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ABSTRACT 

 Understanding how landscape features shape genetic connectivity is critical for 

conserving wide-ranging species like woodland caribou (Rangifer tarandus caribou), particularly 

in managed landscapes where resource extraction and anthropogenic disturbance occur alongside 

natural disturbance. We used microsatellite genotypes from 244 individuals and four genetic 

distance metrics (Fij, Dps, PCA10, PCA64) to optimize resistance surfaces with ResistanceGA 

and assess spatial patterns of genetic structure in the Churchill Range, northwestern Ontario. 

Despite moderate genetic diversity (mean He = 0.68) and extremely low pairwise FST (< 0.003), 

spatial autocorrelation and clustering analyses indicated weak but significant genetic structure 

consistent with isolation by distance. Resistance modeling showed that isolation by distance 

alone provided a poor fit relative to models incorporating landscape features. Wetlands 

consistently emerged as the dominant predictor across three allele frequency–based metrics 

(DPS, PCA10, and PCA64), highlighting their role in sustaining broad-scale gene flow. In 

contrast, coniferous forest paired with water was the top predictor for kinship-based Fij, 

suggesting that conifer habitats influence genetic structure through more recent demographic 

processes such as philopatry and site fidelity. These results establish a genetic baseline for 

caribou in the Churchill Range and demonstrate that connectivity is shaped primarily by 

wetlands, with conifer habitats also contributing to more recent genetic structuring. 

 

Keywords: woodland caribou, landscape genetics, gene flow, isolation by distance (IBD), 

isolation by resistance (IBR), population structure, habitat connectivity, wetlands, coniferous 

forest  
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INTRODUCTION 

Preserving ecological integrity to support biodiversity has become increasingly important 

as landscapes face rising pressures from human development and climate change (Bellard et al. 

2012, Keck et al. 2025). A key concern for species at risk is the disruption of gene flow, which 

maintains genetic diversity, reduces inbreeding, and supports adaptive capacity (Manel and 

Holderegger 2013, Sexton et al. 2024). Habitat fragmentation caused by natural and 

anthropogenic disturbances can significantly alter population structure and reduce genetic 

connectivity (Keyghobadi 2007, Rivera‐Ortíz et al. 2015). Fragmented landscapes limit dispersal 

opportunities, leading to genetic isolation and increased genetic differentiation among 

subpopulations (Frankham et al. 2010). Isolated populations face elevated extinction risk due to 

reduced genetic diversity, demographic instability, and a diminished likelihood of rescue via 

immigration. Understanding how various landscape features influence genetic connectivity is 

therefore central to effective conservation planning (Manel et al. 2003, Sork and Waits 2010). 

Landscape genetics provides a framework for quantifying how gene flow is shaped by 

both geographic distance and environmental heterogeneity (Manel et al. 2003). One of the most 

common patterns observed is isolation by distance (IBD), where genetic differentiation increases 

with geographic separation due to spatial limits on dispersal (Wright 1943). In highly mobile 

species, this relationship is often weaker than in more sedentary species because individuals can 

travel long distances and maintain gene flow across broader areas (Hillman et al. 2014). Still, 

even in mobile species, landscape configuration can influence movement behavior in ways that 

may not be evident from geographic distance alone (Coulon et al. 2004; Palm et al. 2023) 
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To address this, landscape genetics increasingly examines isolation by resistance (IBR), a 

framework that links genetic connectivity to the permeability of the landscape. IBR occurs when 

specific environmental features reduce or enhance the probability of successful dispersal, 

regardless of straight-line distance (McRae 2006). For example, roads, logged areas, or water 

bodies may act as resistance features (Courtois et al. 2008, Fortin et al. 2008, Anderson and 

Thomson 2024), while features such as continuous forest or wetlands are generally associated 

with increased connectivity (Stuart-Smith et al. 1997, Hornseth and Rempel 2016). The strength 

and direction of resistance effects can vary depending on spatial scale, species ecology, and 

landscape context (Palm et al. 2023). Distinguishing IBD from IBR is critical for understanding 

the ecological processes shaping genetic structure, especially in conservation settings where 

targeted habitat protection or restoration is needed to support connectivity (Manel et al. 2003). 

Woodland caribou (Rangifer tarandus caribou) are listed as threatened under the 

Canadian Species at Risk Act (SARA) and the Ontario Endangered Species Act (ESA). Boreal 

populations face ongoing declines (Environment Canada 2012, Lelotte et al. 2025) and reduced 

genetic diversity has been observed in some regions, particularly in southern parts of the range 

where landscape disturbance and range retraction are most pronounced (Thompson et al. 2019). 

These patterns raise concerns about long-term population viability, especially where gene flow is 

limited and local extirpation risk is high. 

Relatively few landscape genetic studies have explicitly evaluated which features impede 

gene flow in boreal caribou (Weckworth et al. 2013, Priadka et al. 2019, Anderson and Thomson 

2024). Among those that have, roads and waterbodies have emerged as potential contributors to 

genetic differentiation (Priadka et al. 2019, Anderson and Thomson 2024). Across boreal regions 
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of Alberta, Saskatchewan, and Manitoba, (Priadka et al. 2019) found that isolation by distance 

(IBD) was the dominant pattern, but resistance models incorporating roads consistently 

explained spatial genetic structure, with waterbodies contributing in eastern regions. Fire, by 

contrast, was the least important variable and did not improve model fit relative to IBD. In 

Ontario, a ResistanceGA-based analysis by Anderson and Thomson 2024 similarly identified 

roads as the only consistent predictor of genetic structure, with fire offering no better explanatory 

power than IBD. In contrast, Weckworth et al. 2013 found that resistance models including 

disturbance and landscape features did not explain genetic structure better than IBD alone in 

Alberta populations. These mixed findings may reflect regional differences in landscape context 

or variation in study design and scale. Notably, none of these studies evaluated whether natural 

features might facilitate gene flow - a critical omission given the potential for intact habitat, 

wetlands, or other low-resistance elements to promote connectivity.  

Several approaches have been used to evaluate the influence of landscape features on 

gene flow. Exploratory methods such as MEMGENE (Galpern et al. 2014) partition spatial 

genetic variation using Moran’s eigenvector maps, offering insights into broad- and fine-scale 

spatial structure. However, MEMGENE does not directly test landscape hypotheses, and 

landscape interpretations must be conducted post hoc using resistance surfaces that are often 

subjectively defined. Similarly, basic regression approaches (e.g., partial Mantel tests or MLPE 

models), and circuit theory-based tools such as Circuitscape (McRae et al. 2008, Shah and 

McRae 2008) require researchers to assign resistance values a priori (e.g., Ruiz-Gonzalez et al. 

2015, Emel et al. 2019). While Circuitscape is a powerful tool for modeling movement across 

heterogeneous landscapes, it cannot determine optimal resistance values without external input 
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and thus shares the same limitation of subjectivity. These methods often test only a narrow range 

of assumptions and may not adequately reflect the complexity of movement across real-world 

landscapes. In contrast, ResistanceGA (Peterman 2018) uses a genetic algorithm to iteratively 

search resistance parameter space and identify values that best explain observed genetic 

differentiation. Competing models are evaluated using AIC-based model selection, allowing 

researchers to empirically determine which landscape features and combinations provide the 

strongest fit. This optimization framework reduces bias, increases reproducibility, and enables a 

more realistic, data-driven assessment of functional connectivity. 

While resistance-based models have been used to explore caribou connectivity, most 

emphasize impediments to movement such as roads, harvest blocks, and seismic lines, and rely 

on subjectively assigned resistance values or limited scenario testing (Weckworth et al. 2013, 

Priadka et al. 2019). Natural features that may facilitate gene flow, such as contiguous forest, 

wetlands, or intact habitat, are rarely incorporated despite their ecological importance and their 

roles in habitat selection and predator avoidance (Bergerud 1985, Rettie and Messier 2000, 

Courbin et al. 2009). This omission may lead to an incomplete or biased understanding of 

functional connectivity, particularly for a wide-ranging species like boreal caribou, whose 

movement is shaped by both avoidance of risk and attraction to safe or resource-rich 

environments (Rettie and Messier 2000, Mumma et al. 2019). Recognizing these dual influences 

is critical for developing conservation strategies aimed at maintaining gene flow and 

demographic connectivity across fragmented ranges. By explicitly evaluating potential 

facilitators of movement alongside traditional resistance features, our study addresses this gap 
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and contributes to a more balanced and ecologically grounded understanding of landscape 

connectivity in caribou.  

The objectives of this study are to (1) provide the first comprehensive, fine-scale 

assessment of population genetic structure in the Churchill Range, establishing a baseline for 

conservation and land-use planning, and (2) identify which landscape features most strongly 

facilitate or impede genetic connectivity in woodland caribou. We hypothesize that natural 

features such as wetlands and contiguous forest act as key facilitators of gene flow, while 

anthropogenic features such as roads and harvest areas act as barriers. We further hypothesize 

that models incorporating multiple features-both facilitators and resistors-offer a more realistic 

explanation of genetic structure than models based on any single factor. By clarifying the 

landscape factors that shape connectivity in the Churchill Range, this study provides 

conservation practitioners with evidence-based guidance for protecting key habitats and 

mitigating barriers. The results establish a genetic baseline for woodland caribou in this range 

and contribute directly to landscape-level planning to support their long-term persistence. 
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METHODS 

Study Area 

The Churchill Range is located north of Sioux Lookout, Ontario, and forms part of the 

continuous distribution of woodland caribou in the province. Covering an area of 21,300 km², the 

range is primarily forested, with extensive wetlands and numerous lakes. Prominent waterbodies 

within the range include De Lesseps Lake, Churchill Lake, Birch Lake, Confederation Lake, Lac 

Seul, and Lake St. Joseph - all of which are considered important calving lakes (MNRF 2014). 

The Cat River lake-chain forms the northern boundary of the range. 

Geologically, the Churchill Range lies within the Boreal Shield, underlain by 

Precambrian bedrock and shaped by glacial features such as eskers, moraines, and sandy 

outwash deposits (MNRF 2014). The soils are generally non-calcareous and poorly developed, 

with areas of exposed bedrock, thin soil cover, and extensive wetlands. These include treed bogs 

and fens dominated by black spruce (Picea mariana), sedges, and mosses. Peatlands are 

widespread, supporting carbon storage, poor drainage, and seasonal caribou refuge habitat. 

Coniferous forests throughout the range also provide critical winter forage in the form of 

arboreal and terrestrial lichens (Cladonia spp.). 

Climate data from 1991 to 2020 for Sioux Lookout indicate an average annual 

precipitation of 776.7 mm, with 209.5 mm falling as snow (Environment Canada 2020). The 

average daily temperature over the same period was 2.1 °C. These cool, moist conditions support 

the persistence of boreal ecosystems. 
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Disturbances in the Churchill Range have been shaped by both natural events and human 

activity (MNRF 2014) Historical fires have had a major influence, with significant burns 

occurring in 1940, 1961, 1996, 2003, and 2011. The 2012 Integrated Range Assessment found 

that 41.3% of the range had been disturbed, with 35.9% attributed to anthropogenic sources (e.g., 

harvest blocks, roads, hydro lines) and 5.4% to natural causes (MNRF 2014). Roads are 

concentrated in the southern and central portions of the range near Sioux Lookout, ON, with 

density decreasing toward the north (Supplemental Figure S5). Waterbodies accounted for an 

additional 20.1% of the range area. 

A minimum animal count (MAC) from the 2012 Integrated Range Assessment (MNRF 

2014) estimated 262 caribou within the range, with the short-term population trend indicating 

stability or a slight decline (λ = 0.96). Caribou in the Churchill Range occur in small, dispersed 

groups and show strong fidelity to seasonal habitats, particularly calving sites. 

Sample Collection  

Between January and March 2024, fecal samples were collected during aerial surveys 

flown at 3 km transect intervals, with sampling conducted at the beginning of each month. 

Caribou signs such as tracks or cratering sites were identified from fixed-wing aircraft, and 

ground crews accessed collection sites via helicopter. At each site, field crews aimed to collect 

approximately 1.4 times the estimated number of animals using the area, based on visual 

estimates of cratering intensity, track counts, and pellet group distribution. This strategy was 

designed to reduce the likelihood of missing any individuals present, while minimizing 

oversampling of the same individual. Pellets were collected only from clearly separated, discrete 

pellet groups. Each sample was handled using sterile, single-use tools and placed into a uniquely 
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labeled bag. Efforts were made to ensure that each bag contained fecal material from a single 

defecation event to reduce the risk of collecting mixed samples from multiple individuals. The 

geographic coordinates of each collection site were recorded using handheld GPS units (±5 m 

accuracy) and later used to extract spatial environmental data and link individual genotypes to 

landscape variables in subsequent analyses. Samples were kept on ice in the field and transferred 

before being transferred to a −20 °C freezer for long term storage. In total, 600 samples were 

collected across 34 sites during the 2024 survey period (Figure 1). 

  

Figure 1. Map showing the transect lines of aerial surveys that took place during winter 2024. 

Surveys were performed at 3 km intervals to identify caribou cratering sites for fecal sampling. 

Ground crews then accessed the cratering sites to collect samples, indicated by the black dots. 

The gray area represents the Churchill Caribou Range. 
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DNA Extraction and Genotyping 

DNA was extracted from four pellets per fecal sample using the Qiagen DNeasy Blood 

and Tissue Kit, following a modified protocol based on Ball et al. (2007). DNA concentration 

was then quantified with a Nanodrop One spectrophotometer (Thermo Fisher Scientific 2023), 

and extracts were standardized to approximately 20 ng/µL for downstream analyses.  

Each sample was genotyped at 13 microsatellite loci using three multiplex PCR reactions 

(see Supplementary Table S1 for details). Amplified products were submitted to the Centre for 

Applied Genomics (Toronto, ON) for fragment size analysis on a SeqStudio™ Flex Genetic 

Analyzer (Applied Biosystems, Thermo Fisher Scientific, USA). Allele peaks were scored in 

GeneMarker® v3.0.1 (SoftGenetics LLC, State College, PA, USA). following standardized 

scoring guidelines. Each locus was independently scored by three individuals, and consensus 

genotypes were generated through comparison of scores to ensure consistency and reduce 

subjectivity. To ensure genotype accuracy, we reamplified and rescored any samples that had 

ambiguous peaks, no clear genotype matches, or matched other samples with only one or two 

allele mismatches indicating potential genotyping errors. Genotyping error rates were quantified 

by fully replicating a 96-well plate of randomly selected samples across all three multiplexes. 

Any discrepancies between replicate and original genotypes, excluding cases of missing data, 

were classified as genotyping errors and used to calculate an overall error rate. 

Genetic Data Filtering and Quality Control 

To avoid bias from duplicate genotypes, we used the allelematch R package (Galpern et 

al. 2012a) to identify individuals with identical multilocus genotypes. For each duplicated 

genotype, one occurrence was retained at random for downstream analyses. Marker performance 
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was evaluated by testing for deviations from Hardy-Weinberg Equilibrium (HWE) using exact 

test implemented in the R package pegas (Paradis 2010). HWE was assessed both globally and 

within populations, where populations were defined according to sampling period (i.e., January, 

February, or March). To assess non-random association among loci, we calculated the 

standardized index of association (r̄d) using the poppr R package (Kamvar et al. 2014) which 

accounts for multilocus linkage disequilibrium. We also estimated the frequency of null alleles 

for each locus using poppr, as excessive null allele frequencies can indicate unreliable markers. 

Genetic Distance and Spatial Autocorrelation 

We calculated four individual-level genetic distance metrics to characterize spatial 

genetic structure. First, we calculated pairwise kinship coefficients (Fij) using the formulation of 

(Kalisz et al. 2001), implemented in the gstudio package (Dyer 2014). The proportion of shared 

alleles (Dps) was calculated using the propShared() function from the adegenet package 

(Jombart 2008). For multiple-predictor genetic distances, we constructed a table of allele counts 

for each individual, centered and scaled the data, and then conducted principal component 

analysis (PCA) using the dudi.pca() function in adegenet. We retained the first 10 and 64 

principal components to capture broad- and fine-scale structure, respectively, following the 

recommendations of Shirk et al. (2017) and Beninde et al. (2024). Euclidean distances among 

individuals were then calculated from the PCA coordinates using the distance() function in the 

ecodist R package v2.1.3 (Goslee and Urban 2007) resulting in two distance matrices: PCA10 

and PCA64. 

To assess potential isolation by distance, we performed Mantel correlogram analyses 

using the mgram() function from the ecodist R package (Goslee and Urban 2007) with all 
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matrices converted to dissimilarity form. Geographic distance calculated as pairwise Euclidean 

distances from UTM coordinates (EPSG:26915), using the base R dist() function. To avoid exact 

spatial duplicates, coordinates were jittered by up to 100 m. Correlograms were generated using 

1,000 permutations to test significance, and 500 bootstraps to estimate 90% and 95% confidence 

intervals. We applied fixed bin widths and a one-sided test to detect positive spatial 

autocorrelation. The spatial scale of positive genetic structure was defined as the midpoint of the 

largest distance class showing consistent positive Mantel correlation across all genetic distance 

metrics. This value was used as the genetic neighbourhood size (radius) in downstream diversity 

calculations. 

Genetic Diversity and Relatedness 

We quantified fine-scale patterns of genetic diversity using the sGD R package (Shirk and 

Cushman 2011), which calculates spatially explicit diversity metrics for individual-centered 

neighbourhoods. Neighbourhoods were defined using a 15 km radius based on results from 

spatial genetic structure analyses, with a minimum size of 10 individuals to ensure robust 

estimates. We used summary_stats() to calculate five standard metrics within each 

neighbourhood: observed heterozygosity (Ho), inbreeding coefficient (FIS), allelic richness (Ar), 

private alleles (Ap), and total allele count (A). To avoid pseudoreplication due to multiple 

overlapping neighbourhood s within the same sampling site, we filtered the sGD output to retain 

a single representative neighbourhood  per site. Specifically, we selected the neighbourhood  

with the largest number of individuals to ensure robust and non-redundant estimates. 
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Population Structure 

To quantify population differentiation, pairwise Weir and Cockerham’s FST values (Weir 

and Cockerham 1984) were calculated among genetic neighbourhoods using the genet.dist() 

function with the ‘WC84’ method in the hierfstat package (Goudet 2005). Population structure 

was first assessed using STRUCTURE v2.3.4 (Pritchard et al. 2000), applying the admixture 

model with correlated allele frequencies to account for potential gene flow among populations. 

Analyses were conducted for K = 1 to 10, with five replicates per K, each consisting of 100,000 

burn-in iterations followed by 100,000 MCMC iterations. Log-likelihood values were 

summarized, and ΔK was calculated using the evannoMethodStructure() function in the 

pophelper R package v2.3.1 (Francis 2017) following the method of Evanno et al. (2005) to infer 

the most likely number of genetic clusters. Replicate runs for K = 3 were aligned using alignK() 

and visualized as Q-plots using plotQ(), with custom color schemes to represent cluster 

membership. To examine spatial trends in admixture, mean cluster assignment values were 

summarized by collection site and visualized as pie charts using scatterpie v0.2.5 (Yu 2016), 

positioned according to the UTM coordinate of each sampling site. 

Population genetic structure was also evaluated using BAPS v6.0 (Corander et al. 2008) a 

Bayesian clustering method that incorporates spatial information as priors on cluster membership 

(François and Durand 2010). The “spatial clustering of individuals” option was applied for the 

population mixture analysis. Values of K from 1 to 10 were tested, with 10 replicates per K. 

Admixture analysis was then performed using the results of the mixture analysis, with the 

following settings: a minimum of five individuals per cluster, 50,000 MCMC iterations, 50 

reference individuals per cluster, and 1,000 iterations for estimating admixture proportions. 
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Finally, we used the Geneland package v4.9.2 (Guillot et al. 2009) in R to identify spatial 

patterns of genetic structure while accounting for coordinate uncertainty. The spatial model with 

correlated allele frequencies (freq.model = "Correlated") was applied, allowing the number of 

populations to vary from 1 to 10 (varnpop = TRUE, npopmax = 10). Coordinate uncertainty was 

set to 7 km (delta.coord = 7), reflecting the average winter home range diameter of woodland 

caribou in northwestern Ontario (Ferguson and Elkie 2004). Each MCMC chain was run for 

100,000 iterations with thinning every 100 steps, and five independent chains were executed. 

Post-processing used a burn-in of 200 steps and included visualization of the posterior 

distribution of K (Plotnpop) and spatial assignment maps (PosteriorMode). The most likely 

number of populations was inferred by comparing mean posterior densities across runs. 

Individual assignments from Geneland and BAPS were converted to spatial features and 

overlayed on the Churchill range boundary and plotted using ggplot2 (Wickham 2016) with 

cluster identities represented by color. 

Landscape Variables 

To evaluate spatial variation in landscape resistance to caribou movement, we compiled a 

suite of habitat and disturbance covariates informed by previous studies on woodland caribou 

habitat selection and distribution. These included forest composition (Wittmer et al. 2007, 

Courbin et al. 2009, Hornseth and Rempel 2016), linear features such as roads (Fortin et al. 

2008; Galpern et al. 2012; Beauchesne et al. 2013) forest fire (Joly et al. 2003, Konkolics et al. 

2021), forest harvest (Vors et al. 2007, Courtois et al. 2008, Fryxell et al. 2020), water (Ferguson 

and Elkie 2005, Hornseth and Rempel 2016), and wetlands (Hornseth and Rempel 2016). All 

spatial data were obtained from the Ontario GeoHub (Ontario 2024), the Ontario Ministry of 
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Natural Resources and Forestry, and Sustainable Forest License (SFL) holders (Orchard et al., in 

preparation). Spatial layers were projected in NAD83 / Ontario MNR Lambert (EPSG:3161).  

Land cover data were derived from the Ontario Land Cover Composition Classification 

v2 (OLCCv2), which was reclassified into binary rasters indicating the presence (1) or absence 

(0) of four cover types: coniferous, deciduous, wetland, and water. Binary rasters were also 

created to represent recent fire (≤ 40 years) and recent harvest (≤ 35 years), with the latter 

buffered by 500 m to account for edge effects (Environment Canada 2012). Roads were 

represented as a binary raster of linear features. All rasters were initially processed at 15 × 15 m 

resolution. To summarize landscape context at a biologically relevant scale, each binary raster 

was aggregated to 1 × 1 km resolution using the aggregate() function in the terra R package 

(Hijmans 2020) summing the number of presence cells within each grid cell. This process 

yielded continuous rasters representing local density or coverage of each feature, which were 

exported in ASCII format for resistance surface modeling. Maps of the seven resistance surfaces 

(conifer, deciduous, roads, fire, harvest, water, and wetlands) are provided in the supplementary 

materials (Supplemental Figures S1-S7). 

Resistance Surface Modeling 

We used a two-step framework to evaluate how landscape features influence gene flow in 

woodland caribou. In the first step, we conducted an exploratory analysis by fitting single-

predictor resistance surfaces for each landscape variable using the ResistanceGA R package 

(Peterman 2018). Variables included conifer, deciduous, wetlands, water, fire, roads, and harvest. 

In the second step, we constructed a targeted set of multiple-predictor models to test specific 
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hypotheses about the relative influence of landscape features that may facilitate versus impede 

gene flow (Supplemental Table S2).  

For single surface models, individual resistance surfaces were optimized using the 

SS_optim() function in ResistanceGA (Peterman 2018) , incorporating genetic distance matrices 

and spatial coordinates as input through the gdist.prep() function. Multiple-predictor models 

were constructed by first standardizing all raster layers to a common extent with the crop() and 

intersect() functions. Aligned rasters were then stacked and optimized using the MS_optim() 

function. All models employed cost-distance genetic algorithms with a log-likelihood (LL) 

optimization framework and a maximum parameter value of 250 for continuous surfaces.  Each 

resistance surface was evaluated using a mixed-effects model with a maximum-likelihood 

population effects (MLPE) structure, and model performance was compared using corrected 

Akaike Information Criterion (AICC). ResistanceGA optimizations were conducted on the 

Graham high-performance computing cluster through the Digital Research Alliance of Canada to 

reduce processing time.  
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RESULTS 

Marker Quality Assessment  

Of the 600 samples originally genotyped, a total of 11 were excluded from all analyses. 

Nine were removed due to sample handling issues or poor genotype quality (e.g., multiple 

peaks), one was removed due to excessive missing data, and one was excluded based on quality 

control inconsistencies identified during scoring. Allelematch analysis was then conducted on the 

remaining 589 samples, identifying 244 unique multilocus genotypes. Genotyping error rates 

ranged from 0 – 3.2%, with an average of 0.98 across loci. Three loci (FCB193, RT24, RT27) 

deviated from HWE globally, but no locus failed HWE in more than one population. For 

example, RT24 showed a significant global deviation but conformed to HWE in two of the three 

populations. Linkage disequilibrium across loci was low: the highest observed r̄d value (between 

RT5 and RT30) was approximately 0.06. The average estimated frequency of null alleles across 

all loci was 0.04, ranging from <0.01 to 0.11, well below the recommended exclusion threshold 

of 0.20 (Chapuis and Estoup 2007). Given that that no loci deviated from HWE across 

populations, null allele frequencies were low, and linkage disequilibrium was minimal, all 13 loci 

were retained to maximize analytical power. 

Genetic Structure and Diversity 

Mantel correlograms revealed significant positive spatial autocorrelation in genetic 

distance at short geographic distances for all genetic distance metrics examined (Figure 2). All 

four metrics showed positive autocorrelation in the first two lag classes (0–10 km and 10–

20 km). However, only the first lag class (0–10 km) was significant (p ≤ 0.001) across all 

metrics. Based on the largest lag class where all metrics showed positive autocorrelation, we 
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selected 15 km, the midpoint of the 10–20 km class, as the radius for defining genetic 

neighbourhoods. 

Across the 46 genetic neighbourhoods, observed heterozygosity (Ho) ranged from 0.61 to 

0.75, with a mean of 0.68, while expected heterozygosity (Hs) ranged from 0.63 to 0.72 (mean = 

0.69) (Supplemental Table S3). Allelic richness (Ar), rarefied to a standardized neighbourhood 

size of 10 individuals, varied from 4.75 to 5.63, with a mean of 5.19 alleles per locus, and raw 

allele counts (A) ranged from 5.2 to 7.8 per locus (mean = 6.7). Inbreeding coefficients (FIS) 

were generally low (mean = 0.0098), ranging from –0.117 to 0.082, with most neighbourhoods 

showing near-zero or slightly positive values. Neighbourhood sample sizes ranged from 10 to 58 

individuals, with an average of 31.4. 
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Figure 2. Mantel correlograms showing Mantel correlation (r) against geographic distance in 

kilometers (km). Significant values are denoted by black dots. 
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Pairwise FST values among neighbourhood s were extremely low (< 0.003), indicating 

that over 99.7% of genetic variation occurs within, rather than between, neighbourhoods. Mantel 

correlation coefficients were also low (r ≤ 0.04), reflecting weak spatial genetic structure. 

Genetic clustering analyses produced contrasting results across methods. STRUCTURE 

identified K = 3 as the most likely number of genetic clusters based on the Evanno method 

clusters (Supplemental Figure S8). In contrast, BAPS supported K = 1, while GENELAND 

inferred K = 5 spatial clusters across the study area. Visual inspection of STRUCTURE and 

GENELAND assignment plots revealed broad geographic structuring with possible isolation 

along the eastern range boundary.  
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Figure 3. Spatial genetic cluster assignments for woodland caribou. (A) STRUCTURE results at 

K = 3, showing individual cluster membership proportions by sampling location. (B) 

GENELAND posterior mode assignment map indicating five spatial clusters (K = 5) across the 

study area. (C) BAPS estimated a single (K = 1) cluster. 
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Factors Affecting Gene Flow  

Single-predictor resistance models revealed that the top-performing surface differed by 

genetic distance metric. Wetlands was the top single-predictor model for Dps, PCA10, and 

PCA64 (R2m ranging from 0.001 to 0.009), and was consistently fit with an inverse 

monomolecular transformation, indicating declining resistance with increasing percent wetland 

cover (Supplemental Table S4). For Fij, the top-ranked single-predictor resistance model was 

conifer (R2m = 0.006), followed by roads, harvest, fire, geographic distance, and deciduous, all 

within ΔAICc < 15.  

Multiple-predictor model comparisons revealed that combining wetlands with other 

surfaces did not improve model performance for Dps, PCA10, or PCA64. In all three cases, the 

single-predictor wetlands model outperformed the top multiple-predictor alternatives, including 

combinations with conifer, roads, water, harvest, or fire (Table 1). For example, the addition of 

conifer to wetlands increased ΔAICc values by 6.7 (PCA10), 7.2 (PCA64), and 10.0 (Dps). Only 

for Fij did a multiple-predictor model (conifer + water, R2m = 0.001) appear as the top model 

and outperform the single-predictor wetlands model. 
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Table 1. ΔAICc values for single-predictor and multiple-predictor landscape resistance models 

across four genetic distance metrics (PCA10, PCA64, Fij, and Dps).  

Model Dps 

ΔAICc 

PCA10 

ΔAICc 

PCA64 

ΔAICc 

Fij 

ΔAICc 

Wetlands only†  0.0 0.0 0.0 15.5 

Conifer only† 13.9 37.5 20.9 4.5 

Wetlands + Conifer 10.0 6.7 7.2 3.3 

Wetlands + Roads 9.5 11.1 9.5 13.5 

Wetlands + Water 8.8 13.1 6.3 19.0 

Wetlands + Harvest 8.4 13.6 7.7 16.1 

Wetlands + Fire 9.5 9.8 2.9 19.0 

Roads + Harvest 7.5 31.2 17.8 12.6 

Wetlands + Roads + Conifer 8.7 10.9 12.2 9.2 

Conifer + Water - - - 0.0 

Conifer + Fire - - - 8.9 

Conifer + Deciduous - - - 9.0 

Conifer + Harvest - - - 10.5 

Conifer + Roads - - - 12.0 

† Single-predictor baseline models. 

Bold indicates the best model (ΔAICc = 0) for each metric. 

- Indicates model that wasn’t run for a particular distance metric 
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Figure 4. Maps showing the top supported model for each of the four genetic distances. The 

single-predictor model for wetlands is represented for PCA10, PCA64, and Dps, while the 

multiple-predictor conifer + water model is shown for Fij. Yellow/green indicates high 

resistance, while dark blue indicates low resistance. 
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DISCUSSION 

Overview of Genetic Connectivity and Diversity  

Our findings indicate that woodland caribou in the Churchill Range exhibit moderate 

genetic diversity and weak population structure, suggesting a relatively cohesive population. 

Expected heterozygosity (He = 0.68) aligns closely with values reported in other boreal caribou 

populations in central and northern Canada (e.g., Thompson et al. 2019, Fournier 2024) and 

remains considerably higher than in severely isolated herds such as Atlantic-Gaspésie (Yannic et 

al. 2016). This level of diversity implies that Churchill caribou retain meaningful adaptive 

potential under current conditions. 

Inbreeding coefficients (FIS) were low or slightly negative across most neighbourhood s, 

with a mean of 0.01. This suggests a low likelihood of inbreeding. Slightly positive values may 

reflect mild Wahlund effects due to overlapping kin groups, or technical artifacts associated with 

null alleles at a few loci (De Meeûs 2018).  

Spatial Patterns of Relatedness: Evidence for Isolation by Distance 

Spatial autocorrelation analyses revealed significant positive genetic correlation at short 

distances (0–10 km), with weaker but still positive correlations observed in the 10–20 km range. 

This pattern is consistent with isolation by distance (IBD), in which geographically proximate 

individuals are more genetically similar due to spatial limits on dispersal. Dispersal distances 

reported by (McFarlane et al. 2022) support this interpretation: average dispersal between 

parents and offspring was 20 km for females and 22 km for males, with the majority of events 

under 40 km. In addition, studies have shown strong site fidelity in woodland caribou, even in 

disturbed environments (Tracz et al. 2010), suggesting that overlapping home ranges and short-
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distance natal dispersal can create fine-scale spatial genetic structure. These observations support 

a stepping-stone model of gene flow, in which gradual dispersal among neighboring individuals 

maintains connectivity across the landscape. Although we observed a decline in genetic 

similarity with distance, including some negative autocorrelation at longer distances, this pattern 

did not align with the presence of strong, discrete barriers. Instead, it likely reflects stochastic 

processes or reduced kinship among more distant individuals (Weckworth et al. 2013, Priadka et 

al. 2019). Although Mantel correlations were low (r ~0.04), this pattern is consistent with 

isolation by distance in wide-ranging species like woodland caribou, where weak but detectable 

genetic structure often emerges despite high dispersal capacity (Yannic et al. 2016). The small 

effect size likely reflects both the inherent noise of individual-based genetic distance measures 

and the expectation that most genetic variation is maintained within, rather than between, local 

groups (Shirk and Cushman 2011, Priadka et al. 2019). Thus, rather than indicating biological 

irrelevance, these results support the interpretation that caribou in the Churchill Range remain 

broadly connected, with gene flow occurring at fine spatial scales in the absence of strong 

barriers. 

Population Structure and the Role of IBD 

Model-based clustering algorithms produced inconsistent results regarding the number of 

genetic clusters (K). STRUCTURE supported K = 3, while BAPS identified K = 1, and 

GENELAND suggested up to five spatial clusters. However, assignment probabilities from 

STRUCTURE revealed a gradual cline in genetic composition rather than discrete groupings, 

suggesting that the program was detecting continuous genetic variation consistent with IBD 

rather than true population substructure. This result is not unexpected given the extremely low 
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FST value observed for our data (FST <0.003) and are consistent with the known limitations of 

clustering algorithms under IBD and weak genetic differentiation, where subtle allele frequency 

gradients can lead to overestimation of population structure (Guillot et al. 2009, Meirmans 

2012). Such extremely weak genetic differentiation is expected for wide-ranging species like 

caribou (Priadka et al. 2019). 

Similarly, the high number of clusters inferred by GENELAND likely reflects spatial 

autocorrelation in the genetic data rather than discrete population boundaries. As a spatially 

explicit model, GENELAND assumes Hardy-Weinberg and linkage equilibrium within clusters 

and can misinterpret gradual spatial changes in allele frequencies as hard boundaries between 

populations (Guillot et al. 2009). In our study, the use of individual-level spatial coordinates and 

a 7 km spatial uncertainty buffer (reflecting typical home range size) may have further 

contributed to this artifact by amplifying fine-scale genetic differences. Comparable findings 

have been reported in other studies where spatial autocorrelation and fine-scale sampling resulted 

in spurious clustering in continuous populations lacking true barriers to gene flow (e.g. (Frantz et 

al. 2009)  

These results align with earlier research in other woodland caribou ranges across Canada, 

where weak or inconsistent genetic clustering was commonly reported (Priadka et al. 2019, 

Anderson and Thomson 2024). Studies have concluded that population structure in boreal 

caribou is best described as continuous due to IBD rather than fragmented by discrete boundaries 

(Ball et al. 2010; Weckworth et al. 2013; Priadka et al. 2019, Anderson and Thomson 2024). In 

this context, the apparent clustering observed in our analyses likely reflects subtle spatial 

gradients in genetic differentiation, shaped by high dispersal ability and the absence of complete 
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barriers to gene flow. While we detected a strong signal of IBD, landscape resistance analyses 

(discussed below) also revealed some constraints on connectivity that may contribute to these 

patterns. 

Factors Affecting Gene Flow 

Our results provide partial support for the study’s hypotheses regarding the drivers of 

genetic connectivity in woodland caribou. First, as predicted, natural features associated with 

movement facilitation, particularly wetlands, were stronger predictors of gene flow than 

anthropogenic resistance features when evaluated in single-predictor models. The single-

predictor wetlands surface consistently outperformed all other resistance models, including 

distance-only, across three of four genetic distance metrics (Dps, PCA10, and PCA64), 

suggesting that wetlands function as low-resistance corridors that facilitate long-distance 

movement and gene flow across the Churchill Range. These habitats are known to offer travel 

routes, predator refugia, and foraging opportunities, particularly in landscapes with low road 

density (Brown et al. 2000, Keim et al. 2021).  

For the remaining metric (Fij), the top-ranked model was the conifer + water 

combination, again highlighting the importance of natural features. The apparent negative 

correlation between 1 – Fij and conifer cover should not be interpreted as conifer impeding 

connectivity. Fij quantifies pairwise genetic similarity based on shared ancestry, making it 

particularly responsive to the spatial distribution of close relatives (Hardy 2003). In caribou, 

strong female philopatry and the formation of localized family groups can generate spatial 

clustering of related individuals (McFarlane et al. 2022). Because 1 – Fij decreases as kinship 

increases, the observed pattern likely reflects higher kinship in conifer-dominated areas, where 
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high-quality habitat reduces the need for offspring to disperse farther from natal sites. This 

interpretation is consistent with ecological theory and previous work suggesting that site fidelity 

in caribou is shaped by both food quality and predation risk (Wittmer et al. 2006) 

Together, these findings suggest that wetlands and conifer both influence caribou genetic 

structure, but in different ways and at different scales. Wetlands consistently facilitated gene flow 

across multiple allele frequency–based metrics, reflecting their role as broad-scale movement 

corridors over many generations. In contrast, the effect of conifer was detected only with the 

kinship-based Fij metric and likely reflects fine-scale structuring driven by strong site fidelity 

and reduced dispersal in high-quality habitat. The complementary strengths of kinship-based and 

allele frequency–based metrics highlight the layered nature of gene flow, shaped by both short-

term behavioral processes and longer-term ecological dynamics. 

Contrary to our second hypothesis, multiple-predictor models combining facilitating and 

resistive features did not universally outperform the top single-predictor models. For three of 

four genetic distance metrics, the lowest AICc values were obtained from single-predictor 

surfaces, including wetlands for Dps, PCA10, and PCA64, indicating that these habitat types 

exert the strongest influence on gene flow in the Churchill Range. However, Fij exhibited a 

contrasting pattern with the conifer + water model outperforming all other models. Across all 

genetic distances, several multiple-predictor models, particularly those combining wetlands with 

conifer, fire, or roads, had ΔAICc values < 10 and should be considered as moderately supported 

alternatives. These models suggest that while dominant features like wetlands account for most 

of the explained variation, additional landscape elements may contribute meaningfully to gene 

flow when considered in combination. This supports the idea that cumulative landscape 
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permeability, shaped by both facilitators and barriers, governs genetic connectivity in woodland 

caribou (McLoughlin et al. 2004, Galpern et al. 2012b). 

Among the resistance features evaluated, roads appeared in several models with ΔAICc < 

10 but did not show strong support relative to the top models. Roads are relatively dense across 

the southern and central portions of the Churchill Range, tapering off only in the north, yet their 

influence on connectivity was weak compared to natural facilitators such as wetlands. This 

finding contrasts with studies in other regions that have demonstrated stronger road effects on 

woodland caribou (Priadka et al. 2019, Anderson and Thomson 2024)Importantly, those earlier 

studies considered only potential barriers, whereas the present analysis also incorporated 

potential facilitators such as wetlands and conifer. From a conservation perspective, the weak 

road effect observed here highlights the importance of considering both resistance and 

facilitation processes in landscape genetics analyses, since focusing exclusively on barriers may 

overemphasize their role relative to natural features that promote connectivity. 

Harvest and fire, while not strongly supported in single-predictor models, also appeared 

in several multiple-predictor combinations, particularly with wetlands or conifer, implying that 

these features may contribute to cumulative resistance when overlapping otherwise permeable 

habitat. Both features were associated with lower connectivity, but their independent effects 

appear limited in this landscape, with ΔAICc values exceeding 15 for most metrics. 

Waterbodies were not well supported as standalone predictors (ΔAICc > 10 across all 

metrics), but appeared in several competitive multiple-predictor models, including the top-ranked 

model for Fij (conifer + water). The inclusion of water in this model suggests a context-

dependent influence on gene flow, likely shaped by seasonal dynamics. In winter, frozen lakes 
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and rivers may facilitate movement by providing direct, low-resistance travel corridors periods 

(McLoughlin et al. 2004, Avgar et al. 2013, Leblond et al. 2016), whereas open water during 

summer can impede dispersal due to the energetic costs of crossing and limited incentives 

(Leblond et al. 2016). The inverse-reverse monomolecular transformation applied to water 

indicates that large, contiguous water bodies were associated with low resistance, consistent with 

ice-facilitated winter dispersal. However, water may also reflect shoreline-associated travel or 

shared habitat use. This finding contrasts with (Priadka et al. 2019a), who reported moderate 

resistance associated with water in boreal caribou populations in Manitoba and Saskatchewan. 

Overall, the role of water in shaping genetic connectivity appears to vary regionally and 

seasonally, emphasizing the importance of ecological context when interpreting landscape 

resistance patterns. 

Although several studies have emphasized resistance from anthropogenic features such as 

roads (Priadka et al. 2019, Anderson and Thomson 2024) cross-study comparisons reveal 

important differences. In particular, the stronger support for barriers reported in earlier work may 

partly reflect narrower model scopes: Priadka et al. 2019, Anderson and Thomson 2024 did not 

include natural facilitators as candidate resistance surfaces in their analyses. By explicitly 

evaluating both facilitators and resistive features, our study provides a more balanced assessment 

of landscape connectivity and highlights the dominant role of natural habitat elements, 

particularly wetlands, in shaping caribou gene flow. These findings suggest that apparent 

resistance effects in previous studies may reflect model limitations as much as true ecological 

barriers, reinforcing the importance of holistic modeling frameworks. 
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Management Implications 

Woodland caribou in the Churchill Range exhibit extremely weak population structure 

and moderate genetic diversity, suggesting that this population remains genetically cohesive and 

retains adaptive potential. At the same time, our spatial genetic structure analysis revealed a 

significant pattern of isolation by distance, indicating that connectivity declines gradually with 

geographic distance. Understanding which landscape features shape this gradual structure is 

essential for guiding conservation and land-use planning. 

Our analysis identified wetlands as the strongest and most consistent predictor of genetic 

connectivity, with wetlands-only models outperforming all alternatives based on allele 

frequency-based metrics (Dps, PCA10, PCA64). This emphasizes the critical role of wetlands in 

sustaining broad-scale gene flow and highlights the need to prioritize the conservation of large, 

continuous wetland complexes in management and planning  (Racey et al. 1999, Brown et al. 

2000, Keim et al. 2021). 

The kinship-based Fij metric identified conifer in combination with water as the top 

model. This suggests that conifer habitats may influence genetic structure through more recent 

demographic processes, such as the spatial clustering of related individuals, consistent with 

female philopatry and site fidelity (Wittmer et al. 2006, McFarlane et al. 2022)In contrast, allele 

frequency–based metrics integrate gene flow across multiple generations and consistently 

identified wetlands as the dominant facilitator of connectivity. These complementary findings 

indicate that wetlands are the primary driver of long-term, broad-scale connectivity in the 

Churchill Range, while conifer habitats may contribute to structuring genetic relationships over 

shorter temporal scales. 
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Other features, including roads, harvest areas, fire, and waterbodies, showed weak and 

inconsistent effects in this range. Nevertheless, their importance in other contexts has been well 

documented: roads increase predation risk and are avoided by caribou (Fortin et al. 2008, 

Beauchesne et al. 2013)and landscape genetic studies that focused only on barriers have often 

identified roads as strong predictors of differentiation(Priadka et al. 2019b, Anderson and 

Thomson 2024)). Fire and waterbodies have also been linked to resistance in other studies 

(McLoughlin et al. 2004, Galpern et al. 2012b)Further study will be needed to determine whether 

the patterns observed in the Churchill Range are broadly applicable across other ranges, or 

whether the relative influence of facilitators and resistors varies with landscape context. 

Taken together, these findings underscore the importance of considering both facilitators 

and resistors when evaluating caribou connectivity. For the Churchill Range, wetlands are clearly 

the dominant driver of broad-scale gene flow, while conifer (particularly in association with 

water) appears to shape more recent genetic relationships. Effective landscape planning should 

therefore prioritize the conservation of wetland complexes while also recognizing the potential 

contributions of conifer habitats and the possible influence of disturbance features such as roads, 

fire, and waterbodies. 
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SUPPLEMENTAL INFORMATION 

Supplemental Table S1. Primer information, including loci names, size range, primer concentration (µM), 5’ dye, forward and reverse 

primer sequences. 

Locus Size 

Range 

Multiplex Primer 

(µM) 

5' 

Dye 

Forward (5'-3') Reverse (5'-3') Reference 

FCB193 96-

124 

1 0.1 NED TTCATCTCAGACTGGGATTCAGAAAGGC  GCTTGGAAATAACCCTCCTGCATCC

C  

(Buchana

n and 

Crawford 

1993)  

BMS178

8 

118-

148 

1 0.1 PET ATTCATATCTACGTCCAGATTCAGATTTCT

TG 

GGAGAGGAATCTTGCAAAGG 2 

RT27 128-

159 

2 0.05 6FA

M 

CCAAAGACCCAACAGATG TTGTAACACAGCAAAAGCATT 3 

RT9 105-

131 

2 0.1 VIC TGAAGTTTAATTTCCACTCT CAGTCACTTTCATCCCACAT 3 

RT7 216-
236 

2 0.05 VIC CCTGTTCTACTCTTCTTCTC ACTTTTCACGGGCACTGGTT 3 

RT5 139-

169 

2 0.05 NED TGGTTGGAAGGAAAACTTGG CCTCTGCTCCTCAAGACAC 3 

MAP2C 93-

115 

2 0.1 PET TTTACCAGACAGTTTAGTTTTGAGC AAGGATTCTGTCTGATACCACTTAG 4(Moore 

et al. 

1992) 

OheQ 254-

292 

3 0.1 VIC AGACCTGATTACAATGTGTCAGTGAAGG

TCTTC 

GATGGACCCATCCAGGCAACCATC

TAG 

2 

RT1 218-

238 

3 0.15 6FA

M 

AGGCCATATAGGAGGCAAGCTT CATCTTCCCATCCTCTTTAC 3 

BM888 172-

203 

3 0.5 VIC CACTTGGCTTTTGGACTTA CTGGTGTATGTATGCACACT 5 

BM848 359-

383 

3 0.3 NED TGCCTTCTTTCATCCAACAA CATCTTCCCATCCTCTTTAC 5 

RT24 203-

235 

3 0.15 NED TGTATCCATCTGGAAGATTTCAG CAGTTTAACCAGTCCTCTGTG 3 

RT30 186-

210 

3 0.15 PET TCAGCAATTCAGTACATCACCC GCGCAAGTTTCCTCATGC 3 

1 (Buchanan and Crawford 1993); 2 (Yannic et al. 2014); 3 (Wilson et al. 1997); 4 (Moore et al. 1992); 5 (Bishop et al. 1994) 
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Supplemental Table S2. Summary of multiple-predictor resistance surface models evaluated in step 2 of model selection. Each model 

tests a specific hypothesis about how landscape features may facilitate or impede gene flow in woodland caribou. 

Model Predicted Effect on Gene 

Flow 

Rationale 

Wetlands + Conifer Facilitates Combines movement through wetlands with preferred forest habitat. 

Wetlands + Roads Mixed Roads may fragment habitat or increase predation risk, reducing gene flow. 

Wetlands + Water Mixed Large waterbodies may act as barriers to movement in some regions. 

Wetlands + Harvest Mixed Recently harvested areas may disrupt movement corridors and habitat use. 

Wetlands + Fire Mixed Included to test for region-specific effects of recent natural disturbance. 

Roads + Harvest Impedes Evaluates cumulative resistance from anthropogenic disturbance. 

Wetlands + Roads + 

Conifer 

Mixed Tests for interaction between facilitative (wetlands, conifer) and resistive 

(roads) elements. 

Conifer + Water Mixed Investigates seasonal effects of waterbodies and selection for preferred 

habitat 

Conifer + Wetlands Facilitates Top single-predictor models included to test for cumulative effects 

Conifer + Fire Mixed The region’s rich history of fires may reduce the proportion of available 

preferred habitat 

Conifer + Deciduous Mixed Examines canopy composition and its influence on cover and predation. 

Conifer + Harvest Mixed 
Harvest may reduce suitable forest cover and fragment habitat. 
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Conifer + Roads Mixed Roads fragment habitat and may make sections of forest less accessible. 
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Supplemental Table S3. Summary of microsatellite diversity statistics for each genetic 

neighbourhood. 

NH_ID N A Ap Ar Hs Ho FIS 

A1S1 50 7.5 0.81 5.32 0.70 0.70 -0.0054 

A11S1 30 7.1 0.77 5.42 0.71 0.72 -0.0117 

A12S1 18 5.5 0.60 4.75 0.66 0.62 0.0575 

A13S1 22 6.1 0.66 4.95 0.66 0.61 0.0815 

A14S1 26 7.3 0.79 5.41 0.68 0.66 0.0288 

A15S1 33 7.5 0.81 5.33 0.68 0.66 0.0256 

A2S1 49 7.5 0.81 5.32 0.70 0.70 -0.0007 

A3S1 58 7.6 0.83 5.19 0.69 0.69 0.0085 

A4S1 58 7.6 0.83 5.19 0.69 0.69 0.0085 

A5S1 54 7.4 0.80 5.18 0.70 0.70 -0.0023 

A6S1 25 6.8 0.74 5.33 0.70 0.68 0.0389 

A7S1 29 7.1 0.77 5.34 0.70 0.68 0.0373 

A8S1 25 7.0 0.76 5.33 0.69 0.68 0.0270 

A9S1 10 5.2 0.57 5.23 0.72 0.72 0.0151 

B1S1 53 7.8 0.85 5.36 0.70 0.68 0.0286 

B10S1 26 7.3 0.79 5.41 0.68 0.66 0.0288 

B11S1 23 6.4 0.69 5.07 0.66 0.66 -0.0027 

B2S1 49 7.5 0.81 5.32 0.70 0.70 -0.0007 

B3S1 12 5.4 0.58 5.08 0.68 0.75 -0.1167 

B4S1 49 7.5 0.81 5.32 0.70 0.70 -0.0007 

B5S1 58 7.6 0.83 5.19 0.69 0.69 0.0085 

B6S1 12 5.2 0.57 4.98 0.68 0.71 -0.0541 

B8S1 11 5.8 0.63 5.63 0.72 0.69 0.0401 

B9S1 18 5.9 0.64 5.00 0.66 0.66 -0.0012 

C1S1 27 7.1 0.77 5.37 0.70 0.68 0.0296 

C10S1 27 6.9 0.75 5.44 0.71 0.73 -0.0249 

C11S1 30 6.8 0.73 5.32 0.71 0.71 0.0078 

C12S1 25 6.5 0.71 5.28 0.71 0.71 0.0055 

C13S1 25 6.5 0.71 5.28 0.71 0.71 0.0055 

C14S1 14 5.5 0.60 5.15 0.72 0.72 0.0003 

C16S12 17 5.6 0.61 4.84 0.63 0.62 0.0277 

C17S1 22 6.1 0.66 4.95 0.66 0.61 0.0815 

C18S1 25 6.3 0.68 5.02 0.66 0.63 0.0682 

C19S1 13 5.6 0.61 5.12 0.67 0.66 0.0344 

C2S1 53 7.8 0.84 5.36 0.70 0.70 0.0056 

C20S1 11 5.5 0.60 5.34 0.70 0.70 0.0148 

C24S1 23 6.4 0.69 5.07 0.66 0.66 -0.0027 

C25S1 23 6.4 0.69 5.07 0.66 0.66 -0.0027 

C26S1 20 6.1 0.66 4.99 0.65 0.65 -0.0060 

C27S1 12 5.2 0.57 4.98 0.68 0.71 -0.0541 

C3S4 50 7.6 0.83 5.26 0.70 0.70 -0.0058 

C327 50 7.6 0.83 5.26 0.70 0.70 -0.0058 

C4S10 58 7.6 0.83 5.19 0.69 0.69 0.0085 

C7S10 54 7.6 0.83 5.13 0.70 0.68 0.0212 

C8S1 38 6.8 0.73 4.93 0.69 0.68 -0.0021 

C9S1 30 6.5 0.70 4.95 0.68 0.67 0.0063 
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Average 31.4 6.7 0.72 5.19 0.69 0.68 0.0098 

NH_ID = genetic neighbourhood identifier; N = number of individuals; A = total number of alleles; Ap = number of 

private alleles; Ar = allelic richness (standardized for sample size); Hs = expected heterozygosity; Ho = observed 

heterozygosity; FIS = inbreeding coefficient.  
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Supplemental Table S4. Summary of single-predictor resistance surface model performance for 

each of four genetic distance metrics. For each surface, only the top-performing replicate is 

reported. 

Genetic 

Distance 
Surface k AICc ΔAICc LL Equation Shape Max 

Fij  Conifer 4 -678836.5 0 339422.4 M 2 9.2 

  Roads 4 -678831.1 5.4 339419.6 IM 0.5 3.1 

  Harvest 4 -678827.9 8.6 339418.1 IM 0.6 1.1 

  Fire 4 -678827.7 8.8 339418.0 IM 0.8 249.9 

  Distance 2 -678827.4 9.1 339415.7 - - - 
  Deciduous 4 -678827.3 9.2 339417.8 IM 1 11.3 

  Water 4 -678825.7 10.8 339416.9 IRM 0.9 202.8 

  Wetlands 4 -678825.5 11 339416.8 IM 0.5 11.6 

  Null 1 -678650 186.5 339326.0 - - - 

Dps  Wetlands 4 -70897.6 0 35452.9 IM 2 24.3 

  Water 4 -70885.1 12.5 35446.6 M 2.1 89.2 

  Roads 4 -70884.8 12.8 35446.5 M 0.7 237.1 

  Conifer 4 -70883.7 13.9 35445.9 IRM 14.4 47.6 

  Harvest 4 -70881.7 15.9 35445.0 M 0.5 38.5 

  Fire 4 -70881.5 16.1 35444.8 IM 0.5 246.7 

  Deciduous 4 -70876.8 20.8 35442.5 M 0.5 45.1 

  Distance 2 -70876.5 21.1 35440.3 - - - 

  Null 1 -70712.3 185.3 35357.2 - - - 

PCA10 Wetlands 4 100917.2 0 -50454.5 IM 1.7 15.9 

  Harvest 4 100933.1 15.9 -50462.5 M 2.1 128.5 
  Water 4 100933.1 15.9 -50462.5 M 2.1 128.1 

  Roads 4 100944.9 27.7 -50468.4 IM 0.9 28 

  Conifer 4 100954.7 37.5 -50473.2 IRM 1.4 23.5 

  Deciduous 4 100959.9 42.7 -50475.9 M 0.5 45.2 

  Fire 4 100960.6 43.4 -50476.2 IM 0.5 8.8 

  Distance 2 100967.2 50 -50481.6 - - - 

  Null 1 101385.5 468.3 -50691.7 - - - 

PCA64  Wetlands 4 88901.9 0 -44446.9 IM 0.6 155 

  Water 4 88922 20.1 -44456.9 M 3.2 196.9 

  Conifer 4 88922.8 20.9 -44457.3 IRM 12.2 161.9 

  Harvest 4 88924.4 22.5 -44458.1 RM 5.8 15 

  Roads 4 88925.2 23.3 -44458.5 IM 0.9 41.2 

  Fire 4 88926.7 24.8 -44459.3 IM 0.5 246.9 

  Deciduous 4 88936.8 34.9 -44464.3 IM 0.5 17.5 
  Distance 2 88939.7 37.8 -44467.8 - - - 

  Null 1 89124.5 222.6 -44561.2 - - - 

Equation refers to the transformation function applied to the resistance surface: M = monomolecular, IM = inverse 

monomolecular, RM = reverse monomolecular, IRM = inverse-reverse monomolecular, “–” = untransformed (e.g., 

distance/null models). Shape and Max are the fitted parameters for the transformation. ΔAICc values are shown 

relative to the top-performing model for each genetic distance metric. 

 

  



S7 

 

 

 

Supplemental Figure S1. Raster layer showing the proportion of conifer cover within a 1000 m 

moving window across the Churchill Range. Values range from 0 (absence) to 1 (complete 

cover). Red points indicate sampled caribou locations. 
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Supplemental Figure S2. Raster layer showing the proportion of deciduous cover within a 1000 

m moving window across the Churchill Range. Values range from 0 (absence) to 1 (complete 

cover). Red points indicate sampled caribou locations. 
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Supplemental Figure S3. Raster layer showing the network of roads across the range within a 

1000 m moving window across the Churchill Range. Values range from 0 (absence) to 1 

(complete cover). Red points indicate sampled caribou locations. 
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Supplemental Figure S4. Raster layer showing the proportion of fire cover within a 1000 m 

moving window across the Churchill Range. Values range from 0 (absence) to 1 (complete 

cover). Red points indicate sampled caribou locations. 
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Supplemental Figure S5. Raster layer showing the proportion of conifer cover within a 1000 m 

moving window across the Churchill Range. Values range from 0 (absence) to 1 (complete 

cover). Red points indicate sampled caribou locations. 
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Supplemental Figure S6. Raster layer showing the proportion of waterbody cover within a 1000 

m moving window across the Churchill Range. Values range from 0 (absence) to 1 (complete 

cover). Red points indicate sampled caribou locations. 
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Supplemental Figure S7. Raster layer showing the proportion of wetland cover within a 1000 m 

moving window across the Churchill Range. Values range from 0 (absence) to 1 (complete 

cover). Red points indicate sampled caribou locations. 
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Supplemental Figure S8. Summary statistics for STRUCTURE runs across different values of K 

used to determine the most likely number of genetic clusters. (A) Mean [Ln P(K)] ± SD across 

replicate runs for each K. (B) First-order rate of change in Ln P(K) with respect to K. (C) 

Second-order rate of change in Ln P(K), or L″(K) ± SD, used in the calculation of ΔK. (D) ΔK 

values, which reflect the rate of change in the log likelihood between successive K values. SD = 

standard deviation. 
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Supplemental Figure S9. STRUCTURE bar plot showing individual genetic assignment 

probabilities for K = 3 genetic clusters. Each bar represents one individual, with color 

proportions indicating the estimated fraction of that individual's genome assigned to each cluster. 

 


