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Abstract

The k-page upward book embedding (kUBE) problem is a fundamental challenge

in graph theory with applications in circuit layout, scheduling, and hierarchical vi-

sualization. Despite its relevance, the problem—particularly for k ≥ 2—remains

underexplored. This thesis develops practical methods for solving kUBE and con-

ducts a detailed investigation of how graph structural properties influence upward

embeddability.

We first propose a Boolean satisfiability (SAT) encoding, SAT-1, that extends

existing k-page book embedding techniques to the general kUBE setting. For the

special case of k = 2 (2UBE), we introduce SAT-2, a more compact SAT encoding

exploiting the fixed number of pages, and a constraint programming (CP) model as

an alternative formulation. Empirical evaluation shows that SAT solvers consistently

outperform CP, with SAT-2 achieving up to 40% faster runtimes on large instances

and up to 30× speedups on hard instances from the North dataset compared to

SAT-1.

Beyond solving efficiency, we systematically analyze how upward book embed-

dability depends on structural parameters such as the edge-to-vertex ratio (m/n).

Through exhaustive enumeration and sampling, we identify sharp phase transition

phenomena across different values of k (up to k = 6) and model the phase transition

threshold as a function of graph size and page count using a power-law relationship,

providing the first quantitative characterization of this phenomenon.
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Chapter 1

Introduction

The book embedding problem (kBE) is a fundamental topic in graph theory that deals

with arranging the vertices and edges of a graph into a k-page book structure. For an

undirected graph G = (V,E), a k-page book embedding consists of two components:

1. a vertex ordering, which determines the position of vertices along a linear

spine, and

2. a page assignment, which places each edge on one of the k pages so that no

two edges on the same page cross.

Compact book embeddings that minimize k are useful in a wide range of appli-

cations, such as circuit layout design [13, 26], parallel scheduling [5], graph visualiza-

tion [40], and data structure optimization [17, 38].

An important extension of kBE is the k-page upward book embedding (kUBE)

problem, which is applicable to directed graphs (DAGs). In this variant, all edges

must be oriented upward along the spine—a restriction that naturally aligns with

hierarchical layouts, network diagrams, and 3D graph drawing [18]. A visual example

of a 2-page upward book embedding (2UBE) for a simple grid DAG is shown in

Figure 1.1.

While the 1-page cases of kBE and 1UBE can be solved in linear time [27], the

general k-page versions become NP-complete for k ≥ 2 [43]. In the case of 2UBE,

this complexity classification was only recently established in 2023 by Bekos et al. [6].

Given this computational intractability, understanding the structural properties that

1



CHAPTER 1. INTRODUCTION 2
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Figure 1.1: A 3×3 directed grid and its corresponding 2-page “upward” book embed-
ding.

influence embeddability—and finding practical solution methods—has become in-

creasingly important.

Like many other combinatorial problems in graph theory, k-Page Book Embedding

(kBE) and Upward Book Embedding (kUBE) are naturally suited to declarative

approaches such as Constraint Programming (CP) and Boolean Satisfiability (SAT).

CP allows the problem to be expressed through high-level constraints that guide

the search process via propagation and domain-specific heuristics. In contrast, SAT

reduces the problem to a purely Boolean formulation, enabling the use of modern

solvers that efficiently explore the entire solution space and are capable of proving

unsatisfiability. A key advantage of both approaches is their completeness—failure to

find a solution implies its non-existence.

This work aims to address a gap in the literature by presenting three general-case

solutions for the 2-Page Upward Book Embedding (2UBE) problem—two SAT-based

(SAT-1 and SAT-2) and one based on Constraint Programming (CP)—where SAT-1 is

applicable for arbitrary k-page embeddings. All approaches are evaluated empirically

using the North dataset, a standard benchmark for graph embedding problems [24].

A further objective is to demonstrate how the SAT-1 encoding can be leveraged

to investigate the relationship between structural properties of the graph and its

embeddability for different values of k. Our results indicate that the edge-to-vertex

ratio (m/n) is a strong predictor of embeddability: certain ranges guarantee 100%

embeddability for all DAGs, while others result in none. We also observe a clear phase

transition, whose location depends on the number of vertices (n) and the number of
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available pages (k).

The main contributions of this thesis are summarized as follows:

• Formulations and Modeling

– Adaptation of an existing kBE SAT encoding to kUBE (SAT-1),

– Introduction of a novel SAT encoding optimized for 2UBE (SAT-2),

– Formulation of a CP model for 2UBE,

– Formal proofs of soundness and completeness of all the proposed methods,

and empirical evaluation on standard benchmark datasets,

• Dataset Construction and Empirical Analysis

– Enumeration of all DAGs up to n = 6 and analysis of their kUBE embed-

dability,

– Sampling-based study of larger DAGs (n = 10, 15, 20) using topological

and uniform generation methods,

– Empirical identification of phase transition points (50% satisfiability, peak

runtime) at specific m/n values for n ≤ 20,

– Modeling the phase transition threshold in kUBE embeddability as a func-

tion of the number of vertices n and pages k using a power-law relationship,

• Theoretical Contributions

– Proof that all DAGs of size n ≥ 6 are embeddable in n− 3 pages,

– Conjecture that k = ⌈n/2⌉ is sufficient for an upward book embedding

(kUBE) of any DAG with n vertices.

The remainder of this thesis is organized as follows. Chapter 2 introduces the

fundamental definitions and notation required throughout the work and reviews key

complexity results related to the k-Page Book Embedding (kBE) and k-Page Upward

Book Embedding (kUBE) problems. Chapter 3 describes three alternative formula-

tions of the 2UBE problem: the SAT-1 encoding, the SAT-2 encoding, and a Con-

straint Programming (CP) model. This chapter also discusses the principal design
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choices and highlights the key differences between the proposed approaches. Chap-

ter 4 details the benchmark datasets, solver configurations, and experimental results.

Chapter 5 outlines the methodologies employed for generating small and large Di-

rected Acyclic Graphs (DAGs) via exhaustive enumeration and sampling techniques.

Chapter 6 presents the analysis of embeddability trends observed in the datasets, in-

cluding empirical identification of phase transitions and the derivation of an approx-

imate formula relating the m/n phase transition threshold to the number of vertices

n and pages k. Finally, Chapter 7 summarizes the key findings of this research and

proposes several avenues for future investigation.



Chapter 2

Background

This chapter establishes foundational concepts required for this study. First, we intro-

duce the classical book embedding problem, followed by the upward variant which is

the focus of this research. We provide formal definitions, complexity results, known

algorithms, and other relevant findings for these problems and their domains. We

then describe two solving methodologies used in this work: SAT and CP. We briefly

outline how problems can be encoded in either framework, why these approaches were

selected, and how they have been successfully applied in prior literature on related

graph problems. All of the concepts introduced here set the stage for the discussion

in later chapters.

2.1 The k-Page Book Embedding Problem (kBE)

The k-Page Book Embedding problem (kBE) is a classical graph layout problem that

arises in applications such as VLSI design and graph visualization. The core idea is

to place the vertices of a graph along a linear spine and partition the edges across k

pages in such a way that no two edges on the same page intersect. This abstraction

allows for reducing edge clutter and preserving readability in layered graph drawings.

In the following, we provide formal definitions of the k-Page Book Embedding

problem, review known complexity results, describe algorithmic approaches, and dis-

cuss recent findings related to book thickness.

5
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Formal Definitions

Definition 2.1 (Book Embedding for Undirected Graphs). A book embedding of a

graph G = (V,E) consists of

1. a linear ordering π : V → {1, 2, . . . , |V |} of vertices along the line called the

spine of a book, and

2. an assignment σ : E → {1, . . . , k} of individual edges on one of the k pages such

that no edges assigned to the same page geometrically cross. More precisely, for

any two edges (u1, v1) and (u2, v2) on the same page, such that π(u1) < π(v1) and

π(u2) < π(v2), the following two conditions are not allowed: π(u1) < π(u2) <

π(v1) < π(v2) and π(u2) < π(u1) < π(v2) < π(v1).

Definition 2.2 (kBE Problem). A k-Page Book Embedding Problem (kBE) is defined

as follows: Given an undirected graph G, does there exist a k-page book embedding

for G?

Complexity and Algorithms

Book embedding has been extensively studied in both theoretical and practical con-

texts. The 1-page variant, referred to as 1BE, is computationally simple and can

be solved in linear time. The class of graphs that admit a 1-page embedding is

exactly the outerplanar graphs [13]. However, for k ≥ 2, the problem becomes NP-

complete [13, 43], introducing considerable computational difficulty.

In recent years, more efficient approaches have been explored. One of the most

promising developments is a sub-exponential algorithm for the 2-page case [23]. This

method runs in 2O(
√
n) time and provides a more tractable solution for medium-sized

instances.

Theoretical Properties

The book thickness (also known as the page number) of a graph is defined as the

smallest k for which a valid k-page embedding exists. For certain graph families,

the exact book thickness is known. For example, the complete graph Kn has book

thickness given by:
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Theorem 2.1 (Overbay [36]). If n ≥ 4, then bt(Kn) =
⌈
n
2

⌉
.

Series-parallel graphs are always embeddable in two pages [13], and the NP-com-

pleteness result holds for general graphs when k ≥ 2 [13]. These findings provide

important benchmarks for understanding the difficulty of the problem in both prac-

tical and theoretical contexts.

2.2 The k-Page Upward Book Embedding Prob-

lem (kUBE)

The k-Page Upward Book Embedding problem (kUBE) is a directed version of the

classical book embedding problem and forms the main focus of this study. In this

variant, the input is a directed acyclic graph (DAG), and the vertex ordering along

the spine must be a topological ordering—meaning that every edge (u, v) must satisfy

π(u) < π(v). As with kBE, edges are assigned to one of k pages, and no two edges

on the same page may geometrically cross.

This directionality constraint adds an extra layer of complexity to the problem.

While kBE permits undirected graphs and focuses purely on edge-crossing minimiza-

tion, kUBE also enforces a semantic flow from sources to sinks in the graph. This

makes upward embeddings especially suitable for hierarchical structures like work-

flows and dependency trees, but also substantially reduces the number of possible

valid embeddings and increases computational difficulty.

In the remainder of this section, we formally define the k-Page Upward Book

Embedding problem, review known complexity results and algorithmic approaches,

and summarize relevant theoretical findings from recent literature, including bounds

on book thickness and embeddability.

Formal Definitions

Definition 2.3 (Upward Book Embedding for Directed Graph). An upward book

embedding of a directed graph G = (V,E) consists of:

1. a linear ordering π : V → {1, 2, . . . , |V |} of vertices along the spine of the book,

and
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2. an assignment σ : E → {1, . . . , k} of edges to one of k pages such that no two

edges on the same page geometrically cross. Additionally, for every edge (u, v),

it must hold that π(u) < π(v).

Definition 2.4 (kUBE Problem). The k-Page Upward Book Embedding Problem

(kUBE) is defined as follows: Given a directed graph G1, does there exist a k-page

upward book embedding for G?

Complexity and Algorithms

Theorem 2.2 (Bekos et al. [6]; Heath and Pemmaraju [27]). For any k ≥ 2, the

kUBE problem is NP-complete. Meanwhile, 1UBE can be solved in O(n) time.

The complexity profile of kUBE mirrors that of kBE in several ways. Like kBE,

the 1-page case is tractable, while the problem becomes NP-complete as soon as

multiple pages are involved. However, the additional topological constraints in kUBE

make algorithmic solutions more sensitive to graph structure.

Binucci et al. [9] show that for planar st-graphs, the 2UBE problem can be solved

in O(f(β) · n + n3) time, where β is the branchwidth and f is a singly-exponential

function.

These findings suggest that while kUBE is NP-complete in the general case, it

may still be efficiently solvable for graphs with special structural properties.

Theoretical Properties

While the book thickness of many undirected graphs is known (e.g., ⌈n/2⌉ for Kn),

the upward book thickness of general DAGs remains largely unexplored. No tight

bounds are currently known for this variant.

Nevertheless, several important subclasses of DAGs have been shown to always

admit a 2-page upward book embedding:

• N-free upward planar digraphs [34]

• Plane st-graphs with a special face structure [9]

1An upward book embedding can exist only if G is acyclic.
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• DAGs with constant branchwidth [9]

Example

Figure 2.1 illustrates a 3UBE instance. The input DAG has 6 nodes and 15 edges

(Figure 2.1a). In the embedding (Figure 2.1b), nodes are placed in topological order

along a horizontal spine, and edges—colored to indicate page assignment—are drawn

such that no two edges on the same page cross.

v0

v1 v2

v3

v4v5

(a)

v0 v1 v2 v3 v4 v5

(b)

Figure 2.1: (a) A DAG with 6 nodes and 15 edges. (b) Its 3-page Upward Book
Embedding (3UBE), with edge partitions colored black, blue, and red.

2.3 Other Book Embedding Variants and Com-

plexity Landscape

Some variants of the book embedding problem introduce the notion of partitioning,

where the assignment of edges to pages is provided as part of the input. For example,

in the case of k = 2, each edge is already assigned to either page 1 or page 2. The

task then reduces to finding a vertex ordering along the spine such that no two

edges on the same page cross. Since the partitioning is fixed, these problems avoid
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Problem k = 1 k = 2 k = 3 k ≥ 4

kBE O(n) [42] NP-c. [13]

2O(
√
n) [23]

NP-c. [13] NP-c. [13]

kUBE O(n) [27] NP-c. [6] NP-c. [9] NP-c. [9]

kPBE O(n) [42] O(n) [28] NP-c. [4] NP-c. [4]

kUPBE O(n) [27] OPEN NP-c. [3] NP-c. [3]

kUMPBE O(n) [27] O(n) [3] OPEN NP-c. [3]

Table 2.1: Complexities of book embedding problems.

Note: ”NP-c.” stands for ”NP-complete”.

the combinatorial overhead of exploring multiple edge assignments and are therefore

expected to be computationally simpler in some cases.

These are some of the partitioned variants described in literature:

• k-Page Partitioned Book Embedding (kPBE):

the undirected version with fixed page assignments [28].

• k-Page Upward Partitioned Book Embedding (kUPBE):

the directed acyclic variant with upward edge constraints [3].

• k-Page Upward Matching-Partitioned Book Embedding (kUMPBE):

a restricted case of kUPBE where each page contains a matching [3].

The complexity results for all the book embedding problems discussed so far,

including these partitioned variants, are summarized in Table 2.1. The table also

highlights several open cases that remain unresolved at the time of writing.
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2.4 Boolean Satisfiability (SAT)

The Boolean Satisfiability Problem (SAT) is a classical problem of determining whether

a given boolean formula can be satisfied, that is, whether there is an assignment of

true/false values to variables such that the entire formula evaluates to true. SAT

was the first problem proven to be NP-complete [15]. Despite the high computa-

tional complexity, advances in algorithms used for SAT solving over the past two

decades have made it possible to apply SAT solvers to a wide variety of real-world

and theoretical problems.

SAT is typically applicable to problems that can be expressed through a finite

set of binary decisions. Applications range from hardware verification and scheduling

to graph problems and cryptography. In the context of our work, SAT is used to

determine whether a given directed acyclic graph can be embedded in an upward

book layout with a given number of pages.

Satisfiability and Unsatisfiability

A Boolean formula is satisfiable if there exists at least one assignment of truth values

to its variables that makes the entire formula evaluate to true. For instance, the

formula

(x ∨ y) ∧ (¬x ∨ y) (2.1)

is satisfiable. Assigning x = false and y = true satisfies both clauses. In contrast,

a formula such as

x ∧ ¬x (2.2)

is unsatisfiable, since no assignment can make both clauses true simultaneously.

SAT solvers accept formulas expressed in a particular format, most often Con-

junctive Normal Form (CNF), where the formula is a conjunction of disjunctions of

literals. While this format is restrictive, it has become the standard input represen-

tation due to its compatibility and alignment with efficient solving techniques.
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Encoding Problems into SAT

The process of encoding a problem into SAT typically involves three steps. First, a set

of boolean variables is defined to describe the decisions and elements of the original

problem at hand. It is common for a group of boolean variables to represent a single

concept. For example, three boolean variables can be used to represent three different

possible label assignments for a particular node. Second, constraints that define valid

configurations are expressed as logical relationships among those variables. Finally,

these constraints are converted into CNF format.

Many well-known combinatorial problems can be encoded in this way. For exam-

ple, graph coloring problems can be reduced to SAT by introducing variables for each

vertex-color pair and adding clauses to ensure adjacent vertices do not share the same

color. In a similar fashion, SAT-based methods have been successfully used to tackle

scheduling, resource allocation, and routing problems. In our case, node ordering and

edge-to-page assignments are encoded as boolean variables, and structural embedding

constraints on upwardness and non-crossing of edges are transformed into clauses.

SAT Solvers

Once the problem is encoded into CNF, it can be passed to a SAT solver. These

solvers apply a combination of techniques to explore the space of possible assignments

efficiently. The most widely used class of solvers today follow the Conflict-Driven

Clause Learning (CDCL) paradigm. These solvers make decisions by selecting a

variable and assigning it a value, propagating the consequences of that decision,

and backtracking when a conflict is found. It is interesting to note that they learn

from conflicts by creating and adding new clauses that prevent the same failure from

occurring again.

When problem is executed, the solver returns either SAT or UNSAT. If the result

is SAT, the output includes a model—a list of integers representing a satisfying as-

signment. Each integer corresponds to a variable index, with a minus sign indicating

that the variable is assigned false, and a positive value indicating true. This output

can then be decoded back into a solution to the original problem. In our case, this

involves reconstructing a linear order of the nodes and a page assignment for each
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edge in the graph.

Numerous SAT solvers have been developed and evaluated through annual compe-

titions, with many optimized for specific classes of problems. Solvers such as MiniSAT,

Glucose, and CaDiCaL have historically performed well, each implementing variants

of CDCL with different heuristics for branching, restart policies, and clause learning.

In this study, we utilize Kissat [8], a modern SAT solver known for its efficiency

and performance in recent SAT competitions. Kissat incorporates several state-of-

the-art techniques such as inprocessing, phase saving, and aggressive clause minimiza-

tion, making it well-suited for structured SAT instances like those arising from graph

embedding problems.

DIMACS CNF Format

SAT solvers typically operate on input written in the DIMACS CNF format. This

format represents each clause as a space-separated list of integers, each corresponding

to a variable or its negation, terminated by a zero. When the satisfiable boolean

expression in Equation 2.1 is encoded in DIMACS CNF format, it takes the following

form:

1 p cnf 2 2

2 1 2 0

3 -1 2 0

Where the header p cnf 2 2 indicates that the formula contains 2 variables and

2 clauses, the line 1 2 0 represents the clause x∨ y, with the terminating 0 marking

the end of the clause. The line -1 2 0 corresponds to the clause ¬x ∨ y. Note that

the minus sign indicates logical negation.

A minimal example of an unsatisfiable DIMACS CNF file is an encoding of ex-

pression in Equation 2.2:

1 p cnf 1 2

2 1 0

3 -1 0
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Why Use SAT for kUBE

The k-page upward book embedding problem is NP-complete for k ≥ 2, which most

certainly indicates that direct algorithmic solutions would scale poorly with instance

size. Encoding the problem into SAT allows us to utilize the power of modern solvers

to either find valid embeddings or prove that none exist. The completeness of the

SAT approach is a major advantage, as proving the non-embeddability of a graph can

be as important as finding a valid embedding.

Through reducing the embedding problem to a SAT instance, we transfer the

complexity of the search to a well-tested and optimized solving engine. This approach

not only provides a practical way to solve larger instances, but also allows for easier

experimentation with different encoding strategies.

2.5 Constraint Programming (CP)

In constraint programming (CP), users define a set of decision variables along with

constraints that must be satisfied. These variables can take on various forms such

as boolean, integer, and others. Constraints may include boolean logic, arithmetic

equalities and inequalities, set-based conditions, and more. CP subsumes satisfiability

problems (SAT) as a subset, and therefore can be used to solve all problems solvable by

SAT solvers. While SAT solvers are often more optimized in practice due to decades

of refinement, CP offers more flexibility and can be more efficient for problems that

are naturally expressed using integer variables and arithmetic relations.

Several researchers have successfully applied CP to solve complex graph-related

problems, demonstrating its suitability for structured combinatorial domains, includ-

ing our target book embedding problem [22], [25].

Encoding Problems into CP

Constraint Programming (CP) is an effective method for solving combinatorial prob-

lems by using decision variables and constraints. To encode a problem into CP, one

must define decision variables, specify their domains, and establish constraints that

correctly and completely describe the problem.
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Decision variables represent unknown values within the problem. Each decision

variable is associated with a domain, which is the set of possible values it can take.

Constraints are then defined to capture relationships between decision variables using

arithmetic or logical rules.

For example, constraints may require decision variables to take on distinct values

(using the alldifferent constraint), or to lie within specific numerical bounds. An

objective function can be introduced in cases where optimization is necessary—such

as minimizing or maximizing a particular outcome.

To demonstrate, we provide a sample encoding of the Sudoku problem in CP. This

encoding captures the full structure of the puzzle and can serve as valid input to CP

solvers when converted to the appropriate syntax required by the solver in use.

Sudoku Example: We define a constraint programming (CP) model for the

standard 9× 9 Sudoku puzzle. The problem consists of assigning a digit from 1 to 9

to each cell in a 9 × 9 grid such that each row, column, and 3 × 3 subgrid contains

all digits exactly once.

Variables:

S[i][j] ∈ {1, 2, . . . , 9} ∀i, j ∈ {1, . . . , 9}

where S[i][j] denotes the value assigned to the cell located at row i and column j

of the grid. Each decision variable represents a single cell and must take an integer

value between 1 and 9.

Constraints:

• Row constraints:

AllDifferent(S[i][1], S[i][2], . . . , S[i][9]) ∀i ∈ {1, . . . , 9}

For each row i, the nine cells must take distinct values, ensuring that each digit

from 1 to 9 appears exactly once in every row.

• Column constraints:

AllDifferent(S[1][j], S[2][j], . . . , S[9][j]) ∀j ∈ {1, . . . , 9}
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For each column j, the nine cells must also take distinct values, guaranteeing

that each digit from 1 to 9 appears exactly once in every column.

• Block constraints (3×3 subgrids):

AllDifferent ({S[i][j] | i ∈ {r + 1, . . . , r + 3},

j ∈ {c+ 1, . . . , c+ 3}}) ∀r, c ∈ {0, 3, 6}

For each 3× 3 subgrid defined by the top-left corner coordinates (r + 1, c+ 1),

the nine cells within the block must take distinct values, ensuring that each

digit from 1 to 9 appears exactly once within every subgrid.

CP Solvers

Modern CP solvers have demonstrated considerable advances in addressing real-world

combinatorial problems. Among these, Google’s CP-SAT solver—part of the OR-

Tools suite—has consistently ranked at the top of the MiniZinc Challenge since 2013

[35]. CP-SAT adopts a hybrid strategy by integrating classical CP propagation with

SAT-solving techniques.

Although several high-quality solvers exist on the market—including PicatSAT

and IBM ILOG CP Optimizer—in this work, we have chosen to focus exclusively

on Google’s CP-SAT. The decision stems not only from its proven track record in

benchmark competitions but also from the broader goal of the study. The primary

objective is not to compare individual solvers within the same paradigm, but rather

to contrast the paradigms themselves—Constraint Programming versus pure SAT-

solving. Hence, it is only logical to employ the most capable solver representative

of each paradigm. Accordingly, our experiments are based on using a pure SAT

encoding evaluated with a state-of-the-art SAT solver, and a CP encoding evaluated

with CP-SAT, which is widely recognized as best-in-class for constraint-based models.



Chapter 3

Upward Book Embedding

Encoding Techniques

In this chapter, we first formally introduce a kUBE SAT encoding, which is an adapted

version of the kBE SAT encoding described by Bekos et al. [7]. Given a graph

G = (V,E), this encoding determines whether the edges in E can be embedded in a

book with k pages. This encoding is code-named SAT-1.

In an effort to improve upon this encoding, we examine the constrained case of

k = 2 (which is known to be NP-complete) and investigate whether the number of

variables can be reduced. This endeavor has proven successful, as we were able to

significantly reduce the number of required variables. The resulting encoding for

2UBE is then formally described and code-named SAT-2.

Finally, we introduce a novel but straightforward CP encoding, which uses a

different approach for encoding the positioning of nodes: integer variables for node

indices instead of boolean variables for relative ordering. The logical constraint for

ensuring no edge crossings is mostly identical to that of SAT-1.

3.1 SAT-1 for kUBE

Let G = (V,E), where V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em}, be a directed

acyclic graph for which we seek to decide whether it admits an upward book embed-

ding in k ≥ 2 pages. We define a logical formula F1(G, k) that encodes this decision

17
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problem as a SAT instance. This encoding, referred to as SAT-1, follows the approach

introduced by Bekos et al. [7], and is specified by a set of propositional variables and

rules. These rules capture relative vertex ordering, transitivity, edge-to-page assign-

ments, and a simplified prohibition of edge crossings. Since each rule is expressed in

propositional logic, the full formula can be translated into conjunctive normal form

(CNF) in a straightforward manner.

Relative ordering of vertices. The vertices of G must be arranged along the book

spine in a specific order. For each pair of vertices (vi, vj) with i < j, we define a

variable L(vi, vj), which is true if and only if π(vi) < π(vj). To enforce asymmetry,

we define L(vi, vj) only for i < j, ensuring that L(vi, vj) ⇐⇒ ¬L(vj, vi).
Transitivity. The ordering must be transitive, meaning cyclic dependencies such

as L(vi, vj) ∧ L(vj, vk) ∧ L(vk, vi) are not allowed. Thus, for all pairwise distinct

vertices vi, vj, vk ∈ V , it is required that L(vi, vj)∧L(vj, vk)→ L(vi, vk). That is, the

following transitivity constraint, presented in conjunctive normal form (CNF), must

hold:

[¬L(vi, vj),¬L(vj, vk), L(vi, vk)] (3.1)

Topological ordering. kUBE requires that all directed edges are oriented in a

singular direction along the spine of the book. This property is also referred to as

topological ordering of vertices. To enforce this, we add this clause for each of the

graph’s edges:

L(u, v) ∀(u, v) ∈ E (3.2)

Edge assignment. A set of variables to represent the assignment of edges to pages.

For each ei ∈ E and each p ∈ [0, k), where k is the maximum number of available

pages, the variable EP (ei, p) is true if and only if the edge ei is assigned to page p.

Every edge must be assigned to at least one page, ensuring the following constraint

holds for all ei ∈ E:

EP (ei, 0) ∨ EP (ei, 1) ∨ · · · ∨ EP (ei, k − 1) (3.3)

Same page edges. For any two edges ei and ej, the variable X(ei, ej) is true if and

only if both edges belong to the same page. Formally, for all ei, ej ∈ E with i < j,
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the following constraint holds:

(
EP (ei, p) ∧ EP (ej, p)

)
→ X(ei, ej) (3.4)

No edge crossings on the same page. As we are dealing with DAGs only in kUBE

problem, the edge crossing prohibition rule introduced by Bekos et al. [7] for undi-

rected graphs is no longer applicable. That is, given two undirected edges ei = (a, b)

and ej = (c, d), the permutations would be (a, c, b, d), (a, d, b, c), (b, c, a, d), (b, d, a, c),

(c, a, d, b), (c, b, d, a), (d, a, c, b), and (d, b, c, a). However, if ei and ej are directed

edges, we do not need to consider permutations that would inverse the direction of

edges, reducing the cases with (a, c, b, d) and (c, a, d, b) only. To prohibit the illegal

subsequences of vertices (a, c, b, d) and (c, a, d, b), for any two edges ei = (a, b) and

ej = (b, c) such that i < j, we encode the rule:

X(ei, ej)→ ¬Cross(ei, ej) (3.5)

where Cross(ei, ej), indicating that two edges intersect, is defined as:

Cross(ei, ej) ≡ (L(a, c) ∧ L(c, b) ∧ L(b, d)) ∨ (L(c, a) ∧ L(a, d) ∧ L(d, b)) (3.6)

That is, for any two edges ei = (a, b), ej = (c, d) such that a ̸= b, b ̸= c, c ̸=
d, a ̸= d, we have the following two CNF clauses:

[¬X(ei, ej),¬L(a, c),¬L(c, b),¬L(b, d)]

[¬X(ei, ej),¬L(c, a),¬L(a, d),¬L(d, b)] (3.7)

We finish this section with a justification on the soundness and completeness of the

encoding and the fact that it is bounded by the polynomial total number of variables

and clauses.

Theorem 3.1. Given a DAG G = (V,E), where |V | = n and |E| = m, and k ∈ N,
the graph G admits an upward book embedding on k pages if and only if F1(G, k)

is satisfiable. More precisely, G admits kUBE if and only if there exists a model

M for F1(G, k), i.e., M |= F1(G, k). Further, the size of F1(G, k) is bounded by
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O(n2 +m2 +mk) variables and O(n3 +m2) clauses.

Proof. We establish both directions of the equivalence.

⇒: If G admits an upward book embedding on k-pages,M |= F1(G, k). Suppose

G has a valid k-page upwards book embedding E(G, k) and let (L̂, ÊP , X̂) be an

assignment to variables L, EP , and X of F1(G, k) with their meaning as follows: (i)

L̂(vi, vj) = true, if and only if vi is positioned before vj; (ii) ÊP (e, p) = true, if and

only if edge e is assigned to page p; (iii) X̂(ei, ej) = true, if and only if both edges ei

and ej lie on the same page.

For satisfaction of the rules of transitivity, edge assignment, and same page edges

by (L̂, ÊP , X̂), the arguments by [Theorem 1]bekos2015book can be exactly adopted.

We have our focus on the remaining two rules of topological ordering and no edge

crossings on the same page.

The topological ordering rule is satisfied by L̂ because, for all G edges (u, v), the

condition π(u) < π(v) holds according to the definition of upward book embedding.

Thus, L̂(u, v) holds true for all edges.

Finally, we prove that no edge crossings on the same page rule is satisfied by

contradiction. Suppose that (L̂, ÊP , X̂) assignment violates the no-crossing rule for

some pair of edges (a, b) and (c, d), which means X̂((a, b), (c, d)) = true and vertices

form a subsequence (a, c, b, d) or (c, a, d, b). For (a, c, b, d), the spine of the book

together with the edge (a, b) in E(G, k) forms an enclosed region. Accordingly, vertex

c lies within the region while d lies outside. That is, for d to connect with c, the edge

(c, d) must cross (a, b). The argument on (c, a, d, b) is similar. As a result, edges must

cross in E(G, k), leading to contradiction.

⇐: IfM |= F1(G, k), G admits an upward book embedding on k-pages.

Let (L̂, ÊP , X̂) be a satisfying assignment to F1(G, k). As shown by Bekos et

al. [7], every satisfying assignment to F1(G, k) corresponds to a valid k-page book

embedding. Since L̂ assignment satisfies the topological ordering rule, π(u) < π(v)

must hold for all edges (u, v). This guarantees that the resulting vertex ordering is

upward, as required by 2UBE definition. Thus, any satisfying assignment to F1(G, k)

represents a valid upward book embedding on k pages.

The formula F1(G, k), defines three sets of variables: L, EP , and X. Their
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cardinality are respectively upper-bounded by n(n−1)
2

, mk, and m(m−1)
2

. Thus, the

total count of variables is bounded by O(n3 + m2 + mk). The number of clauses is

bounded by O(n3+m2), due to the transitivity rules O(n3) and the no-edge-crossings-

on-the-same-page rules O(m2).

3.2 SAT-2 for 2UBE

We begin the definition of F2(G, 2) by including the relative ordering of vertices,

transitivity, and topological ordering constraints from F1(G, k).

Since 2UBE is restricted to only two pages, we can conceptualize one page being

above and another below the spine of the book. Therefore, a single boolean variable,

denoted as T (ei), suffices to represent the page assignment of edge ei. More precisely,

the variable T (ei) is true if and only if the edge ei is assigned to the top page, i.e.,

the page above the spine of the book. Due to the compact nature of the variable

set T , we no longer need additional rules to enforce the correct representation of the

edge-to-page assignment as in the case of EP . Any configuration of T inherently

represents a valid distribution of edges between the two available pages.

No edge crossings on the same page. To account for the absence of variable

X(ei, ej), which indicates if two edges belong to the same page, we need to separately

handle cases where both edges lie either on the top page or the bottom one. For that,

we need two implicative rules, which use Cross(ei, ej), defined in Equation (3.6). For

the top page:

T (ei) ∧ T (ej)→ ¬Cross(ei, ej) (3.8)

and for the bottom page:

¬T (ei) ∧ ¬T (ej)→ ¬Cross(ei, ej) (3.9)

This completes the construction of F2(G, 2).

Finally, we provide a formal proof of soundness and completeness of the above-

described encoding, as well as the polynomial bounds on the number of variables and

clauses.
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Theorem 3.2. Given a DAG G = (V,E), where |V | = n and |E| = m, G admits

an upward book embedding on 2 page if and only if F2(G, 2) is satisfiable. More

precisely, G admits 2UBE if and only if there exists a model M for F2(G, 2), i.e.,

M |= F2(G, 2). Further, the size of F2(G, 2) is bounded by O(n3 +m2) clauses and

O(n2 +m) variables.

Proof. We again establish both directions of the equivalence.

⇒: If G admits an upward book embedding on 2 pages,M |= F2(G, 2). Assume

that G admits an upward 2-page book embedding E(G, 2). By Theorem 3.1, a valid

2-page upward embedding yields a satisfying assignment (L̂, ÊP , X̂) to F1(G, 2).

The rules of relative ordering of vertices, transitivity, and topological ordering in

F2(G, 2) are identical to the ones in F1(G, 2), they are thus satisfied by L̂.

Further, F1(G, 2) encodes edge-to-page assignment with EP (e, p), where p ∈ [0, 1].

We can define T̂ assignments from ÊP using this formula:

T̂ (e) =

true if ÊP (e, 0) is true,

false if ÊP (e, 1) is true.
(3.10)

To show that the rules of no-edge-crossings-on-the-same-page in F2(G, 2) (3.8 and

3.9) are equivalent to 3.5 in F1(G, 2), we show that the following is true:

X(ei, ej) ⇐⇒ (T (ei) ∧ T (ej)) ∨ (¬T (ei) ∧ ¬T (ej)). (3.11)

From T (e) ≡ EP (e, 0) and ¬T (e) ≡ EP (e, 1), we make substitutions to obtain

X(ei, ej) ⇐⇒ (EP (ei, 0) ∧ EP (ej, 0)) ∨ (EP (ei, 1) ∧ EP (ej, 1)) (3.12)

The right-hand side now matches exactly the definition of X(ei, ej), meaning that

the no-edge-crossing constraint is satisfied.

⇐: IfM |= F2(G, 2), G admits an upward book embedding on 2 pages.

That is, suppose there is a satisfying assignment (L̂1, T̂ ) for F2(G, 2), there is a

satisfying assignment (L̂1, T̂ ) corresponding to a satisfying assignment (L̂2, ÊP , X̂)

for F1(G, 2).

Since F1(G, 2) and F2(G, 2) impose identical constraints for vertex ordering, it
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follows that L̂2 = L̂1. Next, we construct ÊP from T̂ assignment for each edge e, as

follows:

ÊP (e, 0) = T̂ (e), ÊP (e, 1) = ¬T̂ (e) (3.13)

The X̂ assignment can be derived from ÊP according to its definition. The

no-edge-crossings-on-the-same-page rules for F1(G, 2) and F2(G, 2) are equivalent as

shown above. Therefore, the rules are satisfied. To conclude, we have a satisfying

assignment (L̂2, ÊP , X̂) for F1(G, 2), it follows from Theorem 3.1 that G has a valid

2-page upward book embedding.

F2(G, 2) defines the sets of variables L and T , with their cardinality are respec-

tively upper-bounded by n(n−1)
2

and m. Therefore, the number of variables is bounded

by O(n2 + m). The number of clauses is dominated by the transitivity rules O(n3)

and the no-edge-crossings-on-the-same-page rules O(m2), which results in O(n3+m2)

total clauses.

3.3 A CP Encoding for 2UBE

Compared to SAT, Constraint Programming (CP) can leverage integer variables and

algebraic constraints that are often difficult or verbose to express solely through

boolean expressions. Therefore, to compare the effectiveness of both of these ap-

proaches, we describe an alternative CP encoding for the 2UBE problem. Later in

this study, we refer to this encoding as simply CP.

Given a DAG G = (V,E), where |v| = n and |E| = m, the CP encoding introduces

two sets of decision variables to model the 2UBE problem. The first set describes the

positions of vertices on the spine of the book:

pos[i] ∈ {0, . . . , n− 1}, ∀i ∈ {0, . . . , n− 1} (3.14)

The second set consists ofm Boolean variables for them edge-to-page assignments.

page[i] ∈ {0, 1}, ∀i ∈ {0, . . . ,m− 1} (3.15)
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To ensure that each node has a unique position on the spine, or, in other words,

no two nodes share the same position, we add the following constraint:

AllDifferent(pos[0], pos[1], . . . , pos[n− 1]) (3.16)

Furthermore, we must enforce the topological ordering of nodes by following the

direction of edges:

pos[u] < pos[v] ∀(u, v) ∈ E (3.17)

Finally, no two edges assigned to the same page are allowed to cross. That is, for

any two edges ei, ej ∈ E, where i ̸= j, ei = (a, b), and ej = (c, d), we have that:

(
page[i] = page[j]

)
=⇒

(
¬(pos[a] < pos[c] < pos[b])

∧ ¬(pos[c] < pos[a] < pos[d] < pos[b])
)

(3.18)

In closing, we provide a formal proof of completeness and soundness of the pro-

posed CP encoding, thus validating its correctness in the context of solving 2UBE

problems.

Theorem 3.3. Given a DAG G = (V,E), where |V | = n and |E| = m, the graph G

admits a 2-page upward book embedding if and only if the CP encoding is solvable.

Proof. We establish both directions of the equivalence.

⇒: Suppose that G admits a valid 2-page upward book embedding E(G, 2). We

show that the CP model is solvable.

Assign to each vertex vi a value pos[i] representing its position along the book

spine, and to each edge ei a page assignment page[i], where 0 denotes the bottom

page and 1 denotes the top page. Since E(G, 2) is valid, all vertex positions are

distinct, satisfying the AllDifferent constraint.

Moreover, for each edge (u, v) ∈ E, the topological order of the embedding ensures

that pos[u] < pos[v], satisfying the upwardness constraint. Finally, since no two edges

placed on the same page cross, the disjunctive no-crossing constraints are satisfied.

Thus, the assignment derived from E(G, 2) constitutes a valid solution to the CP

encoding.
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⇐: Suppose that the CP model has a solution. We show that G admits a valid

2-page upward book embedding.

The AllDifferent constraint ensures that vertex positions are distinct, yielding

a unique ordering along the spine. The constraint pos[u] < pos[v] for each (u, v) ∈
E ensures that the ordering respects the direction of edges, satisfying upwardness.

Furthermore, the no-crossing constraints guarantee that any two edges assigned to

the same page do not cross.

Therefore, the solution to the CP model defines a valid 2-page upward book

embedding, with vertex positions given by pos and page assignments given by page.



Chapter 4

Empirical Evaluation of Encodings

In this section, we evaluate the performance of the proposed methods: SAT-1, SAT-2,

and CP. For the CP solver, we use Google’s open source OR-Tools CP-SAT Solver

[37]. For the SAT solver, we use Kissat [8], an efficient single-threaded SAT solver

that is considered state-of-the-art at the time of writing. All experiments/tests were

run on a 6-core Intel Core i7 2.6GHz CPU. Timeout for a single instance was set to

3600 seconds and the memory was limited to 16 GB. To measure the time required

to solve each instance with statistical rigor, we used Hyperfine, a popular command-

line benchmarking tool. Hyperfine was configured with a single untimed warmup run

prior to measurement to mitigate the influence of startup overhead and disk I/O.

We first assess the performance of SAT-1, SAT-2, and CP on the North Graph

dataset, a widely used benchmark for graph embedding problems, focusing on runtime

distributions and detailed comparisons in Section 4.1. Section 4.2 extends the analysis

to larger, structured instances by benchmarking scalability on directed grid graphs.

Finally, Section 4.3 summarizes the key observations and conclusions drawn from the

empirical results.

4.1 Benchmarking on “North” DAG Dataset

North Graphs (downloaded from [24]) is a popular dataset consisting of 1277 DAGs

collected by Stephen North with vertex counts ranging from 10 to 100 and edge counts

ranging from 9 to 241 [12]. Processing of the entire dataset took approximately 9

26
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minutes for SAT-1, 4.5 minutes for SAT-2, and 2.8 hours for CP. Exactly 800 DAGs

are satisfiable (i.e., allowing a 2-page upwards book embedding), while the remaining

477 are unsatisfiable.

All instances are solvable by SAT-1, SAT-2, and CP, but as shown in Figure

4.1, SAT-based methods are significantly faster than CP. While SAT-1 and SAT-2

perform similarly, SAT-2 appears faster. Most instances are relatively easy to solve,

as indicated by the clustering of data points near the horizontal axis, meaning shorter

runtimes. However, despite all methods solving the same set of instances, individual

runtimes vary significantly, leading to different point distributions across the three

subfigures in Figure 4.1.
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Figure 4.1: Runtime of CP (a), SAT-1 (b), and SAT-2 (c) for North Graph DAGs.
Each graph instance is sized by m+ n, where n is the number of nodes and m is the
number of edges. Data points: green dots represent satisfiable instances; red crosses
indicate unsatisfiable ones.

To quantify runtime, cumulative and mean runtime as Cactus plots are presented

in Figures 4.2a and 4.2b, respectively. Note that the y-axis uses a logarithmic scale.

We observe that CP is significantly slower than the SAT approaches: approximately

20 times slower than SAT-1 and 40 times slower than SAT-2. Additionally, SAT-2

consistently outperforms SAT-1 across problems of all sizes (Figure 4.2b). Next, we

investigate this performance difference in closer detail.

We first define “significant performance improvement” as a speedup factor be-

tween 0.8x and 1.2x. Using this measure, approximately 65% of instances show a

significant improvement of SAT-2 over SAT-1, while less than 1% show deteriorated

performance. About one-third of problems show no significant improvement. The

results are plotted as histograms in Figure 4.3, where satisfiable and unsatisfiable in-
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Figure 4.2: (a) Cumulative runtime. (b) Mean runtime per problem bracket.

stances are further distinguished. Notably, there is a significant difference in speedup

distribution between satisfiable and unsatisfiable instances. Over 85% of UNSAT in-

stances show significant performance improvements with SAT-2 over SAT-1, with no

deterioration. In contrast, only around half of SAT instances show meaningful im-

provement using SAT-2, and around 1% experience slight performance deterioration.

Interestingly, all problems with a speedup factor above 16x are SAT instances.
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Figure 4.3: Speedup distribution of SAT-2 over SAT-1 across North Graph DAGs
(Green: improved performance, gray: similar performance, red: deteriorated).

These observations of the large disparity in runtime improvement raise the ques-

tion: Why SAT-2 performs much better for certain problems while offering no im-

provement over SAT-1 for others? In hopes of answering this question, we started by

exploring the relationship of SAT-1 runtime with various parameters.
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Figure 4.4: (a) SAT-1 runtime vs. clause count. (b) Identified “hard” and “easy”
instances on plot a. (c) Relationship of SAT-2 speedup to SAT-1 clause-to-time ratio.
(d) SAT-1 runtime vs. edge density (m/n), highlighting hard vs. easy instances.

When plotting SAT-1 runtime against the number of generated clauses in its CNF

representation (Figure 4.4a), we observe two potential linear trends. Based on this

visual pattern, we select a threshold of 6 × 105 for the clause-to-time ratio to split

the dataset into two groups (Figure 4.4b). The group with slower runtime growth is

labeled “easy”, while the group with a significantly higher and varied growth rate is

labeled “hard”.

Following established practices in the statistical literature [14], we validate our

categorization of data by performing standard tests to showcase the distinct nature

of the two resulting groups. Levene’s test (p < 10−190) shows a significantly increased
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variance for the ”hard” group, the Mann-Whitney U test (p < 10−200) indicates the

two groups have different distributions, and the t-test (p ≈ 0) shows a statistically

significant difference of mean values.

Having established two distinct groups with differing SAT-1 performance profiles,

we next examine their relationship to SAT-2 speedup. When SAT-2 speed gain is

plotted against the SAT-1 clause-to-time ratio (Figure 4.4c), we observe that all in-

stances exhibiting significant speedup fall below the defined threshold and correspond

to the “hard” class. In contrast, instances classified as “easy” show minimal to no

performance gain, as indicated by the dotted line representing equal runtimes. These

findings suggest that certain graph instances are inherently more difficult for SAT-1,

while SAT-2 consistently outperforms on this subset, often by a wide margin.

To explore whether this problem hardness distinction is linked to structural prop-

erties of the graph, we visualize SAT-1 runtime versus graph edge density, calculated

as m/n (Figure 4.4d). What we found is that a majority of hard instances are con-

centrated in the 1 ≤ m/n ≤ 2 range, implying a potential connection between edge

density and problem hardness.
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Figure 4.5: Mean SAT-1 and SAT-2 runtime vs. edge density (m/n).

Finally, by comparing average runtimes of SAT-1 and SAT-2 across binned values

of m/n (Figure 4.5), we observe that most of the performance gains achieved by SAT-

2 occur in the same density range identified earlier. This reinforces the conclusion

that SAT-2 encoding significantly reduces average solve time of structurally difficult

instances, which is consistent with the observations in Figure 4.4c.
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4.2 Scalability Analysis on Grid Graphs

To see whether the performance gains from SAT-2 will carry over to large instances,

we benchmark all encodings on grid graphs of increasing size. A grid graph, also

referred to as a two-dimensional lattice graph in the literature, is an m × n planar

graph formed as the Cartesian product of two path graphs with m and n vertices [1].

We convert undirected grid graphs into DAGs by orienting their edges in two

directions (rightward and downward). This construction yields a family of planar st-

graphs—directed graphs with a single source and a single sink—which always admit

a 2-page upward book embedding [9]. The example illustrated in Figure 1.1 is, in

fact, a directed grid graph of size 3 constructed using this method.

Why select grid DAGs for scalability analysis? In this experiment, our primary

goal is to measure how the two encodings perform as instance size increases. To en-

sure that performance differences reflect encoding efficiency rather than solver-specific

behavior, we restrict our analysis to satisfiable instances. In particular, UNSAT per-

formance is often influenced by solver-specific pruning heuristics and conflict learning

strategies, which are highly sensitive to variable ordering and other internal mecha-

nisms. In contrast, SAT instances require the solver to construct a complete solution,

offering a more meaningful basis for comparison. By fixing as many parameters as

possible, we isolate the effect of instance size and provide a fair comparison between

the two encodings. Grid DAGs are well-suited for this purpose: they are easy to gen-

erate, they scale naturally with size, and—unlike trees or paths—their embeddings

are not trivial, placing greater demand on the encoding logic and making them more

appropriate for a meaningful scalability study.

All three methods were evaluated on grid graph instances of sizes up to 28 × 28.

The results are presented in Table 4.1 and Figure 4.6. Consistent with the results

from the North Graph DAG dataset benchmark, the CP encoding performed poorly,

reaching the timeout limit as early as n = 20. To solve the largest graph instance

(28×28, 784 nodes) SAT-1 took around 48 minutes, whereas SAT-2 took 27.5 minutes.

This represents a 40% reduction in runtime over SAT-1, with an overall average

speedup across all instances of approximately 30%. These results suggest that SAT-

2’s advantage persists at scale. Moreover, we can observe in Figure 4.6 that the

runtime gap between the two SAT encodings widens as instance size increases. This
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Table 4.1: Mean execution times of SAT-1, SAT-2, and CP for grid graphs of size
n × n. The second column shows the number of nodes. TO stands for timed-out
(> 3600s).

n Nodes (n2) SAT-1 (s) SAT-2 (s) CP (s)
2 4 0.0016 0.0030 0.0109
3 9 0.0053 0.0033 0.1007
4 16 0.0290 0.0071 0.6595
5 25 0.0503 0.0116 3.2400
6 36 0.1006 0.0274 7.8882
7 49 0.2406 0.1536 15.0825
8 64 0.5470 0.3536 28.3582
9 81 1.209 0.7173 46.2965
10 100 2.565 1.266 74.8024
11 121 4.601 2.225 108.6383
12 144 5.478 4.491 148.0552
13 169 7.062 6.676 183.4610
14 196 8.929 8.370 334.5505
15 225 11.362 10.457 538.5593
16 256 15.145 13.859 798.9257
17 289 19.617 18.148 1039.6657
18 324 25.703 23.611 1355.6614
19 361 34.164 31.033 2293.8375
20 400 44.323 41.848 TO
21 441 77.498 35.553 TO
22 484 111.974 54.986 TO
23 529 152.683 97.159 TO
24 576 237.621 143.109 TO
25 625 377.786 241.390 TO
26 676 570.635 363.598 TO
27 729 1314.026 978.565 TO
28 784 2874.723 1649.362 TO

trend indicates that SAT-2’s performance gains could be even more pronounced for

larger instances, validating its potential as a practical and scalable approach.
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Figure 4.6: Mean runtimes for SAT-1 and SAT-2 across grid graphs of size n × n,
where n ∈ [20, 28].

4.3 Evaluation Conclusion

Empirical evaluations were done on the North dataset and synthetic (grid) graphs.

SAT methods outperformed CP by an order of magnitude. When it comes to the

difference between SAT approaches, SAT-2 on average outperformed SAT-1, with

around 65% of instances showing measurable improvement (over 20%) over SAT-1,

and around 5% of instances showing a 16× improvement or more. Notably, a larger

proportion (85%) of UNSAT instances benefited from significant runtime speedup

(between 20% and 1600%). Less than 1% of instances (almost exclusively SAT ones)

showed slight slowdown when switching from SAT-1 to SAT-2, but it was not signif-

icant.

Through a combination of empirical observations and statistical analysis, we iden-

tified two distinct categories of graph instances—“easy” and “hard.” This classifica-

tion led to a further insight: the runtime behavior of both SAT encodings appears

to correlate with graph density. In particular, hard instances tend to cluster in the

1 ≤ m/n ≤ 2 range, where both SAT-1 and SAT-2 show peak runtimes. Moreover, it

is within this range that SAT-2 achieves the most significant performance gains over

SAT-1.

These findings motivate a deeper investigation into how embeddability correlates
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with graph density (Chapter 6: Analyzing Upward Book Embeddability of DAGs). To

conduct this analysis without structural bias, the North dataset is no longer sufficient.

Instead, we propose and evaluate new DAG generation strategies in the following

chapters to produce a more representative and unbiased sampling of the DAG space.



Chapter 5

Generating DAGs

In the previous chapter, we hypothesized that the North graph dataset may be biased

toward certain structural families. Therefore, to formally and conclusively investi-

gate the relationship between graph structure and problem hardness (solver runtime

growth), we must shift toward generating our own test cases—ones that are represen-

tative of the entire DAG space without introducing bias. This chapter presents two

approaches we used to achieve that.

The first approach is brute-force enumeration of all possible DAGs for a given

number of nodes. This method is exhaustive and, by design, produces an unbiased

dataset. However, it is limited by two related factors: the exponential storage space

required and the exponential time needed to process all instances.

To overcome these limitations, we adopt a hybrid sampling strategy that gen-

erates diverse and representative DAGs. This method combines a uniform sampling

algorithm proposed by Kuipers–Moffa [33] with a simpler, more easily controlled algo-

rithm of our own. Together, they allow us to produce a sufficient number of samples

for any given node count, avoiding heavily undersampled regions that would arise

with a purely uniform method.

5.1 Enumerating All Small DAGs

The algorithm which generates all DAGs for n nodes is presented in Algorithm 1. The

algorithm initializes a set of nodes V = {0, 1, . . . , n − 1} and the set of all possible

35
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directed edges Eall between distinct nodes. It then iterates over all subsets of Eall,

constructs a graph for each, checks if it is a DAG (i.e., has no cycles) and collects

valid edge sets in a list which is returned. Recognizing that the number of DAGs

grows exponentially with n, the algorithm iterates over all subsets of Eall, constructs

a graph for each subset, and verifies if it is a DAG (i.e. acyclic) using a check such

as topological sort. Valid edge sets are returned.

Given the exponential number of edge subsets—reflecting the inherent complexity

of enumerating all DAGs—the algorithm adopts a brute-force approach. Each DAG

verification requires O(n2) time, resulting in exponential time complexity overall.

Additionally, storing all DAGs demands exponential space, limiting practical use to

n ≤ 10. Nonetheless, our implementation emphasizes simplicity and completeness.

By exhaustively exploring edge combinations, it ensures every DAG is generated,

making it well-suited for small n or theoretical analysis where clarity and correctness

outweigh efficiency considerations.

Algorithm 1 Generate all DAGs with n nodes

1: Initialization : dags← [ ];V ← {0, 1, . . . , n−1};Eall ← {(u, v) | u ̸= v, u, v ∈ V }
2: for all edge subsets E ′ of Eall do
3: G← CreateGraph(V,E ′)
4: If (IsDAG(G)) dags← dags ∪ {E ′}
5: end for
6: return dags

According to the On-Line Encyclopedia of Integer Sequences (A003024 [41]), the

total number of DAGs is 25 for n = 3, 543 for n = 4, 29,281 for n = 5, and 3,781,503

for n = 6. In fact, we employ Algorithm 1 to determine their detailed breakdown

across different edge counts (m), with the results presented in Tables 5.1, 5.2 and 5.3.

Table 5.1: Number of DAGs with (a) n = 3, and (b) n = 4 nodes, for different edge
counts

(a) n = 3

Edges 0 1 2 3
# of DAGs 1 6 12 6

(b) n = 4

Edges 0 1 2 3 4 5 6
# of DAGs 1 12 60 152 186 108 24
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Table 5.2: Number of DAGs with n = 5 nodes for different edge counts

Edges 0 1 2 3 4 5 6 7 8 9 10
# of DAGs 1 20 180 940 3050 6180 7960 6540 3330 960 120

Table 5.3: Number of DAGs with n = 6 nodes for different edge counts

Edges 0 1 2 3 4 5 6 7

# of DAGs 1 30 420 3600 20790 83952 240480 496680

Edges 8 9 10 11 12 13 14 15

# of DAGs 750810 838130 691020 416160 178230 51480 9000 720

5.2 Generating Random DAGs via Sampling

When n is large, generating and analyzing all possible DAGs becomes computation-

ally infeasible due to the exponential growth of the DAG instance space. Instead,

we sample a subset of DAGs to study their properties, making the approach com-

putationally manageable. It is crucial, however, to ensure that the sampled subset

is representative, as an inappropriate sampling method can skew results and mis-

represent the underlying properties of the DAG population. For example, a biased

sampling method might over-represent certain structures—such as those with more

valid topological orderings—leading to inaccurate conclusions about phenomena like

satisfiability transitions.

To balance computational efficiency and statistical precision, we adopt a two-tiered

strategy that integrates existing methods with our own adaptations into a cohesive

framework. First, we propose Algorithm 2, an efficient, approximate topological-

order-based algorithm that generates a broad set of DAGs across all edge counts

m (ranging from 0 to n(n − 1)/2) for each n. We then complement this with tar-

geted uniform sampling in the critical phase-transition region using the Kuipers–Moffa

method [33]. The combination of approximate sampling for broad coverage and uni-

form sampling for key areas ensures both efficiency and accuracy in our experimental

analysis.

The topological-order method, detailed in Algorithm 2, generates DAGs by shuf-

fling node orders and uniformly selecting m edges from all possible forward edges,

producing 100 DAGs per m (or 30 for high n and k). Meanwhile, the Kuipers–Moffa
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Algorithm 2 Generate a random DAG of n nodes and m edges

Require: n, m
Ensure: A list of m edges forming a random DAG
1: order ← Shuffle([0, 1, . . . , n− 1]) ▷ Random permutation of nodes
2: all edges← {(order[i], order[j]) | 0 ≤ i < j < n} ▷ All forward edges
3: chosen edges← UniformSampling(all edges,m) ▷ Select m edges uniformly
4: return Sort(chosen edges) ▷ Return sorted edge list

method, implemented via the unifDAG R package [30], ensures uniform sampling

by recursively constructing DAGs through outpoint removal and reverse connection

sampling. We specifically use the approximate method for broad exploration across

all m, reducing to 30 samples for computationally intensive cases (n = 20, k ≥ 6),

and validate its empirical adequacy against uniform sampling for selected n. We

switch to Kuipers–Moffa sampling in the phase-transition region, where satisfiability

is about 50%. In this study, we used this sampling approach to generate DAGs for

n ∈ {7, 8, . . . , 20}, storing them as edge lists for analysis.



Chapter 6

Analyzing Upward Book

Embeddability of DAGs

One well-known phenomenon in NP-complete problems is the presence of a phase

transition—a sharp threshold where the probability of a property being satisfied drops

suddenly. Phase transitions are well-documented in graph theory and constraint

satisfaction problems, such as the connectivity threshold in random graphs [20], the k-

colorability threshold in graph coloring [2], and the satisfiability threshold in random

k-SAT problems [11, 39].

We hypothesize that embeddability is influenced by graph density, with fewer

edges leading to fewer potential edge crossings and thus a higher likelihood of finding

a valid embedding. This suggests the presence of a phase transition, where embed-

dability drops sharply as density increases.

As an initial validation, we examined the North graph dataset for k = 2 to test

whether this phase transition behavior appears. The results supported the hypoth-

esis, motivating a broader and more systematic analysis across a larger and more

representative space of DAGs.

Guided by this preliminary result, we formed two questions:

• How does increasing graph density affect kUBE embeddability?

• How does increasing the number of pages affect kUBE embeddability?

To address these questions, we adopt a systematic approach starting with small

39
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values of n, where the number of possible DAGs is manageable. For these small

DAGs, we enumerate all instances using affordable computational resources. This

allows us to analyze embeddability patterns exhaustively and derive initial insights

into the effects of varying m and k.

Building on these findings, we extend our study to larger DAGs, where enumer-

ation becomes impractical but one can sample representatively. We investigate how

the trends observed in smaller cases scale with increasing n. Our analysis combines

empirical observations with theoretical considerations, shedding light on the behavior

of kUBE embeddability as graph size and structure evolve.

6.1 Embeddability of North Graphs

For each North Graph DAG, we compute the edge-to-node ratiom/n. We next encode

each graph as a SAT instance using SAT-2 and solve it using Kissat. After solving, we

aggregate the data by computing the percentage of graphs that are embeddable in two

pages for binned values of m/n. This provides an empirical probability distribution

of 2UBE embeddability as a function of density m/n.
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Figure 6.1: On North dataset: (a) Probability of satisfiability of 2UBE vs. m/n
(dotted line marks the 50% satisfiable point). (b) Mean SAT-2 runtime vs. m/n.

As shown in Figure 6.1a, a phase transition is clearly observed in the 2UBE

embeddability as a function of graph density (m/n). The transition occurs roughly

in the range 1.2 ≤ m/n ≤ 1.5, where the embeddability probability drops from 0.769
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at m/n ∈ (1.2, 1.3] to 0.370 at m/n ∈ (1.4, 1.5]. Beyond m/n ≈ 1.5, the probability

of embeddability sharply approaches zero, reaching 0% at m/n > 1.9.

In Figure 6.1b, we plot the mean SAT-2 runtime against the edge-to-node ratio

for m/n ∈ [1, 2.5], using bin width of 0.1. Although values of m/n extend up to 6,

for all instances with m/n > 2 average solve time remains below 50ms. In contrast,

there is a significant runtime spike around m/n ≈ 1.55, which coincides with the drop

of probability in Figure 6.1a.

These observations suggest a phase transition threshold near m/n ≈ 1.5 for 2UBE,

but a broader investigation across the full DAG space is needed to draw a stronger

conclusion.

6.2 Embeddability of Small DAGs

In small cases (n ≤ 6), all possible DAGs can be exhaustively enumerated. This

allows us to conclusively investigate the upward book embeddability of the complete

DAG space for these values of n. This examination provides significant insight and

valuable perspective on the broader context of larger instances.

We assess the embeddability of all enumerated DAGs for n = 4, 5, 6 and different

values of k using the SAT-1 approach. For each n, we generate all possible DAGs with

Algorithm 1, categorize them by edge count m (as shown in Tables 5.1, 5.2, and 5.3),

and test each instance for k-page upward book embeddability with k = 1 and k = 2.

The SAT-1 encoding translates a kUBE problem into a Boolean satisfiability problem,

which is then solved using the Kissat solver. For each combination of n, m, and k, we

compute the percentage of satisfiable DAGs by dividing the number of SAT outcomes

(indicating embeddability) by the total number of DAGs at that m, providing the

data points to plot the curves in Figure 6.2.

Figure 6.2 illustrates the percentage of DAGs that can be satisfied using k pages

as a function of the total number of edges m, for varying numbers of nodes n. The

x-axis represents m, ranging from 0 to 15, while the y-axis shows the percentage of

satisfiable DAGs, from 0% to 100%. Note that when n = 6, the maximal possible m

value is 15; when n = 5, the maximal m value is 10; and when n = 4, the maximal

m is 6. The data is categorized by n and k: filled circles denote n = 6, crosses
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denote n = 5, and triangles denote n = 4, with blue representing k = 1 and orange

representing k = 2.

For all configurations, we have the following observations:

1. The percentage starts at 100% when m = 0, as a DAG with no edges is trivially

embeddable. As m increases, the percentage decreases steadily and smoothly,

reflecting the growing complexity of the DAG. For any specific curve with a fixed

n, this indicates that embeddability decreases as the graph density (defined as

m/n) increases.

2. For a fixed n, the percentage of satisfiable DAGs is consistently higher for k = 2

(orange) than for k = 1 (blue). For instance, the solid orange line (n = 6, k = 2)

remains above the solid blue line (n = 6, k = 1) across all m, indicating that

using two pages provides greater flexibility to satisfy the DAG.

3. When n is fixed and k is repeatedly increased (i.e., the total number of pages

allowed for the embedding), there exists a threshold k value at which all DAGs

of size n are embeddable. For small DAGs (where n = 4, 5, 6), these threshold

k values are obtained using the SAT-1 encoding and the Kissat SAT solver, and

are presented in Table 6.1.

Table 6.1: Minimal number of pages k required for all size-n DAGs to be embeddable
(n = 4, 5, 6).

DAG size (n) 4 5 6
Minimal number of pages required (k) 2 3 3

The table explains why there are only five curves in Figure 6.2. In addition, we

also manually proved that when k ≥ 3, all n = 6 DAGs are embeddable in the

following theorem.

Theorem 6.1. All n = 6 DAGs can be upward book-embedded using 3 pages.

Proof. We first note that all DAGs can be topologically sorted. That is, given a DAG

G, the nodes in G can be arranged from left to right, and all edges in G can be

arranged to point from left to right. In Figure 2.1, for example, the left subfigure
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Figure 6.2: Percentage of satisfiable DAGs as a function of the number of edges m,
for different numbers of nodes n and pages k. Filled circles represent n = 6, crosses
represent n = 5, and triangles represent n = 4. Blue denotes k = 1, and orange
denotes k = 2.

shows a DAG, and the right subfigure shows the same but topologically sorted graph,

with vertices ordered from v0 to v5.

A greedy approach that works for almost all cases: We present an algorithm

where all edges leaving v0 are placed on the first page (denoted as the black page),

all edges leaving v1 go to the blue page, and all edges leaving v2 are placed on the

yellow page. The edge from v4 to v5 can be assigned to any of the three pages without

crossing any existing edges on that page.

One exception: The only potential issue is the edge from v3 to v5, which, if placed

on any of the three pages, may cross with existing edges. However, for complete cases

(where each node has an edge to every node to its right), we are able to find a 3-

upward book embedding, as shown in the right subfigure of Figure 2.1. The edge of

any n = 6 DAG contains fewer edges than the “maximal DAG”, so the edge from v3

to v5 cannot cause any issues for other DAGs either.

We conclude that all n = 6 DAGs can be upward book-embedded using three

pages.

6.3 Bounds on Minimal k for Embeddability

Theorem 6.1 can be utilized to establish general cases, as shown below in Theorem

6.2. Specifically in the theorem, we prove an upper bound on the minimal number of
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pages required to upward-embed a DAG with n vertices.

Theorem 6.2. All DAGs of size n ≥ 6 can be upward book-embedded using (n − 3)

pages.

Proof. We employ mathematical induction for the proof on the number n.

Base Case: The base case, where n = 6, is established in Theorem 6.1, ensuring

that any DAG with 6 vertices can be upward book embedded using 6− 3 = 3 pages.

Induction Step: Let us assume that for some k ≥ 6, any DAG with k vertices

can be upward book embedded using k − 3 pages, and consider a DAG G with k + 1

vertices. We must show thatG can be upward book embedded using: (k+1)−3 = k−2
pages.

Since G is a DAG, it has at least one sink vertex v (a vertex with out-degree

0). Define G′ = G − {v}, obtained by removing v and all edges incident to it from

G. Thus, G′ has k vertices. By the induction hypothesis, G′ admits an upward book

embedding with spine order u1, u2, . . . , uk and edges partitioned into k−3 pages, each

containing non-crossing upward edges.

Construct an embedding for G by appending v to the spine: u1, u2, . . . , uk, v. This

ordering preserves topological consistency, as v has no outgoing edges, and for any

edge ui → v, ui precedes v on the spine. Assign all edges incident to v, of the form

ui → v, to a single new page. For any two edges ui → v and uj → v with i < j, the

spine order ui < uj < v ensures their upward arcs converge to v without crossing.

The embedding of G thus uses k − 3 pages for the edges of G′, which remain

non-crossing, plus one additional page for all edges ui → v, also non-crossing. Total

pages: (k − 3) + 1 = k − 2. Hence, G is upward book embedded in k − 2 pages, and

the statement holds for n = k + 1.

By induction, starting from n = 6 and extending to all n > 6, every DAG with n

vertices can be upward book embedded using n− 3 pages.

Note that the statement does not hold as n decreases below the base case. For

instance, not all DAGs with n = 5 vertices can be upward book embedded in 5−3 = 2

pages, as demonstrated in Figure 6.2.

Subsequently, we explore the lower bound on the minimal number of pages re-

quired for upward book embedding. For each n from 2 to 20, we select the maximal
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DAG (i.e., a DAG of size n with the maximum possible edges) and incrementally

reduce the allowed number of pages, using a SAT solver to test embeddability at each

page count. Accordingly, we identify the lower bound on the minimal pages necessary

for each n. Experiments are conducted with increasing n values up to 20, and the

resulting lower bounds are reported in Table 6.2.

Table 6.2: Lower bound on pages required for upward book embedding of DAGs with
n vertices.

n 2-3 4 5-6 7-8 9-10 11-12 13-14 15-16 17-18 19-20
number of pages 1 2 3 4 5 6 7 8 9 10

From the initial values of n, a pattern emerges suggesting that the lower bound

on the minimal number of pages required to embed a DAG with n vertices is ⌈n/2⌉,
for all n ≥ 4. However, whether this pattern holds has not yet been formally proved

or disproved. We therefore propose the following conjecture:

Conjecture 6.3. For all n ≥ 4, to guarantee the upward book embeddability of a

DAG with n vertices, ⌈n/2⌉ pages are required.

A Parallel Between BE and kUBE: Our investigation suggests a possible

alignment in the page requirements of the classical book embedding (BE) problem

for undirected graphs and the upward book embedding (kUBE) problem for directed

acyclic graphs (DAGs). It is a well-established result that any undirected graph with

n vertices has book thickness at most ⌈n/2⌉, with equality for complete graphs. In

our empirical analysis of kUBE instances, we observe that the same upper bound

may suffice for embedding all DAGs of size n. Although kUBE imposes stricter

conditions—most notably the requirement that all edges respect a topological order-

ing—the number of pages required does not appear to increase beyond that of the

undirected case, at least for the range of n we considered.

In conclusion, this section investigates the number of pages required to embed any

DAG with n vertices. We proved that, for all n ≥ 6, this number is at most n − 3,

while conjecturing that it is at least ⌈n/2⌉ for all n ≥ 4.
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6.4 Embeddability of Random DAGs

When n only increases slightly, enumerating all DAGs quickly becomes impractical.

For instance, when n = 10, the total number of DAGs is approximately 4.18 × 1018

(A003024 [41]). To explore the embeddability properties of larger DAGs, we must

rely on the sampling technique introduced in the previous chapter. We used this

method to obtain 4,600 DAGs with n = 10, 10,600 with n = 15, and 19,100 with

n = 20, the latter of which was downsampled to 5,730 instances for k ≥ 6 to reduce

total execution time.

We then benchmarked SAT solver runtimes across increasing values of k. The

experimental setup covered the following configurations, with the number of edges m

ranging from 0 to its maximum in all cases: (a) n = 10, with k = 2, 3, 4; (b) n = 15,

with k = 2 to 7; and (c) n = 20, with k = 2 to 7.

For n = 20, the minimum number of pages required to embed all DAGs is 10

(provided that Conjecture 6.3 is valid). Thus, satisfiability curves with respect to

edge density could, in principle, be computed up to k = 9. However, due to the

prohibitively high computational cost at these values, results for k = 8 and 9 were

not included in the current paper.

For each value of n, we analyzed how increasing the edge count m, and thus the

graph density m/n, impacts both the embeddability of DAGs in kUBE and the run-

time of the SAT solver. Results are presented in Figure 6.3, where each subfigure

corresponds to a fixed n and consists of two aligned plots: the top shows the satisfi-

ability rate as a function of normalized edge density m/n, and the bottom shows the

mean run time of the SAT solver. In both plots, the x-axis is divided into bins of

width 0.2, and the mean is calculated per bin.

Recall that (Section 6.2) when DAGs are small and full enumeration was feasible,

we identified two key patterns: 1) embeddability starts at 100% with m = 0, dropping

smoothly as m increases due to the increasing density of the graph (m/n), and 2)

higher k values, such as k = 2 versus k = 1, consistently improve embeddability by

offering greater flexibility. Interestingly, these patterns hold in our experiments with

sampled larger DAGs at n = 10, 15, and 20, where we observe a comparable gradual

decline in embeddability as edge density grows, alongside a significant improvement

in embedding success with larger k values, closely mirroring the behavior of their
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Figure 6.3: Embeddability and computational cost for sampled DAGs across n = 10,
15, and 20. Each subfigure consists of: (Top) Fraction of embeddable DAGs versus
graph density m/n for varying k. (Bottom) Mean computation time versus graph
density m/n. Vertical dotted lines mark the 50% embeddability threshold on both
subplots.
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smaller, fully enumerated counterparts.

The bottom plots of the three subfigures, which depict mean computation time,

exhibit a consistent pattern across all configurations of n and k:

1. For each (n, k) combination, the peak runtime is aligned with the 50% em-

beddability threshold (indicated by the vertical dotted line). This suggests that

computational complexity is maximized when the proportion of SAT to UNSAT

instances is approximately balanced.

2. For larger values of k, the peak runtime increases substantially compared to

smaller k. As the y-axis uses a logarithmic scale, we can observe that the peak

runtime for k is typically one order of magnitude higher than that for k − 1.

3. Prior to the peak, the runtime differences across k values are relatively small.

Notably, there is consistently a range of m/n values where higher k instances

are solved faster than those with lower k. This range tends to occur near the

peak runtime for the lower k, likely because at those m/n values, the higher k

instances are nearly always embeddable—possibly even trivially so.

4. After the peak, as m/n continues to increase, instances become predominantly

non-embeddable. In this regime, higher k instances consistently take longer

to solve. This is likely due to the increased number of SAT variables and

constraints introduced at higher k, which makes proving unsatisfiability more

computationally demanding.

6.5 Phase Transition

We previously observed phase transition behavior and runtime peaks for individual

(n, k) pairs. To study how these transitions behave across different graph sizes, we

combined sampled DAGs with n between 7 and 20, excluding smaller n due to the

high relative variability of runtimes caused by their extremely short execution times,

which made precise measurement infeasible. This aggregation resulted in a dataset

of 45,000 DAGs, enabling us to examine whether embeddability exhibits a sharp

threshold that is largely independent of n.
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Analyzing this combined dataset, we observe that embeddability drops abruptly

from nearly 100% to near 0% as the edge density m/n crosses a critical threshold.

We characterize this behavior by using m/n as the control parameter and plotting

embeddability curves across varying k. These transitions are clearly visible in Fig-

ures 6.4 (a–f), and corresponding peaks in solver runtime are observed in Figures 6.5

(a–f), particularly for k ≥ 2.

0 1 2 3 4 5 6 7 8 9
m/n

0

25

50

75

100

sa
tis

fia
bl

e 
(%

) 50% (m/n = 0.865)

(a) k = 1

0 1 2 3 4 5 6 7 8 9
m/n

0

25

50

75

100

sa
tis

fia
bl

e 
(%

) 50% (m/n = 1.467)

(b) k = 2

0 1 2 3 4 5 6 7 8 9
m/n

0

25

50

75

100

sa
tis

fia
bl

e 
(%

) 50% (m/n = 2.304)

(c) k = 3

0 1 2 3 4 5 6 7 8 9
m/n

0

25

50

75

100
sa

tis
fia

bl
e 

(%
) 50% (m/n = 3.075)

(d) k = 4

0 1 2 3 4 5 6 7 8 9
m/n

0

25

50

75

100

sa
tis

fia
bl

e 
(%

) 50% (m/n = 3.930)

(e) k = 5

0 1 2 3 4 5 6 7 8 9
m/n

0

25

50

75

100

sa
tis

fia
bl

e 
(%

) 50% (m/n = 5.098)

(f) k = 6

Figure 6.4: Percentage of DAGs embeddable in a k-page upward book embedding
as a function of graph density (m/n). Vertical, red and dashed lines mark the 50%
embeddability thresholds.

Figure 6.4 in particular shows the percentage of embeddable DAGs decreasing

rapidly at critical m/n values: 0.865 for k = 1, 1.467 for k = 2, 2.304 for k = 3, 3.075

for k = 4, 3.930 for k = 5, and 5.098 for k = 6, as marked by the 50% embeddability

thresholds. These thresholds reveal a clear relationship: the critical m/n at which the

phase transition occurs increases near-linearly with k, suggesting that each additional



6.5. PHASE TRANSITION 50

page allows the DAG to sustain a higher density before embeddability collapses, a

trend we explore further to quantify its implications across varying n.

Figure 6.5 illustrates runtime behavior across k = 1 to 6 in subfigures (a–f), where

each subfigure employs a scatter plot to depict runtime (in seconds, on a logarithmic

scale) versus m/n for DAGs with n = 7 to 20, using distinct colors to differentiate

node sizes and highlight trends across graph scales. For k = 2 to 6, the scatter plots

reveal a pronounced peak in runtime that aligns closely with the critical m/n values

from Figure 4—1.467 for k = 2, 2.304 for k = 3, 3.075 for k = 4, 3.930 for k = 5,

and 5.098 for k = 6—where the phase transition occurs, underscoring the solver’s

peak complexity during the embeddability shift. Notably, the right side of each peak

exhibits higher runtimes, as the increasing m/n corresponds to a larger number of

edges in the graph, thereby requiring more time to verify embeddability.

The runtime behavior for k = 1 in Figure 6.5 differs markedly from cases where k ≥
2, due to differences in computational complexity. For k ≥ 2, the NP-completeness

of kUBE leads to runtime peaks at the phase transition (e.g., m/n = 1.467 for k = 2,

increasing to 5.098 for k = 6), as shown in subfigures (b–f). In contrast, for k = 1,

its polynomial-time solvability results in a gradual runtime increase without a peak

at m/n = 0.865 in subfigure (a). This contrast underscores that when only one page

is involved, a simpler decision process suffices, avoiding the exponential complexity

spike that arises with multiple pages.

This behavior mirrors the distinction between 2SAT and 3SAT. While 3SAT is NP-

complete [31] and exhibits a pronounced computational peak near its phase transition

[10, 39], 2SAT is solvable in linear time [32, 21] (e.g., via the implication graph

and strongly connected components). As the clause-to-variable ratio in 2SAT grows,

contradictions emerge more quickly, allowing for early solver termination. The lack

of a runtime peak for the k = 1 case similarly reflects its polynomial solvability:

contradictions or valid embeddings become apparent and are resolved efficiently in

denser instances.
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Figure 6.5: Run-time versus m/n for k ∈ {1, 2, . . . , 6}. Each subplot presents a
scatter plot of all combined instances for a fixed k, with points colored according to
the value of n. The black line denotes the mean run-time per bin of m/n, and the
vertical dotted line indicates the 50% embedding threshold.
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6.6 Modeling the Phase Transition Threshold

While the previous section identified approximate phase transition points for each

fixed k by aggregating across DAG sizes, we now model the threshold more precisely

as a function of both n and k, capturing how graph size interacts with flexibility in

page count.

To help us identify patterns, we plot the exact 50% embeddability thresholds for

each pair of n and k in Figure 6.6. A clear trend can be observed: the threshold is

consistently higher for larger k values, and it decreases gradually as n increases.
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Figure 6.6: Values of m/n at 50% embeddability threshold across various DAG sizes
n and number of pages k.

Inspired by the use of power-law scaling to model phase transitions in physics [19],

we attempt to fit the data using the following model:

m

n
= C · kβ · nγ (6.1)

After fitting the model using nonlinear least squares regression, we obtain the

following values for C, β, and γ:

m

n
≈ 1.5 · k1.26 · n−0.39 (6.2)
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To measure the effectiveness of our model in predicting observed outcomes, we

calculate the coefficient of determination (R2) [16]. The model given in Equation 6.2

achieves a R2 of 0.993, indicating that it explains 99.3% of the variance in threshold

values. The quality of the fit can be observed in Figure 6.7.
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Figure 6.7: Markers represent m/n embeddability thresholds from empirical analysis.
Lines show predicted values from the fitted model presented in Equation 6.2.



Chapter 7

Conclusion

This thesis addressed the k-Page Upward Book Embedding (kUBE) problem, which

is a variant of the well-studied book embedding problem applied to directed graphs

and requiring a topological ordering of nodes. We proposed, implemented, and em-

pirically evaluated practical solution methods based on Boolean Satisfiability (SAT)

and Constraint Programming (CP). The work was motivated by both the theoretical

interest in upward book embeddings and the lack of general-purpose techniques ca-

pable of handling arbitrary DAGs. This is an important gap given the prevalence of

DAGs in fields such as scheduling, data flow analysis, and network visualization.

We presented three encoding strategies:

• SAT-1, an adaptation of an existing kBE SAT encoding to the upward case;

• SAT-2, a more compact SAT encoding tailored specifically to 2UBE;

• A straightforward CP model utilizing integer variables for representing vertex

positioning.

All approaches were formally proven sound and complete, ensuring that every

SAT or UNSAT result corresponds to the embeddability or non-embeddability of the

original graph.

54
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7.1 Empirical Evaluation Results

The empirical evaluation focused on two datasets: the North dataset and synthetically

generated grid graphs. Across both benchmarks, SAT-based methods consistently

outperformed the CP-based approach by a substantial margin. This highlights that

SAT solvers, particularly with the refined SAT-2 encoding, are better suited for the

kUBE problem under the current experimental setup.

Among the SAT approaches, SAT-2 demonstrated a clear advantage over SAT-1.

Instances that were difficult to solve for SAT-1 were observed to cluster around a

specific range of graph densities. A closer examination revealed that instance hard-

ness correlates strongly with edge density: for two-page upward book embedding,

instances with an edge-to-vertex ratio between one and two, and particularly around

1.5, consistently posed the greatest computational challenge. This density range was

later identified as corresponding to the phase transition region, where the probabil-

ity of satisfiability is near fifty percent and computational difficulty peaks. Notably,

the majority of instances that exhibited significant performance gains under SAT-2

fall within this region. These observations suggest that improvements in encoding

efficiency yield their greatest benefits near the phase transition, where instances are

significantly harder to solve, while instances far from this threshold show minimal

impact from such optimizations.

7.2 Embeddability Analysis Results

Our analysis demonstrates a strong relationship between graph density and embed-

dability in k-page upward book embeddings, supported by exhaustive enumeration,

random sampling, and evaluation of real-world DAGs.

Embeddability becomes less likely as edge density (m/n) increases and as the

number of vertices n grows. In contrast, increasing the number of pages k improves

embeddability substantially. In other words, k is positively correlated with embed-

dability, while m, n, and m/n are negatively correlated. This relationship holds

consistently across all datasets and experimental settings.

Based on these trends, we derived a power-law model fitted to the empirical data,

which predicts the critical edge density at which the phase transition occurs. In
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other words, it estimates the m/n value where approximately half of all DAGs are

embeddable and half are not. The model achieved an R2 of 0.993 when fitted to the

observed data, indicating an excellent match between the predicted and empirical

phase transition thresholds. It provides a practical tool for approximating embed-

dability thresholds without requiring full enumeration or exhaustive sampling.

An additional insight arises when examining solver runtimes. For k ≥ 2, runtimes

exhibit a clear peak near the phase transition. This indicates increased computational

difficulty at critical densities. However, for k = 1, no such runtime peak appears.

Runtimes increase gradually with density instead. This distinction mirrors the be-

havior observed in 2SAT and 3SAT. 2SAT exhibits a satisfiability phase transition

but no computational hardness peak, consistent with its polynomial-time solvability.

3SAT exhibits both a phase transition and a hardness peak, consistent with its NP-

completeness. This parallel suggests that observing whether a runtime peak occurs

near the phase transition could serve as a heuristic for predicting whether a problem

is in P or NP. However, it does not constitute a formal proof of membership in either

class.

Finally, theoretical analysis complements these empirical findings. We proved an

upper bound of k ≤ n − 3 for guaranteeing upward book embeddability. Empirical

results suggest that ⌈n/2⌉ pages suffice for all tested DAGs up to n = 20. Although

upward book embeddings impose stricter conditions compared to classical book em-

beddings of undirected graphs, our findings indicate that the number of required pages

remains comparable, at least within the tested range. This motivates Conjecture 9,

proposing that the minimal number of pages needed for upward book embeddability

grows predictably with the number of vertices.

7.3 Future Work

Several promising directions remain for future research. While this thesis focused on

developing and evaluating SAT and CP approaches for 2-page upward book embed-

ding, many natural extensions and open questions arise. Future work could explore

scaling the empirical analysis and investigating unresolved complexity classifications.

Each of these directions offers opportunities to deepen understanding of the problem
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space and to advance the study of upward book embeddings.

Analysis on Scaled-Up Dataset

Extending the experiments to larger DAGs (e.g., n > 20) would allow a more thor-

ough validation of the proposed phase transition model and provide deeper insights

into solver performance at scale. With additional data for new (n, k) combinations,

we could test whether the observed power-law relationship for the phase transition

threshold continues to hold, and whether the phase transition behavior maintains the

same progression relative to increasing k and n, or exhibits new phenomena. We

expect the trends to persist, but empirical validation is necessary to confirm these

hypotheses.

Scaling up would also allow us to investigate solver behavior under more extreme

conditions. In particular, it remains an open question whether the performance gap

between SAT-2 and SAT-1 continues to widen as n increases. Larger instances may

reveal new solver bottlenecks or shifts in relative efficiency that are not visible at the

scales studied so far.

In the current work, this direction was not pursued due to practical limitations.

Available hardware (an average laptop) and limited project time made it infeasible

to conduct large-scale experiments. To fully pursue this direction, future work could

leverage high-performance servers, parallelize the processing of different instances,

and extend the sampling over a longer period. The same sampling strategy used here

could be applied to larger spaces.

Tightening Theoretical Bounds

In this thesis, we established a general upper bound on the number of pages required

for an upward book embedding (kUBE) of a DAG with n vertices: k ≤ n− 3 for all

n ≥ 6. We also proposed Conjecture 6.3, which suggests that k ≥ ⌈n/2⌉ pages are

necessary for upward book embeddability for all n ≥ 4.

This creates a gap between the proven upper bound and the conjectured lower

bound. Tightening these bounds, either by improving the current upper bound or by

proving Conjecture 6.3, remains a key theoretical challenge.
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In the context of standard book embeddings (kBE) for undirected graphs, it is

known that the book thickness of the complete graph Kn is exactly ⌈n/2⌉. This sharp
result motivates the search for similarly tight bounds in the upward setting. Resolving

the general bounds on the page number would represent a significant theoretical

advancement.

Runtime as Complexity Indicator

The observed runtime behavior, specifically the absence of a peak for k = 1 and the

presence of sharp peaks for k ≥ 2, suggests that empirical runtime profiles could

serve as indicators of computational hardness. This observation raises the possibility

of using runtime analysis to assist in classifying the complexity of a problem without

a complete theoretical understanding.

In particular, partitioned variants such as 2UPBE and 3UMPBE, whose com-

putational complexity remains unresolved, could be investigated through their phase

transition behavior. However, the broader idea is not limited to book embedding prob-

lems. It could extend to other combinatorial and graph problems, where the presence

of a sharp runtime peak near a phase transition may indicate NP-completeness, while

a smooth transition may suggest polynomial-time solvability.

This direction was not pursued in the present work because studying partitioned

variants would require different encoding strategies and was beyond the scope of this

thesis. Nonetheless, using empirical runtime behavior to assist in empirical complexity

classification remains an interesting and promising research direction. It may aid

theoretical efforts by providing early evidence of problem complexity, guiding where

to attempt formal classifications, and contributing to a deeper understanding of phase

transitions in combinatorial optimization.
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Appendix A

Supplementary Code

This appendix presents the core source code used to encode and solve the Upward

Book Embedding problems discussed in this thesis. We provide both SAT and CP

models for completeness and reproducibility.

A.1 SAT-1

The first script implements the SAT-1 model, which encodes general k-Page Upward

Book Embedding instances into CNF formulas. Additionally, it provides a decoding

function to reconstruct the book spine order and page assignments from a satisfying

solver output.

1 from pysat.formula import CNF

2 from functools import cmp_to_key

3

4

5 def get_variables(N, M, P):

6 """

7 Generates Boolean variables for the encoding:

8 - L(i, j): whether vertex i is to the left of vertex j

9 - EP(i, p): whether edge i is assigned to page p

10 - X(i, j): whether edges i and j are assigned to the same

page

11 """
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12 variable_count = 0

13

14 is_left_to = {}

15 for i in range(N):

16 for j in range(i + 1, N):

17 variable_count += 1

18 is_left_to [(i, j)] = variable_count

19 L = lambda i, j: is_left_to [(i, j)] if i < j else -

is_left_to [(j, i)]

20

21 edge_to_page = {}

22 for i in range(M):

23 for p in range(P):

24 variable_count += 1

25 edge_to_page [(i, p)] = variable_count

26 EP = lambda i, p: edge_to_page [(i, p)]

27

28 edges_on_same_page = {}

29 for i in range(M):

30 for j in range(i + 1, M):

31 variable_count += 1

32 edges_on_same_page [(i, j)] = variable_count

33 X = lambda i, j: edges_on_same_page [(i, j)] if i < j else

edges_on_same_page [(j, i)]

34

35 return L, EP, X

36

37

38 def encode_upward_book_embedding(digraph , P):

39 """

40 SAT encodes Upward Book Embedding for P pages.

41 """

42 cnf = CNF()

43 nodes = list(digraph.nodes)
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44 edges = list(digraph.edges())

45 N = len(nodes)

46 M = len(edges)

47

48 node_index = {nodes[i]: i for i in range(N)}

49 L, EP, X = get_variables(N, M, P)

50

51 # Enforce transitivity: if i < j and j < k then i < k

52 for i in range(N):

53 for j in range(N):

54 for k in range(N):

55 if len({i, j, k}) == 3:

56 cnf.append([-L(i, j), -L(j, k), L(i, k)])

57

58 # Enforce topological order: for every edge (u,v), u must

come before v

59 for u, v in edges:

60 i, j = node_index[u], node_index[v]

61 cnf.append ([L(i, j)])

62

63 # Ensure every edge is assigned at least one page

64 for i in range(M):

65 cnf.append ([EP(i, p) for p in range(P)])

66

67 # Define X(i,j): edges i and j share a page if they are

assigned to the same page

68 for i in range(M):

69 for j in range(i + 1, M):

70 for p in range(P):

71 cnf.append ([X(i, j), -EP(i, p), -EP(j, p)])

72

73 # Planarity constraints: prevent crossings on the same

page

74 for a in range(M):
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75 for b in range(a + 1, M):

76 i, j = map(lambda x: node_index[x], edges[a])

77 k, l = map(lambda x: node_index[x], edges[b])

78 if len({i, j, k, l}) == 4:

79 forbidden_orders = [

80 (i, k, j, l), (i, l, j, k),

81 (j, k, i, l), (j, l, i, k),

82 (k, i, l, j), (k, j, l, i),

83 (l, i, k, j), (l, j, k, i)

84 ]

85 for (a1 , a2 , a3 , a4) in forbidden_orders:

86 cnf.append([-X(a, b), -L(a1 , a2), -L(a2 ,

a3), -L(a3 , a4)])

87

88 return cnf

89

90

91 def decode_book_embedding(graph , P, solution):

92 """

93 Decodes SAT solver output into vertex spine order and edge

-to -page assignments.

94 """

95 if not solution:

96 return

97

98 vertices = list(graph.nodes)

99 edges = list(graph.edges)

100 N, M = len(vertices), len(edges)

101

102 L, EP, X = get_variables(N, M, P)

103

104 value_of = {}

105 for var in solution:

106 value_of[abs(var)] = var > 0
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107 value_of[-abs(var)] = var < 0

108

109 # Determine spine order by sorting according to L(i,j)

relations

110 print(’Book spine vertex order:’)

111 vertices.sort(key=cmp_to_key(lambda i, j: -1 if value_of[L

(i, j)] else 1))

112 vertices_str = ’, ’.join(f’v{i}’ for i in vertices)

113 print(vertices_str)

114 print()

115

116 # Determine page assignment for each edge

117 print(’Edge to page assignment:’)

118 by_pages = [[] for _ in range(P)]

119 for i in range(M):

120 assigned_pages = [p for p in range(P) if value_of[EP(i

, p)]]

121 pages_str = ’, ’.join(f’p{p}’ for p in assigned_pages)

122 u, v = edges[i]

123 print(f’e{i} (v{u}, v{v}) - {pages_str}’)

124 if assigned_pages:

125 by_pages[assigned_pages [0]]. append ((u, v))

126

127 return vertices , by_pages

Listing A.1: Python script for SAT-1 encoding and decoding.

A.2 SAT-2

The second script implements the SAT-2 model, focused specifically on encoding 2-

Page Upward Book Embedding instances into CNF.

1 from pysat.formula import CNF

2

3
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4 def get_variables(N):

5 """

6 Generates Boolean variables for the 2-Page Upward Book

Embedding encoding:

7 - L(i, j): whether vertex i is to the left of vertex j

8 - TOP(i): whether edge i is assigned to the top page

9 """

10 variable_count = 0

11

12 is_left_to = {}

13 for i in range(N):

14 for j in range(i + 1, N):

15 variable_count += 1

16 is_left_to [(i, j)] = variable_count

17 L = lambda i, j: is_left_to [(i, j)] if i < j else -

is_left_to [(j, i)]

18

19 # Edge page assignment variables start after L variables

20 TOP = lambda i: variable_count + i + 1

21

22 return L, TOP

23

24

25 def encode_2UBE(digraph):

26 """

27 SAT encodes the 2-Page Upward Book Embedding (2UBE)

problem.

28 Assumes exactly two pages: top and bottom.

29 """

30 cnf = CNF()

31 nodes = list(digraph.nodes)

32 edges = list(digraph.edges())

33 N = len(nodes)

34 M = len(edges)
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35

36 node_index = {nodes[i]: i for i in range(N)}

37 L, TOP = get_variables(N)

38

39 # Enforce transitivity: if i < j and j < k then i < k

40 for i in range(N):

41 for j in range(N):

42 if i == j:

43 continue

44 for k in range(N):

45 if i != k and j != k:

46 cnf.append([-L(i, j), -L(j, k), L(i, k)])

47

48 # Enforce topological order: for every edge (u,v), u must

come before v

49 for u, v in edges:

50 i, j = node_index[u]

51 j = node_index[v]

52 cnf.append ([L(i, j)])

53

54 # Planarity constraints based on page assignments

55 for a in range(M):

56 for b in range(a + 1, M):

57 i, j = map(lambda x: node_index[x], edges[a])

58 k, l = map(lambda x: node_index[x], edges[b])

59

60 if len({i, j, k, l}) == 4: # ensure pairwise

distinct vertices

61 # Crossing when both edges on top page

62 cnf.append([-TOP(a), -TOP(b), -L(i, k), -L(k,

j), -L(j, l)])

63 cnf.append([-TOP(a), -TOP(b), -L(k, i), -L(i,

l), -L(l, j)])

64
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65 # Crossing when both edges on bottom page

66 cnf.append ([TOP(a), TOP(b), -L(i, k), -L(k, j)

, -L(j, l)])

67 cnf.append ([TOP(a), TOP(b), -L(k, i), -L(i, l)

, -L(l, j)])

68

69 # Arbitrarily fix one edge to the top page for symmetry

breaking

70 cnf.append ([TOP(0)])

71

72 return cnf

Listing A.2: Python script for SAT-2 encoding.

A.3 CP

The third script provides a Constraint Programming (CP) model using Google’s OR-

Tools CP-SAT Solver. It encodes 2UBE as a constraint satisfaction problem, using

integer variables to represent vertex positions along the spine instead of boolean

variables for pairwise relative positioning.

1 from ortools.sat.python import cp_model

2

3

4 def solve_2UBE(n, edges):

5 """

6 Solves the 2-Page Upward Book Embedding (2UBE) problem

using Constraint Programming (CP).

7 - Determines a linear spine order of vertices.

8 - Assigns edges to two pages to avoid crossings.

9 """

10 # Create the model

11 model = cp_model.CpModel ()

12 m = len(edges)

13
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14 # Variables:

15 # pos_of_node[i] = position of vertex i along the spine (0

to n-1)

16 pos_of_node = [model.NewIntVar (0, n - 1, f’pos_{i}’) for i

in range(n)]

17 # page_of_edge[i] = 0 (bottom page) or 1 (top page)

18 page_of_edge = [model.NewBoolVar(f’edge_page_{i}’) for i

in range(m)]

19

20 # All vertices must have different spine positions

21 model.AddAllDifferent(pos_of_node)

22

23 # Enforce topological order: u must come before v for each

edge (u,v)

24 for u, v in edges:

25 model.Add(pos_of_node[u] < pos_of_node[v])

26

27 # Planarity constraints: avoid overlaps on same page

28 for i, (u, v) in enumerate(edges):

29 for j, (w, x) in enumerate(edges):

30 if i != j and len({u, v, w, x}) == 4:

31 # Create auxiliary Boolean variables for

overlap conditions

32 overlap1 = model.NewBoolVar(f’overlap1_{u}_{v}

_{w}_{x}’)

33 overlap2 = model.NewBoolVar(f’overlap2_{u}_{v}

_{w}_{x}’)

34

35 # Individual comparisons

36 u_lt_w = model.NewBoolVar(f’u_lt_w_{u}_{w}’)

37 w_lt_v = model.NewBoolVar(f’w_lt_v_{w}_{v}’)

38 v_lt_x = model.NewBoolVar(f’v_lt_x_{v}_{x}’)

39

40 w_lt_u = model.NewBoolVar(f’w_lt_u_{w}_{u}’)
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41 u_lt_x = model.NewBoolVar(f’u_lt_x_{u}_{x}’)

42 x_lt_v = model.NewBoolVar(f’x_lt_v_{x}_{v}’)

43

44 # Define conditions for overlap1: u < w < v <

x

45 model.Add(pos_of_node[u] < pos_of_node[w]).

OnlyEnforceIf(u_lt_w)

46 model.Add(pos_of_node[u] >= pos_of_node[w]).

OnlyEnforceIf(u_lt_w.Not())

47

48 model.Add(pos_of_node[w] < pos_of_node[v]).

OnlyEnforceIf(w_lt_v)

49 model.Add(pos_of_node[w] >= pos_of_node[v]).

OnlyEnforceIf(w_lt_v.Not())

50

51 model.Add(pos_of_node[v] < pos_of_node[x]).

OnlyEnforceIf(v_lt_x)

52 model.Add(pos_of_node[v] >= pos_of_node[x]).

OnlyEnforceIf(v_lt_x.Not())

53

54 model.AddBoolAnd ([u_lt_w , w_lt_v , v_lt_x ]).

OnlyEnforceIf(overlap1)

55 model.AddBoolOr ([ u_lt_w.Not(), w_lt_v.Not(),

v_lt_x.Not()]).OnlyEnforceIf(overlap1.Not()

)

56

57 # Define conditions for overlap2: w < u < x <

v

58 model.Add(pos_of_node[w] < pos_of_node[u]).

OnlyEnforceIf(w_lt_u)

59 model.Add(pos_of_node[w] >= pos_of_node[u]).

OnlyEnforceIf(w_lt_u.Not())

60

61 model.Add(pos_of_node[u] < pos_of_node[x]).
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OnlyEnforceIf(u_lt_x)

62 model.Add(pos_of_node[u] >= pos_of_node[x]).

OnlyEnforceIf(u_lt_x.Not())

63

64 model.Add(pos_of_node[x] < pos_of_node[v]).

OnlyEnforceIf(x_lt_v)

65 model.Add(pos_of_node[x] >= pos_of_node[v]).

OnlyEnforceIf(x_lt_v.Not())

66

67 model.AddBoolAnd ([w_lt_u , u_lt_x , x_lt_v ]).

OnlyEnforceIf(overlap2)

68 model.AddBoolOr ([ w_lt_u.Not(), u_lt_x.Not(),

x_lt_v.Not()]).OnlyEnforceIf(overlap2.Not()

)

69

70 # If two edges are on the same page , they must

not overlap

71 same_page = model.NewBoolVar(f’same_page_{i}_{

j}’)

72 model.Add(page_of_edge[i] == page_of_edge[j]).

OnlyEnforceIf(same_page)

73 model.Add(page_of_edge[i] != page_of_edge[j]).

OnlyEnforceIf(same_page.Not())

74

75 model.AddImplication(same_page , overlap1.Not()

)

76 model.AddImplication(same_page , overlap2.Not()

)

77

78 # Solve the model

79 solver = cp_model.CpSolver ()

80 status = solver.Solve(model)

81

82 # Output results
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83 if status == cp_model.OPTIMAL or status == cp_model.

FEASIBLE:

84 print("Solution found:")

85 # Retrieve and sort nodes by position

86 node_positions = [(i, solver.Value(pos_of_node[i]))

for i in range(n)]

87 node_positions.sort(key=lambda x: x[1])

88 order = [node for node , pos in node_positions]

89

90 return (order , [solver.Value(page) for page in

page_of_edge ])

91 else:

92 print("No solution found.")

Listing A.3: Python script for CP model solving 2UBE.
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