signal processing complexity and the data rate attained by

RSMA [19]. However, RSMA still has various challenges in term of implementation in

wireless systems such as the split of common and private signals, and synchronization of

signal transmission.

A two user RSMA scenario for a single input single output (SISO) system is presented

in Fig. 2.7 [9]. The transmitter splits the message Wi of the ith user into a common

message Wc,i and a private message Wp,i, ∀i = 1, 2, and combines Wc,1 and Wc,2 into a

common message Wc. The three generated Wc,Wp,1 and Wp,2 messages resulted from W1

and W2 are independently encoded and linearly precoded at the transmitter side.

At the receiver side, each user first decodes the common stream sc by treating all

private streams as noise. After removing the decoded common stream from the received
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Figure 2.7: Two-user RSMA transmission framework [9].

signal, each user decodes the intended private stream sk, ∀k = 1, 2, by treating the private

stream of the other user as noise. As shown in Fig. 2.7, RSMA makes it possible to

adaptively manage the interference by fractionally decoding the interference through the

common stream decoding and fractionally treating the interference as noise when decoding

the intended private stream at each user [19]. Consider a downlink single-cell system that

consists of a BS serving two users using RSMA as depicted in Fig. 2.7. The transmitted

signal x of the BS can be expressed as

x =
√
pcsc +

2∑
k=1

√
pksk, (2.8)

where pc is the transmit power of the common stream sc (i.e., the common message Wc)

and pk is the transmit power of the private stream sk (i.e., the private message Wpk)

transmitted to user k, ∀k = 1, 2.

The received signal at user k can be written as

yk =
√
hkx+ nk,

=
√
pchksc +

2∑
j=1

√
hkpjsj + nk, (2.9)

where hk refers to the channel gain between user k and the BS and nk refers to the AWGN

with variance σ2. Under the assumption of proper Gaussian signaling, the instantaneous
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rates for decoding the common and private streams at user k are given as follows

Rc,k = log2

(
1 +

hkpc

hk
∑2

j=1 pj + σ2

)
, (2.10)

Rk = log2

(
1 +

hkpk

hk
∑2

j=1,j 6=k pj + σ2

)
. (2.11)

To ensure sc is successfully decoded by both users, its rate can not exceed

Rc = min{Rc,1, Rc,2}. (2.12)

As sc includes sub-messages Wc,1,Wc,2 of both users, the rate Rc split between the two

users is adapted to the portion of sub-messages that each user contributed. Let Ck denotes

the amount of rate Rc allocated to user k for Wc,k such that C1 + C2 = Rc. Then the

overall achievable rate of user k is given as

Rk,tot = Ck +Rk. (2.13)

Apparently, the rate of each user is split into two parts, namely, relevant part of the rate

of sc (a.k.a. the common rate) and the rate of sk (a.k.a. the private rate).

2.4.1 Advantages of RSMA over NOMA and OMA

RSMA is a novel multiple access technique that has emerged to overcome the disadvan-

tages of other orthogonal and non-orthogonal multiple access techniques. Here, we list

the advantages of RSMA over NOMA and OMA schemes.

• RSMA is a generalized multiple access scheme that achieves equal or better perfor-

mance compared to NOMA, OMA, and other multicasting schemes [9]. RSMA is

a generalized multiple access scheme because it unifies and extends the capabilities

of both NOMA and OMA by enabling dynamic message splitting, partial decoding,

and interference management, offering greater flexibility and performance in diverse
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channel conditions. Therefore, the performance of other OMA and NOMA schemes

can be investigated through a single unified RSMA framework.

• RSMA is a good fit for various systems loads including underloaded and overloaded

and diverse user deployments by taking advantage of using common messages to mit-

igate the interference. RSMA offers a flexible interference management technique by

enabling an intelligent combination of transmitter-side and receiver-side interference

mitigation rather than fully mitigating the interference at the receiver side as in

NOMA and using single user transmission to avoid interference (as in OMA).

• RSMA is proved to show better spectral and energy efficiencies performance gain

than NOMA and OMA schemes under different channel conditions including user

mobility [9, 17,19].

• RSMA requires a lower transceiver complexity than NOMA scheme since the latter

needs to perform multiple SIC processes at each user to detect each of other users’

signals. However, RSMA requires only one SIC process at each user. RSMA is also

less sensitive to difference channel conditions than NOMA, which results in a simpler

scheduler.

However, implementing RSMA in wireless systems also faces various challenges [19] such

as ability to split the common and private messages, resource allocation for efficient private

message transmission, and synchronization of message transmission.

Table 2.3 summarizes the comparison between different multiple access techniques,

OMA, NOMA, and RSMA in terms of their access principles, the receiver architecture,

the user deployment scenarios and the network loads they are best useful for. Apparently,

the most interesting characteristic that distinguishes RSMA from the other multiple access

techniques is its flexible interference management strategy of partially decoding interfer-

ence and partially treating residual interference as noise. This allows RSMA to include

and comprise NOMA, SDMA, OMA, and multicasting as sub-schemes. Fundamentally,
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RSMA smoothly bridges different sub-schemes without the need to switch between them

in a hybrid mode.

Table 2.3: Comparison between different multiple access techniques: OMA, NOMA, RSMA

Multiple
access
technique

OMA NOMA RSMA

Access
principle

Orthogonal resource as-
signment to avoid inter-
ference

Non-orthogonal re-
source assignment and
fully decode interfer-
ence

Partially decode inter-
ference and partially
treat interference as
noise

Receiver
architec-
ture

Treat interference as
noise

SIC SIC

Typical
user de-
ployment
scenario

Any user channel
strengths (similar or
different)

Users with large dif-
ferent channel strengths
(weak and strong)

Any user channel
strengths

Network
load

Only one active user in
each resource block

Suitable for over-loaded
networks

Suitable for under-
loaded and over-loaded
networks

2.5 Related Works on RSMA

In the literature, a number of existing works investigated interesting problems related to

RSMA. The survey in [19] summarized the challenges and opportunities of using RSMA

for MIMO wireless networks. RSMA was studied in various single and multiple antenna

networks. Works in [17, 88, 89] considered RSMA in SISO systems including interference

and broadcasting channels, where the rate regions were defined. The existing literature on

RSMA in multi-antenna networks has investigated different metrics such as the degrees of

freedom (DoF) region [93], max-min fairness [94], and capacity region [95]. In [93], obvious

symmetric DoF gains over NOMA are obtained. Authors in [94] showed that RSMA fully

exploits the multi-antenna DoF and the benefits of SIC receivers, and outperforms NOMA

in both under-loaded and over-loaded systems. In [95], RSMA has been proved to achieve

the sum capacity within a constant gap for the two-user case.
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The first generalized RSMA framework was introduced in [96] which used the termi-

nology “RSMA” for the multi-antenna broadcasting. Authors in this work compared the

performance of RSMA with NOMA and dirty paper coding (DPC) and illustrated that

RSMA is a general scheme that include NOMA and SDMA as sub-schemes. Later, the

work in [97] showed that the performance of RSMA outperforms NOMA, and SDMA

for a two-user multiple input multiple output (MISO) broadcasting using low-complexity

precoding and closed-form optimal power allocation scheme.

The physical layer architecture of RSMA was presented in [98] considering finite con-

stellation modulation schemes and finite length polar codes. The link-level simulations

conducted in this work demonstrated that RSMA can achieve significant throughput gains

over existing multiple access techniques. Authors in [102] exploited RSMA to tackle user

mobility in modern wireless cellular systems. In their link-level simulation setup, au-

thors used a realistic 3GPP channel model and OFDM waveforms. This work showed the

efficacy of using RSMA in such mobility networks.

The promising advantages of RSMA in the conventional multi-antenna systems have

led to an explosion of applications of RSMA in emerging B5G system architectures as

listed in 2.4. RSMA was studied in massive MIMO [102,103], mmW [104], cognitive radio

(CR) [105], cooperative relay networks [106], Intelligent reconfigurable surface [107], and

unmanned aerial vehicles (UAVs) [108,117] etc.

Appealing resource allocation methods using RSMA were proposed in the literature.

In [124], the authors introduced a distributed RSMA method to maximize the data rates

of the users. In [125], the authors made use of RSMA to maximize the rate of all users

in downlink multi-user MISO systems under imperfect channel state information (CSI)

at the BS. The energy efficiency problem for RSMA was initially studied in [126]. The

work in [104] studied the energy efficiency of the RSMA and NOMA schemes in a mmW

downlink transmission. In [127], the spectral and energy efficiencies were optimized using

RSMA in non-orthogonal unicast and multicast transmissions. In all previous works,
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Table 2.4: Literature review on the applications of RSMA

Application Reference Sum Rate Max-Min
Fair

Energy
Efficiency

Massive MIMO [102, 103,
106]

"

Cognitive D2D [105,118] " "

Multigroup multi-
cast

[119,120] " "

millimeter-wave [104,121] " "

Cloud-Radio Access
Networks

[109, 112–
114]

" "

Unmanned Aerial
Vehicles

[108, 115,
116]

"

Visible light commu-
nication

[122,123] "

Intelligent Reconfig-
urable Surface

[110,111] " "

RSMA offers potential spectral and energy efficiency gains over NOMA and OMA systems.

Table 2.4 summarizes the applications that consider RSMA and the resource allocation

methods used in them. However, all aforementioned works considered PGS as its signaling

scheme. In this research, we aim to investigate the potential merit of using IGS to further

improve the spectral efficiency of RSMA systems.

2.5.1 Fundamental Research Works in Histroy of RSMA

The idea of rate splitting (RS) was originally introduced in [88] for SISO interference

channel where capacity region was determined. The Han and Kobayashi (HK) scheme

was proposed in [89] as a further improvement for the work in [88]. Uplink RS was

introduced in [90] for K-user SISO multiple access channel, and was proved to achieve

the capacity region without time sharing. In [91], a simplified version of HK scheme

was presented to achieve rates within 1 bit/s/Hz of the capacity of the SISO Gaussian

interference channel. The multi-antenna RS scheme was introduced for the first time

in [18] for multi-antenna networks, where it was named as 1-layer RS scheme. In [92],
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this 1-layer RS scheme was proved to achieve the sum-DoF of the K-user MISO broadcast

channel with imperfect channel state information (CSI). In [92], a precoding scheme for

RS was optimized to achieve a better rate region than SDMA.

A generalized RSMA framework was introduced in [96] to compare the performance

of RSMA with NOMA and DPC in multi-antenna networks. The work in [97] is the first

work which proposed a low-complexity precoding and closed-form optimal power alloca-

tion schemes and compared RSMA, SDMA, and NOMA for a two-user MISO system. The

design of physical layer signaling of RSMA was presented for the first time in [98] with

different constellation modulation schemes and fixed length polar codes. Works provided

in [98] used link-level simulator which showed that RSMA achieves considerable through-

put gains over existing multiple access techniques. The work in [102] adopted RSMA in

a practical 3GPP channel modeling and signaling to handle user mobility and hand-over

in 5G wireless networks.

The work in [99] summarized the gains of RSMA over SDMA and NOMA in terms

of DoF in both over-loaded and under-loaded multi-antenna networks with perfect and

imperfect CSI. The potential merits of using RSMA to meet the 3GPP standard require-

ments of 6G was addressed in [100]. To discuss the challenges of ultra reliability and

low-latency communications (URLLC) and enhanced mobile broadband (eMBB) core ap-

plications, work in [101] investigated RSMA in short-packet communications and outdated

CSI scenarios.

2.6 Improper Gaussian Signaling

Proper Gaussian signals are CSCG signals with independent and equal variance on the

real and imaginary components [23–25]. If the real and imaginary components of the

complex Gaussian signal either have non-identical variance or are correlated, then the

signals are considered improper [23, 25]. The most significant property of PGS is that it

achieves the maximum throughput in an AWGN channel. However, this is not the case
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in an interference channel [20–22].

Majority of the existing works assumed proper signal model for the underlying CSCG

signals, which is in contrast with the many of the real-world models. The improper char-

acteristics with non-identical variance on the real and imaginary components are known

to exist in some well-known constellation diagrams such as continuous phase modula-

tion [24]. In practical systems, improper signaling techniques are widely adopted in linear

receivers for Global System for Mobile communication (GSM) and 3GPP networks [23].

Compared to the PGS scheme which assumes independent real and imaginary sig-

nal components with equal power, the IGS scheme loosens these constraints introduc-

ing a more general Gaussian signaling scheme [25]. By relaxing the constraints of PGS

(i.e. considering a correlation and/or unequal powers between real and imaginary parts),

IGS [24], [25], was shown to offer significant improvement in several limited-interference

communication scenarios, e.g. NOMA systems under imperfect SIC. Optimizing the co-

variance and pseudo-covariance coefficients make it possible to improve the system per-

formance by either maximizing the average achievable rate and achievable sum rate, min-

imizing the maximum achievable rate, and maximizing the energy efficiency.

2.6.1 Related Works-IGS

IGS has been considered for communication systems that are subject to interference in

order to enhance the achievable throughput performance of two user SISO systems [128],

K-user MISO systems [129], K-user MIMO systems [130], Z-interference channels [131],

and MIMO systems with Z-interference channel [132]. IGS scheme is also employed in

different interference scenarios such as full duplex relaying [133], alternate relaying [134]

and underlay CR [38].

In CR systems, it was shown that the entropy loss due to IGS is the least compared with

PGS, which makes it a suitable transmission scheme for the cognitive secondary user (SU)

as the improper interference on the primary user (PU) is much less harmful compared
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to proper interference [135]. Thus, IGS is the potential choice for SU to maximize its

achievable rate while keeping the interference reflected on the PU limited.

Motivated by the promising merits of IGS in interference limited environments, wide

range of contributions have investigated IGS benefits in FD/HD cooperative decode and-

forward (DF) relaying systems by effectively compensating residual self-interference (RSI),

inter-relay interference (IRI), and/or hardware impairments (HWI) [134, 136, 137]. IGS

notability is also proven in multi-antenna scenario to mitigate different HWIs [138, 139].

The adoption of IGS yields up to ten percentage increase in average achievable rate of

MIMO relative to PGS even in low SNR region [138].

Interestingly, IGS makes it possible to achieve the QoS constraints of wireless networks

while consuming less power at the the BSs owing to the additional IGS degrees of freedom.

Various energy-efficient solutions for multi-user, multi-antenna, and cooperative relaying

scenarios are proposed [140, 141], where significant gain of energy efficiency performance

is achieved. IGS is used to enhance the energy efficiency performance of one direction

DF FD-MIMO relay [142] and bi-direction amplify-and-forward (AF) FD-MIMO relay

[143] for multi-user interference systems. Although IGS demonstrates significant energy

efficiency gains over PGS, the relative energy efficiency gains are less than the achievable

rate gains [144]. A comprehensive literature review on the journey of IGS can be found

in [24]. All the aforementioned contributions are in the OMA domain. In this research

work, we investigate the performance merit of IGS in NOMA systems.

2.6.2 Practical Implementation Challenges of IGS

Signal Generation and Modulation: Generating IGS signals with the necessary correlation

between real and imaginary components is complex and requires specialized hardware,

such as precise digital-to-analog converters (DACs).

Synchronization and Calibration: Accurate timing synchronization and frequent cali-

bration are essential to ensure proper signal reception and avoid performance degradation
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due to hardware imperfections.

Non-Linearities and Hardware Imperfections: Non-linearities in hardware components,

such as power amplifiers and mixers, can distort IGS signals, reducing their quality. Lin-

earization techniques are required but add complexity.

Complexity of Receiver Design: IGS receivers need advanced signal processing algo-

rithms to detect and decode the non-circular signals, which are computationally intensive

and demand specialized hardware like FPGAs.

2.7 Preliminary: IGS Definition and Generation

2.7.1 Improper Random Variables

For a scalar complex RV x, we use ϕx and ϕ̂x to denote the variance and pseudo-variance

of x, respectively. For a zero-mean Gaussian RV x, we define ϕx = E [xx∗], which is a real

value and equivalent to the power of the transmit signal, where the superscript (·)∗ refers

to the complex conjugation operation. We also define ϕ̂x = E [xx], which is typically a

complex value. Here, E [·] refers to the expectation of a random variable.

To illustrate the difference between IGS and PGS schemes, we introduce the following

definitions [130].

Definition 1: A signal is called proper if it is uncorrelated with its complex conjugate

and has a zero pseudo-variance, i.e., ϕ̂x = 0, otherwise it is called an improper signal.

Definition 2: The impropriety degree (or the IGS circularity coefficient) of x is given

as

ξx =
|ϕ̂x|
ϕx

, (2.14)

where 0 ≤ ξx ≤ 1. If ξx = 0, then x is proper signal, and if ξx = 1, we have a maximally

improper signal.
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Definition 3: The achievable rate expression for a point-to-point IGS system is given

as [21]

Ri =
1

2
log2

(
Ω2
yi
− |Ω̂yi |2

Ω2
zi
− |Ω̂zi |2

)
, (2.15)

where Ωyi and Ω̂yi refer respectively to the covariance and pseudo-covariance components

of the received signal and Ωzi and Ω̂zi refer to covariance and pseudo covariance compo-

nents of interference plus noise signal, respectively.

In the case of vector complex RV x, we have the following definitions:

Definition 4: A complex RV vector x is called proper if its pseudo-covariance matrix

Ĉx vanishes to a zero matrix; otherwise it is called improper [130].

Define Jx as the covariance matrix of the augmented vector [xT x∗T ]T as

Jx = E


 x

x∗

 x

x∗

H
 =

Cx Ĉx

Ĉ∗x C∗x

 .
Definition 5: Cx and Ĉx are a valid pair of covariance and pseudo-covariance ma-

trices, i.e., there exists a RV x with covariance and pseudo-covariance matrices given by

Cx and Ĉx respectively, if and only if, the augmented covariance matrix Jx is positive

semidefinite [25].

Definition 6: The differential entropy of a complex Gaussian RV x with augmented

covariance matrix Jx is given by [25]

I(x) =
1

2
log2[(πe)

2|Jx|], (2.16)

where | · | is the determinant of the matrix. Using (2.16), achievable user rates can be

computed. For more details about improper RVs, we refer the reader to [25].
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2.7.2 Improper Constellation Design

Widely linear transformation (WLT) is considered one of the most popular ways of trans-

forming proper signals to improper ones. A simple design involving the generation of

improper discrete constellations was introduced in [145, 146] in which a WLT of a stan-

dard unit energy proper M -QAM (quadrature amplitude modulation) constellation was

used. In particular, an improper constellation design, with a complex symbol x and pre-

defined circularity coefficient ξx, can be obtained from a proper constellation design with

complex symbol s with the following unit energy:

x = εs+ εs∗, (2.17)

where ε and ε are complex-valued quantities such that ε =
√

0.5(1 +
√

1− ξ2x) and ε =√
0.5(1−

√
1− ξ2x)ejφ, |ε|2 + |ε|2 = 1, φ ∈ [0, π/2]. An optimal φ is selected to maximize

the minimum distance between constellation points. For 0 ≤ ξx ≤ 0.5, the optimal φ for

an arbitrary M is found to be φ = π/2. On the other hand, when 0.5 ≤ ξx ≤ 2/
√

5, the

optimal φ is found by solving the nonlinear equation sin(φ)−cos(φ) = 1/ξx, which is equal

to φ = arcsin(
√
5

5ξx
) + arctan 1

2
. Note that the optimal φ for the region of 2/

√
5 ≤ ξx ≤ 1

is shown to be the same as the one in the solution for 0.5 ≤ ξx ≤ 2/
√

5 at high signal-

to-noise ratio [146]. Fig. 4.2 shows the improper constellations with 16-QAM that are

designed based on WLT. It can be seen that, as ξi increases, the minimum Euclidean

distance between the constellations points is changed among the improper constellations.

Due to this impropriety, the throughput enhancement is achieved as proven in this work.

2.8 Resource Allocation and Convex Optimization Approaches

Resource allocation plays an important role to improve the spectral and energy efficiency

in wireless communication systems. The most valuable resources in wireless communi-

cations are frequency, time, and power optimization. There are various mechanisms for
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Figure 2.8: 16-QAM improper constellation diagrams with different ξx.

resource allocation in wireless systems including but not limited to power control, sub-

channel allocation, and user rate allocation etc. In this thesis, we focus on power allocation

and channel circularity coefficient optimization to maximize the system spectral efficiency

and energy efficiency in NOMA and RSMA networks. Power allocation is performed at

the the BS, where scheduler needs to allocate different powers to different users to guar-

antee certain performance gains. The optimization of channel circularity coefficient is

done at the BS where the degree of signaling impropriety is decided to achieve better user

throughput performance.

One of the most widely used and effective mathematical method to solve the resource

allocation problems in wireless communication networks is the convex optimization tool.

For an optimization problem to be convex, the objective function to be minimized or

maximized and the inequality constraint functions should be convex or concave, and

the equality constraint functions should be affine. However, not all resource allocation

problem are convex. Many of them are non-convex and NP hard. Generally, it is easy
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to find global optimal solution for the convex optimization problems but it is rather

difficult to find the optimal solution for non-convex optimization problems. In non-convex

problems, there may exist many locally optimal solutions which are not globally optimal.

In addition, it is analytically and practically difficult to check whether a given local

optimal solution is globally optimal, and this prevents the development of efficient solution

methods for such problems [152].

2.8.1 The Lagrangian Method

The Lagrangian multiplier method is a mechanism for obtaining the local maxima and

minima of a multi-variable function f(x, y), subject to some equality constraints g(x, y) =

c, where c is a constant. The general Lagrangian optimization can be written as

optimize
x,y

f(x, y) (2.18a)

s.t. g(x, y) = c. (2.18b)

The Lagrangian method can be briefly introduced as follows. To find the maximum or

minimum of a function f(x, y) subjected to the equality constraint g(x, y) = 0,

• Introduce a new factor λ, and define a new function L as follows: L(x, y, λ) =

f(x, y)− λ(g(x, y)− c), where the function L is called the Lagrangian function and

λ is the Lagrangian multiplier.

• To find the possible solutions and compute the stationary points of the Lagrange

function, the gradient of L is set to equal to zero, ∇L(x, y, λ) = 0.

• All valid solutions are substituted in the objective function and the one that results

in the greatest (or smallest) value is the local maxima (or minima) we are looking

for. Note that the Lagrangian method does not guarantee global optimal solution.
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2.8.2 KKT Conditions

The KKT conditions are called first-order necessary conditions and defined as first deriva-

tive tests for a possible solution in non-linear programming to be optimal, subject to

some regularity conditions are satisfied. KKT approach is considered a generalization

for the Lagrangian method in solving non-linear programming since it allows inequality

constraints as opposed to Lagrangian methods that allows only equality constraints.

optimize
x,y

f(x, y) (2.19a)

s.t. gi(x, y) = 0, i = 1, ...,m (2.19b)

hj(x, y) ≤ 0, j = 1, ..., l (2.19c)

That said, the constrained minimization (maximization) problem is re-formulated as a

Lagrange function whose optimal point is a saddle point that represents the optimal

maxima or minima over the the domain of the choice variables.

If x∗, y∗ are local optimum points and the optimization problem satisfies some regu-

larity conditions, then there exist constants, λi and µj, called KKT multipliers, such that

the following necessary conditions hold.

• Stationarity

Minimization : ∇f(x∗, y∗) +
m∑
i=1

λi∇gi(x∗, y∗) +
l∑

j=1

µj∇hj(x∗, y∗) = 0, (2.20)

Maximization : −∇f(x∗, y∗) +
m∑
i=1

λi∇gi(x∗, y∗) +
l∑

j=1

µj∇hj(x∗, y∗) = 0, (2.21)

• Primal feasibility

gi(x
∗, y∗) = 0, ∀i (2.22)

hj(x
∗, y∗) ≤ 0, ∀j (2.23)
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• Dual feasibility

µj ≥ 0, ∀j (2.24)

• Complementary slackness

l∑
j=1

µjhj(x
∗, y∗) = 0. (2.25)

The number of equations and inequalities corresponding to the KKT conditions is usually

not easy to solve simultaneously, except in a few special cases where a closed-form solution

can be analytically found. In general, many iterative algorithms can be developed as

methods for numerically solving the KKT equations and inequalities.

2.8.3 Dinkelbach Algorithm

Dinkelbach algorithm was introduced in [181]. It is classified as a one category of para-

metric algorithms, whose basic principle is to handle a concave-convex fraction problems

(CCFP) by solving a sequence of less complex problems. To explain its idea, let’s consider

the following CCFP:

max
x

f(x)

g(x)
(2.26a)

s.t. ci(x) ≤ 0, ∀i, (2.26b)

where f is concave, differential, and non-negative function, g is convex, differential, and

positive, and ci are convex for all i. The fundamental result upon which Dinkelbach’s

algorithm is based is the relation between the CCFP (2.26) and the parametric function

of a real variable as follows

F (λ) = max
x∈ci
{f(x)− λg(x)}. (2.27)
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Dinkelbach Algorithm

1: ε > 0, n = 0, λn = 0;
2: while F (λn) > ε do
3: x∗n = arg max

x∈ci
{f(x)− λng(x)};

4: F (λn) = f(x∗n)− λng(x∗n);

5: λn+1 = f(x∗n)
g(x∗n)

;
6: n = n+ 1;
7: end while

Proposition: Consider x∗ ∈ ci and λ∗ = f(x∗)
g(x∗)

, then x∗ is a solution of (2.26) if and only

if [181]

x∗ = arg max
x∈ci
{f(x)− λ∗g(x)} (2.28)

Based on the this above-mentioned proposition, solving a fractional problem is equivalent

to finding the unique zero of the auxiliary function F (.). A pseudo code of how the

Dinkelbach algorithm is accomplished is presented as shown in the top of the page.

2.9 Chapter Summary

In this chapter, the background and recent literature of power-domain NOMA systems

were reviewed with a focus on the following aspects: the basic principles of NOMA,

the resource allocation of NOMA, its emerging with other key 5G technologies, and the

implementation challenges and standardization. RSMA concept and definition were also

introduced. Furthermore, the advantages of RSMA over NOMA and OMA were listed.

The rates of RSMA were also derived for simple SISO systems.

Preliminary introduction for IGS was also introduced. Background and literature

review were also presented. Bearing in mind that NOMA superimposed users signals

associated with different power levels with the aid of superposition coding techniques, the

resource allocation, e.g., power sharing among the users should be carefully optimized for

each practical scenario.

In addition, NOMA and RSMA systems should be tackled considering practical sce-
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narios including imperfect SIC and imperfect self-interference cancellation etc. so that the

potential capability of NOMA and RSMA are attained, which is still lack in the literature.
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Chapter 3

Spectral and Energy Efficiency

Maximization of NOMA Systems

under Imperfect Successive

Interference Cancellation

3.1 Introduction

PGS has been widely adopted in communication systems due to its attractive entropy-

maximizing property, which is proved to achieve the maximum spectral efficiency in

AWGN channels but not in the case of an interference channel [20–22]. Moreover, the

majority of the wireless products assume a proper signal model for the underlying CSCG

signals, which is in contrast with many of the real-world applications. The improper char-

acteristics with non-identical variance on the real and imaginary components are known

to exist in some well-known constellation diagrams such as binary phase-shift keying and

continuous phase modulation [24].

The traditional complex-valued signal processing assumes a vanishing pseudo-covariance,
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i.e., equals zero, which is not accurate for many real-world scenarios where the concerned

signals are frequently improper [24]. Such simplified assumption not only results in mis-

leading analysis and inaccurate results but also prohibits us from investigating the po-

tential benefit of the additional degree of the freedom offered by improper signaling. By

relaxing the constraints of PGS, i.e., equal power and uncorrelated real and imaginary

components, we have what is called IGS [24], [25]. In practical systems, improper signal-

ing techniques have already existed in linear receivers for GSM communication and 3GPP

systems [23]. It has been shown that IGS attains higher degrees of freedom than PGS

due to its ability to identify the interference signal dimension. In fact, it can be described

as a kind of interference alignment technique since it mitigates interference by using its

alignment in only one orthogonal signal space dimension, and by extracting the desired

signal from the other orthogonal space [27]. Due to these impropriety characteristics,

IGS has been identified as a potential candidate for improving the spectral efficiency in

interference-limited systems [24], [25].

NOMA has been introduced as a potential candidate for enabling heavily-loaded sys-

tems using limited resources while improving the spectral efficiency [12]. In that sense,

in the downlink of NOMA systems, multiple users can be served simultaneously on one

resource block by implementing superposition coding at the BS side and SIC at the users’

side [15]. This leads to spectral-efficient systems provided that perfect SIC is performed,

which is not a realistic assumption. In practice, detectors suffer from imperfect SIC, which

leads to an interference-limited NOMA system [31]. This encourages us to consider IGS as

a promising solution to recompense for the SIC imperfections in such interference-limited

scenarios.

3.2 Related Works

In OMA schemes, IGS has been investigated in interference Z-channel models [20–22],

MIMO interference-limited systems [147], and broadcast channels [169], [170], where the
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achievable throughout regions and degrees of freedom were derived. IGS was also con-

sidered in Z-channel CR networks, where IGS was proven to be beneficial in reducing

the interference to primary users in various unlicensed spectrum-sharing models [173].

IGS was also evaluated in cooperative full-duplex relaying CR systems [174], where IGS

was used to help the secondary user access the spectrum. Similar work in [175] was in-

vestigated in non-CR systems under Nakagami-m fading, where it was concluded that

using IGS can eliminate the impact of residual self-interference by revising the signal

impropriety.

Recent works considered IGS in NOMA interference-limited systems. The authors

in [176] investigated the performance of a two-user downlink NOMA system using IGS,

by deriving the outage probability and the ergodic capacity expressions. In [177], trans-

mit precoding schemes were designed for a multi-cell network in order to maximize the

users’ minimum rates under various power budget constraints. In [178], IGS scheme was

generated for signal beamforming with the goal of improving the spectral efficiency of a

multi-cell network and protecting the users’ secrecy.

3.3 Contributions

The main contributions of this chapter can be summarized as follows.

• This chapter studies a two-user downlink point-to-point NOMA system with both

users employing IGS under imperfect SIC. We first derive the exact expressions for

each user’s rate when using IGS at both users.

• We formulate two optimization problems for spectral efficiency and energy efficiency.

In each formulated problem, we jointly optimize the BS transmit power and the

transmit signal’s circularity coefficients given the QoS and power budget require-

ments.

• We also consider a special case of using IGS at the strong user only. In this case, a
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sum-rate maximization problem is formulated where the IGS circularity coefficient is

optimized. Hence, we derive closed-form expression for the optimized IGS circularity

coefficient.

• We propose iterative algorithms to find sub-optimal solutions to the developed non-

convex optimization problems based on the KKT conditions.

• Additionally, we show the efficacy of the optimized circularity coefficient on the

transmit constellations at the BS and the system error performance, where im-

proper constellation diagrams are designed using WLT based on the optimized IGS

circularity coefficients.

• Simulation results demonstrate the vital impact of IGS over PGS in the context of

NOMA systems under imperfect SIC. Results show that the performance of IGS-

based NOMA system outperforms its counterpart PGS-based NOMA system under

SIC imperfections.

3.4 Channel and System Models

3.4.1 Channel Model

A downlink two-user NOMA system model with a BS is considered in this work as shown

in Fig. 3.1. The Rayleigh model is considered for the channels between the BS and users.

We denote hi, ∀i = 1, 2, as the channel variables with variance σ2
hi

. Unlike the commonly

used setups where users employ PGS, in this work we consider IGS at both users, i.e.,

xi, ∀i = 1, 2, are improper signals.

As per power-domain NOMA basics, users experience different channel conditions with

the assumption of |h1|2 > |h2|2 and P2 > P1. Consequently, user 1, which has a better

channel condition, can decode its own signal after removing the signal of user 2, which

has worse channel condition, through SIC processing [14]. Meanwhile, user 2 can decode
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Figure 3.1: A NOMA system with IGS.

its own signal assuming the interference inflicted by user 1 is negligible and can thus be

dealt with as noise.

Since user 1’s receiver has imperfect SIC, there exists a residual interference as an

outcome from this imperfection. Generally, the residual interference resulting from im-

perfect SIC is a complicated function of multiple factors, e.g., coding/modulation related

parameters, channel related issues (fading and shadowing), device/hardware/battery re-

lated restrictions, etc. Furthermore, due to the characteristics of error propagation due to

imperfect SIC, it is hard to model its impact. It is stated in [171] and [172] that a linear

model can effectively demonstrate the relationship between the residual interference and

the received signal power.

To introduce the impact of imperfect SIC, we adopt this linear model here. Under

such a model of imperfect SIC, the received signal after SIC at user 1 is given in (3.1),

where η denotes the coefficient of imperfect SIC at user 1. Note that η = 0, corresponds

to perfect SIC, and η = 1, corresponds to no interference cancellation.
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3.4.2 Spectral Efficiency Analysis

Since IGS is considered at both users, i.e., x1 and x2 are improper, and imperfect SIC

is assumed, we first need to find the new expressions for the users’ information rates.

Hence, closed-form expressions are obtained for the spectral efficiency for each user in the

considered system model.

To do so, we characterize the received signals at each user as

y1 =
√
P1h1x1 + η

√
P2h1x2 + n1, (3.1)

y2 =
√
P2h2x2 +

√
P1h2x1 + n2, (3.2)

where xi, ∀i = 1, 2, is the signal for the ith user, E [|xi|2] = 1, and ni is additive white

Gaussian noise (AWGN) at the ith user’s receiver with variance σ2
i . The improper cir-

cularity coefficient of xi is denoted as κxi = |Ĉi|
Ci

, where Ĉi = E{xixi} = κxi∠Ĉi and

Ci = E{xix∗i }. The component η
√
P2h1x2 in (3.1) refers to the imperfect SIC at user 1.

To continue, based on [154], the user’s rate definition in the case of IGS is given as

Ri =
1

2
log2

(
Ω2
yi
− |Ω̂yi |2

Ω2
zi
− |Ω̂zi |2

)
, (3.3)

where Ωyi and Ω̂yi refer respectively to the covariance and pseudo-covariance components

of the received signal and Ωzi and Ω̂zi refer to covariance and pseudo covariance compo-

nents of interference plus noise signal, respectively. The covariance and pseudo-covariance

of yi, i = 1, 2, can be obtained from (3.1) and (3.2) as

Ωy1 = E(y1y
∗
1) = P1|h1|2C1 + η2P2|h1|2C2 + σ2

1, (3.4)

Ω̂y1 = E(y1y1) = P1h
2
1Ĉ1 + η2P2h

2
1Ĉ2, (3.5)

Ωy2 = E(y2y
∗
2) = P2|h2|2C2 + P1|h2|2C1 + σ2

2, (3.6)

Ω̂y2 = E(y2y2) = P2h
2
2Ĉ2 + P1h

2
2Ĉ1. (3.7)
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Define the noise and the interference-plus-noise terms in (3.1) and (3.2), as zi, i = 1, 2, at

each receiver, respectively, where z1 = η
√
P2h1x2 + n1 and z2 =

√
P1h2x1 + n2, we get

Ωz1 = E(z1z
∗
1) = η2P2|h1|2C2 + σ2

1, (3.8)

Ω̂z1 = E(z1z1) = η2P2|h1|2Ĉ2, (3.9)

Ωz2 = E(z2z
∗
2) = P1|h2|2C1 + σ2

2, (3.10)

Ω̂z2 = E(z2z2) = P1h
2
2Ĉ1, (3.11)

To continue, we compute the following components.

|Ω̂y1 |2 = |P1h
2
1Ĉ1 + η2P2h

2
1Ĉ2|2

= (P1|h1|2κx1)2 + (η2P2|h1|2κx2)2 + 2(P1|h1|2κx1)(η2P2h
2
1κx2) cos(∠Ĉ1 − ∠Ĉ2),

(3.12)

|Ω̂y2 |2 = |P2h
2
2Ĉ2 + P1h

2
2Ĉ1|2

= (P2|h2|2κx2)2 + (P1|h2|2κx1)2 + 2(P2|h2|2κx2)(P1|h2|2κx1) cos(∠Ĉ1 − ∠Ĉ2),

(3.13)

|Ω̂z1 |2 = (η2P2|h1|2κx2)2, (3.14)

|Ω̂z2 |2 = (P1|h2|2κx1)2, (3.15)

By substituting (3.4), (3.6), (3.8), (3.10), (3.12)-(3.15) into (3.3), and assuming, without

loss of generality, C1 = C2 = 1, and σ2
1 = σ2

2 = σ2, after a few mathematical manipulations

R1 =
1

2
log2

(
(P1|h1|2 + η2P2|h1|2 + σ2)

2 − tz
(η2P2|h1|2 + σ2)2 − (η2P2|h1|2κx2)

2

)
, (3.16)

where tz =
(

(P1|h1|2κx1)2 + (η2P2|h1|2κx2)2 + 2(P1|h1|2κx1)(η2P2|h1|2κx2) cos(∠Ĉ1 − ∠Ĉ2)
)

.
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and

R2 =
1

2
log2

(
(P2|h2|2 + P1|h2|2 + σ2)

2 − ty
(P1|h2|2 + σ2)2 − (P1|h2|2κx1)2

)
, (3.17)

where ty =
(

(P2|h2|2κx2)2 + (P1|h2|2κx1)2 + 2(P2|h2|2κx2)(P1|h2|2κx1) cos(∠Ĉ1 − ∠Ĉ2)
)
.

Let’s define ∆ = cos(∠Ĉ1 − ∠Ĉ2). To find the optimal ∆ that maximizes the sum rate

R1 +R2, we derive each rate with respect to ∆ as follows.

∂R1

∂∆
= − 1

ln 2

(P1|h1|2κx1)(η2P2|h1|2κx2)
t1

, (3.18)

where t1 = (P1|h1|2 + η2P2|h1|2 + σ2)
2 − tz =

(P1|h1|2)2(1−κ2x1)+(η2P2|h1|2)2(1−κ2x2)+σ2+2(P1|h1|2)(η2P2|h1|2)(1−κx1κx2 cos(∠Ĉ1−

∠Ĉ2)) + 2σ2(P1|h1|2)(η2P2|h1|2), and

∂R2

∂∆
= − 1

ln 2

(P1|h2|2κx1)(P2|h2|2κx2)
t2

, (3.19)

where t2 = (P2|h2|2 + P1|h2|2 + σ2)
2 − ty =

(P1|h2|2)2(1− κ2x1) + (P2|h2|2)2(1− κ2x2) + σ2 + 2(P1|h2|2)(P2|h2|2)(1− κx1κx2 cos(∠Ĉ1 −

∠Ĉ2)) + 2σ2(P1|h2|2)(P2|h2|2). Based on (3.18), (3.19), the derivation of the sum rate

with respect to ∆ results in

∂(R1 +R2)

∂∆
= − 1

ln 2

(P1κx1P2κx2)

t1t2

[
η2|h1|4t2 + |h2|4t1

]
, (3.20)

Since 0 ≤ κx1 , κx2 ≤ 1 and −1 ≤ cos(∠Ĉ1 −∠Ĉ2)) ≤ 1, all the terms between brackets in

(3.20) are positive values and the overall value of (3.20) is negative. Hence, the sum rate

function is a decreasing function of ∆. Then, the optimal ∆ to maximize the sum rate is

to choose ∆ = −1, i.e., ∠Ĉ1 − ∠Ĉ2 = π.

By substituting the value of cos(∠Ĉ1−∠Ĉ2) = −1 into (3.16) and (3.17) and assuming

the powers P1 = α1PT and P2 = α2PT are assigned to user 1 and user 2, respectively,
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where 0 ≤ αi ≤ 1, and α1+α2 = 1, and using the math identity A2+B2−2AB = (A−B)2,

the user rates R1,R2, are derived in closed-form as

R1 =
1

2
log2

(
(α1PT |h1|2 + η2α2PT |h1|2 + σ2)

2 − ((α1PT |h1|2κx1)− (η2α2PT |h1|2κx2))
2

(η2α2PT |h1|2 + σ2)2 − (η2α2PT |h1|2κx2)
2

)
,

(3.21)

and

R2 =
1

2
log2

(
(α2PT |h2|2 + α1PT |h2|2 + σ2)

2 − ((α2PT |h2|2κx2)− (α1PT |h2|2κx1))
2

(α1PT |h2|2 + σ2)2 − (α1PT |h2|2κx1)2

)
.

(3.22)

3.5 Optimization Problems

In this section, two optimization problems are formulated to maximize both the overall

spectral efficiency and the energy efficiency under the constraints of each user’s minimum

rate requirements and power budget.

3.5.1 Spectral Efficiency Maximization

Maximizing the overall spectral efficiency is a common objective in wireless systems.

However, to avoid having all resources taken by one user, the quality of service (QoS)

constraints are often enforced when formulating the overall spectral efficiency maximiza-

tion. A joint optimization problem is developed to optimize both the IGS circularity

coefficients (κx1 , κx2) and power allocation at the BS. The objective is to maximize the

system spectral efficiency given that the QoS of each user (minimum user rate) is met

and the power budget is not exceeded.

In this optimization problem, we assume that the BS uses the total available power.

For simplicity, we denote α1 = α and α2 = 1 − α. Based on the analysis of the rate

expressions in Section 3.4.2, we can improve the overall sum rate in the case both users
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are employing IGS. That mentioned, the joint optimization problem can be developed as

OP1 : maximize
κx1 ,κx2 ,α

R1(κx1 , κx2 , α) +R2(κx1 , κx2 , α) (3.23a)

subject to C1 : R1(κx1 , κx2 , α) ≥ Rm1 , (3.23b)

C2 : R2(κx1 , κx2 , α) ≥ Rm2 , (3.23c)

C3 : 0 ≤ κx1 , κx2 ≤ 1, (3.23d)

C4 : 0 ≤ α ≤ 1, (3.23e)

where R1(κx1 , κx2 , α) and R2(κx1 , κx2 , α) are computed from (3.21) and (3.22), respec-

tively. Rm1 and Rm2 are each user’s minimum rate requirement. The conditions C1 and

C2 stress that the achieved rate of user 1 and user 2 are greater than Rm1 and Rm2 ,

respectively, the condition C3 enforced the range of IGS circularity coefficients between 0

and 1, and the condition C4 represents the BS power budget.

The objective and rate constraints in the formulated optimization (3.23a)-(3.23e) are

non-convex which lead to a non-convex problem. To tackle this issue, the formulated

problem can be optimized by using the necessary but not sufficient Karush-Kuhn-Tucker

(KKT) conditions to find sub-optimal solutions for the circularity coefficient κ∗x1 , κ
∗
x2

, and

power allocation parameter α∗ at less computational complexity.

The Lagrangian function corresponding to (3.23a)-(3.23e) can be outlined as

L(κx1 , κx2 , α) =− (R1(κx1 , κx2 , α) +R2(κx1 , κx2 , α))

+ λ1(Rm1 −R1(κx1 , κx2 , α)) + λ2(Rm2 −R2(κx1 , κx2 , α)), (3.24)

where λ1 ≥ 0 and λ2 ≥ 0 are the Lagrange multipliers associated with the minimum rates

constraints of user 1 and user 2, respectively. Based on the above, the KKT conditions
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can be described as follows [180]

∂L(κx1 , κx2 , α)

∂κx1
= 0, (3.25a)

∂L(κx1 , κx2 , α)

∂κx2
= 0, (3.25b)

∂L(κx1 , κx2 , α)

∂α
= 0, (3.25c)

λ1(Rm1 −R1(κx1 , κx2 , α)) = 0, (3.25d)

λ2(Rm2 −R2(κx1 , κx2 , α)) = 0, (3.25e)

Rm1 −R1(κx1 , κx2 , α) ≤ 0, (3.25f)

Rm2 −R2(κx1 , κx2 , α) ≤ 0, (3.25g)

λ1, λ2 ≥ 0. (3.25h)

The results of (3.25a), (3.25b), and (3.25c) are found, respectively, as

− (1− λ1)(αPT |h1|2)(αPT |h1|2κx1 − η2(1− α)PT |h1|2κx2)u2 d2

+ (1− λ2)[−(αPT |h2|2)(αPT |h2|2κx1 − (1− α)PT |h2|2κx2)d2 + (αPT |h2|2)2κx1u2]u1 = 0,

(3.26)

(1− λ1)[(η2(1− α)PT |h1|2)(αPT |h1|2κx1 − η2(1− α)PT |h1|2κx2)d1 + (η2(1− α)PT |h1|2)2

κx2u1]u2 + (1− λ2)[((1− α)PT |h2|2)(αPT |h2|2κx1 − (1− α)PT |h2|2κx2)]u1 d1 = 0, (3.27)

(1− λ1)u3 u2 d2 + (1− λ2)d3 u1 d1 = 0, (3.28)

where u1 = (αPT |h1|2 + η2(1− α)PT |h1|2 + σ2)
2−((αPT |h1|2κx1)− (η2(1− α)PT |h1|2κx2))

2
,

d1 = (η2(1− α)PT |h1|2 + σ2)
2 − (η2(1− α)PT |h1|2κx2)

2
,

u2 = ((1− α)PT |h2|2 + αPT |h2|2 + σ2)
2 − (((1− α)PT |h2|2κx2)− (αPT |h2|2κx1))

2
,

d2 = (αPT |h2|2 + σ2)2 − (αPT |h2|2κx1)2,

u3 = 2 d1[(PT |h1|2)2
(
α(1− κ2x1) + η2(1− 2α)(1 + κx1κx2)− (η4(1− α)(1− κ2x2))

)
+σ2PT |h1|2

(1− η2)]− 2 u1[−(PT |h1|2)2η4(1− α)(1− κ2x2)− σ
2η2PT |h1|2],
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Algorithm I-a:Spectral Efficiency Maximization Algorithm for Two Users Using
IGS :

1: Initialization: Rm1 , Rm2 , PT , h1, h2, σ
2, and η;

2: While:(Ri −Rmi) 6= 0, ∀i = 1, 2, do {
3: assume that the optimal solution κ∗x1 , κ

∗
x2 , α

∗ belongs to Case 1, i.e. R1 > Rm1 and R2 >
Rm2 , then, find the sub-optimal solution κ∗x1 , κ

∗
x2 , α

∗ by solving (3.26)-(3.28) simultaneously
when λ1 = λ2 = 0

4: if in Step 3, R1 < Rm1 and R2 ≥ Rm2 , then the sub-optimal solution κ∗x1 , κ
∗
x2 , α

∗ belongs
to Case 2, i.e., find λ1 ≥ 0 by (3.29) such that R1(κx1 , κx2 , α) = Rm1 , and re-calculate
κs∗1 , κs∗2 , α

∗ from solving (3.26)-(3.28) simultaneously. Repeat until convergence.
5: else if in Step 3, R1 ≥ Rm1 and R2 < Rm2 , then, the sub-optimal solution κ∗x1 , κ

∗
x2 , α

∗

belongs to Case 3, i.e., find λ2 ≥ 0 by (3.29) such thatR2(κx1 , κx2 , α) = Rm2 and re-calculate
κs∗1 , κs∗2 , α

∗ from solving (3.26)-(3.28) simultaneously. Repeat until convergence.
6: else if in Step 3, R1 < Rm1 and R2 < Rm2 , then, find λ1 ≥ 0 and λ2 ≥ 0 if feasible such

that R1(κx1 , κx2 , α) = Rm1 and R2(κx1 , κx2 , α) = Rm2 and re-calculate κx∗1 , κx∗2 , α
∗ from

solving (3.26)-(3.28) simultaneously. Repeat until convergence.
7: Result: κx∗1 , κx∗2 , α

∗ and substitute in (3.21), (3.22) to compute the maximum
R1(κ

∗
x1 , κ

∗
x2 , α) +R2(κx1 , κx2 , α

∗)

and

d3 = 2d2[(PT |h2|2)2(−ακ2x1 + (1− 2α)(κx1κx2) + (1− α)(1− κ2x2))]− 2u2[(PT |h2|2)2α(1−

κ2x1) + σ2PT |h2|2].

Then, (3.26), (3.27), and (3.28) can be solved simultaneously to compute optimal κx1 ,

κx2 , and the allocation power parameter α, at λ1 = λ2 = 0.

From the KKT conditions mentioned earlier, we need to check all alternatives of

λi, ∀i = 1, 2. As can be seen from (4.24b) and (4.24c), it is either we have λ1 = 0 or

R1(κ
∗
x1
, κ∗x2 , α

∗) = Rm1 , or λ2 = 0 or R2(κ
∗
x1
, κ∗x2 , α

∗) = Rm2 . This leads to four potential

cases as below:

– Case 1: Inactive QoS constraints, when both λ1 = λ2 = 0.

– Case 2: The sub-optimal solutions of κx1 , κx2 , and α exist when λ1 6= 0 and λ2 = 0,

and R1(κ
∗
x1
, κ∗x2 , α

∗) = Rm1 .

– Case 3: The sub-optimal solutions of κx1 , κx2 , and α exist when λ1 = 0 and λ2 6= 0,

and R2(κ
∗
x1
, κ∗x2 , α

∗) = Rm2 .

– Case 4: The sub-optimal solutions of κx1 , κx2 , and α exist, if feasible, when λ1 6= 0
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and λ2 6= 0 and both R1(κ
∗
x1
, κ∗x2 , α

∗) = Rm1 and R2(κ
∗
x1
, κ∗x2 , α

∗) = Rm2 .

The Lagrangian values will be computed using the Subgradient method as

λn+1
i = [λni − δni (Ri −Rmi)]

+ , ∀i = 1, 2, (3.29)

where δni is the a small increment at the nth iteration associated with the ith Lagrange

multiplier.

Based on the above-mentioned cases, we introduce Algorithm I to solve the optimiza-

tion problem in OP1. The optimal solution belongs to one of the following four cases:

1) both minimum user rate constraints are inactive, 2) user 1 minimum rate constraint is

active and user 2 minimum rate constraint is inactive, 3) user 1 minimum rate constraint

is inactive and user 2 minimum rate constraint is active, and 4) both minimum user rate

constraints are active. We explain the steps of the algorithm as follows.

• Step 3: the proposed algorithm starts by assuming that both the minimum user

rate constraints are inactive. Then, we find the optimal solution based on this

assumption. If the inactive constraints are satisfied, then the optimal solution is

reached.

• Step 4: based on the assumption that solution belongs to Case 1 (inactive con-

straints), the user 1 minimum rate constraint may be not inactive. This means

that initial solution from step 3 is infeasible and the proposed algorithm finds the

Lagrangian multipliers that enforce the solution to be in the feasible region. More

specifically, the proposed algorithm finds the non-negative Lagrangian multiplier λ1

that makes user 1 minimum rate constraint active (i.e., satisfied with equal sign)-

Case 2.

• Step 5: based on the assumption that solution belongs to Case 1 (inactive con-

straints), the user 2 minimum rate constraint may be not inactive. This means

that initial solution from step 3 is infeasible and the proposed algorithm finds the
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Lagrangian multipliers that enforce the solution to be in the feasible region. More

specifically, the proposed algorithm finds the non-negative Lagrangian multiplier λ2

that makes user 2 minimum rate constraint active (i.e., satisfied with equal sign)-

Case 3.

• Step 6: based on the assumption that solution belongs to Case 1 (inactive con-

straints), both minimum rate constraints may be not inactive. This means that

initial solution from step 3 is infeasible, and the proposed algorithm finds the La-

grangian multipliers that enforce the solution to be in the feasible region. More

specifically, the proposed algorithm finds the non-negative Lagrangian multiplier

λ1, λ2 that makes both minimum rate constraints active (i.e., satisfied with equal

sign)-Case 4.

• At the end, the optimal IGS circularity coefficients and power allocation parameter

are obtained and the corresponding maximum sum-rate can be computed.

3.5.2 Special Case: IGS at Strong User Only

We focus on the case where we use IGS for strong user (i.e., x1 is improper and κx1 6= 0)

and PGS for weak user (i.e., x2 is proper and κx2 = 0). Also, we assume the powers P1

and P2 are already allocated to user 1 and 2, respectively (i.e., they are not optimization

variables). That said, the optimization problem for maximizing the sum-rate under QoS

constraints can be formulated as

maximize
κs1

R1(κx1) +R2(κx1)

subject to C1 : R1(κx1) ≥ Rm1 ,

C2 : R2(κx1) ≥ Rm2 ,

C3 : 0 ≤ κx1 ≤ 1,

(3.30)

where R1(κx1) and R2(κx1) are obtained from (3.21) and (3.22), respectively, at κx2 = 0.

Rm1 and Rm2 are the minimum rate requirements of the strong user and the weak user,
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respectively. The constraint C3 reflects that the circulatory coefficient is between 0 and

1.

The optimization problem in (3.30) can be solved by applying the KKT conditions;

however, it is worthy to mention that the obtained circularity coefficient κ∗s1 will be sub-

optimal as the the problem in (3.30) is non-convex. The Lagrangian function can be

expressed as

L(κx1 , λ1, λ2) = − (R1(κx1) +R2(κx1)) + λ1(Rm1 −R1(κx1)) + λ2(Rm2 −R2(κx1)),

(3.31)

where λ1 and λ2 are the non-negative Lagrange multipliers associated with the QoS con-

straints of user 1 and 2, respectively. The circularity coefficient constraint not considered

in the Lagrangian function will be satisfied later. That said, the KKT conditions can be

written as follows [180]

∂L(κ∗x1 , λ1, λ2)

∂κx1
= 0, (3.32)

λ1(Rm1 −R1(κ
∗
x1

)) = 0, (3.33)

λ2(Rm2 −R2(κ
∗
x1

)) = 0, (3.34)

Rm1 −R1(κ
∗
x1

) ≤ 0, (3.35)

Rm2 −R2(κx∗1) ≤ 0, (3.36)

λ1, λ2 ≥ 0. (3.37)

From (3.32), we can obtain the circularity coefficient κ∗x1 as

κ2x1 = 0.5

(
(Φ + Ψ) + (Φ−Ψ)

(
1 + λ2
1 + λ1

))

− 0.5

([
(Φ−Ψ)2

(
1 +

(
1 + λ2
1 + λ1

)2
)

+ (Φ−Ψ)

(
1 + λ2
1 + λ1

)
(2(Φ + Ψ)− 4ω)

]) 1
2

.

(3.38)
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Algorithm I-b:Spectral Efficiency Maximization Algorithm for IGS at Strong User
Only :

1: Input: Rm1 , Rm2 , P1, P2, h1, h2, σ
2, κx2 = 0, and η.

2: Set λ1 = λ2 = 0. Calculate κx1 from (3.38). Calculate R1 and R2 from (3.21) and (3.22),
respectively.

3: if R1 ≥ Rm1 and R2 ≥ Rm2 , then, the sub-optimal solution κ∗x1 is reached.
4: else if R1 < Rm1 and R2 ≥ Rm2 , then, find non-negative λ1 from (3.29) such that
R1(κx1) = Rm1 and re-calculate κs∗1 from (3.38). Repeat until convergence.

5: else if R1 ≥ Rm1 and R2 < Rm2 , then, find non-negative λ2 from (3.29) such that
R2(κx1) = Rm2 and re-calculate κs∗1 from (3.38). Repeat until convergence.

6: else R1 < Rm1 and R2 < Rm2 , then, find non-negative λ1 and λ2 from (3.29) if exists such
that R1(κx1) = Rm1 and R2(κx1) = Rm2 and re-calculate κs∗1 from (3.38). Repeat until
convergence.

7: Output: κx∗1 .

where Φ =
(

1 + σ2

P1|h2|2

)2
, Ψ =

(
1 + P2

P1
+ σ2

P1|h2|2

)2
, and ω =

(
1 + η2 P2

P1
+ σ2

P1|h1|2

)2
. To

consider C3, we need to guarantee that the term under the square root in (3.38) is positive

and also the first term of (3.38) is greater than the second term of it. The values of λ1

and λ2 in (3.33) and (3.34) can be computed using the subgradient method [180] (3.29).

However, one can notice from (3.33) that either λ1 = 0 or R1(κ
∗
x1

) = Rm1 . Similarly,

(3.34) implies that either λ2 = 0 or R2(κ
∗
x1

) = Rm2 . That said, four possible cases exist,

as follows.

– Case 1: λ1 = 0 and λ2 = 0 means that both QoS constraints of user 1 and user 2

are inactive.

– Case 2: λ1 = 0 and λ2 6= 0 implies that the sub-optimal circularity coefficient exists

when R2(κ
∗
x1

) = Rm2 .

– Case 3: λ1 6= 0 and λ2 = 0 implies that the sub-optimal circularity coefficient exists

when R1(κ
∗
x1

) = Rm1 .

– Case 4: λ1 6= 0 and λ2 6= 0 implies that if the problem is feasible, the sub-optimal

circularity coefficient exists when both R1(κ
∗
x1

) = Rm1 and R2(κ
∗
x1

) = Rm2 .

The proposed algorithm to solve the problem in (3.30) can be formally summarized as

shown above. The algorithm iterates between the four cases until convergence.
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3.5.3 Energy Efficiency Maximization

Since NOMA is considered as interference limited systems under the impact of imperfect

SIC, needs additional transmit power plus extra circuit power consumption for detecting

the weak user’s signal due to the imperfection of SIC. In this subsection, we maximize the

energy efficiency of the two-user system considering both QoS and BS power constraints.

We jointly optimize the circularity coefficients and power allocation at the BS to maximize

the energy efficiency. The optimization problem is formulated as follows

OP2 : maximize
κxi ,αi

ζEE =
R1(κxi , αi) +R2(κxi , αi)

Pc + (α1 + α2)PT
(3.39a)

subject to C1 : R1(κxi , αi) ≥ Rm1 , (3.39b)

C2 : R2(κxi , αi) ≥ Rm2 , (3.39c)

C3 : α1 + α2 ≤ 1, (3.39d)

C4 : 0 ≤ αi ≤ 1, ∀i = 1, 2, (3.39e)

C5 : 0 ≤ κxi ≤ 1, ∀i = 1, 2, (3.39f)

where Pc is the BS’s circuitry power consumption. The optimization problem in (3.39a)

is equivalent to the following minimization problem OP3:

OP3 : minimize
κxi ,αi

ζ−1EE (3.40)

subject to C1− C5.

The objective function of (3.40) and rate constraints are non-convex; hence, the overall

problem is non-convex, and the global optimal solution cannot be ensured.

The fractional non-convex optimization problem in (3.40) can be converted to an

equivalent parametric optimization problem using concepts from fractional programming,

namely the Dinkelbach approach [181]. Using this conversion, a new objective function
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can be found as

ΦEE = (Pc + (α1 + α2)PT )−K(R1(κxi , αi) +R2(κxi , αi)), (3.41)

where K is a non-negative constant. Then, the new optimization problem OP4 becomes

OP4 : minimize
κxi ,αi

ΦEE, subject to C1− C5. (3.42)

It was proven in [181] that at a certain value of K, which is defined as K∗, an optimal

solution to OP4 is also an optimal solution to OP3. Hence, obtaining the optimal values

of κxi , αi for OP3 can be reached by obtaining the optimal values of (κxi(K), αi(K)) for

OP4. We can then update the value of K until it reaches K∗, where K∗ is obtained when

ΦEE = 0 [181] at optimal κ∗xi and α∗i .

To find the sub-optimal solutions, we solve OP4 using the KKT conditions. The

Lagrangian function LEE(κxi , αi) based on OP4 can be expressed as

LEE(κxi , αi) = (Pc + (α1 + α2)PT )−K (R1(κxi , αi) +R2(κxi , αi))

+ λ1(Rm1 −R1(κxi , αi)) + λ2(Rm2 −R2(κxi , αi)) + λ3(α1 + α2 − 1),

(3.43)

where λ1, λ2 and λ3 are the Lagrange multipliers connected with the QoS conditions of

user 1, user 2, and power allocation at the BS, respectively. The impact of the constraints

C4 and C5 determine the valid ranges of κxi , αi. The KKT conditions can consequently
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be outlined as follows:

∂LEE(κ∗xi , α
∗
i )

∂κxi
= 0, ∀i = 1, 2, (3.44a)

∂LEE(κ∗xi , α
∗
i )

∂αi
= 0, ∀i = 1, 2, (3.44b)

λ1(Rm1 −R1(κ
∗
xi
, α∗i )) = 0, (3.44c)

λ2(Rm2 −R2(κ
∗
xi
, α∗i )) = 0, (3.44d)

λ3(α1 + α2 − 1) = 0, (3.44e)

Rm1 −R1(κ
∗
xi
, α∗) ≤ 0, (3.44f)

Rm2 −R2(κ
∗
xi
, α∗i ) ≤ 0, (3.44g)

α1 + α2 − 1 ≤ 0, (3.44h)

λ1, λ2, λ3 ≥ 0. (3.44i)

From (3.44a), we obtain

∂LEE(κ∗xi , α
∗
i )

∂κxi
= −(λ1 +K)

∂R1(κxi , αi)

∂κxi
− (λ2 +K)

∂R2(κxi , αi)

∂κxi
= 0. (3.45)

and

∂LEE(κ∗xi , α
∗
i )

∂αi
= PT − (λ1 +K)

∂R1(κxi , αi)

∂αi
− (λ2 +K)

∂R2(κxi , αi)

∂αi
+ λ3 = 0. (3.46)

We have same derivation for (3.45) as in (3.26) and (3.27), respectively. The results

of (3.46) are obtained as

∂R1(κ
∗
xi
, α∗i )

∂α1

=
1

ln2

PT |h1|2(α1PT |h1|2(1− κ2x1) + η2α2PT |h1|2(1 + κx1κx2) + σ2)

(α1PT |h1|2 + η2α2PT |h1|2 + σ2)− (α1PT |h1|2κx1)− (η2α2PT |h1|2κx2)
,

(3.47)
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and

∂R1(κ
∗
xi
, α∗i )

∂α2

=
1

ln2

zz(η2PT |h1|2)(α1PT |h1|2(1 + κx1κx2) + η2α2PT |h1|2(1− κ2x2) + σ2)− xx yy
yy × zz

,

(3.48)

where xx = (η2PT |h1|2)(η2α2PT |h1|2(1− κ2x2) + σ2),

yy = (α1PT |h1|2 + η2α2PT |h1|2 + σ2)
2 − ((α1PT |h1|2κx1)− (η2α2PT |h1|2κx2))

2
, and

zz = (η2α2PT |h1|2 + σ2)
2 − (η2α2PT |h1|2κx2)

2
, and

∂R2(κ
∗
xi
, α∗i )

∂α1

=
1

ln2

zz2(PT |h2|2)(α2PT |h2|2(1 + κx1κx2) + α1PT |h2|2(1− κ2x1) + σ2)− yy xx2
yy2 × zz2

,

(3.49)

where xx2 = (PT |h2|2)(α1PT |h2|2(1− κ2x1) + σ2),

yy2 = (α2PT |h2|2 + α1PT |h2|2 + σ2)
2 − ((α2PT |h2|2κx2)− (α1PT |h2|2κx1))

2

and zz2 = (α1PT |h2|2 + σ2)2 − (α1PT |h2|2κx1)2.

and

∂R2(κ
∗
xi
, α∗i )

∂α2

=
1

ln2

(PT |h2|2)(α2PT |h2|2(1− κ2x2) + α1PT |h2|2(1 + κx1κx2) + σ2)

(α2PT |h2|2 + α1PT |h2|2 + σ2)− ((α2PT |h2|2κx2)− (α1PT |h2|2κx1))2
,

(3.50)

From (3.44c)-(3.44e), we either have λ1 = 0 or R1(κ
∗
xi
, α∗i ) = Rm1 , λ2 = 0 or

R2(κ
∗
xi
, α∗i ) = Rm2 , and λ3 = 0 or α1 + α2 = 1. This leads to eight possible states

through which we need to iterate to find the optimal solution.

The energy efficiency solution is found at K = K∗, where K∗ =
Pc+(α∗1+α

∗
2)PT

(R1(κ∗i ,α
∗
i )+R2(κ∗i ,α

∗
i ))

and

is computed by applying the Dinkelbach method [181]. Here, we develop Algorithm II,

which follows an approach similar to Algorithm I with the aim of computing the optimal

values of κ∗xi , α
∗
i that satisfy ΦEEmin(κ∗i , α

∗
i ) = 0, where ΦEEmin is the minimum of ΦEE.

Algorithm II starts with an initial value of K, denoted as Kinitial, and employs an error

60



tolerance of δ. This energy efficiency Algorithm II is outlined at the top of the next page.

Description of Step 3 in the Algorithm II: We assume the optimal solution

belongs to the case where the QoS and power allocation constraints are inactive. We

initially find the sub-optimal solution when assuming all constraints are satisfied (inactive

constraints), and then for those constraints that are not satisfied, we find their Lagrange

multipliers to make them satisfied with equal sign. We initially set λ1 = λ2 = λ3 = 0 and

find initial κ∗xi , α
∗
i by simultaneously solving (3.45), (3.46) using Newton’s method.

• If R1 ≥ Rm1 , R2 ≥ Rm2 , and if the power constraint is true, then, the sub-optimal

solution can be reached.

• If R1 < Rm1 , R2 ≥ Rm1 , and the power constraint is true, i.e. this means that the

initial solution of inactive constraints is infeasible, then we find non-negative λ1 such

that R1(κ
∗
xi
, α∗i ) = Rm1 (that enforces the solution to be in the feasible region) and

re-calculate κ∗xi , α
∗
i .

• IfR1 ≥ Rm1 , R2 < Rm1 , and the power constraint is true, then, we find non-negative

λ2 such that R2(κ
∗
xi
, α∗i ) = Rm2 and re-calculate κ∗xi , α

∗
i

• If R1 ≥ Rm1 , R2 ≥ Rm1 , and the power constraint is not true, then, we find non-

negative λ3 such that α1 + α2 = 1 and re-calculate κ∗xi , α
∗
i

• If R1 < Rm1 , R2 ≥ Rm1 , and the power constraint is not met, then, then we find

non-negative λ1, λ3 such that R1(κ
∗
xi
, α∗i ) = Rm1 and α1 + α2 = 1 and re-calculate

κ∗xi , α
∗
i

• If R1 ≥ Rm1 , R2 < Rm1 , and the power constraint is not met, then, we find non-

negative λ2, λ3 such that R2(κ
∗
xi
, α∗i ) = Rm2 and α1 + α2 = 1 and re-calculate

ξ∗i , ρ
∗
i .

• IfR1 < Rm1 , R2 < Rm1 , and the power constraint is true, then, we find non-negative

λ1, λ2 such that R1(κ
∗
xi
, α∗i ) = Rm1 and R2(κ

∗
xi
, α∗i ) = Rm2 and re-calculate ξ∗i , ρ

∗
i .
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Algorithm II: Energy Efficiency Maximization Algorithm :

1: INPUT: Rm1 , Rm2 , P , δ, Kinitial, and ΦEEmin = −∞
2: While: ΦEEmin < −δ, do
3: Find the values of κ∗i , α

∗
i as in Algorithm I

4: Update ΦEE from (3.41) and calculate ΦEEmin(K),

5: Calculate K =
Pc+(α∗1+α

∗
2)PT

(R1(κ∗i ,α
∗
i )+R2(κ∗i ,α

∗
i ))

6: end While
7: OUTPUT: K∗, and κ∗xi , α

∗
i .

• If R1 < Rm1 , R2 < Rm1 , and the power constraint is not true, then, we find non-

negative λ1, λ2 and λ3 such that R1(κ
∗
xi
, α∗i ) = Rm1 , R2(κ

∗
xi
, α∗i ) = Rm2 , α1 +α2 = 1

are true, and re-calculate κ∗xi , α
∗
i .

3.5.4 Complexity Analysis of Algorithm II

The complexity analysis of Algorithm II can be described as follows. Step 3: the complex-

ity order of this step is the complexity of Algorithm I. Let us assume that the maximum

number of iterations needed for the subgradient method to converge is T , then the number

of operations is of a complexity order equal to O(T ), which is the complexity of Step 2 in

Algorithm I. The computational requirement of Newton’s method to solve a system of M

equations in M unknowns is O(ML), where L is the number of required iterations [162],

which is the complexity of Steps 3 to 6 of Algorithm I. Thus, the complexity order up to

Step 4 (of Algorithm II) is O(TML). Accordingly, the complexity order of the proposed

algorithm II is O(TMLNk), where Nk is the number of executions of the while loop to

update K in the Dinkelbach approach.

3.6 Discussion and Simulation Results

3.6.1 Simulation Setup

In this section, we evaluate the proposed solutions of the formulated optimization prob-

lems. A comparison in terms of the overall spectral efficiency and energy efficiency of
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Figure 3.2: Improper constellation diagram with 64-QAM.

the system with its counterpart of a NOMA system employing traditional PGS at both

users is performed. We also compare the proposed solution that considers IGS only at

the strong user with PGS-based NOMA scheme. We consider the distance-dependent

path-loss model as a form of large-scale fading, and the Rayleigh fading model as small-

scale multi-path fading. The channel from the BS to user i, ∀i = 1, 2, at a distance of di

meters is generated as
√

10−
σPL
10 hi, where hi is a Rayleigh fading channel coefficient and

σPL = 38.46 + 10nlog10(di) is the path-loss in dB.

In the definition of σPL, the loss factor 38.46 is the free space path loss at a reference

distance of 1 meter and at carrier frequency of 2 GHz, and n = 3 is the path-loss exponent

[182]. We set the noise power density No = −174 dBm/Hz with bandwidth B = 20 MHz.

The distance d1 between user 1 and the BS is set to 20 meters and the distance d2

between user 2 and the BS is set to 100 meters. Unless otherwise stated, we assume that

E [|h1|2] > E [|h2|2], Pc = 20 dBm, and δ = 10−4. Rm1 = Rm2 = 1.5 bits/sec/Hz, and

α = 0.4. Unless otherwise mentioned, we assume η = 0.1.
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Figure 3.3: Improper constellation diagram with 256-QAM.

3.6.2 Improper Constellation Design

Figs. 3.2 and 3.3 show two examples of the improper constellation diagrams with 64-QAM

and 256-QAM, respectively, which are designed based on WLT as described in Section II.

We generate unit average energy standard 64-QAM and 256-QAM constellations. Next,

we find the optimized κ∗x1 , κ
∗
x2

at certain channel realizations. At these optimized val-

ues, we then generate the improper constellations using WLT based on these prescribed

κ∗x1 , κ
∗
x2

. Considering this optimized improper constellation diagram, the minimum Eu-

clidean distance between the constellations points is maximized due to WLT compared to

the PGS standard constellation diagrams, which yields lower error probability and hence

better spectral efficiency.

3.6.3 Spectral Efficiency Performance

In Fig. 3.4, the overall spectral efficiency of the system is depicted as a function of PT , at

different levels of the SIC imperfections η. The performance of the proposed algorithm

I-a (jointly optimizing IGS circularity coefficients κ∗x1 , κ
∗
x2

without power allocation, i.e.,

at fixed α = 0.4) is compared with the following two cases: 1) strong user only employs
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Figure 3.4: Spectral efficiency comparison between IGS-based and PGS-based for various η =
0.2, 0.3, 0.4, and fixed α = 0.4.

IGS (optimized κ∗x1 , algorithm I-b), and 2) both users employ PGS (traditional case).

As can be observed, the IGS-based scheme outperforms both one user only IGS-based

and PGS-based schemes for all levels of η. Specifically, a considerable gain is attained at

all power regimes compared with PGS-based. Moreover, the gain only appears at lower

power regime in case of one-user only IGS-based scheme.

A spectral efficiency of about 4 bits/s/Hz can be attained by the modified proposed

algorithm at 3 dBW power at η = 0.1 and α = 0.4. To achieve the same spectral efficiency

of 4 bits/s/Hz using only one user IGS-based and PGS-based schemes, nearly 2 to 2.5

dBW power are needed, respectively. It is also observed that as the SIC becomes worse,

i.e., from η = 0.1 to η = 0.4, the performance of all schemes gets worse. However, the

PGS-based scheme is the most impacted scheme.

While Fig. 3.4 assumes the fixed power allocation i.e. (α = 0.4) scenario, Fig. 3.5

presents the optimized power allocation scenario. In particular, Fig. 3.5 shows the be-
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Figure 3.5: Spectral efficiency comparison between IGS-based and PGS-based for various values
of η = 0.1, 0.2, 0.3, 0.4 and optimized α.

haviour of the proposed spectral efficiency algorithm (IGS-based with optimized power

allocation) and its counterpart PGS-based NOMA system. It is clear that there is a

further gain improvement for IGS-based scheme over the PGS-based one at different val-

ues of η. In overall, the results reveal the positive influence of jointly optimizing both

IGS coefficients and power allocation parameter to enhance the NOMA system’s spectral

efficiency under imperfect SIC.

In Fig. 3.6, the convergence of the proposed spectral efficiency algorithm I-a is com-

pared with the proposed algorithm I-b for the one user only IGS-based scheme at η = 0.1.

The number of iterations required for IGS in the proposed algorithm is approximately

double the number of iterations required for the algorithm I-b, but it is still relatively

low.

In Fig. 3.7, the spectral efficiency is simulated versus PT at different values of η. As

can be seen, the IGS-based NOMA system outperforms PGS-based NOMA for all levels
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η.
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Figure 3.8: Spectral efficiency vs PT for IGS-based and PGS-based NOMA systems for different
P1, P2 values, with η = 0.3.

of imperfect SIC. In particular, as the SIC becomes worse, i.e., η = 0.4, the sum-rate

gain of using IGS increases over PGS NOMA. IGS also offers a good gain in the low SNR

region as the effect of the imperfect SIC is significant on the users’ rate. At high SNR,

the PGS-based NOMA system approaches the sum-rate performance of the IGS-based

NOMA system.

In addition, we use exhaustive search method to find the optimal solution and compare

it with the proposed KKT sub-optimal solution. The results show that there is a small

performance gap between the optimal solution and proposed sup-optimal solution in terms

of sum-rate at low SNR values and the gap tends to zero at high SNR values. It is worthy

note that the proposed solution is far less complex than the optimal solution of the

exhaustive search. The figure also shows that in case of perfect SIC, i.e., η = 0, both

schemes perform similarly.

In Fig. 3.8, the spectral efficiency vs PT for different values of P1, P2 at η = 0.3 is
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Figure 3.9: Spectral efficiency vs PT for IGS-based NOMA system for different σ2h1 to σ2h2 ratios.

simulated for both IGS and PGS NOMA system. As the strong user gains more power,

i.e., P1 becomes larger, the sum-rate curves shift up and show higher spectral efficiency.

One can notice from Fig. 3.8 that different power allocation ratios do not affect the gain

of IGS over PGS based NOMA systems.

The effect of users’ channel strength on the sum-rate for IGS-based NOMA perfor-

mance is shown in Fig. 3.9. The sum-rate is simulated for the case of σ2
h1

= {1, 2, 3, 5, 7, 9}σ2
h2

at P1 = 0.1PT , P2 = 0.9PT , and η = 0.3. It is clear that as σ2
h1

increases, the spectral

efficiency enhances, i.e., as the channel of the first user becomes stronger, its rate becomes

higher. Meanwhile, the rate of the user with weak channel is maximized by the proposed

approach through the IGS-NOMA concept.

In Fig. 3.10, we show the convergence of the proposed algorithm at different values

of η. On average, the algorithm needs small number of iterations to converge and the

number increases as η increases.
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Figure 3.10: Spectral efficiency vs number of iterations for algorithm convergence with η =
0.2, 0.3, 0.4.

3.6.4 Energy Efficiency Performance

In Fig. 3.11, the performance of the the energy efficiency algorithm (in bits/joule) is plot-

ted against PT (dBm) at Pc = 20, 25 dBm. This figure shows that IGS enhances the energy

efficiency performance in the proposed system by transmitting around 0.3 bits/joule more

than PGS in all BS power regions. It is also observed that as the BS’s power increases

from low to medium, the energy efficiency performance improves. However, the energy

efficiency saturates when the BS’s transmit power increases which means that increasing

the transmit power does not necessarily enhance the energy efficiency.

To demonstrate how close it is to the optimal solution, we compared the proposed

sub-optimal solution with the exhaustive search solution, where the latter is performed

through three nested loops with a step size of 0.05 (the three optimization variables

are all bounded between 0 and 1). The result is a gap of around of 0.1 dB, which is

acceptable performance loss given the high computational complexity of the exhaustive
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Figure 3.11: Energy efficiency vs P (dBm) at different values of Pc for proposed Algorithm II
and exhaustive search.

search solution.

Figure 3.12 shows the energy efficiency performance against PT dBm at different levels

of SIC and at fixed Pc = 20 dBm. The figure shows the effectiveness of using IGS in the

case of SIC imperfections when compared to the PGS case, especially at higher levels of

η. As η increases, the gain due to using IGS becomes greater.

3.6.5 Error Performance

Fig. 3.13 shows the bit error rate (BER) through simulations versus PT for both users

in case of IGS and PGS at 16-QAM at η = 0.1. For each channel realization, we find

the optimal improper coefficients, then we find the corresponding improper constellation

diagram, simulate the error rate, and repeat.

For a given optimal IGS circularity coefficients, we study the BER performance of

the new improper constellations, by means of 104 simulations, where each simulation
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considering the decoding of 104 symbols. The optimal maximum likelihood detector is

applied at the receiver side for this problem, which aims to finding the closest constellation

point to a given noisy received signal. It should be noted that this approach may not

result in the optimal BER performance since the decision variables κi and αi are optimized

to maximize the transmission rates (to approach Shannon capacity).

As can be seen in the figure, error performance in case of using improper constellation

diagrams outperforms that of the proper constellation. The reason behind this is that

since the improper constellation is designed based on WLT which relies on maximizing the

minimum Euclidean distance, and hence achieves a better BER. Another observation is

that as PT increases, error performance improves as expected. However, error floor occurs

at high PT in case of user 1 due to residual interference resulting from the imperfect SIC.
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Figure 3.12: Energy efficiency vs P (dBm) at different values of η and fixed Pc = 20 dBm.
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3.7 Conclusion

In this chapter, the system spectral and energy efficiencies of a two-user NOMA system

adopting IGS at both users are maximized such that the minimum rate requirements

and power budget constraints are met under imperfect SIC. In addition, to study the

system performance, improper constellations are designed using WLT based on predefined

optimized IGS coefficients.

Results showed that system spectral and energy efficiencies of the IGS-based NOMA

systems are further improved by jointly optimizing the circularity coefficients at both users

compared to the case of optimizing the circularity coefficient of the single user IGS-based

systems and PGS-based NOMA systems. A spectral efficiency of about 4 bits/s/Hz can

be attained by the modified proposed algorithm at 3 dBW power at η = 0.1 and α = 0.4.

To achieve the same spectral efficiency of 4 bits/s/Hz using only one user IGS-based and

PGS-based schemes, nearly 2 to 2.5 dBW power are needed, respectively. In addition, it
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was observed that the gain from IGS increases when imperfect SIC gets higher. Moreover,

spectral efficiency increases when channel gain ratio between users increases, but this

improvement saturates at high SNR values.

In contrast to PGS-based NOMA systems, results revealed that IGS can save around

0.2 dBW of the transmit power, and hence, can be identified as an energy efficient sig-

naling scheme. Furthermore, the results demonstrate that the error performance of the

IGS-based system outperforms its counterpart PGS-based system due to impropriety char-

acteristics of the constellation.
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Chapter 4

Spectral and Energy Efficiency

Maximization of Full-Duplex

Relaying NOMA Systems with IGS

Under Imperfect Self-Interference

Cancellation

4.1 Introduction

Cooperative NOMA is introduced to enhance the overall system coverage and reliability

in addition to spectral efficiency [71], [72], [73]. Cooperative NOMA can be categorized

into two relaying strategies, namely dedicated relaying (employing an external entity as

a relay) and user relaying (with one of the users acting as a relay). In the dedicated

relaying NOMA systems, the BS transmits signals to the two users via an external relay

or the two users send data to a common destination via an external relay [75]. In the

user relaying NOMA systems, the BS transmits a superimposed mixture of two signals
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to both the strong user U1 and the weak user U2, then U1 employs SIC to decode U2’s

signal and forwards this signal to U2. Depending on whether a direct link exists between

the BS and U2, two scenarios of user relaying NOMA systems exist. The first scenario is

when U2 receives its signal from both relaying phases and employs a combining method

to improve its reception reliability, and the second scenario (adopted in this chapter) is

when U2 receives its own message only through U1 [77].

To further improve the spectral efficiency of HD-NOMA systems that require two time

slots for receiving and relaying data, full-duplex relaying has been recently investigated.

In particular, the relay user U1 receives the superimposed signals from the BS and concur-

rently performs relay transmission in the same time slot. The authors in [163] studied the

performance of the sum rate and outage probability in a cooperative FD-NOMA system,

where the relay users receive and transmit signals simultaneously but on different fre-

quency bands. The work in [164] computed the achievable rate region, assuming perfect

SIC in a cooperative FD-NOMA network where relay users send and receive messages

simultaneously on the same frequency band. Under imperfect SIC, authors in [165] ana-

lyzed outage performance in a cooperative FD-NOMA system. Furthermore, the authors

in [166] investigated power minimization problems under outage constraints for a coopera-

tive FD-NOMA system where outage probability and ergodic sum-rate expressions could

be derived. With more realistic conditions, namely imperfect SIC in the FD-NOMA

system, the authors in [167] were able to propose expressions for the achievable outage

probability of both users and the ergodic sum capacity.

4.1.1 Related works

Recently, IGS was extended to full-duplex relaying in CR systems [174]. In the system

model of [174], IGS was used to help the secondary user get the opportunity to access to

the spectrum which was prevented from due to the self-interference introduced at the the

primary network. Next, the authors in [175] employed IGS in full-duplex relaying with
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non-negligible residual self-interference under Nakagami-m fading. In particular, a full-

duplex decode-and-forward relay was utilized to assist in an end-to-end communication,

where PGS was adopted at the source and IGS was used at the relay. The results in [175]

showed that using IGS can mitigate the residual self-interference impact via tuning the

signal impropriety and can make the system more energy efficient.

Similarly, a few works considered using IGS with NOMA in interference-limited net-

works. The authors in [176] analyzed the performance of a downlink NOMA system with

IGS, deriving outage and ergodic rate expressions. In [177], transmit beamforming struc-

tures were developed for a multi-cell network in order to maximize the users’ minimum

throughput under various transmit power constraints. In [178], IGS was designed for in-

formation beamforming with the aim of improving the throughput of a multi-cell network

and protecting user secrecy.

4.1.2 Contributions

Despite the advantages of using full-duplex relaying in NOMA systems, proper FD-NOMA

systems still suffer from severe co-channel interference and are considered interference-

limited [163]. To relieve the impact of the self-interference and enhance the system per-

formance, IGS is adopted in this work. To the authors’ best knowledge, IGS has not been

considered in FD-NOMA relaying systems.

In this chapter, we investigate the potential performance merits of using IGS in the

downlink of FD-NOMA relaying system where a BS serves two users on a near-far deploy-

ment. In particular, the user closer to the BS (U1) acts as a full-duplex relay (FD-relay)

to the farther away user (U2) and forwards U2’s signal beside extracting its own message.

Unlike FD-OMA relaying system, the FD-relay in FD-NOMA system performs two roles;

extracting both its own message and the other user’s message, and forwarding the later

to that user, whereas the FD-relay in the OMA system only acts as a relay and forwards

the other user’s message (there is no message for the relay itself).
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Since the achievable rates of IGS are superior to those of PGS in interference-limited

scenarios, we assume that both users employ improper signals. Due to superiority of IGS

compared to PGS in terms of achievable rates and energy efficiency, we formulate three

optimization problems for sum rate, energy efficiency, and max-min fairness where we

jointly optimize the BS transmit power and the transmit signals circularity coefficients.

The main contributions of this work can be outlined as follows:

• We derive the exact expressions for the achievable user rates at each link in the

cooperative FD-NOMA system when adopting IGS at both users.

• We formulate and solve three optimization problems to maximize the sum rate,

maximize the energy efficiency, and maximize the minimum throughput of users.

This is achieved by jointly optimizing the BS transmit power and the transmit

signal circulatory coefficients.

• We propose iterative algorithms to find sub-optimal solutions of the formulated non-

convex optimization problems based on the Karush-Kuhn-Tucker (KKT) conditions.

Additionally, we show the effect of the optimized circulatory coefficient on the trans-

mit constellation at the BS.

• Improper constellation diagram is designed based on the optimal circularity coeffi-

cient obtained from optimized sum rate algorithm. Error performance based on the

improper constellations designed is also investigated.

• Simulation results demonstrate the effectiveness of IGS over PGS in the context of

cooperative FD-NOMA systems.

4.2 System Model

We consider a cooperative FD-NOMA relaying system composed of a BS and two pre-

paired users (U1 and U2). In the setup of our system model, U2 has no-direct link with

78



Base station

1h
2h

U1
U2

sh

Figure 4.1: FD-NOMA system model with IGS.

the BS due to physical obstacles and/or heavy shadowing. As a result, U1 acts as a

full-duplex relay by forwarding to U2 its message.

According to the theory behind NOMA, the BS transmits a superimposed message of

both users’ signals (x1 and x2) to U1. After receiving the signal, U1 extracts x2 using

SIC, and forwards it to U2. At the same time, U1 subtracts x2 from the original signal

and detects its own message x1. It is worth-mentioning that in such a FD-NOMA relaying

system model, an external relay is not needed to forward U2’s signal since U1 receives its

own message and acts as FD-relay at the same time/frequency.

It is assumed that channel coefficients experience Rayleigh fading and are modeled as

h1 ∼ CN (0, σ2
1), and h2 ∼ CN (0, σ2

2), where h1 denotes the channel coefficient between

BS and U1 and h2 denotes the channel coefficient between U1 and U2. Due to the

FD-relaying strategy, residual interference occurs at the FD-relay. hs denotes the self-

interference coefficient and is modeled as hs ∼ CN (0, σ2
s) [166].

We assume that both signals x1 and x2 are improper Gaussian with ξ1 and ξ2 as their

IGS impropriety coefficients, respectively. Based on the NOMA concept, |h1|2 > |h2|2

and the BS transmits a superimposed downlink signal x1 + x2 to U1. Meanwhile, U1

transmits a delayed version of the decoded signal x2 to U2. Thus, as a FD-relay, U1

receives x1 + x2 and transmits a processed x2 version at the same time. This causes a

self-interference due to the imperfections of the self-interference cancellation. We assume

imperfect self-interference cancellation at U1, prompting to assign a factor 0 ≤ κ ≤ 1 to
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refer to the imperfection of self-interference cancellation technique. Based on this, the

received signal at U1 in the first link is given as

y1 = h1

(√
ρ1Px1 +

√
ρ2Px2

)
+
√
κP̂hsx̂2 + n1, (4.1)

where P is the total transmit power at the BS, ρ1 and ρ2, (ρ1 + ρ2 ≤ 1) are the power

allocation parameters, P̂ is the U1 transmit power, x̂2 is the processed version of x2 where

x̂2 = x2 if U1 successfully decodes x2, and n1 is the additive white Gaussian noise (AWGN)

at U1 and modeled as n1 ∼ CN (0, σ2
n1). The received signal at U1 can be re-written as

y1 = h1
√
ρ1Px1︸ ︷︷ ︸

desired signal

+h1
√
ρ2Px2 +

√
κP̂hsx̂2 + n1︸ ︷︷ ︸

interference plus noise

. (4.2)

Considering perfect SIC, (4.1) is expressed as

y1 = h1
√
ρ1Px1︸ ︷︷ ︸

desired signal

+
√
κP̂hsx̂2 + n1︸ ︷︷ ︸

interference plus noise

. (4.3)

Upon receiving y1, U1 first decodes x2 and then decodes its own message x1 with the

SIC technique. The received signal at U1 due to x2 can be written as

y1,2 =
√
ρ2Ph1x2︸ ︷︷ ︸

desired signal

+
√
ρ1Ph1x1 +

√
κP̂hsx̂2 + n1︸ ︷︷ ︸

interference plus noise

. (4.4)

The processed signal that U2 receives from U1 can be given as The processed signal that

U2 received from U1 is given as

y2 =
√
P̂ h2x̂2︸ ︷︷ ︸

desired signal

+ n2︸︷︷︸
noise

, (4.5)

where n2 is the AWGN at U2 and modeled as n2 ∼ CN (0, σ2
n2).
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4.3 Spectral Efficiency Analysis

In this section, user rates are derived assuming IGS-based signaling. We start by finding

closed-form expressions. The achievable rate expression for a point-to-point IGS system

is given as [21]

Ri =
1

2
log2

(
ϕ2
yi
− |ϕ̂yi |2

ϕ2
zi
− |ϕ̂zi |2

)
, (4.6)

where ϕyi and ϕ̂yi refer to the covariance and pseudo-covariance components of the re-

ceived signal, while ϕzi and ϕ̂zi refer to covariance and pseudo covariance components

of interference plus noise signal, respectively. Define the circularity coefficient of xi as

ξi = |Ĉi|
Ci

, Ĉi = E [xixi] = ξi∠Ĉi, and Ci = E [xix
∗
i ].

To findR1 for instance, we compute the covariance and pseudo-covariance components

from (4.2)-(4.5) as follows.

ϕ2
y1

= (E [y1y
∗
1])2 = (ρ1P |h1|2C1 + κP̂ |hs|2C2 + σ2

n1
)2 (4.7)

ϕ̂y1 = E [y1y1] = ρ1Ph
2
1Ĉ1 + κP̂h2sĈ2, (4.8)

ϕ2
z1

= (E [z1z
∗
1 ])2 = (κP̂ |hs|2C2 + σ2

n1
)2, (4.9)

ϕ̂z1 = (E [z1z1]) = (κP̂h2sĈ2). (4.10)

and

|ϕ̂y1 |2 = |E [y1y1]|2 = (ρ1P |h1|2ξ1)2 + (κP̂ |hs|2ξ2)2 + 2(ρ1P |h1|2ξ1)(κP̂ |hs|2ξ2)

cos(2∠h1 − 2∠hs + ∠Ĉ1 − ∠Ĉ2). (4.11)

|ϕ̂z1 |2 = |E [z1z1]|2 = (κP̂ |hs|2ξ2)2. (4.12)

Assume the values of Γ1 = |h1|2
σ2
n1

, Γ2 = |h2|2
σ2
n2

, and Γs = |hs|2
σ2
n1

refer to the channel-to-noise

ratio from the BS to U1, from U1 to U2, and the self-interference channel, respectively,
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By substituting all these values in (4.6), and after some mathematical manipulations, the

achievable rate at U1 is derived as

R1 =
1

2
log2

Υ− |ρ1PΓ1∠Γ1Ĉ1 + κP̂Γs∠ΓsĈ2|2(
κP̂Γs + 1

)2
−
(
κP̂Γsξ2

)2
 . (4.13)

where Υ =
(
ρ1PΓ1 + κP̂Γs + 1

)2
,∠Γ1 = 2∠h1,∠Γs = 2∠hs. Since we have an FD-

NOMA system, R2 is expressed as [166]

R2 = min [R1,2,R2,2] , (4.14)

where R1,2 is the rate at U1 when it detects U2’s signal x2, and R2,2 is the rate at U2

when it detects its signal x2. Based on (4.6), R1,2 is derived as

R1,2 =
1

2
log2

Λ−
[
|ρ2PΓ1∠Γ1Ĉ2 + κP̂Γs∠ΓsĈ2 + ρ1PΓ1∠Γ1Ĉ1|2

]
Υ− (|κP̂Γs∠ΓsĈ2 + ρ1PΓ1∠Γ1Ĉ1|2)

 , (4.15)

where Λ = [(ρ1+ρ2)PΓ1+κP̂Γs+1]2. To find R2 for instance, we compute the covariance

and pseudo-covariance components from (4.2)-(4.5) as follows.

ϕ2
y2

= (E [y2y
∗
2])2 = P̂ |h2|2C2 + σ2

n2
, (4.16)

ϕ̂y2 = (E [y2y2]) = P̂ h22C2, (4.17)

|ϕ̂y2 |2 = (E [y2y2]) = (P̂ |h2|2ξc)2, (4.18)

ϕ2
z2

= (E [z2z
∗
2 ])2 = σ2

n2
, (4.19)

ϕ̂22 = 0. (4.20)

In a similar fashion to (4.6), R2,2 is derived as

R2,2 =
1

2
log2

[(
P̂Γ2

)2 (
1− ξ22

)
+ 2

(
P̂Γ2

)
+ 1

]
. (4.21)
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4.4 Optimization Problems

In this section, optimization problems are formulated to achieve overall spectral efficiency

maximization, max-min rate fairness, and energy efficiency maximization. We assume

that QoS constraints are guaranteed for each user and that the power budget limit is

satisfied.

4.4.1 Sum Rate Maximization

Maximizing the overall sum rate is a common objective in wireless networks. However,

to avoid having all resources occupied by a single user, QoS or individual rate weights

constraints are often enforced when determining the overall sum rate maximization. The

weighted sum rate (WSR) maximization problem is advantageous in wireless applications

where prioritization for certain users is desired. The weights can be selected by the

scheduler based on the data traffic, throughput in the network, etc.

In this regard, we consider the weighted sum rate optimization problem to jointly

optimize both circularity coefficients ξi, ∀i = 1, 2, and power allocation at the BS. We

assume that the BS uses the total available power, i.e., ρ1 + ρ2 = 1. For simplicity, we

denote ρ1 = ρ and ρ2 = 1 − ρ. The following sum rate maximization problem considers

the rates in (4.13) and (4.14), and can be written as

OP1 : maximize
ξi,ρ

w1R1(ξi, ρ) + w2R2(ξi, ρ) (4.22a)

subject to C1 : R1(ξi, ρ) ≥ Rmin
1 , (4.22b)

C2 : R2(ξi, ρ) ≥ Rmin
2 , (4.22c)

C3 : 0 ≤ ξi ≤ 1, (4.22d)

C4 : 0 ≤ ρ ≤ 1, (4.22e)

where Rmin
i is the QoS requirement at user i, w1, w2 are the weights of the users rates.
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Keep in mind that the weights can be equal if both users have the same priority. The

conditions C1 and C2 represent the fact that the rate of each user must meet Rmin
1 and

Rmin
2 , respectively, to guarantee QoS. The constraint C3 defines the range of circularity

coefficients between 0 and 1, and the constraint C4 reflects the power allocation at the

BS.

The problem formulated in (4.22) is non-convex due to non-linearity of the objective

and QoS constraints, and thus, it is rather difficut to solve. However, (4.22) can be tackled

by using KKT conditions [180], allowing us to obtain sub-optimal values for ξi, ρ. The

Lagrangian function can be expressed as

L(ξi, ρ) =− (w1R1(ξi, ρ) + w2R2(ξi, ρ)) + λ1(R
min
1 −R1(ξi, ρ)) + λ2(R

min
2 −R2(ξi, ρ)),

(4.23)

where λ1 ≥ 0 and λ2 ≥ 0 are the Lagrange multipliers associated with the QoS re-

quirements of U1 and U2, respectively. The effects of the constraints C3 and C4 will be

considered later.

That said, the KKT conditions can be written as follows

∂L(ξ∗i , ρ
∗)

∂ξi, ∂ρ
= 0; ∀i = 1, 2, (4.24a)

λ1(R
min
1 −R1(ξ

∗
i , ρ
∗)) = 0, (4.24b)

λ2(R
min
2 −R2(ξ

∗
i , ρ
∗)) = 0, (4.24c)

Rmin
1 −R1(ξ

∗
i , ρ
∗) ≤ 0, (4.24d)

Rmin
2 −R2(ξ

∗
i , ρ
∗) ≤ 0, (4.24e)

λ1, λ2 ≥ 0. (4.24f)

From (4.24a), we can conclude that

∂L(ξ∗i , ρ
∗)

∂ξi
= −(λ1 + w1)

∂R1(ξi, ρ)

∂ξi
− (λ2 + w2)

∂R2(ξi, ρ)

∂ξi
= 0. (4.25)
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To optimize the power at the BS, from (4.23), the following is determined:

∂L(ξ∗i , ρ
∗)

∂ρ
= −(λ1 + w1)

∂R1(ξi, ρ)

∂ρ
− (λ2 + w2)

∂R2(ξi, ρ)

∂ρ
= 0. (4.26)

As previously mentioned, based on the FD-relaying concept, R2 is the minimum between

R1,2 and R2,2. Hence, to be able to solve the optimization problem, we consider two

scenarios: 1) Case 1 : We assume R2 = R1,2, implying that we aim to maximize R1+R1,2

and 2) Case 2 : We assume R2 = R2,2, implying that we aim to maximize R1 +R2,2.

First, we find the range of ρ for each case in which either R1,2 or R2,2 is the minimum

of R2. Second, within each region of ρ, we derive the sub-optimal solutions of ξ1, ξ2 and

ρ by solving the corresponding equations in (4.25) and (4.26) for each case. Third, we

verify the minimum between R1,2 and R2,2 and choose the appropriate case in order to

find the sub-optimal solution that will be used to maximize the sum rate.

Case 1: R2 = R1,2

The value of ρ should be in the following range:

0 ≤ ρ̃ ≤ ρ < 1. (4.27)

The value of ρ̃ and explanatory proofs can be found in the Appendix A.1. When it comes to

Case 1, we determine the candidates of sub-optimal solutions ξ̂1, ξ̂2, ρ̂, by simultaneously

solving (A.8)-(A.10), from Appendix A.1 , which are the results of solving (4.25) and

(4.26), respectively.

It can be seen that (A.8)-(A.10) are 3th degree polynomials and are expected to have

three roots each. Among all solutions obtained from (A.8)-(A.10), we accept the ones

that satisfy the constraints C3 and C4 and result in the maximum sum rate. It should be

noted that one of the possible solutions is ξ̂1 = ξ̂2 = 0 (i.e., the PGS case).
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Case 2: R2 = R2,2

Here, ρ falls within the following range

0 ≤ ρ ≤ ρ̃ < 1. (4.28)

We can denote the sub-optimal solutions in Case 2 as ξ̄1, ξ̄2, ρ̄. As was noted in (A.7),

R2,2 is only a function of ξ2. On the other hand, R1 in (A.5) is an increasing function

of ρ. As a result, in order to maximize (4.23) with respect to ρ, the upper bound of ρ

(the highest value of ρ) in (4.27) (i.e. ρ̃) is the optimal solution of ρ in Case 2, ultimately

implying that ρ̄ = ρ̃.

Next, to find the optimal value of ξ1, in Case 2, we substitute R2 = R2,2 into (4.25),

which leads to

− (λ1 + w1)(−2ξ1(|h1|2ρP )2) = 0. (4.29)

It is evident from (4.29) that the optimal value of ξ1, in case 2, is zero. Thus, ξ̄1 = 0.

Similar to what was seen in (4.25), the derivation with respect to ξ2, leads to some

candidate sub-optimal solutions for ξ2 in Case 2, or ξ̄2 (See (A.11) in Appendix A.2). It

should be mentioned that (A.11) is a 4th degree polynomial and should have four roots,

one of which is zero. The values that we consider to be valid are the ones that meet the

constraints in C3 and C4.

We propose Algorithm I at the top of next page to solve the joint optimization problem

in (4.22) and find the sub-optimal solutions for ξ∗1 , ξ∗2 and ρ∗. We consider both Case 1

and Case 2, where the Lagrange multipliers λ1 and λ2 in ξ∗1 , ξ∗2 , and ρ∗ are updated using

the sub-gradient method [180]. After determining the solution in each case, we verify

whether R1,2 or R2,2 was chosen as the minimum proceed to find the optimal solution for

the sum rate with the corresponding case.

That said, following the KKT conditions above, we need to find the values of λi, ∀i =
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Algorithm I: Weighted Sum Rate Maximization

1: INPUT: Rmin
1 , Rmin

2 , P , P̂ , κ, w1, and w2.
2: Solve the optimization problem (4.22) in two cases, i.e. when R2 = R1,2, and when R2 =
R2,2,

3: Set λ1 = λ2 = 0 and find ξ∗1 , ξ
∗
2 , ρ
∗ in both cases.

• Case 1: R2 = R1,2, we maximize R1+R1,2, and find ξ̂1, ξ̂2, ρ̂ from jointly solving (A.8),
(A.9), (A.10).

• Case 2: R2 = R2,2, we maximize R1+R2,2, and find ξ̄1, ξ̄2, ρ̄ from jointly solving (A.8),
(A.11).

• only accepted candidates of ξ̂1, ξ̂2, ρ̂ and ξ̄1, ξ̄2, ρ̄ are the ones that satisfy C3 and C4
and choose the one that results in the maximum sum rate.

4: REPEAT:Until convergence, for each case, we continue to check:
5: if R1 ≥ Rmin

1 and R2 ≥ Rmin
2 , then, the sub-optimal solution is reached.

6: else if R1 < Rmin
1 and R2 ≥ Rmin

1 , then, find non-negative λ1 from (4.30) such that
R1(ξ

∗
1 , ξ
∗
2 , ρ
∗) = Rmin

1 and re-calculate ξ∗1 , ξ
∗
2 , ρ
∗ from the selected valid case. Repeat until

convergence.
7: else if R1 ≥ Rmin

1 and R2 < Rmin
1 , then, find non-negative λ2 from (4.30) such that

R2(ξ
∗
1 , ξ
∗
2 , ρ
∗) = Rmin

2 and re-calculate ξ∗1 , ξ
∗
2 , ρ
∗ from the selected valid case. Repeat until

convergence.
8: else R1 < Rmin

1 and R2 < Rmin
1 , then, find non-negative λ1 and λ2 from (4.30) if exists

such that R1(ξ
∗
1 , ξ
∗
2 , ρ
∗) = Rmin

1 and R2(ξ
∗
1 , ξ
∗
2 , ρ
∗) = Rmin

2 and re-calculate ξ∗1 , ξ
∗
2 , ρ
∗ from

the selected valid case. Repeat until convergence.
9: Check if R1,2(ξ̂1, ξ̂2, ρ̂) < R2,2(ξ̂1, ξ̂2, ρ̂), i.e. case 1 is valid and

10: Check if R2,2(ξ̄1, ξ̄2, ρ̄) < R1,2(ξ̄1, ξ̄2, ρ̄), i.e. case 2 is valid.
11: END
12: We have two options, check the region of ρ:

- Check if (4.27) is satisfied, case 1 is valid and case 2 is not valid, this leads to
ξ∗1 , ξ

∗
2 , ρ
∗ = ξ̂1, ξ̂2, ρ̂ is the optimal solution and then sum rate is equal R1(ξ̂1, ξ̂2, ρ̂) +

R1,2(ξ̂1, ξ̂2, ρ̂).
- Check if (4.28) is satisfied, case 2 is valid and case 1, this leads to ξ∗1 , ξ

∗
2 , ρ
∗ = ξ̄1, ξ̄2, ρ̄

is the optimal solution and then sum rate is equal R1(ξ̄1, ξ̄2, ρ̄) +R2,2(ξ̄1, ξ̄2, ρ̄).
13: OUTPUT: ξ∗1 , ξ

∗
2 , ρ
∗, and maximum sum-rate R1(ξ

∗
1 , ξ
∗
2 , ρ
∗) +R2(ξ

∗
1 , ξ
∗
2 , ρ
∗).
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1, 2. As can be seen from (4.24b) and (4.24c), we either have λ1 = 0 or R1(ξ
∗
i , ρ
∗) = Rmin

1

and λ2 = 0 or R2(ξ
∗
i , ρ
∗) = Rmin

2 . This leads to four possible states:

– State 1: λ1 = λ2 = 0, a condition referring to inactive QoS constraints.

– State 2: λ1 = 0 and λ2 6= 0, a condition that refers to the existence of the sub-optimal

circularity coefficients and power parameter when R2(ξ
∗
i , ρ
∗) = Rmin

2 .

– State 3: λ1 6= 0 and λ2 = 0, a condition that refers to the existence of the sub-optimal

circularity coefficients and power parameter when R1(ξ
∗
i , ρ
∗) = Rmin

1 .

– State 4: λ1 6= 0 and λ2 6= 0, a condition that, if feasible, refers to the existence of

the sub-optimal circularity coefficients and power parameter when both R1(ξ
∗
i , ρ
∗) = Rmin

1

and R2(ξ
∗
i , ρ
∗) = Rmin

2 .

The values of λ1 and λ2 in (4.23) can be computed using the subgradient method [180]

as follows:

λl+1
i =

[
λli − sli(Ri −Rmin

i )
]+
, ∀i = 1, 2, (4.30)

where [.]+ is defined as max(., 0) and si is a sufficiently small step size equal to 0.1/
√
l for

l iterations [180].

4.4.2 Max-Min Rate Optimization

The max-min objective is a well-defined metric for system performance that guarantees

fairness by providing effective rate balance across the different users. In contrast to

a max-sum situation, a solution to the max-min problem does not accommodate mul-

tiple privileged users (i.e. users with stronger channels that can monopolize available

resources).

To jointly find optimal power allocation and circularity coefficients that aim to max-

imize the minimum rate between {R1(ξi, ρ),R2(ξi, ρ)} with constraints in ξi and ρ, we

88



formulate the following optimization problem:

OP2 : max min
ξi,ρ

{R1(ξi, ρ),R2(ξi, ρ)} (4.31a)

subject to C1 : 0 ≤ ξi ≤ 1, ∀i = 1, 2 (4.31b)

C2 : 0 ≤ ρ ≤ 1, (4.31c)

where R2(ξi, ρ) = min [R1,2(ξi, ρ),R2,2(ξi, ρ)]. Due to the non-concavity of the problem

objective, the optimization problem (4.31) is non-convex. To solve this problem, we intro-

duce a slack variable X and appropriately transform OP2 into the following maximization

problem:

OP3 : max
ξi,ρ,X

X (4.32a)

subject to C1 : 0 ≤ ξi ≤ 1, ∀i = 1, 2, (4.32b)

C2 : 0 ≤ ρ ≤ 1, (4.32c)

C3 : 0 ≤ X ≤ Ri(ξi, ρ). (4.32d)

We can write the Lagrangian function of (4.32) as follows:

LX = −X + λ1(X −R1(ξi, ρ) + λ2(X −R2(ξi, ρ)). (4.33)

Using the predefined KKT conditions, we can find sub-optimal solution that maximizes

the minimum between the two rates. Following the same approach as in the sum-rate

maximization problem, we can consider the two cases of R2 to analyze the max-min rate

problem. This way, we will have two regions with two optimization problems.

To solve these two optimization problems, we first define the range of ρ for each case.

Within each region of ρ, we derive the sub-optimal solutions of ξ1, ξ2, and ρ by deriving

(4.33) for each case and simultaneously solving the corresponding equations. At the end

of the algorithm, we have to check if the assumption we made (i.e. R2 = R1,2 or R2,2) is
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still valid.

In the first region, from (4.33), the derivation with respect to ρ, ξi is given in Appendix

A.3. We simultaneously solve (A.12)-(A.14) to find optimal values that satisfy constraints

C1 and C2 in (4.32). For the second region, by deriving LX with respect to ξi, we can

find that ξ̄1 = 0, and optimal ξ̄2 can be found from (A.15) outlined in Appendix A.4 using

sub-gradient method.

At the next page, we illustrate the proposed algorithm to solve the max-min rate

problem that can determine the solutions for the above two cases and then verify the

chosen minimum between R1,2 and R2,2.

4.4.3 Energy Efficiency

In this subsection, we maximize the energy efficiency of the cooperative FD-NOMA IGS-

based system considering both QoS and BS power constraints.

OP4 :maximize
ξi,ρi

ηEE =
R1(ξi, ρi) +R2(ξi, ρi)

Pc + (ρ1 + ρ2)P + P̂
(4.34a)

subject to C1 : R1(ξi, ρi) ≥ Rmin
1 , (4.34b)

C2 : R2(ξi, ρi) ≥ Rmin
2 , (4.34c)

C3 : ρ1 + ρ2 ≤ 1, (4.34d)

C4 : 0 ≤ ρi ≤ 1, ∀i = 1, 2, (4.34e)

C5 : 0 ≤ ξi ≤ 1, ∀i = 1, 2, (4.34f)

where Pc is the circuitry power consumption. The optimization problem in (4.34a) is

equivalent to the following minimization problem OP5:

OP5 : minimize
ξi,ρ

η−1EE, subject to C1− C5. (4.35)
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Algorithm II: Max-Min Rate :

1: INPUT: P and P̂ .
2: We solve the max-min optimization problem (4.31) in two cases, i.e. when R2 = R1,2, and

when R2 = R2,2,

• Case 1: R2 = R1,2, we maximize the minimum of (R1,R1,2), and find ξ̂1, ξ̂2, ρ̂ from
jointly solving (A.12), (A.13), (A.14).

• Case 2: R2 = R2,2, we maximize the minimum of (R1,R2,2), and find ξ̄1, ξ̄2, ρ̄ from
jointly solving (A.12), (A.15).

• only accepted candidates of ξ̂1, ξ̂2, ρ̂ and ξ̄1, ξ̄2, ρ̄ are the ones that satisfy C3 and C4
and choose the one that results in the maximum sum rate.

3: REPEAT:For each case, we continue to check if λ1 6= 0 and λ2 6= 0, then, find non-negative
λi from (4.30) such that R1 = R2 = X and the sub-optimal solution ξ∗1 , ξ

∗
2 , ρ
∗ is reached.

4: else if λ1 > 0 and λ2 = 0, then, find non-negative λ1 from (4.30) such that R1(ξ
∗
1 , ξ
∗
2 , ρ
∗)

is the minimum rate to maximized and re-calculate ξ∗1 , ξ
∗
2 , ρ
∗ from the selected valid case.

Repeat until convergence.
5: else if λ1 = 0 and λ2 > 0, then, find non-negative λ2 from (4.30) such that R2(ξ

∗
1 , ξ
∗
2 , ρ
∗)

is the minimum rate to be maximized and re-calculate ξ∗1 , ξ
∗
2 , ρ
∗ from the selected valid case.

Repeat until convergence.
6: else λ1 = 0, and λ2 = 0,, then, this case is not feasible, Repeat until convergence.
7: END
8: Check if R1,2(ξ̂1, ξ̂2, ρ̂) < R2,2(ξ̂1, ξ̂2, ρ̂), i.e. case 1 is valid and
9: Check if R2,2(ξ̄1, ξ̄2, ρ̄) < R1,2(ξ̄1, ξ̄2, ρ̄), i.e. case 2 is valid.

10: We have two options:
- Case 1 is valid and Case 2 is not valid, this leads to ξ∗1 , ξ

∗
2 , ρ
∗ = ξ̂1, ξ̂2, ρ̂ is the optimal

solution and then max-min throughput is equal max min(R1(ξ̂1, ξ̂2, ρ̂),R1,2(ξ̂1, ξ̂2, ρ̂)).
- Case 2 is valid and Case 1 is not valid, this leads to ξ∗1 , ξ

∗
2 , ρ
∗ = ξ̄1, ξ̄2, ρ̄ is the optimal

solution and then max-min throughput is equal max min(R1(ξ̄1, ξ̄2, ρ̄),R2,2(ξ̄1, ξ̄2, ρ̄)).
11: OUTPUT: ξ∗1 , ξ

∗
2 , ρ
∗, and calculate the max-min throughput from max-

min(R1(ξ
∗
1 , ξ
∗
2 , ρ
∗),R2(ξ

∗
1 , ξ
∗
2 , ρ
∗)).

The objective function of (4.35) is non-convex; hence, the overall problem is non-convex,

and the global optimal solution cannot be guaranteed.

The fractional non-convex optimization problem in (4.35) can be transformed to an

equivalent parametric optimization problem using concepts from fractional programming,

namely the Dinkelbach approach [181]. Using this transformation, a new objective func-

tion can be defined as

LEE = (Pc + (ρ1 + ρ2)P + P̂ )− q(R1(ξi, ρi) +R2(ξi, ρi)), (4.36)
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where q is a non-negative constant. Then, the new optimization problem OP6 becomes

OP6 : minimize
ξi,ρi

LEE, subject to C1− C5. (4.37)

It was shown in [181] that at a certain value of q, which is denoted by q∗, the optimal

solution of OP6 is also the optimal solution to OP5. Hence, finding the optimal values

of ξi, ρi for OP5 can be reached by finding the optimal values of (ξi(q), ρi(q)) for OP6.

We can then update the value of q until it reaches q∗, where q∗ is found by assigning

LEE = 0 [181] at optimal ξi and ρi.

To find the sub-optimal solutions, we solve OP6 using the KKT conditions. The

Lagrangian function can be expressed as

LEE(ξi, ρi) = (Pc + (ρ1+ρ2)P + P̂ )− q (R1(ξi, ρi) +R2(ξi, ρi)) + λ1(R
min
1 −R1(ξi, ρi))

+ λ2(R
min
2 −R2(ξi, ρi)) + λ3(ρ1 + ρ2 − 1), (4.38)

where λ1, λ2 and λ3 are the Lagrange multipliers associated with the QoS conditions of

U1 and U2, and power allocation at the BS, respectively. The impact of the constraints

C4 and C5 will be considered later. The KKT conditions can consequently be written as
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follows:

∂LEE(ξ∗i , ρ
∗
i )

∂ξi, ∂ρi
= 0, ∀i = 1, 2, (4.39a)

λ1(R
min
1 −R1(ξ

∗
i , ρ
∗)) = 0, (4.39b)

λ2(R
min
2 −R2(ξ

∗
i , ρ
∗)) = 0, (4.39c)

λ3(ρ1 + ρ2 − 1) = 0, (4.39d)

Rmin
1 −R1(ξ

∗
i , ρ
∗) ≤ 0, (4.39e)

Rmin
2 −R2(ξ

∗
i , ρ
∗) ≤ 0, (4.39f)

ρ1 + ρ2 − 1 ≤ 0, (4.39g)

λ1, λ2, λ3 ≥ 0. (4.39h)

From (4.39a), we obtain

∂LEE(ξ∗i , ρ
∗
i )

∂ξi
= −(λ1 + q)

∂R1(ξi, ρi)

∂ξi
− (λ2 + q)

∂R2(ξi, ρi)

∂ξi
= 0, (4.40)

and

∂LEE(ξ∗i , ρ
∗
i )

∂ρi
= P − (λ1 + q)

∂R1(ξi, ρi)

∂ρi
− (λ2 + q)

∂R2(ξi, ρi)

∂ρi
+ λ3 = 0. (4.41)

Following the same steps seen in the sum rate maximization section, we simultaneously

solve the results from (4.40)-(4.41) to find the optimal values of ξi, ρi.

Based on the FD-relaying concept, R2 is the minimum between R1,2 and R2,2. Hence,

to be able to solve the optimization problem, we consider two scenarios: 1) Case 1 : We

assume R2 = R1,2, implying that we aim to maximize R1 + R1,2 and 2) Case 2 : We

assume R2 = R2,2, implying that we aim to maximize R1 +R2,2.

First, we find the range of ρi for each case in which either R1,2 or R2,2 is the minimum

of R2. Second, within each region of ρi, we derive the sub-optimal solutions of ξ1, ξ2 and

ρi by solving the corresponding equations in (4.40) and (4.41) for each case. Third, we
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verify the minimum between R1,2 and R2,2 and choose the appropriate case in order to

find the sub-optimal solution that will be used to maximize the energy efficiency. The

region of ρi, for which either R1,2 or R2,2 is the minimum, is derived assuming R2,2 <

R1,2, after some mathematical manipulations, based on the following condition

ρ2 >
−((ρ1PΓ1)(1− ξ1ξ2) + κP̂Γs + 1) +

√
Z

PΓ1(1− ζ22 )
, (4.42)

where Z = (ρ1PΓ1 + κP̂Γs + 1)2
[
(P̂Γ2 + 1)2 − ζ22 (P̂Γ2)

2(2− ζ22 )− 2ζ22 (P̂Γ2)
]

+ (1 −

ζ22 )((P̂Γ2+1)2−ζ22 (P̂Γ2)
2−1)((κP̂Γsζ2)

2+(ρ1PΓ1ζ1)
2)−2(ρ1PΓ1+κP̂Γs+1)(ρ1PΓ1ξ1ξ2)+

(ρ1PΓ1ξ1ξ2)
2. If the condition in (4.42) is achieved, this leads to Case 2, i.e. R2 = R2,2,

otherwise, R2 = R1,2.

We propose the following algorithm at the top of next page to solve the joint optimiza-

tion problem in (4.34a) and find the sub-optimal solutions for ξ∗1 , ξ∗2 and ρ∗i . Assuming

that C1 − C3 are satisfied, we start by simultaneously solving (4.40)-(4.41) numerically

using the Gauss-Newton algorithm [180] to find the optimal values of ξi, ρi and ensure

that C4− C5 are guaranteed. We consider both Cases 1 and 2, where the Lagrange mul-

tipliers λi, ∀i = 1, 2, 3 in ξ∗1 , ξ∗2 , and ρ∗ are updated using the sub-gradient method [180].

After determining the solution in each case, we verify whether R1,2 or R2,2 was chosen as

the minimum and proceed to find the optimal solution for the energy efficiency with the

chosen case.

That said, following the KKT conditions above, we need to find the values of λi, ∀i =

1, 2, 3. As can be seen from (4.39b) and (4.39c), we either have λ1 = 0 or R1(ξ
∗
i , ρ
∗) =

Rmin
1 , and λ2 = 0 or R2(ξ

∗
i , ρ
∗) = Rmin

2 , and λ3 = 0 or ρ1 + ρ2 = 1. This leads to eight

possible states which we need to iterate among them till reaching the optimal solution.

We set λ1 = λ2 = λ3 = 0 and find ξ∗i , ρ
∗
i in both Case 1 and Case 2 from jointly

solving (4.40), (4.41). If R1 ≥ Rmin
1 , R2 ≥ Rmin

2 , and power constraint is true, then, the

sub-optimal solution is reached.

If R1 < Rmin
1 , R2 ≥ Rmin

1 , and power constraint is true, then, find non-negative
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Algorithm III: Energy Efficiency Maximization Algorithm :

1: INPUT: Rmin
1 , Rmin

2 , P , P̂ , δ, qinitial, and LEEmin = −∞
2: While: LEEmin < −δ, do
3: Find the values of ξ∗i , ρ

∗
i as in Algorithm I

4: Update LEE from (4.36) and calculate LEEmin(q),

5: Calculate q =
Pc+(ρ∗1+ρ

∗
2)P+P̂

(R1(ξ∗i ,ρ
∗
i )+R2(ξ∗i ,ρ

∗
i ))

6: end While
7: OUTPUT: q∗, and ξ∗i , ρ

∗.

λ1 such that R1(ξ
∗
i , ρ
∗
i ) = Rmin

1 and re-calculate ξ∗i , ρ
∗
i from the selected valid case. If

R1 ≥ Rmin
1 , R2 ≥ Rmin

1 , and power constraint is violated, then, find non-negative λ3

such that ρ1 + ρ2 = 1 and re-calculate ξ∗i , ρ
∗
i from the selected valid case. Repeat until

convergence.

If R1 < Rmin
1 , R2 ≥ Rmin

1 , and power constraint is violated, then, find non-negative λ1,

λ3 such that R1(ξ
∗
i , ρ
∗
i ) = Rmin

1 and ρ1 + ρ2 = 1 and re-calculate ξ∗i , ρ
∗
i from the selected

valid case. If R1 ≥ Rmin
1 , R2 < Rmin

1 , and power constraint is violated, then, find non-

negative λ2, λ3 such that R2(ξ
∗
i , ρ
∗
i ) = Rmin

2 and ρ1 + ρ2 = 1 and re-calculate ξ∗i , ρ
∗
i from

the selected valid case. If R1 < Rmin
1 , R2 < Rmin

1 , and power constraint is violated, then,

find non-negative λ1, λ2 and λ3 if exists such that R1(ξ
∗
i , ρ
∗
i ) = Rmin

1 , R2(ξ
∗
i , ρ
∗
i ) = Rmin

2 ,

ρ1 + ρ2 = 1 and re-calculate ξ∗i , ρ
∗
i from the selected valid case. We check if R1,2(ξ̂i, ρ̂i)

< R2,2(ξ̂i, ρ̂i), and the region of ρi in (4.42) is not satisfied, i.e., Case 1 is valid and if

R2,2(ξ̄i, ρ̄i) < R1,2(ξ̄i, ρ̄i) and the region of ρi in (4.42) is satisfied,, i.e., Case 2 is valid.

The energy efficiency solution is found at q = q∗, where q =
Pc+(ρ∗1+ρ

∗
2)P+P̂

(R1(ξ∗i ,ρ
∗
i )+R2(ξ∗i ,ρ

∗
i ))

and

is computed by applying the Dinkelbach method [181]. Here, we develop Algorithm III,

which follows an approach similar to Algorithm I with the aim of computing the optimal

values of ξ∗i , ρ
∗
i that satisfy LEEmin(ξ∗i , ρ

∗
i ) = 0, where LEEmin is the minimum of LEE.

Algorithm III starts with an initial value of q, denoted as qinitial, and employs an error

tolerance of δ. This energy efficiency algorithm is outlined as follows.
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Figure 4.2: 16-QAM improper constellation diagrams with different ξ values at P =20 , 25 dBm,
P̂ = 0.3P .

4.5 Simulation Results and Discussion

In this section, we present the simulation results obtained upon solving the joint optimiza-

tion problems of the circularity coefficients and power allocation. Recall that the goals

were to maximize the sum-rate, minimum rate (fairness) and the energy efficiency of a co-

operative FD-NOMA IGS-based system. To demonstrate the effectiveness of the proposed

schemes, we compare them with their cooperative FD-NOMA PGS-based counterparts.

The simulation results are obtained through Monte Carlo trials for 104 channel realiza-

tions. We consider the distance-dependent path-loss model as the large scale fading, where

the path-loss exponent is 3, and Rayleigh fading as the small scale multi-path fading.

Unless otherwise mentioned, we assume that Rmin
1 = Rmin

2 = Rmin = 0.5 bits/sec/Hz,

P̂ = 0.5P , P ranges from 10-40 dBm, κ = 1, E [|h1|2] > E [|h2|2], Pc = 20 dBm, and

δ = 10−7.
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Table 4.1: Comparison of sum rates using improper and proper constellations at different P
values

XXXXXXXXXXXPower
Sum rate

Proper
bits/sec/Hz

Improper
bits/sec/Hz

ξ∗1 ξ∗2

P = 20 dBm 2.54 3.1 0.11 0.61

P = 25 dBm 2.75 3.25 0.36 0.86

Fig. 4.2 shows the improper constellations with 16-QAM designed with prescribed pro-

cedures in Section II at a given instantaneous channel gain when Γ1 = 1, Γ2 = 0.25,Γs =

0.35, and P = 20, 25 dBm. The optimal ξ1, ξ2 are found by the proposed algorithm I.

It can be seen that the minimum distance between constellations points decreases in the

improper constellations compared to the proper constellations as ξi increases. Due to this

impropriety, the throughput enhancement is achieved as proved in this work and also it

has been shown that the error probability decreases as in [24], [146]. We further analyze

the sum rate values achieved by the so-designed improper constellation diagrams as in

Table. 4.1. As can be read, the improper constellation offers considerable sum rate gain

compared to proper one. For instance, P = 20 dBm, the proper sum rate was equal to

2.54 bits/sec/Hz while the improper sum rate 3.1 bits/sec/Hz.

In Fig. 4.3, the sum rate is plotted against the BS transmit power P (dBm) at different

values of P̂ , fixed κ = 1, and Rmin = 0.5 bits/sec/Hz. The sum rate is compared between

the FD-NOMA IGS-based system considering the joint optimization of circularity coeffi-

cients and power allocation (Algorithm I) and its PGS-based counterpart. As shown in

the figure, as P increases, sum rate improves for both systems as expected. The figure

also shows the significant improvement of NOMA-IGS sum rate over that of NOMA-PGS

from low to high values of P . This illustrates the superiority of IGS over PGS in the

context of limited interference systems. We notice also that as P̂ increases, the sum rate

curves decreases, which can also be seen from (A.5) and (4.14).

Fig. 4.4 illustrates the impact of IGS when the self-interference cancellation is imper-

fect. The figure shows the sum rate performance at various values of κ at fixed P̂ . As
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Figure 4.3: Sum rate vs P (dBm) for proposed NOMA-IGS compared with NOMA-PGS at
different values of P̂ and fixed κ = 1.

κ increases from 0.3 to 0.7, the improvement due to the IGS when compared with PGS

increases where around one to two dBs gain is achieved. This justifies the importance of

using IGS in limited-interference systems like cooperative FD-NOMA.

Fig. 4.5 presents the performance of Algorithm I for the weighted sum rate with

QoS constraints imposed for both IGS-based and PGS-based systems. We assume w1 =

0.9, w2 = 0.1, which are the weights of users’ rates. The result is a higher priority being

given to U1 when compared to w1 = 0.5, w2 = 0.5, ultimately improving overall weighted

sum rate. When compared to the PGS-based scheme, a considerable sum rate gain is

achieved across the entire power region. In addition, Fig. 4.5 compares the proposed sub-

optimal solutions of the weighted sum rate maximization with the exact optimal solution

through an exhaustive search at w1 = 0.9, w2 = 0.1, where the latter is executed through

three nested loops with a step size of 0.05 (the three optimization variables are all bounded

between 0 and 1). This simulation shows a small gap of around 1 dB between the two

solutions at low values of P .
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Figure 4.4: Sum rate vs P (dBm) for both IGS and PGS schemes at different values of κ and
fixed value of P̂ = 0.5P .
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Figure 4.5: Comparison between proposed scheme and exhaustive search of weighted sum rate
vs P dBm at different weights w1 = 0.9, w2 = 0.1 and w1 = 0.5, w2 = 0.5.
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Figure 4.6: Convergence of Algorithm I for both IGS and PGS schemes.

For Algorithm I convergence, we show in Fig. 4.6 that the Algorithm I-IGS case needs

around 20-25 iterations to converge while only 15 iterations are needed for PGS. This is

due to fact that IGS needs to find the optimal values of ξi and ρi while PGS only needs

to find the optimal value of ρi (since ξ∗i = 0 when considering PGS).

Fig. 4.7 represents the results of the max-min optimization problem. We perform a

comparison between IGS-based and PGS-based systems using Algorithm II. The improve-

ment of the IGS-based max-min throughput outperforms its PGS-based counterpart. It

is also observed from the figure that fairness is achieved between two users rates since we

see that the gap between the rates of the two users shrinks using Algorithm II.

In Fig. 4.8, the overall sum-rate from Algorithm I, max-min sum rate from Algorithm

II, R1 and R2 are simulated against P , where we assume Rmin
1 = Rmin

2 = Rmin. The

overall sum-rate of the system using Algorithm I is higher than overall max-min sum

rate but at the expense of user fairness (which was achieved from Algorithm II). It is
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Figure 4.7: Comparison between max-min rates using Algorithm II in both IGS and PGS cases.
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Figure 4.8: Comparison between users’ rates and sum rates using Algorithms I and II.
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Figure 4.9: Energy efficiency vs P (dBm) at different values of Pc and fixed κ = 1 for proposed
Algorithm III and exhaustive search.

readily noticed that the minimum rate is maximized in Algorithm II when compared to

the minimum rate in Algorithm I, which was the main purpose behind implementing

Algorithm II.

In Fig. 4.9, the energy efficiency (in bits/joule) is simulated against P (dBm) at Pc =

20 , 25 dBm and κ = 1. It can be observed from this figure that IGS enhances the energy

efficiency performance in the proposed system by transmitting around 0.5 bits/joule more

than PGS in all BS power regions. It is also observed that as the BS’s power increases from

low to medium, the energy efficiency increases. However, energy efficiency decreases when

the BS’s transmit power consumption Pc increases because the increase in the transmit

power is larger than the corresponding increase in the transmit rate. This means that

increasing the transmit power does not necessarily enhance the energy efficiency.

To demonstrate closeness to the optimal solution, we compared the sub-optimal solu-
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Figure 4.10: Energy efficiency vs P (dBm) at different values of κ and fixed Pc = 20 dBm.
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Figure 4.11: Energy efficiency vs P (dBm) at different values of K-Rician factor and fixed
κ = 0.5.
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Figure 4.12: Convergence of Algorithm III at P = 40 dBm and Pc= 20 dBm for both IGS and
PGS cases

tion with optimal solution through an exhaustive search. The result isa gap of around

of 0.2-0.3 dB, which is acceptable performance loss given the impractical complexity of

exhaustive search.

Figure 4.10 shows the energy efficiency performance against P dBm at different levels

of κ and at fixed Pc = 20 dBm. The figure shows the effectiveness of using IGS in the

case of self-interference existence when compared to the PGS, case especially at higher

levels of κ. As κ increases, the gain due to using IGS becomes greater.

In Fig. 4.11, we consider a more realistic assumption where the self-interference channel

is Rician fading and modeled as hs ∼ CN
(√

κK
1+K

, κ
1+K

)
, where K is the Rician factor.

We plot the energy efficiency versus P at different values of self-interference by changing

the by changing the average mean of the interference channel. As K increases, i.e., level

of interference is higher, the gain of IGS becomes better compared with PGS scheme,

which proves that IGS is more effective in case of severe self-interference.
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Figure 4.13: BER of U1 and U2 for both IGS and PGS cases.

Figure 4.12 presents the convergence of Algorithm III, where the energy efficiency

against the number of iterations is plotted at Pc = 20 dBm and P = 40 dBm for both IGS

and PGS cases. As observed in the figure, Algorithm III converges around 12 iterations

in IGS case and after 8 iterations in PGS case.

Figure. 4.13 shows the BER performance through simulations versus P for both users

in case of IGS and PGS at 16-QAM. For each channel realization, we find the optimal

improper coefficients, then we find the corresponding improper constellation diagram, sim-

ulate the error rate, and repeat. For a given optimal IGS circularity coefficients, we study

the BER performance of the new improper constellations, by means of 104 simulations,

where each simulation considering the decoding of 104 symbols. The optimal maximum

likelihood detector is applied at the receiver side for this problem, which aims to finding

the closest constellation point to a given noisy received signal. As can be seen in the

figure, error performance in case of using improper constellation diagrams outperforms
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proper constellation diagram. The reason behind this is that since the improper con-

stellation is designed based on WLT which relies on maximizing the minimum Euclidean

distance, and hence, achieving better BER. Another observation is that as P increases,

BER performance improves as expected. However, error floor occurs at high P due to

residual interference resulted from the imperfect self-interference cancellation.

4.6 Conclusion

In this chapter, we investigated the potential merits (in terms of spectral and energy

efficiencies and fairness among users) of using IGS in a cooperative FD-NOMA system.

We derived exact expressions for the user throughput of each link in the cooperative system

employing IGS. We formulated two joint optimization problems to maximize the overall

sum rate and energy efficiency provided that the QoS of each user is satisfied. We also

formulated a max-min throughput optimization problem to achieve fairness among users.

Iterative algorithms, based on KKT conditions, were proposed to solve the formulated

optimization problems. Simulation results showed the superiority of IGS over PGS in the

context of cooperative FD-NOMA systems, where around 1.5 to 2 dB gain is achieved.

IGS is also more energy-efficient than the PGS since it transmits around 0.5 bits/joule

more at lower to medium BS’s power values. In addition, the developed IGS max-min

algorithm achieves a better trade-off when compared to its PGS counterpart.

106



Chapter 5

Rate-Splitting Multiple Access Using

IGS under Imperfect SIC

5.1 Introduction

RSMA has been introduced as a novel technology for optimizing multiple access and

interference management strategies for future wireless systems [9]. RSMA strategy relies

on splitting of user messages as well as non-orthogonal transmission of common messages

decoded by all users and private messages decoded by their corresponding users [19].

In RSMA, the signal transmitted to the users is divided into a common message and

a private message. The common part is a message decoded by each user and the private

part is a message that only intended to be received by specific user. Therefore, adapting

the split of common and private signals can compromise the signal processing complexity

and achieve higher data rates [19]. However, to attain such potential merits, perfect SIC

and suitable splitting of common and private messages should be adopted. In practical

scenarios, the assumption of perfect SIC at the receiver might not be possible. Hence, it

is of great interest to compensate the impact of imperfect SIC for the RSMA systems.

IGS, as a generalized physical layer signaling scheme, has the capability to improve
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the spectral efficiency of the interference-limited systems. By definition, IGS assumes

correlated real and imaginary signal parts without necessarily equal powers as opposed

to the traditional PGS scheme. Due to these extra degrees of signaling freedom, IGS is

capable to compensate the impact of the residual interference due to the SIC imperfection

[154]. This motivates us to consider IGS in RSMA under residual interference conditions.

5.1.1 Related Works

A number of existing works investigated interesting problems related to RSMA from many

aspects including single and multiple antenna networks, interference and broadcasting

channels etc. [19] and references therein. Appealing resource allocation methods using

RSMA were proposed in the literature. In [125], the authors made use of RSMA to

maximize the rate of all users in downlink multi-user MISO systems under imperfect CSI

at the BS. In [127], the spectral and energy efficiencies were optimized using RSMA in non-

orthogonal unicast and multicast transmissions. Recently, authors in [183] have considered

the sum-rate maximization problem using RSMA subject to minimum rate demand. Rate

allocation and power control iterative algorithms were proposed for SISO and MISO

systems. However, all aforementioned works considered PGS and perfect SIC. Inspired

by rate-splitting concept, work in [177] showed that the signal superposition which uses

RSMA mechanism outperforms NOMA in a general multi-cell multiuser network. In

this work, IGS was used for a two paired-users in the same cell to maximize the overall

minimum throughput assuming perfect SIC.

5.1.2 Contributions

• In this work, we consider a downlink wireless network that serves multiple users

using RSMA mechanism in the presence of imperfect SIC. To circumvent the impact

of SIC imperfection, IGS is adopted at users’ common messages which are decoded

by all users.
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• New expressions for the users’ common rate and private rate are derived considering

IGS and imperfect SIC.

• Using the derived expressions, an optimization problem is formulated to jointly

optimize the circularity coefficient and power allocation to maximize the overall

sum-rate subject to minimum rate requirements constraints.

• Simulation results show a significant sum-rate performance gain when using IGS-

based RSMA systems compared with their counterpart PGS-based RSMA systems.

5.2 System Model and Rate Analysis

We consider a downlink wireless system that composes a BS that serves K users using

RSMA mechanism. In RSMA, the transmitter splits the message Wk of the kth user

into a common message Wc,k and a private message Wp,k, ∀k = 1, ..., K. The common

fractions Wc,1, ...,Wc,K is combined into a common message Wc, which is encoded into

the common stream sc. This common stream is required to be decoded by all users. The

private fraction Wp,k, containing the remaining portion of the message Wk, is encoded

into the private stream sk for user k.

PGS is adopted for the private stream sk; however, due to the need of detecting the

common messages at each user, and assuming imperfect SIC to cancel-out the common

message when detecting the private messages, IGS is adopted for the common stream sc

to mitigate the impact of the residual interference at each user’s receiver. The degree of

impropriety of sc is measured as discussed below.

We assume that the variance and pseudo-variance of sc are denoted as ωsc = E [scs
∗
c ] and

ω̂sc = E [scsc], respectively, where the superscript (·)∗ refers to the complex conjugation

operation and E [·] refers to the expectation of a random variable. A signal is called proper

if it has a zero pseudo-variance, i.e., ω̂sc = 0, otherwise it is called an improper signal.

The impropriety degree (or the IGS circularity coefficient) of sc is given as ξc = |ω̂sc |/ωsc ,
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where 0 ≤ ξc ≤ 1. If ξc = 0, then sc is a proper signal, and if ξc = 1, we have a maximally

improper signal.

The transmitted signal x of the BS is written as

x =
√
pcsc +

K∑
k=1

√
pksk, (5.1)

where pc is the transmit power of the common stream sc, pk is the transmit power of

the private stream sk transmitted to user k, ∀k = 1, .., K. We assume that the BS’s

budget power, P , is divided between the common stream and private stream as pc = αoP ,

pk = αkP , where 0 ≤ αo, αk ≤ 1. Then, the transmitted signal can be re-written as

x =
√
αoPsc +

K∑
k=1

√
αkPsk, (5.2)

where αo is the power allocation factor of the power allocated to the common stream, and

αk is the power allocation factor of the power allocated to the private stream of the user

k. The total received signal at user k can be expressed as

yk = hk
√
αoPsc + hk

K∑
j=1

√
αjPsj + nk, (5.3)

where hk refers to the channel coefficient between user k and the BS and nk refers to the

zero-mean additive white Gaussian noise with variance σ2.

Without loss of generality, it is assumed that |h1|2 ≤ |h2|2 ≤ ...|hK |2, i.e. user with

index 1 is with the weakest channel gain and the user with index K is with the strongest

channel gain.

Based on the RSMA principle, each user detects the common message, and then, the

user adopts SIC to cancel this common message and decode its own private message.

To ensure that all users can successfully decode common stream sc, the rate of common

stream should be the common rate of the weakest user channel i.e. h1 in our case [155].
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To make sure that the common stream is detectable at each user receiver, the received

signal to interference plus noise ratio (SINR) of the common stream at each user should

be greater than its received SINR of the private stream. Next, to ensure that the common

message can be detected through SIC operation at the receiver side, the transmit power

of each user must satisfy the following constraint [155]

[(|h1|2P + σ2)2 − (|h1|2αoPξc)2]1/2 − 2(|h1|2P
K∑
j=1

αj + σ2) ≥ ε. (5.4)

where ε is the minimum difference between the common message power at kth user and

the power of private messages of all users plus noise. The term αoP |hk|2 represents the

received common message power at the kth user, while the term
(∑K

j=1 αjP |hk|2 + σ2
)

represents the power of the non-decoded private message of all users plus noise. The

minimum difference ε is needed to differentiate the common message to be decoded and

the private messages of all users plus noise.

We assume that SIC process at users’ receivers is imperfect and the residual interfer-

ence component due to this imperfection is quantified by a factor β (0 ≤ β ≤ 1), where

β = 0 refers to perfect SIC and β = 1 refers to the fully imperfect SIC. Due to the SIC

imperfection, the received signal at user k after decoding/canceling the common stream

can be written as

ŷk = βhk
√
αoPsc + hk

K∑
j=1

√
αjPsj + nk, (5.5)

where the first term in the right hand side refers to the residual interference.

In the following, we derive the common rate and the private rate expressions assuming

that IGS is used for the common message while PGS is used for the private messages. ,

i.e., sc is improper, and sk is proper. Following [130], the achievable rate expression for a
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SISO IGS-based system is given as

Ri =
1

2
log2

(
ω2
yi
− |ω̂yi |2

ω2
zi
− |ω̂zi |2

)
, (5.6)

where ωyi and ω̂yi refer respectively to the covariance and pseudo-covariance components of

the received signal; while ωzi and ω̂zi refer to covariance and pseudo covariance components

of interference plus noise signal, respectively.

To derive the common rate, from the received signal in (5.3), the square of covariance

and the square of the absolute value of pseudo covariance components are found as follows.

ω2
yk

= (E{yky∗k})2 =

(
|hk|2αoP + |hk|2

K∑
j=1

αjP + σ2

)2

, (5.7)

|ω̂yk |2 = |E{ykyk}|2 = (|hk|2αoPξc)2, , (5.8)

where ωsc = E [scs
∗
c ] = 1. For the interference plus noise signal, zk =

∑K
j=1 hk

√
αjPsj+nk,

the square of covariance and pseudo covariance components are found as follows

ω2
zk

= (E{zkz∗k})2 =

(
|hk|2

K∑
j=1

αjP + σ2

)2

, (5.9)

|ω̂zk |2 = |E{zkzk}|2 = 0, (5.10)

We first derive the common rate expression. By substituting (5.7)-(5.10) into (5.6), the

achievable rate of user k decoding the common stream sc can be expressed

Rc =
1

2
log2

(
(|hk|2P + σ2)2 − (|hk|2αoPξc)2

(|hk|2
∑K

j=1 αjP + σ2)2

)
, (5.11)

To ensure that all users can successfully decode common stream sc, the rate of common

stream should be the common rate of the weakest user channel i.e. h1 in our case [155].
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Hence, based on (5.3) and (5.6), and after some mathematical manipulations, the common

rate expression is derived as

Rc =
1

2
log2

(
(|h1|2P + σ2)2 − (|h1|2αoPξc)2

(|h1|2
∑K

j=1 αjP + σ2)2

)
, (5.12)

After having decoded the common stream sc, each user can decode its private stream.

To derive the private rate, from (5.5), we have the desired signal hk
√
αkPsk and the

interference plus noise signal ẑk = βhk
√
αoPsc + hk

∑K
j=1,j 6=k

√
αjPsj + nk. Similarly,

we find the square of the covariance and the square of the absolute value of the pseudo

covariance components for the private messages and the interference plus noise signal ẑk

as follows

ω2
ŷk

= (E{ŷkŷ∗k})2 =

(
β2|hk|2αoP + |hk|2

K∑
j=1

αjP + σ2

)2

, (5.13)

|ω̂yk |2 = |E{ykyk}|2 = (β2|hk|2αoPξc)2, (5.14)

ω2
ẑk

= (E{ẑkẑ∗k})2 =

(
β2|hk|2αoP + |hk|2

K∑
j=1,j 6=k

αjP + σ2

)2

, (5.15)

|ω̂ẑk |2 = |E{ẑkẑk}|2 = (β2|hk|2αoPξc)2, (5.16)

By substituting (5.13)-(5.16) into (5.6) and after a few simplifications, the private rate

for a user k is derived as

Rpk =
1

2
log2

(
(β2|hk|2αoP + |hk|2P

∑K
j=1 αj + σ2)2 − (β2|hk|2αoPξc)2

(β2|hk|2αoP + |hk|2P
∑K

j=1,j 6=k αj + σ2)2 − (β2|hk|2αoPξc)2

)
. (5.17)

Substituting ξc = 0 and β = 0 reduces to the rates of PGS case in perfect SIC.

Given the common rate Rc and the rate allocated at user k, ak, we have
∑K

k=1 ak ≤ Rc,

which indicates that the total data rates of all users receiving common stream should be

less than or equal the common rate Rc because all users must decode the same shared

message, which is broadcast only once and constrained by the weakest link. So we can
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have the total rate of user k in RSMA scenario is given as

Rk = ak +Rpk

= ak +
1

2
log2

(
(β2|hk|2αoP + |hk|2P

∑K
j=1 αj + σ2)2 − (β2|hk|2αoPξc)2

(β2|hk|2αoP + |hk|2P
∑K

j=1,j 6=k αj + σ2)2 − (β2|hk|2αoPξc)2

)
(5.18)

5.3 Optimization Problem

In this section, an optimization problem is formulated to optimize the IGS circularity

coefficient and power allocation in order to maximize the sum of the private rates of a K

users RSMA system subject to minimum rate requirement of the common rate.

Based on RSMA concept, the common message has the higher power than the power

of the private messages to ensure that common message can be detected at each user

receiver, i.e., the private messages power is treated as a noise when detecting the common

message. However, due to SIC imperfection, residual interference occurs when detecting

the private messages. The goal is to benefit from IGS to mitigate the impact of the

SIC imperfection in this interference-limited scenario to improve the sum of private rates.

Hence, we employ the IGS at the common message and PGS at the private message.

That said, the joint optimization problem for maximizing the private sum rate under

the minimum common rate demand and power budget can be formulated as
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maximize
ξc,αc

K∑
k=1

Rpk (5.19a)

subject to C1 : Rc ≥ Rth, (5.19b)

C2 : (5.4) (5.19c)

C3 : Rpk ≥ Rmin
k , ∀k, (5.19d)

C4 : 0 ≤ ξc ≤ 1, (5.19e)

C5 : pc +
K∑
k=1

pk = P, (5.19f)

where Rc and Rpk are obtained from (5.20) and (5.21), respectively. The constraint C1

ensures the minimum rate requirement of the common rate where Rth is the minimum rate

threshold. The constraint C2 is to ensure that the common message is detectable at each

user. The minimum private rate constraints for all users are ensured in C3, where Rmin
k

is the minimum private rate requirement for each user k. The constraint C4 reflects that

the circularity coefficient is between 0 and 1. The constraint C5 refers to the maximum

power budget requirement.

Based on C5 in (5.19f),
∑K

j=1 αj = 1, αo +
∑K

k=1 αk = 1. Hence, Rc and Rpk are

expressed as

Rc = log2

(
1 +

αoP |h1|2

(1− αo)P |h1|2 + σ2

)
︸ ︷︷ ︸

proper

+
1

2
log2

(
1− (αoP |h1|2ξc)2

(P |h1|2 + σ2)2

)
︸ ︷︷ ︸

Improper

, (5.20)
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and

Rpk = log2

(
1 +

αkP |hk|2

β2αoP |hk|2 + (1− αo − αk)P |hk|2 + σ2

)
︸ ︷︷ ︸

proper

+
1

2
log2

(
1− (β2αoP |hk|2ξc)2

(β2αoP |hk|2 + (1− αo)P |hk|2 + σ2)2

)
︸ ︷︷ ︸

Improper

− 1

2
log2

(
1− (β2αoP |hk|2ξc)2

(β2αoP |hk|2 + (1− αo − αk)P |hk|2 + σ2)2

)
︸ ︷︷ ︸

Improper

. (5.21)

5.3.1 Bounds of αo, ξc, αk

To find a sub-optimal solution of the optimization problem in (5.19), we need first to

satisfy the constraint C1. Based on the channel assumption |h1|2 ≤ |h2|2 ≤ ...|hK |2, the

constraint C1 in (5.4) can be simplified as

αoP |h1|2 −

(
K∑
j=1

αjP |h1|2 + σ2

)
≥ ε, (5.22)

From (5.22) and given that
∑K

j=1 αj = 1, the power allocation αo required to guarantee

that the common message is detectable at each user is derived as

αo ≥
ε+ σ2

2P |h1|2
+

K∑
j=1

αj. (5.23)

Next, to satisfy the constraint C1 in (5.19b), we solve for Rc ≥ Rth. After mathematical

simplifications, ξc is computed as

ξc ≤

√
φ− θ

(|h1|2αoP )2
, (5.24)

where φ = (|h1|2P + σ2)2 and θ = 22Rth(|h1|2(1 − αo)P + σ2)2. To satisfy the minimum
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private rate constraint C3 in (5.19d), αk is derived as follows

αk ≥
δ −
√
δ2 + ∆

1− αo
, (5.25)

where δ =
(
β2αo + (1− αo) + σ2

P |hk|2

)
, ∆ = (2−2R

min
k − 1)[δ2 − (β2αoξc)

2]. This αk is a

non-negative value due to the constraint αk ≥ 0. The proof is provided in Appendix B.2.

5.3.2 Proposed Solution

After finding the bounds of τ, ξc, αk, the optimization problem in (5.19) can be re-written

as

maximize
ξc,αk,αo

K∑
k=1

Rpk(ξc, αk, αo) (5.26a)

subject to C1 : ξc ≤

√
φ− θ

(|h1|2αoP )2
, (5.26b)

C2 : αo ≥
ε+ σ2

2P |h1|2
+

K∑
j=1

αj, (5.26c)

C3 : αk ≥
δ −
√
δ2 + ∆

1− αo
∀k, (5.26d)

C4 : 0 ≤ ξc ≤ 1. (5.26e)

To solve this optimization problem, we optimize each variable separately as a sub-optimal

solution. The objective of the optimization problem in (5.26) is to maximize the sum of

private rates, however,
∑K

k=1Rpk in (5.26a) is a decreasing function of αo (the proof is in

the Appendix B.3). Then, αo with equality holds in (5.23) is the lower bound of the power

allocation that is assigned to the common stream power to guarantee its detection, i.e.,

αoLP = ε+σ2

2P |h1|2 +
∑K

j=1 αj, and the remaining amount of power (1−αoLP ) is assigned to the

private stream so that we achieve the maximum sum of the private rates, i.e. α∗o = αoLB.

Since
∑K

k=1Rpk is an increasing function of ξc (the proof is provided in B.4), we can set
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ξc =
√

φ−θ
(|h1|2αoP )2

to satisfy the constraint C1 in (5.26b) in order to achieve the maximum

sum of private rates. By considering also the constraint C4 in (5.26e), the sub-optimal

solution of ξc is derived as follows

ξ∗c =


case 1 : 0, if φ ≤ θ,

case 2 :
√

φ−θ
(|h1|2αoP )2

, if θ < φ ≤ ψ,

case 3 : 1, if φ > ψ,

(5.27)

where ψ = 22Rth(|h1|2(1 − αo)P + σ2)2 + (|h1|2αoP )2. Next, we need to find the sub-

optimal α∗o in case 1 and 3. As for cases 1 and 3, we need to find the corresponding αo to

satisfy constraint C1 in (5.26b). We find the following bounds αo1 and αo2 for both cases,

respectively, as

αo1 ≥
(

1 +
σ2

|h1|2P

)(
1− 2−Rth

)
, (5.28)

and

αo2 ≥
(

1 +
σ2

|h1|2P

)(
22Rth − 1

22Rth + 1

)
. (5.29)

Based on the above analysis, by considering all constraints C1 − C5, the sub-optimal α∗o

is derived as follows

α∗o =


case 1 : max(αo1, αoLP ), if φ ≤ θ,

case 2 : αoLP , if θ < φ ≤ ψ,

case 3 : max(αo2, αoLP ), if φ > ψ,

(5.30)

Next, after we get the sub-optimal solution for the IGS circularity coefficient and

power allocation factor between the common stream and the private stream, i.e., (ξ∗c , α
∗
o),

we need to find the sub-optimal solution of the power allocation factor α∗k between the
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private messages. Hence, our optimization problem can be re-written as

maximize
αk

K∑
k=1

Rpk(ξ
∗
c , αk, α

∗
o) (5.31a)

subject to C6 :
K∑
k=1

αk = 1, (5.31b)

C7 : αk ≥ αmin
k , ∀k = 1, .., K. (5.31c)

In (5.31c), αmin
k is found in (5.25) with the equality sign holds is used to satisfy the

minimum private rate constraint in (5.19d), and the problem in (5.31) is feasible, if and

only if,
∑K

k=1 α
min
k ≤ 1, which can be re-presented as follows

K∑
k=1

(
δ −
√
δ2 + ∆

)
≤ (1− α∗o). (5.32)

To be able to find the solution for problem (5.31), we need the following Lemma [183].

Lemma 1: For the sub-optimal α∗k of problem (5.31), there exists one user k such that

α∗k = 1−
∑K

j=1,j 6=k α
∗
j and α∗j = αmin

j , ∀j ∈ K, j 6= k.

Proof. See Appendix B.5.

Though the objective function in (5.31) is convex function of αk (proof is in Appendix

B.6), the maximization optimization problem is non-concave problem (maximization of

convex function results in non-concave problem ). Exploiting Lemma 1, we can find the

sub-optimal solution for the problem in (5.31) in closed form as presented in the following

Lemma.

Lemma 2:The sub-optimal power allocation of problem (5.31) is given as

α∗k = 1−
K∑

j=1,j 6=k

αmin
j , (5.33)
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where

αmin
j =

K∑
j=1,j 6=k

δ −
√
δ2 + ∆

(1− α∗o)
. (5.34)

and

k = arg max
m∈K

[
(β2αoP + P (1− αo)(1− αmin

m ) + σ2

|hm|2 )2 − (β2αoPξc)
2

(β2αoP + P (1− αo)
∑K

j=1,j 6=m α
min
j + σ2

|hm|2 )2 − (β2αoPξc)2

]
. (5.35)

Proof. Based on the Lemma 1, we can substitute the sub-optimal power allocation α∗k =

1−
∑K

j=1,j 6=k α
min
j into the the objective function of problem (5.31) and we get

K∑
j=1,j 6=k

1

2
log2

(
(β2|hj|2αoP + |hj|2P (1− αo) + σ2)2 − (β2|hj|2αoPξc)2

(β2|hj|2αoP + |hs|2P (1− αo)(1− αmin
j ) + σ2)2 − (β2|hj|2αoPξc)2

)

+
1

2
log2

(
(β2|hk|2αoP + |hk|2P (1− αo) + σ2)2 − (β2|hk|2αoPξc)2

(β2|ht|2αoP + |hk|2P (1− αo)
∑K

j=1,j 6=k α
min
j + σ2)2 − (β2|hk|2αoPξc)2

)
.

(5.36)

To maximize this sum private rate in (5.36), the optimal k should be selected as shown below

k = arg max
m∈K

K∑
j=1,j 6=k

1

2
log2

(
(β2|hj |2αoP + |hj |2P (1− αo) + σ2)2 − (β2|hj |2αoPξc)2

(β2|hj |2αoP + |hj |2P (1− αo)(1− αmin
j ) + σ2)2 − (β2|hj |2αoPξc)2

)

− 1

2
log2

(
(β2|hm|2αoP + |hm|2P (1− αo) + σ2)2 − (β2|hm|2αoPξc)2

(β2|hm|2αoP + |hm|2P (1− αo)(1− αmin
m ) + σ2)2 − (β2|hm|2αoPξc)2

)
+

1

2
log2

(
(β2|hm|2αoP + |hm|2P (1− αo) + σ2)2 − (β2|hm|2αoPξc)2

(β2|hm|2αoP + |hm|2P (1− αo)
∑K

j=1,j 6=m α
min
j + σ2)2 − (β2|hm|2αoPξc)2

)
.

(5.37)
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RSMA Proposed Algorithm :

1: INPUT: Rth, R
min
k , ε, β, P

2: Set αo = αoLP from (5.23).
3: Check which case is valid and find the sub-optimal circularity coefficient ξ∗c from (5.27).
4: For the corresponding case, find the sub-optimal α∗o from (5.30).
5: Calculate αmin

j , ∀j = 1, ...,K from (5.34).
6: Find the user k from (5.35).
7: For this kth user, find sub-optimal α∗k from (5.33).

After further simplifications, (5.37) is presented as expressed as

k = arg max
m∈K

=
1

2
log2(β

2|hm|2αoP + |hm|2P (1− αo)(1− αmin
m ) + σ2)2 − (β2|hm|2αoPξc)2

− 1

2
log2(β

2|hm|2αoP + |hm|2P (1− αo)
K∑

j=1,j 6=m
αmin
j + σ2)2 − (β2|hm|2αoPξc)2

= arg max
m∈K

=
(β2|hm|2αoP + |hm|2P (1− αo)(1− αmin

m ) + σ2)2 − (β2|hm|2αoPξc)2

(β2|hm|2αoP + |hm|2P (1− αo)
∑K

j=1,j 6=m α
min
j + σ2)2 − (β2|hm|2αoPξc)2

.

(5.38)

After a few algebraic simplifications, we get (5.35). This concludes the proof.

Lemma 2 emphasizes that it is optimal for the BS to allocate more power to the user

that can maximize the sum private rate while allocating the minimum transmit power that

can satisfy the minimum rate requirement for all other users. The proposed algorithm is

summarized as shown at the top of the page.

5.4 Simulation Results

In this section, we simulate a downlink wireless system that consists of a BS serving K

users using RSMA mechanism and employing IGS at the common message. We compare

its achieved sum private rate to its counterpart of PGS-based RSMA systems.

We consider the distance-dependent path-loss model as a form of large-scale fading,

and the Rayleigh fading model as small-scale multi-path fading. The channel from the

BS to user k, ∀k = 1, ..., K, at a distance of dk meters is generated as
√

10−
σPL
10 hk, where
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Figure 5.1: Sum private rate vs P (dBm) for IGS-based and PGS-based RSMA systems for
different β and K = 3.

hk is a Rayleigh fading channel coefficient and σPL = 38.46+10nlog10(dk) is the path-loss

in dB, where n = 3 is the path-loss exponent. We assume users are uniformly distributed

in a circle area of diameter 300 meter. Unless otherwise mentioned, we assume that the

maximum transmit power is P = 42 dBm, the noise power is σ2 = -104 dBm/Hz, Rmin
k =

0.5 bps, and Rth = 0.5 bps/Hz. The SIC detection threshold is set as ε = -94 dBm (the

value of ε is selected to ensure that the error rate of decoding the common message is

below certain threshold) [183]. All simulation results are averaged over 104 Monte Carlo

channel realizations.

In Fig. 5.1, the sum private rate is simulated versus P (dBm) where optimal ξ∗c , α
∗
o,

and α∗k are used at different values of β = 0.1, 0.4, 0.7, and K = 3. It is clearly seen that

IGS-based RSMA outperforms PGS-based at all level of SIC imperfections. In particular,

as the SIC becomes worse, the sum private rate gain of using IGS-based RSMA increases

over PGS-based RSMA. This is due to the fact that IGS circumvents the severe impact
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Figure 5.2: Comparison of the sum private rate performance vs. minimum private rate demand
of user 1 under different minimum common rate demand, with β = 0.1 and K = 3.

of the residual interference occurring due to SIC imperfections. In addition, we compared

the proposed IGS-based sub-optimal solution to the exhaustive search solution at β = 0.1.

It can be observed that a small performance gap exists between the sub-optimal and the

exhaustive search solutions.

Fig. 5.2 shows the sum private rates versus minimum private rate threshold for each

user at different common rate thresholds Rth = 0.5, 1 bps/Hz. From this figure, RSMA

IGS-based scheme always achieves a better performance than PGS-based scheme under

imperfect SIC. It can be observed that the sum private rate degrades softly when the

minimum private rate threshold is a bit low. However, when the minimum private rate

threshold is high, the sum private rate degrades sharply. This is due to the reason that

a high minimum private rate threshold requests the BS to allocate more power to the

users with worse channel condition, which consequently degrades the private sum rate

performance. It is also observed that as Rth increases, the private sum rate performance
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Figure 5.3: Sum private rate vs number of users for both IGS-based and PGS-based RSMA
systems with β = 0.1.

in both schemes degrades because the BS requires to allocate more power for the common

message to be decoded by all users.

In Fig. 5.3, the sum private rate is simulated vs the number of users at β = 0.1 and P

= 42 dBm. As the number of users increases, the total sum private rate increases for both

IGS and PGS RSMA schemes due to the multi-user gain that RSMA achieves. However,

the sum private rate gain of IGS-bsed RSMA scheme outperforms PGS-based scheme due

to the impact of extra degrees of freedom that IGS signaling offers.

5.5 Conclusion

In this chapter, we maximized the sum private rate of a multi-user RSMA system subject

to minimum rate and power budget requirements under imperfect SIC. The optimal IGS

circularity coefficient and power allocation solutions are obtained. Simulation results
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showed that IGS-based RSMA systems outperform their counterpart PGS-based RSMA

systems in terms of private sum rate. A gain of 0.5 bps/Hz is attained at medium

SNR region, In addition, it was observed that the gain from the IGS increases when the

imperfect SIC increases. Results also revealed that the optimal power allocation scheme

enhances the gain of both IGS-based RSMA and PGS-based RSMA systems over the fixed

power allocation scheme.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

NOMA and RSMA are considered potential solutions to suffice the the new requirements

for B5G and 6G wireless communication systems. They have the capability to support

low-loaded and heavily-loaded systems with much higher data rate. In this research work,

we focused on employing IGS as a generalized signaling scheme to improve the spectral

and energy efficiency of NOMA and RSMA technologies by exploiting the extra degrees

of freedom that IGS can offer.

In this thesis, we first investigated the the performance of using IGS in direct point-to-

point NOMA systems under imperfect SIC assumption. Achievable user rates expressions

were derived when users adopt IGS. The spectral and energy efficiency maximization

problems of a two-user NOMA system were formulated under minimum user-rate require-

ments and total power constraints. Two iterative algorithms were proposed to jointly

optimize the IGS circularity coefficients and power allocation for the formulated problems

using sub-optimal solutions of KKT and Dinkelbach approaches. Furthermore, improper

constellation diagrams are designed using WLT with predefined optimized IGS coefficients

to study the impact of IGS on throughput and error performance.
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Results indicated that the spectral and energy efficiencies of IGS-based NOMA sys-

tems were significantly enhanced by jointly optimizing the circularity coefficients for both

users compared to PGS-based NOMA systems and scenarios where only the circularity

coefficient of a single user was optimized in IGS-based systems. A spectral efficiency of

about 4 bits/s/Hz can be attained by the modified proposed algorithm at 3 dBW power at

η = 0.1 and α = 0.4. To achieve the same spectral efficiency of 4 bits/s/Hz using only one

user IGS-based and PGS-based schemes, nearly 2 to 2.5 dBW power are needed, respec-

tively. Moreover, it was observed that the benefits of using IGS became more pronounced

as the level of SIC imperfection increased. Additionally, the findings revealed that IGS

could offset the extra power required for processing at the strong user in a NOMA system

under imperfect SIC. Furthermore, the results demonstrated that the error performance

of the IGS-based system surpassed that of its PGS-based counterpart, owing to the unique

impropriety characteristics of the constellation.

Second, we analyzed a cooperative FD-NOMA system employing IGS under the in-

fluence of imperfect self-interference cancellation. In this context, three optimization

problems were formulated to maximize spectral efficiency, ensure max-min rate fairness,

and optimize energy efficiency. The IGS circularity coefficients and power allocation at

the BS were jointly optimized, subject to each user’s rate constraints and the system’s

power budget. New expressions for user rates were derived under the assumption that

both users adopt IGS. To solve the formulated problems, we proposed iterative algorithms

based on solving the KKT conditions, yielding sub-optimal solutions. Furthermore, the

effect of the IGS circularity coefficient on each user’s constellation diagram was analyzed.

We also designed improper constellations using the optimized IGS coefficients to evaluate

the impact of IGS on error performance.

Simulation results demonstrated the superiority of IGS-based NOMA systems over

their PGS-based counterparts in the context of cooperative FD-NOMA systems, achieving

a performance gain of approximately 1.5 to 2 dB. Additionally, IGS was shown to be

more energy-efficient than PGS, as it requires less power in the low to medium power
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regions. IGS is considered more energy-efficient than the PGS since it transmits around

0.5 bits/joule more at lower to medium BS’s power values. Furthermore, the developed

IGS max-min algorithm provided a better trade-off compared to its PGS counterpart,

highlighting its effectiveness in achieving improved system performance.

Third, RSMA combined with IGS was investigated in a multi-user environment under

the influence of imperfect SIC. New expressions were derived for the achievable user

rates, including the common and private rates, assuming IGS is employed for common

message signaling. Using these expressions, a spectral efficiency maximization problem

was formulated for the users’ private rates, subject to a constraint ensuring that the

minimum users’ common rate remains above a specified threshold. Optimal solutions

were obtained for the IGS circularity coefficients and power allocation at the BS. The

results highlighted the effectiveness of IGS in enhancing the spectral efficiency of the

RSMA system compared to its PGS-based counterpart.

6.2 Future Work

6.2.1 Direct Extensions

The use of IGS with NOMA and RSMA is still in its infancy in academic research,

leaving numerous open challenges to be addressed. In the context of point-to-point NOMA

systems, this thesis considered a two-user SISO system model. Future work could extend

this research to MISO or MIMO NOMA systems with multiple users. A key challenge

in such an extension would be designing practical and efficient solutions for these more

complex systems, particularly when IGS is adopted for a group of users or all users in

the system. This would involve addressing issues related to user grouping, interference

alignment, resource allocation, and computational complexity, while ensuring the benefits

of IGS are fully realized in multi-user and multi-antenna scenarios.

Extensions of IGS in cooperative relaying systems include exploring multi-hop relay-
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ing to manage accumulated interference, cluster-based relaying with dynamic cluster for-

mation, and hybrid decode-and-forward (DF) and amplify-and-forward (AF) schemes for

improved spectral and energy efficiency. Relay selection algorithms optimized for IGS can

enhance throughput, while alternating relaying under imperfect self-interference cancella-

tion can further mitigate interference [134]. Other extensions include improving physical

layer security in secure relaying systems, leveraging energy-harvesting relays to optimize

power usage, and integrating IGS with cooperative systems for sensing and communica-

tion (ISAC) applications. These extensions focus on joint optimization of beamforming,

power allocation, and circularity coefficients to maximize system performance.

In this research, we focused on an FD-NOMA relaying system with only two users to

simplify the analysis and reduce the complexity of the proposed solutions. A more general-

ized FD-NOMA system model could involve multiple groups of users, where each group in-

cludes two paired NOMA users, and conventional OMA techniques are employed between

these groups in a multi-user system. Furthermore, alternative cooperative schemes, such

as alternating relaying NOMA systems under imperfect SIC, present promising oppor-

tunities for employing IGS. Incorporating IGS in these setups could potentially enhance

both spectral and energy efficiency, offering valuable advancements in the performance of

future communication systems.

Another extension could be the multi-relay FD-NOMA with IGS. We can extend the

FD-NOMA relaying system to a multi-relay setup, where multiple relays simultaneously

assist user transmissions. In this extension, we may investigate how IGS can be leveraged

to manage the interference caused by multiple relays and optimize relay selection, circular-

ity coefficients, and power allocation. The study can be extended to scenarios involving

joint beamforming design and IGS optimization in FD-NOMA systems equipped with

multiple antennas at the base station. In such systems, beamforming vectors, power allo-

cation, and circularity coefficients can be jointly optimized to enhance both spectral and

energy efficiency, leveraging the benefits of IGS in mitigating interference and improving

overall system performance.
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Since the RSMA is still an open research area, there is significant potential for further

development in this area as an extension of our work, particularly by incorporating IGS

into MIMO systems. Additionally, other performance metrics such as energy efficiency

and max-min fairness could be explored through the use of IGS in RSMA. Furthermore,

cooperative relaying networks could be examined using RSMA technology, considering

practical challenges such as SIC imperfections, self-interference cancellation issues, and

phase and quadrature imbalance.

One possible extension could involve investigating the incorporation of advanced mod-

ulation schemes, such as OFDM and QAM, within RSMA and IGS systems to enhance

spectral efficiency and robustness against interference by enabling efficient signal transmis-

sion and better adaptability to channel conditions. Additionally, dynamic spectrum man-

agement strategies could be explored to optimize resource allocation in MIMO systems,

particularly in time-varying and spatially heterogeneous wireless environments, further

improving system performance and adaptability.

6.2.2 Open Research Directions

• MISO, MIMO, and Massive MIMO: While there has already been substantial work

integrating NOMA and RSMA with MIMO systems, several intriguing research di-

rections remain in this field [6]. One such direction involves utilizing IGS in multi-

carrier settings, such as OFDM MIMO systems. The inclusion of sub-carrier assign-

ments, alongside power allocation and user selection, introduces a significant level

of complexity in terms of rate optimization problems in IGS. Additionally, uplink

MIMO NOMA and RSMA with IGS are of great interest, particularly in massive

machine-type connectivity scenarios within B5G systems, where the power budget

of uplink transmitters (i.e., users) is a critical concern.

• mmW and Tera-Hertz (THz) Communications: A major challenge in high-frequency

bands, such as mmW and Tera-Hertz (THz), is the significant path loss encountered
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during signal propagation. The integration of promising techniques like IGS and

multiple access schemes such as NOMA and RSMA offers a valuable complement to

these systems, helping to efficiently serve a large set of users in such communication

environments. There remains ample opportunity for innovative solutions that lever-

age the potential capabilities of IGS, mmW, and THz channels, benefiting NOMA

and RSMA systems through both intelligent machine learning approaches and tra-

ditional optimization methods. UAVs Assisted Communications: Most existing rate

optimization problems focus on a single unmanned aerial vehicle (UAV) acting as

a flying BS to serve multiple users. However, incorporating UAV into NOMA and

RSMA with IGS systems can offer a variety of solutions, each with its own unique

sum-rate optimization challenges. For example, integrating NOMA, RSMA, and

IGS in a multi-tier framework involving both terrestrial and aerial components, in-

cluding ground BS, represents an exciting area for future research. The sum-rate

optimization problem with IGS in such complex systems, incorporating NOMA and

RSMA, remains a promising research avenue.

• Intelligent Reflecting Surfaces (IRS): While rate optimization problems have been

studied in conventional NOMA and RSMA systems, these studies have generally not

considered IGS. Additionally, existing models often focus on SISO configurations.

Future research could explore the use of advanced multi-antenna setups, which could

add significant complexity to rate optimization problems. The use of IGS, beamform-

ing, and cluster formations introduces additional challenges. Moreover, managing

inter-cluster interference between NOMA and RSMA clusters, which arises due to

passive reflectors, presents an interesting design problem worth further exploration.

• Integrated Terrestrial-Satellite Networks: The integration of RSMA and NOMA in

terrestrial-satellite communications holds great potential for B5G networks, as it

offers extensive coverage and improved spectral efficiency. Future research could

focus on optimizing rate and IGS coefficients for different user and system design
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objectives in this context.

• Hybrid System Models: Terrestrial and Non-Terrestrial Networks: A hybrid system

combining terrestrial and non-terrestrial networks (e.g., satellite, UAVs, and high-

altitude platforms) could be a promising direction for the integration of NOMA,

RSMA, and IGS. Future research could focus on optimizing resource allocation,

beamforming, and user selection in such hybrid models, addressing the challenges of

network synchronization, connectivity, and QoS management across different layers

of communication.

• Mobile Edge Computing: A promising future research direction involves addressing

the joint user clustering, rate allocation, and power allocation problems for uplink-

downlink NOMA and RSMA systems with IGS in mobile edge computing environ-

ments, e.g. smart cities. Additionally, optimizing IGS coefficients to enhance system

content delivery rates and improve user QoS is another area ripe for exploration.

• Integrated Machine-Type Communications (MTC) and NOMA/RSMA: The integra-

tion of NOMA, RSMA, and IGS in massive machine-type communication (mMTC)

scenarios—such as smart cities, industrial IoT, and autonomous vehicles—could

open new avenues for research. This could involve optimizing system throughput

while maintaining reliability and energy efficiency for a large number of machine-type

devices with varying channel conditions and traffic patterns.

• Multimodal Sensing and Communication in NOMA/RSMA/IGS Systems: Future

networks might benefit from incorporating both sensing and communication capa-

bilities in a seamless manner. Research could explore how NOMA, RSMA, and

IGS can be integrated into systems that perform both communication and environ-

mental sensing, such as for autonomous driving or smart environments. Optimizing

the trade-offs between sensing quality and communication performance would be an

interesting research challenge.
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• AI-Driven Optimization/Innovations for NOMA, RSMA, and IGS: Artificial intelli-

gence (AI) and machine learning (ML) techniques are gaining traction in commu-

nication systems. AI/ML could be used to optimize the combination of NOMA,

RSMA, and IGS for network design, resource allocation, and interference manage-

ment. Research could focus on developing deep learning models or reinforcement

learning algorithms to dynamically adjust system parameters and improve perfor-

mance in real-time, especially for network scenarios with high mobility or uncertain

traffic patterns.

AI offers transformative potential for NOMA and RSMA systems through vari-

ous approaches. Reinforcement Learning, including multi-agent and deep RL, can

dynamically optimize resource allocation, such as power control, user clustering,

and subcarrier assignment. Deep learning models can approximate beamforming

solutions, while Federated Learning enables decentralized optimization to preserve

privacy and scalability. Graph Neural Networks enhance user clustering by mod-

eling user interactions, and Generative Adversarial Networks improve CSI predic-

tion for robust interference management. Transfer learning facilitates cross-domain

adaptation for varying environments, and meta-learning ensures quick adaptation to

dynamic conditions. Unsupervised learning extracts latent features for tasks like in-

terference mitigation without requiring labeled data, while Explainable AI enhances

transparency in resource allocation decisions. Together, these AI-driven techniques

promise significant advancements in the efficiency, scalability, and adaptability of

NOMA and RSMA systems for next-generation networks.
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Appendix A

Proofs of Chapter 4

A.1 Sum Rate Maximization Case 1: The proof and the value

of ρ̂ in (4.27)

To get the regions for R1,2 < R2,2 or R2,2 < R1,2, we need to find a value ρ̃, such that

0 < ρ̃ < 1 where each case exists. From (A.6), (A.7), we solve

(P̂Γ2 + 1)2 − (P̂Γ2ξ2)
2 <

Λ−
[
(ρ1PΓ1ξ1 + ρ2PΓ1ξ2)

2 + (κP̂Γsξ2)
2
]

Υ− (κP̂Γsξ2)2 − (ρ1PΓ1ξ1)2

 . (A.1)

After a few mathematical simplifications, we get

ρ2
[
(PΓ1)2

(
(1− ξ22)((P̂Γ2 + 1)2 − (P̂Γ2ξ2)2) + ξ21 + ξ22 + ξ1ξ2

)]
+ ρ

[
2(PΓ1)

(
(κP̂Γs + 1)((P̂Γ2 + 1)2 − (P̂Γ2ξ2)2)− PΓ1ξ

2
2 + PΓ1ξ1ξ2

)]
+
[
((κP̂Γs + 1)2 − (κP̂Γsξ2)2)((P̂Γ2 + 1)2 − (P̂Γ2ξ2)2) +(PΓ1)2ξ22 + (κP̂Γs)

2ξ22 − (PΓ1 + κP̂Γs + 1)2
]
< 0.

(A.2)

By solving the quadratic equation in (A.2), we find the solution of ρ̂ as shown below

ρ̃ =
−T +

√
(T 2 − 4UV )

2U
, (A.3)
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where

U = (PΓ1)
2 ×

(
(1− ξ22)((P̂Γ2 + 1)2 − (P̂Γ2ξ2)

2) + ξ21 + ξ22 + ξ1ξ2

)
, (A.4a)

V = ((κP̂Γs + 1)2 − (κP̂Γsξ2)
2)((P̂Γ2 + 1)2 − (P̂Γ2ξ2)

2) + (PΓ1)
2ξ22

+ (κP̂Γs)
2ξ22 − (PΓ1 + κP̂Γs + 1)2 (A.4b)

T = 2(PΓ1)
(

(κP̂Γs + 1)((P̂Γ2 + 1)2 − (P̂Γ2ξ2)
2)− PΓ1ξ

2
2 + PΓ1ξ1ξ2

)
. (A.4c)

Without loss of generality, and for the sake of mathematical simplicity, we assume ∠Ĉ1 =

∠Ĉ2
1 and a phase difference of π/2 between ∠Γs and ∠Γ1,

2 then, the rates in (4.13),

(4.15), (4.21) are derived as follows

R1 =
1

2
log2

Υ− (ρ1PΓ1ξ1)
2 −

(
κP̂Γsξ2

)2
(
κP̂Γs + 1

)2
−
(
κP̂Γsξ1

)2
 . (A.5)

R1,2 =
1

2
log2

Λ−
[
(ρ1PΓ1ξ1 + ρ2PΓ1ξ2)

2 + (κP̂Γsξ2)
2
]

Υ− (κP̂Γsξ2)2 − (ρ1PΓ1ξ1)2

 , (A.6)

R2,2 =
1

2
log2

[(
P̂Γ2

)2 (
1− ξ22

)
+ 2

(
P̂Γ2

)
+ 1

]
. (A.7)

It is worth mentioning that if we substitute ξ1 = ξ2 = 0 into (A.5), (A.6), and (A.7), we

get well-known rate expressions seen in the case of PGS.

1phase of circularity of coefficient is not an optimization parameter.
2We assume controlled signal design, i.e., the cooperating FD-user uses a pre-defined beamforming or phase

adjustment strategy to align the user channel and SI channel with a π/2 phase difference.
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To find optimal ρ in Case 1, (4.26) results in the following equation

(λ1 + w1)(((FρPΓ1ξ
2
1)(κP̂Γs + 1)2 − (κP̂Γs)

2ξ22 + F − (κP̂Γsξ2)2 − (ρPΓ1ξ1)2)(G− ((1− ρ)Γ1ξ2)2 − (κP̂Γsξ2)2

− (ρPΓ1ξ1)2)(F − (κP̂Γsξ2)2 − (ρPΓ1ξ1)2)) + (λ2 + w2)((((1− ρ)Γ1ξ
2
2 − ρPΓ1ξ

2
1)(F − (κP̂Γsξ2)2 − (ρPΓ1ξ1)2)

− (F − ρPΓ1ξ
2
1)(G− (κP̂Γsξ2)2 − ((1− ρ)PΓ1ξ2)2 − (ρPΓ1ξ1)2))(F − (κP̂Γsξ2)2 − (ρPΓ1ξ1)2)((κP̂Γs + 1)2

− (κP̂Γs)
2ξ22)) = 0, (A.8)

where F = (ρPΓ1 + P̂Γs + 1)2, G = ((ρP + (1 − ρ)P )Γ1 + P̂Γs + 1)2. To continue, the

derivation with respect to ξ1 and ξ2 in (4.25), respectively, results in

aξ31 + bξ21 + cξ1 + d = 0, (A.9)

where

a =ρ3(PΓ1)
4(−ρ(λ1 + w1) + 2(λ2 + w2)(1− ρ)ξ2),

b =ρ3(1− ρ)(PΓ1)
4ξ2(−2(λ1 + w1)− (λ2 + w2))

c =(ρPΓ1)
2((λ1 + w1)(Λ− ((1− ρ)PΓ1ξ2)

2 − (κP̂Γsξ2)
2) + (λ2 + w2)(Υ− Λ + (1− ρ)PΓ1ξ2)

2)

d =ρ(1− ρ)(PΓ1)
2ξ2(Υ− (κP̂Γsξ2)

2)(λ2 + w2).

and

− (λ1 + w1)ξ2(κP̂Γs)
2(Υ− (κP̂Γsξ2)

2 − (ρ1PΓ1ξ1)
2)(Λ− (ρ1PΓ1ξ1 + ρ2PΓ1ξ2)

2 + (κP̂Γsξ2)
2)

− (λ2 + w2)(((κP̂Γs + 1)2 − (κP̂Γsξ1)
2)(ξ2(κP̂Γs)

2(Λ−Υ− (1− ρ)PΓ1ξ2)
2

− 2(ρPΓ1ξ1)(1− ρ)PΓ1ξ2)
2 − ((1− ρ)PΓ1)(ρPΓ1ξ1 + (1− ρ)PΓ1ξ2)

(Υ− ((ρPΓ1ξ1)
2 + (κP̂Γsξ2)

2))) = 0. (A.10)

153



A.2 Sum Rate Maximization Case 2: the derivation with re-

spect to ξ2

From (4.25), the derivation with respect to ξ2, after a few algebraic simplification, we get

ξ2
{
a11ξ

4
2 + b11ξ

2
2 + c11

}
= 0, (A.11)

where a11, b11, c11 are

a11 =(λ2 + w2)(Γ2P̂ )2
[
(ΓsP̂ )2

]
,

b11 =(P̂Γ2)
2
[
(κP̂Γs)

2
]{

(λ2 − λ1)
[
(ρPΓ1)

2 + κP̂Γs + 1)
]

+ 2(λ2 + w2)(κP̂Γs + 1)2
}
,

c11 =(λ2 + w2)(P̂Γ2)
2
[
(ρPΓ1 + κP̂Γs + 1)2(κP̂Γs + 1)2

]
− (λ2 + w1)

[
(κP̂Γs)

2
]

[
(ρPΓ1)

2 + κP̂Γs + 1)
]

(P̂Γ2 + 1)2.

A.3 Max-MIN Case 1: the derivation with respect to ρ, ξi

We derive (4.33) with respect to ρ and we get (A.12) as follows

∂LX

∂ρ
=(−λ1)

(
(ρ(PΓ1ξ1)2(1− ξ21) + (κP̂Γs + 1)PΓ1)((κP̂Γs + 1)2 − (κP̂Γsξ2)2)

(Λ− ((ρPΓ1ξ1) + (1− ρ)PΓ1ξ2)2 + (κP̂Γsξ2)2)

(−λ2)
(
− ((1− 2ρ)(PΓ1)2ξ1ξ2 − (1− ρ)(PΓ1ξ2)2)(Υ− ((ρPΓ1ξ1)2 + (κP̂Γsξ2)2))

− (ρ(PΓ1)2 + PΓ1(κP̂Γs + 1))(Λ− ((ρPΓ1ξ1) + (1− ρ)PΓ1ξ2)2 + (κP̂Γsξ2)2)

(ρ(PΓ1ξ1)2(Λ−Υ− (1− ρ)PΓ1ξ2)2 − 2(ρPΓ1ξ1)((1− ρ)PΓ1ξ2)
)

(A.12)
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Similarly, we derive (4.33) with respect to ξi, ∀i = 1, 2 and get, respectively,

∂LX
∂ξ1

=(λ1 − λ2)(ρPΓ1)
2ξ1

[
Λ−

[
(ρPΓ1ξ1 + (1− ρ)PΓ1ξ2)

2 + (κP̂Γsξ2)
2
]]

λ2(ρPΓ1)((ρPΓ1ξ1 + (1− ρ)PΓ1ξ2))(Υ− (κP̂Γsξ2)
2 − (ρPΓ1ξ1)

2) (A.13)

and

∂LX
∂ξ2

=− λ1ξ2(κP̂Γs)
2
[
Υ− (κP̂Γs + 1)2 − (ρPΓ1ξ1)

2
] [

(Λ− (ρPΓ1ξ1 + (1− ρ)PΓ1ξ2)
2
]

− λ2
[
(κP̂Γs + 1)2 − (κP̂Γsξ2)

2
] ( [

ξ2(κP̂Γs)
2(Λ−Υ− (1− ρ)PΓ1ξ2)

2

−2(1− ρ)PΓ1ξ2(ρPΓ1ξ1)]− ((1− ρ)PΓ1)(ρPΓ1ξ1 + (1− ρ)PΓ1ξ2)

(Υ− (κP̂Γsξ2)
2 − (ρPΓ1ξ1)

2
)
. (A.14)

A.4 MAX-MIN CASE 2: Derivation of (4.33) with respect to ξ2

Deriving LX in (4.33) with respect to ξ2 gives

− λ1
(

2ξ2(κP̂Γs)
2
(
Q−K − (ρPΓ1ξ1)2

))(
(P̂Γ2)2(1− ξ22) + 2P̂Γ2 + 1

)
+ λ2

(
2ξ2(P̂Γ2)2

)
(
Q− ((ρPΓ1ξ1)2 + (κP̂Γsξ2)2)

)(
K − (κP̂Γsξ2)2

)
= 0, (A.15)

where Q = (ρPΓ1 + κP̂Γs + 1)2, K = (κP̂Γs + 1)2.
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Appendix B

Proofs of Chapter 5

B.1 Proof: Rc is decreasing function of ξc

By deriving (5.20) with respect to ξc, we get

∂Rc

∂ξc
= − 1

ln2

ξc(|h1|2pc)2

(|h1|2P + σ2)2(|h1|2pcξc)2
. (B.1)

Since ξc is between zero and one, then ∂Rc
∂ξc

is always negative which proves that Rc is

decreasing function of ξc.

B.2 Finding the bound of αk

By substituting in (5.21) into (5.19d) and solving for αk, we find

22Rmin
k =

(
β2αo + (1− αo)

∑K
j=1 αj + σ2

P |hk|2

)2
− (β2αoξc)

2(
β2αo + (1− αo)

∑K
j=1,j 6=k αj + σ2

P |hk|2

)2
− (β2αoξc)2

. (B.2)
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Since
∑K

j=1 αj = 1 and
∑K

j=1,j 6=k αj = 1 − αk, after some mathematical manipulations,

(B.2) results in

(1− αo)2α2
k − 2(1− αo)

(
β2αo + (1− αo) +

σ2

P |hk|2

)
αk − F = 0, (B.3)

where F = (2−2R
min
k −1)

[(
β2αo + (1− αo) + σ2

P |hk|2

)2
− (β2αoξc)

2

]
. By solving the quadratic

equation in (B.3) and ensuring that αk ≥ 0, we get (5.25), which concludes the proof.

B.3 Proof:
∑K

k=1Rpk is decreasing function of αo

By deriving (5.21) with respect to αo, i.e.
∂
∑K
k=1Rpk
∂αo

, it results in

∂
∑K

k=1Rpk

∂αo
=

1

ln 2

K∑
k=1

Q

R×W
, (B.4)

where

Q = −(β2(|hk|2P )2αk)(f1)− (σ2(|hk|2P )αk)(f2) + (ξ2cαoαk − 2 + αk)(f3) + (ξ2c − 1)(f4),

(B.5)

where f1 = (|hk|2P (1−αo))2(1−αk)+2σ2(β2|hk|2Pαo)+(σ2)4 +σ2|hk|2P (1−αo)(2−α).

f2 = (|hk|2P (1− αo))2(1− αk)(|hk|2P (1− αo))2(1− αk) + 2σ2(β2|hk|2Pαo) + (σ2)4 +

σ2|hk|2P (1−αo)(2−α) + (σ2)4 +σ2|hk|2P (1−αo)(2−α) +β2(|hk|2P )2αo(1−αo)(2−αk).

f3 = β4(|hk|2P )4αo(1− αo)αk.

f4 = σ2β4(|hk|2P )3α2
oαk + β6(|hk|2P )4α2

oαk.

R = (β2αoP |hk|2)2(1− ξ2c ) + ((1− αo)P |hk|2 + σ2)2

+ 2((β2αoP |hk|2)((1− αo)P |hk|2 + σ2)). (B.6)
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W = (β2αoP |hk|2)2(1− ξ2c ) + ((1− αo)(1− αk)P |hk|2 + σ2)2

+ 2((β2αoP |hk|2)((1− αo)(1− αk)P |hk|2 + σ2)). (B.7)

It should be noted from the expression in (B.4) that the values of R,W are positive

quantities. However, the Q components results in negative quantity since f1, f2, f3, f4

are positive values multiplied by negative ones which results in an overall negative value.

This proves that
∑K

k=1Rpk is decreasing function of αo.

B.4 Proof:
∑K

k=1Rpk is increasing function of ξc

∂
∑K

k=1Rpk

∂ξc
=

1

ln2

K∑
k=1

ξc(β
2|hk|2αoP )2

(C −D)

C D
(B.8)

where C = R in (B.6), D = W in (B.7), and (C−D) = (|hk|2αk(1−αo)P )2+2(|hk|2αk(1−

αo)P )(β2|hk|2αoP + |hk|2(1−αk)(1−αo)P +σ2). Since C,D and (C−D) are all positive

quantities, this proves that
∑K

k=1Rpk is increasing function of ξc.

B.5 Proof of Lemma 1

Below we use contradiction to prove this Lemma. Assume that there exist s, t such that

α∗s > αmin
s and α∗t > αmin

t for the optimal solution α∗k. Then, we can prove that there

exist feasible power allocation, ᾱs, ᾱt which yields a better objective value (5.31a). To

find such ᾱs, ᾱt, we substitute αj = α∗j , j 6= s, t into problem (5.31), which after a few

manipulations results in
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max
αs,αt

Rk(αs) + Rk(αt) (B.9a)

s.t. C7 : αs + αt = 1−
K∑

j=1,j 6=s,t

α∗j , (B.9b)

C8 : αs ≥ αmin
s , αt ≥ αmin

t , (B.9c)

where Rk(αs) =1
2 log2

(
(β2|hs|2αoP+|hs|2P (1−αo)+σ2)2−(β2|hs|2αoPξc)2

(β2|hs|2αoP+|hs|2P (1−αo)(1−αs)+σ2)2−(β2|hs|2αoPξc)2

) and

Rk(αt) = 1
2

log2

(
(β2|ht|2αoP+|ht|2P (1−αo)+σ2)2−(β2|ht|2αoPξc)2

(β2|ht|2αoP+|ht|2P (1−αo)(1−αt)+σ2)2−(β2|ht|2αoPξc)2

)
. From (B.9b), we get

αs = 1−
K∑

j=1,j 6=s,t

α∗j − αt. (B.10)

Based on (B.9c) and (B.10), we get

αmin
t ≤ αt ≤ 1−

K∑
j=1,j 6=s,t

α∗j − αmin
s . (B.11)

From (B.10) and (B.11), the problem in (B.9) can be re-organized as

max
αt

R̂k(αt) (B.12a)

s.t. C9 : αmin
t ≤ αt ≤ 1−

K∑
j=1,j 6=s,t

α∗j − αmin
s , (B.12b)

where R̂k(αt) = −1
2

log2

(
(β2|hs|2αoP + |hs|2P (1− αo)(

∑K
j=1,j 6=s,t α

∗
j + αt) + σ2)2

)
−1

2
log2 ((β2|ht|2αoP + |ht|2P (1− αo)(1− αt) + σ2)2). Since −log(x) is a convex function,

the objective function (B.12a) is convex. It is well-known that the maximization of a

convex function always occurs in the boundary of the feasible solution, i.e., the optimal
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solution α∗t of problem (B.12a) is within the following region

ᾱt ∈

{
αmin
t , 1−

K∑
j=1,j 6=s,t

α∗j − αmin
s

}
. (B.13)

From (B.10), we can also get

ᾱs = 1−
K∑

j=1,j 6=s,t

α∗j − ᾱt. (B.14)

Since problem in (B.9) is equivalent to problem (B.12), (ᾱs, ᾱt) is also the optimal solution

of (B.9). According to (B.13) and (B.14), ᾱs = αmin
s and ᾱt = αmin

t is always satisfied.

Because (ᾱs, ᾱt) is the optimal solution for problem in (B.9) and (ᾱs, ᾱt) 6= (α∗s, α
∗
t ),

we can claim that the solution

(α∗1, ..., α
∗
s−1, ᾱs, α

∗
s+1, ..., α

∗
t−1, ᾱt, α

∗
t+1, ..., α

∗
K) (B.15)

is feasible with the objective function value greater than solution α∗k, which contradicts

the fact that α∗k is the optimal solution of problem (5.31). This concludes the proof of

Lemma 1.

B.6 Proof of Convexity of (5.31a) in terms of αk

By deriving (5.31a) with respect to αk, we get

∂
∑K

k=1Rpk

∂αk
=

1

ln 2

K∑
k=1

|hk|2(1− αo)PA
B

, (B.16)

160



A = β2|hk|2αoP + |hk|2(1−αo)P (1−αk) + σ2 and B = (β2|hk|2αoP + |hk|2(1−αo)P (1−

αk) + σ2)2 − (β2|hk|2αoPξc)2. By taking the second derivative of (B.16), we get

∂2
∑K

k=1Rpk

∂α2
k

=
1

ln 2

K∑
k=1

(|hk|2(1− α∗o)P )2(A2 + (β2|hk|2αoPξc)2)
B2

. (B.17)

From (B.17),
∂2
∑K
k=1Rpk
∂α2

k
> 0, which proves the convexity of (5.31a) in terms of αk.
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