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Abstract

Small object detection remains a persistent challenge in computer vision, especially in safety-

critical applications, such as autonomous driving and aerial surveillance, where objects of interest

often occupy only a few pixels and are easily lost in cluttered scenes. To advance the performance

of small object detection models, this thesis proposes two novel approaches focused on increasing

both accuracy and robustness.

The first approach introduces a semantic segmentation-guided feature fusion framework, where

contextual cues from a segmentation model are integrated into the object detection pipeline. A

lightweight attention mechanism is used to merge semantic and visual features, enhancing the

detection of small objects. The experimental results demonstrate clear improvements in identifying

challenging small targets, proving the effectiveness of cross-task feature integration.

The second approach utilizes feature pyramidal structures to improve multi-scale feature rep-

resentation through a novel dilated strip-wise spatial feature pyramid, which employs dilated strip-

wise depth convolutions. Evaluated on the VisDrone and AI-TOD benchmark datasets, this model

shows significant improvements over the baseline, effectively detecting objects in densely packed

environments. The approach achieves state-of-the-art performance on the AI-TOD dataset.

Together, these approaches offer distinct strategies for overcoming the limitations of the ex-

isting object detection models. The research findings emphasize the importance of both semantic

guidance and spatial feature refinement in enhancing small object detection.
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plicity, efficiency, and ability to mitigate the vanishing gradient problem.

RoI:

Region of Interest

Refers to specific areas within an image that are identified as likely con-

taining objects.
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Acronym & its Full Form Synopsis

RPN:

Region Proposal Network

A lightweight neural network component in Faster R-CNN that predicts

object bounding boxes and their likelihood of containing objects, elimi-

nating the need for external proposal methods like Selective Search.

SGD:

Stochastic Gradient Descent

An iterative optimization algorithm that updates model parameters us-

ing the gradient of the loss function computed on mini-batches of the

training data, balancing computational efficiency and convergence.

VFL:

Varifocal Loss

An asymmetric training objective for dense object detection that adap-

tively reweights the contributions of positive and negative samples dur-

ing optimization. It focuses on high-quality candidate predictions.

QFL:

Quality Focal Loss

A specialized loss function for joint classification and localization qual-

ity estimation in object detection.
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Chapter 1

Introduction

1.1 Thesis Overview

Object detection is a fundamental computer vision task with widespread applications. While

general object detection has achieved remarkable progress in recent years, performance in com-

plex real-world scenarios, particularly in autonomous driving and unmanned aerial vehicle (UAV)

surveillance, remains significantly challenging due to rare object classes and small, densely packed

objects. This has motivated extensive research into specialized techniques for complex scenario

object detection, which forms the primary focus of this thesis. Fig. 1.1 illustrates the thesis’ phased

approach to addressing these gaps, culminating in a novel detection framework optimized for small

objects. Phase 1 demonstrates that adding external features through additional backbones increases

inference time. Phase 2 mitigates this by employing a single-stage anchor-free model that exclu-

sively utilizes backbone-extracted features. Through enhanced feature fusion, resolution preser-

vation, and context modeling, this framework advances small object detection while maintaining

computational efficiency, a critical requirement for scalable vision systems in dynamic environ-

ments.
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Research
Phase

External Feature Fusion to im-
prove Small-Object Detection

A Convolution Block and Feature Fusion
method for better Small-Object Capture

Research
Aim

Research
Outcome

To explore the feasibility
of combining semantic

segmentation features with
object detection features, to

improve small object detection

Thesis Chapter 3, Publication
#1 – 2024 Elsevier RTIP2R

To explore an improved small object
detection model that operates without
external data dependencies, building

upon Phase 1 findings. Refine feature
extraction for small objects through multi-

scale fusion and attention mechanisms.

Thesis Chapter 4, Publication #2 – Sub-
mitted to 34th IEEE International Sympo-
sium on Industrial Electronics (ISIE 2025)

Figure 1.1: Divided into two main stages, the thesis road map focuses on gradually building the

knowledge and expertise required to fulfill its ultimate aim.

1.2 Motivation

Object detection systems are increasingly deployed across many sectors including transportation,

surveillance, and industrial monitoring. Currently, the global drone surveillance market alone, is

valued at $30.21 billion as of 2022, and is projected to expand to $260.5 billion by 2030 [3]. While

rapid developments in computer vision have led to significant advancements in object detection,

accurately detecting small objects remains a critical challenge. Small objects, often defined as

those occupying less than 1% of an image, suffer from limitations that lead to poor detection

performance. Existing models, while successful for large and medium-sized objects, struggle with

small objects due to information loss across deep networks. Most approaches rely on external data

augmentation or complex multi-stage pipelines, which increase computational costs and reduce

generalizability. This limitation has profound implications for real-world applications (e.g. drone-

based surveillance, autonomous driving, and manufacturing anomaly detection). Thus, improving

small object detection is critical for safety and reliability reasons.
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1.2.1 Challenges and Research Gaps

Detecting small objects presents a unique set of challenges that are often under-addressed in con-

ventional object detection frameworks. Small objects inherently contain limited pixel information,

which leads to weak feature representations and makes them harder to distinguish from the back-

ground. This issue is exacerbated by deep convolutional architectures that downsample feature

maps, resulting in the loss of critical spatial details necessary for identifying tiny targets. Fur-

thermore, small objects frequently appear in cluttered or occluded environments, increasing the

likelihood of missed detections or false positives. Another major difficulty lies in the significant

scale variation within real-world scenes, i.e. detectors must generalize across a wide range of ob-

ject sizes, which most struggle to do effectively. In addition to these technical challenges, existing

approaches often rely heavily on brute-force data augmentations or bulky pipelines to artificially

boost small object appearance. While these strategies can improve accuracy, they come at the cost

of higher computational complexity and memory usage. There is also a lack of targeted evaluation

metrics that specifically reflect the performance of models on small objects, making it difficult

to quantify progress in this area. Thus, there remains a critical need for self-contained architec-

tures that enrich small object representations through more efficient feature fusion and scale-aware

design that enables robust performance without introducing considerable overhead.

1.3 Technical Approach

This study presents a comprehensive framework for advancing small object detection through inno-

vative feature fusion techniques. The proposed approach systematically addresses key challenges

in small object recognition through two meticulously designed stages as shown below:

• Phase 1: External Feature Fusion via Pre-trained Segmentation Backbone: This re-

search introduces an innovative feature fusion approach that enhances small object detec-

tion by leveraging rich semantic information from a pre-trained segmentation model. The

framework begins with a powerful segmentation backbone pre-trained on large-scale datasets

to extract high-quality, pixel-wise semantic features. These segmentation-derived features
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capture fine-grained boundary information and contextual relationships that are particularly

valuable for small objects. This work implements an adaptive feature fusion module with

attention mechanisms that automatically learns the optimal combination weights between

detection and segmentation features at each scale. This approach effectively transfers the

segmentation model’s strong spatial understanding to boost detection performance, partic-

ularly for objects that benefit from precise boundary awareness. The pre-trained nature of

the segmentation backbone ensures robust feature extraction without requiring additional

segmentation annotations during detection training, making the solution powerful for real-

world scenarios. (cf. Chapter 3).

• Phase 2: Developing a Novel Feature Pyramid: The Dilated Strip-wise Feature Pyramid

(DSSFP) introduces a novel architectural paradigm for small object detection in aerial im-

agery by synergizing three core innovations: directional strip-wise dilated convolutions for

anisotropic feature extraction, attention-gated multi-scale fusion for context-aware feature

reinforcement, and lightweight multi-branch processing for computational efficiency. Un-

like conventional approaches, DSSFP employs parallel high-resolution and dilated context

branches with adaptive gating mechanisms that dynamically optimize feature contributions

based on object scale and scene complexity, while its unique strip-wise convolutions specifi-

cally address the challenge of detecting elongated objects in drone imagery. The architecture

demonstrates significant improvements over existing feature pyramids, achieving a 15-20%

boost in small object detection accuracy while reducing computational overhead through

depthwise separable operations and neural-optimized layer configurations. Rigorous evalu-

ation across VisDrone dataset confirms DSSFP’s superior performance in handling extreme

scale variations and dense object distributions, establishing it as an efficient yet powerful so-

lution for real-world aerial surveillance applications where both precision and computational

efficiency are paramount. (cf. Chapter 4).

This structured approach ensures that the research not only addresses the limitations of existing

systems but also lays a robust foundation for future advancements. By emphasizing real-world
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applicability and scalability, this work bridges the gap between academic research and practical

deployment, paving the way for improved small object detection.

To establish the theoretical groundwork for this research, the following section outlines key

principles in machine learning, computer vision, and deep learning that underpin modern object

detection systems.

1.4 Machine Learning and Computer Vision

� Reader’s Guide: This thesis draws upon key concepts from machine learning, computer vision,

deep learning, and image processing. Owing to space limitations, each topic is presented through

a high-level overview focused on its relevance to object detection rather than a comprehensive

explanation of the broader concepts. Readers seeking a more comprehensive understanding of

these foundational concepts are encouraged to refer to the following resources:

• Stanford University’s CS231n: Convolutional Neural Networks for Visual Recognition:

This course provides detailed explanations of machine learning fundamentals, computer vi-

sion basics, and deep learning models, viz. CNNs, RNNs, and autoencoders.

• DeepLearning.AI: An online structured course on machine learning, deep learning, and

computer vision, including practical applications and detailed theoretical insights.

1.4.1 Machine Learning

Machine learning (ML) involves designing systems that learn patterns from data to solve problems

or extract meaningful insights. The most common types of ML tasks are as follows:

• Classification: Predicts discrete labels or classes, such as determining whether a tumour is

benign or malignant

• Regression: Estimates continuous values, for instance, forecasting energy consumption

based on past usage, temperature, and time of day.
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• Clustering: Clustering groups entities with similar characteristics, for example grouping

news articles by topics.

• Association: Identifies relationships between variables in datasets, such as high sales items

during specific seasons.

ML is widely used across various domains, with applications typically classified according to

the nature of the data. Some representative examples are presented below.

• Computer Vision: Focuses on understanding and interpreting visual data, such as images

and videos, for tasks like object detection, facial recognition, and autonomous driving.

• Natural Language Processing (NLP): Deals with understanding and generating human

language in text or speech form, enabling applications like sentiment analysis and language

translation.

• Speech Recognition and Processing: Involves interpreting spoken language, with uses in

voice assistants, automated transcription, and accessibility tools.

1.4.2 Computer Vision and Object Detection

The core computer vision tasks are aimed to recognize, locate, and interpret objects or patterns in

visual data as described below.

• Image Classification: Assigns a single label to an entire image, indicating the overall scene

or dominant object (e.g., ”animals” or ”outdoor”).

• Object Localization: Identifies the location of a single object in an image, typically using a

bounding box, without necessarily classifying multiple objects.

• Object Detection: Extends localization to identify and classify multiple objects within an

image, each enclosed in a bounding box (e.g., detecting cats and dogs in a scene).
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• Semantic Segmentation: Classifies every pixel in an image into predefined categories, pro-

viding a dense understanding of the scene (e.g., labeling all pixels as cat, dog, or back-

ground). It does not differentiate between separate instances of the same class.

• Instance Segmentation: Combines object detection and semantic segmentation by clas-

sifying each pixel and distinguishing between individual instances of the same class (e.g.,

identifying and separating each dog in an image).

Fig. 1.2 differentiates some of the key computer vision tasks.

Multiple Detection Localization w/t Bounding Boxes Semantic Segmentation

Figure 1.2: The fundamental computer vision tasks. (image credit: J. Paul and M. Mueller, 2019).

Small Object Detection

Small object detection is a specialized area of object recognition within computer vision, requir-

ing high-resolution analysis and advanced techniques to distinguish small objects. It faces the

following challenges:

1. Minimal pixel footprint: Objects like distant traffic signs or micro-fractures occupy few

pixels, losing fine-grained features.

2. Noise dominance: Sensor noise or compression artifacts often overwhelm small objects.

3. Context dependence: Surrounding pixels (e.g., a bird in the sky vs. a speck on the textured

ground) heavily influence detectability.

Given these unique challenges, specialized techniques in feature extraction, multi-scale learn-

ing, and high-resolution processing are essential. As a result, it is necessary to thoroughly investi-

gate and incrementally improve existing methods or develop new models tailored for small object

detection. This involves addressing core limitations of existing methods discussed in later sections.
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1.5 Deep Learning

Deep learning (DL) has emerged as a transformative paradigm in machine learning, distinguished

by its ability to automatically learn increasingly abstract feature hierarchies through deep neural

network architectures. These multi-layered networks, inspired by biological information process-

ing systems, progressively transform raw input data through successive nonlinear transformations,

enabling the automatic extraction of discriminative features from pixels to semantic concepts with-

out manual engineering [4, 5]. This capability has proven particularly valuable for object detection

in computer vision, where conventional approaches often fail due to the fundamental challenges

posed by limited pixel information, occlusions, and complex backgrounds [6, 7]. The hierarchical

nature of deep learning allows these models to simultaneously process multiple scales of visual

information, combining local texture patterns with broader contextual cues through sophisticated

architectural components like feature pyramid networks, attention mechanisms, and skip connec-

tions. These innovations enable the model to amplify subtle spatial signals from objects while

suppressing irrelevant background noise, effectively addressing the signal-to-noise ratio problem

inherent in small object detection [8].

However, the remarkable performance of these models comes with significant data require-

ments - they typically demand large, diverse, and precisely annotated training datasets that compre-

hensively capture the variations expected in real-world deployment scenarios [9]. The data depen-

dency creates practical challenges, as acquiring high-quality annotations for small objects is both

labour-intensive and prone to human error, while domain shift problems arise when models trained

on one dataset underperform when applied to slightly different environments or imaging condi-

tions [10]. To mitigate these limitations, researchers have developed complementary techniques,

including advanced data augmentation strategies [11–13], semi-supervised learning approaches,

and domain adaptation methods, all while continuing to refine fundamental network architectures

through innovations like transformer-based vision models and neural architecture search. The

theoretical foundations of DL, including the universal approximation theorem and gradient-based

optimization through backpropagation, provide mathematical justification for these empirical suc-
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cesses, while ongoing research in areas like explainable AI and robust learning seeks to address the

remaining limitations in reliability and generalization. Together, these advances have positioned

deep learning as the dominant approach for object detection across critical applications, including

medical diagnostics, remote sensing, autonomous vehicles, and industrial quality control, where

the lack of precise identification of minute features can have substantial real-world consequences.

1.5.1 Supervised Learning

Supervised learning is the foundation of ML, where models are trained on meticulously labeled

datasets. In the context of object detection, this approach enables models to learn discriminative

feature representations by systematically minimizing the discrepancy between predicted outputs

and provided annotations through an iterative optimization process using algorithms like gradient

descent.

While supervised learning has propelled object detection systems to remarkable performance

levels, its application to small object detection introduces unique challenges that stem primarily

from data requirements. Creating high-quality labels for small objects (spanning just a few pix-

els) demands extraordinary annotation precision, as even minor bounding box inaccuracies can

significantly impact model performance. This annotation process becomes exponentially more la-

borious and costly compared to standard object detection tasks. Furthermore, the samples must

capture sufficient diversity in terms of object scales, orientations, occlusion patterns, and back-

ground contexts to prevent learned biases and ensure robust generalization. Despite these substan-

tial data requirements, supervised learning remains the gold standard for small object detection

when adequate training data is available, with modern architectures like Cascade R-CNN [14] and

YOLO [15] variants demonstrating exceptional performance by effectively leveraging hierarchical

feature learning and multi-scale processing. Their strength lies in learning direct mappings from

input patterns to target outputs, assuming the training data comprehensively captures the problem

space. However, this assumption becomes difficult to meet as object size decreases and contextual

information plays a more critical role relative to the limited visual evidence available.
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1.5.2 Evaluation Metrics

Evaluation metrics provide standardized measures to assess and compare model performance across

studies. Unlike classification tasks, object detection requires simultaneous evaluation of both ob-

ject localization (bounding box regression) and classification correctness, making the choice of

the metrics particularly nuanced. While no single metric captures all aspects of detection qual-

ity, the most widely adopted metric, mean Average Precision (mAP), quantifies detection perfor-

mance across all object classes by calculating the area under the precision-recall curve at multiple

Intersection-over-Union (IoU) thresholds. It estimates how well a model balances precision (avoid-

ing false positives) and recall (identifying true positives) across varying localization strictness [16].

However, relying solely on mAP can obscure important aspects of real-world performance. For

example, a model may achieve a high mAP score while still performing poorly on small objects, as

standard IoU thresholds (e.g., 0.5) tend to favour larger objects, whereas small localization errors

have a relatively smaller impact on the overall IoU. This has led to specialized variants, such as

mAP@Small [17], which evaluates performance on objects under 32×32 pixels. Similarly, metrics

like Recall@FPI (False Positives per Image) better reflect deployment scenarios where computa-

tional resources or user tolerance limit acceptable false positive rates. These nuances are especially

critical in safety-sensitive applications like autonomous driving or medical imaging, where missed

small objects (e.g., distant pedestrians or micro-lesions) can have severe consequences. To address

these limitations, this work adopts multiple evaluation metrics, viz., accuracy, mIoU, precision,

recall, and average precision. The accuracy is computed as in (1.1).

Accuracy =
Number of correctly predicted boxes for a class

Total number of ground truth boxes for that class
× 100. (1.1)

In object detection problems, a predicted bounding box is considered accurate based on the IoU

criterion (cf. Fig. 1.3), as defined in (1.2). Specifically, the degree of overlap between the predicted

and ground truth bounding boxes must exceed a predefined threshold, typically 0.5.

mIoU =
Area of Intersection

Area of Union
≥ Threshold. (1.2)
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The precision and recall are defined as:

Precision =
TP

TP + FP
, and Recall =

TP

TP + FN
, (1.3)

with TP , FP , FN denoting true positives, false positives, and false negatives. Hence, the average

precision computes the area under the precision-recall curve and is computed as:

Average Precision (AP) =
∫ 1

0

p(r) dr, (1.4)

where p(r) is the precision at recall r. The mAP, (1.5), is included to handle class imbalance in

object detection tasks and is calculated as the mean of the average precision per class, where APi

is the Average Precision (AP) for class i, and N is the total number of classes.

mAP =
1

N

N∑
i=1

APi, (1.5)

A commonly accepted mAP is the MSCOCO-standard [18] that uses mAP@[.5:.95], which

evaluates the IoU with thresholds from 0.5 to 0.95 in 0.05 increments (τ ) defined as:

mAP@[.5:.95] =
1

9

0.95∑
τ=0.5

mAP@IoU = τ. (1.6)

Figure 1.3: A pictorial description of IoU.
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1.6 Thesis Contribution

This thesis aims to develop a comprehensive framework for improved small object detection by

addressing the critical limitations in existing methodologies. The key contributions of this thesis

are as follows:

• Unified Framework for Semantic-Guided Detection: Proposes a novel multi-branch ar-

chitecture that synergistically combines semantic segmentation and object detection features

with attention-based fusion, to improve localization and classification of small objects.

• Enhanced Feature Pyramid for Small Objects: Introduces a novel feature pyramid-based

network that emphasizes long-range directional dependencies through dilated strip-wise con-

volutions and spatial-aware attention mechanisms.

• Comprehensive Generalization Techniques: Extensively explores and documents the use

of self-supervised learning as a pretext task to improve generalization, alongside data aug-

mentation techniques to increase data variation to provide more small object instances and

challenging samples for robust training.
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Chapter 2

Literature Review

2.1 Overview

This chapter presents a systematic review of object detection approaches, beginning with tradi-

tional models followed by deep learning-based models and feature fusion strategies. It investigates

existing methods specifically built for small object detection, comparing their architectural choices,

performance, applicability in real-world scenarios, and limitations. Various approaches, ranging

from anchor design and multi-scale feature fusion to attention mechanisms and transformers are

examined. The comparative analysis provides key insights into the current state of the field and

identifies gaps and trade-offs that inform the motivation for the proposed work in subsequent chap-

ters.

2.2 Object Detection

Over the past two decades, object detection (OD) algorithms have played a pivotal role in advanc-

ing autonomous transport and surveillance systems, enabling the development of fully automated

solutions [19–24]. The core function of an OD system is to accurately identify and localize target

objects within a given image. This process generally involves a combination of feature extraction

and classification techniques [21, 25]. Object detection approaches can be broadly categorized into
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two main types: traditional methods and deep learning-based methods. Traditional approaches de-

pend on manually crafted feature extraction techniques to capture distinctive characteristics of

objects, followed by the use of machine learning algorithms for classification [26]. In contrast,

deep learning-based methods leverage deep neural networks in an end-to-end manner, allowing

the model to automatically learn relevant features and perform classification directly from the in-

put data [27].

2.3 Traditional Object Detection Methods

In the early stages, limited computational resources and insufficient feature representation neces-

sitated the use of hand-crafted features for OD tasks [28]. Traditional approaches typically follow

a three-stage pipeline to accomplish this: localization of regions of interest, extraction of discrim-

inative features, and classification of the detected objects.

2.3.1 Localizing Region of Interest

The first stage involves localizing potential regions within the image where objects are likely to

appear. Two commonly used techniques for region of interest (ROI) localization are background

subtraction and sliding window approaches [29, 30]. Background subtraction is useful in static

images to isolate moving objects by comparing each frame to a background model [31]. This is in-

effective for small objects which often generate minimal motion or occupy very few pixels, making

them indistinguishable from noise or background fluctuations. Furthermore, complex and dynamic

backgrounds, such as moving foliage, lighting variations, or weather changes, make it difficult for

background subtraction techniques to maintain high accuracy. To address these challenges, var-

ious adaptive background modelling techniques were proposed [32–35]. For example, Gaussian

Mixture Model (GMM) [35], models each pixel as a mixture of Gaussians representing different

observed intensities over time. This allows the model to adapt to environmental changes such as

lighting and weather, however, it fails for objects that exhibit non-Gaussian characteristics or rapid

unpredictable variations (e.g. appearances of pedestrians). Alternatively, the sliding window tech-
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nique [36] provides a background-independent method involving scanning the entire image using

windows of various sizes and aspect ratios to identify candidate regions. While effective in en-

suring that even the smallest objects can be detected, this method suffers from high computational

cost, especially since detecting small objects requires scanning the image at finer scales with more

densely overlapping windows. This makes real-time implementation challenging where speed is

crucial. Sensitivity to background complexity and computational inefficiency limits background

subtraction and sliding window methods, highlighting the need for more advanced and efficient

approaches.

2.3.2 Extracting Features

Once an object is localized, the feature extraction stage generates a distinct representation that

enables accurate classification. Early methods relied on basic features such as color and shape,

which can be unreliable because they are superficial and lack necessary semantic and spatial

context [37, 38]. To address this, hand-crafted descriptors like Histogram of Oriented Gradients

(HOG) [39], Scale-Invariant Feature Transform (SIFT) [40], and Haar-like features [41] have been

used. Nevertheless, even these features face challenges in detecting objects within cluttered or

low-resolution images, motivating the shift toward learning-based feature extraction techniques.

2.3.3 Object Classification

The final stage involves object classification, where the detected region is assigned a category

label. Traditional methods often use machine learning algorithms like Support Vector Machines

(SVM) [42] and Random Forests (RF) [43] for this task. SVMs classify objects by finding the

optimal decision boundary in the feature space, while RFs combine multiple decision trees for

robust predictions. Other techniques, such as AdaBoost [44] and Deformable Part-based Models

(DPM) [45], have also been used. Regardless, classification accuracy heavily depends on the qual-

ity of hand-engineered features and regions of interest, which require substantial domain expertise

and time investment [46].
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2.4 Deep Learning-based Object Detection Methods

The challenges that each stage brought forth, catalyzed a shift toward deep learning-based meth-

ods, which reimagined the stages using data-driven learning, leading to a shift in modern object

detection. Fig. 2.1 shows the systematic categorization of deep learning-based object detectors.

Object Detection Models

Two Stage Detectors
(cf. Section 2.4.1)

One Stage Detectors
(cf. Section 2.4.2)

Transformer-based Detectors
(cf. Section 2.4.3)

Figure 2.1: A categorization of deep learning-based object detection models.

2.4.1 Two Stage Detectors

Two-stage detectors adopt a region-proposal-driven approach, separating detection into two dis-

tinct stages as seen in Fig. 2.2. Prominent examples of two-stage detectors include the influential

R-CNN family (R-CNN, Fast R-CNN, Faster R-CNN, Cascade R-CNN, etc.) that utilize advanced

region proposal and refinement techniques.

Figure 2.2: Overview of two-stage object detection model.

R-CNN [47] introduced a method that tackled the challenge of proposing multiple regions for

object detection using the selective search algorithm that generated approximately 2000 region

proposals per image, which were then passed through a CNN to extract features. These features

were fed into a support vector machine (SVM) which determined the presence of an object and

computed four offset values to improve the precision of the bounding boxes. However, the per-

sample inference time is nearly a minute using this approach, making it inefficient for practical
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applications. To overcome this drawback, Fast R-CNN [48] was developed where the entire input

image was passed to the CNN for feature extraction instead of individually passing each region

proposal. Regions of interest were then extracted from the feature map using a region of interest

(RoI) pooling layer that reshaped these regions for further processing. This method vastly im-

proved efficiency, as only a single image was fed into the CNN, rather than thousands of individual

regions, making predictions faster and more scalable. Both R-CNN and Fast R-CNN relied on

the manual process of selective search to generate region proposals. Instead, Faster RCNN [49]

proposed a Region Proposal Network (RPN) that learned how to predict region proposals directly.

Unlike selective search, the RPN was trainable and generated high-quality proposals, which were

further refined by a RoI pooling layer to classify objects and predict bounding box coordinates in

a single, streamlined framework.

The Cascade R-CNN [14] is a notable advancement among two-stage object detection meth-

ods, specifically addressing the mismatch problem between proposal quality and detection perfor-

mance in prior two-stage frameworks. Cascade R-CNN introduces a multi-stage pipeline, where

bounding box proposals undergo successive refinements through multiple detection heads, each

trained with progressively stricter Intersection-over-Union (IoU) thresholds. This cascaded re-

finement significantly improves object localization accuracy by iteratively narrowing predictions

and alleviating issues caused by poorly aligned bounding boxes. Consequently, Cascade R-CNN

consistently achieves superior detection performance compared to standard Faster R-CNN, partic-

ularly excelling in scenarios requiring highly accurate localization. However, these performance

gains come with increased computational complexity due to the sequential refinement stages.

2.4.2 One Stage Detectors

One-stage object detectors surpass two-stage methods in real-time object detection by unifying

localization and classification into a single network pass (cf. Fig. 2.3). One-stage detectors predict

bounding boxes and class probabilities directly from input images in a single forward pass without

needing region proposals or iterative refinements. As a result, they are widely used for applications

requiring fast inference, such as surveillance, autonomous driving, and robotics. One-stage detec-
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Figure 2.3: Overview of one-stage object detection model.

tors generally have a backbone like ResNet [50] or HRNet [51] for feature extraction, followed

by a detection head, and then non-maximal suppression (NMS) applied to filter redundant predic-

tions. One-stage detectors are further categorized into Anchor-Based Detectors and Anchor-Free

Detectors.

Anchor-Based Detectors

Anchor-based methods use predefined anchor boxes (i.e., reference bounding boxes) to guide de-

tection, where anchors of varying scales/aspect ratios are placed on feature maps, and the network

then predicts offsets to adjust the anchors into final detections. Single Shot Detector (SSD) [52]

utilizes this and employs feature maps at multiple scales to effectively detect objects of varying

sizes. Due to its streamlined design, SSD achieves real-time detection speeds, making it suitable

for time-sensitive applications. However, SSD generally exhibits slightly lower detection accuracy

for small objects, compared to more computationally intensive two-stage methods.

You Only Look Once (YOLO) [15] is a well-known single-stage object detection framework

known for its high inference speed and simplicity. YOLO treats object detection as a unified

regression problem, predicting bounding boxes and class probabilities directly from image pix-

els using a single convolutional neural network. Although earlier versions, like YOLOv1 and

YOLOv2, emphasized speed at the expense of accuracy, YOLOv3 [53] significantly improved de-

tection performance by incorporating multi-scale feature predictions and improved anchor boxes.

Since then, YOLO has evolved through multiple iterations, each improving detection accuracy,

inference speed, and training stability. As of now, YOLOv11 [54] uses refined anchor selection

strategies, an efficient backbone, and advanced feature fusion techniques.
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Previous methods failed to address the issue of class imbalance till RetinaNet [55] introduced

a novel focal loss function, designed to effectively down-weight the importance of easily classi-

fied examples, thereby placing greater emphasis on difficult-to-detect instances. RetinaNet com-

bines this focal loss with a feature pyramid network (FPN) to leverage multi-scale feature repre-

sentations, enhancing detection accuracy across various object scales. Consequently, RetinaNet

achieves accuracy comparable to two-stage detectors like Faster R-CNN while maintaining single-

stage efficiency. Yet, it remains sensitive to hyperparameter tuning, and its training can be compu-

tationally demanding due to the complexity introduced by focal loss optimization.

GFL [56] builds upon RetinaNet by further addressing the limitations associated with focal

loss and classification-regression separation in object detection. While RetinaNet effectively mit-

igates class imbalance, it still treats classification and bounding box regression as independent

tasks. GFL innovatively integrates quality estimation directly into classification scores, merging

classification and localization branches into a unified prediction. This joint approach allows the

model to estimate object presence and localization quality simultaneously, thus achieving more

accurate and stable detection results. Experimental evaluations demonstrate that GFL consistently

surpasses RetinaNet and other state-of-the-art single-stage detectors. Nevertheless, GFL’s integra-

tion of multiple prediction tasks into one branch lead to increased complexity during training and

inference, necessitating careful optimization and hyperparameter tuning.

Adaptive Training Sample Selection (ATSS) [57] takes a different perspective and addresses

the critical problem of anchor assignment in single-stage object detectors. Instead of manually

tuned thresholds for positive and negative anchors, ATSS dynamically selects training samples

by adaptively computing optimal thresholds based on anchor statistics. This effectively reduced

anchor ambiguity and enhanced detection accuracy without additional computational overhead.

Despite its success, its reliance on statistical heuristics for sample selection may result in poor

generalization across diverse datasets.
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Anchor-Free Detectors

Transitioning from anchor-based to anchor-free single-stage detectors marks an important evolu-

tion in single-stage object detection literature. Anchor-based methods rely heavily on predefined

anchor boxes, introducing complexities in anchor generation, hyperparameter tuning, and assign-

ment strategies. To address these limitations, recent advancements have proposed anchor-free

approaches, which directly predict bounding boxes without relying on pre-set anchor boxes. This

simplifies the detection pipeline and reduces hyperparameter sensitivity.

The pioneering anchor-free OD framework, DenseBox [58], treats detection as a dense per-

pixel prediction task. It employs a fully convolutional network (FCN) that simultaneously regresses

bounding box coordinates and predicts object confidence scores for every spatial location in an

image. DenseBox directly maps the receptive field of each spatial location to a potential object

region without needing carefully designed and tuned anchors. However, dense predictions on all

locations and scales of an image lead to increased computation and memory usage, and redundant

predictions require further post-processing.

CornerNet [59] identifies objects by detecting pairs of key points representing the top-left and

bottom-right corners of bounding boxes. It works by predicting corner heatmaps and embeddings

to pair corners belonging to the same object, and then offsets to refine bounding box locations.

Despite achieving strong accuracy, CornerNet can exhibit relatively slower inference speeds due

to the post-processing complexity required to match corner pairs.

Conversely, Fully Convolutional One-Stage Object Detection (FCOS) [60], predicts bounding

boxes by regressing distances from each pixel location to the four sides of a bounding box, and

introduces a center-ness branch that assesses the quality of detection by estimating the proximity

of predicted boxes to object centers. While this enhances general localization accuracy, it struggles

with occluded and irregularly shaped objects because it relies on ’centerness’ for predictions.

Similarly, CenterNet [61] formulates object detection as a key point estimation problem by pre-

dicting center heatmaps and regressing object dimensions and offsets directly from these centers.

However, as with FCOS, its dependence on center responses limits its performance on occluded,

small, elongated or irregular objects.
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2.4.3 Transformer-based Detectors

Transformer-based object detectors represent a recent paradigm shift in OD tasks, leveraging atten-

tion mechanisms to model long-range dependencies and contextual information more effectively

than traditional CNN-based approaches. The DEtection TRansformer (DETR) [62] reimagines

detection as a set prediction problem using a transformer encoder-decoder architecture. While

conventional deep learning detectors rely on anchor boxes, region proposals, or hand-crafted post-

processing techniques like NMS; DETR adopts an end-to-end design that predicts a fixed set of

object bounding boxes and class labels directly from image features. It uses a CNN backbone (typ-

ically ResNet) to extract feature maps, which are passed to a transformer encoder. The transformer

decoder receives these encoded features along with a set of learned positional embeddings called

”object queries”, each responsible for predicting a single object in the scene. The model outputs

a fixed number of predictions, and the optimal matching between predictions and ground truth is

handled using the Hungarian algorithm, minimizing a bipartite matching cost. While DETR is

conceptually elegant and simplifies the detection pipeline, it suffers from slow convergence and

struggles with detecting small objects due to the global attention’s coarse spatial resolution. Sub-

sequent works, such as Deformable DETR [63] and Swin Transformer-based detectors [64, 65],

have addressed initial limitations related to training efficiency and scalability, slightly improving

convergence speed and detection accuracy.

Despite transformer strengths at capturing global context and improving localization accuracy,

they often require substantial computational resources and careful optimization [66]. The global

attention mechanism has quadratic complexity with respect to image size [67] and lack strong local

inductive biases which are crucial for fine-grained feature extraction. Components such as object

queries, positional encodings, bipartite matching, and set-based loss functions introduce architec-

tural complexity, requiring careful tuning and design. Consequently, these methods rely on large-

scale datasets [68] to perform optimally, making them less suitable for low-data scenarios where

CNN-based models perform better due to their built-in spatial priors. As a result, transformer-

based OD methods are challenging to scale for high-resolution inputs or real-time applications and

their complexity can hinder adaptability in custom or domain-specific detection tasks.
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2.5 Feature Fusion for Object Detection

The traditional FPN introduced in [69] employs a top-down architecture with lateral connections to

merge high-level semantic features from deeper layers with spatially rich features from shallower

ones. This design improves the detection of objects at multiple scales by enriching lower-resolution

layers with semantic information. Yet, FPN’s uni-directional top-down flow may still limit the

preservation of fine-grained spatial details, particularly in deeper layers.

To address this, PANet [70] extends FPN by introducing a bottom-up path augmentation, en-

hancing the feature maps with spatially precise localization signals. This dual-path structure allows

deeper layers to retain important spatial cues while also benefiting from the semantic enhancement

of the top-down pathway. Building upon this, the Adaptive Feature Pyramid Network (AFPN) [71]

incorporates an iterative cross-scale refinement strategy. Further advancements are seen in the

Bidirectional Feature Pyramid Network (BiFPN), introduced in EfficientDet [72], which allows

bidirectional information flow across feature levels, facilitating more effective multi-scale feature

fusion. Unlike standard FPNs, which use simple feature addition, BiFPN integrates learnable

weighted fusion—where the network learns the relative importance of each feature input using

attention-like weights. It also removes less useful nodes and simplifies the pathway to maintain

computational efficiency while boosting accuracy. These design choices significantly enhance fea-

ture reuse and detection precision without a major increase in inference cost, making BiFPN a core

component of many efficient detection architectures.

In this work, recent advancements like the bidirectional weighted fusion in BiFPN and the

enhanced spatial flow in PANet, inspire the development of a more effective integration of multi-

scale semantic and spatial features for small object detection.

2.6 Existing Works on Small Object Detection

Detection architectures are generally optimized for medium-to-large objects in fixed-perspective

ground-view datasets like MS COCO [17] or PASCAL VOC [73]. As a result, very few methods

explore the specific task of improving small object detection. For example, BiKD-Yolo [74] in-
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troduces an enhanced YOLO-based model tailored for small object detection in Unmanned Aerial

Vehicle (UAV) imagery. The model integrates BiFormer attention mechanisms and knowledge

distillation techniques to improve detection performance, allowing the capture of long-range de-

pendencies and contextual information. Despite efforts to maintain efficiency, the integration of

BiFormer attention mechanisms and knowledge distillation processes adds significant computa-

tional overhead, impacting real-time performance in resource-constrained UAV systems. More-

over, implementing knowledge distillation requires careful selection and training of teacher-student

network pairs, which can be complex and time-consuming.

In another approach, Attention Enhanced Feature Fusion Network [75] introduces a novel ar-

chitecture that integrates a hybrid attention module designed to enhance feature extraction capabili-

ties by combining multi-axis frequency and spatial attention mechanisms. However, the integration

of complex attention mechanisms introduces additional computational costs and inference speed.

Conversely, UAV-DETR [76] is an efficient end-to-end object detection method that incorpo-

rates multi-scale feature fusion with frequency enhancement and frequency-focused down-sampling.

However, its performance relies on large datasets for optimization. TPH-YOLOv5 [20] uses a

transformer prediction head and CBAM to build upon the YOLOv5 architecture. Transformer

modules tend to consume more GPU memory, particularly with high-resolution images or large

batch sizes.

A summary of the models discussed in this section is provided in Tabel 2.1.

2.7 Chapter Summary

This chapter presented a comprehensive review of object detection methodologies. A key finding

is that a significant improvement in detection accuracy and generalization can be achieved using

deep learning combined with enriched feature hierarchies. The review highlighted feature fusion

techniques’ critical role in improving objects’ representation at multiple scales.

Focusing specifically on small object detection, the chapter identified several targeted strate-

gies. While these approaches have led to measurable performance gains, they also reveal persistent
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Table 2.1: A Summary of Object Detection Model Performance on Small Objects

Ref. Methodology Limitations Metric
(mAP)

[20]
2023

Leverage transformer prediction head for
detection small and densely packed objects

Large model size, computationally heavy and data
hungry. 39.2%

[76]
2025

Hybrid model that combines the strengths of
encoder architectures and vision transformers

Uses a large backbone and transformer
encoder-decoder architecture, data-hungry. 31.5 %

[75]
2025

Hybrid attention module designed to enhance
feature extraction capabilities for small
objects by combining multi-axis frequency
and spatial attention mechanism

Integration of complex attention mechanisms
introduces additional computational costs, affecting
real-time processing capabilities.

34.0%

[74]
2024

Integrates BiFormer attention mechanisms
and knowledge distillation techniques to
improve detection performance.

Despite efforts to maintain efficiency, the integration of
BiFormer attention mechanisms and knowledge
distillation processes may still introduce additional
computational overhead, impacting real-time
performance.

29.8%

limitations. Most notably, existing models still struggle with low-resolution object features, high

background noise, and significant scale variation. Additionally, improvements in accuracy are

frequently accompanied by increased computational demands, limiting their deployment in real-

time or resource-constrained settings. Many methods also rely heavily on large annotated datasets,

which are often difficult to obtain for small objects.

Overall, while the field has made substantial progress, the reviewed literature underscores a

clear trade-off between accuracy, complexity, and scalability. These insights motivate the need

for a more balanced solution, forming the foundation for the novel frameworks proposed in the

following chapters.
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Chapter 3

Enhancing Small Object Detection via

Semantic Feature Fusion

3.1 Overview

Driven by the exponential integration of digital sensors in automated systems, OD has become

fundamental to numerous real-world applications. In autonomous driving, for instance, reliable

detection of pedestrians, vehicles, and traffic signs is essential for ensuring safety. Regardless,

detecting small, distant objects in complex traffic scenes remains a significant challenge.

This chapter introduces a novel feature fusion approach that enhances small object detection by

integrating semantic segmentation features with features from a primary detection backbone. The

proposed system leverages complementary strengths from both detection and segmentation mod-

els, the latter being a pixel-wise classification task, captures fine-grained spatial details, enabling

the model to better understand scene context and object boundaries.

The effectiveness of this approach is validated through ablation studies on the KITTI bench-

mark dataset. This hybrid architecture could pave the way for future research in robust object

detection, particularly in complex environments where small or distant objects are prevalent. The

findings may inspire further exploration of multi-task learning frameworks that unify detection and

segmentation for enhanced visual perception.
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3.2 Background Concepts and Methodology

As discussed in Chapter 2, supervised object detection models leverage labeled data to achieve

high-precision localization and classification. Nevertheless, they often struggle with small or dis-

tant objects due to limited pixel-level information and scale variations, particularly in complex

scenarios in driving and urban scenes. While multi-scale architectures like FPN and PANet [77]

mitigate this to some extent, their reliance on labeled data makes them vulnerable to class imbal-

ance (e.g., rare object categories) and annotation scarcity for small instances.

On the other hand, unsupervised or self-supervised approaches can learn robust feature repre-

sentations from unlabeled data, capturing fine-grained spatial details critical for small objects. Yet,

unsupervised methods often lack task-specific discriminative power, leading to false positives (e.g.,

misclassifying background clutter as objects) or poor generalization across diverse environments.

Given these complementary strengths and weaknesses, hybrid approaches that fuse supervised

detection backbones with unsupervised or multi-task features (e.g., semantic segmentation) show

significant promise. For instance, segmentation models trained in a self-supervised or weakly su-

pervised manner extract rich pixel-wise semantic features, enhancing a detector’s ability to localize

small objects by reinforcing spatial coherence and edge awareness. Recent work demonstrates that

integrating segmentation-aware features into detectors like Mask R-CNN and YOLO-LOGO im-

proves performance on small objects without requiring additional labeled data [78, 79]. Similarly,

cross-modal fusion (e.g., LiDAR + RGB) leverages unsupervised pre-training to boost detection

robustness in low-visibility scenarios [80]. This suggests that hybrid architectures, combining the

discriminative power of supervised detection with the generalizable, fine-grained features from

segmentation, could address key challenges in small object detection, particularly for dynamic,

real-world settings where labelled data is scarce or imbalanced.

3.2.1 Inspiration for the Proposed Model

This work draws inspiration from three core paradigms in computer vision: (i) attention-based

feature fusion for multi-modal learning, (ii) cross-task knowledge transfer via frozen backbones,
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and (iii) efficient reuse of pre-trained representations for downstream tasks. This approach bridges

domain-specific feature spaces while maintaining computational efficiency by leveraging a frozen

semantic segmentation backbone to enhance object detection.

3.2.2 Attention Mechanism for Feature Fusion

Networks incorporating attention-based modules have shown promising results in NLP tasks [81]

and have since been adapted for object detection to improve accuracy as seen in works like [82–

84]. By explicitly modelling contextual relationships and dependencies, attention enhances the

representational capacity of convolutional networks, especially in scenarios where spatial or se-

mantic cues are dispersed or ambiguous. When combined with architectural components like

feature pyramids or dilated convolutions, attention mechanisms serve as a powerful tool to re-

inforce multi-scale reasoning and spatial precision. In convolutional networks, attention can be

applied across spatial dimensions, channels, or both, allowing models to learn dynamic weighting

schemes that enhance feature representations based on contextual relevance. The spatial atten-

tion mechanism is mathematically expressed in (3.1), and can model long-range dependencies and

correlations to enhance the task-specific contextual information.

A = σ((UqF )(UkG)T ), where σ(x) =
1

1 + e−x
,

X = A(UvG),

(3.1)

where Uq, Uk, and Uv are learnable weight matrices used to compute the query, key, and value

representations. The query and transposed key representation are used to compute the attention

score matrix A, which is sigmoid normalized to produce a matrix of attention weights. These

weights are used to weight the value representation (UvG), resulting in attention refined output X

which emphasizes the most relevant features in G and is integrated back into the network.
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Figure 3.1: High-level representation of the Resnet bottleneck structure.

3.2.3 Backbone and Feature Pyramid

Table 3.1 presents the layer-wise architectural details of the ResNet-50 [50] backbone employed

in the proposed framework. The backbone is composed of four sequential blocks, which progres-

sively extract features at multiple levels of abstraction. These blocks output feature maps with

channel dimensions of 256, 512, 1024, and 2048, capturing both low-level spatial details and high-

level semantic information. The internal structure of these residual blocks follows the bottleneck

design, as illustrated in Fig. 3.1, where a series of 1×1, 3×3, and 1×1 convolutions are used to

reduce, process, and then expand the feature dimensionality. By leveraging this hierarchical repre-

sentation, the model is able to learn rich features essential for robust object detection. The outputs

from these blocks are then passed to the FPN [69] shown in Fig. 3.2, which performs multi-scale

feature fusion through top-down pathways and lateral connections. This fusion enhances the net-

Table 3.1: Architectural Details of the ResNet-50 Backbone

Layer ID Layer Type Repeat Output Dimension
(B, C, H, W)

Input Input Layer – (8, 3, 375, 1242)
L1 Conv2D – (8, 64, 188, 621)
L2 BatchNorm2D – (8, 64, 188, 621)
L3 ReLU – (8, 64, 188, 621)
L4 MaxPool2D – (8, 64, 94, 311)

Block1 Bottleneck (256-d) ×3 (8, 256, 94, 311)
Block2 Bottleneck (512-d) ×4 (8, 512, 47, 156)
Block3 Bottleneck (1024-d) ×6 (8, 2048, 24, 78)
Block4 Bottleneck (2048-d) ×3 (8, 2048, 12, 39)

Key Details:
Description Value
Total Trainable Parameters 23,508,032
Kernel Sizes L1: 7× 7, Bottleneck: 1× 1, 3× 3, 1× 1
Strides L1: 2, MaxPool: 2, Bottleneck: 1 or 2 (downsampling)
Padding L1: 3, Bottleneck: 1 (for 3× 3 layers)
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work’s ability to detect objects of varying sizes, with particular benefit to small object detection by

preserving fine-grained details while incorporating contextual information from deeper layers.

Figure 3.2: Architecture of the feature pyramid network.

3.3 The Proposed Attention-based Segmentation-aware Model

Fig. 3.3 illustrates the proposed framework. It integrates a semantic segmentation model (sem-

seg) with an OD model. The features from the sem-seg model are fused with the OD model’s

pipeline to refine the learned features. For this purpose, the DeepLabv3 [85] with ResNet-101 [50]

backbone was used in the sem-seg model because (i) it has a similar backbone structure to the OD

sub-network, thus enabling symmetric feature fusions, and (ii) DeepLabv3 has atrous convolutions

and pyramid pooling that preserve global context. Since semantic segmentation operates at the

pixel level, it captures fine-grained local spatial detail at the deeper layers. Thus, the features

from the sem-seg backbone inform the OD model about object-scene interaction beyond just local

pixel relationships. Additionally, an attention-gating mechanism is deployed in each fusion stage,

enabling the OD model to selectively focus on important features while ignoring insignificant

details. In Fig. 3.3, only the backbone of the sem-seg model is shown, and later layers are omitted

as their features are not utilized.
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Figure 3.3: A high-level representation of the proposed framework. L1-L4 represents the

Segmentation Network Backbone, and the Object Detection Framework is in green.

The OD model takes an input image of size 375×1242×3 and processes it via the backbone,

consisting of four layers. As the image progresses through each layer, the feature maps are gen-

erated double while the spatial dimension (height and width) is halved. The final layer of the

backbone generates dense feature maps with the dimension 13×42×2048. Simultaneously, the

same input image is passed through the segmentation path, where features of ResNet layers 2, 3,

and 4 are extracted. These features are then fused with the corresponding layer outputs of the

object detection model and passed through the attention-gating mechanism described earlier. Fi-

nally, the attention-refined features are passed to the FPN layer that merges lower-level clues with

higher-level clues to create feature maps containing both rich semantic and spatial information.

The output of the FPN is then passed to the RPN, which generates multiple anchor boxes and then,

based on the objectness score and predicted bounding box offset, classifies them as a correct region

or not. The RoI layer then takes these predicted regions and the feature pyramids, and for each RoI,

it extracts a fixed-size feature map using pooling to refine the prediction to give the final output.
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3.4 Model Training and Optimization Strategies

3.4.1 Dataset

For model training and validation, this study uses the publicly available KITTI dataset [86]. It

contains 7481 camera images captured in Karlsruhe, Germany. The images are annotated with

bounding boxes for eight classes defined as ‘Car,’ ‘Van,’ ‘Truck,’ ‘Pedestrian,’ ‘Person (sitting),’

‘Cyclist,’ ‘Tram,’ and ‘Misc’ (e.g., Trailers, Segways). The advantage of using this set is the

sample variation, which ensures a robust model development, resulting in better generalization and

applicability to real-life scenarios. The training set was split into 5984 samples for model building

and 1497 samples for evaluation. The samples are resized to 375 × 1242 while maintaining their

aspect ratio, and their pixel values are normalized to [0, 1]. Cityscapes [87] and KITTI semantic

segmentation data are used to fine-tune the segmentation model. Cityscapes was chosen because it

closely resembles KITTI’s samples.

3.4.2 Training Strategy of the Proposed Method

Figure 3.4: Training strategy of the proposed architecture.
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The proposed model was trained in a multi-stage process as shown in 3.4. First, the DeepLabv3

semantic segmentation model was pretrained on the CityScapes dataset (Stage 1). This pretrained

model was then fine-tuned on the KITTI semantic segmentation dataset to adapt it to the target do-

main (Stage 2). After fine-tuning, the semantic segmentation features extracted from the backbone

of this model were used to train the object detector (Stage 3). The training progress for each stage

is illustrated in the following figures: Figure 3.5 shows the initial CityScapes training, Figure 3.6

displays the fine-tuning on KITTI, and Figure 3.7 presents the final object detector training. All

models were trained for a maximum of 150 epochs with early stopping (patience = 8) to ensure

consistent and fair comparisons across experiments.

Figure 3.5: Training plots for the semantic segmentation model on the CityScapes dataset.

Figure 3.6: Training plots for the semantic segmentation model on the KITTI sem-seg dataset.
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Figure 3.7: Training plots for the proposed object detection model on the KITTI detection

dataset.

The training curves exhibit stable convergence with no signs of divergence or erratic fluctua-

tions, indicating well-chosen hyperparameters (e.g., learning rate, batch size) and effective regu-

larization. Convergence is achieved by epoch 50–60 for OD model.

Loss Functions

The training process involves multiple loss functions across different stages of the model. For

semantic segmentation, the standard cross-entropy loss (LCE) is used:

LCE = − 1

N

N∑
i=1

[
C∑
c=1

yi,c log(pi,c)

]
(3.2)

where N is the number of samples, C is the number of classes, yi,c is the ground-truth label (1

if sample i belongs to class c), and pi,c is the predicted probability for sample i and class c.

For object detection, the Faster R-CNN loss combines three components:

LFaster R-CNN = LRPN + Lbbox + Lcls (3.3)

• Region Proposal Network (RPN) loss (LRPN):

LRPN =
1

Ncls

∑
i

Lcls(pi, p
∗
i ) + λ

1

Nreg

∑
i

p∗iLreg(ti, t
∗
i ) (3.4)

33



where Ncls and Nreg denote the number of anchors in classification and regression, respec-

tively, pi is the predicted objectness probability, p∗i is the ground-truth label (1 for object, 0

for background), ti and t∗i are the predicted and ground-truth bounding box coordinates, and

λ is a balancing parameter.

• Bounding box regression loss (Lbbox):

Lbbox =
∑

i∈{pos}

Lsmooth L1(ti, t
∗
i ) (3.5)

where {pos} indicates positive anchors, and Lsmooth L1 is defined as:

Lsmooth L1(x) =


0.5x2 if |x| < 1,

|x| − 0.5 otherwise.
(3.6)

• Classification loss (Lcls):

Lcls = −
∑
c

yc log(pc) (3.7)

where C is the number of classes, yc is the one-hot encoded ground truth, and pc is the

predicted softmax probability for class c.

Minimizing this composite loss ensures joint optimization of proposal generation, localization,

and classification.

3.4.3 Environment

All models were developed using Python 3.11.5 with PyTorch 2.1 and TorchVision frameworks.

The experiments were executed on Compute Canada’s Narval cluster, utilizing four NVIDIA

A100-SXM4-40GB GPUs (40GB HBM2 VRAM each) with 3rd Gen AMD EPYC processors

and 128GB system memory.
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3.5 Experimental Analysis

The comparative analysis of the models built and tested in this work is summarized in Table 3.2

alongside the baseline. Here, the fine-tuned Faster R-CNN with a ResNet-50 backbone and FPN

layer did not perform better than the baseline Faster R-CNN with a VGG backbone. It achieved an

overall mAP of 78.7% as opposed to the baseline, which achieved 81.6% overall mAP. This sug-

gests that simply adopting a more modern backbone (ResNet) without architectural adjustments

may not suffice, likely due to:(i) Feature misalignment; ResNet’s deeper hierarchical features might

not align optimally with Faster R-CNN’s RPN for this specific task, whereas VGG’s shallower fea-

tures could generalize better.(ii) Training dynamics; the baseline VGG model may have benefited

from longer convergence or better hyperparameter tuning, as ResNet architectures often require

careful learning rate scheduling. To further investigate potential improvements, an experimental

analysis was conducted, focusing on segmentation feature fusion. Different fusion strategies were

implemented to determine the best possible feature fusion approach. Initially, all four ResNet layer

outputs of the DeepLabv3 backbone were fused with the Faster R-CNN backbone by concatenating

the respective layers, which resulted in a validation mAP of 71.5%. Alternatively, attention gating

was applied instead of concatenation at the feature fusion stage to refine the information that is

propagated through the object detection network. This approach resulted in a mAP of 80.1%. Sub-

sequently, identifying which layers provide the most effective features was done experimentally by

fusing one layer between the sub-networks at a time, starting with Layer 1. All combinations were

tried, and the best possible combination was fusing layers 2, 3, and 4. This model (SegAttnDe-

tec) achieved an overall mAP of 83.5%, surpassing all other experimental models. The success

of SegAttnDetec highlights two key insights: (i) Feature selection matters more than quantity;

overloading the detector with all backbone layers harms performance. (ii) Task-specific adapta-

tion; attention mechanisms bridge the gap between segmentation and detection features, which are

often optimized for different objectives.
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3.5.1 Quantitative Analysis

Table 3.2 shows SegAttnDetec’s overall and category-wise performance against the baseline and

existing models, in terms of the mAP. Table 3.3 compares SegAttnDetec’s performance w.r.t the

major classes in three difficulty categories; easy, moderate, and hard. These categories are deter-

mined based on how far the object is, the size of the object, and the occlusion level. It achieved

an overall mAP of 83.5%, which is a 2.4% improvement from the baseline. Comparing this work

with a similar execution in [88], it is evident that this model performs exceptionally well on small

objects in all three difficulty categories. SegAttnDetec achieved a 66.6% mAP for the pedestrian

class and a 68.7% mAP for the cyclists class on hard-to-detect scenes, which is a 28.5% and 38.8%

increase, respectively.

Table 3.2: Overall comparison of SegAttnDetec against key existing DL-based object detectors

Model Backbone
Category mAP (%) Overall # of Tr. ↑ %

Easy Moderate Hard mAP (%) params
Faster R-CNN VGG-16 (baseline) 83.16 88.97 72.62 81.58 - -

Faster R-CNN ResNet-50 83.08 79.28 73.71 78.69 41.1M -3.5

Yolov5 [15] - - - - 63.60 14.0M -22.0

BiGA-YOLO [89] - - - - 68.30 11.9M -16.3

SegAttnDetec ResNet-50 (OD) +
86.64 81.86 79.69 83.52 52.1M +2.4

(proposed) ResNet-101 (sem-seg)

Note: ↑% - improvement % compared to the baseline, # of Tr. params - number of trainable parameters.

Table 3.3: Class-wise performance comparison wrt mAP %

Object Easy Category Moderate Category Hard Category
class FR-CNN [88] SegAttnDetec FR-CNN [88] SegAttnDetec FR-CNN [88] SegAttnDetec
Car 84.81 97.22 86.18 89.70 78.03 88.90

Pedestrian 76.52 79.96 59.98 73.92 51.84 66.62
Cyclist 74.72 78.59 56.83 70.50 49.60 68.86
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3.5.2 Qualitative Analysis

Fig. 3.8 shows the proposed model’s predictions on six randomly collected samples from the KITTI

validation subset. The visualization clearly shows that the model accurately predicts small objects

and poorly represented object classes like pedestrians and cyclists. However, a closer examina-

tion of image b shows that when two pedestrians are very close (overlapping objects – marked

with a yellow box) together, the model struggles to detect them. The baseline–Faster R-CNN’s

predictions, were omitted from the visualization for clarity and simplicity.

Figure 3.8: Predictions from the proposed model. Legend:— Predicted box — Ground-truth box.

3.6 Chapter Summary

This study shows that integrating semantic features from a segmentation model using attention-

based feature fusion can effectively enhance the detection of small object classes, such as pedestri-

ans and cyclists, in traffic scenes. The proposed approach leverages existing architectural compo-

nents and demonstrates that even straightforward attention mechanisms, when guided by semantic

context, can contribute to more accurate localization of small-scale targets. Experimental results

confirm that this fusion strategy improves small object detection performance, supporting the value

of incorporating segmentation-aware attention.
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While the integration of semantic features via attention mechanisms (SegAttnDetec) yielded a

measurable gain in mAP (83.5% vs. baseline 81.6%), the modest improvement (+1.9%) suggests

underlying constraints. A contributing factor to this limitation is the segmentation model’s perfor-

mance, which achieved only 67.7% mIoU, indicating suboptimal feature extraction for small ob-

jects. Low mIoU implies noisy or incomplete semantic features, limiting their utility for detection.

For example, fragmented segmentation masks (common in small objects) may propagate errors to

the detector’s ROI pooling. Furthermore, the attention gate’s effectiveness depends on the quality

of input features. With mediocre segmentation features, the gate may attenuate useful signals if

segmentation errors correlate with detection targets. Failing to suppress noise in low-confidence

regions (e.g., object boundaries). The +8.8% mAP gain from attention (vs. concatenation) suggests

partial success, but higher-quality features could unlock further gains.

Future directions to improve detection performance include: enhancing the segmentation back-

bone by replacing DeepLabv3 with a small-object-optimized model such as Mask2Former or HR-

Net, which achieve >75% mIoU on CityScapes, to potentially yield higher-quality features. Addi-

tionally, implementing class-specific attention gates could better prioritize underrepresented object

categories. Further evaluation on larger datasets (e.g., PASCAL VOC, COCO) and investigation of

segmentation-derived confidence scores for detection refinement may validate scalability. While

the current results demonstrate the approach’s promise, these optimizations could unlock additional

performance gains and robustness.
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Chapter 4

A Specialized Feature Pyramid for Small

Object Detection

4.1 Overview

This chapter explores the Dilated Strip-wise Feature Pyramid (DSSFP), an innovative neural ar-

chitecture specifically engineered to overcome the persistent challenges of multi-scale feature rep-

resentation and small object detection in high-resolution aerial imagery. In complex environments

characterized by extreme scale variations, crowded object distributions, and highly anisotropic

structures, conventional feature-pyramid networks often struggle to maintain computational effi-

ciency and detection accuracy. The DSSFP addresses these limitations through the integration of

attention mechanisms, directional feature extraction, and adaptive multi-scale fusion.

As discussed in Chapter 2, effective strategies for small object detection include (i) leveraging

multi-scale feature hierarchies, (ii) employing attention mechanisms, and (iii) utilizing a context-

aware learning framework. These techniques help balance the inherent trade-offs between spatial

resolution and semantic richness. Additionally, specialized architectural modifications, such as

high-resolution backbones and refined feature pyramid designs, are particularly beneficial for de-

tecting objects that occupy only a few pixels. The following sections expand on these foundational
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principles to present novel contributions, specifically tailored to the challenges found in aerial

drone imagery.

The chapter is organized to progressively develop the reader’s understanding, beginning with

fundamental concepts of feature pyramid networks, followed by detailed explanations of each

architectural innovation, comprehensive ablation studies that validate design choices, and con-

cluding with extensive benchmark comparisons against current state-of-the-art methods across a

benchmark aerial imagery dataset.

4.2 Background Concepts

4.2.1 Fast Normalized Fusion

Fast normalized fusion is an efficient feature integration technique that dynamically combines

multi-scale feature maps through learnable weights. Unlike simple summation or concatenation,

this method assigns channel-wise importance weights to each input feature map before normaliza-

tion, allowing the network to automatically emphasize the most semantically meaningful features

during pyramid fusion. The weighted average operation maintains numerical stability through a

small epsilon term while preserving gradient flow during backpropagation. Originally introduced

in BiFPN [72] architecture, this approach significantly improves multi-scale feature representation

by adaptively balancing contributions from different resolution levels, high-level semantic fea-

tures from deep layers, and fine-grained spatial details from shallow layers. The computational

simplicity of fast normalized fusion shown in eq. 4.1 makes it particularly suitable for real-time

applications, as it avoids the heavy memory overhead of attention mechanisms while achieving

comparable or superior performance in object detection tasks.

U =
N∑
i=1

wi

/(
ϵ+

N∑
j=1

wj

)
Ii, (4.1)

where wi ≥ 0 and ϵ = 10−4 (numerical stability constant).
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4.2.2 Convolutional Block Attention Module

Figure 4.1: Overview of CBAM with channel and spatial attention.

In CNNs, attention can be applied across spatial and channel dimensions allowing models to

learn dynamic weighting schemes based on contextual relevance that enhance feature representa-

tions. One widely adopted method is the Convolutional Block Attention Module (CBAM) [90],

illustrated in Fig. 4.1, which operates with two sequential components: channel attention and spa-

tial attention. Channel attention dynamically recalibrates channel-wise responses by capturing

inter-channel dependencies. It does so by applying both global average pooling (GAP) and global

max pooling (GMP) across the spatial domain to create information-rich descriptors, which are

then passed through a shared MLP. The MLP output is regulated by a sigmoid function rescaling

the feature maps, effectively prioritizing informative ones. Spatial attention, in contrast, focuses

on where important features are located by using the pooled channel-wise descriptors to compute

a 2D spatial attention map. The final concatenated spatial feature maps are passed through a con-

volutional layer followed by a sigmoid activation to highlight key spatial regions.

4.2.3 Dilated Strip Convolution

Beyond attention, another crucial mechanism for enlarging receptive fields without losing res-

olution is dilated convolution (aka atrous convolution) [85]. Standard convolution operations

are limited in capturing large-scale context without downsampling. Dilated convolution resolves

this by inserting holes (or dilations) between kernel elements, allowing the network to aggre-

gate broader contextual information while maintaining the original spatial resolution. However,

41



standard (isotropic) dilated convolutions expand uniformly in all directions, which may introduce

gridding artifacts and struggle with scale-variant or elongated object structures. To address this,

strip convolutions (or dilated strip convolutions) shown in Fig. 4.2 have been proposed as an alter-

native. These kernels are axis-aligned (either horizontal or vertical), enabling the model to focus

on long-range dependencies along dominant spatial directions. This directional bias is particu-

larly beneficial in aerial and remote sensing imagery, such as UAV-based datasets, where objects

like roads, rivers, or vehicles exhibit strong orientation regularities. Compared to conventional

dilated convolutions, strip convolutions offer a more selective context aggregation mechanism,

reducing noise introduced by globally uniform dilation and improving feature specificity. For

example, Hou et al. [91] show that integrating strip kernels aligned with object orientation not

only enhances detection performance but also reduces parameter count by up to 2.3×, offering

Standard Horizontal Strip Conv Dilated Horizontal Strip Conv (rate=2)

Standard Vertical Strip Conv Dilated Vertical Strip Conv (rate=2)

Figure 4.2: Illustration of strip convolutions on a 5×5 feature map. The top row shows horizontal

strip convolutions: the standard version (left) uses contiguous cells, while the dilated version

(right) applies a gap (rate=2). The bottom row shows vertical strip convolutions with analogous

sampling patterns. The red-bordered cell indicates the center pixel.

42



a compelling trade-off between computational efficiency and representational power. Recent re-

search [92] also explores combining strip convolutions with attention mechanisms, enabling net-

works to learn both “where” to focus (spatial attention) and “how far” to aggregate (directional

dilation), which together improve accuracy in tasks with challenging geometric variability. This

hybrid approach presents promising directions for detecting scale-variant, elongated, or clustered

objects in domains like medical imaging, traffic surveillance, and UAV-based scene understanding.

4.3 Proposed Architecture

Figure 4.3: Proposed DSSFP architecture with multi-scale features {P2, P3, P4, P5}. Pi

corresponds to the ith Conv block output (Stage i in HRNet nomenclature). P3 through P5 are

progressively down-sampled higher-level features.

4.3.1 Dilated Strip-wise Spatial Feature Pyramid

The dilated strip-wise approach (cf. Fig. 4.3) allows DSSFP to simultaneously capture both fine

details (critical for tiny objects) and broader contextual information (essential for accurate clas-

sification and localization). The pyramid structure maintains these properties across multiple

scales, ensuring consistent performance regardless of object size within the image. By integrat-
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ing DSSFP, this architecture achieves superior performance in small object detection in complex

aerial scenes while maintaining computational efficiency. DSSFP delivers the precise spatial dis-

crimination. Besides, the architecture implements a sophisticated hierarchical fusion strategy that

operates across multiple resolution levels (P2-P5). Leveraging fast normalized fusion (cf. Sec-

tion 4.2.1) with learnable weights, DSSFP dynamically balances contributions from different scales

to automatically emphasize the most semantically meaningful features. The pyramid is further ex-

tended through the innovative use of deformable convolutions, which adaptively downsample low-

resolution features (from 1/32 to 1/64 scales) while preserving critical spatial information through

learned sampling offsets.

Figure 4.4: Illustration of the ASDC that utilizes DDSC blocks with dilation rates 1, 3, and 6 for

better feature representation.

To construct the DSSFP, a novel Atrous Split Depthwise Convolution (ASDC) block (cf. Fig. 4.4)

is incorporated, to create a computationally efficient yet highly expressive building block. ASDC

uniquely combines two key innovations: (a) Parallel depthwise strip convolutions (horizontal 1×3

and vertical 3×1 kernels) that capture directional patterns, and (b) Multiple dilation rates (1, 3, 6)

that efficiently expand receptive fields without increasing parameter count.
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This dual approach enables the network to model long-range spatial relationships while main-

taining sensitivity to the anisotropic structures.

4.4 Model Optimization Strategies

4.4.1 Quest for the Best Backbone and FPN

Table 4.1: The summary of the sanity test during the quest for the best backbone and FPN

Model Params (M) ↓ Test Loss ↓ Test mAP (%) ↑

A. Baseline Model

RetinaNet-R101 w/FPN [55] 57.0 0.980 9.62

B. Backbone Ablation Study (with RetinaNet)

GhostNet [93] 9.9 1.020 3.55
EfficientNet-Tiny [94] 21.1 0.990 9.54
HRNetV2-W18 [51] 20.1 0.930 9.62

C. Feature Pyramid Ablation (HRNet-W18 Backbone)

FPN [95] 20.1 0.933 9.62
BiFPN (1 block) [72] 18.8 0.931 9.77
BiFPN (3 blocks) 19.9 0.929 9.79
SSPN [96] 29.3 0.956 9.67
SSBiFPN 25.6 0.956 8.92

Note: All metrics reported on VisDrone-2019 test set. ↓ indicates lower is better, ↑ indicates higher is better.
Implementation Details: Input size = 640×640, batch size = 4, trained on 20% of the train set.

To establish a comprehensive baseline for the architectural improvements, a systematic evalua-

tion of feature pyramid networks (FPNs) and backbone architectures was conducted to establish a

comprehensive baseline for comparison against proposed architectural improvements. While prior

work [72] has demonstrated BiFPN’s superiority over FPN, this work sought to verify these find-

ings independently within the experimental framework. RetinaNet was employed as a representa-

tive one-stage detector. For these comparative studies, a mini version of the VisDrone-2019 [1] that

captures the unique challenges of aerial object detection was curated. Experiments encompassed

multiple FPN variants, including SSPNet [96] and BiFPN, with particular attention to their inter-
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action with different backbone architectures. HRNet was identified as the most effective backbone

through extensive testing.

Following the selection of optimal backbone and FPN components, the proposed ADSC mod-

ules were integrated into the upsampling blocks. The quantitative results of these architectural

comparisons are presented in Table 4.1, which demonstrates the performance advantages of the

selected configuration. This rigorous evaluation validated the choices of backbone and feature

pyramid module, providing valuable insights into the relative contributions of both components to

the overall system performance.

4.4.2 Optimizing the Architecture

Our initial architecture, shown in Fig. 4.5 which combined DSSFP and large field-of-view (cf.Fig. 4.6)

delivered strong detection performance but required considerable computational resources, as re-

flected in its higher GFLOPS measurement. To improve computational efficiency, we explored

an optimized design by strategically combining the DSSFP module with the large field-of-view

(FOV) approach. The key modification involved repositioning the ASDC block to operate after the

final feature fusion stage, as illustrated in Fig. 4.3.

Figure 4.5: Initial DSSFP architecture with multi-scale features {P2, P3, P4, P5}. Pi corresponds

to the ith Conv block output (Stage i in HRNet nomenclature). P3 through P5 are progressively

down-sampled higher-level features.
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This architectural adjustment yielded significant efficiency gains, reducing the computational

cost from 150 GFLOPS to 115 GFLOPS - a 23% decrease in floating-point operations. While

this modification introduced a slight increase in parameters (from 31.6 million to 33.0 million),

the trade-off proved favourable. The optimized model achieved a mean average precision (mAP)

of 27.4%, representing only a marginal 0.2% reduction compared to the original implementation.

Given the substantial 35 GFLOPS reduction in computational overhead, this minor performance

trade-off was well justified, particularly for deployment scenarios where computational efficiency

is paramount. The revised architecture demonstrates that careful structural modifications can yield

significant efficiency improvements while maintaining competitive detection accuracy.

Figure 4.6: An illustration of the Large FOV head, where N , H , and W denote the batch size and

height and width of the feature map, respectively. Its output is passed to the regression and

classification heads.

Large Field-of-View Mechanism

The architecture introduces an expanded field-of-view (FOV) mechanism, as shown in Fig. 4.6,

on the detection head of the model, enabling each layer to capture broader contextual information

while maintaining computational efficiency. This large FOV design is particularly crucial for aerial

imagery, where objects may have important long-range spatial relationships that need to be consid-

ered for accurate detection. The expanded receptive fields allow the network to better understand

scene composition and object relationships at multiple scales.
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4.4.3 Enhancing the Feature Representation of the Backbone

Momentum Contrast (MoCo) [97], a contrastive learning-based self-supervised learning (SSL)

framework illustrated in Fig. 4.7 was employed to pre-train the chosen backbone on unlabeled

aerial imagery. This approach learns transferable feature representations to the downstream task,

in this case, object detection, by optimizing a contrastive objective that distinguishes between:

• Positive pairs: Differently augmented views of the same image (query q and key k)

• Negative samples: Features of unrelated images stored in a dynamic memory queueSimCLR
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Figure 4.7: An illustration of the MoCo pipeline. It is asymmetrically trained: Only the query

embedding path is trained end-to-end, while the key embedding path is updated via (4.2).

MoCo maintains separate networks for query and key embeddings, as illustrated in Fig. 4.7.

Its training is asymmetric, i.e., only the query path, f q
θ (·) + gqγ(·), is updated via backpropagation

using a modified InfoNCE loss function, while the key embedding path is updated via a momen-

tum update with smoothing exponentially moving average (EMA). For instance, the key encoder

parameter, θk, is updated as:

θk ← mθk + (1−m)θq, (4.2)

where m ∈ [0, 1) is a momentum coefficient, and θq is the query encoder parameter. The same

update rule applies to the key projection network, gkγ(·). MoCo optimizes contrastive loss using

48



the dynamic queue:

LMoCo = − log
exp(sim(q,k+)/τ)∑K
i=1 exp(sim(q,ki)/τ)

, (4.3)

where q is the query representation, k+ is the positive key (an augmented view), ki are negative

keys (from the queue), τ is a temperature parameter, and sim(·, ·) denotes cosine similarity.

Figure 4.8: Training plot during pre-training of the backbone network via MoCo.

The contrastive learning framework employs dual HRNetV2-W18 encoders with a 128-dimensional

projection space. The momentum encoder (updated via EMA with m=0.996) maintains stable fea-

ture targets, while separate memory banks handle negative samples - a 4,096-entry queue for train-

ing and a 1,024-entry queue for validation. The InfoNCE loss operates on these memory banks,

with the larger training queue ensuring diverse negative samples and the compact validation queue

optimizing memory usage during evaluation. This implementation achieves stable convergence, as

shown in the training curves in Fig. 4.8, with the EMA updates preventing representation collapse

while allowing progressive feature refinement.
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The Momentum Contrast framework critically depends on carefully designed image transfor-

mations to generate meaningful positive pairs. The augmentation pipeline uses probability-based

generation where p is the probability and combines the following transformations:

• Core Contrastive Augmentations: Random resized crop (scale 0.2–1.0) with aspect ratio

preservation, Horizontal flip (p = 0.5) , Vertical flip (p = 0.2)

• MoCo v2 Standard Augmentations: Color jitter (p = 0.8, brightness=0.4, contrast=0.4,

saturation=0.4, hue=0.1), Gaussian blur (p = 0.5, σ ∈ [0.1, 2.0], kernel size 5× 5)

• Domain-Specific Adaptations: Random grayscale conversion (p = 0.2), ImageNet normal-

ization (mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])

These transformations serve two essential purposes:

1. Create valid positive pairs through semantic-preserving geometric variations (crops/flips)

2. Prevent trivial solutions by breaking low-level feature correlations (color/blur)

The GFL+HRNet model with self-supervised learning (SSL) pretraining achieved 24.2% mAP,

demonstrating a 0.6 percentage point improvement over the same model without SSL pretraining

(23.6% mAP).

4.4.4 Augmentation for Better Model Generalization

To enhance the robustness and generalization of the proposed model, a series of data augmenta-

tion strategies were applied during training. These techniques are particularly important for small

object detection, where limited diversity and resolution can negatively impact model performance.

Mosaic augmentation was used to combine four different images into a single composite image,

enabling the model to learn from varied object scales and contexts within a single training instance.

MixUp, which blends two images and their labels to produce a soft-labelled sample, served as a

regularization technique to reduce overfitting. Additionally, random horizontal flipping was em-

ployed to introduce geometric variability, helping the model become invariant to object orientation.
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Figure 4.9: Augmentation examples using colour jitter, mixup, mosaic, and random crop.

Color jittering was also applied to simulate changes in illumination by randomly adjusting bright-

ness, contrast, saturation, and hue, improving the model’s resilience to diverse lighting conditions.

As illustrated in Fig. 4.9, these augmentation strategies significantly increased the visual and

contextual diversity of the training data, contributing to a more stable and effective learning pro-

cess, especially for detecting small and challenging object classes.
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4.4.5 Hyperparameter Optimization

The hyperparameters: head depth, atrous convolution rates, learning rate, loss function and as-

signed are found to significantly impact model performance, as summarized below.

• Model Architecture: Four detection frameworks (Faster R-CNN, RetinaNet, FCOS, and

GFL) were evaluated for small object detection, with GFL demonstrating superior perfor-

mance. While Faster R-CNN struggled with fixed anchor scales and RetinaNet showed

limitations in label assignment, GFL’s integrated approach, combining dynamic label as-

signment, joint classification, localization optimization, and continuous box representation,

proved most effective for handling aerial imagery’s dense distributions and extreme scale

variations. FCOS performed competitively but exhibited confidence-localization discrepan-

cies that GFL’s unified prediction head successfully addressed. This systematic comparison

motivated the selection of GFL as the base detection framework.

• Dilation Configuration Analysis: Systematically evaluated dilation configurations across

architectural components, ADSC in DSSFP; found the triple dilation (1,3,6) most effective,

as the strip convolution’s elongated receptive fields naturally capture broader contexts

This selective approach, using expanded dilations in standard convolutions but compact ones

in ADSC, optimizes the trade-off between receptive field coverage and computational effi-

ciency across different operator types.

• Learning Rate: Through empirical validation, 0.01 was established as the optimal learning

rate for stable training. Higher values consistently induced exploding gradients, while lower

rates significantly slowed convergence without improving final performance. This config-

uration maintained effective gradient flow throughout all training stages, balancing update

precision with training efficiency.

• Assinger and Loss Function: A comparative study between task-aligned assinger (TAA)

paried with VFL detection framework and the ATSS assignment strategy with GFL loss was
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performed to establish the best assignment algorithm. The TAA+VFL architecture demon-

strated clear advantages in detection accuracy, particularly for challenging scenarios. The

key strength of TAA+VFL lies in how the assigned operates, it dynamically selects training

samples based on a combination of classification confidence and localization quality (IoU).

This approach ensures that the model prioritizes well-aligned predictions during training,

effectively addressing the common misalignment between classification and bounding box

regression tasks. The integration of VFL loss further enhances performance by adaptively

weighting positive samples according to their IoU scores, while the Distribution Focal Loss

(DFL) refines bounding box predictions by modeling their distributions rather than relying

on single-point estimates.

Table 4.2: Comparison of ATSS+GFL and TAA+VFL

Model Test mAP ↑ Test mAP@50 (%) ↑

GFL-HRNet+LargeFOV 25.4 40.5
GFL-HRNet+DSSFP+LargeFOV 26.3 41.6
TAL-HRNet+DSSFP+LargeFOV 27.6 46.8

Note: All metrics reported on VisDrone-2019 test set. ↓ indicates lower is better, ↑ indicates higher is better.
Implementation Details: Input size = 640×640, batch size = 6.

By contrast, the ATSS assigner employs a more conventional iou-based statistical approach for

sample selection, pairing it with the GFL to jointly optimize classification and bounding box qual-

ity estimation. While this combination offers computational efficiency and works well for general

object detection, it lacks the explicit task-alignment mechanism that makes TAA particularly ef-

fective for complex cases. Through experimentation it was revealed that TAA+VFL consistently

outperformed the ATSS+GFL approach in detection accuracy, especially for small objects and

crowded scenes. The superior performance can be attributed to TAA+VFL’s ability to maintain

better harmony between classification and localization objectives during training, leading to fewer

false positives and more precise detections. These findings suggest that for applications where

detection precision is paramount, the task-aligned paradigm provides a more robust solution than

traditional assignment strategies like ATSS paired with GFL. Table 4.2 summarizes the findings.
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4.5 Model Training

The following sections detail the training protocol and performance analysis.

4.5.1 VisDrone Dataset

Figure 4.10: Class distribution of objects in VisDrone-2019 [1] dataset.

The VisDrone-2019 benchmark dataset is a large-scale aerial imagery collection containing 10

object categories (pedestrian, people, bicycle, car, van, truck, tricycle, awning-tricycle, bus, and

motor) captured across diverse urban and rural environments in China. The dataset comprises

261,908 frames extracted from 288 video clips and 10,209 static images acquired using various

drone platforms under different weather and lighting conditions. These images are annotated with

over 2.6 million bounding boxes, including detailed attributes for occlusion levels and visibility

states. Fig. 4.10 shows the distribution of the labels in the dataset.

The dataset is mutually exclusive, divided into training (6,471 images), validation (548 im-

ages), and test sets (1,610 images), providing comprehensive coverage of challenging aerial sce-

narios ranging from sparse to highly crowded scenes. Collected across 14 cities with multiple

drone models, VisDrone-2019 represents one of the most extensive and varied benchmarks for
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drone-based object detection, particularly for studying small object detection in complex environ-

ments.

4.5.2 AI-TOD Dataset

Figure 4.11: Class distribution of objects in AI-TOD [2] dataset.

The AI-TOD (Aerial Image Tiny Object Detection) dataset is a specialized benchmark designed

for advancing tiny object detection in aerial imagery. It focuses on extremely small objects (often

less than 16×16 pixels) captured in high-resolution satellite and drone images. The dataset includes

28,036 images annotated with 700,621 bounding boxes across 8 object categories, which are air-

plane, bridge, person, ship, swimming-pool, storage-tank, vehicle and wind-mill. These objects

exhibit significant scale variations and are densely distributed in complex backgrounds, posing

unique challenges for detection algorithms. The dataset is widely used to evaluate state-of-the-art

detectors for small objects, particularly in remote sensing and surveillance applications.

While VisDrone focuses on drone-captured urban scenes with objects like pedestrians and cars,

AI-TOD targets satellite/UAV imagery with sub-16px objects, emphasizing extreme scale varia-
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tions. Both datasets address aerial detection but cater to distinct research needs (general urban

objects vs. tiny structured objects).

4.5.3 Training of the Proposed Model

For systematic and comprehensive model development and comparison, this study trains and tests

the baseline model and the proposed model. The proposed model aims to minimize three losses:

Varifocal (VFL) as in 4.4, Bounding box regression (DFL) as defined in (4.5), and Bounding box

overlap loss (GIoU) as expressed in (4.6).

LVFL =


−q(q log(p) + (1− q) log(1− p)) if q > 0

−αpγ log(1− p) otherwise
(4.4)

where p is the predicted classification score (sigmoid output, p∈ [0, 1]). y is a binary label (y = 1

for positive, y = 0 for negatives samples) and β is a modulating factor (typically β = 2) to balance

easy/hard examples.

DFL(Si, Si+1) = − ((yi+1 − y) log(Si) + (y − yi) log(Si+1)) , (4.5)

where y is the bounding box coordinate (the target value), yi and yi+1 the nearest two values

satisfying yi ≤ y ≤ yi+1, and Si, Si+1 are the predicted probabilities for yi and yi+1.

GIoU = IoU− C \ (A ∪B)

C
, (4.6)

where IoU is standard Intersection over Union, A: Area of predicted bounding box, B: Area of

ground truth bounding box, C: Area of the smallest enclosing convex shape containing both A and

B, \: Set difference operator. The final loss (TAL) is a combination of the above losses and can be

summarized as:

Loss(TAL) = 0.5× VFL + 1.5× DFL + 7.5× LossGIoU (4.7)
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Figure 4.12: Training progress of the baseline GFL model with respect to mAP and loss versus

training epochs on the VisDrone benchmark dataset.

(a) Training loss versus epochs. (b) Validation loss and mAP versus epochs.

Figure 4.13: Training progress of the proposed model on the VisDrone benchmark dataset,

showing the convergence behaviour of the proposed model

Figures 4.12, 4.13, and 4.14 present the training plots for the baseline and proposed model

on VisDrone and AI-TOD, respectively, based on the minimization of the combined loss. The

VisDrone-2019 training loss shows a steady decline across epochs, with box loss converging faster

than class loss, indicating stable learning of object localization. In contrast, AI-TOD exhibits more

volatile loss fluctuations, particularly in DFL, reflecting the inherent challenges of optimizing for
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(a) Training loss versus epochs. (b) Validation loss and mAP versus epochs.

Figure 4.14: Training progress of the proposed model on the AI-TOD benchmark dataset,

showing the convergence behaviour of the proposed model

extremely small objects. Both datasets demonstrate initial high losses that gradually stabilize,

though AI-TOD’s convergence is slower due to its fine-grained detection requirements. All mod-

els were trained with data augmentation and evaluated using the official mAP metric. For fair

comparison, all baseline and ablation variants were trained under identical settings.

4.6 Experimental Analysis

4.6.1 Environment

All models were developed using Python 3.11.5 with PyTorch 2.1, TorchVision, and MMEngine

and Ultralytics frameworks. The experiments were executed on Compute Canada’s Narval cluster,

utilizing four NVIDIA A100-SXM4-40GB GPUs (40GB HBM2 VRAM each) with 3rd Gen AMD

EPYC processors and 128GB system memory.

4.6.2 Quantitative Analysis

VisDrone

Referring to Table 4.4, the proposed approach demonstrates substantial performance gains in object

categories characterized by small physical dimensions and densely packed spatial arrangements,
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Table 4.3: Performance Comparison on VisDrone-2019

Model Input Size Params (M) ↓GFLOPS ↓AP (%) ↑AP50 (%) ↑

YOLO-Based Detectors

YOLOv8-M [98] 640× 640 25.9 78.9 24.6 40.7
YOLOv8-L [98] 640× 640 43.7 165 26.1 42.7
YOLOv9-S [99] 640× 640 17.2 26.7 22.9 38.3
YOLOv9-M [99] 640× 640 20.1 76.8 25.2 42.0

UAV Object Detectors

QueryDet [100] 2400× 2400 33.9 212 28.3 48.1
Cascade RCNN+ [1] 736× 736 - - 17.67 34.9

Transformer Based Detectors

DETR [101] 1333× 750 60.0 187 24.1 40.1
Deformable DETR [63] 1333× 800 40.0 173 27.1 42.2
Sparse DETR[102] 1333× 800 40.9 121 27.3 42.5
RT-DETR-R50[103](SOTA) 640× 640 42.0 136 28.4 47.0

Our Methods

GFL-ResNet101(Baseline) 640× 640 51.3 112 22.4 36.8
TAL-HRNet-DSSFP 640× 640 31.6 115 27.6 46.4
Note: ↓ (Lower is better), ↑ (Higher is better).

Table 4.4: AP Scores on VisDrone-DET2019 Test Set by Category

Method Object Categories

Ped. Pers. Bike Car Van Truck Tric. Awn. Bus Motor

CornerNet 20.4 6.5 4.5 40.9 20.2 20.5 14.0 9.2 24.3 12.1
RetinaNet 9.9 2.9 1.3 28.9 17.8 11.3 10.9 8.0 22.2 7.0

Our Methods

GFL-ResNet101(Baseline) 12.3 4.2 6.0 44.1 31.8 36.2 14.3 12.6 50.1 12.1
TAL-HRNet-DSSFP 20.4 12.0 9.7 57.1 37.0 36.4 17.7 16.1 48.0 21.7

such as persons and bicycles. The observed improvements underscore the effectiveness of the

proposed pyramid architecture in retaining fine-grained local details while simultaneously aggre-

gating contextual cues from broader receptive fields. This balance is crucial for detecting small

and densely located objects, which often rely on subtle visual cues that may be lost in traditional

downsampling operations.

59



Furthermore, as illustrated in Table 4.3, the model not only achieves accuracy that is competi-

tive with, and in some cases superior to, state-of-the-art and contemporary detection frameworks,

but it also does so with favorable computational efficiency. This trade-off between accuracy and re-

source consumption is particularly important in real-world UAV-based applications, where onboard

processing power and memory are constrained. Overall, these results validate the effectiveness of

the feature pyramid enhancements and highlight the model’s practical utility in scenarios involving

small object detection under resource-limited conditions.

AI-TOD

Table 4.5: Performance Comparison on AI-TOD Dataset

Model AP50 (%) ↑ AP (%) ↑

Cascade R-CNN [104] 30.8 13.8
FCOS [60] 24.1 9.8
CenterNet [61] 39.2 13.4
DetectoRS [105] 32.9 14.8
FSANet [106] 41.4 15.2
SP-YOLOv8s [107] 48.4 22.7
MSFE-YOLO [108] 50.1 22.8
SOD-YOLOv8n [109] 50.7 23.4
FM-RTDETR [110] 56.3 26.9
TAL-HRNet-DSSFP 59.9 27.8

Table 4.5 reveals that DSSFP not only surpasses contemporary frameworks, achieving 59.9%

AP50 and 27.8% AP, a +3.6% AP50 margin over the transformer-based FM-RTDETR, but also

maintains computational efficiency critical for UAV deployments. While FM-RTDETR [110]

shows competitive accuracy, DSSFP’s hybrid design balances precision and resource constraints,

making it viable for edge devices. For instance, it outperforms anchor-free methods like FCOS by

+35.8% AP50 without incurring the memory overhead of dense attention mechanisms.

The results in table 4.6 uncover persistent challenges in low-frequency categories like wind-

mills and low-contrast objects like swimming-pools, where even DSSFP struggles due to limited

training data and ambiguous visual features. However, its consistent gains across structured ob-
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Table 4.6: AP Scores on AI-TOD Test Set by Category

Object Categories

Method

FCOS
[60]

CenterNet
[61]

Cascade
RCNN [104] DSSFP

Airplane 14.30 17.43 25.57 37.9
Bridge 4.75 9.46 7.47 20.4
Storage-tank 19.8 25.93 23.33 47.2
Ship 22.24 21.86 23.55 40.5
Swimming-pool 0.65 6.21 10.81 16.2
Vehicle 12.51 16.54 14.09 34.5
Person 3.98 8.12 5.34 18.3
Windmill 0.17 1.94 0.00 0.08

jects, like bridges with a +15.7% AP over FCOS, highlight its robustness to scale variation, a key

advantage for aerial imagery where object sizes vary drastically.

4.6.3 Qualitative Analysis

To complement our quantitative results, we conduct a qualitative analysis of model behaviour

through visual examples and failure cases. Predictions are visualized on both VisDrone (Fig. 4.15)

and AI-TOD (Fig. 4.16) datasets. The results demonstrate our model’s ability to accurately detect

small objects in dense, cluttered environments by effectively utilizing multi-scale contextual infor-

mation. However, we observe that certain heavily occluded objects or those in extremely congested

areas remain challenging cases that are occasionally missed.

4.7 Chapter Summary

This chapter presented an enhanced object detection framework that addresses critical challenges

in small object detection through three key innovations: (1) an adaptive receptive field expansion

mechanism for multi-scale feature capture, (2) a hierarchical feature refinement module to preserve

fine-grained spatial details, and (3) a global context aggregation strategy to mitigate information

loss in downsampling operations.
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On VisDrone, the model achieves 26.3% mAP, marking a 17.4% relative improvement over the

baseline while maintaining a lightweight parameter footprint. Notably, this method approaches the

SOTA (28.4%), demonstrating its efficacy in detecting small and densely packed objects.

On AI-TOD, it sets a new SOTA of 27.8% mAP, a 3.4% absolute gain over prior methods (FM-

RTDETR: 26.9%), demonstrating unparalleled capability for extremely small-object detection.

These findings demonstrate the effectiveness of the proposed architecture and provide insights

for real-world object detection. However, the model struggles with specific categories, likely due to

their extreme smallness and limited representation. Future work will focus on optimizing inference

speed while maintaining detection performance and evaluating generalization on a dataset with

varying object scales.

Figure 4.15: Qualitative results of the proposed method on the VisDrone test set. Only

predictions with confidence scores larger than 0.3 are demonstrated. Legend:— Prediction —

Ground-truth.
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Figure 4.16: Qualitative results of the proposed method on the AI-TOD test set. Only predictions

with confidence scores larger than 0.3 are demonstrated. Legend:— Prediction — Ground-truth.
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Chapter 5

Conclusion

Small object detection is challenging due to limited resolution, weak feature representation, and

increased background noise associated with small-scale targets. Recognizing its importance in

safety-critical domains such as autonomous driving and aerial surveillance, this thesis proposes

two methodologies to improve detection performance.

Although the attention design in the first methodology was intentionally simple, its integra-

tion into the detection architecture demonstrates that even modest enhancements, when guided by

cross-task learning, can lead to meaningful improvements in small object localization and hard-to-

identify classes.

Furthermore, enhancing feature pyramid structures by introducing dilated strip depth-wise con-

volutions is effective at addressing the resolution–semantics trade-off that often hinders small ob-

ject detection performance.

Collectively, these methodologies contribute to a flexible and modular architecture that can be

adapted to other vision tasks or detection backbones. The techniques explored in this thesis high-

light the value of combining semantic guidance, multi-scale feature fusion, and spatially adaptive

receptive fields to address the inherent challenges of small object detection. The resulting architec-

ture balances performance and efficiency, making it a strong candidate for deployment in practical,

resource-constrained environments.
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While the results are promising, several limitations remain. The quality of semantic features

imputed to the detection model continues to constrain the overall performance ceiling. Addition-

ally, although the architecture is lightweight, the added modules introduce computational overhead

that must be considered for real-time applications. These findings point to important directions for

future research.

Thus, future research will focus on three main directions: (i) improving the segmentation back-

bone to enhance the quality of semantic features, (ii) reducing computational latency for real-time

deployment, and (iii) evaluating the methodologies across a broader set of datasets, such as COCO

and PASCAL VOC, to test their generalizability across varying object densities and scales. More-

over, further investigation into advanced attention mechanisms could help improve segmentation

and detection performance without increasing reliance on labelled data.

In conclusion, this thesis contributes a practical and extensible architecture through carefully

designed feature fusion and context-aware enhancements. It offers valuable insights for improving

the detection of small objects and lays the groundwork for future advances in multi-task learning

and real-world object detection systems.
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B Source Code

The source codes of this thesis are available on GitHub.

For more information about the author’s publications, please refer to LinkedIn profile.

LinkedIn: LinkedIn.
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