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ABSTRACT 
 
Archaeological investigations are rapidly changing due to developing digital technologies. They 
affect data collection, processing, interpretation, and analysis, but have spawned new approaches 
to archaeological investigations.  One aspect of this change includes remotely piloted aircraft 
systems (RPAS or Unmanned Aerial Vehicles or UAVs, also commonly known as drones) that 
have utility in improving cost-effectiveness of site characterization and feature identification but 
may not be appropriate for every archaeological situation. These RPAS are rapidly improving, and 
becoming more affordable, powerful, and accessible. When employed with digital data processing 
methods, they offer an important tool for investigating natural and cultural landscapes. Compared 
with imagery from modern satellite and manned aircraft, low altitude drone data offer advantages 
in resolution, accuracy, and flexibility. Important emerging considerations involve the 
development of diverse drone-deployed sensors coupled with geomatic analysis, machine learning, 
and computer-aided enhancement of detected spatial patterns.  

This thesis explores the strengths and weaknesses of data collection and processing via aerial 
remote sensing, with particular attention to its utility for archaeological detection and 
characterization. It evaluates the efficacy and cost-effectiveness of unmanned aerial vehicles 
(UAVs) equipped with various sensors to aid archaeological investigation and site analysis. 
Further, a variety of data formats were integrated using geographic information systems (GIS). 
Information deriving from each of the remote sensing sensors used in this thesis demonstrated 
interpretive value. Efforts at validation of non-invasive archaeological interpretation involve direct 
visual confirmation of feature anomalies and positive spatial correlation of features of interest 
using optical remote sensing, legacy data, and georeferenced imagery. 

This study represents the first systematic evaluation of UAVs and sensor technologies for 
archaeological use in the Canadian Prairies. The research addressed three key questions through 
examples using both consumer and professional-grade UAVs: 

1. Can consumer and professional-grade UAVs provide more comprehensive tools for 
archaeological site characterization? 

2. Can these UAVs help overcome the physical and financial challenges associated with 
archaeological fieldwork? 

3. What technical and regulatory obstacles hinder the routine integration of consumer and 
professional-grade UAVs in archaeological investigations? 

These questions are addressed with aerial data from three different archaeological site types from 
Manitoba, Canada: the pre-contact Lockport site (case study 1); the fur trade posts at Fort Ellice I 
and Fort Ellice II (case studies 2 and 3); and an undisclosed modern/historic cemetery (case study 
4). 
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Chapter 1.0 Introduction 

The digital revolution of the 20th century introduced the world to personal computers and 

significantly transformed how archaeologists conduct professional site investigations.  Computing 

capabilities have developed dramatically since the 1950s and over the last 20 years have become 

widely integrated into consumer electronics that complement daily life. In turn, these inventions 

have collectively impacted most academic disciplines, as increasingly more data is digitally 

collected, processed, stored, and shared. Modern archaeology follows this trend and continues to 

undergo profound change. It is reflected with the rapid development and ready availability of 

Unmanned Aerial Vehicles (UAV), also variously known as Drones, and Remotely Piloted 

Aircraft Systems (RPAS). RPAS and UAV are the most appropriate acronyms because they 

reference a suite of tools making up a system, but drone is more popularly used. All three of these 

terms are frequently used to generically reference the technology discussed in this thesis. This 

increasingly sophisticated technology offers utility for site prospection and will contribute to 

improvements in data collection, analysis, and interpretation. 

This research summarizes a data collection and analytic workflow useful for archaeological 

investigations and geomatics while assessing the utility of RPAS to undertake archaeological 

mapping and site characterization. Important steps in this process are data acquisition, processing, 

analysis, interpretation, and dissemination. This evaluation of technology was conducted through 

four case studies in southern Manitoba where the machines were used to gather data and then build 

digital models for enhancing archaeological site detection and feature identification. This research 

considers both consumer and professional grade unmanned-aerial-vehicles (UAVs) and asks 

whether such approaches offer more comprehensive means of archaeological site characterization, 

whether they can help address the physical and financial hurdles confronting archaeologists, and 
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what technical and regulatory barriers impede their routine integration into the investigation 

process. 

This research also assesses the utility of RPAS, described in the next section, to undertake 

archaeological mapping and site characterization. These range from a comparatively inexpensive 

consumer UAV that offers mapping capabilities via a red-green-blue (RGB) camera, through to 

the leading professional-grade machine capable of interchangeably mounting various sensors. The 

latter can also feature enhanced georeferencing capacity via communication with Real Time 

Kinematic (RTK) base stations. Evaluation of these methods are conducted through four case 

studies where machines were used to build digital models for enhancing archaeological feature 

identification, site discovery, and aerial reconnaissance.  

1.1 Background and context 

At its initial inception in 2021, this research sought to assess the utility and effectiveness 

of an entry level consumer drone (a DJI Mavic Mini) to undertake archaeological documentation 

and compare output to that collected by my academic supervisor Dr. Scott Hamilton, who was 

using a more advanced professional consumer or ‘prosumer’ drone (the DJI Mavic 2 Pro) 

(Hamilton, 2022). As the methodologies evolved, and as new technologies have emerged, the 

thesis scope and objectives have expanded to include evaluation of a professional-grade drone (the 

DJI Matrice 300) that deploys several different sensors, such as LiDAR, thermal, and multispectral 

tools that can collect new sorts of information. This latter equipment was used at four ‘case study’ 

localities: Lockport (EaLf-1), Fort Ellice 1 (EcMh-003), Fort Ellice 2 (EcMh-010) and an 

undisclosed cemetery location in Manitoba, Canada.  

All four case studies derive from independent archaeological consulting projects and 

involve experimental application of RPAS-based mapping. The projects simultaneously consider 
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the utility of such archeological approaches, and the efficacy of generated data for documenting 

subsurface archaeological features, including unmarked graves. 

The first case study addresses the utility of an entry-level consumer drone (Mavic Mini) 

for rapid archaeological evaluative mapping as part of a conventional archaeological monitoring 

operation associated with urban infrastructure redevelopment along the east bank of the Red River 

at the Lockport Site near Selkirk, MB.  

The Lockport Site was used for millennia as an aggregation place along the Lockport 

Rapids, with occupations representing some of the most northerly evidence of pre-contact 

Indigenous agriculture such as maize cultivation (Boyd et al., 2008). The site has been subjected 

to repeated archaeological investigation but lacks a well georeferenced large-scale map with which 

Figure 1. Map overview (Google satellite) of the Lockport Site location (EaLf-1) 
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to relocate former excavation zones and to monitor the rate of riverbank erosion. A micro-UAV, 

(DJI Mavic Mini) was used to rapidly generate an overview map of this locality to assess its utility 

for archaeological reconnaissance and site overview. 

The second and third case studies address Fort Ellice 1 and 2, two 19th Century fur trade 

posts operated by the Hudson’s Bay Company (HBC). These sites are situated near the junction of 

the Qu’Appelle and Assiniboine Rivers, close to the Manitoba/Saskatchewan border (Figure 2). 

These investigations sought to non-invasively relocate the fort compounds to further cultural and 

natural heritage interpretation of the property using walking trails and exhibits (Hamilton 2022a; 

2022b). The work integrated aerial remote sensing with archival documents, using several RPAS 

and sensors including the DJI M300 RTK, Mavic 2 Pro, and Mavic Mini Version 1.  

The final case study focuses on cemetery investigations conducted with permission from 

Peguis First Nation at an undisclosed location. For privacy reasons and in accordance with cultural 

Figure 2. Map overview (Google satellite) showing FE1 and FE2 
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protocols, the geographic location and coordinate data for this site are not included. The flights 

were undertaken to assess the utility of RPAS methods for the detection of presently unmarked 

graves within this historic cemetery.  The DJI Matrice 300 Enterprise drone was used to deploy 

four types of sensors to compare output from visible light, multispectral, thermal, and LiDAR 

methods.  

1.2 Problem statement and research questions 

This research evaluates several archaeological sites to assess efficacy of RPAS for general 

geographic characterization and under what site conditions can the various sensors document 

surface and subsurface features or localities of interest. This might involve use of photogrammetric 

and Light Detection and Ranging (LiDAR) methods to document topographic variability of 

archaeological interest. It may also involve documentation of subtle variability in the non-visible 

light spectra consistent with vegetation changes caused by human intervention. The latter might 

derive from plant light reflectance properties using multi-spectral sensors or patterned variation in 

solar heat absorption using thermal sensors. Such possible anthropogenic ground modification 

might be difficult to detect from the ground surface but can be more readily evident from an aerial 

perspective, particularly through use of sensors capable of detecting and enhancing such 

phenomena. Such site prospection and characterization requires identification, classification and 

interpretation to distinguish natural versus anthropogenic landscape features. As discussed in more 

detail below, this involves technical calibration of equipment, consideration of the optimal field 

conditions suited to each type of data collection, data processing workflows, and how to 

independently validate the output from remote sensing efforts.  

In summary, this thesis outlines a geomatic data collection (using RPAS) and analytical 

workflow designed for archaeology. It considers data acquisition, processing, analysis, and 
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interpretation, and addresses under what conditions aerial remote sensing has utility in 

archaeological investigations. These questions are addressed with aerial data from three different 

archaeological site types; a pre-contact site (case study 1), a fur trade post (case studies 2 and 3),  

and a modern/historic cemetery (case study 4).  

The research addressed three key questions through examples using both consumer and 

professional-grade UAVs: 

1. Can consumer and professional-grade UAVs provide more comprehensive tools for 

archaeological site characterization? 

2. Can these UAVs help overcome the physical and financial challenges associated 

with archaeological fieldwork? 

3. What technical and regulatory obstacles hinder the routine integration of consumer 

and professional-grade UAVs in archaeological investigations? 

1.3 Aims and objectives 

To address the three research questions of this thesis, several objectives were developed. 

The central objective involved a comparatively straightforward evaluation of various RPAS and 

their efficacy for detecting and characterizing archaeological phenomena. This rather fundamental 

aim reflected the author’s impression that many practicing archaeologists are slow to incorporate 

UAV mapping into site prospection methods. Pecci (2020) suggests some limiting factors include 

few published ‘case study’ exemplars, and that the rapid development of rather expensive 

technologies contribute to hesitation when and how to experiment with new archaeological 

approaches. Other more practical considerations involve the slowly resolving regulatory 

environment regarding RPAS.  
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While this research is heavily focused on data collection and analysis workflows in support 

of archaeological investigation, also of consideration is how such aerial remote sensing might 

contribute to non-invasive and non-destructive evaluation of archaeological and cultural heritage 

materials. This investigation tested three different RPAS to evaluate whether they generate 

analytically useful and replicable results. Specific attention was paid to investigative modalities 

being applied to various digital geospatial products, filters, algorithms, and workflows. This 

involved use of four optical remote sensing techniques capable of reading different classes of 

electromagnetic energy and plotting the output with precise 3-dimensional accuracy. The latter 

consideration was particularly important since it is essential for relocation of detected 

unconformities to further archaeological validation and testing. 

1.4 Scope and limitations 

Any evaluation of an emerging technology involves both a critical assessment at a time of 

rapid transformation of technical capacity and development of analytic/interpretative protocols. 

This impacted the thesis research and led to a priority shift to evaluation of diverse sensors 

mounted on UAVs. This includes consideration of appropriate deployment methods and the 

capacity of available equipment and software. It also begs questions how information deriving 

from diverse remote sensing methods can serve to validate or refute one other. While test cases for 

such advanced evaluation are beyond the scope of this thesis, aerial remote sensing may have 

considerable utility when used in concert with near-surface geophysical technologies such as 

ground-penetrating radar (GPR), or with satellite imagery that features rapidly improving absolute 

accuracy and higher image resolution, particularly in more populous southern regions, or where 

large-scale land transformation is anticipated. This is briefly addressed in the literature review 

section below.  
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Testing, validating, and effectively interpreting archaeological sites using non-invasive 

approaches can take several forms. It might include repeated data collection followed by data 

processing and analysis that is coupled with comparison of repeated ‘data runs’ to assess 

consistency of outcomes. If consistency of results is observed, it suggests good precision and 

perhaps relative accuracy but might not inform absolute accuracy; the concepts of which are 

expanded upon further in chapter 2. If replication of results is not revealed, then it speaks to the 

reliability of results interpretation. Issues of interpretative accuracy of spatially registered data 

occur at several levels. Accuracy might pertain to how closely the geospatial registration of the 

UAV-derived imagery conforms to real-world Cartesian space, typically assessed through Global 

Positioning Systems (GPS) or other coordinate-based reference systems. This form of accuracy is 

fundamental for ensuring that mapped archaeological features are correctly located relative to 

established spatial frameworks. Accuracy also refers to the sensor's ability to detect phenomenon 

that correctly and appropriately serve as ‘proxies’ of archaeologically interest, such as features and 

surface conditions. This latter form of accuracy is more interpretive and dependent on the sensors’ 

capacity and sensitivity, environmental conditions, and the specificity of its responses to different 

material contrasts. For instance, a thermal anomaly might suggest a buried archaeological feature, 

but without rigorous validation, it could just as easily be a product of biological or geological 

phenomena such as an ant mound, decomposing organic material, or vegetation with distinct heat 

retention properties. Therefore, while absolute accuracy is often crucial for spatially anchoring 

data, interpretative accuracy (repeated and validated detection of meaningful archaeological 

signatures) plays an equally critical role in establishing the reliability of remote sensing 

methodologies in archaeology. 
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While the equipment used in this thesis offers very significant improvements in map data 

resolution, density, and accuracy over conventional tools, it is associated with unexpected 

consequences. These methods generate enormous quantities of digital data that require storage, 

processing, analysis, and interpretation within a digital environment. Such data is vulnerable to 

loss, corruption, and data security issues if not handled correctly. This is particularly significant 

given the challenges associated with data management and the difficulty of recollecting lost or 

corrupted data, especially in workflows that involve extensive processing and large datasets. In 

addition, proper data management requires a significant investment in computer and software 

technology, and a major commitment to keeping up with changing general digital literacy. 

1.5 Thesis layout 

This thesis is organized in a series of chapters, divided into subsections to aid exploration 

of each case study with its discrete set of objectives. This emphasizes the workflows represented 

in data collection, processing, interpretation, and analysis to enable readers to critically evaluate 

strategies and outcomes and seek to replicate them with their own data.  In effect this thesis 

offers a template on how to create and evaluate digital remote sensing products in ways that 

mimic standard approaches in archaeology. 

 Chapter 1 offers some background and context to the archaeological problems addressed 

in this thesis. The chapter provides some direction for the reader and an indication of things to 

follow. 

Chapter 2 offers a literature review outlining the development of aerial remote sensing 

with particular attention paid to archaeological applications. This historical review addresses its 

origins with manned aerial vehicles, the development of high elevation satellite systems and the 

more recent emergence of computer assisted remotely piloted low elevation aircraft. The latter 
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are of quite recent derivation, particularly when considering the development of consumer and 

professional grade equipment equipped with increasingly sophisticated flight control and 

telemetry components and a rapidly expanding range of data collection sensors. 

Chapter 3 offers details about the four case studies. This involves summarization of the 

research objectives associated with each test site, with detailed discussion how aerial remote 

sensing was integrated into those research operations. 

Chapter 4 presents the methodologies employed at each test site and details the flight 

protocols, the level of georeferencing accuracy sought, the sensors used and how the data was 

collected, processed, analyzed, and interpreted. Particular attention is paid to case study 1 as an 

investigation of rapid mapping, case study 2 as an experiment for deriving optimal geospatial 

accuracy, case study 3 as an exploration of digital geospatial products for visual assessment by 

comparison while incorporating other remote sensing data, and case study 4 as a culmination of 

all techniques to achieve the highest grade possible of aerial investigation using enterprise tools 

for qualitative and quantitative analysis. 

 Chapter 5 presents the results generated from each case study complete with map 

imagery for visual representation. Some additional tables and figures about the technical 

information and equipment used during this study are found in the appendices.  

 Finally, Chapters 6 and 7 offering discussion and conclusions respectively where some 

future insights into the field of digital archaeology and remote sensing are provided and present 

an optimistic case for growth in these fields, gleaned from the examinations and results produced 

by this thesis. 
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Chapter 2.0 Literature Review 

This section reviews the origins of photography and aerial remote sensing in general. It 

begins with the development and utilization of early technologies for mapping and 

reconnaissance and then introduces optical remote sensing in an applied setting. The final section 

offers a brief review of computer science research application, the development of Geographic 

Information Systems (GIS) and how this has impacted archaeology and landscape studies. 

2.1 History of aerial mapping and challenges for archaeological application 

While there is a growing number of publications contributing to aerial remote sensing, 

comparatively few directly address application to archaeology, and even fewer of these studies are 

conducted on North American sites. This is surprising given that archaeological field investigation 

and analysis often have a strong spatial and cartographic component. Perhaps this relates to  the 

nature of North American climate and geography. It might also reflect the perspective that such 

methods are best suited for detection of monumental architecture, something less commonly 

associated with hunting and forager cultures that dominate North American culture history. This 

contrasts with Central America where pre-Columbia urban sites are being extensively studied with 

LiDAR, and European countries like Italy, Netherlands, and Switzerland that have strong 

computer-based digital archaeological programs. In any case, Canadian archaeological research 

and education programs are relative latecomers to aerial remote sensing, particularly using RPAS 

technology.  

This section reviews the origins and development of aerial mapping methods and the 

evolution of equipment tools that make it possible. Development of these tools was driven by the 

need for better reconnaissance, often to support military intelligence collection. Such early aerial 



 12 

surveillance dates to the turn of the 19th Century with Napoleonic military application using hot 

air balloons. More than a century after the first French use on November 21, 1783 

(https://www.nationalballoonmuseum.com/about/history-of-ballooning/), the first successful 

powered flight was conducted by the Wright brothers on December 17, 1903, triggering rapid 

technological advances in powered flight (https://www1.grc.nasa.gov/beginners-guide-to-

aeronautics/wright-brothers-aircraft/). Photographic technology was simultaneously rapidly 

developing, contributing to aerial surveillance and reconnaissance. Such applications relied 

heavily on oblique and nadir1 image capture, with photographs requiring manual integration into 

cartesian maps. These methodologies rapidly improved through military application during World 

Wars 1 and 2, but cartographic integration remained a manual process. Modern UAV mapping is 

rooted in these earlier surveying practices that relied on cartesian grid systems such as 

Latitude/Longitude and later the Universal Transverse Mercator (UTM) System. Before 

development of the Ordnance Survey system, maps were created using techniques like stereopsis, 

which helped mapmakers understand spatial relationships between points. Early maps also used 

latitude and longitude for positioning, such as those based on the Mercator projection. The 

introduction of the Ordnance Survey system improved map accuracy by incorporating 

representative scales, allowing users to better visualize and interpret the relationship between 

locations and geographic features. Rapid technological development occurred throughout the 

1960s and 1970s, stimulated by the development of computer technology, the Cold War and 

satellite surveillance systems. With the development of increasingly powerful computing 

technologies, digital data production and analysis became the primary mode of such mapping 

work. This era of sustained research and development of new digital technologies culminated in 

 
1 Nadir is a physical point of view where the camera angle is directly perpendicular to the landscape at -90° 
angle.		 

https://www.nationalballoonmuseum.com/about/history-of-ballooning/
https://www1.grc.nasa.gov/beginners-guide-to-aeronautics/wright-brothers-aircraft/
https://www1.grc.nasa.gov/beginners-guide-to-aeronautics/wright-brothers-aircraft/
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the 1980s with development of cruise missile systems that required the simultaneous development 

of satellite-based navigation systems. Even with the end of the Cold War, military applications of 

technology continued to drive development of emergent technologies, including remotely piloted 

aircraft (Maass, 2015). Since the early 2000s much of this technological innovation also drove 

civilian applications including drone development since the early 2010s.  

Modern drone technology was initially driven by military application, but over the past 

decade, technology transfer and innovation has driven explosive product development for civilian 

recreational and professional users. The consumer market for such technology also triggered mass 

production to serve a global market and competition-driven innovation of new capacities. 

While archaeological use of camera-equipped radio-controlled aircraft dates to the 1960s, 

over the past 15 years there has been rapid growth coinciding with digital photography, computer-

assisted telemetry control, including IMUs (Inertial Measurement Units) and GPS, and high-

capacity radio transmission of imagery (Keane & Carr, 2013). When this capacity is coupled with 

comparatively modest costs for consumer products, modern UAV applications are experiencing 

explosive growth. While several manufacturing companies exist, the Chinese drone manufacturer 

DJI is currently dominating the market, and all of the case studies feature use of various models 

produced by this company. This market dominance reflects equipment cost, ongoing development 

of new capacities, and integration of comparatively accessible software systems to support data 

processing and interpretation.  

Central to the development of new aerial technologies is the parallel evolution and 

integration of several key systems. Computer systems and software engineering have enabled 

intelligent data processing, real-time image analysis, and semi-autonomous flight capabilities. 

Satellite-based navigation systems, such as GPS (USA), GLONASS (Russia), BeiDou (China) and 
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Galileo (EU), provide high-precision geolocation and route optimization, critical for both manual 

and automated drone operations. Advances in digital photography and sensor technology have 

improved image resolution and multi-spectral imaging, allowing drones to capture data across 

various wavelengths for detailed terrain analysis. The development of lithium-ion and polymer 

(LiPo) battery technology has extended flight durations, reduced weight, and increased power 

efficiency, making long-range aerial missions possible. Additionally, improvements in radio-

communication systems have enhanced long-distance control, data transmission, and connectivity 

between drones and ground stations, ensuring reliable command and monitoring even in 

challenging environments. Continued technological innovation is driven by a global market for 

comparatively inexpensive consumer products featuring significant technical capacity. This thesis 

focuses on evaluating how such technologies can be harnessed to support archaeological 

investigation. 

Since the earliest development of UAVs, they have been used for the observation and 

monitoring of landscapes. This capacity rapidly developed in concert with digital photographic 

technology. These innovations had widespread impact, including in the field of archaeology. Early 

efforts at gaining an aerial photographic perspective of archaeological sites, landscapes, and 

features involved cameras variously mounted on ladders, masts, poles, booms, and towers 

(Campana, 2017). Such approaches are cost-efficient but have operational height restrictions of 

approximately 20 m making it difficult to capture broad-scale terrain features associated with large 

archaeological sites. It is also difficult to capture nadir views and to georeference such imagery. 

Kites have been a popular choice for low-level aerial photography since the early 1970s (Campana, 

2017). While kites can lift an acceptable payload to support aerial archaeology, specific wind 

requirements and erratic weather affect control and accuracy of deployment and is the main 
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drawback of this technology. Balloons and blimps require little or no wind to operate, but windy 

conditions make positional stability challenging. The expense of helium can also be a severe 

downfall. Helikites are a balloon and kite hybrid and offer the best of both worlds to reach higher 

altitudes, making them a viable technology for low-altitude photography (Campana, 2017). 

Unfortunately, the device's design makes it difficult to transport, set up, and launch (Verhoeven, 

2009). Finally, manned aircraft enable broad spatial coverage while maintaining appropriate scale 

of resolution. For at least the last century, airplanes have been equipped to capture wide angle 

nadir and oblique photographs, and in recent years have deployed airborne laser scanning devices 

for terrain mapping. While conventional photography coupled with photogrammetry have 

demonstrated utility, this approach is constrained when the ground surface is obscured by 

vegetation. New innovations involving ‘light detection and ranging’ (LiDAR) devices overcome 

some of those issues since some of the laser light pulses can penetrate through vegetation canopies 

to generate a precise matrix of points representing surface topography. This is uniquely different 

from other forms of optical remote sensing that rely on digital photographic technology. 

The widespread availability of consumer drone technology has been highly disruptive to 

the aerospace and surveying industries, fundamentally changing how aerial reconnaissance and 

remote sensing are conducted. Unlike traditional methods involving airplanes, helicopters or 

satellites, rotary wing drones are more efficient in low-altitude and small-area navigation. Their 

ability to operate in real-time allows for faster data acquisition, while their unmanned design 

significantly reduces operational costs and risks. These advancements in drone technology are 

closely tied to Global Navigation Satellite Systems (GNSS), which provide the geospatial 

precision necessary for accurate aerial mapping and remote sensing applications. This disruption 

ties into a broader democratization of aerial mapping. Consumer drones equipped with GNSS and 
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high-resolution RGB cameras enable individuals and smaller organizations to perform complex 

surveys and create detailed orthophotography. The rapid rise of online communities dedicated to 

refining drone-based survey techniques and remote sensing has accelerated this trend. These 

forums, along with advancements in free open-source software (FOSS) like WebODM and QGIS, 

have empowered users to produce professional-quality mapping and conduct spatial analysis 

without needing access to traditionally expensive and exclusive technological equipment. As a 

result, consumer drone technology has expanded access to aerial data, transforming industries such 

as archaeology by enabling rapid, cost-effective, and safer surveying solutions. 

Drone technology has rapidly surpassed other aerial survey methods in archaeology, 

offering superior spatial data capacity, higher image resolution, and greater time efficiency for site 

detection and analysis. That said, it is still important to understand the trajectory of development 

of such technology to understand its specific advantages and limitations (Campana, 2017). A 

recurring theme that limits the utility of earlier technologies is the lack of absolute positional 

accuracy noted as either gyroscopic (roll, pitch, yaw, altitude) or geospatial (latitude, longitude, 

elevation, UTM). Campana (2017) emphasized that limited positional accuracy made production 

of 3D and photogrammetric digital models challenging because of the necessity to document and 

maintain positional control and to ensure suitable overlap between photographs. This problem has 

been solved with most modern remotely piloted aircraft systems (RPAS) that are equipped with 

onboard GNSS systems that simultaneously aid spatial positioning of the aircraft and provide 

georeferencing metadata attached to each photograph. The challenge is that these GNSS units are 

generally only capable of coordinate accuracy within 2-3 metres, and this accuracy varies in 

response to several uncontrolled factors. While this level of accuracy might be sufficient for many 

purposes, it is not appropriate for some archaeological applications. This is because global absolute 
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accuracy can indirectly affect relative accuracy through positional drift. When conducting multiple 

flights to capture repeated datasets, whether for change analysis over time or for deploying 

different sensors, it is crucial that absolute accuracy tolerances remain consistent. Even minor 

discrepancies in global positioning can lead to misalignment between datasets, making it difficult 

to spatially register information in the same locations across multiple surveys. Ensuring high 

positional accuracy is particularly vital for integrating data from different sensors, such as LiDAR, 

multispectral, and thermal imaging, where precise georeferencing is necessary to produce reliable 

and comparable results. 

Modern, medium, and high-end drones have built-in GNSS capabilities, but also allow for 

differential GPS (DGPS) correction whereby the drone receives satellite corrections mid-flight, 

making it possible to use two different approaches during the data collection phase. Before 

expanding upon these approaches, it is important to distinguish between relative and absolute 

accuracy in this context. Relative accuracy refers to the precision of measurements within a dataset, 

ensuring internal consistency, while absolute accuracy pertains to how well those measurements 

align with true geographic coordinates in the real world. One technique using DGPS is called ‘real-

time-kinematic’ correction (RTK) and involves in-flight refinement of GPS coordinates via 

simultaneous communication between navigation satellites, the RPAS and a stationary GPS base 

station. While RTK-enabled drones are currently quite expensive, they feature relative ‘ease of 

use’ compared to the more demanding workflow and expertise required when using ‘post-

processing-kinematic’ techniques (PPK). PPK methods involve lab-based refinement of the 

georeferencing of aerial mapping products using ground reference points visible in the imagery 

that are associated with accurate geographic coordinates (absolute). Such refinement of spatial 
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accuracy significantly advances the utility of UAV technology particularly considering the general 

efficiency of image capture with reasonable time and cost (Marín-Buzón et al., 2021). 

2.2 Key concepts and definitions of remote sensing 

In order to understand the rapid development of remote sensing techniques, a general 

review of camera and sensor technology is essential. This is particularly important as the future 

developmental trajectory likely involves digital processing and analysis relying upon artificial 

intelligence (AI), and sophisticated filters and machine learning algorithms. This is closely 

connected to the increasing accessibility of sensors that detect wavelengths beyond the visible 

spectrum, supporting the viability of automated analysis techniques (Altaweel et al., 2022). These 

emerging approaches are only peripherally addressed in this thesis. Instead, it focuses on four key 

remote sensing techniques that are briefly introduced here: photogrammetry; multispectral; 

thermal; and LiDAR capabilities.  

These four remote sensing techniques have utility in different situations. For example, RGB 

photogrammetry is useful for rapid reconnaissance mapping and the generation of surface relief 

models where minimal vegetation cover is evident, and modest georeferencing accuracy and 

relative relief is sufficient. This technique can also be effective for mapping archaeological 

excavations where repeated flights will document excavation progress, exposed features and 

artifact distributions. This is sufficient particularly if standard reference points remain visible in 

each flight, thereby enabling post-processing georeferencing refinement. 

Multispectral sensors detect light reflectance beyond the visible light spectrum and have a 

primary agricultural application where plant age and species are uniform. They may have 

archaeological application since the sensor may detect differences in plant vigour and health that 

might be due to anthropogenic influences upon water and nutrient supply within the underlying 



 19 

sediment. That said, core assumptions about plant uniformity of species and age need 

consideration. 

Thermal sensors measure differences in thermal radiation emanating from the ground, 

structures or living objects. This has potential archaeological application in situations where 

archaeological features (mounds, filled depressions, buried foundations, refuse middens and 

earthworks) radiate heat in ways that contrast with the surrounding non-anthropogenic context.  

LiDAR sensors operate by emitting laser light pulses at timed intervals and measure the 

time duration for those light pulses to be reflected back to the sensor. This might be light reflected 

from vegetation, structures, or the ground surface. When processed and classified, these data 

generate a dense ‘point cloud’ of X, Y, and Z data points that offer a detailed three-dimensional 

representation of the area of interest.  

These four remote sensing techniques generate different characterizations of the locality 

that vary depending upon how the sensor responds to the local conditions. When used in concert 

they can offer powerful analytic capacity since each may identify discrete characteristics of 

interest, and each can aid in validating other classes of information. All involve collection, 

processing and analysis of digital information, the utility of which requires emergence of new 

archaeological methodologies inevitably tied to deployment of increasingly sophisticated 

computing technologies. 

Effective digital remote sensing applications using RPAS have been contingent upon 

computer science and the rapid development of consumer electronics. Drone technology benefits 

greatly from automation and computational advancements, as it relies on GPS for navigation and 

remote control for data collection. Also important is the development of third-party applications 

that integrate with mobile devices and advanced remote controllers. These application 
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programming interface (API) kits broaden and enhance the flight capabilities designed by the 

original drone manufacturer. Computer science also contributes to efficacy of camera functions 

such as timing, electronics, and computational physics. Without some concepts of computer 

science acting as a media for reproducing virtual space, the process of digital modeling would 

simply fail.  One such technological innovation is called bundle block adjustment that matches key 

tie-points and features in multiple overlapping, offset images (Stott et al., 202). During the bundle 

adjustment phase, drone sensors (camera, GPS, IMU) and photogrammetry algorithms work 

symbiotically. The hardware continually captures spatial data, such as external camera orientation 

and internal lens calibration, while the software interprets and adjusts this data to optimize the 

alignment of images. This interaction ensures that both the internal and external parameters are 

precisely refined for reliable spatial modeling (James et al., 2017). Offshoots of this innovation 

deriving from the IMU and external camera parameters also form the basis for collision avoidance 

sensors, aircraft positional awareness, and the coordination of speed and orientation to maximize 

performance and quality of data acquisition. In effect, the complex interaction of the sensors and 

information processing contributes to the deceptive ease of flight operations, particularly when 

conducting semi-autonomous mapping missions. Contributions from computer science are 

essential to archaeological science, especially in areas involving data processing and analysis. 

Diverse software programs, plug-ins, scripts, filters, and algorithms are associated with the 

development of digital models for landscape reproduction and georectification and are the basis of 

workflows that guide data analysis. There are even specific computer models designed for the 

detection and amplification of specific unconformities that may be of archaeological derivation.  

Geographic Information Systems (GIS) are also strategic for the development of 

computational archaeology. While originally employed to store, manage and integrate thematic 
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data to support cartography, by the 1970s geomatics became widely used to address cultural 

landscapes and interpretation of the spatial component of social sciences data. Landscape studies 

framed from an archaeological perspective can address transformation of past environmental 

conditions and how anthropogenic processes shaped such landscapes. GIS offers functional 

capacity by enabling integration and comparison of spatial data and deriving new data using 

analytic tools and extensions. In the context of this thesis GIS is a core tool for comparison of 

accurately georeferenced thematic information deriving from each sensor type.  

Much of the broader application of computing science to archaeology and other disciplines 

relates closely to the sharp reduction in size (and cost), coupled with expanding capacity of 

computer hardware components. With the 1958 development of the integrated circuit by Jack 

Kilby, research and development eventually led to microchips that enable equipment such as DJI 

drones to contain components responsible for diverse operational tasks and efficient management 

of information (Kilby, 2001).  

These developments in electronic hardware act to rapidly further the fields of computation 

and software packages. For example, modern drone flight planning software requires integration 

of ‘software development kits’ (SDK), and ‘application programming interfaces’ (API). In brief, 

SDKs (also known as a dev kits), enhance interoperability to translate one computer language into 

another and allow programmers with a suite of tools to code new and unique software applications 

to be deployed on specific hardware. APIs used with UAV applications expand capacity for 

communication between a drone and a user. For example, in case study 1, 2, and 3 the DJI Mavic 

Mini drone used 3rd party software applications to enable "on-the-fly" capture of potential 

archaeological features. The DJI Mavic Mini was initially marketed as a simple hobbyist device 

and was not equipped with mapping software (i.e. capability to execute semi-autonomous flight 
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plans). This apparent market void offered an opportunity to companies such as Dronelink, Litchi 

and UGCS to develop APIs that enable flight planning software to communicate with DJI's 

proprietary hardware with minimal exposure of proprietary information and at a low security risk 

to DJI. Currently, there are many FOSS software applications available to the average drone user.  

The benefits of FOSS are clear but are countered by growing concerns over regulatory controls 

and who manages control of digital data such as sensitive cultural heritage information. Mapping 

approaches using FOSS also face some adverse risk that the data might inadvertently fall into 

public hands. Most FOSS currently allow users to access, interpret and even make changes to the 

structure of software tools and this contributes to further risk. 

In the following sections the various approaches to remote sensing used in this thesis are 

briefly described, with some discussion of application to archaeology. Section 2.3 offers more 

comprehensive discussion when comparing the sorts of output generated from each sensor type. 

2.2.1 Photogrammetry 

Photogrammetry is a method by which multiple overlapping (nadir) aerial images, 

generally using RGB, are stitched together using computer algorithms to generate a mosaic. The 

algorithm uses the identification of unique points or features visible in multiple overlapping 

images, allowing them to be accurately linked together. Success of this tiling depends upon 

sufficient overlap within the adjacent images, as well as sufficient heterogeneity and uniqueness 

of features within the photographs. The stitching of the photographs within the software is done 

using a technique called Structure-from-Motion (SfM). This technique relies on two principles for 

defining similarities between images and their orientation in the image/within space: 1) the ability 

to create virtual depth perception through stereopsis and 2) the visual discrepancy of an object 

observed from a moving point (Abdollahnejad & Panagiotidis 2020). SfM is a photogrammetric 
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process using multi-view stereopsis. Similarly, to the way 3D glasses change the perspective of 

human vision, multi-view stereopsis derives 3D structure from duplicate points in overlapping 

images without the requirement of previously known 3D positions (Hirschmuller, 2008).  

2.2.2 Multispectral 

Multispectral sensors capture electromagnetic radiation across and beyond the visible 

spectrum (see Figure 3). While widely used in agricultural applications, their potential for 

archaeological prospection remains underdeveloped. Although effective, multispectral analysis 

can present challenges when compared to more comprehensive remote sensing methods. This is 

particularly relevant for studies focused on detecting subtle biochemical markers at the leaf level, 

which can indicate organic archaeological deposits.  

The research discussed here used a MicaSense RedEdge-MX multi-spectral camera that 

captures 5 bands (red, green, blue, near-infrared (NIR), and red edge (RE)). NIR and RE bands are 

crucial for evaluating archaeological potential specifically for their roles in important vegetation 

indices known as Normalized Difference Vegetation Index (NDVI) and Normalized Difference 

Red Edge (NDRE) that will be discussed later. NIR and RE enhance the ability to detect subtle 

Figure 3. Electromegnetic spectrum taken from Khelifi et al., (2021: page3) 
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variations in vegetation and are useful for measuring changes in plant health and plant abundance. 

These characteristics are highly correlated with chlorophyll and nitrogen content that may indicate 

underlying soil nutrient load, moisture levels and buried features. Using fewer or different 

combinations of spectral bands can reduce the effectiveness of this analysis, limiting the ability to 

identify archaeological sites. Conversely, using hyperspectral cameras with over 100 bands could 

provide greater detail, but it remains unclear whether the additional data is interpretable and 

contributes meaningful insights. Proper segmentation of the wavelength spectrum is essential to 

balance the trade-off between detail and practicality in archaeological remote sensing.  

In a study conducted by Abdollahnejad and Panagiotidis (2020), a version of the 

MicaSense multispectral camera was used, except their camera lacked a green band (MicaSense 

RedEdge-M). They demonstrated that a UAV (DJI S900) equipped with a multispectral camera 

can provide invaluable data for ecosystems management. This approach is transferable to 

archaeological applications if data collection protocols offer an appropriate scale and resolution. 

Such methods document vegetation health and have potential as an indicator of buried 

archaeological deposits (even human burials) since differential plant vigor might derive from 

anthropogenic nutrient enrichment or soil moisture differences. For example, in the context of 

documentation of unmarked graves, body decomposition releases high levels of Nitrogen into the 

surrounding soil to be taken up by plants (Rocke & Ruffell 2022). This localized nitrogen 

enrichment might be identifiable in plant leaves using the near-infrared spectrum detected with a 

multispectral camera (Brabazon et al., 2020, Rocke & Ruffell 2022, and Silván-Cárdenas et al., 

2021).  
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2.2.3 Thermography 

Thermal cameras measure light (heat) at a wavelength that coincides with the far edges of 

the infrared spectrum (2.5μm – 25μm) (The EM spectrum (utk.edu)). This may have 

archaeological application since earth heating and cooling rates can be affected by its sedimentary 

makeup, constituent materials, soil moisture, micro-relief, and vegetation cover- some of which 

might reflect anthropogenic origins. This requires production of a mosaic image using a thermal 

sensor with sufficient resolution to detect and delimit subtle temperature variation at the scale 

expected of archaeological features of interest. 

The camera used in the case studies is the DJI H20T with a thermal FLIR sensor capable 

of reading wavelengths emitted between (8μm – 14μm) (https://www.dji.com/ca/zenmuse-h20-

series/specs). The DJI H20T connects with the DJI M300 RTK using the DJI Skyport hardware, 

with data output being processed into a mosaic using DJI Terra with only a few parameter 

adjustments. One pitfall with this specific approach is that the mosaic generated using DJI Terra 

only generates a qualitative heatmap showing a gradient of differences between ‘hot’ and ‘cold’ 

spots. If quantitative data is required, temperature-specific values remain embedded in the 

metadata associated with each cell that makes up the raster mosaic output. Data extraction involves 

use of a portable version of Python and ExifTools to decode the embedded information. Once this 

information is retrieved, the values must be multiplied by 100 to get accurate temperature readings 

from pixel to pixel.  While discussed in more detail below, this process was not attempted for this 

thesis but could be important in the future if archaeological features are identified within a specific 

emissivity range. 

Agudo et al. (2018) explain that most archaeological applications of thermography rely on 

variation observed within crops characterized by uniform species and age. In such circumstances 

about:blank
about:blank
about:blank
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variability in plant growth/vigor may reflect sediment conditions, including the existence and 

characteristics of subsurface archaeological features (Verhoeven & Vermeulen, 2016). Much like 

the conclusions drawn by Agudo et al. (2018), Case studies 3 and 4 demonstrate the applicability 

of thermography to archaeology. The quality of results will vary depending on many factors, the 

most important of which include the choice of sensors, soil type, time of day, ambient temperature, 

vegetative cover, and type of archaeological feature sought. 

Successful thermography relies on four properties; thermal conductivity (the ability to 

transfer heat), volumetric heat capacity (the amount of thermal energy required to raise the 

temperature of an object by one degree from absorption), thermal inertia (the rate of heat transfer 

of different materials, and thermal emissivity (the effectiveness of emission or reflection of thermal 

radiation of a material) (Casana et al., 2017). Thermal conductivity differs between soil types, 

where wet sand results in a deeper transfer of energy below the surface, indicating high thermal 

conductivity. In contrast, dry clay-rich soil is considered to have low conductivity and will inhibit 

heat transfer (Casana et al., 2017). Thermal inertia also affects soils because the temperature of 

wet soils will also be more consistent than that of dry soils (Casana et al., 2017).  

Casana et al. (2017) indicate that it is difficult to predict the optimal time for data collection 

from a seasonal and diurnal perspective.  For documenting buried architecture or surface features 

such as pits, ditches, or earthworks, it is best to capture this imagery between sunset and sunrise. 

This is because vegetation will typically create the most thermal ‘noise’ shortly after sunset, 

making the differences between features less distinctive. As the ground cools through the night, 

differences in thermal inertia between soils and features will result in different appearances in the 

thermal imagery (Campana et al., 2017).  
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2.2.4 LiDAR 

LiDAR is the abbreviation for Light Detection and Ranging techniques and holds 

considerable promise for non-invasive archaeological investigations. It involves emitting laser 

light pulses from a device with a known X, Y, and Z (3-Dimensional Space) position and 

measuring the timed interval until that light pulse is reflected back to the device. These coordinates 

represent movement in the east-west position (X), the north-south position (Y) and the vertical 

position (Z). The timed interval offers a precise estimate of range, while the spatial configuration 

of the reflective surface is represented by a dense cloud of X, Y,  and Z points detected and stored 

within the LiDAR device. When aerial LiDAR is utilized correctly, it can create highly detailed 

surface models, often even when obscured by a tree canopy. This topographic relief model might 

represent natural undulations in the ground surface, or relief deriving from subtle archaeological 

surface features. The most widely published archaeological application of LiDAR mapping in 

heavily vegetated areas include mapping of tropical forests in Central and South America to 

document remnant structures obscured by the dense vegetation cover. Studies by Pingel et al. 

(2015), Chase et al. (2011; 2017), Inomata et al. (2018), and Iriarte et al. (2020) offer important 

examples of LiDAR application to archaeological prospection in Central and South America.  

Of interest here is the limited application of LiDAR and other remote sensing technologies 

in Canada for documenting landforms and archaeological features that are often obscured by dense 

vegetation cover. Seasonal constraints, characterized by long winters and snow cover for a 

significant portion of the year, present logistical challenges for aerial surveys, particularly when 

compared to tropical regions where dense forest cover remains a persistent but surmountable 

obstacle year-round. 



 28 

Beyond logistical and financial considerations, the global interest in archaeological 

discovery of monumental architecture also plays a role. Research in Central and South America, 

where remote sensing has revealed vast, interconnected temple complexes and cityscapes, often 

captures the imagination of both scholars and the public. In contrast, Canada’s archaeological 

record, rich with Indigenous histories, cultural landscapes, and more ephemeral site types, has 

often been overlooked in mainstream narratives, contributing to the perception that its archaeology 

lacks the same level of exoticism or monumental appeal. This dynamic may further impact 

research priorities, funding allocations, and the visibility of digital archaeology efforts in the 

region. 

2.3 Comparison of remote sensing techniques  

The remote sensing literature examined in this section is organized by remote sensing type 

with particular emphasis on drone-based research. Aerial photogrammetry requires a sequence of 

stereoscopic images taken at approximately the same altitude (Fernández-Hernandez et al., 2015). 

This creates a virtual depth perception known as stereopsis that can be used to extract 3-

dimensional geographic information. Photogrammetric output represents a ‘merging’ of 

overlapping photographs deriving from the identification of common points found in each image 

to enable accurate production of a mosaic image. The image becomes an accurate representation 

of geographic reality since the coordinates associated with each photograph allow the composite 

image to be reoriented and warped to conform to the cartesian space encompassed by the flight 

area. Photogrammetric processing also allows a 3-dimensional representation of the flight area 

using these 2-dimensional images. This involves arithmetic calculation of relief by observing the 

same point from two different perspectives represented in each overlapping photograph. Since the 

X, Y, and Z position of each photograph is approximately known via the on-board GPS and 
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barometric altimeter, this information enables an estimation of the cartesian coordinate of the 

observed points within the overlapping photographs. Ideally, the photogrammetric output is 

georeferenced within the accuracy possible of the on-board GPS and can be integrated with other 

similarly georeferenced data using GIS software. The surface relief model is usually represented 

as a raster image with each cell being assigned an ‘elevation’ value. They are often referred to as 

digital elevation models (DEM), digital terrain models (DTM) and digital surface models (DSM). 

 

Figure 4. Illustration of the differences between digital elevation models (DSM, DFM, DTM) derived from aerial remote 
sensing data. Note. Source unknown. Used under presumed educational fair use. 

These values can be utilized to visually represent relief using a ‘false colour’ gradient, can 

be subjected to contouring operations, or represented as ‘hillshade’ models.  Photogrammetry most 

often relies on the red, green, blue (RGB) spectrum of visible light that is captured using digital 

cameras carried on most consumer-grade drones, though other types of imagery can be used in 

photogrammetric processes as well. This offers the most cost-effective remote sensing technique 

for archaeological investigation. Cost-effectiveness is crucial in archaeological investigation 

because research funding is often limited. Affordable remote sensing technologies, such as 

photogrammetry and consumer-grade drones, provide high-resolution data at a lower cost than 
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alternatives like LiDAR or extensive ground surveys. This allows archaeologists to survey larger 

areas, conduct repeated monitoring, and allocate resources more efficiently toward excavation, 

conservation, and analysis. Under certain conditions photogrammetric output can offer high-

resolution documentation of the area of interest because of camera quality and the ability to 

undertake low elevation mapping missions. However, the utility of photogrammetric mapping can 

be constrained by the nature of vegetation cover mantling the area of interest. This is because the 

RGB camera records light reflected from the top surface. If the ground surface is visible, the 

elevation model might accurately represent that relief, but if vegetated, the output might reflect 

‘false relief’ representing the top vegetation canopy.  

As part of a forensics experiment, Silván-Cárdenas et al., (2021) demonstrated the utility 

of multispectral and thermal imagery to identify grave features based on body decomposition 

phases. They used pig remains as a proxy for human remains to study the decomposition process, 

and whether transformation of surface conditions might be detected using aerial remote sensing. 

Multi-spectral, hyperspectral, and thermographic techniques are all ways of quantifying 

electromagnetic radiation (energy) by measuring and interpreting the wave properties of light. 

Many spectra of light exceed the visual capabilities of the human eye and are rendered ‘invisible’. 

However, advances in remote sensing technology have made it possible to detect and interpret 

these otherwise invisible bands and can map this energy as a form of intensity, or brightness. Light 

in the spectral ranges associated with Red-edge, Near-infrared, and Thermal-infrared (TIR) also 

known as Long-Wave-infrared (LWIR) can be interpreted and utilized for archaeological 

purposes. The ways in which these spectra can be useful for archaeology are listed below in this 

section.   
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Multispectral sensors can detect subtle variations in vegetation health, making them useful 

for identifying buried features such as graves. Spectral indices, such as the Normalized Difference 

Vegetation Index (NDVI) and the Normalized Difference Red-edge Index (NDRE), highlight 

changes in plant vigor that often correlate with soil composition and nutrient levels. Since 

decomposition releases nitrogen into the surrounding soil, vegetation above graves may exhibit 

distinct spectral responses when compared to undisturbed areas. These indices are calculated using 

mathematical equations that process different wavelengths of reflected light to emphasize specific 

plant characteristics, particularly those related to water and nutrient availability (Silván-Cárdenas 

et al., 2021). 

With Case Study 4 these techniques are applied using a MicaSense RedEdge-MX™ 

multispectral sensor to evaluate their effectiveness in detecting marked and unmarked graves. This 

dataset, collected from a cemetery and its surrounding area, provides a basis for identifying spectral 

signatures associated with human burials. A refined version of this workflow could have 

application in the search for missing children from Indian Residential Schools. The spectral 

attributes of the sensor used in this study are outlined in Table 1. 

Table 1. MicaSense RedEdge MX spectral bands 

MicaSense RedEdge-MX™  

Imager/Band Number Band Bandwidth Center Range 

1 Blue 32 nm 475 nm 459–491 nm 

2 Green 27 nm 560 nm 546.5–573.5 nm 

3 Red 16 nm 668 nm 660–676 nm 

4 Red-edge 12 nm 717 nm 711–723 nm 

5 Near-infrared 57 nm 842 nm 813.5–870.6 nm 
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Whitehead et al. (2014) and Rocke and Ruffell (2022) are some of the few publications 

showcasing multispectral analysis using the Normalised Difference Vegetation Index (NDVI) for 

precision agriculture and archaeology respectively. NDVI is a metric for measuring biomass and 

is a good indicator of chlorophyll content and overall plant health generally. NDVI is used later in 

this thesis in case study 4. It is a result of the measured near-infrared light spectrum, minus the 

visible light spectrum, divided by the near infrared spectrum, plus the visible light spectrum or: 

NDVI = NIR - VIS/ NIR + VIS. The sums and differences of NDVI are measured by the 

reflectance of wavelength in nanometers and are represented by this equation on a scale from -1 

to +1 in the index. 

Thermal analysis2 is another form of remote sensing that relies on light derivation via 

electromagnetic energy. Much like the multispectral approach to acquire Red-edge and Near-

infrared reflectance values from light intensity, using a thermal camera can produce temperature 

readings. The Thermal-infrared (TIR) electromagnetic radiation is diffused across a sensor array 

and the intensity data from each pixel is read, interpreted, and converted into pixel temperature 

values (https://www.fluke.com/en-ca/learn/blog/thermal-imaging/how-infrared-cameras-work). 

TIR ranges from 8-15 micrometers (µm) and is shown in Figure 3 (Khelifi et al., 2021).  

The characteristics of day and night are an important factor in the successful acquisition of 

thermographic data. Gompf and Anacelet (2019) describe these patterns in four (4) specific time 

cycles; diurnal (activity during light), nocturnal (activity during dark), crepuscular (activity during 

twilight), and cathemeral (activity during both day and night). Diurnal cycles are critically 

examined by Hill et al. (2020) to understand the thermographic effect these cycles have on 

archaeological feature identification. Using a DJI Phantom 4 drone, equipped with a gimbal 

 
2 The term thermal analysis is used interchangeably throughout this thesis with the terms thermography and 
thermogram. 

https://www.fluke.com/en-ca/learn/blog/thermal-imaging/how-infrared-cameras-work
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mounted FLIR Vue Pro-R thermal camera sensor, Hill et al. (2020) repeatedly mapped the historic 

archaeological site of Enfield Shaker Village, New Hampshire. The FLIR Vue Pro-R is a 

radiometric sensor that can record proprietary radiometric JPG (R-JPEG) format directly to an SD 

card. The DJI H20T used in the case studies of this thesis has similar specifications aside from the 

ability of the H20T to record in 16-bit versus the 14-bit of the FLIR Vue Pro–R. Recording 

radiometric metadata is an important improvement over older thermal tech since this full spectrum 

method is enough to quantify data at the pixel level. Previous generations of thermal technologies 

were developed with automatic gain control (AGC) built-in such that the camera processed to an 

8-bit image after evaluating the total range of thermal values apparent in each image (Hill et al., 

2020). In this older technology, the relative variation in heat detected in each image is calculated 

across the available 8-bit range rather than recording the absolute heat associated with each pixel 

within the image. This is problematic for archaeological applications for several reasons. Primarily 

photogrammetric processes are difficult if images have different exposure values due to AGC 

fluctuations, but also high or low relative temperatures will cause AGC processing to mask subtle 

temperature variations of soil that might indicate subsurface archaeological features (Hill et al., 

2020). Advances in thermal FLIR technologies are enabling solutions for quantifying thermal 

signatures of deeply buried deposits since these types of archaeological materials would display 

greater subtlety of temperature relative to thermal emissivity. Lastly, Hill et al. (2020) emphasize 

that data fusion is a more powerful approach to remote sensing than side by side comparisons of 

multiple datasets; a concept that is also explored more fully in this thesis. The Hill et al. (2020) 

study is noteworthy for identifying the role of dew point after dusk regarding feature detection. 

When the surface temperatures reach the dew point, features begin to disappear from the 

thermograms. The compilation of thermograms and other remote sensing techniques used by Hill 
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et al. (2020) demonstrate the effectiveness of data synthesis into a single interrogable space and 

conclude that diurnal heat flux is one of the most important factors affecting the visibility of 

archaeological features. 

Further studies by Carmona et al. (2020) and Waagen et al. (2022) support depth as a 

determinant of thermographic resonance. Carmona et al. use a fixed wing UAV ebee system 

equipped with a third-party hardware application called thermomap. Once again, acquiring data at 

specific times throughout the diurnal cycle is regarded as ideal. Carmona et al. (2020) studied the 

Iron Age hillfort of Villasviejas del Tamuja (Cáceres, Spain) using aerial thermographic analysis. 

While there is some relevant information regarding general radiometric soil indices, this study 

lacked radiometric classification of the signal captured by the thermal sensor.  Carmona et al. 

(2020) identified the site's sloped terrain and stratigraphic thickness as barriers contributing to 

weak thermographic signature attenuation. While this study successfully produced thermographic 

results relevant to archaeological investigations, further research is needed to better understand 

how stratigraphic thickness influences thermal response patterns. Carmona et al. (2020) also 

discuss differences in soil moisture due to seasonal variations and specific weather conditions as 

possible hindrances to efficient thermal data collection. The best images were taken at night during 

times of heightened thermal emissivity and active thermal inertia (Carmona et al., 2020). This is 

consistent with the observations of thermal data analysis in the case studies of this thesis. Carmona 

et al. (2020) emphasize the importance of establishing statistically significant criteria for 

differentiating, categorizing, and assessing the separability of archaeological features using 

thermal analysis. This is an idea elaborated on further in the discussion section 6.0 of this thesis 

regarding quantitative versus qualitative approaches to analysing data. 
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Waagen et al. (2022) recounts the archaeological investigation of two distinctly different 

sites using drone-based thermography. The sites of Acquarossa, Lazio, Italy, and Siegerswoude, 

Friesland, The Netherlands were specifically selected for their high probability of archaeological 

remains at shallow depths (20 cm - 50 cm DBS). In this study Waagen et al. (2022) used a DJI 

Zenmuse XT2 gimbal mount thermal camera with a FLIR TAU 2 radiometric sensor. While both 

sites are geographically different, they have similar soil types. The dense sandy soils are conducive 

to good thermal conductivity and diffusivity. The most optimal moment for thermographic capture 

in this study was yet again identified as directly after sunset. Waagen et al. (2022) is explicit about 

the effects of moisture content on thermal inertia. Between the two sites there is a difference of 8 

°C in absolute diurnal heat flux. Since thermal anomalies were identified at both sites, the 

difference in diurnal heat flux is an indicator that the distance between minimum and maximum 

temperature values is less important than the sharp sequence of heating up and cooling down that 

occurs during crepuscularity (twilight). Waagen et al. (2022) makes an intriguing connection 

between soil moisture content and thermal radiation. Specifically, the moisture in the ground 

retains lower temperatures during the day while radiation increases the temperature of dryer soils 

to a relative high level making it traceable on thermograms due to contrast with the moist soil. 

Therefore, they (Waagen et al. 2022) infer that thermographic applications in archaeology don’t 

pick up the spectral signatures of archaeological features, but instead thermal marks are created by 

the moisture conditions that appear affected by them. 

Finally, a study conducted by Thomas (2017) demonstrates the utility of a relatively low-

cost setup for conducting aerial thermographic archaeological investigations. At the time of 

Thomas’ (2017) study DJI had not released a drone that had direct interchangeable operability with 

gimbal mount camera sensors. Thomas (2017) used the DJI Phantom 2 equipped with a FLIR Vue 
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Pro (non-radiometric) camera sensor. In this study a total cost of ~ USD $4,400 was spent to 

acquire the setup. Overall, the study by Thomas (2017) was successful in attempts to visually 

assess archaeological features using thermography, however, this assessment is only qualitative 

and is not on par with output from equipment currently available in the market with comparable 

costing (~$5,000 USD) for a technologically superior product (DJI Mavic Pro 3T) boasting greater 

resolution and battery life capabilities. While the medium-low-cost seems to negate the barrier for 

implementation of aerial thermography, this study is a telling example of how far aerial 

thermographic equipment has evolved since 2017 and this is also true for other remote sensing 

types, especially LiDAR equipment. 

While the literature regarding aerial thermography presents as a viable option for 

archaeological site and feature determination, a deeper review suggests that digital archaeology is 

still plagued by contemporary issues regarding the appropriate use of quantitative and qualitative 

data. 

Most research involving modern integrated LiDAR systems, particularly the DJI M300 

paired with the Zenmuse L1 sensor (as used in this thesis), has focused on evaluating point cloud 

accuracy and density. Studies by Zhou et al. (2023) and Štroner et al. (2021) have assessed the 

performance of the DJI Zenmuse L1 by applying accuracy-correction algorithms such as multi-

sensor triangulation and systematic shift correction, respectively. Rather than implementing these 

corrections themselves, both studies analyzed the effectiveness of these algorithms in improving 

LiDAR accuracy. Zhou et al. (2023) utilized a multi-sensor triangulation-based approach to align 

and calibrate multi-modal and multi-temporal datasets, ensuring a high degree of correlation 

between airborne and mobile mapping systems. Štroner et al. (2021) demonstrated that point 
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clouds processed using DJI Terra software, when corrected with ground control points (GCPs), 

achieved an RMSE of 20 mm to 50 mm at flight altitudes of 50 m AGL and 70 m AGL. 

While these studies indicate improvements in geospatial accuracy, there is no clear 

consensus on what constitutes high accuracy, as tolerances vary depending on application and 

industry standards. Additionally, while extensive research focuses on quantitative accuracy 

improvements, there is comparatively little literature dedicated strictly to data filtering and 

interpretation algorithms. Štular and Lozić (2020) discuss filtering techniques to separate ground 

and non-ground points, aiding in the generation of detailed digital feature models (DFMs). Various 

ground-filtering algorithms exist, but this thesis specifically examines the Cloth Simulation Filter 

(CSF), which is applied in case studies 3 and 4 and further explored below. 

2.4 Research in computer science 

There are several key developments to the field of computer science that contribute directly 

to aerial remote sensing using drones. White (2016) identifies three trends that have created 

opportunities for archaeologists to generate, process, analyze, visualize, and contextualize data. 

These trends are commoditization, democratization, and miniaturization and all contribute to the 

increasingly routine application of supercomputing. 

The contributions made by Kokalj et al. (2011) and Kokalj and Somrak (2019) involving 

computer algorithms and machine learning to model digital mock environments has implications 

for the subfields of digital and aerial archaeology.  

Inevitably, advances in supercomputing, cloud processing, storage and new software 

options for DEM generation will provide a suite of tools for archaeologists for conducting non-

invasive work. Aside from the current lack of independent validation via non-invasive methods, 
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evolution in computation appears to be a viable new tool for background information gathering, 

and for survey and reconnaissance missions associated with archaeology. 

2.5 Archaeology of landscapes and GIS 

LiDAR was initially developed and applied to support environmental monitoring and not 

specifically for archaeological purposes (Chase et al. 2017). The archaeological utility of LiDAR 

became evident when applied to studies of Stonehenge in the early 2000s whereby large landscape 

hill shade models revealed previously undiscovered features (Bewley et al. 2005). Since then, the 

archaeological application of LiDAR has been used to document sites featuring monumental 

architecture. More recently, high resolution data has been used to support landscape archaeology 

studies addressing more subtle features. At issue is how to capture relevant geospatial data of 

sufficient expanse and resolution to address archaeological problems while not becoming 

overwhelmed with massive quantities of data. This first problem involves the deployment of 

technology to efficiently capture geographic data of sufficient areal expanse, accuracy and 

resolution. The second problem is the development of data storage, processing and analysis 

capacity able to cope with large remotely sensed datasets. One Canadian example of such effort 

and landscape archaeology involves UAV deployed photogrammetry to document bison kill sites, 

specifically involving conventional photogrammetry. 

Bison kill sites are widely associated with Great Plains communal hunting, the best known 

of which are jumps where bison were driven to their death over the edge of steep-edged plateaus 

or other steep slopes (Hamilton 2019). Other communal entrapment methods involved less 

dramatic landscape features, including incised stream valleys, or entrapment within sloughs, mires, 

sand dunes, snow drifts, coulees, or gullies (Speth 2017 in Hamilton 2019). In all of these cases, a 

key aspect of analysis involves modeling how humans utilized the landscape to guide bison herds 



 39 

into the trap zone. Traditionally, this has been done through the interpretation of conventional 

analogue maps. However, with the availability of digital data and GIS capabilities, research has 

increasingly incorporated computer modeling, such as viewshed analysis, to better understand this 

behavior (Hamilton 2019). A significant challenge to such an approach lies in the availability of 

digital data of sufficient detail and resolution. UAV photogrammetry offers a strategy for 

collecting data of sufficient quality to undertake meaningful analysis, often using a multi-iterative 

approach.  

2.6 Regulatory Issues 

 This chapter introduces new methods used for non-invasive surveys of archaeological 

sites, with particular attention on the value of UAVs to enable rapid and cost-effective data 

collection. Such discussion requires brief context of the Canadian regulatory environment 

governing mRPAS and their use. While most UAVs are governed by these regulations, because 

of their weight, mRPAS are not bound by the same regulations as standard-sized drones.  

All flight operations in Canada are governed by the Aeronautics Act (R.S., 1985, c. A-2) 

(https://laws-lois.justice.gc.ca/eng/acts/a-2/) and overseen by Transport Canada via the Canadian 

Aviation Regulations (CARs) (SOR/96-433), see Part IX for Remotely Piloted Aircraft Systems 

(https://lois-laws.justice.gc.ca/eng/regulations/SOR-96-433/FullText.html#s-900.01). 

Additionally, NAV Canada is responsible for issuing air navigation services, and the safety 

protocols they employ have been incorporated directly into the CARs. 

Following this legislation, different regulations govern operation of drones over 250g take-

off weight versus those under 250g take-off weight. Transport Canada specifies that any drone 

below 250g operating weight excluding the controller (i.e., mRPS) are exempt from the basic and 

advanced operating classes (https://tc.canada.ca). Transport Canada further states that flight of a 

https://laws-lois.justice.gc.ca/eng/acts/a-2/
https://lois-laws.justice.gc.ca/eng/regulations/SOR-96-433/FullText.html#s-900.01
https://tc.canada.ca/
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micro-drone does not require registration or licensing and thereby operators can fly mRPAS in 

non-restricted airspace without a Special Flight Operations Certificate (SFOC): 

"Pilots of micro drone don’t need to register their drone or get a drone pilot 

certificate to fly them. Pilots of micro drones are not bound by the same 

requirements as other drones... Micro-drones are considered aircraft under 

the Aeronautics Act and Canadian Aviation Regulations and are therefore 

prohibited to enter the following zones without the proper authorizations: 

● Class F Special Use Restricted Airspace 

● Zones where a NOTAM for Forest Fire Aircraft Operating 

Restrictions has been emitted 

● Zones where a 5.1 of the Aeronautics Act restrict the use of airspace 

to all aircraft has been emitted" 

Transport Canada (https://tc.canada.ca/en/aviation/drone-safety/learn-

rules-you-fly-your-drone/find-your-category-drone-operation, Date Modified: 

2021-02-19) 

These regulations permit mRPS pilots to undertake flight operations in airspace not 

matching these restrictions. These minimal regulations, coupled with recent software development 

kits (SDKs) produced by companies like Dronelink and Litchi now enable operation using semi-

autonomous flight plans capable of supporting mapping operations for photogrammetry. Notably, 

Ontario provincial heritage legislation does not directly address drone utility for archaeological 

site prospection, nor is the regulatory framework prepared to address UAV mapping. This leaves 

the application of drone technologies for non-invasive site survey within a grey area regarding 

heritage licensing, regulation and policies. The lack of regulatory clarity regarding UAV mapping 

https://tc.canada.ca/en/aviation/drone-safety/learn-rules-you-fly-your-drone/find-your-category-drone-operation
https://tc.canada.ca/en/aviation/drone-safety/learn-rules-you-fly-your-drone/find-your-category-drone-operation
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for archaeological site prospection likely contributes to the slow pace of policy implementation. 

Heritage legislation often lags behind technological advancements, as regulatory frameworks tend 

to be reactive rather than proactive. While drone technology has rapidly evolved to support semi-

autonomous mapping and photogrammetry, heritage policies have not yet adapted to explicitly 

address its use. This creates a grey area, where drones are not explicitly restricted but also not 

formally recognized as a tool for archaeological research. Additionally, regulatory bodies may 

prioritize aviation safety and privacy concerns over heritage-specific applications, further delaying 

the development of clear guidelines for UAV-based site survey. 

2.7 Theoretical frameworks and models 

The study of human geography has significantly contributed to the development of 

landscape archaeology (Hill, 2014). The mid-late 20th century fostered the development of post-

processual archaeological theory in reaction against the empiricism of the processual movement. 

This fostered an interest in the concept of subjectivity, and recognition that human representation 

of geographic space is essentially a cultural construct. Rather than providing an absolute 

representation of reality, maps and mapmaking are now understood as interpretive and stylistic 

processes that can contribute to the advancement of landscape studies and archaeology (Fleming, 

2006). At issue is whether digital archaeology will follow this trajectory and how that might impact 

the application of phenomenology to the study of digital archaeology. The issue is whether digital 

archaeology will follow the same shift toward subjective interpretation as landscape archaeology 

did with post-processual theory. Traditional archaeology recognized that maps and spatial data are 

not purely objective but shaped by cultural and human perspectives. Digital archaeology, however, 

relies heavily on quantifiable, data-driven methods like remote sensing acquisition and GIS, which 

prioritize empiricism over human experience. The concern is whether this focus on technology 
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will downplay phenomenology, which emphasizes how people perceive and experience 

landscapes. This raises questions about whether digital tools will enhance interpretation or limit it 

to computational models, reducing the role of human perspective in archaeological analysis. While 

digital and aerial archaeology prioritize quantitative data collection, they do not necessarily 

eliminate subjective interpretation; rather, they offer new ways to integrate both empirical analysis 

and human experience. This thesis engages with phenomenology through use of visual assessment 

as a qualitative tool, recognizing that decision-making in archaeological interpretation is often 

shaped by experience. The influence of human geography and subjectivity has already expanded 

studies of human occupation, settlement patterns, and migration, while also incorporating non-

conventional knowledge systems, such as oral histories. Digital tools, combined with evolving 

hardware, software, and diverse informational resources, enhance reconnaissance and 

investigation by making previously inaccessible features visible. Rather than replacing interpretive 

approaches, these technologies enable a hybrid methodology, where digital mapping and data 

analysis are informed by human perception, fostering a more nuanced understanding of 

archaeological landscapes. 

Johnson (2012) argues that the concept of subjectivity of landscapes was born from human 

geography in the 1970s. Before adopting 'emotional' geography, most geographers viewed space 

and time from a Cartesian perspective. The progress of landscape studies in archaeology followed 

the same trajectory as technological advancements in other complex science fields. Specifically, 

where archaeological data is concerned, post-processual archaeologists of the 1990s became 

interested in the subjectivity of data itself. Last, Johnson (2012) argued that landscape archaeology 

followed a political agenda. These theoretical changes in landscape studies and new ways of 

thinking about geography are essential because they coincide with the development and evolution 
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of new technologies for digital archaeology. Moreover, the two concepts may be inextricably tied 

together and reliant upon one another.  

The 'Gartner Hype Cycle for Emerging Technologies' (Oosterhoff & Doornberg, 2020) 

provides a framework for understanding how new innovations, including drones and digital 

archaeology, become integrated. This envisions a curve that progresses from a steeply inclined 

slope reflecting initial excitement over a new and promising innovation, followed by a trough 

reflecting initial disillusionment as unanticipated limits on utility become apparent. This is 

followed by a more modest upward inclining slope reflecting gradual acceptance as solutions to 

problems are resolved, followed by widespread adoption (plateau of productivity).  

The first stage, the Innovation Trigger, represents the initial conceptualization and early 

development of a technology. In the case of drones and digital archaeology, this phase began when 

UAVs first became commercially viable, and researchers started experimenting with their 

applications for aerial photography, topographic mapping, and site documentation. During this 

period, the focus was on prototyping and testing, with limited real-world application. 

The second stage, the Peak of Inflated Expectations, is characterized by hype, enthusiasm, 

and sometimes unrealistic expectations about what the technology can achieve. In archaeology, 

this was evident when UAVs were promoted as a revolutionary tool capable of replacing 

traditional survey methods entirely. Early adopters explored the potential of LiDAR scanning, 

multispectral imaging, and photogrammetry, but challenges such as regulatory constraints, high 

costs, and data processing limitations tempered initial optimism. 

The third stage, the Trough of Disillusionment, follows as researchers and practitioners 

encountered practical limitations and setbacks. For UAV-based archaeological remote sensing, 

this phase involved recognizing the challenges of drone data integration, the requirement for 
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specialized expertise in GIS and photogrammetric processing, and limitations in penetrating 

vegetation or subsurface features. This also reflects skepticism regarding the consistency and 

accuracy of UAV data compared to traditional terrestrial surveys. 

As the technology matures, it will move along the slope of enlightenment and towards the 

plateau of productivity whereby UAVs are increasingly recognized as a standard tool in digital 

archaeology rather than a novelty (Oosterhoff & Doornberg, 2020). This will involve widespread 

and routine use for long-term landscape monitoring, site preservation, change detection, and 

disaster response archaeology (Perry & Taylor, 2018). 

2.8 Digital Models 

Digital Elevation Models (DEMs) are raster-based representations of surface relief, 

capturing variations in elevation, slope, and aspect. These models apply metric values to 

topographic surfaces and can be manipulated and analyzed within a Geographic Information 

System (GIS). As virtual, mathematical abstractions of the physical landscape, DEMs offer 

flexible, iterative frameworks for modeling terrain across a range of spatial and temporal scales. 

While DEMs are typically raster-based, vector-based elevation models such as Triangulated 

Irregular Networks (TINs) are also used to represent terrain, particularly in applications requiring 

precise modeling of complex surface features.  These models can be modified by incorporating 

new variables, can be reclassified to represent diverse data themes, and subjected to statistical 

analysis to assess the strength of perceived patterns. Such spatially ordered information can be 

subjected to repeated rounds of exploration in search of new patterns and can be modified to 

emphasize or exaggerate certain features consistent with the priorities of the creator. An example 

of this is how CloudCompare enables effective change detection by aligning and comparing multi-

temporal point cloud datasets, highlighting structural and landscape changes through color-coding. 
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This approach is particularly useful for repeated archaeological surveys, allowing researchers to 

monitor erosion, site disturbances, and environmental impacts over time with high precision 

(Dawson et al., 2022) The integration of UAVs with various sensors has significantly expanded 

the ability to collect and analyze spatial data in a user-directed manner. These datasets can be 

processed, interpreted, and archived using specialized software, with GIS being one of the most 

common platforms for managing and visualizing such information. This thesis specifically 

examines how UAV-derived spatial data can enhance archaeological prospection and feature 

characterization, providing a more efficient and adaptable approach to site analysis and 

interpretation. This involves documentation of sometimes quite subtle topographic variation that 

has anthropological meaning, and detection of vegetative patterns that might serve as proxies for 

the nature and distribution of buried archaeological features. 

Digital representations of elevation are categorized as digital surface models (DSM) and 

digital terrain models (DTM). The key distinction is that DSMs capture the elevation of all surface 

features, including buildings, trees, and towers, whereas DTMs represent the bare earth, with 

vegetation and man-made structures removed (Rogers et al., 2020). Both models serve valuable 

purposes: DSMs are particularly useful for analyzing urban environments, where surface features 

play a critical role in spatial analysis, while DTMs are more suitable for representing natural or 

rural landscapes with minimal obstruction. 

Rogers et al. (2020) emphasize that advances in Light Detection and Ranging (LiDAR) 

technology have significantly improved the accuracy and resolution of digital elevation models 

(DEMs). Additionally, the increasing availability of government-funded LiDAR datasets through 

online public portals is expected to transform how users access and apply this data. However, while 

publicly available LiDAR appears to be a cost-effective alternative to UAV-derived DEMs, it 



 46 

presents certain limitations, primarily due to its comparatively lower resolution, which can affect 

the accuracy of topographic representation. These trade-offs are further explored in a later chapter, 

where the feasibility of using publicly available LiDAR data is assessed as an alternative to UAV-

based elevation models. 

While legacy aerial photography is widely available from public repositories, such pre-

digital era photographs may be associated with insufficient metadata for further interpretation 

(Verhoeven et al., 2012). Legacy aerial photographs are also often collected at high elevation using 

manned aircraft, exhibit inadequate resolution, may suffer from blurring and parallax distortion, 

and are seldom georeferenced. While often not offering data quality consistent with modern digital 

data, they do offer important historical and cultural context. According to Verhoeven (2012), the 

neglect of interpretative mapping through the ages was probably because of the time-consuming 

georeferencing process. This process supplies spatial information for users to interpret the context 

of aerial observations multi-temporally (Verhoeven, 2012). 

Computer processing and machine learning can radically change the conduct of 

archaeological data acquisition, interpretation, and archiving. However, there is a blind spot 

regarding AI now, that is the lack of discretion in identifying real archaeological sites, versus only 

the parts that make up an archaeological site. It seems that in general, computer vision is very good 

at identification, but not so good at interpretation. Interestingly, a potential solution to rectifying 

this blind spot involves the use of predictive models such as Bayes theory of probabilities. 

Evolutions in computer processing and machine learning algorithms can identify things previously 

unrecognized in map products with higher resolution and more detail. In the future, it's likely that 

this detail could even provide context for intangible heritage assets through regular site mapping, 

monitoring, and reconstructing environments using virtual reality derived from drone data. 
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2.9 Overcoming challenges to systems and workflows 

There are many obstacles regarding big data management in archaeology. First, to set up a 

system capable of processing and storing large quantities of data associated with modern digital 

archaeology, it is critical to have basic proficiency with computer hardware and software. 

Operational management and task orientation are two general principles needed for creating 

efficient systems for handling digital data. Selecting the appropriate hardware should be contingent 

primarily upon the size of database being processed, how this data is processed, data types, and 

storage capabilities. Modern computers have a central processing unit (CPU) with multiple cores 

capable of executing computation tasks independently (White, 2016). Computers also have 

random access memory (RAM) where data is temporarily stored for quick access while executing 

functions. The capabilities of WebODM used in this thesis are dependent upon large quantities of 

RAM. Additionally, there have been major advancements in graphics processing units (GPU) 

mostly due to the popularity of computer and video game industries. DJI Terra is another software 

that was used for data processing in this thesis that has specific operational requirements 

contingent upon use of high-capacity NVIDIA graphics cards. Building systems that can handle 

and store increasingly complex data is reliant upon access to such special hardware. Additionally, 

to operate a complex network of systems capable of working with this data, being able to transfer 

and use files for practical applications, a server system is required. Modern cloud capabilities allow 

for the spin up of virtual servers where large data files can be transferred and stored, but many of 

the available options currently offered are by large entities like Google and Microsoft. These 

options can be a challenge to use considering issues of data sovereignty and rights over ownership 

and control. 
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2.9.1 Data rights and ownership 

Data ownership is a significant challenge facing the advancement of digital archaeology. 

One major concern is the potential misuse of digital data in site discovery and prospection, 

particularly for looting. This danger is amplified by the growing availability of archaeological 

information to the public. At the same time, digital tools have enabled broader access to and 

engagement with archaeological landscapes, often by individuals or groups outside the discipline. 

This has led to increased tension over who holds the authority to interpret and manage these 

landscapes. The growing availability of remotely sensed terrestrial data illuminates’ issues with 

data governance in contemporary archaeology and is a concern for both archaeologists and 

descendant communities (Gupta et al., 2020). OCAP (Ownership, Control, Access, Possession) are 

a set of guiding principles created to bolster Indigenous rights regarding digital data and digital 

data management. These principles are especially valuable, as they help alleviate concerns over 

the misuse, misappropriation, or exploitation of Indigenous data by external parties acting in bad 

faith. More specifically, there has been considerable debate in the past over the ownership and 

control of heritage data, and now the same tensions are being thrust upon digital archaeology, 

where questions of access, representation, and control over digital cultural materials remain 

unresolved. This debate becomes especially contentious in the context of Indigenous heritage, 

where ceremonial objects, burial items, and even human remains have historically been designated 

as the “property of the Crown” under colonial legal frameworks. Such classifications often 

disregard Indigenous laws, customs, and protocols for stewardship, leading to ongoing disputes 

over access, control, and the right to interpret or repatriate heritage materials. Typical problems 

result from the lack of dissemination of findings to descendant communities and the disregard for 

Indigenous involvement and consultation throughout the archaeological process. Though well 
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intentioned, OCAP and other similar concepts face problems with the ability to enforce such 

actions. To some degree, the principles of OCAP may be mandated by a court of law since they 

are supported by the United Nations Declaration on the Rights of Indigenous People (UNDRIP) 

and Section 35 of the Canadian Constitution Act. However, there are still many issues with 

copyright laws that would upend the enforcement of such principles (Gupta, 2016).  

Issues in data management give rise to new ethical considerations related to the widespread 

use of the internet to access and redistribute information. An emerging issue affecting digital 

archaeology is differentiating between the rights and ownership of physical assets, including 

artifacts and archaeological sites, versus digital assets. In Canada, the United Nations Declaration 

on the Rights of Indigenous Peoples UNDRIP articles are not currently enforceable because most 

Canadian archaeology is governed by provincial heritage laws. In general, provincial rules and 

regulations pertaining to archaeology do not acknowledge intangible heritage assets such as digital 

archaeological products. However, the articles of UNDRIP do offer some acknowledgement of 

intangible heritage culture associated with archaeological sites along with a general progression 

towards protecting these assets. Bill C-15, which received Royal Assent on June 21, 2021, and 

requires by law, the federal government to work with Indigenous First Nations to align Canadian 

legislation with the rights outlined in UNDRIP including self-determination, control over cultural 

heritage, and free, prior, and informed consent (FPIC). While this movement can be considered a 

step in the right direction for cultural heritage protections, policy often obscures these actions at 

the provincial level, limiting descendants and consultants alike from accessing digital data by 

recognizing it as property of the Crown. 
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Chapter 3.0 Case Studies 

3.1 Introduction to case studies 

Four case studies are presented in this thesis. All employ RGB investigation methods but 

in different archaeological and environmental contexts. Two case studies examine thermal and 

LiDAR data, and one explores the use of multispectral data. In other cases, specific remote sensing 

methods were applied exclusively to a single study site based on the unique archaeological or 

environmental context. The rationales underlying selection of different methods of aerial remote 

sensing at these specific locations involve the following: understanding how remote sensing 

methods can be employed to non-invasively document fur trade era sites; how different sensors 

enable the detection of certain kinds of archaeological features; understanding the level of accuracy 

and precision required for consistently identifying archaeological features; investigating the utility 

of consumer drones for rapid mapping missions; and understanding the viability of aerial remote 

sensing as a tool for identifying and locating human burials. 

3.2 Case study 1: Lockport (EaLf-1) 

In late summer 2021, the historic human remains of two individuals were recovered from 

beneath the Lockport Bridge at St. Andrews Lock and Dam, Manitoba, Canada. Upon completion 

of the exhumation, the area and its surroundings were surveyed with a DJI Mavic Mini to 

georeference the burial locations and to better contextualize the finds relative to a nearby 

archaeological site found within a provincial park located 25-50 meters from the burial location. 

The Lockport site (EaLf-1) has been subjected to repeated investigations including excavation in 

1951 by MacNeish (1958), with other work continuing from the mid 1980s to the early 2000s. It 

is a culturally rich locality, yielding evidence of pre-contact Indigenous agriculture, including the 

recovery of bison scapula hoes and other agricultural indicators. The drone flight was a rather 
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hurried effort, occurring about one hour before heavy snow blanketed the area marking the 

beginning of winter and curtailing any further archaeological investigation.  

Deployment of a UAV at the Lockport site sought to explore the utility of mRPAS as a 

tool for rapid archaeological investigation, particularly in environments with complex airspace 

regulations. It used the DJI Mavic Mini drone to rapidly deploy the aircraft to undertake ad hoc 

map documentation using the least expensive and least feature-laden mRPAS. Use of this small 

and light-weight drone does not require licensing, and its portability and comparatively low cost 

make it a viable option for routine early-phase archaeological evaluation. At issue is whether it has 

sufficient capacity to produce analytically useful output.  

Figure 5. RGB Orthophoto of EaLf-1 captured with a DJI Mavic Mini and processed with WebODM using 'Quick Orthophoto' 
option. 
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RGB photogrammetry relies on visible light reflections and is a fundamental technique for 

generating digital models using airborne remote sensing. Daakir et al. (2017) offer an early 

experiment with photogrammetric methods through a user-built UAV system equipped with a 

Sony RX1 camera and a single-frequency GPS module, integrated via a makeshift triggering 

device. While single-frequency (L1) GPS is less precise than dual- or triple-frequency systems, 

the study demonstrates that modifications can significantly enhance accuracy, achieving results of 

2 cm ± 0.5 cm without GCPs. Although the study was originally aimed at improving GPS 

synchronization for meteorological applications, its findings highlight an important balance 

between precision and practicality in photogrammetric workflows. While higher-frequency GPS 

improves accuracy, even basic GPS configurations can provide sufficient precision for rapid 

reconnaissance mapping, where efficiency and broad coverage take precedence over absolute 

positional accuracy. The rapid evolution of drone technology has further minimized these 

Figure 6. Digital Surface Model (DSM) of EaLf-1 capture with a DJI Mavic Mini. 
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limitations, as modern consumer drones now integrate high-precision GPS and camera systems 

into a single streamlined instrument. 

At this location, the drone was flown at an altitude of 60 m AGL using a semi-autonomous 

flight plan (WebODM). Georeferencing relied on the on-board GPS, with no GCPs available to 

refine the georeferencing after data processing. During the first attempt the drone paused in mid-

flight and began to return to the launch point, an automatic safety measure likely triggered by 

magnetic interference affecting the compass. This might have been caused by the nearby dam and 

bridge. The second attempt successfully collected the appropriate imagery within a flight of less 

than 30 minutes. The imagery was processed to generate a georeferenced RGB orthophoto and 

DEM (Figures 5, 6, and 7). The entire data processing workflow took less than four hours, and 

includes the organization of files, computer start-up and data processing, and preliminary review 

of the output in search of obvious flaws or errors.  

This experiment demonstrates the effectiveness of the rapid deployment of mRPAS tools 

for aerial reconnaissance of archaeological sites and site features. It also emphasizes the 

operational value of such mapping flights to address a long-standing mapping deficiency at this 

important site, allowing future monitoring of site conditions through ‘change detection’ of the 

property by comparing georeferenced site maps collected in successive years, or considering 

Figure 7. Comparison of the same features at EaLf-1 using RGB in Figure 5 (zoomed in) versus DSM in Figure 6. 
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development within this urban area. Figure 7 shows the benefits of rapid mapping for 

archaeological prospection, demonstrating superior resolution quality over traditional satellite 

maps. Importantly, there is a good quality of accuracy represented by this map sufficient for 

general reconnaissance, but this map has some obvious georeferencing issues and warping to the 

south where the bridge is misaligned (Figure 5). The features detailed in Figure 6 and Figure 7 

demonstrate the capabilities of the Mavic Mini for feature identification during rapid site-mapping 

missions.  

3.3 Case Study 2: Fort Ellice 1 (EcMh-3) 

Fort Ellice 1 (1831-1862) was an HBC fur trading post situated on top of an escarpment 

bank overlooking Beaver Creek, about 4.6 km upstream from its junction with the Assiniboine 

River in what is the modern-day RM of Ellice Manitoba. The HBC previously occupied the general 

locality with Beaver Creek Post (1817-1824), and then re-established in the locality with Fort 

Ellice 1 (FE1) to protect the southern flank of Rupertsland from American fur trade competition 

Figure 8. Drone capture of valley near beaver creek from overtop of FE-1 using a DJI Mavic Mini. 
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(Hamilton 1978:35). Fort Ellice 1 was investigated at the same time as Fort Ellice 2 to support 

planning of outdoor heritage exhibits at the latter. While no development is anticipated at Fort 

Ellice 1, we took the opportunity to generate baseline data about this largely unknown site. Figure 

8 reveals the strategic positioning of the Fort Ellice 1 site looking southeast where boat merchants 

and travelers heading west would inevitably encounter the fort along the Carlton Trail. 

Hamilton (2022a) summarizes 19th and early 20th century observations about Fort Ellice 1 

and notes a general consistency between the archival sources and his UAV mapping output. This 

includes observations about the post’s location at the top prairie level of the north bank of Beaver 

Creek (Figure 8), with a spring breaking from the valley wall about 100 to 150 yards southwest of 

the fort location, and with the remnants of the main trail west from FE2 to Fort Qu’Appelle passing 

a short distance to the north of Fort Ellice 1. The fort was described in 1857 by Captain J. Palliser 

who recounts buildings composed of wood and surrounded by pickets, likely referencing the 

palisade format of most of the Hudson Bay trading posts (Palliser, 1863). Palliser also reported 

that Fort Ellice 1 was once lucrative as a fur trade post, but its principal value at the time of his 

visit was for trading provisions. 

On October 7, 2021, Dr. Scott Hamilton, and fellow professional heritage specialist 

Mireille Lamontagne, and I visited FE1 site to undertake aerial mapping. Weather conditions were 

clear with modest wind, thereby optimizing aerial survey and ground truthing. Fort Ellice 1 was 

comparatively easy to relocate and document because surface indications of the palisade and some 

of the building features remain visible, but no scaled map and georeferenced map of the site has 

ever been produced. The investigation sought to remedy this situation.  

A GEODE 2 GNSS receiver (Juniper Systems), was used to determine coordinates for 

ground control points (GCPs) consisting of orange pylons placed over large, galvanized reference 
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spikes that were labeled FE1-10-15. These points are important as they allowed for refinement of 

georeferencing of the aerial images. Flights with a Mavic mini and a Mavic 2 pro were conducted 

to compare the DEM consistency and resolution of the respective output. 

Hamilton and Kuncewicz both conducted flights at Fort Ellice 1. Kuncewicz used a Mavic 

Mini deployed on a rapid mapping mission, while Hamilton used a Mavic 2 Pro using semi-

autonomous flight planning software. The biggest difference in these two drones is the resolution 

capabilities of the RGB camera sensors. The way this affects the final digital product is through 

GSD, whereby lower resolution cameras will result in a greater GSD value. That is, each pixel 

element in a photograph will encompass a larger area of ground, resulting in comparatively less 

clarity and resolution of surface features than cameras generating a smaller GSD. Although the 

current Transport Canada regulations do not require licensing to operate mRPAS lighter than 250 

grams, the regulations were conformed to during the Mavic Mini flight. Kuncewicz used the flight 

planning software Dronelink to complete flight missions at both FE1 and FE2 successfully 

generating DEMs and colour orthophotos for both site locations. Hamilton used a Mavic 2 Pro, 

with semi-autonomous flight planning software to pre-program the mission specifications. The 

results of the DEM show that on board GPS using a consumer grade drone is enough to identify 

intra-site features such as pits, middens, cellars, gardens building foundations, and palisade walls, 

while also illustrating inter-site context of the surrounding area.  

The primary goal of the tests at FE1 is to demonstrate the value of consumer and prosumer 

drones (Mavic Mini and Mavic 2 Pro) as accurate mapping and georeferencing tools for site 

documentation. This is shown in the results section where the map output using GCPs is compared 

with the map output without GCP correction of both drones. The DJI Mavic 2 Pro demonstrated 

greater accuracy than the Mavic Mini when no ground control points (GCPs) were used. However, 
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when GCP corrections were applied, the Mavic Mini produced a more geospatially accurate and 

higher-resolution map. This finding highlights the significant impact of GCPs on both horizontal 

and vertical accuracy, with an increase in GCPs correlating directly with improvements in absolute 

geospatial precision. Additionally, GCP corrections may enhance the resolution of the output 

model by refining elevation accuracy along the Z-axis. Interestingly, the clarity and resolution of 

the Mavic Mini output looks sharper than the resolution of the Mavic 2 Pro output even though 

the Mavic Mini has a lesser quality 12 MP resolution sensor while the Mavic 2 Pro boasts a 20 MP 

resolution sensor. Notably, the choice of processing software in this research varied across 

different experiments. In some cases, the open-source platform WebODM was used, while others 

employed the photogrammetry software 'Maps Made Easy'. During the planning and organization 

of case studies, the implications of using different software, particularly regarding variations in 

map quality and reporting, were not fully considered. In retrospect, even minor differences in 

algorithms, parameter-setting capabilities, and operability of graphical user interfaces (GUIs) can 

noticeably influence the styling and overall quality of output products. Maintaining consistency in 

software choice would have supported greater uniformity across the research outcomes. 

3.4 Case Study 3: Fort Ellice 2 (EcMh-10) 

The Fort Ellice 2 site (1862-1890) (EcMh-010) is located roughly 5 km northeast of the 

Fort Ellice 1 post and represents a strategic relocation intended to continue provisioning and trade 

operations from a more advantageous position atop the Assiniboine River valley (Figure 9).  This 

new iteration of the post was established with significantly scaled-down fur trade operations, 

signaling a shift in both logistical strategy and regional priorities. Fort Ellice 2 became an 

important administrative centre for HBC operations during its early occupation, but gradually 

declined in importance after the 1870 sale of Rupert’s Land to Canada. In 1872 the HBC 
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commissioned a legal survey to define its land reserve around the post, as well as a plan for the 

proposed town of Colville that featured the Fort Ellice 2 compound in a large lot in the southeast 

corner of the town site. This was in anticipation of large-scale homestead settlement of prairie 

Canada, and speculation that the Canadian Pacific Railway might pass through the area, rendering 

the HBC property valuable for settlement and retail commerce. The railway main line eventually 

passed far to the south, ensuring that Colville was never established, and leaving Fort Ellice 2 

comparatively isolated and economically less viable. This led to the gradual decline and 

downsizing of the HBC operations until its 1890 sale to a private merchant. The last of the fort 

buildings were destroyed in a fire shortly thereafter.  

Site documentation was undertaken to precisely relocate the fort compound in anticipation 

of a planned heritage interpretive trail and outdoor exhibits. The objective was to relocate the fort’s 

archaeological footprint using non-invasive methods to ensure that the proposed heritage 

interpretation did not inadvertently damage the archaeological deposits. This was done by 

comparing subtle relief changes observed through aerial remote sensing with a range of map 

resources available through archival sources. On Wednesday, October 6, 2021, a brief inspection 

Figure 9. Google Earth screenshot showing the location of FE2 overlooking the Assiniboine River 
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of the survey area was done by Hamilton and Kuncewicz to identify optimal locations for the 

GCPs, and to confirm the drone flight area.  

These flights were mindful of weather conditions since intense sunshine can cast intense 

shadows and sun glare that can detrimentally affect photogrammetric processing. Ideal 

circumstances for photogrammetry include little or no wind and overcast conditions, but sunny 

conditions can be mitigated using camera filters. Strong wind can also be problematic since it can 

destabilize the drone in flight and sharply reduces flight time. This can contribute to photographic 

motion blur and image inaccuracies. On October 7, 2021, Hamilton completed two morning flights 

at different elevations under ideal weather and lighting conditions. Seven GCPs were set at FE2 

throughout the roughly 10-acre site. The GCPs were marked with orange pylons and staked into 

the ground with a bright orange washer and a label number FE2 1-7. The GNSS coordinate of each 

GCP was measured using a Juniper Systems GEODE GNS2 receiver. The accuracy of this receiver 

had been tested previously by Hamilton and yielded a best estimated accuracy of ± 16 cm. Flight 

1 was logged at 40 m AGL, while flight 2 took place at 50 m AGL. Both flights were completed 

using a DJI Mavic 2 Pro drone (Figure 10) and a DJI Mavic Mini drone (Figure 11). 

As the Covid-19 pandemic ended and the Manitoba Provincial Archives reopened, 

Kuncewicz acquired copies of the field notes and plans from the 1872 HBC survey to establish its 

land holding around the fort site (HBCA A72/7). This and other archival information proved 

strategic for integration with the UAV imagery. Hamilton (2021) relocated the fort orientation by 

projecting the 1872 HBC maps within GIS and comparing the surveyed monuments to the 

enduring features of the subsequent Dominion Land Survey. These results contribute to data 

analysis presented later in this thesis (Sub Section 5.6 Summary of the Findings). 
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The initial thesis task at FE2 is to measure the capabilities of each drone type in their 

production of DEMs for aiding feature detection. This involved measurement of the variance in 

resolution and visual feature detection in each model. Professional drone equipment is 

subsequently introduced at this site to understand the utility of multiple forms of remote sensing 

for anthropogenic feature identification. In this case study the DEM from the Mavic Mini is 

Figure 10. RGB Orthophoto of FE2 captured using a Mavic 2 Pro 
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compared with the DEM from the Mavic 2 Pro, but also DEMs are compared with two other forms 

of remote sensing to see if certain types of remote sensing offer advantages over others. 

3.5 Undisclosed cemetery 

Over the course of two field seasons (2022-2023), investigations were conducted at an 

undisclosed cemetery location that is historically linked to Peguis First Nation. To protect this 

culturally sensitive site, Kuncewicz and Peguis First Nation agreed to maintain anonymity of the 

site as a condition for its inclusion as a case study in this thesis. Investigations involved multiple 

Figure 11. RGB orthophoto of FE2 captured using a DJI Mavic Mini 
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flights to test diverse sensors and their ability to identify presently unmarked graves. The purposes 

of this study were twofold: 1) to identify un-used burial plots to allow repatriation and reburial of 

Indigenous ancestral remains that were accidentally intercepted and recovered through 

archaeological excavation during construction the previous year; and 2) to supplement existing 

Peguis First Nation cultural histories through the precise geolocation of now unmarked burials 

within the unnamed cemetery. 

Aerial investigations consisted of two photogrammetric flights, two multispectral flights, 

three thermal flights, and two LiDAR flights. These flights were conducted at varying altitudes 

Figure 12. RGB orthophoto of undisclosed cemetery captured using a DJI Matrice 300 RTK drone equipped with a 
Zenmuse L1 LiDAR sensor 
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and at different times of the day dependent upon weather and diurnal cycles. One of the 

multispectral flights was unsuccessful in producing data using WebODM for unknown reasons,  

Figure 13. Undisclosed cemetery location showing multispectral orthophoto captured using a DJI M300 RTK drone and a 
MicaSense RedEdge-MX multispectral camera sensor 

while one of the LiDAR flights failed to generate a useful model due to georectification 

issues caused by accidental disturbance of the DJI D-RTK2 base station during the flight.  

WebODM software was used to process the photogrammetry (Figure 12) and multispectral 

datasets (Figure 13), while DJI Terra software was used to process the LiDAR and thermal data. 

Once the raw data was transformed into digital models, they were further processed using QGIS, 
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Cloud Compare and WebODM interfaces. The most significant of these processes involves 

transformation of the LiDAR data (or raw .LAS file) after its production in DJI Terra. The raw 

.LAS file contains all of the data returns within the dense point cloud, including points representing 

the vegetation canopy. This must be removed via a ground filtering algorithm that classifies points 

as either "ground" or "non-ground”. In this case, the algorithm utilized for ground filtering was 

accessed through FOSS Cloud Compare. Cloud Compare uses a specific type of filtering algorithm 

called the cloth simulation filter or CSF (Zhang et al. 2016). The CSF must be adjusted through a 

multi-iterative process to remove enough extraneous data to approximate the ‘bare earth’ surface. 

This version was then used to draw attention to the known and unmarked graves within the 

cemetery boundary using the VAT algorithm within QGIS. The CSF algorithm requires slight 

adjustments over multiple parameters, depending on the altitude of the drone during capture. This 

is because varying altitudes will produce different results for GSD resolution.  

Of these investigations, the most promising results come from the thermal and the LiDAR 

imagery. Datasets were assessed separately by multiple archaeologists working with Peguis 

Consultation and Special Projects (PCSP) to address potential operator bias in interpretation. 

Archaeological features believed to be graves within the bounded space of the cemetery were then 

documented using the QGIS measuring tools to determine length, width, area, orientation of 

individual graves, and the distance between known graves. 

Finally, this case study focuses solely on the use of a professional drone setup using the 

DJI M300 and undermount optical remote sensors to understand the capabilities of each remote 

sensing type separately and together as a combination for enhancement and verification. This case 

study culminates in both the visual assessment of anomalies using professional remote sensing 
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equipment and also the discreet approach of using qualitative metadata to support anomalies 

identification and predictions.

Figure 14. LiDAR VAT model of cemetery built using CloudCompare and GIS software 
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 This cemetery investigation demonstrates the potential of aerial remote sensing to detect 

subtle anomalies in vegetation and terrain that correspond with known and suspected burial 

features. The effectiveness of these methods in this context is especially significant given the site's 

similarities to other locations associated with the Indian Residential School System, including 

comparable burial practices, time periods, geographic region, and cemetery settings. These 

parallels suggest that the tools and methods tested here may be transferrable to similar 

investigations elsewhere. Multi-modal aerial remote sensing therefore emerges as a promising, 

respectful, and non-invasive approach to supporting the search for missing children and unmarked 

graves. By integrating thermal, multispectral, LiDAR, and high-resolution RGB imagery, this 

method enhances the detection of subtle ground disturbances, vegetation stress, and spatial patterns 

that may indicate burial sites, all while minimizing disruption to the land and aligning with the 

priorities of descendant communities. 

Chapter 4.0 Methodology 

4.1 Introduction to the methodology  

The case studies described in this thesis involved collection, processing, analysis, and 

interpretation of aerial remote sensing data to assess its utility for archaeological prospection. 

There is currently no governing legislation or regulation regarding the use of drones in heritage 

documentation, nor are such methods widely used at an operational level in Canada. The methods 

employed rely upon previous tests and academic studies relating to the optimal conditions and 

settings for image acquisition. 

4.2 Research design and approach 

An implicit goal underlying the research was creation of workflows for collecting, 

processing, and interpreting digital output. This is a necessary prelude to assessment of the value 
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of aerial remote sensing to aid archaeological feature identification. Key elements of the research 

design reflect the technical requirements of drone equipment itself, while the flight parameters 

vary to ensure appropriate data acquisition to serve unique project objectives. This involved 

finding a cost-benefit balance between equipment capability, field data collection methods, and 

time and resources deployed in data processing. It is also dependent upon aerial expanse to be 

surveyed, the size of anticipated features, ground cover, lighting and weather conditions, and other 

factors affecting flight altitude and speed, and degree of image overlap. These factors directly 

affect flight time (and battery management) and have major implications for data processing time 

and data storage considerations. Clearly, these trials involve consideration of many variables that 

impact quality of output and efficacy of aerial remote sensing. The initial experiment used the DJI 

Mavic Mini to test the effectiveness of ad hoc mapping missions using dronelink 

(https://www.dronelink.com). This application utilizes a software development kit (SDK) that 

allows the drone to connect to the application installed on a modern cellular telephone. A flight 

plan map was created for both FE1 and FE2 using GPS waypoints acquired by the drone 

immediately prior to undertaking the mapping mission. The GPS accuracy of the DJI Mavic Mini 

is only 2-5 meters, constraining such missions to those tolerant of such modest geospatial accuracy. 

This georeferencing accuracy can be enhanced using ground control points (GCP) that have been 

assigned geographic coordinates using more accurate GNSS receivers. If GCP coordinates are 

available, they can be uploaded into digital modelling software along with image datasets to refine 

the georeferencing associated with the photogrammetric output. This process is also known as 

post-process kinematics or (PPK). Note that for the photogrammetry flights in case studies 2 and 

3, ground control points (GCPs) are used to correct the geospatial accuracy of the data and resulting 

output. The GCPs used for this thesis are orange pylons placed strategically around the area of 

https://www.dronelink.com/
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investigation with the centermost point being measured by a global navigation satellite system 

(GNSS) rover. 

The Lockport test case did not employ GCPs, while both Fort Ellice test cases utilized 

GCPs using a GNSS receiver with accuracy capacity between 18 to 30 cm. While not exhibiting 

sub-cm accuracies associated with survey grade GNSS receivers, this instrument allows significant 

improvement over that offered by the GPS installed on the Mavic Mini. Conversely, the flights 

over FE2 and the cemetery location used the RTK method with a DJI RTK2 as the base station. 

The primary software program used for image processing for each case study in this thesis 

is called WebODM (open drone map). WebODM is a FOSS that uses a photogrammetric technique 

also known as structure-from-motion (SfM). SfM is possible since the X, Y, and Z position of each 

photograph is known through the GPS integrated into the DJI Mavic Mini. These coordinates form 

part of the metadata associated with each photograph taken as the drone moves through space 

during its mapping mission at a standard elevation and degree of overlap with each successive 

image.  

4.3 Data collection, processing, materials, and instruments 

Prior to executing data acquisition flight operations, it is important to organize ground 

control points if georeferencing accuracy beyond the capabilities of the on-board GPS is important 

to the project outcomes. While experimenting with the data from these case studies, it became 

clear that there is a point of diminishing returns when considering the number of GCPs used to 

maximize accuracy of results. The GCPs are laid out at key geographic tie-points and measured 

using a GNSS receiver capable of gathering sufficiently accurate geocoordinates. This is achieved 

by triangulating time and distance between the rover, the satellite, and base station(s). The semi-

autonomous flight plans help guide the drone using parameters set by the pilot-in-command (PIC). 
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For much of the data collected in the case studies, flight altitude was set to 60 m AGL and the 

flight speed was set to the minimum when possible, with image overlap varying with the conditions 

of each test case locality. 

After completion of the semi-autonomous flight, data is first downloaded from the SD card 

installed on the UAV, with images organized into computer folders and then processed using 

specialized software. Each folder should be labeled to specify discrete flights to reduce the risk of 

error when selecting data for processing. Removal of unwanted images from the dataset also 

ensures that upload to the processing software is not interrupted. Each batch of images is uploaded 

to webODM via the webODM dashboard command "create new file." The options for data 

processing in webODM are "Default," "High Resolution," "Fast Orthophoto," "DSM +DTM," 

"Forest," "Point of Interest," "Buildings," "3D Model", "Volume Analysis," and "Multispectral." 

Once the model option has been selected, these options can be further customized by editing the 

tasks. Since webODM runs similarly to a software development kit (SDK), the tasks are edited by 

"point-and-click" rather than manually entering the code using a computer language. It should be 

noted that the software makes use of the computer terminal to execute functions by running 

command lines. This is how the software was initially coded onto the system using a GitHub 

repository. These software commands connect the computer via localhost and provide encryption 

via the loopback network interface. This guarantees that the raw primary data sent to the local host 

does not leave the machine and is, therefore, considered secure against network interception 

(https://letsencrypt.org/docs/certificates-for-localhost/). In addition to the benefit of encryption, 

webODM also requires the registration of a username and password. Archaeological professionals 

should remain cautious when using most free open-source software, being mindful of potential 

security risks involving sensitive data. This is particularly important when such work includes 

https://letsencrypt.org/docs/certificates-for-localhost/
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documentation of Indigenous traditional ecological knowledge (TEK), including sacred sites, 

toponyms, and other culturally significant data. This is in recognition of cultural sensitivity of such 

data and mindful of Indigenous data ownership, access and rights. Similar issues of data ownership 

exist when utilizing data downloaded from government sources where, for example, the 

Government of Canada retains Crown copyright (Gupta et al., 2020). 

4.4 Hardware 

The two RPASs used in the October 2021 investigations by Hamilton and Kuncewicz were 

a DJI Mavic 2 Pro and DJI Mavic Mini rotary UAVs. A total of 5 flights were conducted by 

Hamilton over three days, while Kuncewicz conducted two flights over two days. Overcast lighting 

conditions generally yield the best conditions for photogrammetry because it eliminates most 

shadows deriving from intense sunlight. In feature detection via photogrammetry, unpredictable 

shadows can often lead to false positives or the deformation of features (Pepe, Fregonese, & 

Scaioni, 2018). During at least one of the flights, Hamilton attempted to use a filter to reduce the 

shadowing effects from the sun. Aside from weight, the most significant difference in hardware 

between the two UAV systems is arguably the camera resolution. The larger and heavier DJI Mavic 

is better able to resist buffeting by the wind- a major problem for the Mavic mini in even moderate 

winds. The DJI Mavic Mini camera boasts a 1/2.3" complementary metal oxide semiconductor 

(CMOS) sensor capable of 12 megapixels (MP), while the DJI Mavic 2 Pro camera has a 1" CMOS 

sensor capable of 20 MP. While the larger sensor on the DJI Mavic 2 Pro is considered more 

effective in low-light conditions, the DJI Mavic Mini still does an exceptional job at creating high-

resolution orthophotos capable of producing accurate digital models. 

The two drones were controlled with two different computerized hardware devices attached 

to the flight controllers. Hamilton used an iPad with the Mavic 2 Pro, and Kuncewicz used an 
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iPhone 7 with the Mavic mini. The iPad operated without issue, but Kuncewicz noted that the 

iPhone 7 occasionally ‘froze’ when attempting to run the dronelink software with the DJI Mavic 

Mini. 

Hamilton supplied the ground control equipment for flights during the October 2021 

operations. This process began by establishing GCPS with metal spikes that are visible from the 

air with numbered small fluorescent orange pylons. The coordinates of these GCP points were then 

collected using a Juniper Geode GNSS RTK receiver capable of obtaining 18-30 cm accuracy, 

indicated by the manufacturer's specifications. During data collection care was taken to monitor 

estimated accuracy of coordinate solution, and to repeat the process if poor satellite geometry 

results in accuracy estimates greater than 35 cm. These coordinates were recorded and used as part 

of the post-processing of UAV output to refine its georeferencing accuracy.  

The use of GNSS receivers to refine georeferencing accuracy is becoming more common 

for digital mapping because it is far superior to what is possible when only using the onboard 

GNSS currently installed in consumer market drones. Modern drones are capable of receiving 

signals from multiple global satellite systems, such as GPS, GLONASS, Galileo, and BeiDou, but 

their onboard positioning is still limited in accuracy without correction. The specifications for 

GNSS accuracy on the DJI Mavic Mini is anywhere from 2-5 meters, while that for the Mavic 2 

Pro is rated to within 1-2 metres. These receivers, although technically GNSS-capable, do not 

apply differential correction, which is required for greater accuracy.  

Once positional data is collected, either through a drone-mounted GNSS receiver or more 

typically via a high-precision external GNSS unit for recording GCPs, mapping output can be 

refined using differential correction methods such as post-processing kinematic (PPK) or real-time 

kinematic (RTK). This process uses triangulated signals from satellites, combined with corrections 
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from a base station or local network, to refine the positional data. PPK refinement was employed 

in this thesis research and is presented in case study 2 highlighting two very important 

considerations. First, the model detail (GSD) cannot be directly influenced by PPK, since the 

resolution is determined by sensor quality and flight altitude. However, PPK can have an indirect 

effect on GSD during the refinement of positional accuracy along the Z-axis. Specifically, the 

corrected altitude values introduced by PPK influence the spatial geometry of the reconstructed 

model, which may subtly alter the distance measurements between pixels. This, in turn, can affect 

how GSD is expressed within the model and lead to slight distortions. These minor shifts not only 

influence spatial fidelity but can also enhance relative accuracy by improving internal alignment 

between features, even though the original image resolution remains unchanged. Second, the 

application of PPK in combination with GCPs can produce exponential refinement of absolute 

accuracy. This is demonstrated in case study 2, where images containing multiple GCPs, and 
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repeated captures of the same GCPs were deliberately selected for cross-georeferencing. After 

manually identifying the centermost point of each GCP in each image using the webODM GCP 

Figure 15. WebODM quality report. Note highlighted accuracies 



 74 

editor tool, these images were uploaded for PPK model reconstruction using the corrected 

coordinate values. Approximately 30 GCP-tagged images were used, some of with multiple GCPs, 

and the results of this experiment produced an impressive 0.004 m horizontal absolute accuracy. 

However, these values represent the internal alignment of the model to the input GCPs, not true 

global accuracy. Since the GCPs were collected using a Juniper Geode 2 GNSS rover with a 

maximum reported positional accuracy of approximately 16 cm at best, the model’s true absolute 

accuracy is limited to that range. Thus, while internal reprojection errors are low (suggesting 

excellent relative alignment and spatial consistency within the model), the actual global accuracy 

should be interpreted as ±16 cm, with the internal variation of ±4 mm occurring within that broader 

tolerance. If the same method was applied using peak survey-grade RTK equipment, near absolute 

accuracies could be attained, but at a considerably higher equipment cost.  

In the absence of GCPs, reported absolute accuracy values from WebODM reflect internal 

consistency relative to uncorrected GNSS metadata, not verified positional truth. To evaluate real-

world alignment, orthomosaics were manually compared with georeferenced base layers in QGIS 

using visual analysis to verify that the models were not largely inconsistent and inaccurate. 

Discrepancies between visible features (i.e., road edges) and their known mapped positions can be 

measured, providing an independent empirical check on absolute positional error beyond 

WebODM’s internal estimate. 

4.5 Software 

Each phase of the archaeological investigation process using aerial tools for archaeology 

requires software to function: data collection needs flight planning software (DJI flight interface, 

Dronelink), data processing needs photogrammetry and point cloud software (DJI Terra, 

WebODM Cloud Compare), data analysis relies on geospatial software and measurement tools 
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(QGIS, ThermalMetrics, NDVI, NDRE), and interpretation relies on plugin-tools and algorithms 

for enhanced visualization (CSF, RVT, VAT). These investigative phases and the electronic tools 

deployed are highlighted below. 

While all three UAV systems used to collect data for this thesis can initiate autonomous 

flights, each uses a different approach. The Mavic Mini can undertake semi-autonomous flights 

only by using 3rd party software solutions through use of SDK. In contrast, the Mavic 2 Pro and 

M300 can either communicate with standard software from DJI or by using SDK applications. The 

Mavic Mini used in case studies 1, 2, and 3 executed flight operations using dronelink software, 

while the Mavic 2 Pro and the M300 used the DJI interface. Note, the Mavic 2 Pro was also used 

in conjunction with software called Maps Made Easy for third-party semi-autonomous flight 

planning and execution. While all flight software types were effective, the DJI interface is designed 

to be utilized with the DJI smart controller for more in-field applications, while drone link provides 

a desktop flight planning solution. Unfortunately, there is no SDK offering by dronelink for the 

M300 at this time. 

To keep costs low, free open-source software (webODM) was used for processing RGB 

photogrammetry and multispectral data. This software was uploaded from a GitHub container (a 

document containing code). It was entered into the terminal application of a 2012 Macbook Pro 

with an updated SSD hard drive with 8 GB of RAM. Once the terminal commands are entered, the 

computer can connect to webODM via a local host and standard web browser. The application 

webODM could only be interpreted by the computer through a third-party application called 

Docker. Docker allows the script supplied by GitHub to be interpreted and controlled through the 

terminal. Due to the age of the computer, and the amount of RAM required to run tasks in 

webODM, Docker allowed adjustment of memory allocation to suit the mapping tasks, including 
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image processing, higher resolution elevation models, contour lines, and 3D models. WebODM 

also offers the ability to upload GCPs in the .csv format so that data can be processed with greater 

accuracy as demonstrated in case study 2 at the Fort Ellice 1 site. 

There are many geographic information system platforms to consider for analysing and 

presenting geographic data. Most notably, ArcGIS by ESRI is the leading industry standard for 

desktop systems. This subscription-based commercial software is widely used within corporate 

and academic environments and is a stable, but expensive option. Since the research for this project 

focused on evaluating low-cost archaeological prospection strategies, FOSS GIS software (QGIS) 

provided the backbone for data input and conversion of coordinate systems. QGIS acts as the prime 

source for data analysis in each of the case studies. It optimizes analysis with tools for reading 

thermographic data and reflectance values associated with some optical remotely sensed data, as 

well as dimensional measurement tools for analyzing feature anomalies.  Another way QGIS 

successfully aids digital data analysis is by first converting LAT/LONG geodata to UTM 

coordinates that are necessary for the projection of points in the webODM system. GIS is important 

because it can help track and trace ground control points. The export of comma-separated value 

(CSV) files becomes vital for the quick organization and import of georeferencing data such as 

LAT/LONG, UTM, and mapping projections such as WGS84 (World Geodetic System). 

QGIS is also relevant in data interpretation since it is compatible with plug-ins that are 

software developed to execute commands without using ‘command line’ code. This makes it easier 

and less error-prone for users to interface with maps, models, and digital data for interpretation. 

For example, a plug-in software kit known as the "relief-visualization toolkit" (RVT) for QGIS 

can transform DEMs with various relief applications such as slope and lighting filters as seen in 

case studies 3 and 4 (appendix 5). An algorithm tool featured by the RVT plug-in for QGIS is 
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called "visualization for archaeological topography" (VAT) and demonstrates how features can be 

highlighted through algorithmic mimicking of real-world conditions. Tools for interpretation such 

as the VAT algorithm are considered feature enhancement techniques. Some examples of these 

functions are slope gradient, hill shading, contouring, openness, and sky-view factor. Appendix 5 

illustrates how these filter algorithms can be blended into a VAT model to benefit archaeology. 

Minor topographic changes can indicate otherwise unidentified features using common aerial 

orthophotography. This method known as VAT was used in case studies 3 and 4 to demonstrate 

the effectiveness of this tool for archaeological feature identification including subsurface features 

such as walls, pits, and burials (see Figure 14).  

Ultimately, each step in the workflow of digital model generation is reliant upon the 

former. Since new developments in GIS and image recognition software can aid archaeological 

observation, the quality of the analysis, interpretation, and processing rely upon the quality of the 

data collection.  

4.6 Sampling strategies 

The sampling strategy for quick aerial reconnaissance at the Lockport east site in case study 

1 was deployed after adjusting the input parameters for optimization of data collection after 

experiments at Fort Ellice. On November 9, 2021, a rapid-mapping mission over Lockport east 

(EaLf-1) was designed with the following input parameters: 60 m over 1.3 ha with 90% forward 

overlap and 80% side overlap at a max speed of 6 km/hr. This resulted in a total flight time of 20 

minutes, 19 seconds, while collecting 253 images. This was sufficient for the photogrammetric 

process using webODM that took only approximately 30 min. to render a quick orthophoto and 

DEM. Kuncewicz analyzed the data over approximately 3 hours of the same evening. This 

demonstrates that it is possible to execute a rapid-mapping mission for aerial reconnaissance in 
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approximately 4 hours. This could permit next-day ‘ground truthing’ of map output, representing 

a sharp efficiency improvement over traditional processes of map production and validation.  

On October 7, 2021, two test flights were conducted at Fort Ellice 1 with the DJI Mavic 

Mini mRPAS. This sought to understand the ideal flight settings for maximizing quality and 

efficiency of image acquisition. This approach required a balance between field time requirements 

and map output detail. The first test flight was designated the alphanumeric name FE1 A (for Fort 

Ellice 1 flight A) and the second flight was named FE1 B. At the time of these test flights, the user 

had not used dronelink; and was unfamiliar with the requirements of the software. The first goal 

was to understand software operation for both rapid-mapping potential and on-the-fly adjustments. 

The input parameters for FE1 A were approximately 40 m altitude over 0.4 ha with 80% forward 

overlap and 70% side overlap at a max speed of 29 km/h. This speed was much too fast to capture 

sharply focused images unaffected by motion blur. The mapping mission only took 2 minutes, 13 

seconds, and generated only 34 images. This was insufficient to produce a quality 

photogrammetric product. To reap the benefit of terrain visualization filters, a GSD equal to or 

better than the expressed relief is considered optimal because of the variation between single 

pixels. For example, if a user wants to represent changes in the relief change of less than 1 cm, 

then 1 cm GSD or less is optimal. Similarly, the input parameters for flight FE1 B were 50 m 

altitude over the same area and with the same overlap of FE1 A, but with a max flight speed of 5 

km/hr. While the reduction in flight speed eliminated motion blur, the increase in altitude over the 

same area resulted in fewer images (20) and increased total time duration of flight to 3 minutes, 

30 seconds, still rendering it insufficient to produce a useful photogrammetric model. 

Although the data amassed in both trial flights FE1 A and FE1 B, technically could have 

been enough to render digital models, the required flight parameters proved less than optimal either 
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due to flight times exceeding battery capacity or generating insufficient photogrammetric detail. 

For example, FE1 A would have generated a GSD of 1.37 cm/px, but the estimated flight duration 

would have exceeded the three-battery limit of the UAV used for this experiment. The same type 

of error occurred with flight test FE1 B. The decision was made to shift the flight path from a grid 

(criss-cross) pattern to a linear (lawnmower) type pattern. However, this resulted in too few images 

per flight with less-than-optimal image overlap. These trials demonstrate some limitations of 

associated with consumer-grade hardware and free open-source software. In contrast, the flight 

planning software used by Hamilton with the DJI Mavic 2 pro (a subscription-based application 

with more capacity) did not face the same kinds of issues. This is mostly because most flight 

planning software, including the ones used in this research, are optimized for useability and will 

generally notify the user when input parameters will not be sufficient for data capture for 

photogrammetry. 

After deliberating over the problems encountered during the October 7, 2021 test flights, 

the first full flight of Fort Ellice 2 (FE2 A) was conducted on the morning of October 8, 2021, 

using the adapted flight plans from FE1 A and FE1 B. The following are the input parameters used 

for flight FE2: altitude (50 m), overlap (80% front, 70% side), flight speed (5.0 km/h), pattern type 

(grid), gimbal pitch (-90 degrees, nadir), minimum capture interval (2.0 sec.). These parameters 

resulted in a flight time of 31 minutes, 13 seconds, and generated 184 images to encompass an 

area of 1.9 ha. 

In the afternoon on October 8, 2021, Kuncewicz, Hamilton, and LaMontagne returned to 

the Fort Ellice 1 site to execute flight FE1 C with the following parameters: altitude (60 m), overlap 

(90% front, 80% side), flight speed (5.0 km/h), pattern type (grid), gimbal pitch (-90 degrees, 

nadir) minimum capture interval (2.0 sec.). Note that slight differences in altitude and image 
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overlap are evident between flights FE2 A and FE1 C. This is deliberate to assess the differences 

in output after data processing, and which flight parameters are most important to improve the 

overall quality of the DEM.  

The strategies for sampling data from other remote sensors (thermal, multispectral, and 

LiDAR) are more complex than the photogrammetric sampling that took place at the Lockport and 

Fort Ellice sites, and these other remote sensing types require more deliberate planning and 

preconceived strategy in their deployment. While these other methods still rely on core input 

parameters like those used in photogrammetry such as flight speed, altitude, and image overlap, 

these parameters must be carefully adapted to suit the specific requirements of each remote sensing 

method and the environmental context of the site. For example, LiDAR data quality is dependent 

on the frequency of laser pulses and point cloud density, which in turn are influenced by flight 

speed, altitude, camera angle, and flight path. Additional features such as terrain-following can be 

used to maintain consistent point spacing and Z-axis accuracy over variable topography. Thermal 

and multispectral imaging, on the other hand, demand slower flight speeds due to shutter speed 

and sensor specifications required to capture distinct spectral bands. These elements must be 

understood and optimized in advance to ensure the success of a given survey. For example, 

methods for multispectral data collection at the cemetery location in case study 4 were optimized 

with parameters that account for reflectance calibration and bit-depth of image collection. These 

parameters are input using the MicaSense website instead of directly on the DJI controller. 

Additionally, when using the MicaSense Rededge-MX sensor and the DJI H20T sensor, the focal 

length and aperture make a difference regarding the sensitivity to the intensity of light permitted 

by the camera sensor. The DJI Zenmuse L1 LiDAR sensor is even more complicated to calibrate 

in that both the IMU needs to warm up pre-flight and needs to re-calibrate with every pass of the 
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drone flight path, but also factors such as point cloud density, and pulse-frequency will impact the 

final product. 

4.7 Data analysis methods and techniques 

The test at east Lockport focused on rapid mapping for archaeological reconnaissance, 

where the priority was not on high-resolution detail but rather on establishing general site 

orientation and identifying the presence or absence of heritage features of interest. RGB 

photogrammetry was used as the primary remote sensing technique to enable visual interpretation. 

The objective was to generate a basic model in WebODM, export it as a GeoTIFF file, and import 

it into QGIS to facilitate site-level interpretation. 

Tests at Fort Ellice 1 and 2 employed two different consumer-grade drone models, both 

using semi-autonomous flight planning software. Each drone contains components to manage the 

flight and collect important metadata. This includes built-in compasses, a radio transmitter and 

receiver, collision avoidance sensors, GPS and IMU. The results were then post-corrected using 

geodata from a roving RTK unit to generate coordinates from each GCP. In this experiment, the 

platform was the DJI Mavic Mini with a 12 MP resolution CMOS camera sensor. DJI specifies 

the operational Hovering Accuracy Range as Vertical: ±0.1 m (with Vision Positioning), ±0.5 m 

(with GPS Positioning), Horizontal: ±0.3 m (with Vision Positioning), ±1.5 m (with GPS 

Positioning).  

At issue is what degree of accuracy is necessary to appropriately record and analyze 

archaeological sites and features. In archaeology, precision in geospatial data enhances the ability 

to document cultural resources, but the required level of accuracy can vary depending on the 

purpose of the project. For preliminary reconnaissance and survey, lower-resolution mapping may 
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be sufficient. However, in projects requiring excavation, determination of mitigation or site 

avoidance, or in several academic research applications, higher accuracy becomes essential. 

This distinction framed the experimental design in case study 2 at Fort Ellice 1. Here, the 

goal was to evaluate how the number of GCPs, combined with PPK correction in WebODM, could 

improve absolute model accuracy. The experiment compared a photogrammetric model using 

multiple GCPs against one relying solely on the onboard GNSS from both the DJI Mavic Mini and 

the Mavic 2 Pro. 

At Fort Ellice 2 (case study 3), a different approach was used. This site tested the 

comparative quality of DEMs generated by the Mavic Mini versus the Mavic 2 Pro. In addition to 

photogrammetry, thermal and LiDAR datasets were collected using a professional grade DJI 

Matrice 300 to evaluate the benefits of integrating multiple sources of remotely sensed data. These 

methods offered a broader perspective on how different sensor types contribute to archaeological 

interpretation. 

Methods at the cemetery location in case study 4 consist of a variety of visual and statistical 

factors drawn from and combined over the various optical remote sensing techniques outlined in 

this thesis to maximize interpretive value. The Infrared and Near-infrared spectra of the 

MicasSense Rededge-MX were calibrated using a special calibration panel coupled with the 

camera hardware and triggering of the camera was set using a timed-interval. This information 

was collected to produce NDVI and NDRE models for analyzing plant health, growth and vigour, 

and to apply these data to detect archaeological features. The DJI H20T thermal sensor was 

deployed at low altitude (45) m at dusk when entropy is higher, and with the maximum degree of 

overlap (90% forward and 90% side) to compensate for the lower optical resolution of the FLIR 

sensor compared to the RGB cameras used in all the case studies. The lower altitude coupled with 
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slower flight speed serve to improve the resolution of the final thermographic model. Last, the DJI 

Zenmuse L1 was deployed over the cemetery location with the highest pulse-frequency possible 

and using triple return at 45 m altitude in order to maximize the penetration possible through tree 

canopy, scrub brush, and tall grasses. These settings allowed for the camera to collect laser pulse 

returns with point cloud density of ~ 17,000 points per meter squared. When used with ground 

filtering software algorithm CSF via Cloud Compare and with the VAT model presented earlier in 

this thesis, the resulting model drastically improves archaeological visualization and enhanced 

interpretation. 

4.7.1 Ground Sampling Distance 

Ground sampling distance (GSD) measures the linear distance between each sample taken 

of the ground. With raster data, this is most readily imagined as the distance between the centres 

of adjacent pixels, each representing discrete data points. GSD relies on camera resolution 

capabilities and the distance between the camera and the ground (altitude) during the time of 

capture. Since GSD is an empirical property of the dataset, determined by camera resolution and 

flight altitude, it remains consistent within the digital model. However, how the data is visualized 

depends on the resolution of the display medium. For example, viewing the same model on a high-

resolution monitor allows for greater perceptual clarity than on a lower-resolution screen, even 

though the GSD itself has not changed. Additionally, while zooming in or out does not alter the 

model’s inherent resolution, it does impact how users interpret spatial details, making display 

quality and scale important factors in analytical contexts. While GSD is a measurement calculated 

during photogrammetric reconstruction, this metric can also be recorded, tested, and verified 

manually if relative accuracies are good. Since georeferenced files like TIFFs contain X, Y, and Z 

EXIF metadata, it is possible to draw linear measurements between pixels derived from a Cartesian 
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Coordinate Reference System (CRS) such as WGS84 in GIS. By identifying two known points in 

a CRS using the centre of each pixel for reference, it is possible to manually calculate the linear 

distance between them, thereby determining the GSD with a high degree of accuracy. This 

approach can be especially useful when software outputs do not provide GSD directly or when 

validating the results of quality reports from WebODM. Manual measurement of GSD in GIS also 

offers a valuable solution when analyzing multi-modal data that may not align perfectly due to 

collection inconsistencies or sensor limitations. In such cases, measuring pixel spacing directly 

within each dataset can assist in identifying and correcting variance between models, supporting 

improved interpretation, validation, and feature matching. This method provides an added layer of 

quality control, ensuring that spatial inconsistencies do not propagate through to final outputs or 

hinder interpretations. 

GSD is particularly important when studying DEMs and point clouds, as these digital 

products are designed to highlight subtle variations in slope, terrain, and ground surface 

morphology. The embedded height metadata within each pixel or point is used in the calculation 

of derivative products such as slope maps, hillshades, openness models, and other visualization-

enhancement algorithms in QGIS and similar platforms. Some of these are shading-based, relying 

on simulated light sources, while others emphasize geometric relationships or topographic 

exposure. In addition, software like CloudCompare allows users to manually define or adjust the 

grid size to control the coarseness or fineness of the model, depending on the investigative needs 

and the scale of features being targeted. This user-defined manipulation supports better 

interpretation across a range of spatial scales, especially when working with VAT models or 

comparing multi-modal datasets. 
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4.8 Validity and reliability of the study 

A central theme underlying debates about the utility of aerial remote sensing for 

archaeology revolve around issues of data scale and resolution. This simultaneously considers the 

spatial expanse to be investigated coupled with the data resolution required to detect and 

characterize archaeological features that are often quite subtle and localized. With this in mind, 

workflow design for data collection must consider the following: A) what are the desired 

outcomes? and B) of all the possible outcomes, what is the scale needed to delimit such 

information. Using a basic ecological example, imagine that a large river system is the subject of 

a digital remote sensing investigation. In this example, there can be a multitude of inquiries about 

the data, but let’s examine two straightforward research questions. First, what are the area 

dimensions and the location of the river in reference to other ecological landscape features; and 

second, what is the direction of water flow within the river.  

Addressing both of these questions using digital data requires information at sufficient 

resolution to enable interpretation. Landscape features such as rivers can be of variable size. To 

represent this accurately, image data must be of sufficiently high resolution to document this 

variability accurately. This would require flight parameters that are sufficiently low elevation to 

capture the necessary detail. On the other hand, if the priority is to document the geospatial position 

of the river relative to other landscape features, a much smaller scale map product might serve that 

encompasses both the river and its surroundings. Since lower image resolution is required, the 

flight parameters can be structured around documentation of a more expansive area from a higher 

elevation. These two very different objectives can be realized by varying flight elevation, speed 

and degree of image overlap when doing flight mission planning. Addressing the direction of flow 

of the river might require different input parameters. Determining the water flow direction using 
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still images is a complicated process within structure-from-motion (SfM) software. While the 

details of such analysis are not relevant here, determination of stream flow would require higher 

resolution imagery that derives from lower elevation flights or higher resolution sensors (or both). 

Such information might also be generated through analysis of lower resolution photogrammetric 

output by documenting the dendritic nature of tributaries, or by considering the detail of the stream 

gradient or evaluation of the surrounding terrestrial surface elevation model. What is important in 

both examples is understanding the necessary image scale required to address the research 

question. Another important flight planning consideration is that higher resolution image 

processing requires greater computing power and larger storage digital capacity.  

These concepts are also critical when addressing archaeological remote sensing objectives. 

This might involve planning to collect data that is appropriate for intra-site versus inter-site 

documentation.  Documenting the relationship of the archaeological site within its broader 

landscape context might be addressed with lower resolution data over a more expansive area (high 

elevation flights that are more efficient in terms of flight time, battery endurance and data volume). 

Intra-site documentation of small and subtle characteristics will require much higher resolution 

data collected with low elevation flights at slower speed and higher image overlap (with associated 

cost in terms of longer flight times, more care in battery management, and larger data processing 

and storage demands).  

In case study 2 and 3 at Fort Ellice, this is akin to saying what inter-site characteristics for 

documenting 19th century site selection criteria by ensuring documentation of the fort compound 

relative to the surrounding ‘culturally-mediated’ landscapes. This might be addressed with 

comparatively coarse resolution public domain satellite imagery or coarse-resolution LiDAR 

imagery, or orthoimagery deriving from high-altitude manned aircraft. While very useful, such 
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data may be insufficient to detect intra-site details important for archaeological prospection and 

interpretation. This might include patterned variation in vegetation, micro-topographic detail, or 

extant structural remnants. Such detailed intra-site imagery also become valuable for generating 

derived attributes (contour lines), or as a backdrop upon which to include thematic data such as 

artifact scatterplots, or site features observed through conventional excavations such as walls, 

foundations, hearths, grave shafts, and other features. Most archaeology has traditionally been 

concerned with documenting and interpretating intra-site details, and deploying UAVs can 

appropriately support such analyses. That said, with rapid technological improvement, UAVs with 

sufficient capacity and flight endurance are now also capable of supporting inter-site analyses. 

Remote sensing technologies can help us understand environmental phenomena that are 

beyond conventional sensory capacity. Humans have comparatively narrow visual sensory 

capacity that might be overcome with sensors that detect beyond the RGB spectra. This includes 

multispectral sensors capable of detecting light wavelengths from multiple bands (measured in 

nanometers) beyond human capabilities. The multispectral camera used in case study 4 

demonstrates that it is possible to use Red, Near-infrared, and Red-edge bands to identify changes 

in plant health and vigor via nitrogen uptake. There have been several studies previously conducted 

on the effects of nitrogen on plants and plant health via biological decomposition and the release 

of Nitrogen back into the surrounding soils. Theoretically, if mapped at a sufficient large scale and 

high resolution, this might be visible and enable non-invasive detection of human graves. These 

possibilities are explored more fully with Case Study 4. 

Similar possibilities exist when considering thermography as a tool to support 

archaeological aerial remote sensing. In this circumstance, solar radiation might be differentially 

absorbed by or reflected from the ground surface depending upon the physical character of the 
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sediment, its water content, or its degree of vegetation cover. Some of this variability may derive 

from anthropogenic sources. By mapping this patterned variation of heating/cooling using thermal 

sensors might also offer considerable potential for archaeological prospection. Again, the efficacy 

of such methods is dependent upon local conditions and by careful flight planning that considers 

issues of data scale and resolution. These issues are addressed in Case Study 3 and 4. 

Approaches to archaeological site interpretation using remote sensing will soon undergo 

explosive development as innovations in AI and machine learning algorithms become more fully 

developed and undergo technology transfer. Computers are now capable of having human-like 

sensory experiences such as the concept of computer vision. One such example of this is the Scale-

Invariant-Feature-Detection (SIFT) algorithm that is the basis of photogrammetry. This is a critical 

factor for digital archaeological applications since the SIFT algorithm, and others like it, provide 

evidence for the detection of anomalous features in minor ground undulations. Taking this notion 

a step further, computers that are capable of vision are theoretically more inclined to delineate 

features that are natural from features that are human made more efficiently than human 

archaeologists.  
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Chapter 5.0 Results 

5.1 Introduction to the results  

The results from the case study experiments are presented here. This includes both 

empirical data validated by statistical analysis, and more subjective qualitative data evaluated 

through visual assessment. The analyses of each case study demonstrated that several evaluative 

approaches might be used in archaeological prospection using aerial remote sensing. For example, 

in case study 4 both qualitative and quantitative information suggested the identification and 

location of anomalies that might be unmarked graves. Quantitative evaluation of multispectral data 

involved examination of output coinciding with marked graves compared to that associated with 

possible unmarked graves. The former acted as ‘controls’ to document distinctive ‘signatures’ 

associated with the marked graves that was then used to evaluate the suspected unmarked graves. 

Data analysis also sought to refine appropriate levels of relative and absolute georeferencing 

accuracy, optimal data resolution and how to balance database ‘size’ with computer requirements 

to process, analyze and store it. A recurring theme emerging from the analysis was the value of 

demonstrating replicability of spatial ‘patterns’ that might appear in output from various sensors 

deployed in different flight configurations. While the origin and function of these patterns might 

not be immediately clear, their consistent appearance aided cross-validation of air remote sensing 

as a prospection tool and served to identify candidate areas warranting more comprehensive 

‘ground truthing’.  

5.2 Examining workflow and making analytic inferences  

The experiments were conducted to evaluate the archaeological utility of different UAV 

and sensor types to detect archaeological features at diverse sites. This involves testing both 

equipment technical capacity, and the effect of flight planning and data processing parameters on 
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the eventual output.  Test cases 1 and 2 focused on generating and evaluating photogrammetric 

output collected using comparatively inexpensive consumer drones. This considered RGB camera 

capacity, and the utility of 3rd party semi-autonomous flight planning and photogrammetry 

software. This also assessed the relative accuracy and image resolution important for documenting 

archaeological environments. These evaluations focused on georeferenced orthophotographs and 

elevation models, and the analytic value of such digital products for archaeological remote sensing.  

It became clear that simple visual evaluation of output was not particularly robust for 

systematic analysis over large sites or where an abundance of features are apparent. This was 

particularly the case when considering output from sensors that detect phenomena beyond the 

visible light spectrum. In these cases, strategies were sought to identify quantitative means of 

evaluating output.  Each experiment yielded analytically useful results for identifying anomalies 

that are arithmetically distinctive from surrounding landscape.  For multispectral analysis, NDVI 

and NDRE formulae were calculated and used to detect possible human graves based on relative 

plant vigor, perhaps reflecting localized abundance of biological breakdown products such as 

Nitrogen. For thermographic analysis, mean temperature values of the resulting model were used 

to understand the variance between anomalies and surrounding soil conditions. When considering 

the LiDAR data, local relief was assessed by considering the mean, median, mode, and RMSE of 

area dimensions of ground anomalies. 

5.3 Qualitative data analysis, themes, and visualization 

Two important themes emerge from these data-driven experiments: 1) natural 

environmental conditions (localized variability in soil, microclimate, topography and vegetation) 

complicate interpretation and the ability to detect anomalies of possible anthropogenic origin; and 

2) despite these potential disruptions, under the right conditions remote sensing techniques also 
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detect anthropogenic features. The challenge is development of robust strategies to differentiate 

natural from anthropogenic features. It is also clear that localized anomalies detected using one 

technique often appear in output from others. This replicability across methods helps address data 

inconsistencies and focus attention upon specific anomalies or unconformities for further analysis. 

Thermographic results showed the greatest sensitivity to localized environmental fluctuations due 

to complex interactions between surface conditions, weather patterns, ambient temperature, and 

diurnal cycles. All examples of thermographic data in this thesis were collected during the fall 

season and some in different years. This proved effective since during the late summer and early 

fall there are generally more dramatic contrasts in solar heating between day and night. As the 

ground is heated throughout the day, the earth tends to absorb and retain heat in ways reflecting 

the local ground conditions. These patterns of heat retention persist until the ambient temperature 

begins to cool, whereupon the accumulated heat begins to dissipate into the cooling air. This 

usually begins around dusk when the ambient temperature changes and the emissivity of the soils 

enables heat exchange into the air. This process of heat dispersal is not uniform and some surfaces 

are more vulnerable to heat accumulation, meaning they will have more heat to disperse into the 

cooling evening air. Other surfaces either reflected more solar radiation during the day, or were 

insulated from it, and therefore will release comparatively less heat into the air.  This patterned 

variability in heat dispersal into the evening air might reflect a range of underlying natural or 

cultural circumstances affecting the ground surface. The importance of collection of 
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thermographic data at dusk is evident in Figure 16. This contrasts with efforts at thermographic 

data collection during the early afternoon on a hot summer day near FE2. This yielded poor results 

since there was insufficient thermal contrast between the ground temperature and the ambient air 

temperature. 

While all remote sensing methods in this study produced relevant information, their outputs 

varied in terms of data richness and analytical robusticity. Thermographic sensing enabled 

visualization of temperature variations and environmental changes, making it effective for pattern 

recognition but less suited for statistical modeling. In contrast, photogrammetry and LiDAR 

generated DEM and VAT models that yielded significantly more quantitative metadata to support 

statistical analysis, including elevation, point density, and terrain modeling. Multispectral imaging, 

Thermal 	Heat 	Map	 - 	Church	and	Cemetery

Figure 16. Thermal heatmap of cemetery capture with a DJI M300 RTK drone equipped with a DJI H20T thermal camera sensor 
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however, offered a unique advantage by utilizing multiple spectral bands to generate derived 

indices such as NDVI and NDRE, allowing for deeper insights into vegetation health, soil 

conditions, and potential subsurface features. The ability of multispectral approaches to convert 

reflectance data into measurable indices highlights their potential for predictive modeling and 

computational analysis, further expanding the scope of archaeological prospection. 

5.4 Data interpretation  

Case Study 1 (experiments in rapid mapping missions at EaLf-1) did yield valuable insight 

into the efficacy of RGB orthophotos and DEMs as tools for rapid reconnaissance missions. In this 

context, detail and georeferencing accuracy were sacrificed in favour of expeditious data 

collection, demonstrating that quick reconnaissance workflows can still aid archaeological 

investigators by facilitating site visualization, refinement of feature orientation and spatial 

distribution. The ability to rapidly generate a basic site overview allows researchers to navigate 

and contextualize archaeological landscapes efficiently, making it a useful first step before more 

detailed analysis. 

Case study 2 and 3 highlights investigations at Fort Ellice 1 (FE1) and 2 (FE2), where two 

separate tests were conducted to use photogrammetry to understand the level of detail and relative 

accuracy required for detecting and measuring archaeological features and basic site 

characterization. Both tests compared data output produced by the software WebODM where the 

input data was derived from a batch of RGB images collected via the DJI Mavic Mini drone. 

The first test examined a single dataset collected at FE2 in late summer 2021, subjecting 

the data to two different processing workflows in WebODM. This dataset consists of 184 images 

that were subjected to two different workflows to compare outcomes. The first was titled 'FE2 A 

DTM Quality Report' and second titled 'FE2 A Quality Report'. The key difference between these 
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workflows lies in how WebODM links the images together during processing. The Quick 

Orthophoto preset is designed to maximize speed and efficiency- something of value when using 

a computer with limited computational capacity, or when the analyst requires a quick evaluation 

of output. It identifies and connects fewer common points between images, resulting in a faster 

data processing but a less detailed model. The Quick Orthophoto preset took 17 minutes and 5 

seconds using a 2012 MacBook Pro equipped with 8 GB of RAM.  

The DTM/DSM option, on the other hand, searches for and connects as many matching 

points as possible, creating a more detailed and accurate representation of the landscape. These 

connection points, known as tie points, are essential in photogrammetry because they allow the 

software to align images correctly and build a 3D model with better absolute and relative accuracy, 

but the model takes much longer to generate. In the situation of this comparatively small mapping 

mission (only 184 images), the time and processing ‘costs’ are still minimal. Most mapping 

missions for detailed archaeological investigation require far more than 184 images, resulting in 

the DTM/DSM function requiring several hours to complete.  This can be problematic since the 

processing sequence is quite taxing from a computational perspective, sometimes causing the 

computer system to become ‘overloaded’ to the point that it ‘crashes’. This happened multiple 

times while attempting to process datasets with a larger number of RGB images each batch. These 

failures are typically due to insufficient RAM to process the model to completion. During early 

stages of this research a MacBook Pro 2012 equipped with 8 GB of RAM proved to be insufficient, 

requiring and upgrade to 16 GB of newer and more efficient RAM. This sharply improved capacity 

in processing larger batch datasets, but makes the point that equipment demands to support analysis 

are an important consideration as flights get larger and one uses UAVs with higher capacity 

cameras. See Table 2 for WebODM RAM requirements.  
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Table 2. Showing the RAM processing requirements for WebODM 

Minimum RAM needed for N imagesÁ 

Number of images RAM or RAM + Swap 
40 4 
250 16 
500 32 
1500 64 
2500 128 
3500 192 
5000 256 

 

These problems aside, the DTM/DSM function outperformed the quick orthophoto option 

in relative accuracy. (Horizontal CE90, and Vertical LE90) The quick orthophoto only yielded 

results of 0.174 m horizontal accuracy, but the DTM/DSM function yielded greater results of 0.036 

m. horizontal accuracy. Interestingly, both options produced the same results for absolute vertical 

accuracy of 0.828 m, while the quick orthophoto produced greater absolute horizontal accuracy of 

1.262 m compared to the DTM/DSM function which produced a lesser absolute horizontal 

accuracy of 1.901 m. The DTM/DSM product would have likely outperformed the quick 

orthophoto in all categories aside from an error during the upload process identified after the 

models were produced; the error being that the quick orthophoto option did not make use of one 

of the images in the batch process allowing for only 183 images of the 184 that were uploaded for 

the reconstruction.  

Aside from georeferencing accuracy, the detail of features, resolution, and integrity of 

reconstructed points are also important considerations because these factors contextualize digital 

models, providing insight into site characterization. Both reports document the median number of 

detected and reconstructed features. It is important to clarify that the term 'features' in these reports 

does not refer to archaeological features, but rather to distinct points identified in the imagery that 

https://docs.opendronemap.org/installation/#id4
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WebODM uses for model reconstruction. Detected features represent key points that the software 

recognized and tracked across images, which improve alignment and structure-from-motion 

calculations. Reconstructed features refer to these points that were successfully matched across 

multiple images and therefore were incorporated into the 3D model. A higher number of 

reconstructed features indicates a more complete and accurate representation of the surveyed area 

thereby providing more detail to assist with archaeological interpretation of sites and site features. 

In this analysis, the DTM/DSM model significantly outperformed the quick orthophoto 

model. The quick orthophoto model produced a median of 372 detected features and a median of 

223 reconstructed features, while the DTM/DSM model produced a median of 10,946 detected 

features and a median of 6,637 reconstructed features. The quality of the output model being 

Figure 17. Bar chart chowing reconstructed features versus detected features for two different processing options in WebODM 
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derived from the number of tie points, detected features, and reconstructed features, directly affects 

the GSD. The GSD between the two models demonstrated a difference of 13.5 cm with the 

DTM/DSM option yielding superior results. This test begs the question whether it is better to have 

greater accuracy with a larger ground sampling distance, or a lesser accuracy with a smaller GSD. 

In both cases the median for both detected and reconstructed features for the DTM/DSM option is 

approximately 30 times greater than the quick orthophoto option. Inferences can be made about 

this test to understand which digital model is most appropriate for the given task. 

The second test used two versions of the same dataset from FE1 to compare differences in 

accuracy based on the use of GCPs. This test is different from the accuracy test just described. It 

focuses specifically on georeferencing accuracy and not the detection and reconstruction of 

features or discrete characteristics. This second test considers absolute georeferencing accuracy of 

the ortho model generated from photogrammetric processing. Without GCPs, the photogrammetric 

output relies solely on geographic coordinate ‘tags’ associated with each image (generated by the 

drone's GNSS hardware technology) to georeference the resultant imagery. As the onboard GNSS 

receiver offers ‘accuracy’ within 1 or 2 metres that varies with satellite geometry and visibility 

among other factors, this can significantly impact accuracy and replicability of results. When GCPs 

are utilized, these reference points are associated with more accurately determined coordinates and 

can be used to adjust the photogrammetric output to improve overall georeferencing accuracy. This 

offers advantage in terms of improving replicability of results and contributes to greater efficiency 

and success in relocating remotely sensed features when ground truthing using other GPS systems 

(see for example Hamilton 2020). In test number 2 a significant difference in absolute accuracy is 

apparent between results depending upon whether GCPs were used or not. When GCPs were used, 

WebODM reports 0.004 m Horizontal Accuracy CE90 and 0.001 Vertical Accuracy LE90. When 
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the same data was processed without using GCPs the results report 1.033 Horizontal Accuracy 

CE90 and 1.946 Vertical Accuracy LE90 seen in number 1) of the appendix. The former result is 

an extraordinary measure of accuracy that was obtained through the use of repeated identification 

and acknowledgement of the GCP X, Y, and Z coordinates using WebODM's Ground Control 

Point Interface.  

It is important to note that ground sampling distance (GSD) is often mistaken for raw image 

resolution, but it is more accurately a measure of scale that represents the real-world distance 

covered by each pixel in an orthophoto. Like Ordnance Survey mapping scales discussed 

previously, GSD defines how much ground is represented per pixel. For example, 25 cm GSD 

means each pixel corresponds to 25 cm on the ground. The GSD is determined by UAV altitude 

and camera specifications, including camera resolution. The lower the drone elevation at the time 

of image capture, the smaller the GSD (each pixel representing a smaller area), thereby allowing 

more information to be captured in each image. The trade-off, of course, is that low elevation 

flights capture a smaller area in each photograph, requiring longer flight times and larger dataset 

Figure 18. GCP interface in WebODM allowing for PPK 
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for processing. Additionally, the resolution capabilities of the camera, such as a 20 MP versus a 

48 MP sensor, also influence GSD by determining how finely the sensor can capture details at a 

given altitude. 

When ground truthing anomalies, GSD is less critical than accuracy, as the primary goal is 

to verify whether features identified in the digital model can be reliably relocated in real space. In 

this context, intrasite details such as the shape, texture, or material composition of individual 

features contribute to characterization but are not as relevant for effective ground truthing. Instead, 

intersite details, which relate to the spatial positioning of features within a site, are more dependent 

on the level of absolute accuracy to correctly place features in geographic space. Absolute accuracy 

refers to how well a digital model aligns with real-world coordinates on Earth’s surface, while 

relative accuracy determines whether features maintain their proper relationships and contextual 

integrity within the model. Verifying these spatial relationships using remote sensing enables a 

more comprehensive approach to archaeological reconnaissance, where spatial patterns may serve 

as a proxy for interpreting site organization, identifying unconformities, and guiding further 

investigation. The ability to measure and assess absolute cartesian accuracy of conventional maps 

has been traditionally constrained by technological capacity of the available instrumentation and 

the scale of map representation. Even with modern GNSS systems absolute accuracy reflects a 

degree of inaccuracy reflecting technical capacity of the instruments, the satellite geometry and 

visibility, and weather conditions. In some circumstances sub-centimetre absolute accuracy is 

required, requiring deployment of more sophisticated instrumentation. When high levels of 

absolute accuracy are not required, less complex and expensive instruments are suitable. Relative 

accuracy, on the other hand, measures the precision of spatial relationships between features within 

the model itself, with less concern for placing that model with absolute geographic accuracy on 
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Earth's surface. Additionally, CE90 stands for circular error not below the 90th percentile, thereby 

measuring the horizontal error via a circle, whereas LE90 stands for linear error below the 90th 

percentile and is concerned with vertical errors. This is important because it is potentially the most 

precise way of measuring accuracy within digital models currently. 

For case studies 3 & 4 multispectral flights were conducted at the FE2 site and at the 

undisclosed cemetery. Because of complications with the integration of the MicaSense camera 

with the DJI equipment, a failed attempt occurred at the FE2 site. Experimentation with the FE2 

imagery resolved these problems, allowing generation of usable results at the cemetery location in 

case study 4. This multispectral dataset revealed positive results for the identification of human 
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graves using two (2) different vegetation indices known to correlate with plant health, plant 

abundance, chlorophyll, and nitrogen levels (see Figure 19 and Figure 20). 

This experiment used NDVI and NDRE processing to compare the Red, Near-infrared, and 

Red-edge light spectra. This process required first identifying the coordinates of already known 

graves and then examining the multispectral signature(s) of those known graves. The known 

graves often yielded elevated values that are associated with increased levels of chlorophyll and 

Nitrogen in plant foliage compared to the surrounding flora. This is thought to reflect plant vigour 

deriving from soil nutrient enrichment, including that deriving from human body decomposition. 

These NDVI and NDRE signatures associated with known graves were then used as references to 

consider other localities in the cemetery where graves are suspected but where no markers remain. 

NDVI 	 - 	Graves 	Highl ighted

Figure 19. NDVI model of isolated graves area showing high spectral reflectance 
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Tables in appendix 3 show NDVI and NDRE values for both marked and unmarked graves inside 

the cemetery bounds.  

A visual assessment identified the darkest-colored known graves in both the NDVI and 

NDRE orthomosaics to capture the most intense reflectance signature within each marked grave. 

One pixel was selected from the darkest area within each grave at an appropriate zoom level. These 

values were then entered into an MS Excel spreadsheet and processed to determine the mean and 

median. This provided a range of values thought to reflect the strongest plant response to nutrient 

enrichment within the graves and was then used to identify other similar patches of luxuriant plant 

growth elsewhere in the cemetery. This approach captured the most accurate depiction of the range 

NDRE	 - 	Graves 	Highl ighted

Figure 20. NDRE model of isolated graves area in the cemetery of case study 4 demonstrating high spectral reflectance 
signatures, likely indicating increased plant health, chlorophyll, and nitrogen 
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of reflectance values associated with the known graves and enabled a semi-automated process of 

finding similar values elsewhere in the mapped space. 

 The data from NDVI and NDRE tables in the appendix conclude that the mean NDVI 

value for marked graves inside the cemetery is 0.629465575 and the mean NDVI value for 

unmarked graves inside the cemetery is 0.572595, while the mean NDRE value for marked graves 

inside the cemetery is 0.187599575 and the mean NDRE value for unmarked graves inside the 

cemetery is 0.16458341. All this data is based on forty (40) marked graves (inside the cemetery 

and marked with headstone) and forty (40) unmarked graves (inside the cemetery) (see tables in 

appendix number 3). This difference in means of the NDVI values is 0.056871 while the difference 

in means of the NDRE values is 0.02301616. The most striking difference is between NDVI mean 

values and NDRE mean values of both marked and unmarked graves inside the cemetery where 

the difference of means of NDVI and NDRE is 0.441866 for marked graves and 0.408011 for 

unmarked graves respectively. It is important to note that NDVI and DNRE are derived measures 

(varying from -1 to +1) that consider arithmetic comparison of the light spectral bands described 

above. As such, numeric representation to 6 decimal points reflects the nature of these indices. The 

precision with which these spectral signatures are associated with known human graves is the 

critical issue. That is, what is the range of indices variation within such graves in contrast to non-

graves, and how much ‘overlap’ is there with vegetation patches with similar indices values that 

are not related to graves. Clearly, continued collection and analysis of cemetery data is important 

to refine our expectations before consideration of automatic classification algorithms for the 

identification of unmarked graves is fully viable. 

Taking this data further, histograms are presented in Figure 21 and Figure 22 showing the 

pixel value on the x axis and the frequency of that value appearing in the dataset on the y axis. 
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Approximations of marked grave size using the LiDAR VAT data captured at the same site, 

indicate an average grave size of 1.4905 m2 measured with a ground sampling distance of roughly 

5 cm. Since a GSD of 5 cm represents an area of 25 cm2  per pixel within the multispectral dataset, 

this suggests that each grave shaft might encompass about 596 pixels. The histograms for NDVI 

and NDRE show the frequency of pixel reflectance values within the cemetery dataset in case 

study 4. Since we know the approximate number of pixels that make up a single grave (596 pixels 

in this dataset), we can estimate the total number of graves by dividing the total pixel frequency 

by this baseline number. This assumes an even distribution of pixel groups, which may not always 

be the case but provides a useful approximation of grave numbers in the dataset. When referencing 

the histogram for NDRE it's evident that both marked and unmarked grave measured pixel 

reflectance each show up with a frequency of about 160,000 times in the dataset. Since we now 

have a baseline for approximately how many pixels on average make up one (1) grave in the 

dataset, dividing the frequency by the number of pixels in a single grave results in about 268 graves 

of each type on average (160,000 / 596 pixels = 268). This result is interesting in comparison to 
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Table 3. Showing 10 individual graves (marked) and 10 individual graves (unmarked) measured from a LiDAR VAT model. 
Note, there is a discrepancy where the Inside Cemetery and Outside Cemetery headings were incorrectly labelled, and they 
should instead read marked (for inside) and unmarked (for outside) 
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the NDVI dataset where frequencies are much lower, and the reflectance values are much higher. 

For example, NDVI marked grave pixels have a frequency of about 3500 while the unmarked 

grave pixel values have a frequency of about 6000. When estimating the number of graves based 

on our calculations for the NDVI dataset, marked graves = 6 and unmarked graves = 10. This is 

far less than the NDRE predictions for the number of graves and far underestimated in comparison 

to the visual assessment and historical documentation of the cemetery. The NDVI-based estimate 

significantly undercounts graves compared to NDRE. This suggests that NDVI may be less 

effective in distinguishing grave-related spectral variations, whereas NDRE appears to provide a 

Figure 21. Raster histogram showing low frequencies of NDVI pixels using the mean of marked graves (black) and 
unmarked graves (red) 
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more reliable estimate based on frequency distributions. By identifying precise NDVI and NDRE 

reflectance values correlated with known graves, we can establish spectral thresholds for future 

automated analysis. This could improve multispectral and hyperspectral remote sensing 

methodologies for detecting unmarked graves, particularly when combined with machine learning 

approaches to recognize patterns in spectral data.  

A focused statistical comparison was conducted between NDVI and NDRE values over a 

set of ten (10) identified grave plots in a recently used burial area of the cemetery. Of these, two 

Figure 22. Raster histogram showing high frequencies of NDRE pixels using the mean of marked graves (black) and 
unmarked graves (red) 
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(Graves 7 and 8) are unmarked with no headstones, but are suspected to have been buried in the 

same general time frame as the surrounding marked graves based on spatial clustering and 

cemetery layout. The intent of this comparison was to determine whether spectral reflectance 

values, particularly variation within a range of reflectance signatures, could support automated or 

semi-automated grave detection methodologies, especially in the case of unmarked burials.

 

Figure 23. 10 graves selected for zonal statistics to analyze multiple pixels within a grave 

Data was collected in the fall season, a time when changing environmental conditions can 

influence spectral reflectance due to seasonal plant decline. NDVI and NDRE are both 

influenced by vegetation vigour, but NDRE is more closely linked to chlorophyll content and 

nitrogen levels; two factors that may be enhanced by human decomposition, subtly enriching 

surrounding soil and increasing plant uptake in ways that affect reflectance signatures. 

Grave	Polygons	 - 	Zonal 	Sta t is t ics
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Each polygon (grave) was statistically analyzed for mean, minimum, maximum, and 

standard deviation of reflectance in both indices. The primary focus was placed on standard 

deviation, which offers insight into within-grave variability, a potential indicator of mixed 

vegetation, soil disturbance, or spectral anomalies that could correlate with burial features.

 

Figure 24. Backgrounds for zonal statistics to understand surrounding environment in comparison to the spectral values 
of graves 

To help interpret the reflectance values of the grave plots, four surrounding areas were 

also analyzed, two inside the cemetery and two in the natural environment outside its boundaries. 

These background zones included maintained lawn areas, as well as patches of forest, shrub, and 

dense riverside grasses. Across all zones, NDRE data showed that graves had lower internal 

variability (standard deviation) compared to the surrounding environment. This consistency in 

NDRE may be due to uniform regrowth of vegetation or subtle changes in soil conditions related 

Background	Zones
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to burial. In contrast, NDVI values were more scattered and showed high variability both in 

grave areas and natural vegetation, making it harder to distinguish burial sites from their 

surroundings. Interestingly, the two unmarked graves in the dataset had NDRE values similar to 

the marked ones, suggesting that NDRE can still detect differences associated with burial even 

when no headstone is present. Overall, while NDVI was visually useful, NDRE proved more 

reliable for statistical analysis, offering clearer separation between graves and background 

vegetation, even in less maintained or heavily vegetated areas. 

In any of the remote sensing approaches that attempts to detect graves, especially 

unmarked ones, there is always the potential for false positives (Type I errors) and false 

negatives (Type II errors). A false positive would occur when an area is identified as having 

spectral characteristics of a grave, but in fact no burial is present. A false negative would mean a 

true burial site was missed because its spectral signature did not meet the detection threshold 

criteria.  

To address this issue directly, a comparative analysis was conducted between known 

grave plots and a range of background environments both within the cemetery (maintained grass, 

open lawn) and outside of it (forest, shrub, tall prairie grasses). This included unmarked graves, 

marked graves, and natural, undeveloped land. The results showed that NDVI reflectance values 

were highly variable across both grave and background environments, with wide standard 

deviations and significant spectral overlap. This confirms that NDVI, while useful for visual 

mapping, carries a high risk of false positives, especially in natural or overgrown environments 

where vegetation is inconsistent or unrelated to burial. In contrast, NDRE demonstrated strong 

statistical separation between graves and all background areas, with much lower internal 

variability (standard deviation) within grave plots, and consistently lower NDRE mean values in 
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non-burial environments. This was true even in densely vegetated zones outside the cemetery 

where false positives were most likely to occur. Based on this analysis, the risk of grave false 

positives using NDRE was significantly reduced in all background contexts, and where ± 1 

standard deviation appears to eliminate Type I error altogether. NDRE mean values in the 0.17–

0.22 range were strongly associated with known graves, while all background zones to ± 1 

standard deviation fell below this threshold. Furthermore, the spectral consistency within NDRE 

grave plots, including the unmarked burials, suggests that NDRE is not only sensitive to burial-

related vegetation change, but also resistant to being misled by unrelated natural vegetation. 

 

Figure 25. Frequency histograms with implied value showing the range of means for NDVI compared to NDRE. Note the 
standard deviation for backgrounds and graves using NDVI are much wider, versus the narrow distributions of the NDRE 
data. 
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This comparison provides strong support for the reduction of Type I errors using NDRE 

as a proxy for grave identification that is not found in NDVI.  The risk of Type I error is valid in 

theory, since no remote sensing method is without limitations, yet the evidence here supports 

NDRE as a statistically reliable and significantly more accurate tool for spectral analysis of 

burial sites. It is important to note that the background zones used in this analysis contained far 

more pixels than the individual grave plots, often by several orders of magnitude. This introduces 

a potential sample bias: even if a small percentage of background pixels fall within the NDRE 

range typical of graves, their absolute number could be high simply due to scale. While the 

summary statistics (mean, standard deviation, and range) indicate that such values are 

statistically rare and not affecting the overall distribution, this analysis did not assess the spatial 

arrangement of those pixels. Therefore, while no evidence of NDRE value clustering in the 

background zones was observed, the possibility that small-scale spectral clusters may exist 

cannot be ruled out. However, the consistently low mean NDRE values and moderate standard 

deviation suggest these are isolated outliers rather than structured false positives, reinforcing the 

statistical strength of NDRE in this context. A more detailed pixel-based spatial clustering 

analysis would be a valuable next step to further validate these findings. 

After running inferential statistics on the thermographic datasets from case studies 3 & 4, 

there is a strong indication that soil redeposition influences thermal entropy and exergy and is 

visible using the infrared spectrum detected with the DJI H20T thermal camera. To demonstrate 

this effect, the experimental plugin ThermalMetrics for QGIS was used to evaluate the mean, 

median, and mode for temperatures in degrees Kelvin. It is evident when comparing data collected 

in the summer of 2022 versus the fall of the same year, that the extent of the visual heat contrast 

varies with seasonality. For example, thermal data acquired from FE2 occurred shortly after sunset 
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on Friday, June 24, 2022, while other thermograms were captured at dusk on October 31, 2022 

from the cemetery location. The high temperature recorded on June 24, 2022 in St. Lazare, MB, a 

community near FE2, was 22 degrees Celsius. The higher-than-average temperatures observed 

consistently throughout the flight mission at FE2 represent greater heat dispersion as the ambient 

temperature cools the surrounding earth and vegetation after sunset (Figure 26).  Invariably, on 

Figure 26.  Thermal heatmap showing remnants of the FE2 palisade walls and other feature anomalies. 
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days with cooler ambient temperatures, results will show less heat dispersion post-sunset since 

surface and subsurface features have had less opportunity to absorb thermal energy than they 

would on a hotter day. A flight at the beginning of November before snowfall at the cemetery 

location (case study 4) illustrates this phenomenon (Figure 16). The average ambient temperature 

during this mission ranged between 8-10 degrees Celsius after a mostly overcast day. While the 

thermal results from FE2 reveal crisper and clearer delineation of cold/hot spots making it easier 

to distinguish features from non-features, the cemetery results in case study 4 (with cooler 

days/nights) are still impressive and indicate the potential for thermographic archaeology even in 

cooler weather/climates (Walker, 2020). While it’s still very important to visually assess the 

thermographic data, a quantitative approach to the data is also important and is demonstrated in 

the results section using a software tool for measuring ground temperature. 

The DJI Zenmuse H20T thermal camera used in this study captures thermal images in a 

proprietary R-JPEG format. These images embed raw sensor data in absolute temperature units 

(Kelvin) rather than Celsius or Fahrenheit. To analyze the data in software like QGIS, it must first 

convert the R-JPEGs into a more accessible format, such as TIFF, which still contains temperature 

information. Tools like the ThermalMetrics plugin for QGIS facilitate this process by enabling the 

calculation of various metrics from the thermal image metadata. After conversion, the temperature 

data is often stored in units where each pixel value represents the temperature in degrees Celsius 

multiplied by 10. This scaling is often used to preserve precision without resorting to floating-
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point numbers or having to convert for negative values. To obtain the actual temperature in degrees 

Celsius, the pixel value must be divided by 10 as demonstrated in Table 3. 

 Metric analysis tools are also a demonstrably useful approach for data interpretation. For 

example, temperature and thermal resonance are useful to locate and identify anomalies, but the 

thermal signatures can also be used to define feature size, shape, and area. In turn, this information 

can be used as a validation technique. Figure 27 shows a modern ground feature (20th century 

baseball diamond) at FE2 coupled with the standard regulations for baseball diamond layout.  

The results of the LiDAR experiments were once again drawn from inferential statistics 

where dimensional measurements were manually tallied from VAT models of both the FE2 site 

(case study 3) and the undisclosed cemetery (case study 4). The data from case study 4 summarize 

the mean, median, and mode in table 2 and show that the average grave size is 1.49 m2 . The 

measured grave dimensions played a crucial role in verifying how many pixels constitute a single 

grave in in case study 4 where there is likely a mix of both adult and child graves, and where 

multispectral analysis was used to estimate the number of graves across the dataset. By establishing 

an average grave size of 1.49 m² from LiDAR-derived VAT models, this value served as a baseline 

Figure 27. Thermal heat map of FE2 showing the remnants of an old baseball diamond. Measurements are consistent 
with the rules and regulations for noted baseball activity at this site during the same time. 
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for approximating the number of pixels per grave in multispectral imagery. This step was essential 

for frequency-based estimations, where spectral reflectance values in NDVI and NDRE datasets 

were analyzed to assess the potential distribution of marked and unmarked graves. The ability to 

correlate spectral anomalies with known grave dimensions reinforced the utility of multispectral 

remote sensing in combination with LiDAR for burial detection. 

Beyond numerical analysis, VAT-based visual representations of LiDAR anomalies 

provided an additional layer of interpretation, acting as a visual aid for assessing burial site patterns 

within a broader archaeological context. The VAT method enhances site interpretation by 

revealing microtopographic variations, which may not be visible in standard DEMs or hillshades. 

These visual outputs allow researchers to distinguish depressed features, subtle earthworks, and 

grave alignments more effectively. Moreover, VAT operates as a subset of algorithms that can be 

customized to highlight specific terrain characteristics. Adjusting parameters such as slope 

gradient, hillshade, sky-view factor, may more effectively enable the identification and 

visualization of subtle variations in the landscape. This may unveil features that would otherwise 

remain undetected in conventional surface models (Kokalj & Somrak, 2019; Zakšec, 2011). When 

applied alongside other remote sensing output, VAT-derived models provide an invaluable multi-

modal approach for detecting and interpreting archaeological features in a way that is both 

quantitative and visually intuitive (Doneus, 2013; Khelifi et al., 2021). 

5.5 Summary of results and key findings 

Testing multiple remote sensing techniques using both consumer and professional-grade 

drones demonstrated the efficacy of this approach, and also important differences in accuracy and 

precision that varies with equipment class. Even the sub 250g drones are considerable research 

capacity since they are equipped with onboard GPS and cameras capable of 12 MP or higher RGB 
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imagery. They can effectively assist with archaeological reconnaissance when working within tree 

canopies or when assessing rugged terrain that requires pedestrian access. The very small size and 

weight of this maneuverable drone makes it a viable tool for generating high resolution aerial 

imagery under such conditions, particularly when absolute georeferencing accuracy is less 

important. These instruments are also valuable because they enable purpose-built construction of 

digital information and reference datasets. Even if archaeological features are not immediately 

recognized using currently existing processing and analysis tools, these datasets can offer a basis 

for future work using new investigative techniques and computer software as they become 

available. Additionally, the results demonstrate that utilizing several remote sensing tools in 

tandem work better than single sensor approaches to site evaluation. Specifically, anomalies are 

often identified in the RGB, multispectral, and thermal data based on visual characteristics within 

their respective datasets. In contrast, LiDAR anomalies are primarily defined by numeric analysis 

of spatial properties and terrain variation. The results of the multispectral analysis are interesting 

since the difference of averages of each vegetation index for marked graves versus unmarked 

graves shows minimal change (i.e. less than a 2% change in reflectance values). However, there 

was a significant disparity in overall reflectance levels between vegetation indices, with NDVI 

values being more than 40% higher than NDRE values for both marked and unmarked graves. 

This suggests that in general the Red and Red-edge bands were more effective at demonstrating 

changes in plant vigor. These findings are important because they indicate that there is no 

substantial difference in spectral reflectance ranges between marked and unmarked graves. 

Importantly, the unmarked grave signatures appear to be more subtle, perhaps indicating these 

burials are older and that the nutrient enrichment that enables greater plant luxuriance is fading 

with the passage of time since burial. Furthermore, the large difference in reflectance between 
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indices suggests that NDVI is more suited for visual interpretation but failed to produce 

meaningful results when analyzed through frequency-based estimation methods. In contrast, 

NDRE proved to be more effective for statistical modeling and quantitative analysis, making it 

better suited for research applications involving computational detection methods. Additionally, it 

was determined that using mRPAS can achieve survey-grade accuracy within digital models using 

high-precision survey-grade GPS equipment.  

 The results presented in this chapter demonstrate the strengths and limitations of various 

remote sensing techniques for archaeological prospection. Across four case studies, a 

combination of photogrammetry, multispectral imaging, thermography, and LiDAR revealed 

meaningful patterns in anomaly detection, spatial relationships, and site characterization. The 

findings indicate that while each method suffers constraints, the integration of datasets deriving 

from diverse sensors allows for improved validation and cross-verification of results. 

 Table 4. Showing the temperature conversions at two different site locations after using data collected with a DJI H20T 
thermal camera sensor and in conjunction with an analysis tool called TermalMetrics 

Site Degrees Kelvin R-JPEG Conversion 
to Degrees Celsius  

Real Degrees 
Celsius 

 
Fort Ellice 2 (EcMh-10) *June 2022 
  
Mean temperature [in Kelvin and in °C]: 423.3871 K 150.2371 / 10 = 15.02 °C 

Max temperature [in Kelvin and in °C]: 432.5098 K 159.3598 / 10 = 15.94°C 

Min temperature [in Kelvin and in °C]: 418.3449 K 145.1949 / 10 = 14.52°C 

 
Undisclosed Cemetery *October/November 2022 
  
Mean temperature [in Kelvin and in °C]: 189.7102 K -83.4398 / 10 = -8.34 °C 

Max temperature [in Kelvin and in °C]: 206.6205 K -66.5295 / 10 = -6.65 °C 

Min temperature [in Kelvin and in °C]: 183.4426 K -89.7074 / 10 = -8.97 °C 
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 Notably, the NDRE spectral analysis provided a more reliable estimate of unmarked 

grave distribution than NDVI, reinforcing the importance of precise spectral reflectance values 

for future machine learning applications. Likewise, accuracy assessments in photogrammetry 

highlighted the trade-offs between processing efficiency and model detail, emphasizing the role 

of resolution and GCPs in geospatial accuracy. Thermographic analysis further demonstrated the 

impact of seasonal and diurnal temperature variations, offering valuable insights into soil 

properties and subsurface anomalies, while LiDAR-derived VAT models provided statistically 

significant measurements of grave dimensions and terrain variations. 

Ultimately, these results underscore the utility of remote sensing as a powerful tool for 

archaeological reconnaissance, especially when used in combination. By leveraging the unique 

advantages of each method, future research can refine data collection strategies, enhance 

interpretive accuracy, and improve the detection of cultural features, including unmarked graves, 

with greater confidence. Across all case studies, the integration of multiple sensor types and 

UAV platforms revealed clear trade-offs between accessibility, resolution, and interpretive 

utility. Consumer-grade RGB systems such as the Mavic Mini offered logistical and financial 

advantages for site surveying but the spatial and spectral sensitivity required to detect fine-scale 

archaeological features is hindered by the camera specifications, IMU/GPS, and single-mode 

capability. In contrast, professional-grade UAVs like the Matrice 300 RTK, equipped with 

LiDAR, multispectral, and thermal sensors, consistently produced higher-resolution data capable 

of supporting detailed site analysis, including the detection of potential unmarked graves. These 

findings underscore the importance of matching sensor capability to the complexity of 

archaeological questions being asked. Table 5 synthesizes these results by comparing sensor-

platform combinations across resolution, performance, and operational constraints. 
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Table 5. UAV platform and sensor types used at each case study site location. 

Case Study UAV 
Platform 

Sensor 
Type 

Resolution 
(GSD) 

Key Observations  Cost, 
Licensing, 
etc. 

Lockport Site 
(EaLf-1)  

Mavic 
Mini 

RGB 13.3 cm Useful for general 
mapping, low detail 
on subsurface 
features. 

Low cost, no 
licensing 
required. 

Fort Ellice I 
Site (EcMh-03) 

Mavic 
Mini 

RGB 19.8 cm Mid-resolution 
imagery provided 
basic spatial context. 

Low cost, 
limited 
precision. 

Fort Ellice I 
Site (EcMh-03) 

Mavic 2 
Pro 

RGB 2.0 cm Detected subtle 
terrain depressions 
linked to historic 
features. 

Moderate 
cost, 
requires 
basic pilot 
certification. 

Fort Ellice II 
Site (EcMh-10) 

Mavic 
Mini 

RGB 16.8 cm Provided basic 
spatial context, 
Identified large 
features like 
foundations. 

Low cost, 
limited 
precision. 

Fort Ellice II 
Site (EcMh-10) 

Mavic 2 
Pro 

RGB 1.4 cm High-resolution 
imagery provided 
enhanced visibility. 

Moderate 
cost, limited 
in windy 
conditions. 

Fort Ellice II 
Site (EcMh-10) 

Matrice 
300 RTK 

LiDAR (L1) 
 
Thermal 
(H20T) 

2.1 cm 
 
5.3 cm 
 

Offered clear surface 
detail and improved 
topographic context, 
thermal somewhat 
obscured by semi-
modern features. 

Expensive, 
requires 
advanced 
certification 

Cemetery Matrice 
300 RTK 

LiDAR (L1) 
 
Thermal 
(H20T) 
 
Multispectral 
RedEdge 
MX 
 
RGB 

1.0 cm 
 
6.7 cm 
 
 
4.2 cm 
 
 
 
5.0 cm 

Detected potential 
graves via height 
rasters, thermal heat 
maps and 
vegetations indices. 
RGB provided site 
context. 

High cost, 
complex 
post-
processing. 
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5.6 Comparison with existing literature  

The existing literature addressing efforts to assess archaeological features via aerial remote 

sensing reveals distinct differences from the results presented in this thesis. There is also something 

of a literature void when it comes to the practical application of these technologies in professional 

archaeology with exceptions being Agudo et al., (2018;) Altaweel et al., (2022); Campana, 

(2017a); Carmona et al., (2020); Casana et al., (2017); Dawson et al., (2022); Fernández-

Hernandez et al., (2015); Hamilton (2020; 2022a; 2022b); Hamilton & Kuncewicz (2024); Hill 

(2019); Khelifi et al., (2021); Krasinksi (2016); Rocke & Ruffell (2022); Silván-Cárdenas (2021); 

Thomas (2018); Walker (2020); and Woywitka & Michalchuk (2021). This may reflect slower 

uptake of new technology given regional variability in physical geography, climate and vegetation 

and its impact upon diversity of archaeological site types. These issues are compounded by rapid 

technological development. Rapid transformation of drone and camera sensor capabilities and cost 

rapidly ensure rapid obsolescence, causing uncertainty when to invest in emerging technologies.  

These rapid transformations also have a profound effect on data interpretation protocols, with a 

constant cycle of upgrading of computers, software and data storage demands. While few studies 

focus on the accuracy results using RTK and PPK approaches to data collection and 

georeferencing, these studies are either too broadly focussed on the functionality of the equipment 

and not as concerned with digital representations of the data, like in Ekaso et al. (2020) or 

Roosevelt (2014). While these studies are important contributions to the archaeological body of 

work regarding microtopography and drones, the methods and equipment are now considered to 

be somewhat outdated. Further, in 2020, Hamilton addressed the need for GCPs, and the difficulty 

associated with consistent repeatability of absolute accuracy and precision of X, Y, and Z 
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coordinates over a multi temporal frame. This becomes important when considering site revisits, 

ground truthing, and change analysis. 
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Chapter 6.0 Discussion 

6.1 Introduction  

This section discusses the relevance of this study compared with the existing literature, 

offers explanations and interpretations of the results, and underscores important future research 

directions in digital archaeology and remote sensing. Most of this discussion centers on the 

development of new remote sensing technology, refinement of the current technology, limitations 

in archaeological application, and future directions. This includes wide-ranging issues including 

computer science, data integration, systems management, cyber security, digitization, advanced 

remote sensing and GIS. 

6.2 Restatement of the research objectives  

At the outset of this thesis, the investigation was guided by three central research questions 

aimed at evaluating the role of aerial remote sensing in non-invasive archaeological applications. 

Specifically, the study examined whether consumer and professional-grade UAVs could provide 

more comprehensive tools for archaeological site characterization; whether these technologies 

could help overcome the physical and financial challenges often associated with archaeological 

fieldwork; and what technical and regulatory barriers might limit the routine integration of UAVs 

into archaeological investigations. During the course of this research it became increasingly 

apparent that a multitude of factors must be considered when using aerial remote sensing 

techniques. One important aspect is the orderly phasing of non-invasive archaeological research 

investigations. Six (6) phases were used to build out this research: understanding the research 

question (regarding non-invasive archaeological approaches), data acquisition, processing, 

interpretation, analysis and results validation. The thesis research results support the proposition 

that optical remote sensing technologies can be used for archaeological site prospection and hold 
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value as an interpretive tool for non-invasive archaeological sites assessments. This potential is 

tempered by barriers to access to technology, and the investment in training and experience 

necessary to fully employ these tools. However, these constraints are diminishing in light of rapid 

technological advancement, the growing support for FOSS, and online educational and 

informational opportunities including forums and access to online training. While considerable 

potential for aerial remote sensing applications in archaeology exist, it is less clear whether such 

approaches can be conducted independent of traditional archaeology, particularly to aid validation 

of remotely sensed insight. 

6.3 Comparison with existing literature and theoretical frameworks   

Deploying digital methodologies in archaeology is not new, as computer-driven data 

collection, storage, processing, and dissemination have been routinely integrated into the field for 

at least four decades (Huggett, 2018). As reviewed in Chapter 2, the existing literature addressing 

remote sensing in archaeology indicates a more recent history closely tied to rapid development of 

increasingly sophisticated electronics coupled with innovations in computing science. GIS and 

remote sensing tools have long enhanced how archaeologists conduct surveys and analyze 

landscapes. These methods have traditionally required manual interpretation, with human analysts 

identifying features and patterns from digital models. While computational tools have steadily 

improved the accuracy and efficiency of these workflows, the true paradigm shift is emerging with 

semi-automated and fully automated computer-aided analysis. This revolution will affect many 

fields, with AI in combination with machine learning is capable of transforming the nature of the 

archaeological discipline.  

This thesis research demonstrates some practical applications of such computer-assisted 

processing using WebODM and Python-based GIS scripts for digital data manipulation. The 
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analysis of RGB data, thermal unconformities, spectral vegetation indices (NDVI/NDRE), and 

LiDAR-based microtopography (VAT models) exemplify how high-resolution datasets can be 

processed through systematic filtering and analysis to identify potential archaeological features. 

These results align with existing literature demonstrating the utility of remote sensing in 

archaeology, while also highlighting the increasing need for computer-aided methodologies to 

manage the sheer scale of modern datasets. 

One of the ways AI and computational models are already reshaping archaeology is by 

supporting new interpretations of the past through data-driven reconstructions. The latest 

developments in computer vision and feature extraction allow for highly detailed digital 

environments that closely replicate real-world conditions. For example, machine-learning 

algorithms for feature detection and automated anomaly recognition are enabling archaeologists 

to process larger datasets with greater speed and accuracy than ever before. These advances, while 

still in their early stages, point to an increasing shift where AI-assisted analysis augments human 

interpretation rather than replacing it. 

A particularly well-documented example of machine-assisted archaeological discovery is 

the application of LiDAR in Central and South America, where dense jungle vegetation previously 

obscured ancient cities and ceremonial centers under the cover of the Amazon Rainforests (Chase 

et al., 2011; Chase et al., 2017; Krasinski, 2016; Prümers et al., 2022). Since the utility and benefits 

of LiDAR are seen differently through the characterization of local ecology and the source of the 

LiDAR data itself, it remains to be determined how the outcomes of LiDAR and other aerial 

research methods will help to define heritage investigations in North America, but more 

specifically Canada. As of recently, there has been a significant increase in sentiment around 

drones in the industry. Recent studies in Canada utilize LiDAR data from public sources for broad 
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archaeological assessments, often applying terrain classification and geomorphology as a proxy 

for archaeological potential (Woywitka & Michalchuk, 2021). However, comparatively few 

studies have examined the efficacy of low-altitude drone-borne LiDAR from private sources for 

site and feature identification at a local scale. While similar applications have been explored in 

forested environments, the nuances of local ecology, soil composition, and ground conditions 

introduce regionally specific challenges that must be addressed (Krasinski et al., 2016). 

This research builds upon previous studies but also highlights the limitations of manual 

classification approaches, suggesting that future advances in AI-driven pattern recognition will be 

necessary to handle the growing complexity of large-scale remote sensing datasets. While AI and 

machine learning are increasingly recognized as critical tools for future archaeological research, 

the findings of these experiments suggest that current remote sensing workflows still rely heavily 

on human interpretation and statistical validation. The growing availability of high-resolution data 

and machine-learning-based pattern extraction tools will likely transform the discipline within the 

next five years, enabling fully automated anomaly detection, predictive modeling, and automated 

classification of archaeological features. These implications will be further explored in the 

Conclusion chapter, where the broader trajectory of AI-driven archaeological interpretation will 

be discussed in relation to the findings of this thesis. 

6.4 Explanation and interpretation of the results 

This thesis focuses on addressing the usefulness of aerial remote sensing methods in 

archaeology using comparatively low-cost tools. The DJI Mavic Mini produced horizontal and 

vertical relative accuracies with millimeter-level error. These high-accuracy models have the 

potential to reach near absolute accuracy when combined with high-quality GNSS equipment, 

making the approach outlined in this thesis consistent with survey-grade expectations. These 
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results are well beyond what would be considered a necessary level of accuracy for most 

archaeology projects, primarily because they are typically focussed on location and 

reconnaissance. Compared with the results from other tests conducted with the upgraded DJI 

Mavic 2 Pro drone data, the accuracy of the models and identification of features are very similar. 

In some instances, the DJI Mavic Mini yielded superior results. 

With constant flux and change within applied and academic archaeology related to 

technology and legislation, aerial remote sensing and digital data processing is rapidly becoming 

a necessary skill for archaeologists. While CRM budgets in Canada can vary, they often must 

balance technological innovation with competitive bidding operations. While initial purchase cost 

might be perceived as an impediment, the speed, efficiency and data quality possible from use of 

remote sensing tools offer informed decision-making and cost efficiency when considering that 

associated with conventional methods. Advancements in remote sensing and GIS-based analytical 

techniques have significantly improved the accuracy and efficiency of archaeological 

reconnaissance. This research demonstrated how RGB photogrammetry, multispectral vegetation 

indices, thermal imaging, and LiDAR-based microtopographic modeling each contribute to 

detecting buried or obscured archaeological features. The effectiveness of NDVI and NDRE 

spectral indices in identifying possible human graves, for example, underscores the potential for 

vegetation-based anomaly detection as a reliable non-invasive approach. Similarly, the integration 

of LiDAR-derived VAT models allowed for enhanced visualization of subtle terrain modifications, 

reinforcing the role of GIS-based spatial analysis in refining archaeological interpretations. These 

advancements provide a robust foundation for further refining automated feature detection in 

archaeology, expanding the utility of remote sensing in cultural heritage research. Table 5 shows 

the types of UAV technology used at each site. This information can be used to establish a bar 
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minimum of the aerial remote sensing data quality required for each type of investigation, in 

addition to the associated cost. 

6.5 Implications for theory and practice 

As new methods in applied archaeology continue to evolve, it is essential to consider the 

broader ethical and theoretical frameworks that guide archaeological practice, particularly 

regarding process automation and informed decision-making.  

Informed and responsible decision-making is not only beneficial for archaeological 

practice but it is also essential to fulfill ethical commitments to descendant communities whose 

ancestors are the subject archaeological enquiry (Colwell, 2016). Scientific methods and digital 

geospatial data should be used to inform archaeological assessments, yet at the same time, caution 

should be taken not to rely solely on these approaches, and to consider as many reliable sources of 

information as possible, enabling the most comprehensive and ethical approach to site evaluation. 

Although this thesis primarily examines the processes, benefits, and accuracy of remote 

sensing technologies, it also raises critical issues regarding digital data rights and the 

transformation of legacy data. These concerns lead to fundamental questions about the future of 

archaeology: Who will control access to the highest quality data, and how will it be used? As 

technology advances, will archaeologists rely entirely on digital methods, rendering traditional 

archaeological approaches obsolete? 

The integration of computer science into aerial remote sensing for archaeology has 

revolutionized the way large-scale datasets are processed and analyzed. Advances in machine 

learning algorithms, computer vision, and automated classification techniques allow for the rapid 

identification of anomalies and data unconformities that would otherwise be difficult to detect 

through visual inspection alone. For instance, deep learning models such as convolutional neural 
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networks (CNNs) can be trained to recognize spectral patterns indicative of buried features in 

multispectral and thermal imagery, or metric patterns like marked and unmarked graves in RGB 

imagery, LiDAR point clouds, and height models reducing the reliance on purely manual 

interpretation (Knöbelreiter et al., 2018). The ability to automate feature detection significantly 

enhances the efficiency of archaeological prospection, providing a scalable and repeatable 

methodology that reduces human error while increasing the accuracy of site characterization. 

Two barriers to entry are causing major implications for the deployment of the new 

practices outlined in this thesis. These barriers are economic variability and technical skill level. 

While drones and remote sensing equipment become increasingly less expensive, newer, better 

technologies will quickly become available and have the potential to render current technologies 

obsolete. Industry professionals should be obligated to uphold data integrity and exercise digital 

safety and security measures while also providing the highest quality data possible. This is 

financially significant since the newest to market options will always retain a higher cost than their 

outdated counterpart technologies, presuming that they offer greater technological capabilities and 

features.  

6.6 Limitations and future research directions 

One of the primary limitations associated with this work are economic barriers to entry 

hindering the capabilities to conduct non-invasive aerial survey. This problem is multifaceted and 

may include the cost of drone equipment, training, and hiring personnel to operate and maintain 

these technologies, as well as investment in digital infrastructure for data storage, security, and 

analysis.  

Free and Open-Source Software (FOSS) also present some limitations in terms of data 

security and sovereignty, but these are mostly manageable if operating localized systems that are 
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not public facing or externally reachable by the broad internet. Some examples of unnecessary risk 

exposure considered during these experiments were the allocation of additional resources and 

storage through cloud-based servers and virtual machines, and the enabling of port-forwarding via 

WiFi router to access outside sources. While FOSS offers accessibility and cost benefits, it also 

raises concerns about where and how sensitive data regarding heritage is stored and accessed.  As 

aerial remote sensing and GIS applications in archaeology become increasingly data-intensive and 

reliant on external services like cloud-based processing, concerns over cybersecurity are becoming 

increasingly urgent. The transmission and storage of sensitive archaeological data, particularly 

when working with protected information regarding cultural heritage sites, raises ethical and 

security considerations. This is especially true if utilizing non-localized storage or processing 

options. Data encryption, restricted access protocols, and offline data storage solutions are 

necessary to safeguard sensitive site information from unauthorized access or cyber threats from 

hackers. Furthermore, as machine learning algorithms are integrated into predictive modeling for 

site detection, ensuring the transparency and integrity of training datasets will be essential in 

preventing algorithmic bias or misclassification errors in automated archaeological prospection. 

This problem is already apparent in 'black box' services and software like DJI Terra, presenting 

challenges to understand how data is handled and processed by third parties. 

Looking toward the future, advancements in AI and machine learning hold significant 

promise for archaeological site detection and classification. One possibility is the use of 

hyperspectral imaging and spectroscopy to detect human graves with extreme precision, 

particularly by isolating spectral bands associated with Nitrogen-15 (N15) isotopes. Since N15 is a 

stable isotope that remains in human skeletal structures post-mortem, its presence in soil and 

vegetation could serve as a non-invasive indicator of human burials (Philben et al., 2018). This 
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concept suggests that, in the future, AI-driven remote sensing tools could be used to identify burial 

sites through spectral analysis of plant nutrient uptake. However, major challenges remain; the 

exact spectral resonance of N15, the accuracy of its reflectance interpretation, and the complexities 

of isotope fractionation in different environmental conditions must be better understood before 

such technology can be reliably implemented. 

Despite these limitations, the integration of digital archaeological methodologies into CRM 

and academic research is rapidly evolving. If approached ethically and collaboratively, these tools 

have the potential to strengthen sovereignty over cultural histories, heritage, and archaeological 

data, enhancing site protection, and advancing non-invasive archaeological techniques while 

respecting traditional systems. 

Other optimistic theories for future research using remote sensing applications for 

archaeology involve the use of Bayesian statistics for predictive modelling and probabilities. 

Elementary approaches to Bayesian statistics outlined by Schmitt (1969) suggest that it's possible 

to use average ground temperature as a prior and additional data on thermal properties as a 

posterior such as the emissivity of different soil types and material composition of artifacts. The 

continual addition of posterior data will increase the accuracy of probability outcomes such that 

statistical analysis of this form could accurately identify and predict artifact and feature 

distribution/location with a high degree of probability. Data is acquired using the ThermalMetrics 

tool in case studies 3 and 4 and is available in the appendix (Ellsäßer, 2021). 

LiDAR also offers promising future capabilities as the level of accuracy and point cloud 

density becomes stronger and more efficient. Eventually with advancements in LiDAR 

technology, it should be possible to penetrate even the densest of tree cover and tall grasses in 

forests and mixed woodland ecosystems. This will make LiDAR an even more valuable tool for 
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enhanced site characterization. In combination with near-surface geophysical techniques, and 

dependent upon the level of penetration depth and laser capabilities, these enhanced forms of 

LiDAR could hold future value for defining subsurface characteristics. This new LiDAR could 

also produce capabilities of penetrating through other mediums like snow, where these capabilities 

are still considered somewhat ambiguous. 

Lastly, a brief note on other forms of remote sensing is warranted since this thesis focussed 

solely on optical remote sensing. Other technologies currently exist that can produce maps and 

models via remote sensing by smell. A product called Sniffer4d is available to market and is 

compatible with the DJI M300 drone used in this thesis. The product is an air pollutant mapping 

system using a sensor to register volatile compounds in the air. While this product is currently 

designed and optimized for the oil and gas industries and environmental monitoring, there is some 

future potential for this system to be used in conjunction with archaeology, at least conceptually. 

For example, Historic Human Remains Detection Dogs (HHRDD) can detect graves exceeding 

100 years old and up to 6 feet DBS (Baxter and Hargrave, 2015). The study by Baxter and Hargrave 

(2015) explicitly states the composition of chemical compounds responsible for human bone 

odour. If these chemical compounds can be isolated and read by remote sensing machines such as 

the Sniffer4d, then with increased geospatial accuracy and the evolution of drone equipment 

capabilities, this remote sensing technology could provide another avenue to the successful 

detection of human graves. 

6.7 Workflow 

One of the greatest challenges in non-invasive archaeological research is the integration of 

multiple remote sensing datasets into a cohesive analytical framework. LiDAR, thermal, 

multispectral, and RGB photogrammetric data each offer distinct insights into the landscape, but 
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their combined interpretation requires careful spatial alignment, calibration, and standardization. 

The use of geospatial data integration platforms, such as QGIS allows researchers to overlay 

datasets and compare results, reinforcing findings through cross-validation. For example, areas 

where thermal anomalies overlap with vegetation stress signals in NDRE models may indicate 

subsurface disturbances related to past human activity. The synthesis of multiple data sources 

ensures that interpretations are robust, repeatable, and empirically grounded, strengthening the 

validity of remote sensing methodologies in archaeology. 

The design of aerial research missions using drone-borne remote sensing requires a very 

specific set of pre-thought stages that demand precise execution and functionality that when 

combined become a systematic workflow for digital output. This thesis had a heavy focus towards 

producing a variety of digital products to demonstrate the range of output deliverables that modern 

drone-borne remote sensing systems are capable of creating. The workflow for each method of 

remote sensing data creation is structured based on its essential components: hardware, software, 

or a combination of both. Managing hardware can be complex, especially when working with 

interchangeable equipment and intricate physical systems. At the same time, software management 

can be overwhelming, particularly due to the specific and independent nature of different remote 

sensing tools and their unique data processing requirements. Many software programs, especially 

proprietary ones, do not easily interact with each other, as they are often designed for single, 

specialized tasks. For example, CloudCompare is primarily used for point cloud filtering, making 

it well-suited for that purpose but not directly compatible with other types of data processing. 

Efficient systems management is critical in handling the large volumes of data produced 

by aerial remote sensing missions. The processing of high-resolution orthophotos, point clouds, 

and spectral indices demands significant computational resources, sometimes in the realm of many 
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gigabytes or terabytes, necessitating structured workflows for data storage, retrieval, and 

processing. Computer hardware requirements of this magnitude often limit workflows, forcing 

users to adhere to strict specifications including brand, type, and size of CPU, GPU, and RAM. 

Implementing network-attached storage (NAS) solutions, such as the Synology system used 

towards the end of this research, provides a professional, scalable way to store and access project 

files while ensuring data redundancy and security. Additionally, workflow automation tools, such 

as batch processing in WebODM or Python scripting for spectral analysis and VAT processes, 

streamline the transformation of raw data into actionable insights. Proper systems management 

ensures that data integrity is maintained across projects, facilitating long-term analysis, healthy 

data curation, and multi-temporal comparisons. 

The key to successful digital model production relies on selecting the appropriate hardware 

and software that cooperate with one another. An excellent example of hardware explicitly 

designed with software is the DJI line of UAV for autonomous flight mapping, planning, and data 

processing. These drones are optimized for use with DJI Terra so that there is a seamless workflow 

of the phases of data production. Not only will the workflow change based on the differences and 

similarities between hardware and software, but the workflow may also be different between 

remote sensing techniques. For example, the workflow for data collection using multispectral and 

photogrammetric RGB capture might use the same concepts of photogrammetry; however, the 

content within the metadata of the captured imagery is different, and therefore the analytics, 

processing requirements, and post-processing styling will vary between these two techniques. So 

far, DJI is the fastest, most reliable, most cost-efficient way to achieve professional-level results.  

Hill (2019) discusses the general workflow for photogrammetry across disciplines, and while there 

are many similarities to the approach taken with case studies in this thesis, the complete workflow 
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for photogrammetry and orthophoto collection and rectification was different. Due to the 

increasing quality of onboard GPS, the methods suggested by Hill (2019) regarding the use of 

ground control point (GCP) referencing for post-processing accuracy become redundant unless 

precise georeferenced accuracies are required. The requirements for geospatial accuracies are a 

continual theme throughout the core of this thesis. It is worth exploring the necessity of precision 

and accuracy for archaeological investigations in the CRM industry, including site monitoring, 

exploration, and documentation. There is a varying necessity of scale for archaeological projects 

within the discipline and across disciplines and industries. Intradisciplinary examples of the 

necessity of scale could focus on anything from broad site identification to the minutiae of 

archaeology, including material identification using cluster analysis (Sánchez-Romero et al., 2021) 

and Bayesian modeling using lithic-scatter and debitage locales increases the likelihood of site 

identification. A precise level of scale could also be significant in contributing to the identification 

of unmarked graves via small changes to the earth's surface topography. Additionally, suppose an 

archaeological site was to be mapped and revisited regularly or semi-regularly to confirm changes 

to the archaeological sites and site features. In that case, a hyper-precise level of geospatial 

accuracy and change analysis might be necessary to monitor erosion, site degradation, and looting 

(Dawson et al., 2022; Parcak, S. 2019). In the traditional practice of archaeology, destruction is 

inherent and permanent, meaning there is only one chance to properly excavate the earth so that 

cultural material exhumation and collection may be appropriately documented. Hill (2019) notes 

the increasingly common use of drones for survey and assistance with archaeological research 

tasks, such as excavation recording. Most modern drones geotag each image as EXIF 

(Exchangeable Image File Format) metadata. This capability not only ensures images are correctly 

recorded for photogrammetry and digital model construction but also allows for the capture of 
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important contextual details in single images during excavation (Hill, 2019; Nex & Remondino, 

2014). 

Throughout the data collection component of case studies in this thesis, some data was 

captured and processed using nothing more than the onboard GPS unit of the drone itself. The case 

studies presented from the Lockport site consist of DEM digital elevation models generated 

without post-processing the data for greater georectification accuracy.  

Three photogrammetric workflows were used in each case study of this thesis and are all 

nearly identical.   The first workflow is the Direct Georeferencing (DG) of GPS resulting from the 

drone onboard GPS and Inertial Measurement Unit (IMU). This device is usually combined with 

a gyroscope and communicates to the drone's intelligent systems measuring space and time. The 

onboard GPS unit in the DJI Mavic Mini is capable of vertical ± 0.1 – ± 0.5 m and horizontal ± 

0.3 m - ± 1.5 m. This is unusual since most UAV studies indicate that vertical accuracies generally 

tend to be 1.5 times greater than horizontal accuracies. The accuracy results shown in Figure 15 

align with the common conception that vertical accuracies are greater than horizontal accuracies. 

They are represented by absolute and relative accuracies of Linear Error (LE) and Circular Error 

(CE). Relative accuracy is the accuracy given of a point relative to other points in the same map. 

Relative accuracy then measures the relationship between and within things considering their 

dimensions. 

Conversely, absolute accuracy measures the relationship between things on a map and their 

spatial orientation according to a fixed coordinate system in the real world. For example, the 

coordinate system applied in most geographic regions of Manitoba corresponds with the geodetic 

code system NAD 83, 14 N. While the accuracies in are nowhere near survey grade, they are still 

impressive, given no post-correction processes using GCPs. For some archaeological survey and 
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inspection purposes, 1.591 meters absolute accuracy might be enough to assist archaeological 

discovery, reconnaissance, and field methods such as field-walking and ground truthing. This 

method of direct georeferencing was used in Case study 1 of this thesis at Lockport east. It was an 

effective method of reconnaissance for this site given time constraints and the complexities of an 

ongoing infrastructure development project at this location. Using DG within areas of obvious 

general points of reference is an effective method of quickly capturing and processing data for 

exploration.  

In Case studies 2 and 3, Fort Ellice, the method of processing georeferenced points after 

flight and data collection known as PPK was used. PPK stands for Post-Process Kinematics and is 

a way of geo-rectifying digital information such as maps, models, and images using known ground 

control points that have been previously georeferenced. Once these GCPs are recorded and 

identified manually within the software, their coordinates are entered into the Ground Control 

Point Interface of WebODM, the digital information will adapt to reflect the changes. This is time-

consuming but can result in the best accuracy for georeferencing. Images captured at the Fort Ellice 

1 site were used to generate a DEM yielding sub-centimeter absolute horizontal accuracy. To 

achieve this, a low-altitude flight with post corrective information was uploaded to the application 

webODM, and individual images containing GCPs were identified using the GCP coordinates 

displayed in QGIS for faster identification. Of the 6 GCPs used, there were approximately five 

images used per each ground control point totaling roughly 30 additional points of reference along 

with the drone onboard GPS. These GCPs consisted of orange pylons with an open center, and 

when zoomed in on the image, the exact near center could be selected to represent the point 

recorded with the GNSS rover Juniper Systems Geode 2. The centermost pixel identification in 

each already georeferenced image could have helped to correct the entire model to millimeter 
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accuracy and should be a regular addition to photogrammetric workflows where at least sub-

decimeter accuracy is sought. The last physical workflow method for data capture is demonstrated 

in Case study 4 at the undisclosed cemetery location and was made possible by using Real-Time 

Kinematics (RTK). This method requires using a base station or station-rover combo and an RTK-

equipped drone. The DJI Matrice 300 series enterprise drone was used in this case study with the 

DJI D-RTK2 Base Station and a Leica Systems GNSS rover GS14. This rover can achieve 1 – 3 

cm accuracy. Once this accuracy measurement is recorded, it is time to sync the drone using these 

coordinates to receive complete real-time corrections. These coordinates are given in 

Latitude/Longitude. When tests were compared on the remote control using the DJI DRTK 2 base 

station in comparison with the corrected coordinates from the rover, the base station accuracy 

would fluctuate between 0.0001 0.00001 decimal degrees of a coordinate equating to changes 

anywhere from 11.1 m – 1.1 m. Contrary to what was previously said about the necessity of scale 

for archaeological investigations, the top end of this error level would be considered unacceptable 

in map production and even for reconnaissance purposes, as errors ranging in the tens of meters 

and beyond would pose a significant challenge to ground truthing. Incorporating the three methods 

of geographically correcting data is critical to an effective and efficient workflow for digital model 

production and mapping purposes through geographic information systems (GIS). 

Photogrammetry is the only possible remote sensing method for DJI Mini drones. However, this 

might change as the need for rapid mapping grows, and technology improves. These are the two 

defining factors that are working to propel the use of microdrones in the surveying industry. 

Otherwise, the level of quality when using multiple remote sensing methods is far superior to 

photogrammetry alone. 
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6.8 Contribution of results from case studies  

The case study results add to an ever-growing body of research on remote sensing 

applications. Qualitative data will help other researchers with visualization of workflows and 

outcomes, while the quantitative data results offer some contribution to the potential development 

of new filters and algorithms for data analysis and interpretation. 

The RGB photogrammetry studies from Lockport, FE1, and FE2 using the Mavic Mini 

demonstrated how to significantly reduce error and refine accuracy using GCPs and a GNSS rover. 

The MicaSense RedEdge-MX™ (MSRE) multispectral camera used at the undisclosed 

cemetery location aided interpretation of grave statistics and was found to offer utility as a possible 

estimator for predicting the number of graves in a dataset. A refined version of this workflow can 

and should be adapted for use in the search for missing children from Indian Residential Schools. 

The full workflow and formula are highlighted in the appendix. 

Thermal analysis using the DJI M300 and H20T produced thermograms and thermographic 

models that aided visual interpretation of subsurface features including walls, pits, and graves, and 

yielded significant empirical results from the ThermalMetrics tool demonstrating generalized 

temperature ranges and variances of archaeological sites. The importance of thermal metrics in 

archaeology is highlighted in section 6.6 on future directions. When coupled with predictive 

models such as Bayesian statistics, thermography can offer strong support for archaeological 

interpretations with added probability. 

Last, the results from the LiDAR studies increase the small pool of studies dedicated to the 

effect of flight parameter settings on feature identification and digital model. The workflow used 

to develop a VAT model is only one of many varied approaches to build a visual relief model. The 
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unique settings of the ground filtering algorithm are identified in the appendix and are used in 

combination with VAT to display graves based on physical dimensions and other attributes. 

The transition from traditional archaeological methods to digitized, data-driven 

approaches represent a fundamental shift in how archaeological landscapes are documented and 

analyzed. High-resolution digital elevation models (DEMs), LiDAR-derived point clouds, 

multispectral visualizations and measurements, and radiometric thermal mosaics allow for a level 

of detail and precision that was previously unattainable with conventional survey methods. The 

results from the case studies in this research highlight how digitization enhances site 

interpretation, particularly in contexts where excavation is not possible or cultural sensitivities 

necessitate non-invasive approaches. By digitizing archaeological landscapes, future researchers 

can revisit and re-analyze sites without requiring new field investigations, ensuring that data 

remains accessible, reproducible, revisable, and open to future innovations in analytical 

techniques. 
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Chapter 7.0 Conclusion 
7.1 Recap of the study  

This thesis demonstrates the effectiveness of aerial remote sensing as a powerful tool to 

support archaeological investigation. By integrating mRPAS equipped with high-grade GNSS 

technology and data collected using various forms of remote sensing, this research showcased 

how high-resolution, geospatially accurate survey data can be efficiently collected for 

archaeological assessments. These technologies provide cost-effective and scalable solutions for 

mapping landscapes, identifying subsurface features, and documenting archaeological sites with 

a level of precision that traditional methods alone cannot achieve. 

A key contribution of this study is the exploration of multi-modal remote sensing 

approaches, emphasizing the importance of cross-validation between different datasets. By 

combining multiple forms of aerial remote sensing, this research highlights how overlapping data 

sources enhance interpretation, improve feature detection, and increase the overall reliability of 

archaeological site assessments. 

This study applied remote sensing techniques across three unique areas of investigation, 

each representing different archaeological contexts. These four case studies demonstrated the 

practical application of rapid reconnaissance, geospatial accuracy, detailed site characterization, 

and forensic archaeological prospection, with particular application to the detection and 

documentation of human grave features. The ability to use remote sensing for non-invasive, high-

precision site analysis illustrates its growing importance in modern archaeological practice, 

particularly in scenarios where traditional excavation may be impractical, restricted, or ethically 

sensitive. 

Ultimately, this research underscores the value of integrating aerial remote sensing within 

archaeological workflows. These methods are not supplemental to traditional methods, but rather, 
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standalone investigative procedures capable of transforming archaeological prospection, 

documentation, and heritage management. As remote sensing technologies continue to advance, 

their role in archaeology will only expand, offering new ways to interpret landscapes, protect 

cultural heritage, and support non-invasive site discovery efforts. 

7.2 Conclusions and recommendations  

Each drone type, with associated sensors, demonstrate utility as site prospection tools for 

archaeology that offer advantages over traditional surface survey techniques. The Mavic Mini was 

used to assess its utility for rapid production of site evaluation maps to support preliminary 

reconnaissance. The imagery was collected and then rapidly processed (overnight) to generate 

photomosaic and 3D digital models to aid ongoing archaeological monitoring shortly before heavy 

snowfall prevented any further flights. The speed and efficiency of drone deployment offers 

strategic advantage in enabling ad hoc mapping operations suited to local circumstances. The 

Mavic 2 Pro data yields some advantage over the Mavic mini in terms of image resolution, but this 

advantage is minor compared to the dramatically improved capacities of professional level M300 

enterprise drone. The results of the Mavic Mini data from FE1 using GCPs indicates greater 

georeferencing accuracy than the Mavic 2 Pro with and without GCPs; therefore, it's evident that 

using increased GCPs is more important for accuracy then the step-up in drone type from the 

Mavic Mini to the Mavic 2 Pro. Last, combinations of remotely sensed data contributed to 

increased success in identifying anomalous features in the cemetery data from case study 4. 

Additionally, the use of thermographic and multispectral metadata, and ground filtering and 

shading algorithms derived from LiDAR provide a useful case for the incorporation of statistical 

methods and quantitative analysis in the professional workflow.  
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The future of archaeology in Canada depends on maintaining rigorous standards and 

guidelines that integrate emerging technologies in a timely fashion to enhance archaeological 

investigations. The adoption of new digital tools by archaeological practitioners is crucial for 

ensuring that heritage evaluations remain comprehensive, accurate, and ethically conducted. This 

technological shift presents opportunities for archaeological development and regulatory reform, 

reinforcing heritage ownership, strengthening sovereignty and ownership over digital data, and 

fostering the evolution of digital literacy through educational resources. 

The digitization of archaeological environments into useable data holds significant 

potential, not only for private study and enhancing archaeological insights but also for reshaping 

public perceptions of material history and redefining traditional geographic space. While aerial 

remote sensing offers valuable applications for archaeological and environmental monitoring, it 

also introduces challenges related to data security, surveillance, and land governance. The global 

expansion of private satellite imaging and micro-drone technology raises concerns about 

unauthorized data collection, covert surveillance, and potential exploitation of sensitive 

archaeological and environmental information. These technologies can be used in opaque or 

unethical ways, including unregulated monitoring of landscapes and heritage sites. 

As satellite imagery and aerial remote sensing technologies continue to advance, the 

widespread adoption of drone technology and digital methodologies should be prioritized in 

shaping policies and ethical guidelines for archaeological practice in Canada. However, regulatory 

bodies have been slow to adapt, favoring traditional approaches despite the demonstrated 

advantages of these emerging tools. While these technologies are rapidly transforming 

archaeological investigations, institutional reluctance to modernize threatens to hinder progress 

rather than enhance the discipline. 
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7.3 Full Contribution of the study  

This study provides new approaches for integrating geospatial information into decision-

making processes in CRM, demonstrating the versatility of remote sensing in archaeology and 

beyond. By presenting a structured workflow for both qualitative and quantitative approaches to 

aerial archaeological prospection, this research outlines a cost-effective and scalable strategy for 

obtaining high-resolution survey maps using mRPAS, enterprise drones, and various airborne 

remote sensing tools. The success of these methods led to broader explorations into multi-scale 

remote sensing applications and their impact on archaeological interpretation. Notably, resolution 

emerged as a critical factor across all case studies, influencing how different sensory applications 

capture and define archaeological site features. Non-invasive archaeological approaches using 

remote sensing hold considerable merit since they minimize site disturbance while providing 

valuable spatial and contextual data. 

The implications of this research extend to both the academic study of archaeology and its 

professional practice. As drone and remote sensing technology evolve, so too does our ability to 

identify and assess archaeological sites with greater precision and accuracy. This study contributes 

to the ongoing refinement of prospection tools in archaeology, reinforcing a cyclical relationship 

between technological advancements and archaeological methodology. By demonstrating non-

invasive approaches for detecting and analyzing archaeological features, this research highlights 

how remote sensing is reshaping modern archaeological practice and accelerating the discovery 

and preservation of vulnerable cultural heritage. 

One of the most urgent applications of non-invasive remote sensing today is its role in 

addressing historical injustices and revealing hidden narratives within the archaeological record. 

In Canada, technologies like those explored in this thesis are helping to identify unmarked graves 
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and clandestine burials linked to the Indian Residential School (IRS) system. The Government of 

Canada, along with several Christian denominations, played a central role in this system, which 

was responsible for the mistreatment, cultural erasure, and deaths of many Indigenous children. 

Remote sensing offers tool to aid documentation these tragedies while respecting the sanctity of 

these sites. By providing a non-intrusive means of investigation, these tools help balance the need 

for truth and accountability with the cultural and spiritual practices of Indigenous communities 

that oppose disturbing the land. 

Ultimately, the most positive outcome of this study is the potential to standardize and 

expand remote sensing workflows for archaeological prospection, ensuring that these techniques 

remain accessible, ethical, and effective. This includes its application in ongoing efforts to 

investigate sensitive historical sites, demonstrating the value of non-invasive methodologies in 

both forensic and cultural contexts as indicated in the above paragraph regarding IRS 

investigations in Canada. By showcasing the power of these approaches, this research not only 

advances archaeological practice but also drives the broader evolution of the discipline. As 

technology continues to push the boundaries of archaeological exploration, this study advocates 

for a paradigm shift that fully integrates drones, remote sensing, and digital data processing as 

foundational pillars of archaeological investigation. 

The time has come for aerial archaeology to take precedence, not as a supplement to 

traditional fieldwork, but as a leading force in archaeological research, preservation, and heritage 

management. A drone-based, remote-sensing-led, digital archaeological revolution is not just 

possible; it is necessary. This research affirms that the future of archaeology must embrace 

technology-driven, data-centric methodologies, ensuring that investigations are not only more 
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precise, efficient, and scalable, but also more ethical, practical, inclusive, and sustainable for 

generations to come. 
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APPENDIX 

1) Results from Mavic Mini 
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2) Predictive model for grave predictions using NDRE 
 

CREATE A NDRE MULTISPECTRAL ORTHOGRAPHIC MODEL FROM A DATASET WITH 

USING INTESITY  

Step 1: 

run a calibrated multispectral acquisition flight over desired area of interpretation 

Step 2: process multispectral data in a photogrammetry software (make sure model type multispectral is 

selected to isolate each band and incorporate in the metadata 

Step 3: output to raster (.tif) DEM Orthophoto with embedded multispectral metadata 

Step 4: output raster to QGIS 

Step 5: identify number associated with band RE and band NIR to verify the correct band numbers are 

used in the NDRE formula calculation in the next step  

Step 6: run NDRE using raster calculator (NDRE = NIR - RE / NIR + RE) 

Step 7: colorize raster using properties > symbology 

Step 8: select "Singleband pseudocolor", interpolation "Linear", mode "Continuous", Classes "5" 

Step 9: select "Classify" and record the range of NDRE values from -1 to +1 across the spectrum of 5 

colours at intervals of 0.5 with -1 and +1 at opposite ends of the spectrum and with the centermost value 

set to 0 and as a neutral color. the aim is to see the range of plants with either sufficient or insufficient 

chlorophyll contents. A good suggestion if for -1 to represent shades commonly associated with unhealthy 

or distressed plants (i.e. brown or red), while healthy vigorous plants such as those with high chlorophyll 

content should be represented by colours of green. 
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Step 10: select "Apply" and "OK" 

NEXT 

Step 11: obtain pixel values (represented as reflection values from -1 to +1) from individual graves 

*to test this formulaic hypothesis, only one (1) single pixel was isolated, selected, and it's reflectance 

value recorded. Pixels were selected visually based on a scale of darkness (or near darkest) and from 

within the near centre of each grave. The darkness is associated with higher NDRE values. 

Step 12: use area mapping tool to size area dimensions of marked and unmarked graves if possible (if 

known) and create a dataset. 

*if unknown, a sampled dataset can double as a  

Step 13: average this dataset 

Step 14: calculate the ground sampling distance if this number is not yet known. The ground sampling 

distance is the distance between the centermost point between two pixels in an image. this is considered 

the resolution of the model. 

Step 15: square this measurement (GSD2) to obtain size area per pixel 

Step 16: divide average size of grave calculated in step 13 by the area per pixel = average pixels per grave 

Step 17: plot known and unknown on frequency histogram, 

Step 18: divide the frequency of pixel values in the dataset by the average pixels per grave = a predication 

of the number of graves present in that dataset using NDRE reflectance values from known graves as a 

predictor. 
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3) NDVI and NDRE grave statistics (marked and unmarked) 
 

Graves (Inside 
Cemetery) Unmarked Graves 

Graves (Inside 
Cemetery) Unmarked Graves 

ID NDVI ID NDVI ID NDRE ID NDRE 
1 0.764142 1 0.536548 1 0.254265 1 0.158596 
2 0.758552 2 0.555146 2 0.249566 2 0.13935 
3 0.667494 3 0.504272 3 0.201269 3 0.140972 
4 0.626308 4 0.701812 4 0.183468 4 0.229874 
5 0.786762 5 0.505473 5 0.259599 5 0.156239 
6 0.669471 6 0.461473 6 0.204824 6 0.1229355 
7 0.723478 7 0.531059 7 0.189157 7 0.182672 
8 0.686153 8 0.532981 8 0.238412 8 0.141927 
9 0.733922 9 0.514838 9 0.202868 9 0.174467 

10 0.688555 10 0.481652 10 0.24405 10 0.146606 
11 0.577008 11 0.537588 11 0.15063 11 0.114004 
12 0.643374 12 0.647302 12 0.195288 12 0.173036 
13 0.525127 13 0.603984 13 0.088512 13 0.158378 
14 0.651585 14 0.686049 14 0.185375 14 0.24474 
15 0.629088 15 0.663959 15 0.141976 15 0.195398 
16 0.568329 16 0.538919 16 0.151406 16 0.152778 
17 0.78098 17 0.5714235 17 0.248077 17 0.161375 
18 0.617434 18 0.611397 18 0.200841 18 0.182838 
19 0.620966 19 0.572442 19 0.172864 19 0.125833 
20 0.673151 20 0.577441 20 0.223984 20 0.167536 
21 0.583671 21 0.596394 21 0.1632555 21 0.176265 
22 0.503946 22 0.615453 22 0.146792 22 0.157002 
23 0.726146 23 0.617008 23 0.240446 23 0.151288 
24 0.668625 24 0.679836 24 0.204394 24 0.207923 
25 0.801391 25 0.585062 25 0.348258 25 0.148447 
26 0.580529 26 0.600093 26 0.186707 26 0.173452 
27 0.679399 27 0.6819835 27 0.270141 27 0.168115 
28 0.57404 28 0.589709 28 0.17875 28 0.174574 
29 0.611988 29 0.613615 29 0.17869 29 0.19038 
30 0.619818 30 0.560693 30 0.167671 30 0.163756 
31 0.493616 31 0.509103 31 0.0974515 31 0.144827 
32 0.531863 32 0.597222 32 0.152844 32 0.178316 
33 0.602501 33 0.562589 33 0.174399 33 0.195621 
34 0.643709 34 0.592022 34 0.202855 34 0.155508 
35 0.526064 35 0.553852 35 0.1355395 35 0.158687 
36 0.539687 36 0.583852 36 0.133389 36 0.18394 
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37 0.488132 37 0.419176 37 0.144396 37 0.124569 
38 0.589822 38 0.514574 38 0.152446 38 0.138649 
39 0.619977 39 0.553239 39 0.159062 39 0.150084 
40 0.40182 40 0.54255 40 0.0800655 40 0.172379 

        
MEAN 0.629465575   0.5725946  0.187599575   0.164583413 

   0.056871    0.023016163 
        

MEDIAN 0.623637   0.5719328  0.1844215   0.160031 
   0.0517043    0.0243905 

 

Graves (Inside Cemetery) Graves (Inside Cemetery) Unmarked Graves Unmarked Graves 
ID NDVI ID NDRE ID NDVI ID NDRE 

1 0.764142 1 0.254265 1 0.536548 1 0.158596 
2 0.758552 2 0.249566 2 0.555146 2 0.13935 
3 0.667494 3 0.201269 3 0.504272 3 0.140972 
4 0.626308 4 0.183468 4 0.701812 4 0.229874 
5 0.786762 5 0.259599 5 0.505473 5 0.156239 
6 0.669471 6 0.204824 6 0.461473 6 0.122936 
7 0.723478 7 0.189157 7 0.531059 7 0.182672 
8 0.686153 8 0.238412 8 0.532981 8 0.141927 
9 0.733922 9 0.202868 9 0.514838 9 0.174467 

10 0.688555 10 0.24405 10 0.481652 10 0.146606 
11 0.577008 11 0.15063 11 0.537588 11 0.114004 
12 0.643374 12 0.195288 12 0.647302 12 0.173036 
13 0.525127 13 0.088512 13 0.603984 13 0.158378 
14 0.651585 14 0.185375 14 0.686049 14 0.24474 
15 0.629088 15 0.141976 15 0.663959 15 0.195398 
16 0.568329 16 0.151406 16 0.538919 16 0.152778 
17 0.78098 17 0.248077 17 0.571424 17 0.161375 
18 0.617434 18 0.200841 18 0.611397 18 0.182838 
19 0.620966 19 0.172864 19 0.572442 19 0.125833 
20 0.673151 20 0.223984 20 0.577441 20 0.167536 
21 0.583671 21 0.1632555 21 0.596394 21 0.176265 
22 0.503946 22 0.146792 22 0.615453 22 0.157002 
23 0.726146 23 0.240446 23 0.617008 23 0.151288 
24 0.668625 24 0.204394 24 0.679836 24 0.207923 
25 0.801391 25 0.348258 25 0.585062 25 0.148447 
26 0.580529 26 0.186707 26 0.600093 26 0.173452 
27 0.679399 27 0.270141 27 0.681984 27 0.168115 
28 0.57404 28 0.17875 28 0.589709 28 0.174574 
29 0.611988 29 0.17869 29 0.613615 29 0.19038 
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30 0.619818 30 0.167671 30 0.560693 30 0.163756 
31 0.493616 31 0.0974515 31 0.509103 31 0.144827 
32 0.531863 32 0.152844 32 0.597222 32 0.178316 
33 0.602501 33 0.174399 33 0.562589 33 0.195621 
34 0.643709 34 0.202855 34 0.592022 34 0.155508 
35 0.526064 35 0.1355395 35 0.553852 35 0.158687 
36 0.539687 36 0.133389 36 0.583852 36 0.18394 
37 0.488132 37 0.144396 37 0.419176 37 0.124569 
38 0.589822 38 0.152446 38 0.514574 38 0.138649 
39 0.619977 39 0.159062 39 0.553239 39 0.150084 
40 0.40182 40 0.0800655 40 0.54255 40 0.172379 

        
MEAN 0.629465575   0.187599575  0.572595   0.164583 

   0.441866    0.408011 
        

MEDIAN 0.623637   0.1844215  0.571933   0.160031 
   0.4392155    0.411902 
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4) Cloud Compare Settings (CSF) 
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5) VAT Algorithm Preset Values 
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6) DJI Mavic Mini Specs 
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7) MicaSense RedEdge-MX specs 
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8) DJI H20T Specs 
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9) DJI Zenmuse L1 Specs 
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10) D-RTK2 Base Station Specs 
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11) Juniper Systems GEODE-2 RTK Specs 
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