Northern Wild Rice (*Zizania palustris* L.) as a Phytoremediation Species in Eutrophic Wetlands – Investigation of Root-Sediment Interactions

A thesis presented to

The Faculty of Graduate Studies

of

Lakehead University

by

Kimberly Jorgenson, B.Env.Sc.

In partial fulfillment of requirements

for the degree of

Master of Science in Biology

January 2013

© Kimberly Jorgenson, 2013

ABSTRACT

The causes of anthropogenic eutrophication in water bodies are multi-faceted and multigenerational, presenting an ever increasing need for effective and sustainable solutions. Phytoremediation presents a cost-effective strategy to improve water body nutrient retention and removal, contributing to eutrophication mitigation efforts.

This thesis examines the potential for northern wild rice (*Zizania palustris* L.) to be used as a phytoremediation species in eutrophic wetlands. An investigation into root-sediment interactions was undertaken to determine how northern wild rice affects water and sediment pore water chemistry. Northern wild rice growth was found to alter sediment pore water chemistry, contributing directly to nutrient retention during the summer growing season through nutrient assimilation in its tissues, and indirectly through increasing pore water Fe and Mn in the fall. The majority of P and N within the plant was found to be contained in the stems and leaves (44-53%), followed by the inflorescence (22-28%). Harvesting northern wild rice vegetation (including the seeds) at the end of the growing season would present a permanent nutrient removal mechanism.

Substantial iron plaque forms on the roots of northern wild rice, visible as an orangebrown coating that ranges structurally from <1 μ m to 14 μ m thick. Iron plaques were found to be composed mainly of Fe, O, Al and K, with Fe found within and on root epidermal cells. P was not found to be associated with iron root plaques.

With proper harvesting and management techniques, northern wild rice grown in eutrophic water bodies could present a viable phytoremediation method for nutrient removal.

i

LAY SUMMARY

Faculty and students in the Department of Biology at Lakehead University are bound together by a common interest in explaining the diversity of life, the fit between form and function, and the distribution and abundance of organisms. Northern wild rice (*Zizania palustris* L.) is a valuable wetland plant with significant cultural importance for Canada's Aboriginal people. The purpose of this research was to examine the root-sediment interactions of northern wild rice, contributing to "the fit between form and function" of this important aquatic plant. Nutrients (phosphorus and nitrogen) are required for plant growth; human activities have released excessive nutrients into freshwaters worldwide, resulting in nutrient pollution. This research explored how northern wild rice could help remediation efforts in nutrient-impacted water bodies.

Northern wild rice growth was found to alter water chemistry, reducing the amount of available nutrients in the summer by incorporating nutrients in its tissues and in the fall by increasing iron and manganese availability. The majority of nutrients within the plant were found in the stems and leaves, thus harvesting the entire plant at the end of the growing season could permanently remove nutrients. Northern wild rice roots were found to be covered in an orange-brown coating known as iron root plaques. These plaques were composed mainly of iron, oxygen, aluminum and potassium; phosphorous was not found in the iron root plaques.

The results of this research found that, with proper harvesting and management practices, northern wild rice grown in nutrient-rich water bodies could contribute to nutrient removal efforts.

ACKNOWLEDGEMENTS

I am grateful for the field assistance contributed by the students of the Lakehead University Orillia Campus, with special thanks to Sheri O'Connor and Michael Thorn for their ingenuity and commitment. Thank you to Jack Siegel for your hospitality in allowing us to conduct research in Marchmont Marsh. I am also grateful for the analytical assistance contributed by the LUEL and LUIL staff, with special thanks to Allan MacKenzie for his instrumentation expertise and advice, and to Johane Joncas for sharing her knowledge and laboratory space.

Thank you to my supervisors, Dr. Peter Lee and Dr. Nanda Kanavillil for your knowledge, guidance, revisions and support. Thank you to my committee members, Dr. Kam Leung and Dr. Sree Kurissery, your comments have contributed significantly. I would also like to acknowledge Environment Canada's Lake Simcoe Clean-up Fund who partially financed this research.

Special thanks to my university colleagues, Christina, Susanne and Shannon, for sharing advice and a beverage when needed. To my parents, thank you for your advice, encouragement and free labour, I would not be where I am today without the foundation you provided me.

This thesis is dedicated to my husband Kelly. Without your patience, love and support, I could not have reached this goal. Thank you.

iii

TABLE OF CONTENTS

Abstract	i
Lay Summary	ii
Acknowledgements	iii
Table of Contents	iv
List of Tables	vii
List of Figures	viii
List of Appendices	ix
General Introduction	1
Chapter 1: Influence of northern wild rice (Zizania palustris)	on water chemistry in
freshwater wetlands	7
1.1 Introduction	7
1.2 Materials and Methods	9
1.2.1 Field Experiment	9
1.2.1.1 Study Area	10
1.2.1.2 Site Preparation	11
1.2.1.3 Pore Water Sampler	
1.2.1.4 Sample Collection	15
1.2.2 Laboratory Procedures	17
1.2.2.1 Water Analysis	17
1.2.2.2 Sediment Analysis	
1.2.2.3 Vegetation Analysis	
1.2.3 Data Analysis	19
1.3 Results	20
1.3.1 Water Chemistry	20
1.3.2 Water Chemistry Data Trends	24
1.3.3 Sediment Chemistry	
1.3.4 Vegetation Chemistry	

1.4 Discussion	35						
1.4.1 Water/Sediment Chemistry and Nutrient Retention							
1.4 Discussion 1.4.1 Water/Sediment Chemistry and Nutrient Retention 1.4.2 Vegetation Influence 1.4.2.1 Northern Wild Rice Water Chemistry Influence 1.4.2.2 Northern Wild Rice Tissue Assimilation 1.4.3 Northern Wild Rice and Nutrient Retention 1.4.4 Conclusion 1.4.4 Conclusion 1.4.4 Conclusion 1.4.4 Conclusion 1.4.4 Conclusion 1.4.4 Conclusion 1.4.5 Chapter 2: Electron microscopy study of iron plaques on the roots of northe wild rice (Zizania palustris) 2.1 Introduction 2.2 Materials and Methods 2.2.1 Study Area 2.2.2 Sample Collection and Preparation Procedures 2.2.2.1 Northern Wild Rice 2.2.2 Surface Water and Sediment 2.2.3 Surface Water and Sediment 2.2.4 Data Analysis 2.2.4 Northern Wild Rice 2.2.4 Surface Water and Sediment							
1.4.2.1 Northern Wild Rice Water Chemistry Influence							
1.4.2.2 Northern Wild Rice Tissue Assimilation	40						
1.4.3 Northern Wild Rice and Nutrient Retention	40						
1.4.4 Conclusion	42						
Chapter 2: Electron microscopy study of iron plaques on the roots of north	ern						
wild rice (Zizania palustris)	43						
2.1 Introduction	43						
2.2 Materials and Methods	47						
2.2.1 Study Area	47						
2.2.2 Sample Collection and Preparation Procedures	48						
2.2.2.1 Northern Wild Rice	48						
2.2.2.2 Surface Water and Sediment	49						
2.2.3 Analytical Procedures	50						
2.2.3.1 Northern Wild Rice	50						
2.2.3.2 Surface Water and Sediment	52						
2.2.4 Data Analysis	52						
2.2.4.1 Northern Wild Rice	52						
2.2.4.2 Surface Water and Sediment	52						
2.3 Results	52						
2.3.1 Surface Water and Sediment	52						
2.3.2 Northern Wild Rice	54						
2.3.2.1 Root Anatomy	54						
2.3.2.2 Plaque Presence	55						
2.3.2.3 Plaque Structure	56						
2.3.2.4 Plaque Composition	59						
2.3.2.5 Plaque Deposition	59						
2.3.2.6 Plaque Anomalies	62						

2.4 Discussion	64
2.4.1 Surface Water and Sediment	64
2.4.2 Northern Wild Rice	64
2.4.2.1 Root Anatomy	64
2.4.2.2 Plaque Distribution	65
2.4.2.3 Plaque Composition	66
2.4.2.4 Plaque Morphology	67
2.4.2.5 Plaque Anomalies	70
2.4.3 Conclusion	71
Summary and General Conclusions	72

References	
Appendices	

LIST OF TABLES

Chapter 1	
Table 1.1: Marchmont Marsh water chemistry	21
Table 1.2: Victoria Point water chemistry	22
Table 1.3: Sediment chemistry data	32
Table 1.4: Marchmont Marsh wild rice vegetation chemistry data	34
Table 1.5: Victoria Point wild rice vegetation chemistry data	34
Chapter 2	
Table 2.1: Surface water chemistry, northern wild rice sample sites	53
Table 2.2: Sediment chemistry, northern wild rice sample sites	54

LIST OF FIGURES

Chapter I

Figure 1.1: Location of study sites near Orillia, Ontario (Canada)	11
Figure 1.2: Plot delineation in study sites	12
Figure 1.3: Sediment pore water sampler (peeper) design	14
Figure 1.4: Control apparatus	15
Figure 1.5: VP and MM August and September P and N water profiles	25
Figure 1.6: VP and MM August and September pH, alkalinity and conductivity	
water profiles	27
Figure 1.7: VP and MM August and September Ca, Fe, K and Mg water profiles	29
Figure 1.8: VP and MM August and September Mn, Na, S and Zn water profiles	30
Chapter 2	
Figure 2.1: Location of sample sites in Ontario, Canada	48
Figure 2.2: Northern wild rice roots with orange-brown colouration	49
Figure 2.3: Northern wild rice root anatomy	55
Figure 2.4: SEM images of iron plaques on northern wild rice roots	57
Figure 2.5: SEM images of northern wild rice roots with iron plaque casts	58
Figure 2.6: EDXA x-ray spectra of iron plaques on northern wild rice roots	60
Figure 2.7: SEM images and EDXA x-ray spectra of iron plaques on northern wild	
rice roots	61
Figure 2.8: SEM image and EDXA element distribution maps of select elements in	
northern wild rice root cross-section with iron plaque	62
Figure 2.9: SEM images of northern wild rice roots with grooves present in thick	
crust iron plaque	63
Figure 2.10: Hypothetical model of iron plaque development on northern wild	
rice roots	69

LIST OF APPENDICES

Appendix A: Marchmont Marsh Data	88
Appendix B: Victoria Point Data	132
Appendix C: Zizania palustris Root Plaque Examination Data	177

GENERAL INTRODUCTION

Clean freshwater is a vital resource that is rapidly becoming degraded (Carpenter et al. 1998). Of the vast water resources present on Earth, less than 0.5% is accessible as freshwater in ground and surface reservoirs (Wetzel 1992). This freshwater has been used to dispose of pollutants throughout human history, resulting in further stress to the crucial resource (Carpenter et al. 1998). Sources of human-induced surface water degradation include the direct release of toxic chemicals, increased erosion due to forestry and agriculture, and nutrient enrichment (leading to eutrophication) through fertilizer and wastewater discharge (Wetzel 1992).

The cultural eutrophication of water bodies is caused by excessive inputs of nutrients (phosphorus and nitrogen) into aquatic systems from human sources (Carpenter et al. 1998). Aquatic organisms require nitrogen (N) and phosphorus (P) to survive (Wetzel 2001), however when these nutrients are available in excess they are considered contaminants to an aquatic system (Reddy et al. 1999). Symptoms of this artificial enrichment include an increase in primary productivity, turbid water and a loss of biodiversity (Wetzel 2001; Søndergaard et al. 2003). As additional stresses are placed on the worlds' freshwater resources and individuals become aware of the health and ecological risks of nutrient pollution (Wetzel 1992; Galvez-Cloutier et al. 2006), the need for effective and sustainable solutions for cultural eutrophication increases.

Eutrophication can be reversed through the reduction of nutrient sources to a water body, however the rate of recovery is highly variable and internal P loading (i.e. P release from the water body sediments) can cause a persistent eutrophic state (Carpenter et al. 1998; Søndergaard et al. 2003). P has a tendency to accumulate in sediments, resulting in an internal load of P in eutrophic water bodies that can delay water quality improvements (Søndergaard et al. 2003; Hickey and Gibbs 2009). Effective remediation strategies must include a reduction in external nutrient loads and a mechanism for capturing nutrients from the water and sediment and rendering them unavailable (Søndergaard and Jeppesen 2007).

External load reductions, accomplished through government regulations/enforcement and public education campaigns, must target point and non-point sources of pollution including the capture and treatment of nutrient-rich wastewater, municipal sewage, fertilizer runoff and industrial discharges (Carpenter et al. 1998; LWSB 2006). Remediation mechanisms to improve contaminant retention in water bodies involve the manipulation of biotic and abiotic processes such as settling and sedimentation, sorption, chemical oxidation/reduction, biodegradation and plant uptake (Lavrova and Koumanova 2006). Several strategies exist to reduce P release from sediments, including hypolimnetic aeration and the addition of flocculating agents/capping materials, however these methods are frequently cost-inhibitive and require high implementation and monitoring efforts (Reddy et al. 1999).

Phytoremediation, remediating contaminants through the use of vegetation, presents a cost-effective strategy to improve nutrient retention within water bodies (Williams 2002). Wetland systems (constructed and natural) are considered a low-cost alternative for treating non-point source pollutants (Jiang et al. 2007; Lu et al. 2009). The retention and transformation of nutrients in wetlands decreases the quantity of available nutrients in the water column and sediment and thus lowering downstream export (Johnston 1991; Reddy et al. 1999; Mitsch and Gosselink 2007; En-Hua et al. 2010). Wetlands have been shown

to retain organic and inorganic nutrients from the waters that flow through them by physical, chemical and biological processes (Dunbabin and Bowmer 1992; Reddy et al. 1999; Mitsch and Gosselink 2007). Aquatic plants (macrophytes) are the main biological components of wetlands (Maine et al. 2005*a*) and have a major role in nutrient assimilation and storage (Reddy et al. 1999). Emergent macrophytes with extensive root systems and a high ratio of above to below-ground biomass are well-suited to the phytoremediation of nutrient contaminants (Reddy et al. 1999; En-Hua et al. 2010).

Emergent macrophytes contribute to nutrient retention mainly through nutrient assimilation, denitrification and rhizosphere oxidation (Moore et al. 1994; Hoagland et al. 2001). Wetlands function as nutrient sources or sinks depending on the season (Kao et al. 2003), with wetlands typically functioning as net sinks for total P during the growing season (Reddy et al. 1999). Nutrient retention during the growing season, when the majority of problems associated with eutrophication are experienced, can significantly improve water quality and assist in the remediation of eutrophic water bodies (Reddy et al. 1999; Hoagland et al. 2001; Hupfer and Dollan 2003; Kao et al. 2003).

Emergent macrophytes acquire the nutrients required for growth directly from wetland sediments and incorporate them into the living biomass (Wetzel 2001; En-Hua et al. 2010). This process influences the sediment pore water chemistry, reducing the quantity of available nutrients in the sediment and lowering nutrient transfer into the water column (En-Hua et al. 2010). After the growing season, nutrients are released from the senesced vegetation at a variable rate through decomposition and leaching (Mitsch and Gosselink 2007; Reddy et al. 1999). The aboveground portion of the macrophyte returns nutrients

to the water column, while the belowground biomass returns nutrients to the sediment pore water (Reddy et al. 1999; Shilla et al. 2006).

Denitrification, the conversion of nitrate (NO₃⁻) to gaseous nitrous oxide (N₂O) and molecular nitrogen (N₂) by microbes in anaerobic conditions (Mitsch and Gosselink 2007), can permanently remove N from a water body (McCarthy et al. 2007; Hickey and Gibbs 2009). Denitrification is promoted by decomposing vegetation providing a nutrient source and substrate for bacteria (Hoagland et al. 2001). Maine et al. (2005*a*) found that constructed wetlands efficiently removed both N and P from wastewater high in Fe and SO₄²⁻ by promoting both denitrification and P precipitation and adsorption to Fe and CaCO₃.

Rhizosphere oxidation occurs when emergent macrophytes transport oxygen to their roots which subsequently "leaks" out (by radial oxygen loss) into the surrounding anaerobic rhizosphere (Armstrong 1964; Conlin and Crowder 1989; Mitsch and Gosselink 2007). Numerous biogeochemical processes occur within this oxidized rhizosphere, including the oxidation of iron which often results in the precipitation of ferric hydroxide onto root surfaces termed iron root plaque (Mendelssohn and Postek 1982; Crowder and MacFie 1986; St-Cyr et al. 1993; Christensen and Wigand 1998; Caetano and Vale 2002). Iron hydroxides have a high adsorption capacity, resulting in the adsorption or co-precipitation and incorporation of a number of elements including P into plaques (Chen et al. 1980*a*; Chambers and Odum 1990; Liu et al. 2011).

The ability of a wetland to retain nutrients is strongly influenced by the aquatic species present (Kao et al. 2003). Macrophytes best suited for eutrophic wetland phytoremediation are fast-growing indigenous species with vigorous root systems and

high oxygenation ability (Dunbabin and Bowmer 1992; En-Hua et al. 2010). Many studies have shown constructed wetlands planted with emergent macrophytes including *Typha, Schoenoplectus, Phragmites, Juncus* and *Cyperus* species are successful in remediating polluted waters (Dunbabin and Bowmer 1992; Tanner 1996; Hoagland et al. 2001; Maine et al. 2005*a*; Jiang et al. 2007; Lu et al. 2009; En-Hua et al. 2010).

Zizania latifolia (Griseb.) Turcz. ex Stapf, Manchurian wild rice, has been studied for its nutrient uptake and retention potential in Eastern Asia (Tanner 1996; Jiang et al. 2007; Lu et al. 2009; En-Hua et al. 2010). Tanner (1996) examined eight wetland species, concluding that *Z. latifolia* accumulated the largest amount of N, P, S, K, Zn and Fe due to its high growth rate, well-developed root system, high root-zone aeration and stress tolerance. Jiang et al. (2007), Lu et al. (2009) and En-Hua et al. (2010) all found that *Z. latifolia* had a high capacity for N and P uptake, concluding that plant harvest at the end of the growing season provided a permanent nutrient removal mechanism.

Zizania palustris L., northern wild rice, is an emergent annual aquatic grass that grows in shallow lake waters and slow-moving rivers across eastern and north-central North America (Aiken et al. 1988; Painchaud and Archibold 1990). An important cereal crop, wild rice has been harvested for centuries by First Nations people (Aiken et al. 1988). Wild rice is the only wild grass in Canada that grows annually from seed (without being planted) with a grain of sufficient size for widespread human consumption (Aiken et al. 1988). *Z. palustris* has been cultivated in North America since the 1950s (Malvick and Percich 1993), while research into its cultivation potential in Eastern Asia has increased in recent years (Gemma et al. 1993; Jin et al. 2005).

Z. palustris grows in a wide range of water and sediment types and is known to oxidize the rhizosphere through its well-defined system of aerenchyma (Stover 1928; Aiken et al. 1988; Day and Lee 1989; Lee and McNaughton 2004). Stands of wild rice maintain wetland water quality through binding loose soil, retaining nutrients and reducing wind erosion (Bennett et al. 2000). The historic range of *Z. palustris* has been significantly reduced due to human disturbance including water pollution, boat turbulence and water level manipulations (Bennett et al. 2000; Meeker 2000). Since restoration is not a viable option on many historic waters, efforts have been made to seed wild rice into suitable habitats across its former range with variable success (David 2000).

The objective of this thesis was to examine the potential of *Z. palustris* as a phytoremediation species in eutrophic wetlands. An investigation of root-sediment interactions was undertaken with the following aims: 1) To determine how the establishment of *Z. palustris* in a eutrophic wetland alters water and sediment pore water chemistry; 2) To study the deposition, composition and structure of iron plaques formed on the roots of *Z. palustris*.

CHAPTER 1

Influence of northern wild rice (*Zizania palustris*) on water chemistry in freshwater wetlands

1.1 Introduction

Cultural eutrophication is caused by excessive inputs of the nutrients phosphorus (P) and nitrogen (N) into aquatic systems from human sources (Carpenter et al. 1998). When nutrients are available in excess, water bodies experience an increase in primary productivity, turbid water and a loss of biodiversity (Reddy et al. 1999; Wetzel 2001; Søndergaard et al. 2003). This condition can be reversed through the reduction of nutrient sources, however the rate of recovery for water bodies is highly variable since internal P loading from sediments often persists (Carpenter et al. 1998; Søndergaard et al. 2003).

Effective remediation strategies include a reduction in external nutrient loads and a mechanism for capturing nutrients from the water and sediment (Søndergaard and Jeppesen 2007). Phytoremediation through wetland macrophytes presents a cost-effective strategy to improve nutrient retention (Williams 2002). Nutrient retention and transformation in wetlands decreases the load to downstream water bodies (Johnston 1991; Reddy et al. 1999; Mitsch and Gosselink 2007; En-Hua et al. 2010). Emergent macrophytes in wetlands contribute to nutrient dynamics mainly through nutrient assimilation, denitrification and rhizosphere oxidation (Moore et al. 1994; Hoagland et al. 2001). Nutrient retention by macrophytes during the growing season can significantly improve water quality and assist in the remediation of eutrophic water bodies (Reddy et al. 1999; Hoagland et al. 2001; Hupfer and Dollan 2003; Kao et al. 2003).

Zizania palustris L., northern wild rice, is an emergent annual aquatic grass that grows in shallow lake waters and slow-moving rivers across eastern and north-central North America (Aiken et al. 1988; Painchaud and Archibold 1990). In North America, *Z. palustris* has been harvested for centuries by First Nations people and has been cultivated commercially since the 1950s (Aiken et al. 1988; Malvick and Percich 1993). *Z. palustris* grows in a wide range of water and sediment types and is known to oxidize the rhizosphere through its well-defined system of aerenchyma (Stover 1928; Aiken et al. 1988; Day and Lee 1989; Lee and McNaughton 2004; Jorgenson et al. 2013 *Botany - in press*). The phytoremediation potential of *Z. palustris* in nutrient-impacted water bodies has not been examined to date, however the commercial value and physical attributes of this annual aquatic grass suggest that this species may be suitable in such initiatives.

Sediment interstitial pore waters represent an important source of bioavailable nutrients and metals within water bodies (Teasdale et al. 1995). Pore water dynamics are useful in examining interactions between lake water and sediment, are more sensitive to seasonal variations and are a better indicator of the trophic status of a water body (Teasdale et al. 1995; Søndergaard 1990). Examining sediment pore water chemistry can help explain many chemical processes occurring within sediments, and in-situ methods of pore water collection are best for minimizing sampling artefacts (Azcue et al. 1996). An in-situ sampling field experiment was designed based on the research of Moore et al. (1994) to determine how water and sediment pore water chemistry are affected by northern wild rice. Dialysis pore water samplers (peepers) were used to examine the effect of northern wild rice on water chemistry and nutrient partitioning in adjacent vegetated and nonvegetated plots in two freshwater wetlands. The objective of this study was to examine the potential of Z. palustris as a phytoremediation species for eutrophic water bodies. Lake Simcoe is a mesotrophic lake located in southern Ontario that has undergone numerous environmental changes due to anthropogenic P loading (Evans et al. 1996; Ginn 2011). P levels began to increase in Lake Simcoe in the 1930s, however P was not identified as a water quality problem until the 1970s when a decline in the coldwater fishery and excessive algal and aquatic macrophyte growth were observed (Eimers et al. 2005; Winter et al. 2007; Kilgour et al. 2008; Hawryshyn et al. 2012). Anthropogenic nutrient sources within the watershed include urban and agricultural run-off from 23 municipalities, livestock waste, effluent from 15 sewage treatment plants and atmospheric pollution (LSRCA 2009; Ontario Ministry of the Environment 2009a). Initiatives to reduce total P loading to Lake Simcoe, including the Lake Simcoe Protection Plan, have been ongoing since the 1990s with a substantial improvement in lake water quality observed in recent years (Winter et al. 2007; Ontario Ministry of the Environment 2009b; Ginn 2011; Winter et al. 2011; Hawryshyn et al. 2012). The goal of this study was to determine how water and sediment pore water chemistry are affected by the presence of Z. palustris, in an effort to determine the usefulness of Z. *palustris* as a phytoremediation species in eutrophic wetlands.

1.2 Materials and Methods

1.2.1 Field Experiment

Two freshwater wetlands were selected near Orillia, Ontario, to examine the influence of *Z. palustris* growth on water chemistry in differing wetland environments. Surface water and sediment pore water samples were collected in-situ from plots containing wild rice vs. plots containing no vegetation and submitted for laboratory analysis.

Orillia, Ontario (44° 35' 59" N, 79 24' 59" W) is located on the northern shore of Lake Simcoe, adjacent to the Lake's outflow to Lake Couchiching at Atherley Narrows (Winter et al. 2007). Both wetlands selected for this study (Figure 1.1) are part of the Lake Huron Drainage Basin, with Victoria Point located within the Lake Simcoe Watershed and Marchmont Marsh located within the Severn Sound Watershed (Environment Canada 2010; South Georgian Bay-Lake Simcoe Source Protection Committee 2011).

Victoria Point (VP) wetland (44° 35' 36" N, 79 22' 58" W), adjacent to the southeast boundary of Orillia, is a shallow open water marsh within Lake Simcoe with dark brown flocculent organic sediment (> 2 metres (m) deep) and a seasonally fluctuating water level (0.1 - 2 m depth). Dominant macrophyte species within the study area included *Nymphaea odorata* Aiton, *Nuphar variegata* Engelm. ex Durand, *Ceratophyllum demersum* L. and *Myriophyllum* sp., with *Typha angustifolia* L. dominant along the shoreline.

Marchmont Marsh (MM) (44° 38' 03" N, 79 31' 03" W), located approximately 5 km west of the City of Orillia, is an open water marsh along the shoreline of a slow-moving tributary of the North River with a stable water level (1 m depth). Within the study area, a firm light brown clay layer is located beneath the overlying brown organic sediments (0.3 - 0.5 m deep). Dominant macrophyte species within the study area included *Z*. *palustris*, *N. variegata* and *C. demersum*, bounded by a riparian forest dominated by *Abies balsamea* (L.) Mill. and *Thuja occidentalis* L.

Figure 1.1 – Location of study sites near Orillia, Ontario (Canada). Basemap imagery from ESRI (2012).

1.2.1.2 Site Preparation

Victoria Point

In early May 2010, VP wetland was observed to be lacking vegetation cover. A suitable plot location was selected for seeding *Z. palustris* based on accessibility, adequate water depth (0.5 - 1 m), flocculent sediment conditions, a lack of competitive species and shelter from wind (Aiken et al. 1988; Gemma et al. 1993; Painchaud and Archibold 1990). A fence (constructed of ABS pipe and plastic safety fencing) was erected to eliminate waterfowl disturbance, delineating a study area approximately 7.5 m by 11 m in size. *Z. palustris* seeds (collected and over-wintered in a pond near Kakabeka Falls, Ontario) were scattered throughout the fenced area, with excess seed distributed in an area just north of the fence. Growth of the seeded northern wild rice was monitored in June and July, with the majority of successful growth observed adjacent to the fence due

to the reduced turbidity from strong winds. Competitive species (*N. odorata* and *C. demersum*) were removed from within the fenced area as required to encourage growth.

In late July 2010, six plots were delineated within the study area based on the observed vegetation growth (Figure 1.2): three vegetated plots containing only northern wild rice vegetation; two non-vegetated plots containing no vegetation; and, one large mixed-vegetation plot containing *N. odorata* (dominant), *Myriophyllum* sp., *C. demersum* and *Z. palustris*. Non-vegetated plots were maintained throughout the growing season with bi-weekly vegetation removal.

Marchmont Marsh

In late June 2010, *Z. palustris* was observed to be growing vigorously along the southern shore of MM. Six plots were delineated (Figure 1.2) within the study area: three vegetated plots containing only northern wild rice vegetation, and three non-vegetated plots containing no vegetation. Non-vegetated plots were maintained through monthly vegetation removal of *C. demersum*.

Figure 1.2 – Plot delineation in study sites.

1.2.1.3 Pore Water Sampler

Dialysis pore water samplers (peepers) were constructed to collect sediment pore water samples. Originally designed by Hesslein in 1976, peepers allow for the collection of discrete pore water samples from specified depths, through the equilibration of a contained quantity of water with the surrounding pore water (Hesslein 1976). Many modifications have been designed and used over the years to meet specific experimental requirements (Teasdale et al. 1995; Azcue et al. 1996; Jacobs 2002; Bally et al. 2005).

In this study, peepers were designed to collect the large sample volumes required for a wide range of chemical analyses. Fisherbrand® 50 mL centrifuge tubes were modified to use as the individual dialysis water samplers (Figure 1.3 C). A 180 mm diameter hole was drilled in each cap and fitted with a 0.45 µm Millipore Durapore® membrane filter, adhered with silicone between two 500 µm Nitex® screens. ABS pipe and fittings were used to construct an apparatus for anchoring multiple dialysis water samplers (Figure 1.3 A). Three dialysis water samplers were inserted into each 10 cm interval of the sampling apparatus, collecting 150 mL of water per 10 cm interval (Figure 1.3 B). Collectively, the sampling apparatus and multiple dialysis water samplers are herein referred to as a peeper.

Figure 1.3 – Sediment pore water sampler (peeper) design.

At the time of deployment, each dialysis water sampler was filled with degassed distilled deionized water (DDW), capped (zero headspace) and placed in the sampling apparatus. The compiled peeper was pushed vertically into the sediment at a random location within each plot, with one 10 cm depth interval visible above the sediment-water interface (SWI) (Figure 1.3 B). In total, 36 peepers were constructed, 30 peepers with five 10 cm depth intervals to sample up to 40 cm below the SWI, and six "deep peepers" with eight 10 cm depth intervals to sample up to 70 cm below the SWI. Deep peepers were designed to examine pore water trends below the rooting zone of *Z. palustris*. After deployment, all peepers remained undisturbed for approximately one month (26-33 days), allowing adequate equilibration time with the surrounding water (Teasdale et al. 1995).

1.2.1.4 Sample Collection

At the time of sample collection, the peeper was carefully pulled vertically from the sediment and each individual dialysis water sampler was extracted and collected by 10 cm sampling depth. Compromised samples (e.g. from samplers with damaged caps) were discarded. The contents of all samplers from the same 10 cm depth interval (usually three samplers) were emptied into clean, pre-labelled 250 mL plastic bottles, resulting in one 150 mL water sample per 10 cm depth per peeper. Samples were placed in ice-filled coolers and transported to the Lakehead University Environmental Laboratory (LUEL) for analysis. After sample collection, the sampling apparatus was scrubbed clean, loaded with new degassed DDW-filled dialysis water samplers and re-deployed.

A control apparatus was also constructed to determine if peeper components contributed to the analytical results. A short length of ABS pipe was capped at both ends and filled with degassed DDW and three filled dialysis water samplers (Figure 1.4) at each deployment event. Samples of the control apparatus water, degassed DDW (used to fill samplers at deployment) and site surface water were collected at each sampling event. Samples were collected directly into clean 250 mL plastic bottles, sealed, labelled and stored in a cooler along with the peeper samples for transport to the LUEL for analysis.

Figure 1.4 – Control apparatus.

Sediment and vegetation samples were also collected at select intervals from each study site. Sediment samples were collected by pre-cleaned shovel into new 1 L plastic bags, sealed, labelled and transported in coolers to the LUEL for analysis. Vegetation samples of *Z. palustris* were removed by hand from the sediment and placed into new plastic bags, sealed, labelled and transported in coolers to the LUEL for analysis.

Victoria Point

In total, 20 peepers were deployed and collected monthly in VP from July to October 2010. Three peepers each were located in the three vegetated plots and two non-vegetated plots, and five peepers were located in the mixed vegetation plot. One deep peeper was included in each plot (six deep peepers total). Three sample collection events occurred (August, September and October) for a total of 333 samples collected. Water levels within VP dropped significantly throughout the summer so that only 0.1 to 0.3 m of water and little vegetation remained within the study area in October. Accordingly, only one deep peeper from each of the vegetated plots was collected and analyzed in October.

One surface water sample was collected per month from July to October. One vegetation sample (10 plants) was collected in September, and one sediment sample was collected in October.

Marchmont Marsh

In total, 18 peepers were deployed and collected monthly in MM from June to October 2010. Three peepers each were located in the three vegetated plots and three non-vegetated plots. Firm clay impeded peeper deployment beyond 40 cm below the SWI,

thus no deep peepers were used. Four sample collection events occurred (July, August, September and October), for a total of 388 samples collected. Water level and vegetation cover within MM was consistent throughout the study.

One surface water sample was collected per month from July to October. Two vegetation samples were collected, one in August (3 plants) and one in September (20 plants). Two sediment samples were collected, one each in June and October.

1.2.2 Laboratory Procedures

All sample analyses were conducted at the LUEL, a Canadian Association of Laboratory Accreditation (CALA) ISO 17025 accredited laboratory. All analyses followed standard operating procedures and included the use of blanks, quality control samples and replicates.

1.2.2.1 Water Analysis

As per the in-situ sample collection technique, water samples (surface and pore) were filtered in the field. The majority of samples contained a small portion of sediment, indicating that not all water passed through the 0.45 μ m membrane (i.e. some water passed around the membrane and only through the 500 μ m screen). In preparation for laboratory analysis, water samples were mixed, allowed to settle for 5 to 10 minutes and then decanted (eliminating the approximately 10 mL of water containing sediment particles from analysis).

Water (surface and pore) samples were analyzed for: pH, conductivity, total alkalinity, P (total P and phosphate), N (nitrite and nitrate), and total Al, As, Ba, Ca, Fe, K, Mg, Mn, Na, S, Sr and Zn. Select samples in June and July were also analyzed for dissolved

organic carbon (DOC) and reactive silicates (MM only). For samples of insufficient quantity (i.e. less than 150 mL), analyses were prioritized as follows: 1) P and N; 2) Al, As, Ba, Ca, Fe, K, Mg, Mn, Na, S, Sr and Zn; 3) pH, conductivity and total alkalinity.

Within 24 hours of reaching the laboratory, pH and conductivity were analyzed by a probe (with temperature correction) and alkalinity was analyzed by titration with H_2SO_4 to a pH of 4.5 (automated titration procedure). Al, As, Ba, Ca, Fe, K, Mg, Mn, Na, S, Sr and Zn analyses were carried out by ICP spectrometry subsequent to their digestion and concentration by microwave following the addition of HNO₃. P and N were determined on filtered samples (0.45 µm) by ion chromatography on a Dionex DX-120.

1.2.2.2 Sediment Analysis

Sediment samples were analyzed for total P, Al, As, Ba, Ca, Fe, K, Mg, Mn, Na, S, Si, Sr, Ti and Zn. Samples from MM were also analyzed for pH and conductivity. Sediment samples were air-dried and ground to pass through a 2 mm mesh. Total P, Al, As, Ba, Ca, Fe, K, Mg, Mn, Na, S, Si, Sr, Ti and Zn analyses were conducted by ICP spectrometry subsequent to their digestion and concentration by microwave following the addition of HCl and HNO₃. Conductivity and pH were determined by probe (with temperature correction) on non-dried samples thoroughly mixed with DDW.

1.2.2.3 Vegetation Analysis

Vegetation samples were separated into four parts (root, leaf, stem and inflorescence), oven-dried at 35°C and ground to pass through a 2 mm mesh. All samples were analyzed for total P, N, Al, Ba, Ca, Fe, K, Mg, Mn, Na, S, Si, Sr, Ti and Zn. Total P, Al, Ba, Ca, Fe, K, Mg, Mn, Na, S, Si, Sr, Ti and Zn analyses were conducted by ICP spectrometry

subsequent to their digestion and concentration by microwave following the addition of HNO_3 . Total N analyses were conducted by colourimetry through a SKALAR AutoAnalyzer® subsequent to their digestion and concentration by microwave following the addition of H_2SO_4 catalyzed with a metal sulphate.

1.2.3 Data Analysis

All data was tabulated, with means and standard deviations calculated for each parameter, depth and plot type. Water data from depths ranging from 10-0 cm above the SWI to 30-40 cm (MM) and 40-50 cm (VP) below the SWI were statistically analyzed and graphed using SigmaPlot[™] 12.0 Graphing and Statistical Software to determine trends with depth between sampling plots (vegetated vs. non-vegetated) by month. Since a trend in the distribution of data with depth was observed (indicating additive data), a correction was applied to all depths per plot per month, in accordance with the methodology outlined by Lee and Stewart (1981). This involved calculating the overall mean for all samples (all plots) within the same depth interval, and then transforming the mean for all samples within individual plots to a percentage of the overall mean value:

Same depth & month: \underline{mean} (one plot, all samples) x 100% = depth-independent value for each plot mean (all plots, all samples)

This approach allowed for the comparison of the concentrations of variables in one plot in relation to another, rather than comparing the actual concentration values (Lee and Stewart 1981). Paired t-Tests and ANOVAs were then conducted on the depthindependent water data for each site, comparing each plot to the other, both within and between months. If the plots were significantly different from each other within the same month or if individual plots were significantly different between months ($P \le 0.05$), a Tukey Post Hoc Test was conducted to determine where the data differed.

1.3 Results

1.3.1 Water Chemistry

In MM, 108 surface water samples (from a depth range of 10 cm to 0 cm above the SWI) and 280 pore water samples (from a depth range of 0 cm to 50 cm below the SWI) were analyzed. Table 1.1 presents the concentration ranges (minimum value – maximum value), means and stand deviations for all surface and pore water samples analyzed (all depths, all months) from MM. The mean As concentrations were less than the MDL

In VP, 39 surface water samples (from a depth range of 10 cm to 0 cm above the SWI) and 294 pore water samples (from a depth range of 0 cm to 80 cm below the SWI) were analyzed. Table 1.2 presents the concentration ranges (minimum value – maximum value), means and stand deviations for all surface and pore water samples analyzed (all depths, all months) from VP. The mean As concentrations were less than the MDL.

At both sites, pH, total S and Zn concentrations were higher in the surface waters, while alkalinity, conductivity, and total P, N, Al, Ba, Ca, Fe and Mn concentrations were higher in the pore waters. Total K, Mg, Na and Sr showed opposite trends in VP vs. MM, with total Na concentrations higher in the surface waters of VP (pore waters of MM) and total K, Mg and Sr concentrations higher in pore waters of VP (surface waters of MM).

The total P concentrations in the surface water of VP were indicative of a eutrophic state, while the surface waters of MM had P and N concentrations within the range of uncontaminated fresh waters (Wetzel 2001; Mitsch and Gosselink 2007). N concentrations in the surface water of VP were generally below the MDL, supporting the accepted theory that P is the nutrient of primary concern within Lake Simcoe (Winter et al. 2007; Palmer et al. 2011; Winter et al. 2011).

Analytical				Non-Vegetated	_		_	Vegetated			
Parameter	Unite	MDI	Water	Range	Mean	SD	n	Range	Mean	SD	
1 drameter	Units	MDL	Surface	0.003 - 0.238	0.026	0.034	60	0.003 - 0.128	0.031	0.020	48
Total P	mg/L	0.005	Pore	0.006 - 0.355	0.072	0.068	133	0.003 - 0.263	0.081	0.053	147
Phosphate	/1	0.025	Surface	0.013 - 0.013	0.013	0	60	0.013 - 0.013	0.013	0	48
PO ₄ -P	mg/L	0.025	Pore	0.013 - 0.013	0.013	0	133	0.013 - 0.078	0.014	0.006	147
Nitrite	/1	0.007	Surface	0.003 - 0.003	0.003	0	60	0.003 - 0.098	0.008	0.019	48
NO ₂ -N	mg/L	0.006	Pore	0.003 - 2.410	0.039	0.236	133	0.003 - 0.003	0.003	0	147
Nitrate	/T	0.000	Surface	0.005 - 0.044	0.008	0.007	60	0.005 - 0.171	0.018	0.031	48
NO ₃ -N	mg/L	0.009	Pore	0.005 - 0.166	0.015	0.028	133	0.005 - 0.329	0.030	0.064	147
»П	NI/A	N/A	Surface	7.23 - 7.93	7.67	0.16	42	6.87 - 7.88	7.59	0.23	31
рп	IN/A	N/A	Pore	6.60 - 7.51	7.03	0.19	107	6.48 - 7.87	6.88	0.22	126
Alkalinity	/T	1.0	Surface	124.4 - 167.4	130.0	8.0	42	123.2 - 163.6	130.6	8.3	31
as CaCO ₃	mg/L	1.0	Pore	91.3 - 260.9	145.4	26.3	107	101.0 - 205.2	140.8	20.0	126
Conductivity	uS/om	0.50	Surface	256.40 - 338.00	278.18	14.51	42	261.60 - 333.30	278.72	14.63	31
Conductivity	µ5/cm	0.50	Pore	188.00 - 504.00	314.76	46.96	107	223.10 - 391.10	303.03	32.31	126
Total Al	ma/I	0.005	Surface	0.006 - 0.066	0.024	0.016	52	0.006 - 0.071	0.019	0.013	40
I otal Al	mg/L	0.005	Pore	0.008 - 3.080	0.128	0.329	128	0.007 - 0.727	0.050	0.081	138
Total Ba	ma/I	0.003	Surface	0.054 - 0.089	0.059	0.006	52	0.055 - 0.092	0.061	0.008	40
Total Da	mg/L	0.005	Pore	0.042 - 0.154	0.073	0.018	128	0.057 - 0.119	0.085	0.013	138
Total Ca	mg/I	0.005	Surface	30.500 - 41.940	33.842	2.677	52	30.740 - 44.752	34.308	3.185	40
Total Ca	ing/L	0.005	Pore	26.972 - 67.820	40.380	6.061	128	29.100 - 58.220	39.960	4.624	138
Total Fe	mø/L	0.002	Surface	0.011 - 1.839	0.128	0.339	52	0.008 - 1.754	0.270	0.462	40
Total Te	ing/L	0.002	Pore	0.077 - 4.558	1.280	0.835	128	0.009 - 3.472	1.735	0.647	138
Total K	mø/L	0 10	Surface	1.01 - 1.47	1.20	0.16	52	0.50 - 1.45	1.15	0.18	40
	ing/L	0.10	Pore	0.15 - 2.46	0.86	0.43	128	0.11 - 4.42	0.75	0.51	138
Total Mg	mg/I	0.01	Surface	8.84 - 11.24	10.47	0.44	52	7.12 - 11.09	10.11	0.92	40
Total Mg	ing/L	0.01	Pore	4.60 - 13.31	7.44	1.73	128	5.26 - 11.82	7.91	1.32	138
Total Mn	mø/L	0 0002	Surface	0.0009 - 0.3736	0.0277	0.0763	52	0.0011 - 0.8448	0.0771	0.1499	40
Total Ivili	ing/L	0.0002	Pore	0.0061 - 0.8744	0.1731	0.1319	128	0.0012 - 1.0704	0.3131	0.1888	138
Total Na	mg/L	0.01	Surface	4.54 - 6.07	5.05	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4.21 - 5.99	4.96	0.44	40
rotur rtu			Pore	1.89 - 21.54	7.89	4.31	128	2.27 - 13.24	5.16	2.02	138
Total S	mg/L	0.05	Surface	0.36 - 2.12	1.81	0.35	52	0.11 - 2.06	1.68	0.43	40
		0.00	Pore	0.06 - 1.81	0.39	0.26	128	0.10 - 1.97	0.40	0.31	138
Total Sr	mg/L	0.005	Surface	0.097 - 0.118	0.103	0.005	52	0.089 - 0.133	0.104	0.007	40
			Pore	0.063 - 0.179	0.101	0.016	128	0.074 - 0.144	0.104	0.013	138
Total Zn	mg/L	0 001	Surface	0.001 - 0.012	0.006	0.004	52	0.001 - 0.015	0.007	0.004	40
		0.002	Pore	0.001 - 0.013	0.005	0.003	128	0.001 - 0.012	0.005	0.003	138
Dissolved Organic	mg/L	05	Surface ^a	3.8 - 9.3	5.0	1.0	30	1.3 - 8.6	4.9	1.4	26
Carbon		0.0	Pore ^b	4.1 - 15.6	7.5	2.8	63	1.4 - 10.1	6.3	2.0	72
Reactive	ma/I	0.25	Surface ^c	7.70 - 22.4	11.13	5.57	6	8.60 - 10.30	9.12	0.69	5
Silicates SiO ₂	mg/L	0.23	Pore ^d	15.20 - 29.60	22.31	4.88	9	16.80 - 28.80	22.95	4.29	11

Table 1.1 - Marchmont Marsh water chemistry. Data presented by plot type for all months.

Notes

MDL = method detection limit; N/A = not applicable; SD = standard deviation; n = sample size; ^a = measured in June, July & August;

^b = measured in July & August; ^c = measured in June & July; ^d = measured in July.

Analytical				Non-Vegetated				Vegetated				Mixed Vegetation			
Parameter	Units	MDL	Water	Range	Mean	SD	n	Range	Mean	SD	n	Range	Mean	SD	n
Total D	ma/I	0.005	Surface	0.024 - 0.873	0.184	0.282	14	0.022 - 0.610	0.235	0.203	18	0.011 - 0.714	0.218	0.271	7
Total I	mg/L	0.005	Pore	0.025 - 1.756	0.475	0.372	98	0.021 - 1.581	0.471	0.341	119	0.025 - 1.420	0.319	0.304	77
Phosphate	ma/I	0.025	Surface	0.013 - 0.406	0.042	0.105	14	0.013 - 0.140	0.029	0.034	18	0.013 - 0.761	0.146	0.276	7
PO ₄ -P	iiig/L	0.025	Pore	0.0125 - 1.306	0.254	0.271	98	0.0125 - 1.125	0.183	0.197	119	0.013 - 0.697	0.151	0.163	77
Nitrite	ma/I	0.006	Surface	0.003 - 0.003	0.003	0	14	0.003 - 0.003	0.003	0	18	0.003 - 0.003	0.003	0	7
NO ₂ -N	iiig/L	0.000	Pore	0.003 - 0.003	0.003	0	98	0.003 - 0.003	0.003	0	119	0.003 - 0.003	0.003	0	77
Nitrate	ma/I	0 000	Surface	0.005 - 0.005	0.005	0	14	0.005 - 0.018	0.005	0.003	18	0.005 - 0.052	0.016	0.019	7
NO ₃ -N	iiig/L	0.009	Pore	0.005 - 0.198	0.007	0.020	98	0.005 - 0.018	0.005	0.001	119	0.005 - 0.240	0.008	0.027	77
nН	N/A	N/4	Surface	6.83 - 7.29	7.06	0.23	4	7.07 - 7.12	7.10	0.03	3	7.05 - 7.08	7.06	0.02	2
pm	IN/A	1V/A	Pore	6.71 - 7.06	6.84	0.08	83	6.61 - 7.21	6.79	0.11	103	6.36 - 6.92	6.67	0.13	71
Alkalinity	ma/I	10	Surface	173.2 - 230.3	194.4	26.6	4	140.5 - 150.6	146.7	5.4	3	137.5 - 206.3	171.9	48.6	2
as CaCO ₃	iiig/L	1.0	Pore	181.5 - 388.9	307.3	47.1	83	149.9 - 368.5	283.2	45.8	103	135.5 - 399.4	228.7	56.6	71
Conductivity	uS/om	0.50	Surface	442.40 - 525.60	468.73	39.04	4	347.90 - 368.50	357.53	10.36	3	350.50 - 484.50	417.50	94.75	2
Conductivity	µ5/cm	0.50	Pore	438.10 - 805.60	657.11	80.11	83	370.10 - 727.00	599.74	71.41	103	375.40 - 836.60	533.60	102.62	71
Total Al	ma/I	0.005	Surface	0.006 - 0.015	0.010	0.003	7	0.005 - 0.018	0.011	0.004	8	0.009 - 0.013	0.010	0.002	4
Total Al	iiig/L	0.005	Pore	0.003 - 0.020	0.009	0.004	95	0.003 - 0.025	0.011	0.005	115	0.005 - 0.075	0.018	0.012	77
Total Da	ma/I	0.002	Surface	0.030 - 0.083	0.049	0.018	7	0.027 - 0.057	0.040	0.011	8	0.027 - 0.049	0.042	0.010	4
Total Da	iiig/L	0.005	Pore	0.039 - 0.096	0.065	0.009	95	0.033 - 0.079	0.062	0.008	115	0.032 - 0.086	0.050	0.011	77
Total Ca	ma/I	0.005	Surface	54.467 - 106.400	70.782	17.402	7	48.080 - 77.887	58.699	12.599	8	49.200 - 87.247	69.640	15.903	4
Total Ca	iiig/L	0.005	Pore	66.416 - 134.800	101.524	14.183	95	55.556 - 138.376	95.368	15.392	115	53.260 - 147.936	83.594	20.264	77
Total Fe	ma/I	0.002	Surface	0.012 - 0.215	0.081	0.078	7	0.015 - 0.119	0.047	0.041	8	0.017 - 0.083	0.054	0.034	4
Total Pe	iiig/L	0.002	Pore	0.028 - 0.336	0.101	0.060	95	0.031 - 0.291	0.116	0.053	115	0.0300 - 0.270	0.094	0.046	77
Total K	ma/I	0.10	Surface	1.82 - 3.64	2.35	0.65	7	0.82 - 2.72	1.44	0.72	8	0.83 - 1.71	1.32	0.37	4
I otal K	iiig/L	0.10	Pore	1.25 - 7.94	4.20	1.30	95	0.50 - 7.20	3.18	1.18	115	0.12 - 9.72	2.11	2.05	77
Total Ma	ma/I	0.01	Surface	5.07 - 7.66	5.73	0.87	7	3.91 - 6.53	4.68	0.92	8	4.41 - 6.67	5.67	0.94	4
Total Wig	iiig/L	0.01	Pore	4.93 - 7.74	6.62	0.55	95	4.38 - 8.14	6.36	0.68	115	4.57 - 8.78	6.31	1.02	77
Total Mn	ma/I	0 0002	Surface	0.0148 - 0.4550	0.1579	0.1770	7	0.0144 - 0.2880	0.1012	0.0908	8	0.0147 - 0.0942	0.0559	0.0341	4
	iiig/L	0.0002	Pore	0.0136 - 0.6708	0.2595	0.1746	94	0.0137 - 0.6264	0.2842	0.1420	115	0.0339 - 0.6388	0.1644	0.0963	77
Total No	ma/I	0.01	Surface	17.25 - 20.24	18.92	0.97	7	18.21 - 20.68	19.43	1.00	8	16.18 - 20.18	18.15	1.88	4
Total Na	IIIg/L	0.01	Pore	10.34 - 18.69	14.81	2.22	94	9.44 - 21.18	15.81	2.31	115	11.34 - 29.76	17.90	3.81	77
Total S	ma/I	0.05	Surface	1.07 - 2.73	1.76	0.64	7	0.85 - 1.96	1.31	0.32	8	1.13 - 2.11	1.59	0.41	4
Total S	IIIg/L	0.05	Pore	0.21 - 1.28	0.77	0.25	94	0.23 - 2.66	0.84	0.32	115	0.34 - 2.84	0.98	0.43	77
Total Sr	ma/I	0.005	Surface	0.146 - 0.267	0.185	0.041	7	0.134 - 0.216	0.163	0.033	8	0.134 - 0.223	0.182	0.037	4
10101 51	ing/L	0.005	Pore	0.162 - 0.295	0.226	0.026	94	0.135 - 0.278	0.221	0.025	115	0.132 - 0.285	0.189	0.035	77
Total 7n	ma/I	0.001	Surface	0.001 - 0.009	0.006	0.003	7	0.006 - 0.016	0.011	0.004	8	0.002 - 0.012	0.007	0.004	4
	ing/L	0.001	Pore	0.001 - 0.011	0.005	0.003	94	0.001 - 0.011	0.006	0.002	115	0.001 - 0.012	0.005	0.002	77
Dissolved Organic	с	0.5	Surface	18.7 - 20.7	19.4	0.7	6	18.0 - 24.4	20.7	2.3	8	14.2 - 17.5	16.4	1.9	3
Carbon ^a	mg/L	0.5	Pore	9.5 - 17.8	13.6	2.2	32	8.9 - 18.7	14.4	2.2	47	9.1 - 22.5	12.8	3.5	26

 Table 1.2 - Victoria Point water chemistry.
 Data presented by plot type for all months.

Notes

MDL = method detection limit; N/A = not applicable; SD = standard deviation; n = sample size; ^a = measured in July and August

<MDL results recorded as 0.5*MDL

VP surface water P concentrations $(0.209 \pm 0.239 \text{ mg/L})$ were higher than those reported in previous studies of Lake Simcoe, with total P values of 0.010 mg/L to 0.015 mg/L reported in the open waters of Lake Simcoe (Evans et al. 1996; Winter et al. 2007), a mean P concentration of 0.0102 mg/L reported in Atherley Narrows (Eimers et al. 2005) and an average P concentration of 0.04 mg/L reported along the shoreline of Lake Simcoe (Kilgour et al. 2008). Elevated P concentrations within VP surface waters may be attributed to urban P runoff sources and sediment P release from re-suspension events in the shallow wetland and sample collection zone (Søndergaard and Jeppesen 2007).

Alkalinity and conductivity were much higher in VP compared to MM in both surface and pore waters. Lake Simcoe is a hard-water lake, with average surface water alkalinity concentrations reported to range from 116 mg/L to 125 mg/L (Evans et al. 1996; Palmer et al. 2011), lower than the surface water concentrations found in both VP (166 mg/L) and MM (130 mg/L). Alkalinity was higher in the pore water vs. the surface water of both sites, reflective of the limestone bedrock geology of the area (Armstrong 2000). Average surface water conductivity in VP (407 μ S/cm) was also higher than the average value reported in Lake Simcoe surface waters (345 μ S/cm) (Evans et al. 1996). VP had lower pH values compared with MM in both surface and pore waters, with pore water pH decreasing with depth at both sites. Surface water pH in VP (7.12) was lower than the reported average value in the surface waters of Lake Simcoe of 8.3 (Evans et al. 1996), possibly due to the influence of vegetation and shallow wetland waters.

For both surface and pore water, total Al, Ba, Fe and Mg concentrations were higher in MM, while total Ca, K, Na and Sr concentrations were higher in VP, and similar total Mn, S and Zn concentrations were found in both sites. The Ca concentrations in the

surface and pore waters of VP were much higher than in the waters of MM. Surface water Fe concentrations at both sites were lower than the pore water concentrations, a consistent trend with earlier pore water studies (Søndergaard 1990; Azcue et al. 1996; Pulatsu and Topcu 2009).

Complete results, including raw analytical data, graphs, results of statistical analyses and site photos are included in Appendix A (MM) and Appendix B (VP). Appendix A, Tables A.1.1 to A.1.5 present the mean values, standard deviations and sample sizes for the water variables analyzed in MM by 10 cm depth interval (10-0 cm above to 30-40 cm below the SWI) from July to October. Appendix B, Tables B.1.1 to B.1.6 present the mean values, standard deviations and sample sizes for the water variables analyzed in VP to October. Appendix B, Tables B.1.1 to B.1.6 present the mean values, standard deviations and sample sizes for the water variables analyzed in VP by 10 cm depth interval (10-0 cm above to 40-50 cm below the SWI) from August to October. Values below the method detection limit (MDL) are reported as half of the MDL value. Parameters with mean values less than the MDL are omitted from these tables with the exception of nitrate.

1.3.2 Water Chemistry Data Trends

Depth profiles of P and N concentrations in August and September are presented graphically in Figure 1.5. The total P and phosphate depth profile for all months was similar in VP and MM, with P increasing from the surface water to 10 - 30 cm below the SWI, and then decreasing to the maximum depth sampled. Nitrate was only present in measurable concentrations in August in MM and in September in VP, and followed a similar depth profile as P.

Figure 1.5 – VP and MM August and September P and N water profiles. Mean values plotted with error bars depicting one standard error. Dashed line indicates sediment-water interface. ANOVA (comparing all plots and depths shown per month) results significant at $P \le 0.05$.

The observed P concentration depth trend at both sites was consistent with the pore water trends reported by Søndergaard (1990), Moore et al. (1994), Templer et al. (1998) with *T. angustifolia* vegetation dominant, Reddy et al. (1999) and Bally et al. (2005). Nitrate in MM (August) had a similar depth trend to those reported for ammonium by Templer et al. (1998) in wetlands with *T. angustifolia* and *Phragmites australis* (Cav.) Trin. ex Steud. vegetation dominant, however Jiang et al. (2007) reported an opposite trend for total N in *Z. latifolia* dominant wetlands. This emphasizes that dominant vegetation communities influence N cycling and pore water dynamics.

Depth profiles of pH, alkalinity and conductivity concentrations in August and September are presented graphically in Figure 1.6.

The pH and conductivity depth profile for all months was similar in VP and MM. pH generally decreased from the surface water to the maximum depth sampled. The pH depth trends reported by Søndergaard (1990) from August to October, Moore et al. (1994) and Pulatsu and Topcu (2009) were similar to the observed depth trends in both VP and MM. Conductivity generally increased from the surface water to 10-20 cm below the SWI and then remained stable or decreased to the maximum depth sampled. The DOC depth trend for August was opposite between VP and MM, with DOC decreasing with depth in VP and increasing with depth in MM.

The alkalinity depth profile for all months was different between VP and MM. In VP alkalinity slightly increased or remained stable with depth, while in MM alkalinity increased from surface water to 10-20 cm below the SWI, and then decreased to the maximum depth sampled. The alkalinity depth trends reported by Moore et al. (1994) for *Menyanthes trifoliata* L. were similar to the observed trends in both VP and MM.

Figure 1.6 – VP and MM August and September pH, alkalinity and conductivity water profiles. Mean values plotted with error bars depicting one standard error. Dashed line indicates sediment-water interface. ANOVA (comparing all plots and depths shown per month) results significant at $P \le 0.05$.

Depth profiles of Ca, Fe, K and Mg concentrations in August and September are presented graphically in Figure 1.7. Depth profiles of Mn, Na, S and Zn concentrations in August and September are presented graphically in Figure 1.8.

The concentrations of Al, Ba, Ca, Fe, K, Mg, Na and Sr with depth for all months were different between VP and MM. In VP the Al concentration slightly increased or remained stable with depth, while in MM the Al concentration increased with depth. In VP August and in MM for all months, the Ba concentration increased from the surface water to 10-20 cm below the SWI and then remained stable or decreased to the maximum depth sampled. In VP during September and October, the Ba concentration increased or remained stable to the maximum depth sampled.

In VP the Ca concentration increased or remained stable with depth, while in MM the Ca concentration increased from the surface water to 10-20 cm below the SWI and then decreased to the maximum depth sampled. The total Ca concentration depth trend mirrored alkalinity at both sites. The total Ca concentration depth profile at VP was consistent with that reported by Azcue et al. (1996) and Moore et al. (1994) for November, while the Ca depth trend at MM was similar to that reported by Bally et al. (2005) and Moore et al. (1994) for September. In VP the Fe concentration increased from the surface water to 10-20 cm below the SWI and then decreased to the maximum depth sampled, while in MM the Fe concentration increased to the maximum depth sampled. The total Fe concentration depth profile at MM was consistent with the pore water trends reported by Søndergaard (1990), Moore et al. (1994) in vegetated plots, and Azcue et al. (1996), while the Fe depth profile at VP was similar to those reported by Moore et al. (1994) in non-vegetated plots, and Pulatsu and Topcu (2009).

Figure 1.7 – VP and MM August and September Ca, Fe, K and Mg water profiles. Mean values plotted with error bars depicting one standard error. Dashed line indicates sediment-water interface. ANOVA (comparing all plots and depths shown per month) results significant at $P \le 0.05$.

Figure 1.8 – VP and MM August and September Mn, Na, S and Zn water profiles. Mean values plotted with error bars depicting one standard error. Dashed line indicates sediment-water interface. ANOVA (comparing all plots and depths shown per month) results significant at $P \le 0.05$.

In VP the K concentration increased from the surface water to 10 cm below the SWI and then remained stable or decreased to the maximum depth sampled (except in the MV plot in October which increased with depth). In MM the K concentrations decreased with depth. The total K concentration depth profile at VP was similar to the pore water trend reported by Azcue et al. (1996).

In VP the Mg concentration slightly increased or remained stable with depth, while in MM the Mg concentration decreased with depth. The depth profile of total Mg concentrations at MM was similar to the pore water trend reported by Bally et al. (2005). In VP the Na concentration decreased with depth, while in MM the Na concentration increased with depth. The observed total Na concentration depth trend was consistent with the pore water trend reported by Bally et al. (2005), however neither site had a similar Na trend to that reported by Azcue et al. (1996). In VP during August and September, and MM in July, August and September, the Sr concentration increased from the surface water to 10-20 cm below the SWI and then remained stable or decreased to the maximum depth sampled. In October, the Sr concentration increased with depth in VP, while Sr decreased with depth in MM.

The concentrations of Mn, S and Zn with depth for all months were similar between VP and MM. The Mn concentration increased from the surface water to 10-20 cm below the SWI and then decreased or remained stable to the maximum depth sampled. The total Mn depth variation trend was similar to the pore water trend reported by Moore et al. (1994); this trend was different from the pore water trend reported by Azcue et al. (1996) for Lake Erie waters where Mn increased with depth. The S concentration decreased with depth, while the Zn concentration remained stable or slightly increased with depth.

Complete results on data trends between plots (by month) are tabulated along with statistical values in Appendix A, Table A.1.9 (MM) and Appendix B, Table B.1.10 (VP). Data trends within plots (i.e. monthly trends) are tabulated along with statistical values in Appendix A, Table A.1.10 (MM) and Appendix B, Table B.1.11 (VP). Statistical results are tabulated in Appendix A, Tables A.1.11, A.1.12 and A.1.13 (MM) and Appendix B, Tables B.1.12, B.1.13 and B.1.14 (VP). Results were considered significant at $P \le 0.05$.

1.3.3 Sediment Chemistry

Complete sediment analytical results are included in Appendix A, Table A.1.7 (MM) and in Appendix B, Table B.1.8 (VP). Table 1.3 presents the values, mean values and standard deviations for the sediment variables analyzed.

			Site				
Analytical			Victoria P	oint	Marchmo	ont Marsh	
Parameter	Units	DL	Value	n	Mean	SD	n
pН	N/A	N/A		0	6.48	0.08	2
Conductivity	μS/cm	1.0		0	155.3	3.6	2
Total Silicon	µg∕g	1.20	157.65	1			0
Total P	µg∕g	3.20	1 433.33	1	506.81	385.65	2
Total Al (%)	µg∕g	0.00012	0.25	1	0.91	0.53	2
Total As	µg∕g	2.00	6.16	1	1.00	0	2
Total Ba	µg∕g	2.00	47.71	1	108.42	102.99	2
Total Ca (%)	µg∕g	0.000004	1.92	1	0.80	0.59	2
Total Fe (%)	µg/g	0.00002	0.54	1	1.21	0.55	2
Total K	µg∕g	0.40	615.11	1	693.12	638.23	2
Total Mg (%)	µg∕g	0.00002	0.16	1	0.25	0.19	2
Total Mn	µg∕g	0.04	107.48	1	134.25	108.39	2
Total Na	µg∕g	0.40	456.72	1	253.86	63.83	2
Total S (%)	µg∕g	1.20	1.25	1	0.45	0.55	2
Total Sr	µg∕g	0.40	53.23	1	21.48	15.41	2
Total Ti	µg∕g	2.00	112.08	1	322.64	153.44	2
Total Zn	µg/g	0.20	92.69	1	75.14	75.73	2

Table 1.3 – Sediment chemistry data.

Notes: DL = method detection limit; N/A = not applicable; n = sample size; SD = standard deviation; -- = not analyzed; Total Metal (%) = value/mean/SD values x 10^{-4} ; <DL results recorded as 0.5*DL Similar to water, total recoverable sediment P concentrations were higher in VP $(1,433 \ \mu g/g)$ compared with MM. Kilgour et al. (2008) reported a lower average total P concentration (447 $\mu g/g$) in the shoreline sediments of Lake Simcoe, while Boström (1984) reported a higher average total P concentration in the sediments of nine eutrophic lakes (2,296 $\mu g/g$). It is interesting to note that the sediment of eutrophic water bodies examined by Søndergaard (1989) and Søndergaard et al. (2003) demonstrated a total P concentration depth trend similar to the pore water trend in this study, suggesting that the observed pore water nutrient trends may have been mirrored in the sediments.

Total recoverable Al, Ba, Fe, K, Mg, Mn and Ti concentrations were higher in the sediment samples of MM, while As, Ca, Na, S, Sr and Zn concentrations were higher in the sediment samples of VP. Landre et al. (2011) reported much higher Al, Ba, Fe and Mn concentrations and similar Zn concentrations in the sediments of Lake Simcoe's northern outlet compared to MM and VP. Boström (1984) reported similar Ca concentrations and much higher Al and Fe concentrations in eutrophic sediments compared with MM and VP. The sediment samples from eutrophic water bodies as examined by Søndergaard (1989) and Trolle et al. (2009) demonstrated similar depth profiles for total Fe and Ca concentrations to the pore water trends in this study.

1.3.4 Vegetation Chemistry

Table 1.4 (MM) and Table 1.5 (VP) present the values, mean values and standard deviations for the vegetation chemistry analyses. Complete vegetation analytical results are included in Appendix A, Table A.1.8 (MM) and in Appendix B, Table B.1.9 (VP).

			Inflores	cence	Stem		Leaf		Root			
Analytical	Unite	זמ	Mean	SD	Mean	SD	Mean	SD	Mean	SD	n	tn
Parameter	Units	0.00000	0.1(4	0.0(5	0.1(7	0.045	0.127	0.001	0.111	0.014	2	22
P (%)	µg∕g	0.00008	0.164	0.065	0.16/	0.045	0.137	0.001	0.111	0.014	2	23
Ν	% N	0.01	0.57	0.09	0.45	0.10	0.71	0.22	0.58	0.01	2	23
Al	µg∕g	5.00	32.94	38.35	50.95	55.37	436.13	487.73	2717.25	728.67	2	23
Ba	µg∕g	10.00	7.52	3.56	10.75	8.13	61.52	25.00	92.28	5.62	2	23
Ca (%)	µg∕g	0.00001	0.179	0.088	0.150	0.112	0.780	0.197	0.687	0.059	2	23
Fe (%)	µg∕g	0.00001	0.014	0.010	0.023	0.019	0.136	0.128	1.032	0.019	2	23
K (%)	μg/g	0.0005	0.790	0.234	2.090	0.533	0.902	0.261	0.337	0.038	2	23
Mg	µg∕g	0.10	1360.29	51.97	1238.29	304.41	2125.04	314.66	1993.54	352.85	2	23
Mn	μg/g	0.01	118.88	84.11	241.30	161.01	1623.50	388.91	489.43	226.38	2	23
Na (%)	µg∕g	0.00001	0.085	0.038	1.061	0.065	0.962	0.345	0.382	0.082	2	23
S (%)	μg/g	0.0003	0.084	0.016	0.101	0.021	0.156	0.042	0.489	0.082	2	23
Si	μg/g	0.50	139.86	16.26	165.76	29.42	165.76	4.88	176.39	25.21	2	23
Sr	µg∕g	0.10	4.96	2.79	5.48	3.10	21.34	4.55	20.97	1.26	2	23
Ti	μg/g	0.95	1.64	1.64	2.39	2.71	14.49	14.84	100.95	30.48	2	23
Zn	µg∕g	0.10	7.89	0.60	6.24	2.47	11.85	7.91	39.33	8.86	2	23

Table 1.4 – Marchmont Marsh wild rice vegetation chemistry data.

Notes: DL = method detection limit; tn = total number of plants analyzed; n = sample size; SD = standard deviation; % = mean and SD values x 10^{-4} ; <DL results recorded as 0.5*DL

Analytical							
Parameter	Units	DL	Inflorescence	Stem	Leaf	Root	tn
P (%)	µg/g	0.00008	0.114	0.114	0.148	0.137	10
Ν	% N	0.01	0.59	0.45	0.71	0.89	10
Al	µg∕g	5.00	20.33	21.95	377.55	300.65	10
Ba	µg∕g	10.00	5.00	5.00	28.99	15.73	10
Ca (%)	µg∕g	0.00001	0.428	0.615	1.040	0.676	10
Fe (%)	µg∕g	0.00001	0.012	0.014	0.102	1.187	10
K (%)	µg∕g	0.0005	0.607	1.407	0.255	0.377	10
Mg	µg∕g	0.10	924.83	840.54	776.54	712.04	10
Mn	µg∕g	0.01	156.33	223.75	903.00	193.95	10
Na (%)	µg∕g	0.00001	0.283	0.963	0.157	0.984	10
S (%)	µg∕g	0.0003	0.127	0.217	0.338	0.621	10
Si	µg∕g	0.50	237.25	180.41	157.81	54.31	10
Sr	µg∕g	0.10	11.83	17.38	28.42	19.88	10
Ti	µg∕g	0.95	2.17	1.33	14.63	12.78	10
Zn	µg∕g	0.10	12.17	4.58	20.24	87.02	10

Table 1.5 – Victoria Point wild	l rice vegetation	chemistry data.
---------------------------------	-------------------	-----------------

Notes: DL = method detection limit; tn = total number of plants analyzed; % = values x 10⁻⁴; <DL results recorded as 0.5*DL; single sampling event.

Northern wild rice plants collected in MM exhibited more vigorous growth, with higher biomass than the plants collected from VP. The total dry weight of 10 plants collected in September from VP was 6.96 g and from MM was 41.62 g. The highest biomass in the wild rice plants was contributed by the stems, followed by the roots, leaves and inflorescence. The inflorescence of plants collected in VP were observed to contain few seeds, with the leaves having been damaged by waterfowl.

In MM, 53% of wild rice tissue P was found in the stems and leaves, followed by 28% in the inflorescence. Nitrogen followed a similar trend, with 50% of wild rice tissue N in the stems and leaves, followed by 25% in the inflorescence. In VP, 51% of wild rice tissue P was found in the stems and leaves, followed by 22% in the inflorescence. Nitrogen followed a similar trend, with 44% of wild rice tissue N found in the stems and leaves, followed by 22% in the inflorescence.

The total plant tissue concentrations of Al, Ba, K, Mg, Mn, Na and Ti were higher in MM than in VP, while the total plant tissue concentrations of Ca, Fe, S, Si, Sr and Zn were higher VP than in MM. The As concentration in the plant tissues of both sites were less than the MDL for all samples. In the majority of plant tissue samples, the concentrations of metals were highest in the roots.

1.4 Discussion

The main nutrient of concern in VP is P, with the surface water P concentrations indicative of a eutrophic state (Wetzel 2001) and elevated P concentrations found throughout the pore water and sediments. The retention of P within the sediments of VP (discussed in the following sections) is dependent on the surface and pore water chemistry of the wetland, as well as the seasonal influence of vegetation growth.

1.4.1 Water/Sediment Chemistry and Nutrient Retention

P retention is highest in waters with high Ca, Fe and Al concentrations as well as high alkalinity (Reddy et al. 1999), with calcite and alum frequently used in water treatment to bind and retain P (Galvez-Cloutier et al. 2006). House (1999) reported that P precipitation with calcite is dependent on temperature, pH and the concentration of other precipitating chemicals, with Boström et al. (1988) stating that high pH values favour this process. The high surface water alkalinity and concentrations of Ca and Fe in VP may contribute to P retention, however seasonal temperature variations and the near-neutral pH (6.83-7.29) may decrease this ability (Mitsch and Gosselink 2007). Boström et al. (1988) suggested that the adsorption of P onto precipitated CaCO₃ may occur favourably in sediment pore waters due to the presence of elevated P concentrations. While increased P concentrations were present in the pore waters of VP, the observed decrease in pH with depth (to a minimum value of 6.36) may have reduced CaCO₃ precipitation and countered the effect of additional P availability.

The surface water pH in VP (6.83 - 7.29) was lower than the reported pH value (8 - 10) required to induce P liberation from the sediment (Boström and Pettersson 1982). Shaw and Prepas (1990) reported that a pore water Fe to P ratio greater than 1.8 prevents the transfer of P into the water column (Pulatsu and Topcu 2009), while Jensen et al. (1992) reported that a sediment Fe to P ratio greater than 15 was indicative of a high sediment P retention capacity (Søndergaard et al. 2003). In VP the pore water and sediment Fe to P ratios (0.24 and 3.76, respectively) are far below these thresholds, indicating that Fe alone in the pore water and sediment of VP is not adequate to retain P.

1.4.2 Vegetation Influence

As shown in Figures 1.5, 1.6, 1.7 and 1.8, the presence of vegetation influenced pore water concentrations and monthly trends for most parameters, with vegetation altering concentrations throughout the depth profile (i.e. causing a shift in overall depth profiles). In VP (Table 1.2), more pronounced differences were observed in the pore water of the mixed-vegetation plot compared with the vegetation plots, indicating differing pore water dynamics with a change in dominant vegetation (i.e. *N. odorata* vs. *Z. palustris*). While the following discussion includes findings from both VP and MM, the influence of *Z. palustris* on pore water concentration/monthly trends was more pronounced in MM (Table 1.1) due to the vigour of the natural wild rice stand (vs. the seeded plots in VP). Vegetation influences were observed up to the maximum depth sampled (80 cm below the SWI), suggesting that vegetation growth influences sediment pore water chemistry beyond the rooting zone, altering pore water concentration gradients.

1.4.2.1 Northern Wild Rice Water Chemistry Influence

Northern wild rice vegetation influenced the amount of P and N in wetland waters throughout the growing season (Figure 1.5; Tables A.1.9, A.1.10, B.1.10 and B.1.11). During the summer (time of greatest biomass increase and N, K and P uptake (Day and Lee 1990)), P concentrations were lower in vegetated vs. non-vegetated plots. This trend was reversed in the fall, implying that wild rice vegetation was no longer assimilating P within its tissues and potentially acting as a P source through decomposition. Moore et al. (1994) reported a similar trend, observing that plots vegetated with *M. trifoliata* contained lower concentrations of P (compared with non-vegetated plots) in August/September, with this trend reversing in November.

An opposite trend was observed in the N concentrations in MM plots, with N increasing in wild rice vegetated plots in the summer and then decreasing in the fall (Figure 1.5; Tables A.1.9, A.1.10, B.1.10 and B.1.11). This result was unexpected since other studies have shown emergent macrophytes to reduce N throughout the growing season (Hoagland et al. 2001; Kao et al. 2003; Maine et al. 2005*a*; Jiang et al. 2007), and the majority of N uptake by wild rice occurring in the spring/summer (Walker et al. 2006). A potential explanation for this trend is that the N held in below-ground wild rice litter from the previous growing season was released through decomposition processes in the spring/summer, with this excess N subsequently removed through denitrification in the fall (Sain 1984; Walker et al. 2010).

Wild rice vegetation generally decreased pore water pH, alkalinity and conductivity (Figure 1.6; Tables 1.1, 1.2, A.1.9, A.1.10, B.1.10 and B.1.11). A similar water pH trend in vegetated plots was observed by Søndergaard (1990), Moore et al. (1994) and Lee and McNaughton (2004). Conlin and Crowder (1989) determined that three common emergent wetland species, *T. latifolia*, *P. australis* and *Carex rostrata* Stokes, all lowered their rhizosphere pH through oxidation. This acidification would be increased in the fall through vegetation decomposition (Søndergaard 1990), consistent with the monthly pH trend observed in MM. A similar alkalinity trend was reported by Moore et al. (1994) between the pore waters of vegetated and non-vegetated plots. Lee and McNaughton (2004) observed an opposite conductivity trend in the surface waters of a wild rice vegetated area, however pore water trends were not examined.

Wild rice vegetation generally decreased pore water Al and K (Figures 1.7, A.2.8 and B.2.8; Tables 1.1, 1.2, A.1.9, A.1.10, B.1.10 and B.1.11). K was likely assimilated into

the biomass of wild rice vegetation (Day and Lee 1990), while Al (present in low concentrations) may have been adsorbed during the growing season onto wild rice iron root plaques (Batty et al. 2002). Wild rice vegetation generally increased pore water Ba, Fe, Mg, Mn and Zn (Figures 1.7, 1.8, A.2.9 and B.2.9; Tables 1.1, 1.2, A.1.9, A.1.10, B.1.10 and B.1.11). Lee and McNaughton (2004) found a similar Fe trend and an opposite S trend in the surface waters of wild rice vegetated areas. An opposite Fe and Mn concentration trend was reported by Moore et al. (1994) between the pore waters of vegetated and non-vegetated plots. If the observed decrease in pore water pH extended beyond the oxidized root zone, this could explain the observed increase in Fe and Mn concentrations (more soluble in lower pH conditions (Wetzel 2001)). Pore water Mg concentrations may have been influenced by below-ground wild rice litter decomposition releasing Mg (Sain 1984).

Monthly and site-specific trends were observed in Ca, Na, S and Sr (Figures 1.7, 1.8, A.2.17 and B.2.17; Tables 1.1, 1.2, A.1.9, A.1.10, B.1.10 and B.1.11). Summer Ca and Sr concentrations were lower in wild rice vegetated vs. non-vegetated plots, with this trend reversed in the fall. Lee and McNaughton (2004) reported a similar monthly Ca trend in the surface waters of wild rice vegetated areas, however Moore et al. (1994) reported lower Ca concentrations in the pore waters of vegetated and non-vegetated plots throughout the growing season. Pore water Ca concentrations may have been influenced by below-ground wild rice litter decomposition, releasing Ca in the summer season (Sain 1984). Lee and McNaughton (2004) found that Sr concentrations increased throughout the growing season in the surface waters of wild rice vegetated areas, however limited literature is available on the effect of vegetation on Sr concentrations. Summer

S concentrations were higher in wild rice vegetated vs. non-vegetated plots, with this trend reversed in the fall. The S held in below-ground wild rice litter from the previous growing season may have been released through decomposition in the summer, with this excess S precipitating as FeS later in the fall with the increased available pore water Fe (Sain 1984; Søndergaard 1990). Wild rice vegetation had an opposite effect on pore water Na concentrations in VP vs. MM; limited literature is available on fresh water Na concentration trends and the effect of vegetation.

1.4.2.2 Northern Wild Rice Tissue Assimilation

Similar to the findings of Oelke et al. (2000), approximately half of the wild rice tissue P and N was found in the stems and leaves, followed by approximately a quarter of tissue P and N in the inflorescence (Tables 1.4 and 1.5). The maximum plant tissue total P concentration in this study (5,790 μ g/g in MM) was much higher than the P concentrations reported for *Z. palustris* by Malvick and Percich (1993) and Lee and McNaughton (2004). Similar to the findings of Bennett et al. (2000) who studied heavy metal uptake in *Z. palustris*, metal concentrations were highest in the root tissues. After the growing season, Sain (1984) found that dead/fallen wild rice plants release the majority of their nutrients in the first three weeks of decomposition (late fall), with 98% of K, 82 % Ca, 81% P, 79% S, 72% Mg and 57% N released after 350 days.

1.4.3 Northern Wild Rice and Nutrient Retention

Wild rice contributed to nutrient retention during the growing season in both wetlands by modifying rhizosphere chemistry. Wild rice vegetation reduced P availability in sediment pore waters in the summer (Figure 1.5; Tables 1.1, 1.2, A.1.9, A.1.10, B.1.10 and B.1.11) when the majority of problems associated with eutrophication are

experienced (Reddy et al. 1999). Wild rice contributed directly to P and N retention through nutrient assimilation in its tissues (Tables 1.4 and 1.5), and potentially through the development of Fe and Mn oxide plaques and Al phosphate precipitates on its roots. P adsorption onto FeOOH appears to be the primary process governing sediment P retention when high concentrations of Fe are present (Reddy et al. 1999; Søndergaard et al. 2003; Maine et al. 2005b; Olli et al. 2009). Mn oxide plaques (which can adsorb P) and Al phosphate precipitates are often found on macrophyte roots with an oxidized rhizosphere (Christensen and Sand-Jensen 1998; Batty et al. 2002). Jorgenson et al. (2013 Botany - in press) found that substantial iron plaques (i.e. precipitated FeOOH) formed on the roots of northern wild rice were composed mainly of Fe, O, Al and K, however P was not found to be included in the plaques. Wild rice also indirectly contributed to nutrient retention through decreasing pore water pH (Tables 1.1 and 1.2), and subsequently increasing the availability of pore water Fe and Mn for P adsorption. Wild rice also likely contributed to enhanced denitrification though decomposition in the wetland however plant decomposition was not examined in this study.

After the growing season, nutrients will be released from senesced wild rice through decomposition and leaching (Sain 1984; Reddy et al. 1999; Mitsch and Gosselink 2007). Since wild rice is an economically viable cultivated species, plant harvest at the end of the growing season may provide a permanent nutrient removal mechanism (Jiang et al. 2007). Seed harvest alone would permanently remove some nutrients from the wetland (Keenan and Lee 1988). The vegetation analysis in this study (Tables 1.4 and 1.5) indicates that approximately 10% of the total P and N found in wild rice plant tissue could be removed through seed harvest (estimate allows for 15% of the analyzed

inflorescence N and P remaining in litter and fallen seed). While this quantity could become significant over several years (Keenan and Lee 1988), harvesting the entire plant at the end of the growing season (in fall, prior to senescence) would result in the largest nutrient removal.

Unlike perennial species, P and N remain in wild rice plant tissues until the end of the growing season since plants regenerate from seed the following year (Morris and Lajtha 1986). With proper harvesting and management techniques, northern wild rice grown in eutrophic water bodies could contribute to nutrient reduction strategies. Macrophyte harvesting has been effectively used in eutrophication remediation strategies, with these efforts enhanced through the use of economically valuable plants (Jiang et al. 2007; Pulatsu and Topcu 2009). Since northern wild rice is a valuable cultivated crop that requires little effort to be uprooted and removed from a water body, additional study appears warranted to examine to the potential of wild rice harvest as an eutrophication reduction strategy.

1.4.4 Conclusion

Nutrient and metal distribution within wetland waters is highly site dependent, with vegetation type and distribution adding to this variability. Northern wild rice growth alters sediment pore water chemistry, contributing to nutrient retention during the growing season. Harvesting northern wild rice vegetation (including the economically viable seed) could present a method for permanent nutrient removal in eutrophic water bodies. With proper harvesting and management techniques, northern wild rice grown in eutrophic water bodies could contribute to nutrient reduction strategies and present a viable phytoremediation species for nutrient removal efforts.

42

CHAPTER 2

Electron microscopy study of iron plaques on the roots of northern wild rice (*Zizania palustris*)

2.1 Introduction

As an adaptation to the anaerobic wetland environment, many aquatic macrophytes transport oxygen from their aerial biomass to the below-ground roots, aerating the surrounding sediment (through radial oxygen loss) and creating an aerobic rhizosphere (Armstrong 1964; Conlin and Crowder 1989; Mitsch and Gosselink 2007). Numerous biogeochemical processes occur within this oxidized rhizosphere, including the oxidation of iron from its ferrous (Fe^{2+}) to ferric (Fe^{3+}) form (Crowder and MacFie 1986; Begg et al. 1994; Christensen and Wigand 1998). This reaction frequently results in the precipitation of ferric hydroxide onto root surfaces, visible as an orange-brown coating or plaque on wetland plant roots (Mendelssohn and Postek 1982; Crowder and MacFie 1986; St-Cyr et al. 1993; Caetano and Vale 2002).

The deposition of iron plaque depends on many biotic and abiotic factors, including plant anatomy, microbial activity and reactive iron pool availability in the sediment (Neubauer et al. 2007; Povidisa and Holmer 2008). The structure, composition and function of iron root plaques has been studied on several emergent aquatic macrophytes, including *Typha latifolia* L. (Taylor et al. 1984; Ye et al. 1998), *Phragmites australis* (Cav.) Trin. ex Steud. (Batty et al. 2000), *Juncus effusus* L. (Weiss et al. 2005; Neubauer et al. 2007) and *Oryza sativa* L. (Bacha and Hossner 1977; Green and Etherington 1977; Chen et al. 1980*a*, 1980*b*; Johnson-Green and Crowder 1991; Liang et al. 2006; Zhou and Shi 2007; Chen et al. 2008; Deng et al. 2010; Liu et al. 2011). Snowden and Wheeler (1995) examined iron hydroxide precipitation on the roots of 44 wetland species and found that only certain species had the ability to form iron root plaques, with iron-tolerant monocotyledons producing the most intense plaques. Iron-oxidizing and iron-reducing bacteria also contribute to the formation and reduction of iron root plaque, suggesting that a localized iron cycle exists within the wetland plant rhizosphere (St-Cyr et al. 1993; Mendelssohn et al. 1995; Neubauer et al. 2002; Weiss et al. 2003; Chen et al. 2008).

Iron plaques are mainly composed of amorphous iron hydroxides and the crystalline ferric hydroxide particles lepidocrocite (γ -FeOOH) and goethite (α -FeOOH) (Bacha and Hossner 1977; Chen et al. 1980*a*; Crowder and MacFie 1986; St-Cyr et al. 1993). Other elements commonly found incorporated into plaques include A1, Ca, Mn, P and silicate impurities such as quartz and clay (Chen et al. 1980*a*; St-Cyr et al. 1993; Batty et al. 2002; Hupfer and Dollan 2003).

Iron plaques usually appear as unevenly distributed precipitates on the surface of wetland plant roots (Mendelssohn and Postek 1982; Batty et al. 2002). The structure of iron plaques range from porous and thin to dense and thick, depending on the amount of iron hydroxide accumulated (Bacha and Hossner 1977; Chen et al. 1980*a*; St-Cyr and Campbell 1996). Thin iron plaques occur as amorphous layers of precipitate that take the form of the root epidermis (Bacha and Hossner 1977; Batty et al. 2002). Thick iron plaques can range from 1 μ m to 15 μ m coatings (St-Cyr et al. 1993), up to 1 mm thick crusts (Hupfer and Dollan 2003) and 4 mm thick rhizoconcretions (Caetano and Vale 2002) in some environments. Iron plaques have commonly been observed to penetrate the root epidermis cells of wetland plants, while in some species plaques can penetrate up to the root cortex cells (Green and Etherington 1977; Taylor et al. 1984). Iron hydroxides often fill open cell cavities in the root epidermis and have been observed to form complete casts of former cells (Chen et al. 1980*b*; Taylor et al. 1984).

Numerous studies have investigated the potential function of iron root plaques in sequestering heavy metals such as As, Cd, Cu, Ni, Pb and Zn (St-Cyr and Campbell 1996; Ye et al. 1997; Ye et al. 1998; Batty et al. 2002; Deng et al. 2010; Li et al. 2010; Li et al. 2011) and nutrients including P (Chambers and Odum 1990; Christensen and Sand-Jensen 1998; Hupfer and Dollan 2003; Liang et al. 2006; Jiang et al. 2009; Xu et al. 2009). This sequestration ability is attributed to the high adsorption capacity of iron hydroxides, resulting in the adsorption or co-precipitation and incorporation of a number of elements into plaques (Chen et al. 1980*a*; Liu et al. 2011). The capacity of iron plaque to influence heavy metal or nutrient uptake is highly variable and depends on a number of factors including the amount of iron plaque on the root, plant species/cultivar, root age, sediment chemistry and the contaminant/nutrient of interest (Otte et al. 1989; Ye et al. 1997; Ye et al. 1998; Zhou and Shi 2007; Xu et al. 2009; Deng et al. 2010; Liu et al. 2011).

Plaques may also function as nutrient reservoirs, with P bound in the plaque available to plants when required (Christensen and Sand-Jensen 1998; Liang et al. 2006; Chen et al. 2008; Xu et al. 2009), however this function is limited by the amount of plaque present on the root since excessive amounts can act as a physical barrier to P uptake (Xu et al. 2009). The potential interaction between P and iron plaques on wetland plant roots is of particular interest in its application to bioremediation efforts in nutrient-impacted water bodies. Several studies have concluded that plants with a propensity to form iron root.

plaques are advantageous to such efforts (Chambers and Odum 1990; Hupfer and Dollan 2003; Xu et al. 2009).

This study examined iron root plaques on northern wild rice (*Zizania palustris* L.). Northern wild rice is an emergent annual aquatic grass that grows in shallow lake waters and slow-moving rivers across eastern and north-central North America (Aiken et al. 1988; Painchaud and Archibold 1990). *Zizania* sp. grow in a wide range of water and sediment types, are relatively stress tolerant and have a high potential for root-zone aeration (Aiken et al. 1988; Tanner 1996). Iron plaques have been observed on the roots of *Zizania* sp. (Yamasaki 1987; Aiken et al. 1988; Xu et al. 2009) which are known to oxidize the rhizosphere through their well-defined system of aerenchyma (Stover 1928; Lee and McNaughton 2004). Wild rice roots are up to 4 mm in diameter, lack root hairs, have a hypodermis (acting as the functional epidermis in older roots), possess a band of supportive sclerenchyma and a cortex with extensive aerenchyma (Stover 1928).

The objective of this study was to examine the deposition, composition and structure of iron plaque formed on the roots of *Z. palustris*. The goal was to increase our understanding of the anatomy of northern wild rice roots, their interactions with surrounding sediments and potential contribution to bioremediation efforts. To the knowledge of the Authors, northern wild rice root anatomy has not been examined through SEM, nor have iron root plaques been studied in this species.

2.2 Materials and Methods

2.2.1 Study Area

Five freshwater lakes/wetlands were selected across Ontario, Canada that support annual stands of northern wild rice (Figure 2.1). Study sites were chosen from a range of water bodies in Ontario that have been a focus of ongoing/historic wild rice research. Partridge Crop Lake (48° 43' 33" N, 92° 22' 53" W), located approximately 3 km east of the community of Seine River First Nation, is a small lake (expansion of Seine River) with northern wild rice stands along its shores. Lower Steep Rock Lake (48° 45' 57" N, 91° 40' 08" W), located approximately 2.5 km west of the Town of Atikokan, is a part of a complex of lakes with a natural stand of northern wild rice. Wild rice is currently harvested and consumed from both lakes by Seine River First Nation community members. However, concerns about potential heavy metal contamination from nearby historic iron-ore mining operations have prompted wild rice research in recent years. Whitefish Lake (48° 13' 43" N, 90° 03' 49" W), located approximately 60 km southwest of the City of Thunder Bay, is a large lake (3,015 ha in size (Lee and McNaughton 2004)) with northern wild rice stands along its western shore. This lake has been used for research into macrophyte-induced microchemical water column changes, specifically within wild rice beds (Lee and McNaughton 2004). Lake Tamblyn (48° 25' 12" N, 89° 15' 47" W), located within the Lakehead University campus in the City of Thunder Bay, is a man-made lake (constructed in the 1960s as an expansion of McIntyre River (TBFN) 2008)) with northern wild rice growth monitored annually along the shoreline. Marchmont Marsh (44° 38' 03" N, 79 31' 03" W), located approximately 5 km west of the City of Orillia, is a wetland (expansion of a North River tributary) with natural stands

of northern wild rice along its shores. Current research in this wetland focused on the influence of wild rice on sediment pore water chemistry.

Figure 2.1 – Location of sample sites in Ontario, Canada. Basemap imagery from ESRI (2012).

2.2.2 Sample Collection and Preparation Procedures

2.2.2.1 Northern Wild Rice

Five mature northern wild rice plants were extracted from each sample site in September 2011. Samples with intact roots were placed in plastic bags, sealed, labelled and refrigerated. During sample collection, the roots of all samples extended to a depth of approximately 35 cm below the sediment-water interface. Prop roots were observed to originate from one to three nodes above the sediment-water interface and extended diagonally into the sediment surface. The majority of roots (including prop roots) were orange-brown in colour and ranged up to four millimetres in diameter. Ten roots with plaque (orange-brown in colour, Figure 2.2) were removed from each sample. Four roots without plaque (light yellow to white in colour) were also removed from two sites and

treated as controls (it was difficult to find multiple plaque-free roots due to end of growing season, thus controls were only collected from two sites). All roots were rinsed with distilled deionized water and placed on a clean cutting surface. Random sections (no longer than 2 mm) were cut with a clean ceramic knife. Root fragments were grouped according to their relative age, based on distance from the root tip. Samples were then placed in clean Petri dishes, freeze-dried (LABCONCO® Freeze Dry System) for a minimum of 24 hours and finally sealed and stored in a glass desiccator until examination.

Figure 2.2 – Northern wild rice roots with orange-brown colouration.

2.2.2.2 Surface Water and Sediment

Current and historic surface water and sediment analytical data from locations close to the northern wild rice sample sites was gathered. Surface water and sediment samples were collected from Marchmont Marsh and Lake Tamblyn for this study. One surface water sample per month was collected from Marchmont Marsh from June to October 2010. Two sediment samples were also collected, one each in June and October 2010. One surface water and one sediment sample was collected from Lake Tamblyn in June 2012. All surface water samples were collected directly into clean 250 mL plastic bottles, sealed, labelled and transported in coolers to the Lakehead University Environmental Laboratory (LUEL) for analyses. All sediment samples (grab samples of top 10 cm of sediment) were collected by pre-cleaned shovel into new plastic bags, sealed, labelled and transported in coolers to the LUEL for analysis.

Published data was available for Whitefish Lake from Lee and McNaughton (2004), with their "Wild Rice (30 m) Station" closest to the current northern wild rice sample site. Seven surface water and sediment sample collection events occurred at this Station, with one sample collected per event from June to September 1997 (Lee and McNaughton 2004). Unpublished data was available for Partridge Crop Lake and Lower Steep Rock Lake, with two Sample Stations per lake being closest to the northern wild rice sample sites¹. Two sample collection events occurred at these Stations, with one surface water and sediment sample collected per event in July and September 2011. Samples from both of these sources were collected in a similar manner to those from Marchmont Marsh and Lake Tamblyn, and were also submitted to the LUEL for analysis.

2.2.3 Analytical Procedures

2.2.3.1 Northern Wild Rice

Sample preparation and analysis procedures followed those described in Batty et al. (2002). Prepared samples for Scanning Electron Microscope (SEM) investigation were mounted on alum stubs with carbon tape. 12 samples were carbon-coated prior to examination and used for method refinement. Samples were examined on a JEOL® JSM-5900LV SEM fitted with an Energy-Dispersive X-ray Analyzer (EDXA). Images collected by SEM were displayed with atomic number contrast through backscatter

¹ Unpublished surface water and sediment analytical data provided by Dr. P. F. Lee of Lakehead University, Thunder Bay, Ontario, Canada.

electron signals (LUCAS 2009*a*, 2009*b*). Spectrums generated by EDXA on a specified area (100 μ m to 400 μ m² in size) over a period of 50 seconds indicated all detectable elements in a specific area using a solid state detector (LUCAS 2009*a*, 2009*b*). Spectrum peaks were labelled according to the chemical signature of dominant elements and plotted as graphs (LUCAS 2009*a*). While EDXA does not quantify elements, an examination of the relative presence/absence of elements was considered appropriate for an understanding of plaque composition in this study. Root plaque (DCB) extraction techniques were not conducted because they are often considered harsh (especially on control samples) with a tendency to strip elements from within the root resulting in an overestimation of element concentrations (Bacha and Hossner 1977; Batty et al. 2000).

In total, 38 northern wild rice samples were examined from the five sampling sites. Specifically, six samples each from Partridge Crop Lake and Lower Steep Rock Lake, ten from Whitefish Lake (including three control samples), five from Lake Tamblyn and eleven from Marchmont Marsh (including three control samples) were examined. Image and x-ray spectrum data was collected from each sample to capture distinct plaque features. Elemental mapping of specific elements (Al, Fe, K, O, P and Si) was also conducted on select samples. An in-depth surface investigation was also conducted to examine plaque anomalies on two gold-coated samples using a Hitachi® SU-70 SEM.

2.2.3.2 Surface Water and Sediment

All sample analyses were conducted at the Lakehead University Environmental Laboratory (LUEL), a Canadian Association of Laboratory Accreditation (CALA) ISO 17025 accredited laboratory. All analyses followed standard operating procedures and included the use of blanks, quality control samples and duplicates.

2.2.4 Data Analysis

2.2.4.1 Northern Wild Rice

From SEM image data, images were compiled by sample site and plaque presence/absence and deposition was recorded (including plaque type, percent coverage, thickness and location). From EDXA x-ray spectra data, the top five elements according to relative peak heights were identified and recorded.

2.2.4.2 Surface Water and Sediment

All surface water and sediment analytical values were tabulated, with means and standard deviations calculated and recorded.

2.3 Results

All raw data, analytical results and photos are included in Appendix C.

2.3.1 Surface Water and Sediment

Table 2.1 presents the mean values and standard deviations for the surface water variables analyzed. Lake Tamblyn had the highest pH and conductivity values, while Partridge Crop Lake had the lowest values. Lake Tamblyn also had the highest total P concentration, while Whitefish Lake had the lowest concentration. Lake Tamblyn and

Whitefish Lake contained the highest concentrations of total metals, while Partridge Crop Lake and Marchmont Marsh had the lowest metal concentrations.

		Site								
		L. Tam-	Marchmont		Partridge Crop		Lower Steep			
Analytical		blyn	Marsh		Lake		Rock Lake		Whitefish Lake	
Parameter	Units	Value	Mean	SD	Mean	SD	Mean	SD	Mean	SD
pН		7.84	7.76	0.11	6.77	0.07	7.35	0.54	6.84	0.37
Cond.	µS/cm	299.0	279.0	13.3	58.1	1.2	99.6	1.4	103.0	23.4
TKN	mg/L				0.37	0.05	0.50	0.05	0.43	0.19
NO ₃ -N	mg/L	0.125	0.008	0.006						
Total P	mg/L	0.032	0.012	0.006	0.012	0.006	0.015	0.004	0.008	0.004
Total Al	mg/L	0.043	0.013	0.004	0.050	0.003	0.034	0.017	0.074	0.156
Total Ca	mg/L	31.2	33.5	3.2	6.8	0.2	11.5	1.3	144.1	24.6
Total Fe	mg/L	0.414	0.074	0.017	0.165	0.002	0.163	0.101	0.239	0.069
Total K	mg/L	1.11	1.12	0.19	0.51	0.01	0.60	0.10	2.57	0.89
Total Mg	mg/L	11.57	10.19	1.05	1.39	0.06	1.95	0.21	38.81	6.70
Total Mn	mg/L	0.031	0.012	0.009	0.013	0.0003	0.039	0.008	0.109	0.064
Total Na	mg/L	18.04	4.89	0.43	1.81	0.09	3.01	0.33	16.10	2.47
Total S	mg/L	2.88	1.87	0.19	0.77	0.02	1.02	0.10	1.03	0.25
Total Zn	mg/L	0.002	0.005	0.003	0.004	0.001	0.006	0.004	0.003	0.001

Table 2.1 – Surface water chemistry, northern wild rice sample sites.

Number of replicates: Lake Tamblyn = 1; Marchmont Marsh = 5; Partridge Crop Lake = 2; Lower Steep Rock Lake = 2; Whitefish Lake = 7.

Note: Cond = Conductivity; SD = standard deviation; -- = not analyzed.

Table 2.2 presents the mean values and standard deviations for the sediment variables analyzed. Marchmont Marsh had the highest pH and conductivity values, while Partridge Crop Lake had the lowest values (of the sites analyzed). Lake Tamblyn also had the highest total P and metals concentrations, while Whitefish Lake had the lowest P and metals concentrations.

		Site								
		L. Tam-	Marchmont		Partridge Crop		Lower Steep		Whitefish	
Analytical		blyn	Marsh		Lake		Rock La	ıke	Lake	
Parameter	Units	Value	Mean	SD	Mean	SD	Mean	SD	Mean	SD
pН			6.48	0.08	6.17	0.36	6.30	0.29	6.28	0.03
	μS/c									
Conductivity	m		155.3	3.6	35.0	16.1	47.5	14.8		
NH ₄ -N	µg∕g								168.6	19.7
Total P	µg∕g	519.8	506.8	385.6	296.9	36.5	317.4	222.6	31.8	8.4
Total Al (%)	µg/g	1.41	0.91	0.53	0.44	0.11	0.52	0.43	0.08	0.02
Total Ca (%)	µg/g	0.82	0.80	0.59	0.22	0.04	0.22	0.13	0.38	0.04
Total Fe (%)	µg/g	5.63	1.21	0.55	0.81	0.21	1.02	0.76	0.24	0.06
Total K (%)	µg/g	0.084	0.069	0.064	0.046	0.012	0.049	0.032	0.006	0.002
Total Mg (%)	µg∕g	0.724	0.250	0.192	0.215	0.051	0.268	0.215	0.058	0.006
Total Mn	µg/g	837.7	134.2	108.4	164.4	66.9	227.1	141.2	49.8	8.0
Total Na	µg/g	1 031.2	253.9	63.8	195.7	48.4	268.5	126.0	32.7	5.9
Total S	µg∕g	929.2	4 519.1	5 460.6	188.1	180.9	210.8	95.9		
Total Zn	µg/g	122.0	75.1	75.7	21.0	5.1	29.3	22.7	12.7	3.3

Table 2.2 – Sediment chemistry, northern wild rice sample sites.

Number of replicates: Lake Tamblyn = 1; Marchmont Marsh = 2; Partridge Crop Lake = 2; Lower Steep Rock Lake = 2; Whitefish Lake = 7.

Note: SD = standard deviation; -- = not analyzed; Total Metal (%) = mean and SD values x 10^{-4} .

2.3.2 Northern Wild Rice

2.3.2.1 Root Anatomy

Roots examined from all sites demonstrated similar anatomical characteristics, with no observed differences apparent between study sites. Figure 2.3 presents representative SEM images of cross-sectioned northern wild rice root samples. Root hairs were not observed on the root surfaces, nor were root epidermis cells (described by Stover (1928) to be present on young roots). A band of sclerenchyma was present adjacent to the hypodermis of all samples, and was observed to be one to three cells in thickness. Aerenchyma were observed throughout the cortex of the majority of samples. Four to five xylem tubules were observed in the vascular cylinder of all cross-sectioned samples.

Figure 2.3 – Northern wild rice root anatomy. SEM images of cross-section samples. **A.**x100, whole root (Lower Steep Rock Lake); **B.** x350, vascular cylinder/stele (Lake Tamblyn); **C.** x250, cortex of young root, prior to formation of aerenchyma (control, Marchmont Marsh).

2.3.2.2 Plaque Presence

Considerable variation in plaque deposition was observed along the surface of individual roots and between roots of the same sample. Through SEM/EDXA examination, 92% (35 of 38) samples were confirmed to have plaque formation according to the following

criteria: 1) visible orange-brown coating on the root surface; and/or 2) iron as one of the five most abundant elements through EDXA (Bacha and Hossner 1977; Chen et al. 1980*b*; Mendelssohn and Postek 1982; Taylor et al. 1984; Snowden and Wheeler 1995; Batty et al. 2000; Batty et al. 2002). Data from samples that were orange-brown in colour but without confirmed iron root plaque (8%) were excluded from the results/observations.

2.3.2.3 Plaque Structure

In total, 76 SEM images were collected from the root surface of samples with plaque and 11 SEM images from the root surface of samples without plaque. Three types of plaque deposition were observed: thin plaque, crust plaque and plaque-filled cells (Figure 2.4).

Thin plaque was present on 21.1% of sample SEM images. Thin plaque was detected by the presence of an orange-brown colour on the root surface and by EDXA spectra with high peaks of iron and oxygen relative to other elements. The depth of thin plaques was not discernible and was reasoned to be <0.1 μ m thick. Samples from all sites had thin plaque, with thin plaque as the second-most dominant plaque type for Lake Tamblyn, Partridge Crop Lake and Whitefish Lake. Crust plaque was present on 47.4% of sample SEM images. Crust plaques were observed to be a thick (1 μ m to 14 μ m) crust-like layer of precipitate visible on the surface of root epidermis cells. Crust plaques often followed contours of individual epidermis cells. Samples from all sites had crust plaque, with crust plaque as the dominant plaque type for all sites except Marchmont Marsh. A combination of thin and crust plaque was present on 11.8% of sample SEM images, with this plaque type dominant in Marchmont Marsh samples and second-most dominant in Lower Steep Rock Lake samples.

Figure 2.4 – SEM images of iron plaques on northern wild rice roots. Representative images selected to illustrate different plaque types. **A.** x1,100, control sample with no plaque (Whitefish Lake); **B.** x850, sample with thin plaque (Whitefish Lake); **C.** x1,000, sample with thicker crust plaque (1) and thin plaque (2) (Marchmont Marsh); **D.** x600, sample with crust plaque (Partridge Crop Lake); **E.** x600, sample with plaque-filled cells (1) and thin plaque (2) (Lake Tamblyn); **F.** x2,000, sample with thin crust plaque, cross-section view (Lower Steep Rock Lake).

Plaque-filled cells were observed as single root epidermis cells that contained precipitate within the cell cavities. Plaque-filled cells were inconsistently distributed across the root epidermis, with 15.8% of sample SEM images having a combination of thin plaque and

plaque-filled cells. Samples from all sites (except Lower Steep Rock Lake) had a combination of thin plaque and plaque-filled cells, with this plaque type second-most dominant in Marchmont Marsh samples. The remaining 3.9% of sample SEM images (from Lower Steep Rock Lake only) had a combination of crust plaque and plaque-filled cells, though this number may be under-represented due to the potential of crust plaque obscuring the observation of plaque-filled cells.

In comparing plaque frequency between sites, Lake Tamblyn samples had the greatest occurrence of thin plaques and Partridge Crop Lake had the greatest occurrence of crust plaques, while Marchmont Marsh had the greatest occurrence of combination plaques (thin plaque with crust or plaque-filled cells).

Plaque casts were observed in two samples with crust plaque present on the root surface. As first described by Chen et al. (1980*b*), the plaque appeared to have solidly filled several epidermis cells, forming casts of the former cell walls (Figure 2.5).

Figure 2.5 – SEM images of northern wild rice roots with iron plaque casts. Plaque casts indicated by arrows. **A.** x2,200, sample from Marchmont Marsh; **B.** x2,500, sample from Lake Tamblyn.

In total, 87 EDXA x-ray spectra were collected from the root surface of samples with plaque and 19 EDXA x-ray spectra were collected from the root surface of control samples (Figure 2.6). Fe was present in the x-ray spectra of all root plaques examined, with Fe as one of the two most abundant elements in 96.6% of plaques (after carbon spectra correction (LUCAS 2009*a*)). Fe and O were the two most abundant elements in 67.8% of plaque x-ray spectra, followed by: 13.8% with Fe and Al; 10.3% with Fe and K; 3.5% with Fe and Si; and 1.2 % with Fe and Cl. The remaining 3.4% contained O and either Si, S or Cl. Al was present on their root surface of 74% of control samples, followed by 26% with Ca, 21% with K, 16% with S and <5% with Cl, Si or Fe.

2.3.2.5 Plaque Deposition

In total, 61 EDXA x-ray spectra (with associated SEM images) were collected along the cross-section profile of nine root samples with plaque and four EDXA x-ray spectra along the cross-section profile of two root samples without plaque (Figure 2.7). Fe was detected on the epidermis cell surface of all root samples with plaque, with iron present in the interior of the epidermis cells of 92.9% of samples. Fe was present in the interior of the cortex cells in 46.7% of these samples, and in the interior of the cortex cells in 21.4 % of these samples. Fe was not present in the vascular cylinder cells of any sample, nor was Fe detected in any cells of the control samples.

EXDA maps of elemental distribution (Figure 2.8) found that Fe, Al and Si were most abundant on the surface and interior of root epidermis cells. K, O and P were evenly distributed throughout the root. Fe was abundant on the surface of samples with plaque, while Fe was scarcely present on the surface/interior of samples without plaque.

Figure 2.6 – EDXA x-ray spectra of iron plaques on northern wild rice roots. Representative spectra selected to illustrate different plaque types. cps = counts of energy per second, element energy peaks as labelled, measured in kiloelectronvolts (keV). **A.** Control sample with no plaque (Whitefish Lake); **B.** Sample with thin plaque (Whitefish Lake); **C.** Sample with crust plaque (C.1) and thin plaque (C.2) (Marchmont Marsh); **D.** Sample with crust plaque (Partridge Crop Lake); **E.** Sample with plaque-filled cells (Lake Tamblyn).

Figure 2.7 – SEM images and EDXA x-ray spectra of iron plaques on northern wild rice roots. Representative images and x-ray spectra selected to illustrate iron plaque deposition. cps = counts of energy per second, element energy peaks as labelled, measured in kiloelectronvolts. A. x700, sample showing x-ray spectra at epidermis surface (1, A.1), epidermis cell interior (2, A.2), and outer cortex (3, A.3) (Partridge Crop Lake); B. x1,000, sample with crust plaque, note plaque thickness on cell surface (Whitefish Lake); C. x500, sample with plaque-filled cell, indicated by box (Partridge Crop Lake).

Figure 2.8 – SEM image and EDXA element distribution maps of select elements in northern wild rice root cross-section with iron plaque. A. x90 SEM image, sample from Partridge Crop Lake; **B.** Element maps, white dots indicate presence and location of each element as labelled. Note Al, Fe and Si mainly confined to root surface.

2.3.2.6 Plaque Anomalies

Grooves were observed in the crust plaque surface of two samples (confirmed through the examination of gold-plated samples), one each from Marchmont Marsh and Whitefish Lake (Figure 2.9). All grooves were rounded, approximately 0.4 μ m in diameter and up to 6 μ m in length, and were found either along the plaque surface or penetrating into the plaque. Grooves were inconsistently distributed across the plaque surface, their appearance confined to specific areas of thick crust plaque.

Figure 2.9 – SEM images of northern wild rice roots with grooves present in thick crust iron plaque. All samples gold-coated and images collected with Hitachi SU-70 SEM unless otherwise noted. Marchmont Marsh sample images: **A.** x2,500 (carbon-coated, JEOL JSM-5900LV SEM); **B.** x18,000; **C.** x10,000. Whitefish Lake sample images: **D.** x2,200; **E.** x20,000; **F.** x10,000.

2.4 Discussion

2.4.1 Surface Water and Sediment

The variable surface water and sediment chemistries of each site do not appear to have influenced the deposition, composition or structure of iron plaques on the roots of northern wild rice. Plaque composition and structure was similar in samples examined from both Lake Tamblyn (highest sediment metal concentrations) and Whitefish Lake (lowest sediment metal concentrations), suggesting that wild rice roots generate similar plaques independent of sediment metal concentrations. Surface water and sediment pH was within the range expected to support Fe precipitation at all sites (Patrick and Henderson 1981). Although sediment redox potentials can also influence the formation of Fe plaque (Taylor et al. 1984), redox potential data was not collected in this study.

2.4.2 Northern Wild Rice

2.4.2.1 Root Anatomy

Observations of the root system of northern wild rice, including root length, diameter, and the presence of prop roots, were similar to those described by Aiken et al. (1988). Orange-brown plaque and aerenchyma were observed on/in the majority of roots, suggesting that root-zone aeration occurs throughout the entire root system. Stover (1928) provides a detailed description of the anatomy of *Zizania aquatica* L. roots, though taxonomic debates occurred throughout the 1900s on the division between *Z. palustris* and *Z. aquatica* (Aiken et al. 1988). The majority of root anatomy observations made in this study are similar to those of Stover (1928), including the hypodermis acting as the functional epidermis (i.e. outer-most layer of cells), the absence of root hairs and large aerenchyma appearing to be first schizogenous then lysigenous in formation.

2.4.2.2 Plaque Distribution

No consistent pattern of plaque deposition was observed on the samples collected from all five sites, with the appearance of iron root plaques varying little between sites and within samples. Iron plaque deposition was inconsistent between different roots of the same plant (i.e. the amount of plaque varied between roots) and along the surface of individual roots (i.e. no plaque zonation observed based on age or distance from root tip).

Several studies have reported trends in iron root plaque deposition based on root age, with older roots having a larger amount of plaque deposition compared with younger roots or younger root parts on the same plant (Chen et al. 1980*b*; Taylor et al. 1984; Begg et al. 1994; Snowden and Wheeler 1995). Batty et al. (2002) found that plaque deposited on the root surface of *P. australis* grown in a laboratory setting with adequate nutrients showed definite zonation, with plaque beginning 1 cm from the root tip and darkening with distance from the tip.

The natural variability of in-situ rhizosphere chemistry along with seasonal trends may have contributed to the lack of plaque zonation observed in this study. Ye et al. (1997) discussed the possibility that plaque deposition differs on hydroponic vs. field-grown plants due to the lack of root-induced rhizosphere changes present in nutrient solution and to the structural differences of adult plants vs. seedlings (shorter growth-periods common in hydroponic studies). Since all samples in this study were collected at the end of the growing season, slowed root growth may have provided root tips with adequate time for plaque deposition.

2.4.2.3 Plaque Composition

The majority of plaques contained Fe and O as their most abundant elements, consistent with the accepted composition of iron root plaques as iron hydroxides, FeOOH (Bacha and Hossner 1977; Chen et al. 1980*a*). Plaques also frequently contained Al, Ca, K, S and Si, however these elements were found on control sample surfaces as well, and no relationship was observed between Fe and the presence/location of these elements. These findings suggest that these elements may have been included in the plaque through incorporated sediment particles or have been adsorbed to the plaque from sediment pore water. This hypothesis is supported by multiple studies that have found additional elements included in root plaques, such as Al, As, Ca, Cl, Cu, K, Mn, P, Si and Zn (Chen et al. 1980*a*; St-Cyr et al. 1993; St-Cyr and Campbell 1996; Batty et al. 2000; Batty et al. 2002; Caetano and Vale 2002; Hupfer and Dollan 2003; Jiang et al. 2009). Batty et al. (2002) also commented that Si and Al observed in the iron root plaques of field-grown plants were likely indicative of the presence of clay particles.

Phosphorus was absent in the iron root plaques examined. Several studies have found P associated with iron root plaques (Chambers and Odum 1990; Hupfer and Dollan 2003), however the absence of P in the plaques of this study may be a result of the examination of field vs. laboratory-grown specimens. In addition to the aforementioned differences in rhizosphere chemistry, the availability of P in laboratory nutrient solutions is generally greater than in the field (Batty et al. 2000). Batty et al. (2000) compared iron root plaques on both laboratory and field-grown *P. australis* specimens, concluding that the absence of P in the plaque of field-grown specimens was due its extremely low concentration at the study site. The presence of iron root plaques may have influenced

the bioavailability of P in the rhizosphere due to an enhanced uptake effect (Liang et al. 2006; Xu et al. 2009), however this study did not examine this potential relationship.

2.4.2.4 Plaque Morphology

A range of plaque densities (from thin to crust) was observed across the surfaces of each root, similar to the observations of Bacha and Hossner (1977), Taylor et al. (1984) and Batty et al. (2002). Thin plaques were observed to have no structure on the root surface, unlike the textured appearance of the amorphous deposits observed by Bacha and Hossner (1977) and Batty et al. (2002). This lack of observed thin plaque structure may have been due to the absence of gold-coating on SEM samples (due to EDXA requirements) which is generally required for the examination of fine-scale topography (LUCAS 2009*c*). Thinner crust plaques maintained the shape of epidermal cells (visible as cracks within the crust surface), while thicker crust plaques were observed as a solid coating on the root surface, entirely concealing the shape of epidermis cells. These observations are similar to that of Taylor et al. (1984), who found that heavy plaques masked the outline of individual cells, in some cases forming an even layer covering the root surface.

Cross-sectioned samples containing both plaque-filled cells and cells with thin plaque were observed to have iron hydroxide contained within the cell and no additional plaque deposited on the cell surface. Plaque may have precipitated in an increased concentration within single cells due to broken/deteriorated cell walls increasing the permeability of cells, however the cause of this selective deterioration is unknown. Thicker crust plaques were found associated with collapsed epidermal cells, similar to the observations of Taylor et al. (1984). Where portions of thicker crust plaque had broken away from the

root surface (likely during sample preparation), the surfaces of the epidermal cells appeared to have also been removed. This finding suggests that iron hydroxide was present both within and on the cell surface, in effect cementing the collapsed cell wall within the plaque.

This hypothesis is supported by the presence of plaque-filled cells and the occurrence of cell casts in some samples. In contrast to the casts described by Chen et al. (1980*b*), a relic of the former cell wall was observed in one of the samples (Image B, Figure 2.10), suggesting that the outermost cell wall collapsed and became incorporated into the crust plaque. The cell casts were also solid in appearance and did not have a hollow interior like the casts observed by Chen et al. (1980*b*).

The plaque formation model presented by Chen et al. in 1980(*b*) assumes that the outer cell walls decompose when iron hydroxide is precipitated both on the root surface and within the cell cavities, while Taylor et al. (1984) suggested that the outer cell walls collapse during deposition rather than decompose. The observations in this study indicate that the cell walls collapse rather than decompose and are subsequently incorporated into the thick crust plaque. A hypothetical model of iron plaque development on the roots of northern wild rice is presented in Figure 2.10, adapted from the models presented by Chen et al. (1980*b*). This hypothetical model is supported by the findings of Crowder and St.-Cyr (1991) who stated that "plaque may be deposited on top of the epidermis or the outer cell wall may collapse inwards, allowing plaque to either remain on top or form a cast of the cell if the cell wall breaks".

Figure 2.10 – Hypothetical model of iron plaque development on northern wild rice roots. A. Modification of "Fig. 7: Hypothetical model for Fe coating development" presented by Chen et al. 1980*b*. Model starts with undamaged epidermal cells in cross section and shows progression over time. Iron hydroxide is deposited on and within the epidermis cells, and as time advances the plaque thickens and cell walls collapse, becoming incorporated into the plaque. **B.** x900, sample with crust plaque showing solid cell cast with cell wall remnant incorporated into plaque, indicated by box (Lake Tamblyn). **C.** x600, sample with crust plaque and collapsed outermost cell walls (Lower Steep Rock Lake).

Iron penetration into the root cells was found to be comparable to the observations of Green and Etherington (1977) who found that iron deposits extended inwards from the root surface of *O. sativa* to the cells of the cortex, but were not detected in the tissues of the stele. The findings of Taylor et al. (1984) on *T. latifolia* also support this observation, however iron was not found to penetrate beyond the epidermal cells of *P. australis* by Batty et al. (2002), or *Spartina alterniflora* Loisel. by Mendelssohn and Postek (1982).

This variable depth of iron deposition may be attributed to site and species-dependent variables such as rhizosphere oxidation potential, root anatomy and iron-pool availability.

2.4.2.5 Plaque Anomalies

The observation of rounded grooves in the plaque surface was unexpected, as previous reports on iron root plaques have not reported this phenomenon. Based on the diameter and consistent shape of the grooves, as well as their tendency to occur within small concentrated areas, it is plausible to reason that they were caused by bacteria. No microbes were observed within the grooves, though they may have been removed during the sample preparation process.

The relationship between bacteria and iron root plaque is well-documented, with studies focusing on the contribution of iron-oxidizing and iron-reducing bacteria to the formation and reduction of plaque (St-Cyr et al. 1993; Mendelssohn et al. 1995; Neubauer et al. 2002; Weiss et al. 2003; Chen et al. 2008). One potential hypothesis for groove generation is that iron-reducing bacteria moved slowly across the plaque surface reducing ("consuming") portions of the ferric hydroxide, thus generating the observed grooves (Edwards et al. 2001; Valdés et al. 2008). This hypothesis assumes anaerobic conditions, perhaps in localized areas of the rhizosphere where plaque was substantially dense to impede oxidation by the root. Several studies on corrosion have collected SEM images of etch pits on the surface of iron-containing minerals (such as iron silicates), but the majority of pits in these studies are shallow, cell-sized and bacillus-shaped, only occasionally generating elongated pits (Edwards et al. 2001; Buss et al. 2007; Xu et al. 2008). The grooves observed in this study might differ in appearance due to differences in the structural stability of iron root plaque versus ferric-iron containing minerals.

2.4.3 Conclusion

Substantial iron root plaques form on northern wild rice in a variety of surface water and sediment chemistries. Iron plaques observed on the roots ranged structurally from thin to crust plaques (<1 μ m to 14 μ m thick) and were composed mainly of Fe, O, Al and K, however P was not found to be included in the plaques. Iron plaque was found within and on root epidermal cells, and occasionally filled epidermal cells and penetrated into the root cortex. Grooves observed in the plaque surface were hypothesized to be associated with iron-reducing bacteria.

SUMMARY AND GENERAL CONCLUSIONS

The causes of cultural eutrophication in water bodies are multi-faceted and multigenerational, presenting an ever increasing need for effective and sustainable solutions. A reduction in external nutrient sources remains the most viable solution for attaining long-term eutrophication reduction (Søndergaard and Jeppesen 2007), however strategies to reduce internal P loading within water bodies are also required to achieve a sustainable relief from the eutrophic state (Carpenter et al. 1998). The selection of appropriate P remediation strategies is specific to each water body (Reddy et al. 1999), with phytoremediation presenting a cost-effective strategy to improve water body nutrient retention and removal (Williams 2002).

This thesis examined the potential for northern wild rice (*Z. palustris*) to be used as a phytoremediation species in eutrophic wetlands. An investigation into the root-sediment interactions of this species was undertaken to determine how wild rice affects water and sediment pore water chemistry. Northern wild rice growth was found to alter sediment pore water chemistry, contributing directly to nutrient retention during the growing season through nutrient assimilation in its tissues, and indirectly by decreasing pore water pH and increasing the availability of pore water Fe and Mn for P adsorption. Iron plaques observed on the roots of wild rice water and sediment chemistries. The plaques were composed mainly of Fe, O, Al and K, with no P concentrations detected. The presence of iron root plaques may have influenced the bioavailability of P in the rhizosphere (Liang et al. 2006; Xu et al. 2009), however this study did not examine this

potential relationship. It was suggested that harvesting northern wild rice vegetation (including the economically viable seed) at the end of the growing season could present a method for permanent nutrient removal in eutrophic water bodies.

With proper harvesting and management techniques, northern wild rice (*Z. palustris*) grown in eutrophic water bodies could contribute to nutrient reduction strategies and present a viable phytoremediation species for nutrient removal efforts. This remediation strategy is most appropriately employed within the historic range of northern wild rice to contribute to restoration efforts. More research is needed into the harvesting and management techniques required for an entire-plant harvest (i.e. harvest technique, season and economic viability) and to determine genetically viable and vigorous strains of northern wild rice to maximize plant nutrient uptake (by increasing size and growth rate) and endurance in various habitats.

REFERENCES

- Azcue, J.M., Rosa, F., and Lawson, G. 1996. An improved dialysis sampler for the *in situ* collection of larger volumes of sediment pore waters. Environmental Technology. 17(1): 95-100.
- Aiken, S.G., Lee, P.F., Punter, D., and Stewart, J.M. 1988. Wild Rice in Canada. Agriculture Canada and New Canada Publications, Toronto.
- Armstrong, D.K. 2000. Paleozoic geology of the northern Lake Simcoe area, southcentral Ontario. Ontario Geological Survey, Open File Report 6011.
- Armstrong, W. 1964. Oxygen diffusion from the roots of some British bog plants. Nature. 204: 801-802.
- Bacha, R.E., and Hossner, L.R. 1977. Characteristics of coatings formed on rice roots as affected by iron and manganese additions. Soil Sci. Soc. Am. J. **41**(5): 931-935.
- Bally, G., Mesnage, V., Verney, R., Clarisse, O., Dupont, J.P., Ouddanne, B., and Lafite,
 R. 2005. Dialysis porewater sampler: a strategy for time equilibration optimisation. *In* Phosphates in Sediments. Proceedings of the 4th International Symposium, Carmona, Spain, September 9-12 2003. *Edited by* Serrano, L., and Golterman, H.L., Backhuys Publishers, Leidan. pp. 9-20.
- Batty, L.C., Baker, A.J.M., Wheeler, B.D., and Curtis, C.D. 2000. The effect of pH and plaque on the uptake of Cu and Mn in *Phragmites australis* (Cav.) Trin ex. Steudel. Ann. Bot. (Oxford, U.K.). 86(3): 647-653.
- Batty, L.C., Baker, A.J.M., and Wheeler, B.D. 2002. Aluminum and phosphate uptake by *Phragmites australis*: the role of Fe, Mn and Al root plaques. Ann. Bot. (Oxford, U.K.). 89(4): 443-449.
- Begg, C.B.M., Kirk, G.J.D., MacKenzie, A.F., and Neue, H.U. 1994. Root-induced iron oxidation and pH changes in the lowland rice rhizosphere. New Phytol. 128(3): 469-477.
- Bennett, J.P., Chiriboga, E.D., Coleman, J., and Waller, D.M. 2000. Heavy metal baselines for wild rice from North Central Wisconsin. *In* Wild Rice Research and

Management. Proceedings of the Wild Rice Research and Management Conference, Carlton, MN, July 7-8 1999. *Edited by* Williamson, L.S., Dlutkowski, L.A., and McCammon Soltis, A.P., Great Lakes Indian Fish & Wildlife Commission. pp. 84-91.

- Boström, B., and Pettersson, K. 1982. Different patterns of phosphorus release from lake sediments in laboratory experiments. Hydrobiologia. **92**(2): 415-429.
- Boström, B. 1984. Potential mobility of phosphorus in different types of lake sediment. Int. Revue ges. Hydrobiol. **69**(4): 457-474.
- Boström, B., Andersen, J.M., Fleischer, S., and Jansson, M. 1988. Exchange of phosphorus across the sediment-water interface. Hydrobiologia. **170**: 229-244.
- Buss, H.L., Lüttge, A., and Brantley, S.L. 2007. Etch pit formation on iron silicate surfaces during siderophore-promoted dissolution. Chem. Geol. 240(3-4): 326-342.
- Caetano, M., and Vale, C. 2002. Retention of arsenic and phosphorus in iron-rich concretions of Tagus salt marshes. Mar. Chem. **79**(3-4): 261-271.
- Carpenter, S.R., Caraco, N.F., Correll, D.L., Howarth, R.W., Sharpley, A.N., and Smith, V.H. 1998. Nonpoint Pollution of Surface Waters with Phosphorus and Nitrogen. Ecological Applications. 8(3): 559-568.
- Chambers, R.M., and Odum, W.E. 1990. Porewater oxidation, dissolved phosphate and the iron curtain; Iron-phosphorus relations in tidal freshwater marshes. Biogeochemistry. **10**(1): 37-52.
- Chen, C.C., Dixon, J.B., and Turner, F.T. 1980*a*. Iron coatings on rice roots: Mineralogy and quantity influencing factors. Soil Sci. Soc. Am. J. **44**(3): 635-639.
- Chen, C.C., Dixon, J.B., and Turner, F.T. 1980b. Iron coatings on rice roots: Morphology and models of development. Soil Sci. Soc. Am. J. 44(5): 1113-1119.
- Chen, X.P., Kong, W.D., He, J.Z., Liu, W.J., Smith, S.E., Smith, F.A., and Zhu, Y.G. 2008. Do water regimes affect iron-plaque formation and microbial communities in the rhizosphere of paddy rice? J. Plant Nutr. Soil Sci. 171(2): 193-199.

- Christensen, K.K., and Sand-Jensen, K. 1998. Precipitated iron and manganese plaque restrict root uptake of phosphorus in *Lobelia dortmanna*. Can. J. Bot. **76**(12): 2158-2163.
- Christensen, K.K., and Wigand, C. 1998. Formation of root plaques and their influence on tissue phosphorus content in *Lobelia dortmanna*. Aquat. Bot. **61**(2): 111-122.
- Conlin, T.S.S., and Crowder, A.A. 1989. Location of radial oxygen loss and zones of potential iron uptake in a grass and two non-grass emergent species. Can. J. Bot. 67(3): 717-722.
- Crowder, A.A., and MacFie, S.M. 1986. Seasonal deposition of ferric hydroxide plaque on roots of wetland plants. Can. J. Bot. **64**(9): 2120-2124.
- Crowder, A.A., and St.-Cyr, L. 1991. Iron oxide plaque on wetland roots. Trends Soil Sci. 1: 315-329.
- David, P. 2000. An overview of the Great Lakes Indian Fish and Wildlife Commission's Wild Rice Management Program. *In* Wild Rice Research and Management. Proceedings of the Wild Rice Research and Management Conference, Carlton, MN, July 7-8 1999. *Edited by* Williamson, L.S., Dlutkowski, L.A., and McCammon Soltis, A.P., Great Lakes Indian Fish & Wildlife Commission. pp. 149-157.
- Day, W.R., and Lee, P.F. 1989. Ecological relationships of wild rice, *Zizania aquatica*.
 8. Classification of sediments. Can. J. Bot. 67(5): 1381-1386.
- Day, W.R., and Lee, P.F. 1990. Ecological relationships of wild rice, *Zizania aquatica*.9. Production in organic-flocculent sediments. Can. J. Bot. 68(7): 1542-1548.
- Deng, D., Wu, S.C., Wu, F.Y., Deng, H., and Wong, M.H. 2010. Effects of root anatomy and Fe plaque on arsenic uptake by rice seedlings grown in solution culture. Environmental Pollution. 158(8): 2589-2595.
- Dunbabin, J.S., and Bowmer, K.H. 1992. Potential use of constructed wetlands for treatment of industrial wastewaters containing metals. The Science of the Total Environment. 111(2-3): 151-168.

- Edwards, K.J., Hu, B., Hamers, R., and Banfield, J. 2001. A new look at microbial leaching patterns on sulfide minerals. FEMS Microbiol. Ecol. **34**(3): 197-206.
- Eimers, M.C., Winter, J.G., Scheider, W.A., Watmough, S.A., and Nicholls, K.H. 2005. Recent changes and patterns in the water chemistry of Lake Simcoe. J. Great Lakes Res. **31**(3): 322-332.
- En-Hua, L., Wei, L., Xue-Lei, W., Huai-Ping, X., and Fei, X. 2010. Experiment of emergent macrophytes growing in contaminated sludge; Implication for sediment purification and lake restoration. Ecological Engineering. 36(4): 427-434.
- Environment Canada. 2010. Lake Huron Drainage Basin. Available from http://www.ec.gc.ca/grandslacs-greatlakes/default.asp?Lang=En&n=DB7121C2. Last updated 10 March 2010, accessed 16 October 2012.
- ESRI. 2012. World Street Map& Map Canvas Basemaps. ESRI, DeLorme, NAVTEQ, Tele Atlas, First American, ESRI Japan, UNEP-WCMC, USGS, METI, ESRI Hong Kong, ESRI Thailand, ProcalculoProsis. Accessed through ESRI® ArcMap[™] 10.0 October 18, 2012.
- Evans, D.O., Nicholls, K.H., Allen, Y.C., and McMurtry, M.J. 1996. Historical land use, phosphorus loading, and loss of fish habitat in Lake Simcoe, Canada. Can. J. Fish. Aquat. Sci. 55(Suppl. 1): 194-218.
- Galvez-Cloutier, R., Leroueil, S., Allier, D., Locat, J., and Arsenault, S. 2006. A combined method: Precipitation and capping, to attenuate eutrophication in Canadian lakes. Journal of ASTM International. **3**(6): 232-239.
- Gemma, T., Miura, H., and Hayashi, K. 1993. Effects of water depth and temperature on the seedling growth of wild rice, *Zizania palustris* L. Jpn. J. Crop Sci. 62(3): 414-418.
- Ginn, B.K. 2011. Distribution and limnological drivers of submerged aquatic plant communities in Lake Simcoe (Ontario, Canada): Utility of macrophytes as bioindicators of lake trophic status. J. Great Lakes Res. 37(SI3): 83-89.
- Green, M.S., and Etherington, J.R. 1977. Oxidation of ferrous iron by rice (*Oryza sativa* L.) roots: a mechanism for waterlogging tolerance? J. Exp. Bot. 28(104): 678-690.

- Hawryshyn, J., Rühland, K.M., Quinlan, R., and Smol, J.P. 2012. Long-term water quality changes in a multiple-stressor system: a diatom-based paleolimnological study of Lake Simcoe (Ontario, Canada). Can. J. Fish. Aquat. Sci. 69(1): 24-40.
- Hesslein, R.H. 1976. An in situ sampler for close interval pore water studies. Limnol. Oceanogr. **21**(6): 912-914.
- Hickey, C.W., and Gibbs, M.M. 2009. Lake sediment phosphorus release management Decision support and risk assessment framework. N. Z. J. Mar. Freshwater Res. 43(3): 819-856.
- Hoagland, C.R., Gentry, L.E., David, M.B., and Kovacic, D.A. 2001. Plant nutrient uptake and biomass accumulation in a constructed wetland. J. Freshwater Ecol. 16(4): 527-540.
- House, W.A. 1999. The physic-chemical conditions for the precipitation of phosphate with calcium. Environ. Technol. **20**(7): 727-733.
- Hupfer, M., and Dollan, A. 2003. Immobilisation of phosphorus by iron-coated roots of submerged macrophytes. Hydrobiologia. 506(1-3): 635-640.
- Jacobs, P. H. 2002. A new rechargeable dialysis porewater sampler for monitoring subaqueous in-site sediment caps. Water Research. **36**(12): 3121-3129.
- Jensen, H.S., Kristensen, P., Jeppesen, E., and Skytthe, A. 1992. Iron:phosphorus ratio in surface sediment as an indicator of phosphate release from aerobic sediments in shallow lakes. Hydrobiologia. 235/236(1): 731-743.
- Jiang, C., Fan, X., Cui, G., and Zhang, Y. 2007. Removal of agricultural non-point source pollutants by ditch wetlands: implications for lake eutrophication control. Hydrobiologia. 581: 319-327.
- Jiang, F.Y., Chen, X., and Luo, A.C. 2009. Iron plaque formation on wetland plants and its influence on phosphorus, calcium and metal uptake. Aquat. Ecol. 43(4): 879-890.

- Jin, I.D., Yun, S.J., Matsuishi, Y., and Iwaya-Inoue, M. 2005. Changes in the water content and germination rate during seed desiccation and their inter-specific differences among *Zizania* species. J. Fac. Agr., Kyushu Univ. 50(2): 573-583.
- Johnson-Green, P.C., and Crowder, A.A. 1991. Iron oxide deposition on axenic and nonaxenic roots of rice seedlings (*Oryza sativa* L.). J. Plant Nutr. **14**(4): 375-386.
- Johnston, C.A. 1991. Sediment and nutrient retention by freshwater wetlands: Effects on surface water quality. Crit. Rev. Environ. Control. **21**(5-6): 491-565.
- Jorgenson, K.D., Lee, P.F., and Kanavillil, N. 2013. Ecological relationships of wild rice, *Zizania* spp. 11. Electron microscopy study of iron plaques on the roots of northern wild rice (*Zizania palustris*). Botany. *In Press*.
- Kao, J.T., Titus, J.E., and Zhu, W.X. 2003. Differential nitrogen and phosphorus retention by five wetland plant species. Wetlands. 23(4): 979-987.
- Keenan, T.J., and Lee, P.F. 1988. Ecological relationships of wild rice, *Zizania aquatica*.
 7. Sediment nutrient depletion following introduction of wild rice to a shallow boreal lake. Can. J. Bot. 66(2): 236.241.
- Kilgour, B., Clarkin, C., Morton, W., and Baldwin, R. 2008. Influence of nutrients in water and sediments on the spatial distribution of benthos in Lake Simcoe.J. Great Lakes Res. 34(2): 365-376.
- Landre, A.L., Winter, J.G., Helm, P., Hiriart-Baer, V., Young, J. 2011. Metals in Lake Simcoe sediments and tributaries: Do recent trends indicate changing sources? J. Great Lakes Res. 37(SI): 124-131.
- Lavrova, S., and Koumanova, B. 2006. Study on the influence of vegetation on the quality of aquatic systems; Chemicals as intentional and accidental global environmental threats. Nato Science for Peace and Security Series C – Environmental Security. 421-434.
- Lee, P.F., and Stewart, J.M. 1981. Ecological relationships of wild rice, *Zizania aquatica*.1. A model for among-site growth. Can. J. Bot. **59**(11): 2140-2151.

- Lee, P.F., and McNaughton, K.A. 2004. Macrophyte induced microchemical changes in the water column of a northern boreal lake. Hydrobiologia. **522**(1-3): 207-220.
- Li, H., Ye, Z.H., Wei, Z.J., and Wong, M.H. 2010. Root porosity and radial oxygen loss related to arsenic tolerance and uptake in wetland plants. Environmental Pollution. **159**(1): 30-37.
- Liang, Y., Zhu, Y.G., Xia, Y., Li, Z., and Ma, Y. 2006. Iron plaque enhances phosphorus uptake by rice (*Oryza sativa*) growing under varying phosphorus and iron concentrations. Ann. Appl. Biol. **149**(3): 305-312.
- Liu, J., Leng, X., Wang, M., Zhu, Z., and Dai, Q. 2011. Iron plaque formation on roots of different rice cultivars and the relation with lead uptake. Ecotoxicol. Environ. Saf. 74(5): 1304-1309.
- LSRCA. 2009. Report on the Phosphorus Loads to Lake Simcoe 2004-2007. Lake Simcoe Region Conservation Authority in partnership with the Ontario Ministry of the Environment. 18 pp.
- LUCAS. 2009*a*. SEM EDX Microanalysis Training Guide. SEM Module 4710/5251, Lakehead University Centre for Analytical Services. Thunder Bay, ON.
- LUCAS. 2009b. Scanning Electron Microscope (SEM) Part A. SEM Module 4710/5311, Lakehead University Centre for Analytical Services. Thunder Bay, ON.
- LUCAS. 2009*c*. Preparation of Materials for SEM. SEM Module 4710/5251, Lakehead University Centre for Analytical Services. Thunder Bay, ON.
- Lu, S.Y., Wu, F.C., Lu, Y.F., Xiang, C.S., Zhang, C.S., and Jin, C.X. 2009. Phosphorus removal from agricultural runoff by constructed wetland. Ecological Engineering. 35(3): 402-409.
- LWSB. 2006. Reducing nutrient loading to Lake Winnipeg and its watershed; Our collective responsibility and commitment to action. Lake Winnipeg Stewardship Board Report to the Minister of Water Stewardship. December 2006.
- Maine, M.A., Suñe, N., Hadad, H., Sánchez, G., and Bonetto, C. 2005*a*. Phosphate and metal retention in a small-scale constructed wetland for waste-water treatment. *In*

Phosphates in Sediments. Proceedings of the 4th International Symposium, Carmona, Spain, September 9-12 2003. *Edited by* Serrano, L., and Golterman, H.L., Backhuys Publishers, Leidan. pp. 21-31.

- Maine, M.A., Suñe, N., Hadad, H., and Sánchez, G. 2005b. Spatial variation of phosphate distribution in the sediment of an artificial wetland. *In* Phosphates in Sediments. Proceedings of the 4th International Symposium, Carmona, Spain, September 9-12 2003. *Edited by* Serrano, L., and Golterman, H.L., Backhuys Publishers, Leidan. pp. 33-42.
- Malvick, D.K., and Percich, J.A. 1993. Hydroponic culture of wild rice (*Zizania palustris* L.) and its application to studies of silicon nutrition and fungal brown spot disease. Can. J. Plant Sci. **73**(4): 969-975.
- McCarthy, M.J., Gardner, W.S., Lavrentyev, P.J., Moats, K.M., Jochem, F.J., and Klarer, D.M. 2007. Effects of hydrogeological flow regime on sediment-water interface and water column nitrogen dynamics in a Great Lakes coastal wetland (Old Woman Creek, Lake Erie). J. Great Lakes Res. 33(1):219-231.
- Meeker, J. 2000. The ecology of "wild" wild rice (*Zizania palustris* var. *palustris*) in the Kakagon sloughs, a riverine wetland on Lake Superior. *In* Wild Rice Research and Management. Proceedings of the Wild Rice Research and Management Conference, Carlton, MN, July 7-8 1999. *Edited by* Williamson, L.S., Dlutkowski, L.A., and McCammon Soltis, A.P., Great Lakes Indian Fish & Wildlife Commission. pp. 68-83.
- Mendelssohn, I.A., and Postek, M.T. 1982. Elemental analysis of deposits on the roots of *Spartina alterniflora* Loisel. Am. J. Bot. **69**(6): 904-912.
- Mendelssohn, I.A., Kleiss, B.A., and Wakeley, J.S. 1995. Factors controlling the formation of oxidized root channels A review. Wetlands. **15**(1): 37-46.
- Mitchell, A.M., Baldwin, D.S., and Rees, G.N. 2005. Alterations to potential phosphorus release processes from anaerobic freshwater sediments with additions of different species of labile carbon. *In* Phosphates in Sediments. Proceedings of the 4th

International Symposium, Carmona, Spain, September 9-12 2003. *Edited by* Serrano, L., and Golterman, H.L., Backhuys Publishers, Leidan. pp. 43-54.

- Mitsch, W.J., and Gosselink, J.G. 2007. Wetlands 4th ed. John Wiley & Sons, Inc. New Jersey.
- Moore, B.C., Lafer, J.E., and Funk, W.H. 1994. Influence of aquatic macrophytes on phosphorus and sediment porewater chemistry in a freshwater wetland. Aquat. Bot. **49**(2-3): 137-148.
- Morris, J.T., and Lajtha, K. 1986. Decomposition and nutrient dynamics of litter from four species of freshwater emergent macrophytes. Hydrobiologia. **131**(3): 215-223.
- Neubauer, S.C., Emerson, D., and Megonigal, J.P. 2002. Life at the energetic edge: Kinetics of circumneutral iron oxidation by lithotrophic iron-oxidizing bacteria isolated from the wetland-plant rhizosphere. Appl. Environ. Microbiol. **68**(8): 3988-3995.
- Neubauer, S.C., Toledo-Durán, G.E., Emerson, D., and Megonigal, J.P. 2007. Returning to their roots: Iron-oxidizing bacteria enhance short-term plaque formation in the wetland-plant rhizosphere. Geomicrobiol. J. **24**(1): 65-73.
- Oelke, E.A., Bloom, P.R., Porter, R.A., and Liu, Q. 2000. Wild rice plant development and seed physiology. *In* Wild Rice Research and Management. Proceedings of the Wild Rice Research and Management Conference, Carlton, MN, July 7-8 1999. *Edited by* Williamson, L.S., Dlutkowski, L.A., and McCammon Soltis, A.P., Great Lakes Indian Fish & Wildlife Commission. pp. 54-67.
- Olli, G., Darracq, A., and Destouni, G. 2009. Field study of phosphorus transport and retention in drainage reaches. Journal of Hydrology. **365**(1-2): 46-55.
- Ontario Ministry of the Environment. 2009*a*. Ontario Regulation 60/08 Lake Simcoe Protection, last amendment O. Reg. 130/09. Ontario Water Resources Act, R.S.O. 1990, c. O.40.

- Ontario Ministry of the Environment. 2009b. Lake Simcoe Protection Plan. Approved by Lieutenant Governor Order-in-Council No. 977/2009 under the Lake Simcoe Protection Act, 2008, effective June 2, 2009. Queen's Printer for Ontario.
- Otte, M.L., Rozema, J., Koster, L., Haarsma, M.S., and Broekman, R.A. 1989. Iron plaque on roots of *Aster tripolium* L.: interaction with zinc uptake. New Phytol. 111(2): 309-317.
- Painchaud, D.L., and Archibold, O.W. 1990. The effect of sediment chemistry on the successful establishment of wild rice (*Zizania palustris* L.) in northern Saskatchewan water bodies. Plant Soil. **129**(1): 109-116.
- Palmer, M.E., Winter, J.G., Young, J.D., Dillon, P.J., and Guildford, S.J. 2011. Introduction and summary of research on Lake Simcoe: Research, monitoring, and restoration of a large lake and its watershed. J. Great Lakes Res. 37(SI3): 1-6.
- Patrick, W.H.Jr., and Henderson, R.E. 1981. Reduction and reoxidation cycles of manganese and iron in flooded soil and in water solution. Soil Sci. Soc. Am. J. 45(5): 855-859.
- Povidisa, K., and Holmer, M. 2008. Iron plaque formation on seagrasses: Why not? Proceedings of the IEEE/OES US/EU-Baltic International Symposium, Tallinn, Estonia, 27-29 May 2008. New York. pp. 148-156.
- Pulatsu, S., and Topcu, A. 2009. Seasonal and vertical distributions of porewater phosphorus and iron concentrations in a macrophyte-dominated eutrophic lake. J. Environ. Biol. **30**(5): 801-806.
- Reddy, K.R., Kadlec, R.H., Flaig, E., and Gale, P.M. 1999. Phosphorus retention in streams and wetlands: A review. Crit. Rev. Environ. Sci. Technol. **29**(1): 83-146.
- Sain, P. 1984. Decomposition of wild rice (*Zizania aquatica*) straw in two natural lakes of northwestern Ontario. Can. J. Bot. 62(7): 1352-1356.
- Shaw, J.F.H, and Prepas, E.E. 1990. Exchange of phosphorus from shallow sediments at 9 Alberta lakes. J. Environ. Qual. 19(2): 249-256.

- Shilla, D., Asaeda, T., Fujino, T., and Sanderson, B. 2006. Decomposition of dominant submerged macrophytes: implications for nutrient release in Myall Lake, NSW, Australia. Wetlands Ecol. Manage. 14(5): 427-433.
- Snowden, R.E.D., and Wheeler, B.D. 1995. Chemical changes in selected wetland plant species with increasing Fe supply, with specific reference to root precipitates in Fe tolerance. New Phytol. 131(4): 503-520.
- Søndergaard, M. 1989. Phosphorus release from a hypertrophic lake sediment: Experiments with intact sediment cores in a continuous flow system. Arch. Hydrobiol. **116**(1): 45-59.
- Søndergaard, M. 1990. Pore water dynamics in the sediment of a shallow and hypertrophic lake. Hydrobiologia. **192**(2-3): 247-258.
- Søndergaard, M., Jensen, J.P., and Jeppesen, E. 2003. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia. **506**(1-3): 135-145.
- Søndergaard, M., and Jeppesen, E. 2007. Anthropogenic impacts on lake and stream ecosystems, and approaches to remediation. J. Appl. Ecol. **44**(6): 1089-1094.
- South Georgian Bay-Lake Simcoe Source Protection Committee. 2011. Approved Assessment Report: Lakes Simcoe and Couchiching-Black River Source Protection Area Part 1 & 2. November 2011.
- St-Cyr, L., Fortin, D., and Campbell, P.G.C. 1993. Microscopic observations of the iron plaque of a submerged aquatic plant (*Vallisneria americana* Michx). Aquat. Bot. 46(2): 155-167.
- St-Cyr, L., and Campbell, P.G.C. 1996. Metals (Fe, Mn, Zn) in the root plaque of submerged aquatic plants collected in situ: Relations with metal concentrations in the adjacent sediments and in the root tissue. Biogeochemistry. 33(1): 45-76.
- Stover, E.L. 1928. The roots of wild rice, Zizania aquatica L. Ohio J. Sci. 28(6): 43-49.
- Taylor, G.J., Crowder, A.A., and Rodden, R. 1984. Formation and morphology of an iron plaque on the roots of *Typha latifolia* L. grown in solution culture. Am. J. Bot. 71(5): 666-675.

- Tanner, C.C. 1996. Plants for constructed wetland treatment systems A comparison of the growth and nutrient uptake of eight emergent species. Ecological Engineering. 7(1): 59-83.
- TBFN. 2008. Thunder Bay Nature Guide, 1st ed. Thunder Bay Field Naturalists, Canada.
- Teasdale, P.R., Batley, G.E., Apte, S.C., and Webster, I.T. 1995. Pore-water sampling with sediment peepers. TrAC, Trends Anal. Chem. 14(6): 250-256.
- Templer, P., Findlay, S., and Wigand, C. 1998. Sediment chemistry associated with native and non-native emergent macrophytes of a Hudson River marsh ecosystem. Wetlands. 18(1): 70-78.
- Trolle, D., Zhu, G., Hamilton, D., Luo, L., McBride, C., and Zhang, L. 2009. The influence of water quality and sediment geochemistry on the horizontal and vertical distribution of phosphorus and nitrogen in sediments of a large, shallow lake. Hydrobiologia. 627(1): 31-44.
- Valdés, J., Pedroso, I., Quatrini, R., Dodson, R.J., Tettelin, H., Blake II, R., Eisen, J.A., and Holmes, D.S. 2008. *Acidithiobacillus ferroxidans* metabolism: from genome sequence to industrial applications. BMC Genomics. 9: 597.
- Walker, R.D., Pastor, J., and Dewey, B.W. 2006. Effects of wild rice (*Zizania palustris*) straw on biomass and seed production in northern Minnesota. Can. J. Bot. 84(6): 1019-1024.
- Walker, R.E.D., Pastor, J., and Dewey, B.W. 2010. Litter quantity and nitrogen immobilization cause oscillations in productivity of wild rice (*Zizania palustris* L.) in northern Minnesota. Ecosystems. 13(4): 485-498.
- Weiss, J.V., Emerson, D., Backer, S.M., and Megonigal, J.P. 2003. Enumeration of Fe(II)-oxidizing and Fe(III)-reducing bacteria in the root zone of wetland plants: Implications for a rhizosphere iron cycle. Biogeochemistry. 64(1): 77-96.
- Weiss, J.V., Emerson, D., and Megonigal, J.P. 2005. Rhizosphere iron (III) deposition and reduction in a *Juncus effusus* L.-dominated wetland. Soil Sci. Soc. Am. J. 69(6): 1861-1870.

Wetzel, R.G. 1992. Clean water: a fading resource. Hydrobiologia. 243: 21-30.

- Wetzel, R.G. 2001. Limnology, Lake and River Ecosystems, 3rd ed. Elsevier Academic Press, San Diego.
- Williams, J.B. 2002. Phytoremediation in wetland ecosystems: Progress, problems and potential. Crit. Rev. Plant Sci. 21(6): 607-635.
- Winter, J.G., Eimers, M.C., Dillon, P.J., Scott, L.D., Scheider, W.A., and Willox, C.C. 2007. Phosphorus inputs to Lake Simcoe from 1990 to 2003: Declines in tributary loads and observations on lake water quality. J. Great Lakes Res. 33(2): 381-396.
- Winter, J.G., Young, J.D., Landre, A., Stainsby, E., and Jarjanazi, H. 2011. Changes in phytoplankton community composition of Lake Simcoe from 1980 to 2007 and relationships with multiple stressors. J. Great Lakes Res. 37(SI-3): 63-71.
- Xu, C., Zhang, Y., Cheng, G., and Zhu, W. 2008. Pitting corrosion behaviour of 316L steel in the media of sulphate-reducing and iron-oxidizing bacteria. Materials Characterization. 59(3): 245-255.
- Xu, D., Xu, J., He, Y., and Huang, P.M. 2009. Effect of iron plaque formation on phosphorus accumulation and availability in the rhizosphere of wetland plants. Water, Air & Soil Pollut. 200(1-4): 79-87.
- Yamasaki, S. 1987. Oxygen demand and supply in Zizania latifolia and Phragmites australis. Aquat. Bot. 29(3): 205-215.
- Ye, Z.H., Baker, A.J.M., Wong, M.H., and Willis, A.J. 1997. Copper and nickel uptake, accumulation and tolerance in *Typha latifolia* with and without iron plaque on the root surface. New Phytol. **136**(3): 481-488.
- Ye, Z., Baker, A.J.M., Wong, M.H., and Willis, A.J. 1998. Zinc, lead and cadmium accumulation and tolerance in *Typha latifolia* as affected by iron plaque on the root surface. Aquat. Bot. 61(1): 55-67.
- Zhou, X.B., and Shi, W.M. 2007. Effect of root surface iron plaque on Se translocation and uptake by Fe-deficient rice. Pedosphere. **17**(5): 580-587.

APPENDICES

Appendix A: Marchmont Marsh Data

Appendix B: Victoria Point Data

Appendix C: Zizania palustris Root Plaque Examination Data

APPENDIX A

Marchmont Marsh Data

CONTENTS

A.1 –	Data Tables	90
•	Table A.1.1 – Surface water analytical data, 10-0 cm above SWI	90
•	Table A.1.2 – Pore water analytical data, 0-10 cm below SWI	90
•	Table A.1.3 – Pore water analytical data, 10-20 cm below SWI	91
•	Table A.1.4 – Pore water analytical data, 20-30 cm below SWI	91
•	Table A.1.5 – Pore water analytical data, 30-40 cm below SWI	92
•	Table A.1.6 –Water Sample Analytical Results, June to October	93
•	Table A.1.7 – Sediment Analytical Results	98
•	Table A.1.8 – Wild Rice Vegetation Analytical Results	98
•	Table A.1.9 – Water Data Trends Between Plots	99
•	Table A.1.10 – Water Data Trends Between Months	101
•	Table A.1.11 – Water Sample Statistical Analysis	103
•	Table A.1.12 – Water Sample Statistical Analysis by Month	104
•	Table A.1.13 – Water Sample Statistical Analysis by Plot	105
	1 5 5	
A.2 –	Graphs	106
A.2 – •	Graphs Figure A.2.1 – Total Phosphorus, Water Profiles by Month	106
A.2 - •	Graphs Figure A.2.1 – Total Phosphorus, Water Profiles by Month Figure A.2.2 – Phosphate PO ₄ -P, Water Profiles by Month	106 106 107
A.2 -	Graphs Figure A.2.1 – Total Phosphorus, Water Profiles by Month Figure A.2.2 – Phosphate PO ₄ -P, Water Profiles by Month Figure A.2.3 – Nitrate NO ₃ -N, Water Profiles by Month	106 106 107 108
A.2 -	Graphs Figure A.2.1 – Total Phosphorus, Water Profiles by Month Figure A.2.2 – Phosphate PO ₄ -P, Water Profiles by Month Figure A.2.3 – Nitrate NO ₃ -N, Water Profiles by Month Figure A.2.4 – Dissolved Organic Carbon, Water Profiles by Month	106 106 107 108 109
A.2 -	Graphs Figure A.2.1 – Total Phosphorus, Water Profiles by Month Figure A.2.2 – Phosphate PO ₄ -P, Water Profiles by Month Figure A.2.3 – Nitrate NO ₃ -N, Water Profiles by Month Figure A.2.4 – Dissolved Organic Carbon, Water Profiles by Month Figure A.2.5 – pH, Water Profiles by Month	106 106 107 108 109 110
A.2 -	Graphs Figure A.2.1 – Total Phosphorus, Water Profiles by Month Figure A.2.2 – Phosphate PO ₄ -P, Water Profiles by Month Figure A.2.3 – Nitrate NO ₃ -N, Water Profiles by Month Figure A.2.4 – Dissolved Organic Carbon, Water Profiles by Month Figure A.2.5 – pH, Water Profiles by Month Figure A.2.6 – Total Alkalinity as CaCO ₃ , Water Profiles by Month	106 107 107 108 109 110 111
A.2 -	Graphs Figure A.2.1 – Total Phosphorus, Water Profiles by Month Figure A.2.2 – Phosphate PO ₄ -P, Water Profiles by Month Figure A.2.3 – Nitrate NO ₃ -N, Water Profiles by Month Figure A.2.4 – Dissolved Organic Carbon, Water Profiles by Month Figure A.2.5 – pH, Water Profiles by Month Figure A.2.6 – Total Alkalinity as CaCO ₃ , Water Profiles by Month Figure A.2.7 – Conductivity, Water Profiles by Month	106 107 107 108 109 110 111 112
A.2 -	Graphs Figure A.2.1 – Total Phosphorus, Water Profiles by Month Figure A.2.2 – Phosphate PO ₄ -P, Water Profiles by Month Figure A.2.3 – Nitrate NO ₃ -N, Water Profiles by Month Figure A.2.4 – Dissolved Organic Carbon, Water Profiles by Month Figure A.2.5 – pH, Water Profiles by Month Figure A.2.6 – Total Alkalinity as CaCO ₃ , Water Profiles by Month Figure A.2.7 – Conductivity, Water Profiles by Month Figure A.2.8 – Total Aluminum, Water Profiles by Month	106 107 108 109 110 111 112 113
A.2 -	Graphs Figure A.2.1 – Total Phosphorus, Water Profiles by Month Figure A.2.2 – Phosphate PO ₄ -P, Water Profiles by Month Figure A.2.3 – Nitrate NO ₃ -N, Water Profiles by Month Figure A.2.4 – Dissolved Organic Carbon, Water Profiles by Month Figure A.2.5 – pH, Water Profiles by Month Figure A.2.6 – Total Alkalinity as CaCO ₃ , Water Profiles by Month Figure A.2.7 – Conductivity, Water Profiles by Month Figure A.2.8 – Total Aluminum, Water Profiles by Month Figure A.2.9 – Total Barium, Water Profiles by Month	106 107 108 109 110 111 112 113 114
A.2 -	Graphs Figure A.2.1 – Total Phosphorus, Water Profiles by Month Figure A.2.2 – Phosphate PO ₄ -P, Water Profiles by Month Figure A.2.3 – Nitrate NO ₃ -N, Water Profiles by Month Figure A.2.4 – Dissolved Organic Carbon, Water Profiles by Month Figure A.2.5 – pH, Water Profiles by Month Figure A.2.6 – Total Alkalinity as CaCO ₃ , Water Profiles by Month Figure A.2.7 – Conductivity, Water Profiles by Month Figure A.2.8 – Total Aluminum, Water Profiles by Month Figure A.2.9 – Total Barium, Water Profiles by Month	106 107 108 109 110 111 112 113 114 115
A.2 -	Graphs Figure A.2.1 – Total Phosphorus, Water Profiles by Month Figure A.2.2 – Phosphate PO ₄ -P, Water Profiles by Month Figure A.2.3 – Nitrate NO ₃ -N, Water Profiles by Month Figure A.2.4 – Dissolved Organic Carbon, Water Profiles by Month Figure A.2.5 – pH, Water Profiles by Month Figure A.2.6 – Total Alkalinity as CaCO ₃ , Water Profiles by Month Figure A.2.7 – Conductivity, Water Profiles by Month Figure A.2.8 – Total Aluminum, Water Profiles by Month Figure A.2.9 – Total Barium, Water Profiles by Month Figure A.2.10 – Total Calcium, Water Profiles by Month Figure A.2.11 – Total Iron, Water Profiles by Month	106 107 108 109 110 111 112 113 114 115 116
A.2 -	Graphs Figure A.2.1 – Total Phosphorus, Water Profiles by Month Figure A.2.2 – Phosphate PO ₄ -P, Water Profiles by Month Figure A.2.3 – Nitrate NO ₃ -N, Water Profiles by Month Figure A.2.4 – Dissolved Organic Carbon, Water Profiles by Month Figure A.2.5 – pH, Water Profiles by Month Figure A.2.6 – Total Alkalinity as CaCO ₃ , Water Profiles by Month Figure A.2.7 – Conductivity, Water Profiles by Month Figure A.2.8 – Total Aluminum, Water Profiles by Month Figure A.2.9 – Total Barium, Water Profiles by Month Figure A.2.10 – Total Calcium, Water Profiles by Month Figure A.2.11 – Total Iron, Water Profiles by Month Figure A.2.12 – Total Potassium, Water Profiles by Month	106 107 108 109 110 111 112 113 114 115 116 117

٠	Figure A.2.14 – Total Manganese, Water Profiles by Month	119
•	Figure A.2.15 – Total Sodium, Water Profiles by Month	120
٠	Figure A.2.16 – Total Sulphur, Water Profiles by Month	121
٠	Figure A.2.17 – Total Strontium, Water Profiles by Month	122
•	Figure A.2.18 – Total Zinc, Water Profiles by Month	123
•	Figure A.2.19 – Total Reactive Silicates SiO ₂ , July Water Profile	124
A.3 –	Control Data	125
•	Table A.3.1 – Water Sample Analytical Results, Control Data	125
A.4 –	Photos	126
٠	Figure A.4.1 – Marchmont Marsh, near Orillia, Ontario	126
•	Figure A.4.2 – Marchmont Marsh, showing vegetated and non-vegetated	ł
	plots	126
٠	Figure A.4.3 – Constructed pore water sampler	127
•	Figure A.4.4 – Pore water sampler dialysis test, demonstrating number of	of days
	to reach equilibrium	127
•	Figure A 4.5 – Completed nore water sampler showing two installed	
	i igure i i i i i completed pore water sampler, showing two instance	
	samplers	127
•	samplers	127 of sampler
•	samplers	127 of sampler 128
•	samplers Figure A.4.6 – Marchmont Marsh sampler preparation, showing filling of with deoxygenated distilled deionized water Figure A.4.7 – Marchmont Marsh pore water sampler installation, show	127 of sampler 128 ing
•	samplers Figure A.4.6 – Marchmont Marsh sampler preparation, showing filling of with deoxygenated distilled deionized water Figure A.4.7 – Marchmont Marsh pore water sampler installation, show insertion of sampler into sediment of non-vegetated plot	127 of sampler 128 ing 128
•	 samplers Figure A.4.6 – Marchmont Marsh sampler preparation, showing filling of with deoxygenated distilled deionized water Figure A.4.7 – Marchmont Marsh pore water sampler installation, show insertion of sampler into sediment of non-vegetated plot. Figure A.4.8 – Marchmont Marsh pore water sampler installed in non-vegetated plot. 	127 of sampler 128 ing 128 egetated
•	 samplers Figure A.4.6 – Marchmont Marsh sampler preparation, showing filling of with deoxygenated distilled deionized water Figure A.4.7 – Marchmont Marsh pore water sampler installation, show insertion of sampler into sediment of non-vegetated plot Figure A.4.8 – Marchmont Marsh pore water sampler installed in non-vegetated plot, showing three samplers above sediment-water interface 	127 of sampler 128 ing 128 egetated 129
• • •	 Figure A.4.6 – Marchmont Marsh sampler preparation, showing filling of with deoxygenated distilled deionized water Figure A.4.7 – Marchmont Marsh pore water sampler installation, show insertion of sampler into sediment of non-vegetated plot Figure A.4.8 – Marchmont Marsh pore water sampler installed in non-vegetated plot Figure A.4.9 – Control sample apparatus launch, showing launched 	127 of sampler 128 ing 128 egetated 129
• • •	 samplers Figure A.4.6 – Marchmont Marsh sampler preparation, showing filling of with deoxygenated distilled deionized water Figure A.4.7 – Marchmont Marsh pore water sampler installation, show insertion of sampler into sediment of non-vegetated plot Figure A.4.8 – Marchmont Marsh pore water sampler installed in non-vegetated plot Figure A.4.9 – Control sample apparatus launch, showing launched samplers 	127 of sampler 128 ing 128 egetated 129 129
• • •	 Figure A.4.6 – Marchmont Marsh sampler preparation, showing filling of with deoxygenated distilled deionized water Figure A.4.7 – Marchmont Marsh pore water sampler installation, show insertion of sampler into sediment of non-vegetated plot Figure A.4.8 – Marchmont Marsh pore water sampler installed in non-vegetated plot, showing three samplers above sediment-water interface Figure A.4.9 – Control sample apparatus launch, showing launched samplers Figure A.4.10 – Marchmont Marsh sample collection, showing samplers 	127 of sampler 128 ing 128 egetated 129
• • • •	 signer A.4.6 – Marchmont Marsh sampler preparation, showing filling of with deoxygenated distilled deionized water. Figure A.4.7 – Marchmont Marsh pore water sampler installation, show insertion of sampler into sediment of non-vegetated plot. Figure A.4.8 – Marchmont Marsh pore water sampler installed in non-veglot, showing three samplers above sediment-water interface Figure A.4.9 – Control sample apparatus launch, showing launched samplers. Figure A.4.10 – Marchmont Marsh sample collection, showing samplers after removal 	127 of sampler 128 ing 128 egetated 129 s129
• • • • •	 samplers Figure A.4.6 – Marchmont Marsh sampler preparation, showing filling of with deoxygenated distilled deionized water Figure A.4.7 – Marchmont Marsh pore water sampler installation, show insertion of sampler into sediment of non-vegetated plot Figure A.4.8 – Marchmont Marsh pore water sampler installed in non-vegetated plot, showing three samplers above sediment-water interface Figure A.4.9 – Control sample apparatus launch, showing launched samplers Figure A.4.10 – Marchmont Marsh sample collection, showing samplers after removal 	127 of sampler 128 ing 128 egetated 129 s129 s130 ransfer
• • • • •	 samplers	127 of sampler 128 ing 128 egetated 129 129 130 ransfer 130
• • • • • • • •	 samplers	127 of sampler 128 ing 128 egetated 129 s129 s130 ransfer 130 storage
• • • • • • • •	 Figure A.4.6 – Marchmont Marsh sampler preparation, showing filling of with deoxygenated distilled deionized water Figure A.4.7 – Marchmont Marsh pore water sampler installation, show insertion of sampler into sediment of non-vegetated plot. Figure A.4.8 – Marchmont Marsh pore water sampler installed in non-vegetated plot, showing three samplers above sediment-water interface Figure A.4.9 – Control sample apparatus launch, showing launched samplers- Figure A.4.10 – Marchmont Marsh sample collection, showing samplers Figure A.4.11 – Marchmont Marsh sample collection, showing sample to sample bottle Figure A.4.12 – Marchmont Marsh, sample collection, showing sample for transport to laboratory 	127 of sampler 128 ing 128 egetated 129 129 s 130 ransfer 130 storage 131

<u>A.1 - Data Tables</u>

Table A.1.1 - Marchmont Marsh, surface water analytical data, 10-0 cm above SWI. Data presented by month and plot type.

			July						August						Septemb	er					October					
Analytical			Non-Veg	getated		Vegetate	d		Non-Veg	getated		Vegetate	ed		Non-Veg	getated		Vegetate	d		Non-Veg	getated		Vegetate	d	
Parameter	Units	DL	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n
Total P	mg/L	0.005	0.046	0.037	9	0.035	0.035	9	0.020	0.007	6	0.047	0.038	7	0.044	0.073	9	0.043	0.026	9	0.009	0.005	9	0.009	0.010	9
Phosphate	mg/L	0.025	0.013	0	9	0.013	0	9	0.013	0	6	0.013	0	7	0.013	0	9	0.013	0	9	0.013	0	9	0.013	0	9
Nitrate	mg/L	0.009	0.010	0.004	9	0.014	0.015	9	0.015	0.013	6	0.071	0.054	7	0.005	0	9	0.005	0	9	0.008	0.003	9	0.006	0.002	9
pН	N/A	N/A	7.53	0.20	9	7.57	0.19	8	7.56	0.02	4	7.54	0.10	4	7.61	0.05	5	7.46	0.39	7	7.81	0.15	9	7.68	0.13	8
Alkalinity	mg/L	1.0	135.6	16.0	9	127.8	3.8	8	133.5	1.5	4	135.7	4.1	4	127.6	0.4	5	137.6	13.7	7	130.1	1.4	9	126.5	2.4	8
Conductivity	µS/cm	0.50	284.12	26.41	9	271.94	7.41	8	269.98	2.30	4	275.08	6.74	4	285.44	1.58	5	296.84	19.70	7	284.40	2.37	9	277.06	4.58	8
Total Al	mg/L	0.005	0.043	0.017	9	0.029	0.011	9	0.012	0.003	6	0.020	0.007	4	0.013	0.004	8	0.019	0.022	8	0.015	0.006	9	0.012	0.003	9
Total Ba	mg/L	0.003	0.064	0.013	9	0.062	0.007	9	0.058	0.002	6	0.062	0.004	4	0.059	0.002	8	0.067	0.014	8	0.061	0.001	9	0.060	0.003	9
Total Ca	mg/L	0.005	34.227	4.029	9	32.373	1.454	9	31.343	0.867	6	33.380	1.410	4	34.317	0.732	8	37.692	4.739	8	36.952	0.560	9	35.792	0.779	9
Total Fe	mg/L	0.002	0.517	0.722	9	0.222	0.345	9	0.026	0.009	6	0.101	0.118	4	0.025	0.022	8	0.635	0.802	8	0.055	0.059	9	0.301	0.376	9
Total K	mg/L	0.10	1.14	0.17	9	1.04	0.02	9	1.10	0.03	6	1.12	0.02	4	1.40	0.03	8	1.21	0.33	8	1.30	0.03	9	1.26	0.05	9
Total Mg	mg/L	0.01	10.21	0.17	9	9.48	1.05	9	10.41	0.24	6	10.69	0.20	4	10.63	0.20	8	10.28	1.30	8	11.02	0.16	9	10.20	0.73	9
Total Mn	mg/L	0.0002	0.1143	0.1609	9	0.0869	0.0975	9	0.0051	0.0047	6	0.0178	0.0269	4	0.0093	0.0151	8	0.1766	0.2973	8	0.0111	0.0258	9	0.0744	0.0689	9
Total Na	mg/L	0.01	4.67	0.05	9	4.75	0.09	9	4.69	0.12	6	4.70	0.04	4	5.91	0.14	8	5.36	0.70	8	5.16	0.10	9	4.99	0.20	9
Total S	mg/L	0.05	1.39	0.65	9	1.60	0.48	9	1.89	0.04	6	1.83	0.19	4	1.88	0.12	8	1.39	0.70	8	2.02	0.21	9	1.81	0.25	9
Total Sr	mg/L	0.005	0.103	0.007	9	0.101	0.003	9	0.102	0.002	6	0.105	0.002	4	0.104	0.003	8	0.109	0.013	8	0.107	0.001	9	0.104	0.004	9
Total Zn	mg/L	0.001	0.008	0.001	9	0.010	0.002	9	0.002	0.001	6	0.003	0.001	4	0.010	0.002	8	0.009	0.003	8	0.002	0.001	9	0.004	0.004	9
DOC	mg/L	0.50	4.83	0.64	9	4.37	1.32	9	5.78	1.87	6	5.46	1.99	7												

Notes

DL = method detection limit; N/A = not applicable; SD = standard deviation; n = sample size; -- = not analyzed

<DL results recorded as 0.5*DL

Table A.1.2 - Marchinone Marsh, pore water analytical data, 0-10 cm below 5 w1. Data presented by month and plot type.	Table A.1.2 - Marchmont Marsh, pore water ana	alytical data, 0-10 cm below SW	• Data presented by month and plot type.
--	---	---------------------------------	--

				-	-		-							-		-		-								
			July						August						Septemb	er					October					
Analytical			Non-Ve	getated		Vegetate	d		Non-Ve	getated		Vegetate	ed		Non-Veg	getated		Vegetate	d		Non-Veg	getated		Vegetate	ed	
Parameter	Units	DL	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n
Total P	mg/L	0.005	0.065	0.051	9	0.055	0.019	9	0.144	0.081	9	0.127	0.059	9	0.124	0.067	9	0.120	0.046	9	0.047	0.047	9	0.088	0.053	9
Phosphate	mg/L	0.025	0.013	0	9	0.013	0	9	0.013	0	9	0.013	0	9	0.013	0	9	0.013	0	9	0.013	0	9	0.015	0.006	9
Nitrate	mg/L	0.009	0.010	0.004	9	0.010	0.009	9	0.068	0.055	9	0.107	0.083	9	0.005	0	9	0.005	0	9	0.007	0.005	9	0.006	0.004	9
pH	N/A	N/A	7.17	0.18	9	7.12	0.08	9	7.13	0.08	9	7.03	0.09	9	7.23	0.07	9	7.15	0.18	9	7.26	0.16	9	7.07	0.30	9
Alkalinity	mg/L	1.0	157.7	35.1	9	147.0	8.5	9	162.3	13.4	9	173.6	16.0	9	134.9	13.3	9	149.1	14.5	9	128.6	13.3	9	134.4	15.2	9
Conductivity	µS/cm	0.50	324.80	61.92	9	304.60	16.90	9	318.16	18.72	9	332.64	28.61	9	290.63	24.16	9	309.90	24.87	9	279.84	26.19	9	287.72	27.16	9
Total Al	mg/L	0.005	0.035	0.013	9	0.021	0.010	9	0.038	0.020	9	0.032	0.015	9	0.017	0.009	9	0.016	0.020	9	0.026	0.036	9	0.012	0.007	9
Total Ba	mg/L	0.003	0.082	0.024	9	0.085	0.007	9	0.082	0.009	9	0.096	0.010	9	0.065	0.010	9	0.082	0.009	9	0.060	0.010	9	0.074	0.010	9
Total Ca	mg/L	0.005	40.880	8.898	9	37.793	2.131	9	38.516	2.523	9	44.900	3.859	9	36.219	3.647	9	41.312	3.555	9	37.574	3.876	9	38.452	4.287	9
Total Fe	mg/L	0.002	1.454	1.273	9	1.603	0.413	9	0.916	0.484	9	1.774	0.581	9	1.096	0.549	9	1.700	0.474	9	0.664	0.672	9	1.683	1.037	9
Total K	mg/L	0.10	1.35	0.47	9	1.16	0.14	9	1.23	0.12	9	0.74	0.43	9	1.03	0.19	9	0.85	0.30	9	1.06	0.19	9	1.02	0.35	9
Total Mg	mg/L	0.01	8.52	1.63	9	8.02	0.54	9	8.61	1.30	9	10.22	1.14	9	7.93	1.09	9	9.05	1.11	9	8.62	1.27	9	8.61	1.43	9
Total Mn	mg/L	0.0002	0.3145	0.2427	9	0.3730	0.1299	9	0.1143	0.0964	9	0.2126	0.1532	9	0.2148	0.1034	9	0.5173	0.2701	9	0.1435	0.1002	9	0.4437	0.2366	9
Total Na	mg/L	0.01	5.35	1.08	9	4.86	0.94	9	5.34	0.68	9	4.08	1.01	9	5.45	0.80	9	4.15	0.79	9	5.48	0.94	9	4.39	0.74	9
Total S	mg/L	0.05	0.50	0.25	9	0.46	0.15	9	0.60	0.11	9	0.67	0.30	9	0.42	0.16	9	0.45	0.25	9	0.86	0.50	9	0.61	0.56	9
Total Sr	mg/L	0.005	0.109	0.022	9	0.105	0.006	9	0.110	0.009	9	0.125	0.012	9	0.096	0.010	9	0.111	0.012	9	0.097	0.010	9	0.100	0.012	9
Total Zn	mg/L	0.001	0.007	0.001	9	0.007	0.001	9	0.002	0.001	9	0.003	0.001	9	0.006	0.001	9	0.006	0.002	9	0.002	0.001	9	0.005	0.003	9
DOC	mg/L	0.50	5.61	0.41	9	5.62	0.72	9	7.11	2.62	9	6.39	2.56	9												

Notes

DL = method detection limit; N/A = not applicable; SD = standard deviation; n = sample size; -- = not analyzed

<DL results recorded as 0.5*DL

Table A.1.3 - Marchmont Marsh, pore water analytical data, 10-20 cm below SWI. Data presented by month and plot type.

			July						August						Septemb	er					October					
Analytical			Non-Veg	getated		Vegetate	d		Non-Veg	getated		Vegetate	ed		Non-Veg	getated		Vegetate	d		Non-Ve	getated		Vegetate	ed	
Parameter	Units	DL	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n
Total P	mg/L	0.005	0.063	0.037	9	0.060	0.024	9	0.144	0.126	9	0.086	0.041	9	0.118	0.076	9	0.141	0.069	9	0.063	0.060	9	0.106	0.061	9
Phosphate	mg/L	0.025	0.013	0	9	0.013	0	9	0.013	0	9	0.013	0	9	0.013	0	9	0.013	0	9	0.013	0	9	0.017	0.008	9
Nitrate	mg/L	0.009	0.007	0.004	9	0.009	0.006	9	0.061	0.046	9	0.193	0.110	9	0.005	0	9	0.005	0	9	0.005	0.003	9	0.005	0.002	9
pН	N/A	N/A	7.01	0.19	8	6.91	0.11	9	6.94	0.09	8	6.82	0.07	8	7.06	0.12	8	6.94	0.16	8	7.05	0.13	9	6.81	0.10	9
Alkalinity	mg/L	1.0	161.6	47.1	8	135.9	7.0	9	169.6	24.2	8	160.9	15.3	8	140.1	17.2	8	145.3	13.1	8	124.8	19.7	9	132.9	18.2	9
Conductivity	μS/cm	0.50	346.59	80.20	8	292.28	17.50	9	344.04	28.15	8	321.58	30.79	8	305.09	28.19	8	310.70	25.93	8	277.72	36.76	9	291.11	36.52	9
Total Al	mg/L	0.005	0.075	0.067	9	0.044	0.027	9	0.075	0.053	9	0.070	0.045	8	0.039	0.030	9	0.014	0.010	9	0.046	0.040	9	0.014	0.006	9
Total Ba	mg/L	0.003	0.085	0.029	9	0.083	0.007	9	0.091	0.014	9	0.100	0.011	8	0.068	0.014	9	0.086	0.010	9	0.060	0.016	9	0.081	0.015	9
Total Ca	mg/L	0.005	43.631	11.809	9	35.987	1.771	9	42.667	4.221	9	42.918	4.438	8	38.536	4.966	9	41.801	3.212	9	37.588	5.537	9	39.474	5.461	9
Total Fe	mg/L	0.002	1.712	1.463	9	1.794	0.357	9	1.096	0.785	9	1.269	0.640	8	1.436	0.654	9	1.846	0.606	9	0.972	0.767	9	1.823	0.964	9
Total K	mg/L	0.10	1.07	0.44	9	1.05	0.16	9	1.16	0.26	9	0.72	0.30	8	0.86	0.35	9	0.69	0.34	9	0.92	0.45	9	0.83	0.48	9
Total Mg	mg/L	0.01	7.62	2.30	9	7.00	0.44	9	8.08	1.96	9	8.63	1.09	8	7.37	1.41	9	8.69	1.03	9	7.48	1.82	9	7.93	1.13	9
Total Mn	mg/L	0.0002	0.2789	0.2574	9	0.3282	0.1074	9	0.1081	0.0884	9	0.1379	0.1285	8	0.1988	0.0831	9	0.4068	0.1865	9	0.1503	0.1148	9	0.4735	0.1994	9
Total Na	mg/L	0.01	7.43	3.16	9	5.44	1.75	9	7.51	2.81	9	4.38	0.91	8	6.57	1.97	9	4.37	0.81	9	6.24	1.84	9	4.53	1.62	9
Total S	mg/L	0.05	0.34	0.09	9	0.34	0.10	9	0.57	0.14	9	0.85	0.29	8	0.26	0.14	9	0.40	0.43	9	0.37	0.14	9	0.32	0.12	9
Total Sr	mg/L	0.005	0.110	0.030	9	0.096	0.005	9	0.114	0.014	9	0.115	0.012	8	0.097	0.012	9	0.109	0.008	9	0.091	0.014	9	0.099	0.014	9
Total Zn	mg/L	0.001	0.007	0.001	9	0.008	0.001	9	0.003	0.001	9	0.003	0.000	8	0.007	0.003	9	0.007	0.002	9	0.002	0.001	9	0.005	0.003	9
DOC	mg/L	0.50	6.32	1.12	9	4.98	1.70	9	7.90	3.17	9	6.51	2.43	9												

Notes

DL = method detection limit; N/A = not applicable; SD = standard deviation; n = sample size; -- = not analyzed <DL results recorded as 0.5*DL

Table A.1.4 - Marchmont Marsh, pore water analytical data, 20-30 cm below SWI.	Data presented by month and plot type.

			July						August						Septemb	ber					October					
Analytical			Non-Veg	getated		Vegetate	ed		Non-Veg	getated		Vegetate	ed		Non-Ve	getated		Vegetate	d		Non-Ve	getated		Vegetate	ed	
Parameter	Units	DL	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n
Total P	mg/L	0.005	0.043	0.008	5	0.045	0.015	9	0.075	0.067	9	0.060	0.031	9	0.068	0.046	9	0.087	0.015	9	0.035	0.022	9	0.086	0.060	9
Phosphate	mg/L	0.025	0.013	0	5	0.013	0	9	0.013	0	9	0.013	0	9	0.013	0	9	0.013	0	9	0.013	0	9	0.014	0.006	9
Nitrate	mg/L	0.009	0.005	0	5	0.008	0.004	9	0.023	0.025	9	0.069	0.061	9	0.005	0	9	0.007	0.006	9	0.005	0	9	0.005	0	9
pН	N/A	N/A	7.04	0.14	3	6.82	0.17	8	6.83	0.13	7	6.73	0.07	7	6.88	0.13	8	6.86	0.13	8	6.94	0.13	8	6.68	0.12	9
Alkalinity	mg/L	1.0	130.6	14.7	3	123.1	11.6	8	166.2	15.7	7	153.5	16.2	7	140.3	16.6	8	137.7	8.6	8	138.1	21.7	8	126.1	14.3	9
Conductivity	µS/cm	0.50	326.27	40.32	3	278.80	31.95	8	346.79	20.23	7	325.24	38.91	7	324.19	35.64	8	305.88	23.91	8	303.78	48.23	8	289.58	39.51	9
Total Al	mg/L	0.005	0.089	0.068	3	0.112	0.109	8	0.148	0.150	9	0.093	0.063	9	0.072	0.059	9	0.019	0.011	9	0.100	0.132	9	0.017	0.008	9
Total Ba	mg/L	0.003	0.063	0.002	3	0.077	0.012	8	0.087	0.011	9	0.095	0.015	9	0.066	0.014	9	0.084	0.010	9	0.066	0.014	9	0.082	0.017	9
Total Ca	mg/L	0.005	39.073	5.911	3	34.680	3.406	8	44.144	2.285	9	42.958	4.270	9	41.643	4.954	9	41.370	2.470	9	42.534	6.509	9	38.781	3.458	9
Total Fe	mg/L	0.002	1.116	0.170	3	1.999	0.338	8	1.282	0.917	9	1.113	0.427	9	1.767	0.720	9	2.023	0.546	9	1.174	0.682	9	1.990	0.869	9
Total K	mg/L	0.10	0.60	0.22	3	0.57	0.17	8	0.70	0.17	9	0.71	0.26	9	0.59	0.35	9	0.55	0.25	9	0.72	0.49	9	0.98	1.31	9
Total Mg	mg/L	0.01	5.61	0.64	3	6.44	0.61	8	6.93	1.23	9	7.80	1.06	9	6.91	1.48	9	7.98	0.51	9	7.48	2.07	9	7.29	0.75	9
Total Mn	mg/L	0.0002	0.1269	0.0326	3	0.2409	0.0750	8	0.1272	0.0871	9	0.1345	0.0830	9	0.2091	0.0923	9	0.3080	0.1047	9	0.1683	0.0777	9	0.4168	0.2289	9
Total Na	mg/L	0.01	13.04	0.95	3	5.67	1.91	8	10.37	5.48	9	6.45	2.36	9	9.35	4.40	9	5.42	1.52	9	8.60	3.83	9	5.13	2.82	9
Total S	mg/L	0.05	0.30	0.11	3	0.27	0.05	8	0.43	0.10	9	0.43	0.15	9	0.14	0.06	9	0.31	0.32	9	0.24	0.08	9	0.21	0.04	9
Total Sr	mg/L	0.005	0.091	0.011	3	0.092	0.010	8	0.112	0.009	9	0.110	0.012	9	0.099	0.011	9	0.106	0.005	9	0.098	0.015	9	0.095	0.010	9
Total Zn	mg/L	0.001	0.007	0.001	3	0.008	0.001	8	0.003	0.001	9	0.003	0.001	9	0.007	0.001	9	0.006	0.001	9	0.003	0.001	9	0.005	0.004	9
DOC	mg/L	0.50	6.08	0.29	5	5.97	1.36	9	9.01	3.40	9	6.62	2.30	9												

Notes

DL = method detection limit; N/A = not applicable; SD = standard deviation; n = sample size; -- = not analyzed

<DL results recorded as 0.5*DL

Table A.1.5 - Marchmont Marsh, pore water analytical data, 30-40 cm below SWI. Data presented by month and plot type.

			July						August						Septemb	er					October					
Analytical			Non-Veg	getated		Vegetate	ed		Non-Ve	getated		Vegetate	ed		Non-Ve	getated		Vegetate	d		Non-Ve	getated		Vegetate	ed	
Parameter	Units	DL	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n
Total P	mg/L	0.005	0.041	-	1	0.038	0.009	4	0.026	0.016	9	0.082	0.087	8	0.039	0.027	7	0.057	0.016	9	0.020	0.010	8	0.049	0.031	9
Phosphate	mg/L	0.025	0.013	-	1	0.013	0	4	0.013	0	9	0.013	0	8	0.013	0	7	0.013	0	9	0.013	0	8	0.015	0.008	9
Nitrate	mg/L	0.009	0.005	-	1	0.007	0.004	4	0.006	0.003	9	0.053	0.083	8	0.005	0	7	0.005	0	9	0.005	0	8	0.005	0	9
pН	N/A	N/A		-	0	6.66	0.09	2	6.82	0.09	5	6.71	0.13	7	6.86	0.05	4	6.80	0.26	7	6.87	-	1	6.63	0.09	7
Alkalinity	mg/L	1.0		-	0	112.9	6.9	2	144.1	4.5	5	151.4	23.6	7	131.2	30.0	4	127.6	8.2	7	128.7	-	1	116.6	13.6	7
Conductivity	µS/cm	0.50		-	0	271.85	16.90	2	341.56	32.41	5	332.27	35.41	7	309.75	81.54	4	292.64	12.57	7	320.30	-	1	280.34	32.92	7
Total Al	mg/L	0.005	0.178	-	1	0.194	0.141	3	0.441	0.510	9	0.172	0.246	7	0.232	0.362	6	0.016	0.006	8	0.106	0.184	6	0.030	0.013	8
Total Ba	mg/L	0.003	0.051	-	1	0.083	0.010	3	0.075	0.012	9	0.095	0.013	7	0.063	0.016	6	0.082	0.008	8	0.064	0.017	6	0.076	0.009	8
Total Ca	mg/L	0.005	43.560	-	1	34.853	2.178	3	41.642	3.978	9	44.206	7.711	7	38.435	7.058	6	40.252	3.073	8	41.230	6.172	6	37.013	2.181	8
Total Fe	mg/L	0.002	0.987	-	1	2.466	0.749	3	1.435	0.646	9	1.550	0.405	7	1.654	0.608	6	2.049	0.689	8	1.121	0.605	6	1.776	0.325	8
Total K	mg/L	0.10	0.49	-	1	0.64	0.39	3	0.37	0.12	9	0.69	0.53	7	0.41	0.30	6	0.43	0.44	8	0.66	0.48	6	0.52	0.71	8
Total Mg	mg/L	0.01	5.040	-	1	6.13	0.24	3	6.09	1.00	9	7.38	0.77	7	6.15	2.01	6	7.81	1.38	8	7.17	1.89	6	6.75	0.49	8
Total Mn	mg/L	0.0002	0.0781	-	1	0.2619	0.1920	3	0.1270	0.0526	9	0.1914	0.1051	7	0.1508	0.0958	6	0.2839	0.0827	8	0.1415	0.0686	6	0.2519	0.0773	8
Total Na	mg/L	0.01	14.100	-	1	4.59	0.96	3	11.72	7.38	9	7.39	2.79	7	11.35	6.72	6	5.36	2.34	8	8.46	5.93	6	5.45	3.61	8
Total S	mg/L	0.05	0.260	-	1	0.35	0.17	3	0.29	0.04	9	0.36	0.16	7	0.12	0.04	6	0.29	0.46	8	0.21	0.09	6	0.17	0.03	8
Total Sr	mg/L	0.005	0.093	-	1	0.091	0.002	3	0.100	0.010	9	0.108	0.012	7	0.090	0.018	6	0.102	0.008	8	0.094	0.016	6	0.089	0.006	8
Total Zn	mg/L	0.001	0.009	-	1	0.009	0.001	3	0.003	0.001	9	0.003	0.001	7	0.007	0.002	6	0.008	0.001	8	0.002	0.001	6	0.005	0.004	8
DOC	mg/L	0.50	5.60	-	1	6.53	0.35	4	9.32	3.76	9	7.00	2.33	8												

Notes DL = method detection limit; N/A = not applicable; SD = standard deviation; n = sample size; -- = not analyzed; - = incalculable <DL results recorded as 0.5*DL

					1	1	1		Total	1	1				Parame	eter / Metho	od Detectio	on Limit /	Units												Reactive	T
			Total P	Phosphate PO-P	Nitrite NON	Nitrate NON	DOC	рН	Alkalinity	Conductivity	(Tot	al Metals										Silicates	Chlorophyll
				104-1	102-11	1103-11		,	as CaCO3		Al	As	Ba	Be	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Na	Ni P	b S		Sr '	Ti V	Zn Zn	SiO ₂	a 0.0
Lah ID	Sample Date	Sample ID	0.0050 mg/l	0.0250 mg/l	0.006 mg/I	0.0090 ma/l	0.50 ma/l	n/a n/a	1.0 ma/l	0.50 uS/cm	0.0050 mg/I	0.0050 ma/I	0.0030 ma/l	0.002 ma/l	0.0050 mg/l) 0.0010 mg/l	0.010 ma/l	0.002 mg/I	0.002 mg/I	0.002 mg/l	0.10 ma/l	0.010 ma/l	0.0002 ma/l	0.010 mg/I	0.002 0.00 mg/l mg	050 0.05 // ma/	0 0.0	0050 0.0	010 0.0 a/l me	06 0.0010 // ma/l	0.250 mg/l	0.2
EL100186-004	06/29/10	MM-W-1	0.0110	0.0125	0.003	0.0170	24.70	7.80	134.7	288.20	0.0200	0.0025	0.0530	0.001	33.5370	0 0.0005	0.005	0.001	0.001	0.097	0.95	8.470	0.0181	5.030	0.001 0.0	025 1.64	0 0.	0950 0.	005 0.0	03 0.008) 7.400	3.2
EL100186-005	06/29/10	MM-W-2	0.0160	0.0125	0.003	0.0150	24.00	7.79	133.2	287.30	0.0310	0.0025	0.0530	0.001	33.6970	0 0.0005	0.005	0.001	0.001	0.107	0.94	8.520	0.0200	5.000	0.002 0.0	025 1.64	0 0.	0950 0.	005 0.0	03 0.006) 7.400	8.4
EL100186-006 EL100219-055	06/29/10 07/26/10	MM-W-3 MM-V-1a-1	0.0120	0.0125	0.003	0.0110	3.50	7.59	133.6	287.40	0.0400	0.0025	0.0540	0.001	33.740	0 0.0005 0 0.0005	0.005	0.001	0.001	0.121	0.96	8.510	0.0219	5.090	0.001 0.0	025 1.60	0 0.	0950 0. 1060 0.	005 0.0	0.0120) 7.400	
EL100219-056	07/26/10	MM-V-1a-2	0.0620	0.0125	0.003	0.0310	4.30	7.14	134.7	280.40	0.0270	0.0025	0.0760	0.001	34.720	0 0.0005	0.005	0.001	0.002	0.934	1.09	7.630	0.2480	4.340	0.001 0.0	025 0.73	0 0.	0990 0.	005 0.0	0.006	<u> </u>	
EL100219-057	07/26/10	MM-V-1a-3	0.0700	0.0125	0.003	0.0170	5.10	6.85	124.4	258.00	0.0560	0.0025	0.0730	0.001	33.880	0 0.0005	0.005	0.001	0.002	2.014	0.66	6.440	0.2344	4.350	0.001 0.0	025 0.29	0 0.	0910 0.	005 0.0	0.008	<u>-</u>	-
EL100219-058 EL100219-059	07/26/10	MM-V-1a-4 MM-V-1b-0	0.0390	0.0125	0.003	0.0100	5.40	0.91			0.0180	0.0025	0.0570	0.001	31.620	0 0.0005	0.005	0.001	0.002	0.028	1.06	10.230	0.1618	4.140	0.001 0.0	025 0.24	0 0.	1010 0.	012 0.0	03 0.008	3 8.90	-
EL100219-060	07/26/10	MM-V-1b-1	0.1280	0.0125	0.003	0.0110	5.60	7.64	124.5	264.70	0.0280	0.0025	0.0560	0.001	31.540	0 0.0005	0.005	0.001	0.002	0.040	1.05	10.180	0.0059	4.760	0.001 0.0	025 1.84	0 0.	1010 0.	005 0.0	0.0110	9.10	
EL100219-061	07/26/10	MM-V-1b-2	0.0670	0.0125	0.003	0.0045	6.40	7.15	142.6	291.00	0.0130	0.0070	0.0820	0.001	37.300	0 0.0005	0.005	0.001	0.002	1.330	0.92	8.270	0.3828	4.470	0.001 0.0	025 0.56	0 0.	1050 0.	005 0.0	0.008	25.60	
EL100219-062 EL100219-063	07/26/10	MM-V-10-3	0.0440	0.0125	0.003	0.0043	6.50	6.73	142.2	258.10	0.0300	0.0100	0.0830	0.001	32.500	0 0.0005	0.005	0.001	0.002	1.811	0.56	6.070	0.4380	4.670	0.001 0.0	025 0.3	0 0.	0850 0.	005 0.0	03 0.009	3 20.00	
EL100219-064	07/26/10	MM-V-1b-5	0.0340	0.0125	0.003	0.0045	6.70				i	-			·		·	·			·			·	· - · -						16.80	-
EL100219-067	07/26/10	MM-V-1c-0	0.0220	0.0125	0.003	0.0045	4.30	7.71	126.4	268.00	0.0240	0.0025	0.0550	0.001	31.220	0 0.0005	0.005	0.001	0.002	0.054	1.04	8 780	0.0112	4.690	0.001 0.0	025 1.81	0 0.	0990 0. 1010 0.	005 0.0	03 0.010	<u>/</u>	-
EL100219-008 EL100219-069	07/26/10	MM-V-1c-2	0.0760	0.0125	0.003	0.0180	5.10	7.09	147.6	307.50	0.0410	0.0025	0.0810	0.001	36.380	0 0.0005	0.005	0.001	0.002	1.423	1.34	8.500	0.2200	4.710	0.001 0.0	025 0.57	0 0.	1050 0.	.005 0.0	0.006	5	-
EL100219-070	07/26/10	MM-V-1c-3	0.0600	0.0125	0.003	0.0170	4.10	7.14	133.2	275.10	0.1030	0.0025	0.0800	0.001	34.4800	0 0.0005	0.005	0.001	0.002	1.874	1.08	7.290	0.2032	4.760	0.001 0.0	025 0.49	0 0.	0960 0.	005 0.0	0.007	<u> </u>	
EL100219-071 EL100219-072	07/26/10	MM-V-1c-4 MM-V-2a-1	0.0410	0.0125	0.003	0.0150	6.80	6.77	117.9	258.70	0.1020	0.0025	0.0700	0.001	33.080	0 0.0005	0.005	0.001	0.002	2.228	0.48	6.500	0.1541	4.650	0.001 0.0	025 0.34	0 0.	0880 0.0 1020 0.0	005 0.0	0.008	<u>)</u> <u>8.60</u>	-
EL100219-072	07/26/10	MM-V-2a-2	0.0510	0.0125	0.003	0.0045	5.80	7.04	147.1	302.50	0.0160	0.0050	0.0840	0.001	37.660	0 0.0005	0.005	0.001	0.002	2.132	0.96	8.030	0.4806	4.220	0.001 0.0	025 0.42	0 0.	1060 0.	005 0.0	0.009) 24.40	-
EL100219-074	07/26/10	MM-V-2a-3	0.0830	0.0125	0.003	0.0045	6.20	6.93	142.5	301.80	0.0250	0.0050	0.0900	0.001	37.020	0 0.0005	0.005	0.001	0.002	1.743	1.08	7.370	0.3744	4.680	0.001 0.0	025 0.30	0 0.	1010 0.	005 0.0	0.007) 28.80	
EL100219-075 EL100219-076	07/26/10	MM-V-2a-4 MM-V-2a-5	0.0320	0.0125	0.003	0.00110	6.10	6.72	127.9	287.90	0.0790	0.0080	0.0850	0.001	32,340	0 0.0005	0.005	0.001	0.002	2.070	0.60	5 930	0.2160	5.730	0.001 0.0	025 0.32	0 0	0990 0.	005 0.0	03 0.008	17.20	· _
EL100219-077	07/26/10	MM-V-2b-0	0.0220	0.0125	0.003	0.0045	5.00					-				-												-				-
EL100219-078	07/26/10	MM-V-2b-1	0.0190	0.0125	0.003	0.0045	5.10	7.62	127.0	266.90	0.0210	0.0080	0.0600	0.001	32.400	0 0.0005	0.005	0.001	0.002	0.060	1.06	10.210	0.0687	4.790	0.001 0.0	025 1.74	0 0.	1020 0.	005 0.0	0.0110	<u>)</u>	
EL100219-079 EL100219-080	07/26/10	MM-V-20-2 MM-V-2b-3	0.0430	0.0125	0.003	0.0045	5.50	6.93	148.8	292.20	0.0270	0.0060	0.0870	0.001	36.780	0 0.0005	0.005	0.001	0.002	1.625	1.20	7.090	0.4104	4.680	0.001 0.0	025 0.43	0 0.	0990 0.	005 0.0	03 0.009	5	-
EL100219-081	07/26/10	MM-V-2b-4	0.0190	0.0125	0.003	0.0045	2.40	6.76	121.1	272.20	0.0750	0.0130	0.0750	0.001	34.900	0 0.0005	0.005	0.001	0.002	1.753	0.75	6.240	0.3002	5.090	0.001 0.0	025 0.26	0 0.	0920 0.	005 0.0	0.009)	
EL100219-082	07/26/10	MM-V-2b-5	0.0290	0.0125	0.003	0.0130	6.10				0.3550	0.0060	0.0780	0.001	36.200	0 0.0005	0.005	0.001	0.002	1.999	0.59	6.400	0.1065	4.960	0.001 0.0	025 0.54	0 0.	0920 0.	015 0.0	03 0.010	<u>/</u>	-
EL100219-083 EL100219-084	07/26/10	MM-V-2c-2	0.0670	0.0125	0.003	0.0090	6.60	6.97	165.1	340.80	0.0290	0.0025	0.1010	0.001	42.280	0 0.0005	0.005	0.001	0.002	1.735	1.02	8.810	0.5354	4.780	0.001 0.0	025 0.36	0 0.	1170 0.	005 0.0	03 0.0070	5	_
EL100219-085	07/26/10	MM-V-2c-3	0.0990	0.0125	0.003	0.0045	4.00	6.83	145.6	315.50	0.0210	0.0110	0.0960	0.001	38.280	0.0005	0.005	0.001	0.002	2.106	1.09	7.120	0.4598	4.330	0.001 0.0	025 0.22	0 0.	1010 0.	005 0.0	0.0110	<u>)</u>	
EL100219-086	07/26/10	MM-V-2c-4	0.0700	0.0125	0.003	0.0045	6.60	6.72	140.8	319.50	0.0770	0.0090	0.0990	0.001	40.680	0 0.0005	0.005	0.001	0.002	2.728	0.77	7.240	0.3762	4.270	0.001 0.0	025 0.27	0 0.	1070 0.0 0920 0.0	005 0.0	03 0.009	<u>/</u>	
EL100219-089	07/26/10	MM-V-2c-6	0.0620	0.0125	0.003	0.0045	7.20									-											0 1 0.					-
EL100219-091	07/26/10	MM-V-3a-0	0.0580	0.0125	0.003	0.0045	4.20	7.69	125.0	262.00	0.0200	0.0025	0.0560	0.001	31.320	0 0.0005	0.005	0.001	0.002	0.051	1.03	10.090	0.0086	4.720	0.001 0.0	025 1.79	0 0.	1000 0.	005 0.0	0.010	2	
EL100219-092 EL100219-093	07/26/10	MM-V-3a-1 MM-V-3a-2	0.0270	0.0125	0.003	0.0220	4.30	7.03	124.8	2/0.00	0.0240	0.0025	0.0590	0.001	37 340	0 0.0005	0.005	0.001	0.002	0.045	1.0/	8 250	0.2996	4.880	0.001 0.0	025 1.88	0 0.	1030 0.	005 0.0	0.0110	<u> </u>	-
EL100219-094	07/26/10	MM-V-3a-3	0.0380	0.0125	0.003	0.0130	4.70	6.93	133.5	291.30	0.0280	0.0025	0.0770	0.001	34.160	0.0005	0.005	0.001	0.002	1.372	1.16	7.050	0.1976	6.280	0.001 0.0	025 0.51	0 0.	0930 0.	005 0.0	0.006)	
EL100219-095	07/26/10	MM-V-3a-4	0.0480	0.0125	0.003	0.0045	6.30	6.71	128.2	307.10	0.0390	0.0025	0.0790	0.001	34.500	0 0.0005	0.005	0.001	0.002	1.866	0.70	6.440	0.2050	9.700	0.001 0.0	025 0.22	0 0.	0900 0.	005 0.0	0.007	2	-
EL100219-096 EL100219-097	07/26/10	MM-V-3b-0b MM-V-3b-0	0.0420	0.0125	0.003	0.0045	4.70	7 59	133.3	278 50	0.0110	0.0025	0.0550	0.001	30.7400	0 0.0005	0.005	0.001	0.002	0.039	1.01	8.840	0.0040	4.650	0.001 0.0	025 1.78	0 0.	1020 0.	005 0.0	0.0120	<u>/</u>	-
EL100219-098	07/26/10	MM-V-3b-1	0.0170	0.0125	0.003	0.0045	5.60	7.12	135.6	287.80	0.0120	0.0050	0.0760	0.001	35.5200	0.0005	0.005	0.001	0.002	1.095	1.02	7.440	0.2934	4.770	0.001 0.0	025 0.36	0 0.	0980 0.	005 0.0	0.007	<u>)</u>	
EL100219-099	07/26/10	MM-V-3b-2 MM-V-3b-2	0.0430	0.0125	0.003	0.0090	6.20	7.20	141.3	303.50	0.0270	0.0070	0.0810	0.001	36.900	0 0.0005	0.005	0.001	0.002	1.537	1.25	7.080	0.2312	7.300	0.001 0.0	025 0.26	0 0.	0970 0.	005 0.0	03 0.0060	<u>1</u>	-
EL100219-100	07/26/10	MM-V-3b-4	0.0610	0.0125	0.003	0.0045	6.10									-				- 2.514				-			0 1 0.					_
EL100219-102	07/26/10	MM-V-3c-0	0.0170	0.0125	0.003	0.0045	4.40	7.73	124.1	261.60	0.0200	0.0025	0.0560	0.001	31.360	0.0005	0.005	0.001	0.002	0.044	1.03	10.110	0.0059	4.740	0.001 0.0	025 1.80	0 0.	1000 0.	005 0.0	0.0110) 8.70	- 1
EL100219-103 EL 100219-104	07/26/10	MM-V-3c-1 MM V 2c 2	0.0190	0.0125	0.003	0.0045	1.30	7.71	125.5	268.20	0.0240	0.0025	0.0550	0.001	30.8400	0 0.0005	0.005	0.001	0.002	0.063	1.02	8.860	0.0086	4.640	0.001 0.0	025 0.31	0 0.	0980 0.1 1040 0.1	005 0.0	03 0.008	10.30	
EL100219-104 EL100219-105	07/26/10	MM-V-3c-3	0.0410	0.0125	0.003	0.0110	5.90	6.93	133.1	287.70	0.0300	0.0025	0.0760	0.001	34.280	0 0.0005	0.005	0.001	0.002	1.149	1.01	6.680	0.2624	5.250	0.001 0.0	025 0.31	0 0.	0910 0.	005 0.0	03 0.0070) 22.80	
EL100219-106	07/26/10	MM-V-3c-4	0.0350	0.0125	0.003	0.0100	6.30	6.71	130.3	303.80	0.0750	0.0025	0.0820	0.001	37.100	0 0.0005	0.005	0.001	0.002	1.842	0.44	6.900	0.2828	7.220	0.001 0.0	025 0.30	0 0.	0970 0.	005 0.0	0.008) 18.80	
EL100219-004 EL100219-005	07/26/10	MM-NV-1a-0b MM-NV-1a-0	0.0190	0.0125	0.003	0.0045	4.80	7.68	126.1	256.40	0.0270	0.0025	0.0550	0.001	31.580	0 0.0005	0.005	0.001	0.001	0.054	1.01	10.050	0.0071	4.610	0.001 0.0	025 1.76	0 0.	0980 0. 0980 0.	005 0.0	0.0090	<u>/</u>	-
EL100219-006	07/26/10	MM-NV-1a-1	0.0480	0.0125	0.003	0.0100	5.70	7.26	140.2	291.30	0.0520	0.0025	0.0740	0.001	35.520	0.0005	0.005	0.001	0.002	0.826	1.20	10.060	0.2210	4.760	0.001 0.0	025 0.90	0 0.	1050 0.	005 0.0	0.009)	
EL100219-007	07/26/10	MM-NV-1a-2	0.0700	0.0125	0.003	0.0090	5.70	7.11	159.8	321.90	0.0490	0.0050	0.0850	0.001	41.340	0 0.0005	0.005	0.001	0.002	1.728	1.42	8.750	0.4184	4.600	0.001 0.0	025 0.32	0 0.	1110 0.	005 0.0	03 0.0070	<u>/</u>	
EL100219-008 EL100219-009	07/26/10	MM-NV-1a-3 MM-NV-1b-0b	0.0300	0.0125	0.003	0.0045	6.40 4.40	7.65	125.4	266.50	0.0610	0.0070	0.0800	0.001	32.220	0 0.0005	0.005	0.001	0.002	0.068	1.05	10.330	0.1881	4.800	0.001 0.0	025 0.30	0 0.	1010 0.	005 0.0	03 0.008	3 8.70	-
EL100219-010	07/26/10	MM-NV-1b-0	0.0200	0.0125	0.003	0.0110	4.50	7.69	126.0	269.20	0.0400	0.0025	0.0560	0.001	31.460	0.0005	0.005	0.001	0.002	0.066	1.02	10.070	0.0093	4.670	0.001 0.0	025 1.79	0 0.	0990 0.	005 0.0	0.009) 7.70	
EL100219-011 EL100219-012	07/26/10	MM-NV-1b-1 MM-NV-1b-2	0.1190	0.0125	0.003	0.0100	5.70	6.84	156.8	317.50	0.0300	0.0025	0.0820	0.001	39.860	0 0.0005	0.005	0.001	0.002	1.573	1.35	10.190	0.3680	4.630	0.001 0.0	025 0.38	0 0. 0 0	1130 0. 1290 0.	005 0.0	03 0.0070	22.40	
EL100219-012	07/26/10	MM-NV-1b-3	0.1100	0.0125	0.003	0.0045	7.80	6.68	186.5	371.30	0.0450	0.0080	0.1090	0.001	50.1000	0 0.0005	0.005	0.001	0.002	3.652	1.10	8.430	0.5288	2.860	0.001 0.0	025 0.22	0 0.	1300 0.	005 0.0	0.008	24.00	-
EL100219-014	07/26/10	MM-NV-1c-0b	0.0240	0.0125	0.003	0.0045	5.30	7.70	126.2	266.20	0.0510	0.0025	0.0560	0.001	31.940	0 0.0005	0.005	0.001	0.002	0.101	1.04	10.190	0.0177	4.700	0.001 0.0	025 1.80	0 0.	0990 0.	005 0.0	0.008	<u>)</u>	
EL100219-015 EL100219-016	07/26/10	MM-NV-1c-1	0.0520	0.0125	0.003	0.0045	5.20	7.23	127.2	338.00	0.0160	0.0025	0.0560	0.001	41 940	0 0.0005	0.005	0.001	0.002	1.839	1.02	8.840	0.0090	4.550	0.001 0.0	025 1.74	0 0	1180 0.	005 0.0	03 0.009	5	-
EL100219-017	07/26/10	MM-NV-1c-2	0.1770	0.0125	0.003	0.0090	5.90	6.96	229.7	451.70	0.0560	0.0025	0.1340	0.001	59.340	0 0.0005	0.005	0.001	0.002	3.978	2.46	12.110	0.8382	4.720	0.001 0.0	025 0.36	0 0.	1570 0.	005 0.0	03 0.010)	
EL100219-018	07/26/10	MM-NV-1c-3	0.1330	0.0125	0.003	0.0045	8.50	6.78	260.9	504.00	0.0800	0.0025	0.1540	0.001	67.820	0 0.0005	0.005	0.001	0.002	4.558	2.16	13.310	0.8744	4.440	0.001 0.0	025 0.34	0 0.	1790 0.	005 0.0	0.009	<u>)</u>	
EL100219-019 EL100219-020	07/26/10	MM-NV-2a-0b	0.0390	0.0125	0.003	0.0045	4.50	7.69	125.6	268.10	0.0470	0.0025	0.0550	0.001	31.920	0 0.0005	0.005	0.001	0.002	0.110	1.04	10.240	0.0229	4.720	0.001 0.0	025 1.8	0 0.	0990 0.	005 0.0	0.0090	5 -	-
EL100219-023	07/26/10	MM-NV-2a-1	0.0180	0.0125	0.003	0.0100	4.90	7.67	127.4	270.70	0.0560	0.0025	0.0560	0.001	31.980	0.0005	0.005	0.001	0.002	0.102	1.02	10.190	0.0188	4.620	0.001 0.0	025 1.79	0 0.	0980 0.	005 0.0	0.008	<u>)</u>	
EL100219-024	07/26/10	MM-NV-2a-2	0.0650	0.0125	0.003	0.0100	5.80	7.41	161.2	342.30	0.0360	0.0025	0.0740	0.001	42.700	0 0.0005	0.005	0.001	0.002	0.707	0.95	7.860	0.1783	7.380	0.001 0.0	025 0.38	0 0.	1050 0.	005 0.0	03 0.007		
EL100219-025 EL100219-026	07/26/10	MM-NV-2a-4	0.0520	0.0125	0.003	0.0045	6.40			408.50		0.0023		0.001	1.54.540	- 0.0005	0.005	0.001	0.002	- 1.070		- 1.550	- 0.1027	- 12.220	0.001 0.0		o I 0.				·	-
EL100219-027	07/26/10	MM-NV-2b-0	0.0200	0.0125	0.003	0.0045	4.80	7.76	125.7	268.00	0.0480	0.0025	0.0540	0.001	31.500	0 0.0005	0.005	0.001	0.002	0.087	1.01	10.050	0.0190	4.540	0.001 0.0	025 1.77	0 0.	0970 0.	005 0.0	0.009) (
EL100219-028	07/26/10	MM-NV-2b-1	0.0220	0.0125	0.003	0.0140	4.40	7.65	125.4	264.50	0.0570	0.0025	0.0570	0.001	32.580	0 0.0005	0.005	0.001	0.002	0.084	1.04	10.420	0.0127	4.720	0.001 0.0	025 0.43	0 0.	1000 0.	005 0.0	03 0.008	<u>/</u>	
EL100219-029 EL100219-030	07/26/10	MM-NV-2b-3	0.0460	0.0125	0.003	0.0100	5.30	7.08	131.2	309.60	0.0250	0.0023	0.0720	0.001	38.200	0 0.0005	0.005	0.001	0.002	0.827	0.84	7.090	0.2192	9.270	0.001 0.0	025 0.49	0 0.	0970 0.	005 0.0	03 0.005	5 -	-
EL100219-031	07/26/10	MM-NV-2b-4	0.0360	0.0125	0.003	0.0045	6.20	7.02	126.3	309.90	0.0590	0.0025	0.0610	0.001	36.820	0 0.0005	0.005	0.001	0.002	1.312	0.39	5.940	0.1284	11.950	0.001 0.0	025 0.22	0 0.	0860 0.	005 0.0	0.007	2	
EL100219-032 EL100219-022	07/26/10	MM-NV-2c-1 MM-NV-2c-2	0.0300	0.0125	0.003	0.0045	4.30	7.66	126.0	269.60	0.0150	0.0025	0.0550	0.001	31.980	0 0.0005	0.005	0.001	0.002	0.026	1.03	10.180	0.0052	4.640	0.001 0.0	025 1.78	0 0.	0980 0. 1010 0.	005 0.0	0.008	8.80	

Table A.1.0 - N	farchmont M	larsn, water Sam	ipie Anaiyucai	Results, June	to October	-								Parame	ter / Metho	d Detectio	n Limit /	Units													
			Total	Phosphate	Nitrite	Nitrate			Total						ter / metal	d Dettetto		Cinta	Tota	l Metals										Reactive	Chlorophyl
			Р	PO ₄ -P	NO2-N	NO ₃ -N	DOC	рН	Alkalinity as CaCO.	Conductivity	41	Ar B		Pa Ca	Cd	Ca	Cr.	6.	Fo	K	Ma	Mn	No	N; Ph	6	S.,	T;	v	Zn	Silicates SiO	"a"
			0.0050	0.0250	0.006	0.0090	0.50	n/a	1.0	0.50	0.0050	0.0050 0.0	030 0.0	002 0.0050	0.0010	0.010	0.002	0.002	0.002	0.10	0.010	0.0002	0.010	0.002 0.0050	0.050	0.0050	0.010	0.006	0.0010	0.250	0.2
Lab ID	Sample Date	Sample ID	mg/L	mg/L	mg/L	mg/L	mg/L	n/a	mg/L	uS/cm	mg/L	mg/L mg	/L m	ig/L mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	µg/L
EL100219-034	07/26/10	MM-NV-2c-3	0.0460	0.0125	0.003	0.0100	6.20	7.15	151.0	343.70	0.0250	0.0025 0.0	740 0.	.001 43.960	0.0005	0.005	0.001	0.002	0.822	1.06	6.860	0.1846	9.650	0.001 0.0025	0.370	0.1050	0.005	0.003	0.0060	26.00	
EL100219-035 EL100219-036	07/26/10	MM-NV-2c-4 MM-NV-2c-5	0.0480	0.0125	0.003	0.0045	5.60	7.19	140.9	372.20	0.0420	0.0070 0.0	510 0.	.001 43.560	0 0.0005	0.005	0.001	0.002	0.987	0.85	5.040	0.0781	14.100	0.001 0.0025	0.250	0.0930	0.005	0.003	0.0080	15.20	
EL100219-037	07/26/10	MM-NV-3a-0	0.0250	0.0125	0.003	0.0045	4.80	7.71	124.4	264.90	0.0520	0.0025 0.0	550 0.	.001 31.640	0.0005	0.005	0.001	0.002	0.119	1.03	10.160	0.0246	4.610	0.001 0.0025	1.820	0.0980	0.005	0.003	0.0090	10.00	<u> </u>
EL100219-038	07/26/10	MM-NV-3a-1	0.0200	0.0125	0.003	0.0100	4.70	7.67	125.9	267.70	0.0660	0.0025 0.0	560 0.	001 31.620	0.0005	0.005	0.001	0.002	0.092	1.03	10.090	0.0132	4.650	0.001 0.0025	1.800	0.0980	0.005	0.003	0.0090	9.20	
EL100219-039 EL100219-040	07/26/10	MM-NV-3a-3	0.0290	0.0125	0.003	0.0045	5.90	7.19	133.1	298.10	0.0400	0.0025 0.0	730 0.	.001 32.300	0.0005	0.005	0.001	0.002	0.401	1.00	6.750	0.0988	9.070	0.001 0.0025	0.530	0.0910	0.005	0.003	0.0070	20.80	·
EL100219-041	07/26/10	MM-NV-3a-4	0.0350	0.0125	0.003	0.0045	6.10	6.92	118.5	296.70	0.1670	0.0060 0.0	640 0.	.001 34.620	0.0005	0.005	0.001	0.002	1.009	0.58	4.870	0.0935	13.670	0.001 0.0025	0.420	0.0830	0.005	0.003	0.0060	16.00	- 1
EL100219-042	07/26/10	MM-NV-3b-0b	0.0280	0.0125	0.003	0.0100	5.10	7.67	127.0	269.80	0.0310	0.0025 0.0	540 0.0	001 31.700	0 0.0005	0.005	0.001	0.002	0.069	1.01	10.120	0.0154	4.570	0.001 0.0025	1.800	0.0970	0.005	0.003	0.0110		-
EL100219-045 EL100219-046	07/26/10	MM-NV-3b-1	0.0320	0.0125	0.003	0.0090	4.70	7.66	125.6	269.60	0.0330	0.0025 0.0	560 0.	.001 31.380	0 0.0005	0.005	0.001	0.002	0.067	1.05	10.170	0.0097	4.730	0.001 0.0025	1.830	0.1020	0.005	0.003	0.0080		1
EL100219-047	07/26/10	MM-NV-3b-2	0.0290	0.0125	0.003	0.0045	5.30	7.19	125.3	260.60	0.0170	0.0080 0.0	630 0.	.001 31.460	0 0.0005	0.005	0.001	0.002	0.625	1.21	7.220	0.1953	4.670	0.001 0.0025	0.380	0.0900	0.005	0.003	0.0070		-
EL100219-048 EL100219-049	07/26/10	MM-NV-3b-3 MM-NV-3b-4	0.0490	0.0125	0.003	0.0045	5.80	6.98	125.5	2/1.60	0.0380	0.0090 0.0	660 0.0	.001 32.840	0.0005	0.005	0.001	0.002	0.911	1.10	6.140	0.2186	7.020	0.001 0.0025	0.290	0.0880	0.005	0.003	0.0060		-
EL100219-050	07/26/10	MM-NV-3c-0b	0.0240	0.0125	0.003	0.0045	4.30	7.71	125.8	269.20	0.0140	0.0025 0.0	550 0.	.001 31.540	0.0005	0.005	0.001	0.002	0.044	1.05	10.160	0.0058	4.730	0.001 0.0025	1.810	0.1000	0.005	0.003	0.0090		-
EL100219-051	07/26/10	MM-NV-3c-0	0.0260	0.0125	0.003	0.0045	4.20	7.74	126.0	269.00	0.0310	0.0025 0.0	550 0.	.001 31.020	0 0.0005	0.005	0.001	0.002	0.065	1.03	10.030	0.0112	4.680	0.001 0.0025	1.810	0.0990	0.005	0.003	0.0080		-
EL100219-052 EL100219-053	07/26/10	MM-NV-3c-1 MM-NV-3c-2	0.0280	0.0125	0.003	0.0045	5.80	7.6/	125.8	268.20	0.0320	0.0025 0.0	640 0.	001 31.180	0.0005	0.005	0.001	0.002	0.042	1.04	6.830	0.0061	4.690	0.001 0.0025	1.780	0.0990	0.005	0.003	0.0090		-
EL100219-054	07/26/10	MM-NV-3c-3	0.0240	0.0125	0.003	0.0130	5.10	7.04	116.6	266.10	0.0700	0.0050 0.0	610 0.	.001 32.360	0.0005	0.005	0.001	0.002	0.651	0.76	5.380	0.1058	8.650	0.001 0.0025	0.430	0.0830	0.005	0.003	0.0080		-
EL100261-004	08/26/10	MM-V-1a-1	0.061	0.0125	0.003	0.04	4.5	7.55	132.3	270.60	0.029	0.0025 0.0	0.0	.001 33.42	0.0005	0.005	0.001	0.001	0.031	1.14	10.81	0.0055	4.71	0.001 0.0025	1.94	0.103	0.005	0.003	0.003	-	-
EL100261-005 EL100261-006	08/26/10	MM-V-1a-0 MM-V-1a-2	0.098	0.0125	0.003	0.0045	4.6	7.17	171.7	332.70	0.03	0.0025 0.0	- 184 0.1	.001 43.26	0.0005	0.005	0.001	0.001	0.977	0.89	- 11.16	0.206	4.33	0.001 0.0025	0.74	0.123	0.005	0.003	0.003		1
EL100261-007	08/26/10	MM-V-1a-3	0.126	0.0125	0.003	0.311	5.4	6.87	150.6	294.10	0.116	0.0025 0.0	97 0.	.001 39.7	0.0005	0.005	0.001	0.001	1.263	0.96	8.33	0.0788	4.25	0.001 0.0025	0.88	0.104	0.005	0.003	0.003		-
EL100261-008	08/26/10	MM-V-1a-4	0.115	0.0125	0.003	0.195	5.4				0.229	0.0025 0.1	.1 0.	.001 47.58	0.0005	0.005	0.001	0.001	1.49	1.09	7.34	0.0198	4.99	0.001 0.0025	0.59	0.106	0.005	0.003	0.003	-	-
EL100261-009 EL100261-010	08/26/10	MM-V-1a-5 MM-V-1b-0	0.079	0.0125	0.003	0.247	4.4	6.92		3/2.70	0.027	0.0025 0.0	01 0.0	.001 33.06	0.0005	0.005	0.001	0.001	0.048	1.1	8.07	0.0065	4.67	0.001 0.0025	1.93	0.103	0.021	0.003	0.004		1
EL100261-011	08/26/10	MM-V-1b-1	0.015	0.0125	0.042	0.072	4.3	7.63	134.1	271.80	0.015	0.0025 0.0	0.59 0.	.001 32.82	0.0005	0.005	0.001	0.001	0.035	1.11	10.7	0.0035	4.66	0.001 0.0025	1.92	0.103	0.005	0.003	0.003		-
EL100261-012	08/26/10	MM-V-1b-2 MM V 1b 2	0.116	0.0125	0.003	0.254	5.6	6.94	153.0	296.90	0.058	0.0025 0.0	087 0.0	001 40.72	0.0005	0.005	0.001	0.001	1.366	0.36	10.02	0.0751	3.32	0.001 0.0025	0.91	0.111	0.005	0.003	0.002		-
EL100261-013 EL100261-014	08/26/10	MM-V-10-3	0.084	0.0125	0.003	0.017	5.4	6.75	139.7	264.70	0.143	0.0025 0.0	165 0.	.001 39.82	0.0005	0.005	0.001	0.001	1.294	0.5	6.53	0.1073	4.05	0.001 0.0025	0.28	0.102	0.005	0.003	0.003		1
EL100261-015	08/26/10	MM-V-1c-1	0.038	0.0125	0.025	0.028	6.4	7.4	141.7	285.10	0.015	0.0025 0.0	66 0.	.001 35.3	0.0005	0.005	0.001	0.001	0.277	1.13	10.85	0.0582	4.75	0.001 0.0025	1.54	0.108	0.005	0.003	0.002		-
EL100261-016	08/26/10	MM-V-1c-2 MM V 1c 3	0.215	0.0125	0.003	0.069	7.6	7	157.7	307.60	0.027	0.0025 0.0	1 0.	001 39.34	0.0005	0.005	0.001	0.001	1.758	1.04	8.54	0.3062	4.62	0.001 0.0025	0.43	0.11	0.005	0.003	0.002		-
EL100261-017 EL100261-018	08/26/10	MM-V-1c-4	0.133	0.0125	0.003	0.031	8.7	6.74	133.9	302.30	0.005	0.0025 0.0	188 0.	.001 40.20	0.0005	0.005	0.001	0.001	1.678	0.77	7.90	0.224	5.43	0.001 0.0025	0.36	0.107	0.005	0.003	0.002		1
EL100261-019	08/26/10	MM-V-1c-5	0.263	0.0125	0.003	0.057	9	6.74	155.0	321.60	0.119	0.0025 0.0	193 0.	.001 41.7	0.0005	0.005	0.001	0.001	1.81	1.58	7.43	0.1381	6.3	0.001 0.0025	0.44	0.104	0.005	0.003	0.003		-
EL100261-020 EL100261-021	08/26/10	MM-V-2a-2 MM-V-2a-3	0.082	0.0125	0.003	0.012	9.2	6.9	167.2	318.40	0.012	0.0025 0.0	02 0.1	001 44.12	0.0005	0.005	0.001	0.001	2.612	0.21	8.38	0.4322	3 47	0.001 0.0025	0.33	0.118	0.005	0.003	0.003		-
EL100261-022	08/26/10	MM-V-2a-4	0.082	0.0125	0.003	0.039	9.6	6.65	166.0	350.10	0.055	0.0025 0.1	07 0.	.001 46.94	0.0005	0.005	0.001	0.001	1.417	0.59	8.54	0.2278	4.88	0.001 0.0025	0.37	0.125	0.005	0.003	0.002		-
EL100261-023	08/26/10	MM-V-2a-5	0.025	0.0125	0.003	0.017	9.8	6.57	142.8	323.60	0.059	0.0025 0.0	98 0.	.001 43.2	0.0005	0.005	0.001	0.001	1.21	0.35	7.61	0.1875	5.45	0.001 0.0025	0.26	0.113	0.005	0.003	0.002		-
EL100261-024 EL100261-025	08/26/10	MM-V-2a-6 MM-V-2b-2	0.028	0.0125	0.003	0.0045	10 1	6.53	138.7	318.00	0.097	0.0025 0.0	02 0.	001 42.12	0.0005	0.005	0.001	0.001	2.716	0.41	10.51	0.2116	2.58	0.001 0.0025	0.35	0.108	0.005	0.003	0.003		-
EL100261-026	08/26/10	MM-V-2b-3	0.059	0.0125	0.003	0.06	9.4	6.7	181.6	348.80	0.036	0.0025 0.1	16 0.	.001 50.66	0.0005	0.005	0.001	0.001	2.23	0.34	10.49	0.3912	2.91	0.001 0.0025	0.68	0.137	0.005	0.003	0.003		-
EL100261-027	08/26/10	MM-V-2b-4	0.06	0.0125	0.003	0.035	9				0.03	0.0025 0.1	02 0.	.001 45	0.0005	0.005	0.001	0.001	1.094	0.93	8.15	0.2034	5.04	0.001 0.0025	0.31	0.119	0.005	0.003	0.002	-	-
EL100261-028 EL100261-029	08/26/10	MM-V-20-5 MM-V-2b-6	0.103	0.0125	0.003	0.0012	9				0.118	0.0025 0.1	06 0.	.001 43.94	0.0005	0.005	0.001	0.001	1.606	1.07	7.55	0.4008	5.48	0.001 0.0025	0.41	0.1129	0.005	0.003	0.003		1
EL100261-030	08/26/10	MM-V-2c-1	0.125	0.0125	0.084	0.116	8.6									·	·								· - ·						-
EL100261-031	08/26/10	MM-V-2c-2 MM V 2c 3	0.142	0.0125	0.003	0.075	8.6	7.1	171.2	327.30	0.022	0.0025 0.0	96 0.	001 44.18	0.0005	0.005	0.001	0.001	1.444	1.05	10.45	0.0404	4.62	0.001 0.0025	0.52	0.129	0.005	0.003	0.003		-
EL100261-032	08/26/10	MM-V-2c-4	0.038	0.0125	0.003	0.034	8.6	6.74	138.6	291.80	0.03	0.0025 0.0	186 0.	.001 37.52	0.0005	0.005	0.001	0.001	0.64	0.61	7.04	0.1121	5.8	0.001 0.0025	0.42	0.104	0.005	0.003	0.003		1
EL100261-034	08/26/10	MM-V-2c-5	0.029	0.0125	0.003	0.0045	8.6	6.64	123.0	272.00	0.089	0.0025 0.0	0.084	.001 36.66	0.0005	0.005	0.001	0.001	0.939	0.24	6.39	0.2034	5.8	0.001 0.0025	0.26	0.099	0.005	0.003	0.004		-
EL100261-035 EL100261-036	08/26/10	MM-V-2c-6 MM-V-3a-0	0.021	0.0125	0.003	0.0045	8.6				0.176	0.0025 0.0	184 0.1 158 0.1	001 36.82	0.0005	0.005	0.001	0.001	1.035	0.17	6.27	0.1881	5.08	0.001 0.0025	0.29	0.097	0.005	0.003	0.008		-
EL100261-039	08/26/10	MM-V-3a-1	0.011	0.0125	0.098	0.171	7.3	7.58	134.8	272.80	0.02	0.0025 0.0	65 0.	.001 31.98	0.0005	0.005	0.001	0.001	0.06	1.09	10.41	0.0021	4.69	0.001 0.0025	1.92	0.104	0.005	0.003	0.002		-
EL100261-040	08/26/10	MM-V-3a-2	0.06	0.0125	0.003	0.182	2.7	7	167.2	321.00	0.053	0.0025 0.0	12 0.	001 44.54	0.0005	0.005	0.001	0.001	1.785	0.57	10.16	0.1736	3.6	0.001 0.0025	1.27	0.122	0.005	0.003	0.002	-	-
EL100261-041 EL100261-042	08/26/10	MM-V-3a-3 MM-V-3a-4	0.045	0.0125	0.003	0.214	3.0	6.63	175.9	366.70	0.101	0.0025 0.1	12 0.	001 47.16	0.0005	0.005	0.001	0.001	0.561	0.92	10.19	0.0477	7.07	0.001 0.0025	0.74	0.125	0.005	0.003	0.003	-	-
EL100261-043	08/26/10	MM-V-3a-5	0.051	0.0125	0.003	0.081	3.9		-						-	-					-										-
EL100261-044	08/26/10	MM-V-3b-1	0.038	0.0125	0.029	0.021	3.4					10,00251,01	- 10 01	001 50.0	- 0.0005	0.005		- 0.001				0 1092						- 0.002		-	-
EL100261-045 EL100261-046	08/26/10	MM-V-3b-3	0.045	0.0125	0.003	0.316	3.7	6.86	183.6	379.80			- 0.		0.0005									0.001 0.0025			0.005				1
EL100261-047	08/26/10	MM-V-3b-4	0.022	0.0125	0.003	0.126	4.1	6.77	152.0	341.70	0.1	0.0025 0.0	96 0.	001 41.18	0.0005	0.005	0.001	0.001	0.357	0.71	7.63	0.0057	11.11	0.001 0.0025	0.46	0.107	0.005	0.003	0.002		-
EL100261-048 EL100261-049	08/26/10	MM-V-3b-5 MM-V-3b-6	0.026	0.0125	0.003	0.0045	4.6	6.71	127.0	316.00	0.096	0.0025 0.0	185 0.1 176 0.1	001 36.14	0.0005	0.005	0.001	0.001	1.675	0.32	6.51	0.1791	11.82	0.001 0.0025	0.24	0.092	0.005	0.003	0.003		-
EL100261-050	08/26/10	MM-V-3c-1	0.042	0.0125	0.003	0.05	3.7															-	-					-			-
EL100261-051	08/26/10	MM-V-3c-2	0.184	0.0125	0.003	0.152	4.8	7.12	188.9	361.60	0.035	0.0025 0.0	97 0.	.001 47	0.0005	0.005	0.001	0.001	1.362	1.14	10.96	0.0424	4.94	0.001 0.0025	0.6	0.134	0.005	0.003	0.003		-
EL100261-052 EL100261-053	08/26/10	MM-V-3c-3 MM-V-3c-4	0.036	0.0125	0.003	0.196	4.6	6.89	151.0	305.90	0.035	0.0025 0.0	09 0.	001 38.74	0.0005	0.005	0.001	0.001	0.39	0.73	7.98	0.0296	5.42 9.53	0.001 0.0025	0.73	0.106	0.005	0.003	0.003		-
EL100261-055	08/26/10	MM-V-3c-5	0.022	0.0125	0.003	0.0045	5.4	6.81	149.1	348.50	0.061	0.0025 0.0	183 0.	.001 43.76	0.0005	0.005	0.001	0.001	1.439	0.39	7.17	0.1587	11.05	0.001 0.0025	0.26	0.105	0.005	0.003	0.003		
EL100261-055	08/26/10	MM-V-3c-6	0.015	0.0125	0.003	0.0045	5.5		1/0.0	202.00	0.163	0.0025 0.	07 0.	.001 39.8	0.0005	0.005	0.001	0.001	1.296	0.24	6.35	0.1112	9.48	0.001 0.0025	0.27	0.092	0.005	0.003	0.008		
EL100261-056 EL100261-057	08/26/10	MM-NV-1a-2 MM-NV-1a-3	0.114	0.0125	0.003	0.02	4.1	7.15	158.8	307.80	0.015	0.0025 0.0	1/5 0.1 192 0.1	001 37.14	0.0005	0.005	0.001	0.001	1.244	1.15	8.76	0.0661	4.44	0.001 0.0025	0.64	0.11	0.005	0.003	0.001		-
EL100261-058	08/26/10	MM-NV-1a-4	0.11	0.0125	0.003	0.022	6.3	6.84	166.7	318.50	0.103	0.0025 0.0	188 0.	.001 43.16	0.0005	0.005	0.001	0.001	2.194	0.75	8.39	0.1805	3.7	0.001 0.0025	0.48	0.115	0.005	0.003	0.003		
EL100261-059	08/26/10	MM-NV-1a-5	0.037	0.0125	0.003	0.013	6.8				1.755	0.0025 0.	08 0.	.001 34.8	0.0005	0.005	0.003	0.001	2.22	0.28	6.66	0.0772	2.49	0.001 0.0025	0.33	0.086	0.03	0.003	0.005		-
EL100261-060 EL100261-061	08/26/10	MM-NV-1b-1	0.052	0.0125	0.003	0.0045	4.3	7.58	133.7	229.80	0.009	0.0025 0.0	158 0.1	.001 32.48	0.0005	0.005	0.005	0.001	0.018	0.35	0.54	0.0047	4.89	0.001 0.0025	0.5	0.106	0.047	0.003	0.006		-
EL100261-062	08/26/10	MM-NV-1b-2	0.2	0.0125	0.003	0.121	5.2	7.13	174.4	333.40	0.024	0.0025 0.0	97 0.	.001 41.18	0.0005	0.005	0.001	0.001	1.301	1.42	10.66	0.1204	4.69	0.001 0.0025	0.69	0.121	0.005	0.003	0.003		
EL100261-063	08/26/10	MM-NV-1b-3	0.323	0.0125	0.003	0.035	6.3	6.9	189.9	363.10	0.023	0.0025 0.1	01 0.	.001 45.34	0.0005	0.005	0.001	0.001	1.752	1.68	10.11	0.2258	4.2	0.001 0.0025	0.44	0.123	0.005	0.003	0.003		-
EL 100201-004	00/20/10	IVIIVI-IN V-1D-4	0.131	0.0125	0.003	0.022	14.7	0.72	1 108.9	1 525.40	0.039	0.0025 0.0	73 0.	42.88	0.0005	0.005	0.001	0.001	2.130	0.10	1.91	0.162	3.87	0.001 0.0025	0.42	0.007	0.005	0.003	0.005		

Table A.1.6 - M	archmont M	arsh, Water Sam	ple Analytical	Results, June	to October																											
				1	1						T.				Paramete	er / Metho	d Detectio	n Limit /	Units													
	1		Total	Phosphate	Nitrite	Nitrate	DOC	ъЦ	Total	Conductivity										Tota	l Metals										Reactive	Chlorophyll
			Р	PO ₄ -P	NO2-N	NO3-N	boc	pii	as CaCO ₂	conductivity	Al	As	Ba	Be	Ca	Cd	Co	Cr	Сп	Fe	К	Mσ	Mn N	Ni	Pb	s	Sr	Ti	v	Zn	SiO	"a"
			0.0050	0.0250	0.006	0.0090	0.50	n/a	1.0	0.50	0.0050	0.0050	0.0030	0.002	0.0050	0.0010	0.010	0.002	0.002	0.002	0.10	0.010	0.0002 0.0	0 0.002	0.0050	0.050	0.0050	0.010	0.006	0.0010	0.250	0.2
Lab ID	Sample Date	Sample ID	mg/L	mg/L	mg/L	mg/L	mg/L	n/a	mg/L	uS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L mg	L mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	µg/L
EL100261-066	08/26/10	MM-NV-1c-1	0.031	0.0125	0.003	0.025	9.3	7.56	134.9	272.60	0.009	0.0025	0.061	0.001	32	0.0005	0.005	0.001	0.001	0.044	1.11	10.42	0.0143 4.6	9 0.001	0.0025	1.92	0.103	0.005	0.003	0.002		
EL100261-067 EL100261-068	08/26/10	MM-NV-1c-2	0.315	0.0125	0.003	0.038	14.1	6.89	219.0	400.90	0.018	0.0025	0.093	0.001	52.46	0.0005	0.005	0.001	0.001	2.618	1.34	11.01	0.3224 4.4	4 0.001	0.0025	0.55	0.123	0.005	0.003	0.002		-
EL100261-069	08/26/10	MM-NV-1c-4	0.212	0.0125	0.003	0.024	15.4	6.81	193.6	362.40	0.04	0.0025	0.104	0.001	49.46	0.0005	0.005	0.001	0.001	2.824	0.72	8.65	0.283 3.5	6 0.001	0.0025	0.44	0.132	0.005	0.003	0.003		
EL100261-070	08/26/10	MM-NV-1c-5	0.057	0.0125	0.003	0.011	15.6	6.65	151.1	296.20	0.308	0.0025	0.09	0.001	42.52	0.0005	0.005	0.001	0.001	2.424	0.27	7.59	0.2396 2.6	8 0.001	0.0025	0.34	0.113	0.005	0.003	0.004		
EL100261-071 EL100261-074	08/26/10	MM-NV-2a-2 MM-NV-2a-3	0.1	0.0125	0.003	0.141	11.4	7.14	145.5	295.40	0.067	0.0025	0.079	0.001	36.64	0.0005	0.005	0.001	0.001	0.689	0.81	6.1	0.089 6.0	1 0.001	0.0025	0.73	0.1	0.005	0.003	0.002		-
EL100261-074	08/26/10	MM-NV-2a-4	0.022	0.0125	0.003	0.012	12	6.9	141.8	346.60	0.507	0.0025	0.074	0.001	42.68	0.0005	0.005	0.001	0.001	1.4	0.39	6.15	0.0818 12.	31 0.001	0.0025	0.34	0.104	0.014	0.003	0.003		-
EL100261-076	08/26/10	MM-NV-2a-5	0.012	0.0125	0.003	0.0045	11.8	6.87	140.4	353.60	0.329	0.0025	0.063	0.001	45.08	0.0005	0.005	0.001	0.001	1.376	0.32	6.03	0.1052 13.	15 0.001	0.0025	0.24	0.105	0.005	0.003	0.002		
EL100261-077	08/26/10	MM-NV-2a-6 MM NV 2b 2	0.017	0.0125	0.003	0.0045	12.4	6.88	138.8	366.20	0.454	0.0025	0.066	0.001	46.26	0.0005	0.005	0.001	0.001	1.372	0.35	6.17	0.0998 13.	7 0.001	0.0025	0.28	0.105	0.012	0.003	0.003		
EL100201-078 EL100261-079	08/26/10	MM-NV-2b-3	0.176	0.0125	0.003	0.166	9.3	7.01	163.7	329.00	0.063	0.0025	0.095	0.001	40.68	0.0005	0.005	0.001	0.001	1.161	1.3	7.38	0.1162 6.4	7 0.001	0.0025	0.87	0.109	0.005	0.003	0.002		-
EL100261-080	08/26/10	MM-NV-2b-4	0.081	0.0125	0.003	0.086	9.2	6.96	170.0	360.00	0.06	0.0025	0.09	0.001	45.52	0.0005	0.005	0.001	0.001	0.81	0.98	6.72	0.073 11.	0.001	0.0025	0.61	0.112	0.005	0.003	0.003		
EL100261-081	08/26/10	MM-NV-2b-5	0.017	0.0125	0.003	0.0045	9	6.85	145.2	337.30	0.577	0.0025	0.077	0.001	42.38	0.0005	0.005	0.001	0.001	1.449	0.52	5.39	0.1076 13.	36 0.001	0.0025	0.25	0.096	0.016	0.003	0.002		
EL100261-082 EL100261-083	08/26/10	MM-NV-20-0	0.069	0.0125	0.003	0.0045	6.3		-		0.015	0.0025	0.074	0.001	39.92	0.0005	0.005	0.001	0.001	0.023	1.08	10.35	0.0041 4.6	9 0.001	0.0025	1.91	0.09	0.005	0.003	0.003		-
EL100261-084	08/26/10	MM-NV-2c-2	0.14	0.0125	0.003	0.046	7.1	7.2	162.9	317.10	0.033	0.0025	0.08	0.001	39.4	0.0005	0.005	0.001	0.001	0.777	1.16	8.46	0.1319 5.4	1 0.001	0.0025	0.55	0.111	0.005	0.003	0.002		
EL100261-085	08/26/10	MM-NV-2c-3	0.132	0.0125	0.003	0.042	7.6	7.01	166.7	337.40	0.043	0.0025	0.086	0.001	41.78	0.0005	0.005	0.001	0.001	0.739	1.11	7.67	0.1257 7.9	3 0.001	0.0025	0.47	0.112	0.005	0.003	0.003		
EL100261-086	08/26/10	MM-NV-2c-4 MM NV 2c 5	0.065	0.0125	0.003	0.0012	7.3	6.95	155.9	340.60	0.049	0.0025	0.081	0.001	41.96	0.0005	0.005	0.001	0.001	0.994	0.8	6.66	0.1592 10.	4 0.001	0.0025	0.3	0.107	0.005	0.003	0.002		
EL100201-087 EL100261-088	08/26/10	MM-NV-3a-0	0.031	0.0125	0.003	0.0045	5.3					-		0.001					-					-								-
EL100261-089	08/26/10	MM-NV-3a-1	0.023	0.0125	0.003	0.034	4.9	7.55	134.1	271.20	0.011	0.0025	0.057	0.001	30.5	0.0005	0.005	0.001	0.001	0.022	1.08	10.17	0.0019 4.5	5 0.001	0.0025	1.85	0.099	0.005	0.003	0.001		
EL100261-090	08/26/10	MM-NV-3a-2	0.064	0.0125	0.003	0.029	5.7	6.94	154.1	311.00	0.025	0.0025	0.078	0.001	35.44	0.0005	0.005	0.001	0.001	0.404	1.11	7.7	0.0154 5.	3 0.001	0.0025	0.51	0.102	0.005	0.003	0.001		
EL100261-091 EL100261-092	08/26/10	MM-NV-3a-4	0.037	0.0125	0.003	0.038	6.1	6.6	166.8	374.00	0.102	0.0025	0.092	0.001	40.38	0.0005	0.005	0.001	0.001	0.242	0.93	7.18	0.008 10.	27 0.001	0.0025	0.52	0.116	0.005	0.003	0.002		_
EL100261-093	08/26/10	MM-NV-3a-5	0.015	0.0125	0.003	0.0045	6.4		-		0.179	0.0025	0.096	0.001	44.46	0.0005	0.005	0.001	0.001	1.106	0.45	6.73	0.1599 17.	0.001	0.0025	0.26	0.115	0.005	0.003	0.003		-
EL100261-094	08/26/10	MM-NV-3b-1	0.019	0.0125	0.003	0.0045	5.4	7.54	131.3	268.00	0.016	0.0025	0.056	0.001	30.54	0.0005	0.005	0.001	0.001	0.026	1.09	10.17	0.0038 4.	5 0.001	0.0025	1.84	0.1	0.005	0.003	0.003		
EL100261-095 EL100261-096	08/26/10	MM-NV-3D-2 MM-NV-3b-3	0.031	0.0125	0.003	0.014	5.5	7.12	159.6	345.00	0.064	0.0025	0.072	0.001	37.18	0.0005	0.005	0.001	0.001	0.445	1.17	6.07	0.0391 6.1	0.001 07 0.001	0.0025	0.44	0.101	0.005	0.003	0.003		-
EL100261-097	08/26/10	MM-NV-3b-4	0.015	0.0125	0.003	0.0045	6				0.175	0.0025	0.073	0.001	44.98	0.0005	0.005	0.001	0.001	0.475	0.53	5.26	0.0344 18.	6 0.001	0.0025	0.29	0.103	0.005	0.003	0.002		
EL100261-098	08/26/10	MM-NV-3b-5	0.011	0.0125	0.003	0.0045	6.2	6.88	140.1	385.60	0.244	0.0025	0.061	0.001	47.72	0.0005	0.005	0.001	0.001	0.544	0.42	4.79	0.0847 21.	54 0.001	0.0025	0.26	0.1	0.005	0.003	0.002		
EL100261-099 EL100261_100	08/26/10	MM-NV-3c-1 MM NV 3c 2	0.013	0.0125	0.003	0.0045	4.5	7.11	155.2	205.90	0.013	0.0025	0.057	0.001	31.34	0.0005	0.005	0.001	0.001	0.021	1.09	10.51	0.0016 4.7	2 0.001	0.0025	1.91	0.103	0.005	0.003	0.002		
EL100201-100 EL100261-101	08/26/10	MM-NV-3c-3	0.029	0.0125	0.003	0.049	6.4	6.96	156.6	324.50	0.192	0.0025	0.084	0.001	41.4	0.0005	0.005	0.001	0.001	0.39	1.08	6.44	0.0069 10.	6 0.001	0.0025	0.55	0.105	0.005	0.003	0.002		-
EL100261-102	08/26/10	MM-NV-3c-4	0.021	0.0125	0.003	0.0045	6.7	'	'		0.24	0.0025	0.08	0.001	43.08	0.0005	0.005	0.001	0.001	0.444	0.67	5.42	0.0268 15.	67 0.001	0.0025	0.43	0.104	0.005	0.003	0.004		-
EL100261-103	08/26/10	MM-NV-3c-5	0.013	0.0125	0.003	0.0045	6.4	7.77	125.5	290.60	0.251	0.0025	0.061	0.001	39.4	0.0005	0.005	0.001	0.001	0.649	0.32	4.6	0.0774 18.	13 0.001	0.0025	0.33	0.09	0.005	0.003	0.004		-
EL100300-004	09/25/10	MM-V-1a-2	0.2100	0.0125	0.003	0.0045	-	6.98	127.9	270.40	0.0130	0.0030	0.00760		35.3920	· _	-		_	1.503	0.95	7.810	0.3492 4.3	0 -	-	0.230	0.0950			0.0070		-
EL100300-006	09/25/10	MM-V-1a-3	0.1450	0.0125	0.003	0.0045	-	6.87	127.8	268.00	0.0160	0.0025	0.0770		36.9720	-				1.961	0.87	7.170	0.2998 4.4	20		0.200	0.0940		- 1	0.0080		
EL100300-007	09/25/10	MM-V-1a-4	0.0850	0.0125	0.003	0.0045		6.83	133.4	287.10	0.0430	0.0025	0.0780		40.0920	-				2.408	0.64	7.350	0.2928 5.0	- 00		0.140	0.0990			0.0080		
EL100300-008	09/25/10	MM-V-1b-1	0.0660	0.0125	0.003	0.0045	-	6.97	148.7	315.70	0.0160	0.0050	0.0840		43.6920	· I	-		-	1.616	1.00	10.950	0.3582 4.5	0	-	0.860	0.1200			0.0070		-
EL100300-010	09/25/10	MM-V-1b-2	0.0370	0.0125	0.003	0.0045		6.90	142.7	301.40	0.0160	0.0025	0.0790		43.2520					1.368	0.58	10.430	0.3498 3.0	70		0.830	0.1160		- 1	0.0090		
EL100300-011 EL100300-012	09/25/10	MM-V-1b-3	0.0830	0.0125	0.003	0.0045		6.82	142.9	308.70	0.0390	0.0025	0.0870		43.3520					1.678	1.02	10.370	0.2780 3.7			0.840	0.1170			0.0100		
EL100300-012 EL100300-013	09/25/10	MM-V-1b-5	0.0740	0.0125	0.003	0.0045	-	6.64	139.1	298.20	0.0170	0.0025	0.0890		43.1320	· .	-		-	2.434	0.33	8.370	0.4110 2.6	20	-	0.210	0.11040			0.0100		-
EL100300-014	09/25/10	MM-V-1c-1	0.0540	0.0125	0.003	0.0045	-	6.87	127.3	284.40	0.0710	0.0080	0.0560		40.1320	-				1.407	0.50	7.120	0.1567 4.2	- 0		0.110	0.0890		- 1	0.0070		
EL100300-015	09/25/10	MM-V-1c-2	0.1030	0.0125	0.003	0.0045	-	7.00	142.7	303.40	0.0680	0.0025	0.0710		41.7320	-				1.352	0.95	8.330	0.1619 4.8	50 -		0.240	0.1020			0.0060		-
EL100300-018 EL100300-017	09/25/10	MM-V-1c-3	0.0300	0.0125	0.003	0.0045	-	6.86	129.2	290.30	0.0250	0.0025	0.0030		38.0320					1.374	1.23	8.500	0.0382 3.3	20		0.850	0.1030			0.0060		-
EL100300-018	09/25/10	MM-V-1c-5	0.0800	0.0125	0.003	0.0045	-	7.39	137.7	297.00	0.0080	0.0025	0.0820		37.8720					0.536	1.45	10.900	0.3066 5.5	50		1.420	0.1120		- 1	0.0060		
EL100300-019	09/25/10	MM-V-2a-1	0.0190	0.0125	0.003	0.0045		7.10	142.9		0.0200	0.0080	0.0610		34.6120	-				0.047	1.41	10.790	0.0094 5.8	50 -		1.910	0.1060			0.0120		
EL100300-020 EL100300-021	09/25/10	MM-V-2a-2 MM-V-2a-3	0.1280	0.0125	0.003	0.0045	-	6.91	142.8	305.80	0.0080	0.0090	0.0820		41.3920					2.296	0.78	8.150	0.5614 3.6	20 -		0.380	0.1050			0.0070		-
EL100300-022	09/25/10	MM-V-2a-4	0.1030	0.0125	0.003	0.0045		6.69	135.7	309.70	0.0110	0.0025	0.0980		42.4720	-				2.866	0.39	8.380	0.4268 4.0	0		0.160	0.1100		-]	0.0070		
EL100300-023	09/25/10	MM-V-2a-5	0.0410	0.0125	0.003	0.0045	-	6.61	126.9	301.70	0.0140	0.0070	0.0950		41.4320	-				2.970	0.20	7.970	0.3814 3.8	50		0.130	0.1050		-	0.0080		
EL100300-024 EL100300-025	09/25/10	MM-V-2a-0 MM-V-2b-1	0.0870	0.0125	0.003	0.0045	-		-			-			-	-	-		-	-	-			-	-	-			-			-
EL100300-026	09/25/10	MM-V-2b-2	0.1000	0.0125	0.003	0.0045	-	7.36	142.7	299.50	0.0100	0.0025	0.0750		37.9320					1.109	1.15	8.980	0.3206 4.7	- 20		0.820	0.1080		-	0.0060		-
EL100300-027	09/25/10	MM-V-2b-3	0.1940	0.0125	0.003	0.0045	-				0.0120	0.0025	0.0920		41.8920	-				2.256	0.66	8.430	0.5366 3.7	30 -		0.250	0.1110			0.0070		
EL100300-028 EL100300-029	09/25/10	MM-V-20-4 MM-V-2b-5	0.0880	0.0125	0.003	0.0045	-	6.79	135.5	291.10	0.0110	0.0025	0.0850		36 3320		-		_	2.044	0.38	6 590	0.3244 4.5	10	-	0.180	0.1020			0.0060		-
EL100300-030	09/25/10	MM-V-2b-6	0.1280	0.0125	0.003	0.0045					0.0330	0.0025	0.0790		36.8320					2.016	0.14	6.420	0.2306 4.0	70		0.160	0.0950		- 1	0.0040		
EL100300-031	09/25/10	MM-V-2c-1	0.0840	0.0125	0.003	0.0045		7.43	163.6	333.30	0.0060	0.0090	0.0920		44.7520					1.754	1.16	11.090	0.8448 4.8	20 -		0.800	0.1330		- 1	0.0050		
EL100300-032 EL100300-032	09/25/10	MM-V-2c-2 MM-V-2c-2	0.1070	0.0125	0.003	0.0045	-	7.16	144.1	300.80	0.0070	0.0025	0.0840		40.8520				-	2.528	0.27	8.010	0.5848 2.5	30		0.170	0.1040			0.0040		-
EL100300-034	09/25/10	MM-V-2c-4	0.0600	0.0125	0.003	0.0045	-	6.78	139.6	323.70	0.0160	0.0050	0.0900		42.9320	-			-	2.290	0.30	7.950	0.3556 4.9	00		0.130	0.1100			0.0060		-
EL100300-035	09/25/10	MM-V-2c-5	0.0430	0.0125	0.003	0.0045		6.72	120.8	298.30	0.0210	0.0025	0.0800		38.7320					2.098	0.17	7.020	0.2364 5.2	- 00		0.130	0.0960		-	0.0070		
EL100300-036	09/25/10	MM-V-3a-0	0.0130	0.0125	0.003	0.0045		7 70	128.0			0.0025	1.0.0580		22 2520							-	0.0013 5 7	- 20		1.990			-			
EL100300-037	09/25/10	MM-V-3a-2	0.1190	0.0125	0.003	0.0045	-	7.45	161.2	330.30	0.0080	0.0025	0.0820		40.9720	-	-		-	1.412	1.39	10.440	0.5480 5.0	50 -		0.480	0.1200	- 2		0.0060		-
EL100300-039	09/25/10	MM-V-3a-3	0.1860	0.0125	0.003	0.0045		7.06	155.9	332.80	0.0110	0.0050	0.0870		41.8920	-				1.474	0.81	8.520	0.3534 5.8	70		0.180	0.1100		- 1	0.0060		
EL100300-040	09/25/10	MM-V-3a-4	0.1030	0.0125	0.003	0.0045	-	7.04	157.3	352.70	0.0090	0.0025	0.0890		44.7720	-				2.032	0.57	8.010	0.3092 8.6			0.140	0.1120			0.0060		
EL100300-041 EL100300-042	09/25/10	MM-V-3b-0	0.0330	0.0125	0.003	0.0045	-		-		0.0220	0.0025	0.0580		33.8720	-	-		-	0.011	1.43	10.600	0.0026 5.9	0 -	-	1.910	0.1040			0.0005		-
EL100300-043	09/25/10	MM-V-3b-1	0.0200	0.0125	0.003	0.0045		7.68	130.0	284.90	0.0080	0.0025	0.0580		33.2720					0.009	1.40	10.400	0.0012 5.8	10		1.870	0.1020		- 1	0.0070		
EL100300-044	09/25/10	MM-V-3b-2	0.1230	0.0125	0.003	0.0045	-	7.17	161.8	326.70	0.0080	0.0070	0.0890		44.8920					2.254	0.66	8.510	0.5444 3.9			0.320	0.1150			0.0050		
EL100300-045	09/25/10	MM-V-3b-3	0.0720	0.0125	0.003	0.0045		0.86	145.8	308.60	0.0100	0.0025	0.0830		45.1720	-				1.768	0.18	7.980	0.3566 4.7	- 0		0.170	0.1080			0.0050		

Appendix A Marchmont Marsh Data

					1		1			T				Pa	rameter	/ Method	Detection	Limit / U	nits											I =	
1			Total	Phosphate	Nitrite	Nitrate	DOC		Total	Conductivity										Tota	Metals									Reactive	Chlorophyl
			Р	PO₄-P	NO2-N	NO3-N	DOC	рн	Alkalinity as CaCO.	Conductivity	41	Ar	Pa	Po	Ca	Ca	Co	Cr	C.	Fo	ĸ	Ma	Mn No	N; Ph		S.	T;	v	7.	Silicates SiO.	"a"
			0.0050	0.0250	0.006	0.0090	0.50	n/a	10	0.50	0.0050	0.0050	0.0030	0.002 0	0050	0 0010	0.010	0.002	0.002	0.002	0.10 1	0.010	0.0002 0.010	0.002 0.00	50 0.050	0.0050	0.010	0.006	0.0010	0.250	0.2
Lab ID	Sample Date	Sample ID	mg/L	mg/L	mg/L	mg/L	mg/L	n/a	mg/L	uS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L mg/L	mg/L mg/	L mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	µg/L
EL100300-047	09/25/10	MM-V-3b-5	0.0760	0.0125	0.003	0.0045																									
EL100300-048	09/25/10	MM-V-3c-1	0.0230	0.0125	0.003	0.0045		7.73	128.9	285.50	0.0090	0.0050	0.0580	- 3	3.5320					0.010	1.40 1	0.510	0.0013 5.840		1.930	0.1030			0.0090		-
EL100300-049	09/25/10	MM-V-3c-2 MM-V-3c-3	0.2610	0.0125	0.003	0.0045		6.95	170.4	354.50	0.0090	0.0025	0.1000	4	6.6520	_	-		-	2.268	0.68	8.950	0.6322 4.300		0.370	0.1340			0.0040		1
EL100300-051	09/25/10	MM-V-3c-4	0.1050	0.0125	0.003	0.0045		6.82	138.8	312.50	0.0090	0.0025	0.0900	4	1.5320					1.975	0.50	7.780	0.4150 5.130		0.130	0.1070		3	0.0060		-
EL100300-052	09/25/10	MM-V-3c-5	0.0450	0.0125	0.003	0.0045		6.76	126.5	303.80	0.0120	0.0025	0.0800	41	0.1920					1.975	0.24	7.080	0.2914 5.320		0.110	0.0980			0.0070		
EL100300-055	09/25/10	MM-NV-1a-0 MM NV 1a 1	0.0240	0.0125	0.003	0.0045	-	7.66	129.4	284.70	0.0090	0.0025	0.0570	3	4.2320	-				0.015	1.41 1	0.540	0.0022 5.840		1.940	0.1020			0.0020		-
EL100300-057	09/25/10	MM-NV-1a-2	0.1220	0.0125	0.003	0.0045		7.21	130.3	277.20	0.0150	0.0025	0.0600	- 3	4.1920	-	-		_	1.267	1.04	8.430	0.2048 4.890		0.500	0.0930			0.0050		
EL100300-058	09/25/10	MM-NV-1a-3	0.1500	0.0125	0.003	0.0045	- 1	6.98	146.1	307.00	0.0620	0.0025	0.0710	4	0.0520					2.156	0.79	8.250	0.2426 4.610		0.280	0.1020			0.0060		-
EL100300-059	09/25/10	MM-NV-1a-4	0.1470	0.0125	0.003	0.0045	-	6.70	147.5	317.70	0.1420	0.0025	0.0650	- 4	1.7520	-				2.156	0.69	8.110	0.3374 4.580		0.220	0.1010			0.0060		-
EL100300-060 EL100300-061	09/25/10	MM-NV-1b-1 MM-NV-1b-2	0.0170	0.0125	0.003	0.0045		7.15	128.0	284.60	0.0140	0.0025	0.0570	- 3	3.0920	-	-		_	1 711	0.80	7 320	0.2222 4 160		0.350	0.1000			0.0080		-
EL100300-062	09/25/10	MM-NV-1b-3	0.1160	0.0125	0.003	0.0045		6.92	137.8	286.20	0.1070	0.0025	0.0640	3	7.5720					2.162	0.48	7.510	0.2096 3.300		0.220	0.0940		- '	0.0070		-
EL100300-063	09/25/10	MM-NV-1b-4	0.0600	0.0125	0.003	0.0045		6.78	127.3	260.90	0.1660	0.0025	0.0560	3	6.2320					2.278	0.25	6.970	0.2424 2.660		0.150	0.0870			0.0080		-
EL100300-064	09/25/10	MM-NV-1b-5	0.0390	0.0125	0.003	0.0045		6.82	91.3	188.00	0.9590	0.0025	0.0470	20	6.9720					2.020	0.19	5.310	0.1056 1.890		0.140	0.0630			0.0060		-
EL100300-065	09/25/10	MM-NV-1c-2	0.2380	0.0125	0.003	0.0045		7.15	159.1	331.30	0.0110	0.0025	0.0850	4	2.8320	-	-		-	1 988	1 37 1	0.080	0 4544 4 460		0 330	0 1130		-	0.0060		-
EL100300-067	09/25/10	MM-NV-1c-3	0.2840	0.0125	0.003	0.0045		6.93	171.1	355.30	0.0120	0.0025	0.0990	4	7.1520					2.304	1.66 1	0.510	0.3742 4.430		0.260	0.1220			0.0080		-
EL100300-068	09/25/10	MM-NV-1c-4	0.1340	0.0125	0.003	0.0045		6.86	168.5	346.00	0.0190	0.0025	0.0920	4	7.3320					2.850	1.39 1	0.160	0.3434 4.300		0.120	0.1200			0.0080		-
EL100300-069 EL100300-070	09/25/10	MM-NV-1c-5 MM-NV-1c-6	0.0950	0.0125	0.003	0.0045		6.81	163.5	340.50	0.0560	0.0025	0.0840	4	1.0520	-			-	2.712	0.97 1	7 840	0.3264 4.300		0.120	0.1170			0.0090		
EL100300-070	09/25/10	MM-NV-2a-0	0.0230	0.0125	0.003	0.0045	- I				0.0160	0.0025	0.0560	3	3.4920					0.022	1.39 1	0.440	0.0072 5.780		1.920	0.1010		- '	0.0010		_
EL100300-072	09/25/10	MM-NV-2a-1	0.0190	0.0125	0.003	0.0045		7.57	127.9	287.60	0.0150	0.0025	0.0600	3	4.9320					0.028	1.37 1	0.400	0.0138 5.860		1.770	0.1040	1		0.0060		-
EL100300-073	09/25/10	MM-NV-2a-2	0.0630	0.0125	0.003	0.0045	-	7.23	113.8	256.60	0.0170	0.0025	0.0510	- 3	2.8320	-				0.821	0.83	6.280	0.1621 5.780		0.410	0.0820			0.0070		-
EL100300-074	09/25/10	MM-NV-2a-3 MM-NV-2a-4	0.0430	0.0125	0.003	0.0045		6.99	132.9	284.20	0.0480	0.0025	0.0500	3	6.7320 4 7520	-	-		_	1.319	0.52	5.780 6.210	0.1585 8.110		0.130	0.0870			0.0050		-
EL100300-076	09/25/10	MM-NV-2a-5	0.0170	0.0125	0.003	0.0045	-					-										-									-
EL100300-077	09/25/10	MM-NV-2b-0	0.0180	0.0125	0.003	0.0045	-	7.77	128.1	286.20	0.0120	0.0025	0.0580	3	4.2120	-				0.016	1.40 1	0.720	0.0026 5.950		1.950	0.1040			0.0090		-
EL100300-078	09/25/10	MM-NV-2b-1	0.0230	0.0125	0.003	0.0045	-	7.69	127.1	286.10	0.0120	0.0025	0.0600	- 3	4.8520	-				0.014	1.43 1	0.920	0.0034 6.050		2.010	0.1060			0.0100		-
EL100300-079	09/25/10	MM-NV-2b-2	0.0820	0.0125	0.003	0.0045		7.16	141.8	339.10	0.0170	0.0025	0.0590	4	4 7720	-	-		-	1 474	0.65	7.840	0.2438 0.220		0.300	0.0980			0.0050		-
EL100300-081	09/25/10	MM-NV-2b-4	0.0400	0.0125	0.003	0.0045		7.09	159.6	377.40	0.0820	0.0025	0.0580	51	0.0520					1.820	0.39	6.630	0.1787 12.720		0.070	0.1090			0.0070		-
EL100300-082	09/25/10	MM-NV-2c-1	0.0170	0.0125	0.003	0.0045					0.0140	0.0025	0.0580	3-	4.0120					0.015	1.41 1	0.670	0.0031 5.930		1.950	0.1040			0.0120		-
EL100300-083 FI 100300-084	09/25/10	MM-NV-2c-2 MM-NV-2c-3	0.0780	0.0125	0.003	0.0045		7.35	141.0	306.80	0.0100	0.0025	0.0680	4	5.8920	-			-	0.285	0.92	8.100 6.310	0.0919 6.270		0.650	0.1060			0.0080		
EL100300-085	09/25/10	MM-NV-2c-4	0.0200	0.0125	0.003	0.0045	-	7.01	123.9	289.70	0.0210	0.0025	0.0550	3	7.4720					0.412	0.58	5.190	0.0537 10.010		0.180	0.0860		- '	0.0090		-
EL100300-086	09/25/10	MM-NV-2c-5	0.0160	0.0125	0.003	0.0045	-				0.0410	0.0025	0.0510	3	6.5520	-				1.380	0.35	4.620	0.0374 11.830		0.060	0.0800			0.0090		-
EL100300-087	09/25/10	MM-NV-3a-1	0.0140	0.0125	0.003	0.0045	-	7.62	127.5	283.40	0.0120	0.0025	0.0590	- 3	4.6320	-				0.014	1.45 1	0.870	0.0018 6.070		1.980	0.1060			0.0090		-
EL100300-088	09/25/10	MM-NV-3a-3	0.0810	0.0125	0.392	0.0045		7.11	137.7	304.80	0.0370	0.0025	0.0640	3	9.3920	_	-		-	0.484	0.89	6.760	0.1664 7.890		0.310	0.0960			0.0050		1
EL100300-090	09/25/10	MM-NV-3a-4	0.0610	0.0125	0.003	0.0045					0.1180	0.0025	0.0610	4	2.2320					0.993	0.75	6.450	0.1427 10.630		0.220	0.0980	1	- 1	0.0060		
EL100300-091	09/25/10	MM-NV-3a-5	0.0300	0.0125	0.003	0.0045	-	6.92	138.8	359.70	0.2120	0.0025	0.0570	4	3.8120	-				1.068	0.34	5.330	0.1383 17.040		0.170	0.0940			0.0050		-
EL100300-092 EL100300-093	09/25/10	MM-NV-30-1 MM-NV-3b-2	0.0210	0.0125	0.003	0.0045		7.24	137.5	285.50	0.0110	0.0025	0.0590	3	<u>3.9920</u> 4 7320	-	-		_	1 355	1.42 1	8 240	0.0022 6.000		0.310	0.1050			0.0100		-
EL100300-094	09/25/10	MM-NV-3b-3	0.1710	0.0125	2.410	0.0045		6.99	127.2	285.60	0.0140	0.0025	0.0750	3:	2.9920					1.344	1.02	6.900	0.2110 6.810		0.190	0.0900		3	0.0060		-
EL100300-095	09/25/10	MM-NV-3b-4	0.0880	0.0125	0.003	0.0045		6.83	136.8	336.70	0.0110	0.0025	0.0880	3	8.4720					1.919	0.64	6.900	0.2324 13.190		0.130	0.1000			0.0060		-
EL100300-096	09/25/10	MM-NV-3b-5	0.0470	0.0125	0.003	0.0045	-	6.88	131.0	350.80	0.0270	0.0025	0.0810	3	8.1920					1.457	0.43	6.220	0.1465 16.610		0.110	0.0960			0.0060		-
EL100300-097	09/25/10	MM-NV-3c-2	0.1120	0.0125	0.521	0.0045		7.17	123.2	270.50	0.0000	0.0025	0.0620	3	2.4720	_	-		-	1.005	0.96	6.810	0.1285 5.890		0.240	0.0880			0.0060		1
EL100300-099	09/25/10	MM-NV-3c-3	0.0840	0.0125	0.003	0.0045					0.0190	0.0025	0.0710	3	2.2720					0.728	0.81	6.430	0.1517 8.070		0.110	0.0880	I	- 1	0.0070		-
EL100300-100	09/25/10	MM-NV-3c-4	0.0360	0.0125	0.003	0.0045		6.78	125.8	327.40	0.0240	0.0025	0.0670	31	6.4920	-				1.515	0.28	5.580	0.1868 14.850		0.090	0.0880			0.0090		-
EL100300-101 EL100333-004	09/25/10	MM-NV-3c-5 MM-V-1a-1	0.0270	0.0125	0.003	0.0045		7.88	128.5	281.10	0.0970	0.0025	0.0590	3	5.9700					0.021	1.28 1	5.310	0.150/ 16.450		2.030	0.0870			0.0090		
EL100333-005	10/20/10	MM-V-1a-2	0.0025	0.0125	0.003	0.0150	- 1	7.87	126.4	277.10	0.0090	0.0025	0.0590	- 3	5.3900					0.009	1.28 1	0.590	0.0012 5.110		1.970	0.1050		'	0.0090		-
EL100333-006	10/20/10	MM-V-1a-3	0.0980	0.0125	0.003	0.0090	-	7.00	121.4	264.50	0.0110	0.0025	0.0680	3:	5.1500					1.139	0.94	7.740	0.3732 4.360		0.580	0.0930		-	0.0060		
EL100333-007	10/20/10	MM-V-1a-4	0.1810	0.0125	0.003	0.0045	-	6.87	127.2	281.00	0.0170	0.0025	0.0770	- 3	7.4500	-				2.206	0.59	7.040	0.4214 3.980		0.240	0.0930			0.0080		-
EL100333-008 EL100333-09	10/20/10	MM-V-1b-0	0.0060	0.0125	0.003	0.0043		0.07		280.30		0.0023		5		_	-		-						0.170			_	0.0080		1
EL100333-010	10/20/10	MM-V-1b-1	0.0025	0.0125	0.003	0.0045	-	7.67	123.2	274.50	0.0090	0.0025	0.0570	- 3	5.2900					0.012	1.27 1	0.490	0.0074 5.090		2.060	0.1030			0.0080		-
EL100333-011	10/20/10	MM-V-1b-2	0.0130	0.0125	0.003	0.0090		7.02	141.5	302.80	0.0090	0.0025	0.0700	3	8.7300					0.061	0.97 1	0.290	0.2784 4.110		0.960	0.1030			0.0080		-
EL100333-012 FL100333-013	10/20/10	MM-V-1b-3 MM-V-1b-4	0.0180	0.0125	0.003	0.0045		6.62	138.3	296.50	0.0140	0.0025	0.0820	4	7.5700	-			-	0.071	0.72	8.620	0.4446 3.100		0.310	0.1010			0.0100		
EL100333-014	10/20/10	MM-V-1b-5	0.0130	0.0125	0.003	0.0045	- I				0.0560	0.0025	0.0690	3	3.9900					1.316	0.19	6.950	0.1068 2.270		0.230	0.0830		- '	0.0120		_
EL100333-015	10/20/10	MM-V-1c-0	0.0025	0.0125	0.003	0.0045	- 1				0.0090	0.0025	0.0600	3	6.2900					0.008	1.30 1	0.850	0.0011 5.190		2.050	0.1080	1	- 1	0.0110		-
EL100333-016	10/20/10	MM-V-1c-1	0.0025	0.0125	0.003	0.0045	-	7.84	126.8	277.40	0.0090	0.0025	0.0600	3	6.0700	-				0.011	1.30 1	0.770	0.0012 5.190		2.030	0.1070			0.0020		-
EL100333-017 EL100333-018	10/20/10	MM-V-1c-2 MM-V-1c-3	0.0850	0.0125	0.003	0.0045		6.83	139.5	294.90	0.0000	0.0025	0.0770	4	6.3500	_			-	1.737	0.95	6.570 7.550	0.3352 3 390		0.590	0.1080		2	0.0070		-
EL100333-019	10/20/10	MM-V-1c-4	0.0270	0.0125	0.003	0.0045		6.68	113.3	249.40	0.0160	0.0025	0.0640	3:	5.0100					1.285	0.40	6.620	0.1664 3.060		0.240	0.0860			0.0080		-
EL100333-020	10/20/10	MM-V-1c-5	0.0240	0.0350	0.003	0.0045	-					-																			
EL100333-021	10/20/10	MM-V-2a-1	0.0110	0.0125	0.003	0.0045					0.0150	0.0025	0.0670	3	7.2700					0.835	1.32 1	0.580	0.1751 5.060		1.460	0.1110			0.0090		-
EL100333-022 EL100333-022	10/20/10	MM-V-2a-2 MM-V-2a-2	0.1380	0.0125	0.003	0.0045		6.97	138.7	295.20	0.0090	0.0025	0.0820	3	8.5300 0.6900	-				2.610	1.42	7.970	0.6628 8.420		0.310	0.1000			0.0070		-
EL100333-023	10/20/10	MM-V-2a-4	0.1310	0.0125	0.003	0.0045		6.48	149.5	367.40	0.0110	0.0025	0.1150	4	3.1300	-				3.260	4.42	8.440	0.8770 11.540		0.220	0.1020			0.0080		-
EL100333-025	10/20/10	MM-V-2a-5	0.1180	0.0125	0.003	0.0045		6.58	141.9	344.20	0.0240	0.0025	0.0900	3	9.6700					2.300	2.28	7.500	0.3886 13.240		0.190	0.0970		'	0.0080		-
EL100333-026	10/20/10	MM-V-2a-6	0.1230	0.0780	0.003	0.0045	-					1.0.0021								-	1.04 1.	-	0.0074 0.020			1 0 1010					
EL100333-027 EL100333-029	10/20/10	MM-V-2b-1 MM-V-2b-2	0.0070	0.0125	0.003	0.0045		6.90	130.7	286.00	0.0100	0.0025	0.0600	3	8.0100	-				1 889	0.64	8 290	0.09/4 5.020		0.370	0.1060			0.0020		-
EL100333-029	10/20/10	MM-V-2b-3	0.0820	0.0125	0.003	0.0045		6.72	110.9	249.40	0.0120	0.0025	0.0690	3	3.6300					1.384	0.38	6.700	0.3152 3.810		0.260	0.0870			0.0020		-

Appendix A Marchmont Marsh Data

														1	Paramete	r / Metho	d Detection	Limit / U	nits											
			Total	Phosphate	Nitrite	Nitrate	DOC		Total	0.1.0.1										Tota	Metals								Reactive	Chlorophyl
			Р	PO ₄ -P	NO2-N	NO ₃ -N	DOC	рН	Alkalinity or CoCO	Conductivity	41		P.	P.	C-	<i>C</i> 1	6.	6	<i>C</i>	E.	v	Ma	Ma Na	N: DL	6	e.,	T: X	7.	Silicates	"a"
			0.0050	0.0250	0.006	0.0000	0.50	n/a	as caco ₃	0.50	AI	AS	Ba	Be	0.0050	0.0010	0.010	0.002	0.002	Fe 0.002	0.10	Mg	Min Na 0.0002 0.010	NI PD	0.050	5r	0.010 0.0	06 0.0010	0.250	0.2
Lab ID	Sample Date	Sample ID	mg/L	mg/L	mg/L	mg/L	mg/L	n/a	mg/L	uS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L mg/L	mg/L mg/L	mg/L	mg/L	mg/L mg	/L mg/L	mg/L	ug/L
EL100333-030	10/20/10	MM-V-2b-4	0.0480	0.0125	0.003	0.0045	-	6.65	109.8	253.90	0.0140	0.0025	0.0740		34.9300	-	-		-	1.843	0.34	6.610	0.2720 4.210		0.230	0.0880		0.0020		-
EL100333-031	10/20/10	MM-V-2b-5	0.0490	0.0125	0.003	0.0045	-	6.54	101.0	242.40	0.0160	0.0025	0.0730		34.8300					1.917	0.22	6.130	0.2348 3.810		0.140	0.0850		0.0030		
EL100333-032	10/20/10	MM-V-2c-1 MM-V-2c-2	0.0190	0.0125	0.003	0.0045		6.84	126.7	253 50	0.0120	0.0025	0.0630		35.0500	-	-			2 306	0.73	6 970	0.1557 4.720		0.280	0.0990		0.0030		-
EL100333-034	10/20/10	MM-V-2c-3	0.1320	0.0310	0.003	0.0045	-	6.65	125.1	277.10	0.0120	0.0025	0.0830	1	38.9900					2.182	0.65	7.380	0.4790 3.530		0.370	0.0950	·	0.0020		-
EL100333-035	10/20/10	MM-V-2c-4	0.1380	0.0300	0.003	0.0045	-	6.57	127.6	290.60	0.0110	0.0025	0.0860		40.0300	-				2.372	0.86	7.420	0.3920 3.290		0.200	0.0970		0.0010		-
EL100333-036	10/20/10	MM-V-2c-5	0.0380	0.0125	0.003	0.0045	-	6.60	106.1	253.30	0.0210	0.0025	0.0720		35.9300					2.122	0.26	6.420	0.2414 2.410		0.150	0.0830		0.0030		
EL100333-037 EL100333-038	10/20/10	MM-V-3a-2	0.1310	0.0125	0.003	0.0045		7.08	120.4	328.60	0.0110	0.0025	0.0380		45.1500	-				2.724	1.66	10.300	0.7018 5.070		0.580	0.1160		0.0010		_
EL100333-039	10/20/10	MM-V-3a-3	0.1710	0.0125	0.003	0.0045	-	6.81	164.9	354.80	0.0110	0.0025	0.1090	I	50.8900					3.472	1.12	10.290	0.9006 4.890		0.300	0.1280		0.0020		
EL100333-040	10/20/10	MM-V-3a-4	0.1310	0.0125	0.003	0.0045	-	6.72	147.4	339.50	0.0160	0.0025	0.1000		44.9100	-				2.836	0.88	8.050	0.7032 7.470		0.190	0.1110		0.0030		-
EL100333-041 EL100333-042	10/20/10	MM-V-3a-5 MM-V-3b-1	0.0590	0.0125	0.003	0.0045	-	6.58	114.2	288.60	0.0290	0.0025	0.0810		37.6900					1.698	0.54	6.710	0.2788 7.940		0.140	0.0910		0.0030		-
EL100333-043	10/20/10	MM-V-3b-2	0.0750	0.0125	0.003	0.0045	-	7.01	109.5	243.50	0.0310	0.0025	0.0600	1	31.1500					1.183	0.79	6.530	0.1805 4.440		0.190	0.0780	·	0.0020		-
EL100333-044	10/20/10	MM-V-3b-3	0.0560	0.0125	0.003	0.0045		6.89	117.1	267.20	0.0290	0.0025	0.0660		34.9900	-				1.571	0.51	6.550	0.2622 5.300		0.150	0.0830		0.0020		-
EL100333-045	10/20/10	MM-V-3b-4	0.0300	0.0125	0.003	0.0045	-	6.79	112.6	266.80	0.0370	0.0025	0.0610		36.5700	-				1.641	0.34	6.130	0.2554 5.690		0.130	0.0820		0.0030		-
EL100333-046	10/20/10	MM-V-30-5 MM-V-3c-1	0.0430	0.0125	0.003	0.0045		7.54	112.7	268.20	0.0350	0.0025	0.0620		35.8900	-	-			0.635	1.15	8.850	0.2320 3.070		1 390	0.0820		0.0020		-
EL100333-048	10/20/10	MM-V-3c-2	0.1550	0.0310	0.003	0.0045	-	7.01	148.3	312.50	0.0080	0.0025	0.0830	I	43.0300					2.344	0.78	8.240	0.6014 3.740		0.250	0.1060		0.0020		
EL100333-049	10/20/10	MM-V-3c-3	0.2110	0.0310	0.003	0.0045	-	6.85	150.4	324.70	0.0170	0.0025	0.0920] -]	44.2900	-				2.262	0.67	8.480	0.4888 3.970		0.270	0.1100		0.0020		-
EL100333-050	10/20/10	MM-V-3c-4	0.0740	0.0125	0.003	0.0045	-	6.71	126.6	289.50	0.0160	0.0025	0.0850		39.4300					2.168	0.49	7.490	0.3510 4.240		0.190	0.0980		0.0010		-
EL100333-031	10/20/10	MM-NV-1a-1	0.0270	0.0125	0.003	0.0045		7.85	133.4	279.20	0.0210	0.0025	0.0810		36 5100					0.014	1.31	10.870	0.0029 5.220		2.060	0.1060		0.0020		
EL100333-055	10/20/10	MM-NV-1a-0	0.0100	0.0125	0.003	0.0440																								-
EL100333-056	10/20/10	MM-NV-1a-2	0.0130	0.0125	0.003	0.0110		7.50	134.9	293.90	0.0190	0.0025	0.0650		38.1100					0.099	1.32	10.800	0.0517 4.990		1.810	0.1070		0.0020		
EL100333-057	10/20/10	MM-NV-1a-3	0.0380	0.0125	0.003	0.0045	-	7.11	145.2	306.80	0.0210	0.0025	0.0750		40.9700					0.221	1.50	10.230	0.1392 4.300		0.720	0.1090		0.0020		
EL100333-058	10/20/10	MM-NV-1a-4 MM-NV-1a-5	0.0290	0.0125	0.003	0.0045		6.91	108.1	351.20	0.0230	0.0025	0.0930		48.7100	-	-			0.257	1.96	10.970	0.3222 4.230		0.350	0.1240		0.0040		-
EL100333-060	10/20/10	MM-NV-1b-0	0.0200	0.0125	0.003	0.0120	-					-																		-
EL100333-061	10/20/10	MM-NV-1b-1	0.0180	0.0125	0.003	0.0100	- 1	7.43	130.5	283.10	0.0270	0.0025	0.0640		37.9300					0.210	1.24	10.760	0.0798 4.990		1.470	0.1050		0.0020		
EL100333-062	10/20/10	MM-NV-1b-2	0.0410	0.0125	0.003	0.0045	-	7.10	107.5	232.50	0.1230	0.0025	0.0510		31.6100	-				0.879	0.75	6.990	0.1524 3.760		0.400	0.0800		0.0030		-
EL100333-065	10/20/10	MM-NV-10-3 MM-NV-1b-4	0.0360	0.0125	0.003	0.0045		6.90	110.1	234.80	0.1370	0.0025	0.0530		34 5300	-	-			1.032	0.56	7.020	0.1420 5.580		0.340	0.0810		0.0040		-
EL100333-065	10/20/10	MM-NV-1b-5	0.0200	0.0125	0.003	0.0045					0.4810	0.0025	0.0490	1	30.6900					0.986	0.20	6.150	0.0794 2.310	·	0.310	0.0720		0.0030		
EL100333-066	10/20/10	MM-NV-1c-0	0.0025	0.0125	0.003	0.0045	-															·								
EL100333-067	10/20/10	MM-NV-1c-1	0.0080	0.0125	0.003	0.0100	-	7.75	129.6	284.90	0.0150	0.0025	0.0600		35.9900					0.037	1.29	10.850	0.0018 4.990		2.040	0.1050		0.0030		
EL100333-069	10/20/10	MM-NV-1c-3	0.1340	0.0125	0.003	0.0045	_	6.86	162.5	337.10	0.0130	0.0023	0.0730		47 7100	-				2.108	1.30	10 740	0.4386 4.510		0.310	0.1080		0.0030		-
EL100333-070	10/20/10	MM-NV-1c-4	0.0720	0.0125	0.003	0.0045	-	6.78	162.0	333.70	0.0810	0.0025	0.0770	I	48.4700					2.736	0.81	10.630	0.2102 4.030		0.200	0.1150		0.0030		
EL100333-071	10/20/10	MM-NV-1c-5	0.0340	0.0125	0.003	0.0045	-				0.0340	0.0025	0.0630		40.3500					2.178	0.61	7.940	0.1938 3.450		0.160	0.0950		0.0030		
EL100333-072	10/20/10	MM-NV-2a-0	0.0090	0.0125	0.003	0.0100	-	7.02	120.4		0.0100	0.0025	0.0590		37.1900	-				0.036	1.31	11.200	0.0045 5.170		2.120	0.1080		0.0030		
EL100333-074	10/20/10	MM-NV-2a-2	0.0090	0.0125	0.003	0.0200		7.31	109.6	245.10	0.0190	0.0025	0.0010		32.2700	_	-		_	0.047	0.96	7.230	0.0602 5.190	- 2 - 2	1.040	0.0820		0.0010		-
EL100333-075	10/20/10	MM-NV-2a-3	0.0120	0.0125	0.003	0.0045	-	7.21	104.8	244.90	0.0760	0.0025	0.0420	1 1	33.5500	-				0.164	0.66	5.490	0.0357 6.660		0.370	0.0760		0.0010		-
EL100333-076	10/20/10	MM-NV-2a-4	0.0090	0.0125	0.003	0.0045	-	7.00	117.6	302.20	0.0830	0.0025	0.0500		39.2900	-				0.760	0.41	5.250	0.0781 10.980		0.150	0.0850		0.0030		
EL100333-077	10/20/10	MM-NV-2a-5 MM NV 2b 0	0.0060	0.0125	0.003	0.0045	-					0.0025								0.036	1.20	-	0.0021 5.170		2 080			0.0005		-
EL100333-079	10/20/10	MM-NV-2b-1	0.0060	0.0125	0.003	0.0090		7.90	129.5	284.20	0.0100	0.0025	0.0600		37.3500	_	-		_	0.033	1.32	11.170	0.0015 5.240		2.110	0.1080		0.0020		-
EL100333-080	10/20/10	MM-NV-2b-2	0.0160	0.0125	0.003	0.0045	- 1	7.51	133.6	289.70	0.0130	0.0025	0.0550	1 - 1	39.0500	-				0.269	1.10	10.290	0.0450 5.670		1.380	0.1030		0.0020		-
EL100333-081	10/20/10	MM-NV-2b-3	0.0390	0.0125	0.003	0.0045	-	7.16	117.3	260.70	0.0610	0.0025	0.0440		36.4700	-				0.653	0.54	6.270	0.0854 6.560		0.310	0.0820		0.0030		-
EL100333-082 EL100333-083	10/20/10	MM-NV-20-4 MM-NV-2b-5	0.0090	0.0125	0.003	0.0045		7.13	129.9	302.20	0.1940	0.0025	0.0480		43.6500	-	-			0.932	0.34	5.760	0.0608 9.220		0.210	0.0910		0.0020		-
EL100333-084	10/20/10	MM-NV-2c-0	0.0100	0.0125	0.003	0.0045	-																							
EL100333-085	10/20/10	MM-NV-2c-1	0.0050	0.0125	0.003	0.0110	-	7.88	129.4	284.20	0.0150	0.0025	0.0600		36.9100					0.037	1.31	11.090	0.0019 5.170		2.100	0.1080		0.0020		
EL100333-086	10/20/10	MM-NV-2c-2	0.0210	0.0125	0.003	0.0045		7.24	137.4	302.60	0.0160	0.0025	0.0500	· · ·	40.7300				-	0.082	0.88	8.150	0.0228 0.550		0.420	0.0940		0.0020		-
EL100333-087	10/20/10	MM-NV-2c-3 MM-NV-2c-4	0.0680	0.0125	0.003	0.0045		7.05	157.7	322.20	0.0400	0.0025	0.0530		52 0900	-	-			0.715	0.67	8 360	0.1333 11 720		0.240	0.0950		0.0020		-
EL100333-089	10/20/10	MM-NV-2c-5	0.0210	0.0125	0.003	0.0045	-				0.0310	0.0025	0.0520	1	46.2300					0.673	0.47	7.070	0.0491 11.720	·	0.140	0.0940		0.0020		
EL100333-090	10/20/10	MM-NV-3a-0	0.0090	0.0125	0.003	0.0100	-																							
EL100333-091	10/20/10	MM-NV-3a-1 MM NV 2a 2	0.0070	0.0125	0.003	0.0045	-	7.91	130.9	282.80	0.0180	0.0025	0.0600		36.7500					0.043	1.30	8.080	0.0029 5.110		2.100	0.10/0		0.0020		
EL100333-093	10/20/10	MM-NV-3a-3	0.0360	0.0125	0.003	0.0130	-	7.06	111.0	259.80	0.0290	0.0025	0.0540	1	34.1300					0.830	0.80	6.020	0.1308 7.570		0.310	0.0800	·	0.0020		
EL100333-094	10/20/10	MM-NV-3a-4	0.0570	0.0125	0.003	0.0045	- 1	7.04	142.0	247.80	0.0390	0.0025	0.0620]	44.6700					1.214	0.70	6.600	0.1667 13.010		0.230	0.0980		0.0010		
EL100333-095	10/20/10	MM-NV-3a-5	0.0180	0.0125	0.003	0.0045	-				0.0380	0.0025	0.0520		42.4900	-				1.118	0.49	4.950	0.1386 15.880		0.140	0.0870		0.0020		
EL100333-096	10/20/10	MM-NV-3b-1 MM NV 2b 2	0.0070	0.0125	0.003	0.0045	-	7.84	129.3	285.30	0.0130	0.0025	0.0600		36.8300					0.040	1.51	8 760	0.0026 5.200		2.070	0.10/0		0.0010		
EL100333-098	10/20/10	MM-NV-3b-3	0.0560	0.0125	0.003	0.0045	-	7.03	110.9	248.10	0.0130	0.0025	0.0620	7	31.7900					1.028	0.86	7.000	0.1212 6.260		0.400	0.0820		0.0010		
EL100333-099	10/20/10	MM-NV-3b-4	0.0320	0.0125	0.003	0.0045	-	6.80	121.1	283.30	0.0140	0.0025	0.0740	- 1	35.2500					1.392	0.72	6.450	0.2112 9.680		0.170	0.0880		0.0030		
EL100333-100	10/20/10	MM-NV-3b-5	0.0210	0.0125	0.003	0.0045	-	6.87	128.7	320.30	0.0240	0.0025	0.0770		39.4100					1.324	0.61	6.440	0.1563 13.560		0.190	0.0950		0.0020		-
EL100333-101 EL100333-102	10/20/10	MM-NV-3c-0b	0.0070	0.0125	0.003	0.0045		7.85	129.3	284 10	0.0100	0.0025	0.0610		37,1700	-			-	0.053	1 32	111 130	0.0009 5 240		2.090	0.1080		0.0100		-
EL100333-103	10/20/10	MM-NV-3c-1	0.0060	0.0125	0.003	0.0120	- 1	7.82	128.6	282.50	0.0080	0.0025	0.0600	1	36.8900					0.030	1.33	11.070	0.0021 5.240		2.100	0.1080		0.0010		
EL100333-104	10/20/10	MM-NV-3c-2	0.0890	0.0125	0.003	0.0045	-	7.12	136.0	296.70	0.0100	0.0025	0.0720		39.3300					1.204	1.15	8.320	0.2736 6.670		0.570	0.1010		0.0030		
EL100333-105	10/20/10	MM-NV-3c-3	0.0610	0.0125	0.003	0.0045		6.95	124.6	285.10	0.0160	0.0025	0.0690		37.0100					1.616	0.88	7.150	0.1660 8.380		0.440	0.0930		0.0040		-
LL100355-100	10/20/10	ivitvi-is v-50-4	0.0500	0.0123	0.003	0.0045	-	-	-	-	0.0190	0.0025	1 0.0710	-	50.1500	-	-		-	1.3/9	0.55	0.270	0.1/30 11.380		0.320	0.0000		0.0020		-
June samples: all se	rface water																													
Sample ID code (Ju	ly to October): Site	MM = Marchmont Mar	sh) - Plot Type (V =	Vegetated; NV = No	on-Vegetated) -	- Plot and Pe	eper # - Dept	h (0b = 30-2	0 cm above sed	ment-water interface	; 0 = 20-10 c	cm above se	diment-water	r interface; I	1 = 10-0 cm	above sedim	ent-water inter	rface; 2 = 0-1	0 cm belov	v sediment-v	ater interfa	ce; 3 = 10-2	20 cm below sediment-w	ater interface; 4 = 20	0-30 cm below	sediment-w	ater interface; 5	= 30-40 cm be	low sediment-w	vater interface; 6
Value in grey box	= parameter not an:	alvzed																												

Appendix A Marchmont Marsh Data

Table A.1.6 - Marchmont Marsh, Water Sample Analytical Results, June to October

															Paramete	r / Metho	d Detection	n Limit / U	Units														
			Total	Phosphate PO P	Nitrite	Nitrate	DOC	рН	Total Alkalinity	Conductivity										Total	Metals										1	Reactive Silicates	Chlorophyll
			r	r0 ₄ -r	NO ₂ -N	1403-14			as CaCO3		Al	As	Ba	Be	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	Pb	S	Sr	Ti	V	Zn	SiO ₂	а
			0.0050	0.0250	0.006	0.0090	0.50	n/a	1.0	0.50	0.0050	0.0050	0.0030	0.002	0.0050	0.0010	0.010	0.002	0.002	0.002	0.10	0.010	0.0002	0.010	0.002	0.0050	0.050	0.0050	0.010	0.006 0.	.0010	0.250	0.2
Lab ID	Sample Date	Sample ID	mg/L	mg/L	mg/L	mg/L	mg/L	n/a	mg/L	uS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L n	ng/L	mg/L	$\mu g/L$
Value in grey font =	Value half of Detecti	ion Limit (result < Deter	tion Limit)																														

Table A.1.7 - Marchmont Marsh, Sediment Sample Analytical Results

													Paramet	er / Meth	nod Dete	ction Limi	t / Units													
			Percent	Total Recoverable	рН	Cond-										1	Fotal Reco	verable M	etals											
			Moisture	Phosphorus		ucuvity	Al	As	Ba	Be	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Mo	Na	Ni	Pb	S	Sb	Se	Sr	Ti	V	Zn
			0.00	3.20	n/a	1.0	1.20	2.00	2.00	0.04	0.04	0.08	0.20	0.08	0.20	0.20	0.40	0.20	0.04	2.00	0.40	0.20	1.00	1.20	2.00	2.00	0.40	2.00	0.40	0.20
Lab ID	Sample Date	Sample ID	%	µg/g	n/a	uS/cm	µg/g	µg/g	ug/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g
EL120175-006	06/29/10	MMS2-Jun-30	326.21	779.50	6.42	157.8	12794.00	1.00	181.24	0.35	12135.50	3.44	6.80	24.84	18.17	16041.60	1144.41	3858.45	210.89	1.00	298.99	12.39	53.38	8380.31	1.00	1.00	32.37	431.14	32.19	128.69
EL120175-005	10/20/10	MM-Oct-10	98.96	234.11	6.53	152.7	5364.11	1.00	35.59	0.09	3842.29	1.26	2.29	6.86	4.34	8221.10	241.82	1141.02	57.60	1.00	208.72	4.03	8.84	657.86	1.00	1.00	10.58	214.14	17.22	21.59

Notes Sample ID code: Site (MM = Marchmont Marsh) - Date Value in grey font = Value half of Detection Limit (result < Detection Limit)

Table A.1.8 - Marchmont Marsh, Wild Rice Vegetation Analytical Results

														Para	neter / M	ethod De	etection Li	mit / Units											
					Dry Plant	P in Plant	N in Plant										Metals	in Plant T	issue										
					(subsample	Tissue	Tissue	Al	As	Ba	Be	Ca	Cd	Co	Cr	Cu	Fe	К	Mg	Mn	Na	Ni	Pb	s	Si	Sr	Ti	v	Zn
					analyzed)	0.80	0.01	5.00	5.00	10.00	0.04	0.10	0.40	0.10	0.25	0.02	0.10	5.00	0.10	0.01	0.10	0.03	2.50	3.00	0.50	0.10	0.95	0.05	0.10
Lab ID	Sample Date	Sample ID	Plant Part	# of Plants	g	µg/g	% N	µg/g	µg/g	µg/g	µg/g	μg/g	µg/g	µg/g	μg/g	µg/g	µg/g	µg/g	µg/g	μg/g	µg/g	µg/g	µg/g	μg/g	μg/g	μg/g	μg/g	µg/g	µg/g
EL100061-005	08/26/10	MM-AVEG-I-1	Inflorescence	3	4.7	2099.19	0.63	5.82	2.50	5.00	0.02	1162.78	0.20	0.05	0.330	1.88	65.94	9558.50	1397.04	59.40	576.97	2.790	1.25	954.07	128.36	2.99	0.475	0.025	8.31
EL100061-006	08/26/10	MM-AVEG-S-2	Stem	3	7.52	1986.19	0.38	11.80	2.50	5.00	0.02	707.78	0.20	0.05	1.940	0.77	96.09	24663.50	1023.04	127.45	11073.40	1.530	1.25	859.57	186.56	3.28	0.475	0.025	4.49
EL100061-007	08/26/10	MM-AVEG-L-3	Leaf	3	10.02	1358.19	0.55	91.25	2.50	43.84	0.02	6403.28	0.20	0.16	0.630	1.42	453.39	10858.50	1902.54	1348.50	12058.40	0.870	1.25	1258.57	162.31	18.12	3.990	0.420	6.26
EL100061-008	08/26/10	MM-AVEG-R-4	Root	3	11.34	1209.69	0.57	3232.50	2.50	96.25	0.09	7283.28	0.20	2.42	12.450	9.19	10179.30	3099.50	2243.04	329.35	3243.97	5.060	12.26	5468.07	194.21	21.86	122.500	15.610	45.59
EL100061-009	09/25/10	MM-SVEG-I-5	Inflorescence	20	8.92	1183.19	0.50	60.05	2.50	10.04	0.02	2408.28	0.20	0.05	0.560	0.80	207.34	6248.50	1323.54	178.35	1120.47	1.550	1.25	725.07	151.36	6.93	2.800	0.200	7.46
EL100061-004	09/25/10	MM-SVEG-S-6	Stem	20	37.09	1346.69	0.52	90.10	2.50	16.50	0.02	2290.78	0.20	0.05	2.470	0.86	369.48	17128.50	1453.54	355.15	10153.40	1.600	1.25	1152.07	144.96	7.67	4.310	0.300	7.99
EL100061-010	09/25/10	MM-SVEG-L-7	Leaf	20	16.19	1372.19	0.86	781.00	2.50	79.20	0.02	9193.28	0.20	0.66	2.450	2.85	2264.39	7173.50	2347.54	1898.50	7183.47	2.000	2.79	1858.57	169.21	24.55	24.980	3.720	17.44
EL100061-011	09/25/10	MM-SVEG-R-8	Root	20	21.03	1005.69	0.59	2202.00	2.50	88.30	0.06	6453.28	0.20	1.84	5.420	8.02	10454.30	3633.50	1744.04	649.50	4403.97	3.330	9.96	4303.07	158.56	20.08	79.400	13.840	33.06
Note Sample ID code: Site	(MM = Marchmor	at Marsh) - Month & San	nnle Type (A = Augu	st: S = Sentember:	VFG = Vesetat	ion) - Plant Pa	rt (I = Inflo	rescence: S -	= Stem: L = Lea	R = Root) - Same	de #																		

Value in grey font = Value half of Detection Limit (
Analytical Parameter	Month	Plot Trend
	July	V lower concentration than NV ($P = 0.026$).
Total D	August	No significant trend between plots.
I Otal P	September	NV lower concentration than V ($P = 0.028$).
	October	NV lower concentration than V ($P = <0.001$).
	July	Mean concentrations less than MDL.
Phosphate	August	Mean concentrations less than MDL.
(PO_4-P)	September	Mean concentrations less than MDL.
	October	NV lower concentration than V ($P = 0.001$).
	July	NV lower concentration than V ($P = 0.001$).
Nitrate	August	NV lower concentration than V ($P = <0.001$).
$(1NO_3-1N)$	September	No significant trend between plots.
	October	V lower concentration than NV ($P = 0.033$).
	July	No significant trend between plots.
nII	August	V lower concentration than NV ($P = <0.001$).
рп	September	V lower concentration than NV ($P = <0.001$).
	October	V lower concentration than NV ($P = <0.001$).
Total	July	V lower concentration than NV ($P = 0.004$).
Alkalinity	August	No significant trend between plots.
(as	September	No significant trend between plots.
CaCO ₃)	October	No significant trend between plots.
	July	V lower concentration than NV ($P = 0.005$).
Cond-	August	No significant trend between plots.
uctivity	September	No significant trend between plots.
	October	No significant trend between plots.
DOG	July	No significant trend between plots.
DOC	August	V lower concentration than NV ($P = <0.001$).
Reactive Silicates	July	No significant trend between plots.
	July	No significant trend between plots.
Total Al	August	No significant trend between plots.
I Otal Al	September	V lower concentration than NV ($P = 0.032$).
	October	V lower concentration than NV ($P = <0.001$).
	July	No significant trend between plots.
Total Ba	August	NV lower concentration than V ($P = <0.001$).
i otal Da	September	NV lower concentration than V ($P = <0.001$).
	October	NV lower concentration than V ($P = <0.001$).

 Table A.1.9 – Marchmont Marsh, Water Data Trends Between Plots.

Notes: V = Vegetated Plots; NV = Non-Vegetated Plots; MV = Mixed Vegetation Plot

Analytical Parameter	Month	Plot Trend
	July	V lower concentration than NV ($P = 0.002$).
Total Ca	August	NV lower concentration than V ($P = 0.047$).
	September	NV lower concentration than V ($P = 0.003$).
	October	No significant trend between plots.
	July	No significant trend between plots.
Total Fa	August	No significant trend between plots.
I otal re	September	NV lower concentration than V ($P = 0.036$).
	October	NV lower concentration than V ($P = <0.001$).
	July	No significant trend between plots.
Total V	August	No significant trend between plots.
I otal K	September	V lower concentration than NV ($P = 0.011$).
	October	No significant trend between plots.
	July	No significant trend between plots.
Total Ma	August	NV lower concentration than V ($P = <0.001$).
I otal ivig	September	NV lower concentration than V ($P = 0.004$).
	October	No significant trend between plots.
	July	No significant trend between plots.
Total Mn	August	NV lower concentration than V ($P = 0.009$).
	September	NV lower concentration than V ($P = 0.001$).
	October	NV lower concentration than V ($P = <0.001$).
	July	V lower concentration than NV ($P = 0.034$).
Total Na	August	V lower concentration than NV ($P = 0.001$).
I otal Ina	September	V lower concentration than NV ($P = <0.001$).
	October	V lower concentration than NV ($P = <0.001$).
	July	No significant trend between plots.
Total S	August	NV lower concentration than V ($P = 0.034$).
Total S	September	NV lower concentration than V ($P = 0.047$).
	October	V lower concentration than NV ($P = <0.001$).
	July	V lower concentration than NV ($P = 0.042$).
Total Sr	August	NV lower concentration than V ($P = 0.046$).
	September	NV lower concentration than V ($P = <0.001$).
	October	No significant trend between plots.
	July	NV lower concentration than V ($P = 0.011$).
Total 7 2	August	No significant trend between plots.
	September	No significant trend between plots.
	October	NV lower concentration than V ($P = <0.001$).

Table A.1.9 – Marchmont Marsh, Water Data Trends Between Plots.

Notes: V = Vegetated Plots; NV = Non-Vegetated Plots; MV = Mixed Vegetation Plot

Analytical Parameter	Plot	Monthly Trend
Total D	V	No significant trend between months.
I Otal P	NV	No significant trend between months.
Phosphate	V	October concentration significantly greater than all other months ($P = 0.001$).
(PO_4-P)	NV	October concentration significantly greater than all other months ($P = 0.001$).
Nitrate	V	Concentration increasing between July and August ($P = <0.001$). Concentration decreasing between August vs. September and October ($P = <0.001$).
(NO ₃ -N)	NV	Concentration increasing between July and August ($P = 0.004$). Concentration decreasing between August vs. September and October ($P = <0.001$).
ъU	V	Value decreasing between July and October ($P = 0.020$).
рп	NV	No significant trend between months.
Total	V	No significant trend between months.
(as CaCO ₃)	NV	No significant trend between months.
Cond-	V	No significant trend between months.
uctivity	NV	No significant trend between months.
DOCA	V	No significant trend between months.
DOC	NV	No significant trend between months.
Total Al	V	No significant trend between months.
I otal Al	NV	No significant trend between months.
Total Da	V	No significant trend between months.
I otal Da	NV	No significant trend between months.
Total Ca	V	Concentration increased between July vs. August ($P = 0.005$) and September ($P = 0.002$).
Total Ca	NV	Concentration decreased between July vs. August ($P = 0.003$) and September ($P = 0.001$).
Total Fa	V	No significant trend between months.
Total PC	NV	No significant trend between months.
Total K	V	No significant trend between months.
Total K	NV	No significant trend between months.
Total Mg	V	Concentration increased between August ($P = 0.046$) and September ($P = 0.047$) vs. October.
-	NV	No significant trend between months.
Total Mr	V	No significant trend between months.
	NV	No significant trend between months.

Table A.1.10 – Marchmont Marsh, Water Data Trends Between Months.

Notes: V = Vegetated Plots; NV = Non-Vegetated Plots; MV = Mixed Vegetation Plot; ^A = measured in June, July and August

Analytical Parameter	Plot Mo	onthly Trend
	V No	significant trend between months.
Total Na	V No	significant trend between months.
	V Co	ncentration decreased between September and October ($P = 0.025$).
Total S	N Cor	ncentration increased between September and October ($P = 0.031$).
	V Co	ncentration increased between July and September ($P = 0.005$).
Total Sr	N Cor	ncentration decreased between July and September ($P = 0.004$).
	V Cor	ncentration increased between September and October ($P = 0.045$).
Total Zn	V Corvs.	ncentration decreased between July, August and September ($P = <0.001$) October.
i otai Zli	N Cor V vs.	ncentration decreased between July, August and September ($P = <0.001$) October.

 Table A.1.10 – Marchmont Marsh, Water Data Trends Between Months.

Notes: V = Vegetated Plots; NV = Non-Vegetated Plots; MV = Mixed Vegetation Plot

Table A.1.11 - M	larchmo	nt Marsh	, Water S	Sample S	tatistical	Analysis									
		1	Non-Vege (All	tated vs. V	egetated	Data									
		Data Test	$(P \ge 0.05)$)	AN	JOVA (P	< 0.05)								
Parameter	I - Marchmont Marsh, Water Sample Statistical Analysis Non-Vegetated vs. Vegetated Data (All months, all depths) Data Test (P≥ 0.05) Normality Equal Variance Result P F P Signifi pass 0.658 fail <0.050 3.667 0.005 Y te fail <0.050														
	Kesuit	0.(59	feil	-0.050	2 ((7	0.005	Significant								
I otal P	pass	0.658	Tan	<0.050	3.00/	0.005	Ŷ								
Phosphate PO ₄ -P	fail	<0.050	pass	0.199	12.836	< 0.001	Y								
Nitrate NO3-N	fail	<0.050	pass	0.385	25.572	<0.001	Y								
DOC	pass	0.973	pass	0.471	3.226	0.110	Ν								
рН	pass	0.079	pass	0.234	16.633	< 0.001	Y								
Total Alkalinity as CaCO ₃	pass	0.204	pass	0.388	2.518	0.036	Y								
Conductivity	pass	0.083	pass	0.582	3.201	0.011	Y								
Total Al	pass	0.974	pass	0.137	6.223	< 0.001	Y								
Total Ba	fail	<0.050	pass	0.195	9.465	<0.001	Y								
Total Ca	pass	0.471	pass	0.507	7.693	<0.001	Y								
Total Fe	pass	0.539	pass	0.981	4.550	0.001	Y								
Total K	fail	<0.050	pass	0.062	0.350	0.924	Ν								
Total Mg	pass	0.866	pass	0.574	4.954	<0.001	Y								
Total Mn	pass	0.702	pass	0.903	13.679	<0.001	Y								
Total Na	fail	< 0.050	fail	< 0.050	6.718	< 0.001	Y								
Total S	pass	0.372	fail	< 0.050	3.524	0.006	Y								
Total Sr	pass	0.350	pass	0.992	6.553	< 0.001	Y								
Total Zn	pass	0.973	pass	0.317	50.360	< 0.001	Y								
Reactive Silicates SiO ₂	pass	0.869	pass	0.884	0.010	0.924	Ν								

Notes

All months = July, August, September and October; All depths = 10-0 cm above sediment-water interface, 0-10 cm, 10-20 cm, 20-30 cm and 30-40 cm below sediment-water interface

Significant based on P value: Y = Yes; N = No

Value -- in grey box = data not available / incalculable

I able A.1.1	2 - Marchmo	ont Mars	h, Water	Sample	Statistica	u Analysi	s by Mo	nth				
			ľ	Non-Vege	tated vs. V	Vegetated	Data					
			D.4. T.4	(D > 0.05	(All dept	ths)						
		Norr	Data Test	$P \ge 0.05$) Varianco	AN	IOVA (P	≤ 0.05)				
Parameter	Month	Result	nanty P	Result	P	F	р	Significant				
i ai aincici	July	pass	0.609	pass	0.980	7 370	0.026	Y				
T.4.1 D	August	pass	0.231	pass	0.996	0.855	0.382	N				
I otal P	September	pass	0.279	pass	0.656	7.127	0.028	Y				
	October	pass	0.986	pass	0.872	31.171	< 0.001	Y				
	July	fail	< 0.050	pass	1.000	0.400	0.545	y Month ta 				
Phosphate	August	fail		fail			sis by Month J Data P Significant 0.026 Y 0.382 N 0.028 Y 0.031 Y 0.545 N $$					
PO ₄ -P	September	fail		fail								
	October	pass	0.328	pass	0.920	22.460	0.001	Y				
Nitrata	July	pass	0.892	pass	0.1/8	22.426	0.001	Y				
NON	Sentember	pass	0.423	fail	<0.997	2 000	~0.001	N				
1103-11	October	nass	0.223	nass	1.000	6.626	0.033	Y				
	July	pass	0.763	pass	0.558	0.823	0.391	N				
DOG	August	pass	0.180	pass	0.558	30.838	< 0.001	Y				
DOC	September			·								
	October											
	July	pass	0.658	pass	0.484	4.324	0.076	Ν				
nH	August	pass	0.915	pass	0.744	42.375	< 0.001	Y				
P.1	September	pass	0.878	pass	0.830	27.356	< 0.001	Y				
	October	pass	0.827	pass	0.452	41.104	< 0.001	Y				
Total	July	pass	0.950	pass	0.651	17.004	0.004	Y				
Alkalinity	August	pass	0.246	pass	0.842	0.000	0.999	N				
s CaCO3	September	pass	0.131	pass	0.338	3.400	0.102	N				
5	October	pass	0.596	pass	0.186	0./41	0.005	N				
Condue-	July	pass	0.367	pass	0.274	13.880	0.005	Y N				
tivity	Sentembor	pass	0.231	pass	0.592	0.005	0.238	IN N				
uvity	October	pass	0.094	pass	0.392	1 018	0 343	N				
	July	pass	0.101	pass	0.721	3 977	0.081	N				
	August	pass	0.972	pass	0.648	1.682	0.231	N				
Total Al	September	pass	0.791	pass	0.693	6.718	0.032	Y				
	October	pass	0.925	pass	0.710	41.933	< 0.001	Y				
	July	pass	0.172	pass	0.277	2.953	0.124	N				
Total Ba	August	pass	0.380	pass	0.905	34.103	< 0.001	Y				
i otai Da	September	pass	0.691	pass	0.746	150.606	< 0.001	Y				
	October	pass	0.941	pass	0.867	25.491	< 0.001	Y				
	July	pass	0.298	pass	0.218	22.111	0.002	Y				
Total Ca	August	pass	0.904	pass	0.851	5.491	0.047	Y				
	September	pass	0.878	pass	0.889	17.507	0.003	Y				
	October	pass	0.175	pass	0.484	2.144	0.181	N				
	July	pass	0.550	pass	0.340	0.559	0.063	IN N				
Total Fe	Sentember	nass	0.575	pass	0.730	6 366	0.005	Y				
	October	pass	0.988	pass	0.970	39 281	<0.001	Y				
	July	pass	0.103	pass	0.574	0.045	0.838	N				
T () 17	August	pass	0.805	pass	0.788	0.170	0.691	N				
i otal K	September	pass	0.996	pass	0.938	10.748	0.011	Y				
	October	pass	0.802	pass	0.878	0.126	0.732	N				
	July	pass	0.146	pass	0.425	0.223	0.649	N				
Total Mg	August	pass	0.377	pass	0.669	26.837	< 0.001	Y				
	September	pass	0.654	pass	0.773	16.583	0.004	Y				
	October	pass	0.981	pass	0.827	1.594	0.242	N				
	July	pass	0.621	pass	0.220	5.867	0.085	N V				
Total Mn	August	pass	0.000	pass	0.029	22.076	0.009	I V				
	October	nase	0.577	pass	0.905	82 709	<0.001	V				
	July	pass	0.685	pass	0.170	6.478	0.034	Y				
T.4.11	August	pass	0.980	pass	0.858	24.980	0.001	Ŷ				
i otal Na	September	pass	0.889	pass	0.574	25.928	< 0.001	Y				
	October	pass	0.800	pass	0.628	25.785	< 0.001	Y				
	July	pass	0.455	pass	0.274	0.520	0.492	Ν				
Total S	August	pass	0.901	pass	0.648	6.500	0.034	Y				
- otal 5	September	pass	0.680	pass	0.683	5.474	0.047	Y				
	October	pass	0.813	pass	0.772	38.519	< 0.001	Y				
	July	pass	0.976	pass	0.986	5.832	0.042	Y				
Total Sr	August	pass	0.852	pass	0.879	5.545	0.046	Y				
	September	pass	0.583	pass	0.681	54.708	< 0.001	Y				
	October	pass	0.620	pass	0.907	0.017	0.899	N				
	July	pass	0.439	pass	0.445	10.838	0.0011	Y				
Total Zn	August	pass	0.793	pass	0.789	1.332	0.282	N				
	October	pass	0.776	pass	0.880	3.984	<0.001	IN V				
n .	Inly	pass	0.869	pass	0.410	0.010	0.924	N				
Reactive	August											
Silicates	September											
SIO ₂	October											

Notes All depts = 10-0 cm above sediment-water interface, 0-10 cm, 10-20 cm, 20-30 cm and 30-40 cm below sediment-water interface Significant based on P value: Y = Yes; N = No Value --- in grey box = data not available / incalculable

A.1 - Data Tables

Table A.1.13 - M	Iarchmont Mars	h, Wat	er Sam	ple Stat	tistical	Analysi	is by Plo	ot																								
				Α	ll Mont	hs				July vs	. August		Au	gust vs.	Septem	ber	Se	ptember	vs. Octob	ber	J	uly vs. S	eptembe	er		July vs.	October		A	agust vs	. October	r
		n	·	(/	All depth	is)				(All c	lepths)			(All c	lepths)			(All	depths)			(All d	epths)			(All d	epths)		<u> </u>	(All d	epths)	
		Norn	ata Test nality	Eq Veri	ual	ANO	VA (P≤	6.05)	Tukey (P≤	y Test 0.05)	T-T (P≤0	est .001)	Tukey (P≤)	7 Test 0.05)	T-1 (P≤0	est 0.001)	Tuke (P≤	y Test 0.05)	T-T (P≤0	fest 0.001)	Tuke (P≤	7 Test 0.05)	T-1 (P≤0	Fest 0.001)	Tukey (P≤	Test 0.05)	T-T (P≤0	est .001)	Tukey (P≤0	Test).05)	T-T (P≤0.	est .001)
Parameter	Plot	Result	р	Result	P	F	Р	Sig	Р	Sig	Р	Sig	Р	Sig	р	Sig	р	Sig	р	Sig	Р	Sig	р	Sig	р	Sig	р	Sig	Р	Sig	Р	Sig
T i I D	Non-Vegetated	pass	0.880	pass	0.068	2.640	0.085	N			0.335	N			0.893	N			0.038	N*			0.028	N*			0.002	N*			0.294	N
I otal P	Vegetated	pass	0.558	pass	0.077	2.415	0.104	N			0.364	Ν			0.847	N			0.028	N*			0.030	N*			0.002	N*			0.322	N
Phosphate	Non-Vegetated	fail	< 0.050	pass	0.169	11.376	< 0.001	Y	1.000	Ν	1.000	Ν	1.000	Ν	1.000	Ν	0.001	Y	0.010	N*	1.000	Ν	0.471	N	0.001	Y	0.010	N*	0.001	Y	0.010	N*
PO ₄ -P	Vegetated	fail	< 0.050	pass	0.234	11.084	< 0.001	Y	1.000	N	1.000	Ν	1.000	Ν	1.000	Ν	0.001	Y	0.010	N*	1.000	Ν	0.471	N	0.001	Y	0.010	N*	0.001	Y	0.010	N*
Nitrate	Non-Vegetated	pass	0.258	pass	0.287	18.931	< 0.001	Y	0.004	Y	0.013	N*	< 0.001	Y	0.001	Y	0.759	Ν	0.095	N	0.316	Ν	0.054	N	0.054	Ν	0.005	N*	< 0.001	Y	< 0.001	Y
NO ₃ -N	Vegetated	fail	< 0.050	pass	0.364	19.236	< 0.001	Y	< 0.001	Y	0.005	N*	< 0.001	Y	0.002	N*	0.729	N	0.095	N	0.782	Ν	0.144	N	0.234	N	0.004	N*	< 0.001	Y	< 0.001	Y
DOC	Non-Vegetated	pass	0.973	pass	0.471	3.226	0.110	N			0.110	Ν																				
	Vegetated	pass	0.617	pass	0.818	3.403	0.102	N			0.102	Ν																				
pH	Non-Vegetated	pass	0.123	pass	0.338	2.928	0.068	N			0.759	N			0.925	N			0.026	N*			0.734	N			0.184	N			0.026	N*
	Vegetated	pass	0.445	pass	0.065	4.186	0.023	Y	0.764	N	0.316	N	0.992	N	0.689	N	0.076	N	0.040	N*	0.899	N	0.481	N	0.020	Y	0.027	N*	0.127	N	0.057	N
Total Alka-	Non-Vegetated	pass	0.331	pass	0.140	2.652	0.086	N			0.046	N*			0.441	N			0.204	N			0.012	N*			0.324	N			0.474	N
minty as CaCO ₃	Carbon Vegetated pass 0.16 pass 0.46 N n n 0.18 N n n 0.32 N n n 0.33 N n n 0.904 uctive Non-Vegetated pass 0.151 pass 0.156 N n 0.904 N															N																
Conductivity	Non-Vegetated	pass	0.151	pass	0.610	2.009	0.156	N			0.056	N			0.598	N			0.434	N			0.040	N*			0.293	N			0.623	N
	Vegetated	pass	0.558	pass	0.928	2.177	0.131	N			0.159	N			0.524	N			0.752	N			0.065	N			0.077	N N#			0.696	N Nă
Total Al	Non-Vegetated	pass	0.479	pass	0.112	1.002	0.137	IN N			0.900	IN N			0.247	IN N			0.735	IN N			0.251	IN N			0.021	IN *			0.027	N ⁺
	Vegetated	fail	<0.050	pass	0.233	0.258	0.175	IN N			0.694	N			0.298	N			0.034	IN N			0.278	IN N			0.025	N.			0.037	IN N
Total Ba	Non-vegetated	nase	0.870	pass	0.181	2.616	0.087	N			0.000	N			0.028	N			0.493	N			0.019	N*			0.373	N			0.294	N
	Vegetated	pass	0.640	nass	0.322	8 988	0.001	Y	0.003	Y	0.007	N*	0.967	N	0.554	N	0.211	N	0.030	N*	0.001	Y	0.003	N*	0.076	N	0.060	N	0.409	N	0.104	N
Total Ca	Vegetated	pass	0.465	pass	0.829	8 424	0.001	Y	0.005	Y	0.004	N*	0.987	N	0.753	N	0.097	N	0.032	N*	0.002	Y	0.001	Y	0.271	N	0.092	N	0.172	N	0.084	N
	Non-Vegetated	pass	0.100	pass	0.831	0.838	0.493	N			0.748	N			0.579	N			0.606	N			0.456	N			0.166	N			0.168	N
Total Fe	Vegetated	pass	0.065	pass	0.904	1.503	0.252	N			0.239	Ν			0.833	N			0.637	N			0.173	N			0.024	N*			0.460	N
	Non-Vegetated	pass	0.219	pass	0.196	0.198	0.896	N			0.713	Ν			0.838	N			0.456	N			0.279	Ν			0.777	Ν			0.848	Ν
Total K	Vegetated	fail	< 0.050	fail	< 0.050	0.128	0.942	N			0.936	Ν			0.777	N			0.336	N			0.232	N			0.881	Ν			0.891	N
T (114	Non-Vegetated	pass	0.905	pass	0.403	2.011	0.153	Ν			0.504	Ν			0.658	Ν			0.020	N*			0.384	Ν			0.386	Ν			0.009	N*
I otal Mg	Vegetated	pass	0.551	pass	0.843	5.257	0.010	Y	0.066	Ν	0.031	N*	1.000	Ν	0.988	Ν	0.047	Y	0.016	N*	0.068	Ν	0.046	N*	0.998	N	0.843	Ν	0.046	Y	0.008	N*
TetelMa	Non-Vegetated	pass	0.171	pass	0.737	1.906	0.169	Ν			0.939	Ν			0.188	Ν			0.662	N			0.254	Ν			0.097	Ν			0.035	N*
1 otal Min	Vegetated	fail	< 0.050	pass	0.726	3.092	0.057	Ν			0.166	Ν			0.481	Ν			0.676	Ν			0.039	N*			0.004	N*			0.226	Ν
Total No.	Non-Vegetated	pass	0.224	pass	0.078	0.904	0.461	N			0.316	Ν			0.496	N			0.485	Ν			0.457	N			0.312	N			0.980	Ν
Total Na	Vegetated	pass	0.468	pass	0.578	0.170	0.915	N			0.833	Ν			0.808	N			0.456	N			0.672	N			0.863	N			0.639	N
Total S	Non-Vegetated	pass	0.491	fail	< 0.050	3.295	0.048	Y	0.976	Ν	0.562	Ν	0.576	Ν	0.339	Ν	0.031	Y	0.036	N*	0.351	Ν	0.236	Ν	0.513	Ν	0.048	N*	0.302	Ν	0.005	N*
Total 5	Vegetated	pass	0.312	fail	< 0.050	3.686	0.034	Y	0.848	N	0.226	Ν	0.698	Ν	0.442	N	0.025	Y	0.035	N*	0.264	Ν	0.175	N	0.567	Ν	0.012	N*	0.187	Ν	0.007	N*
Total Sr	Non-Vegetated	pass	0.710	pass	0.944	6.261	0.005	Y	0.115	N	0.046	N*	0.334	Ν	0.105	Ν	0.045	Y	0.018	N*	0.004	Y	0.002	N*	0.614	Ν	0.270	Ν	0.651	Ν	0.315	Ν
rotar 54	Vegetated	pass	0.722	pass	0.879	5.856	0.007	Y	0.087	N	0.043	N*	0.506	N	0.178	N	0.067	N	0.019	N*	0.005	Y	0.002	N*	0.590	N	0.253	N	0.582	N	0.278	N
Total Zn	Non-Vegetated	pass	0.941	pass	0.401	39.120	< 0.001	Y	0.807	N	0.439	Ν	0.585	Ν	0.245	Ν	< 0.001	Y	< 0.001	Y	0.171	Ν	0.023	N*	< 0.001	Y	< 0.001	Y	< 0.001	Y	< 0.001	Y
	Vegetated	pass	0.901	pass	0.225	40.162	< 0.001	Y	0.996	N	0.852	Ν	0.390	N	0.188	N	< 0.001	Y	< 0.001	Y	0.285	N	0.032	N*	< 0.001	Y	< 0.001	Y	< 0.001	Y	< 0.001	Y
Reactive Sili- cates SiO ₂	Non-Vegetated Vegetated																															
Notes All depths = 10-0 cm a Sig = Significant based N* = T-Test only: No I Value in grey box =	bove sediment-water int on P value: Y = Yes; N based on P value ≤0.001, data not available / incal	erface, 0- = No , Yes base culable	10 cm, 10- d on P val	-20 cm, 20- lue ≤0.05	-30 cm an	d 30-40 cn	n below see	liment-wa	ter interfac	e																						

A.2 – Graphs

Figure A.2.1 – Marchmont Marsh, Total Phosphorus, water profiles by month. Mean values plotted with error bars depicting one standard error. Dashed/dotted line indicates sediment-water interface. ANOVA test (comparing both plots, depths: 10-0 cm above to 30-40 cm below sediment-water interface), results significant at $P \le 0.05$ (bold).

Figure A.2.2 – Marchmont Marsh, Phosphate PO₄-P, water profiles by month. Mean values plotted with error bars depicting one standard error. Dashed/dotted line indicates sediment-water interface. ANOVA test (comparing both plots, depths: 10-0 cm above to 30-40 cm below sediment-water interface), results significant at P \leq 0.05 (bold; "fail" result = test parameters not met).

Figure A.2.3 – Marchmont Marsh, Nitrate NO₃-N, water profiles by month. Mean values plotted with error bars depicting one standard error. Dashed/dotted line indicates sediment-water interface. ANOVA test (comparing both plots, depths: 10-0 cm above to 30-40 cm below sediment-water interface), results significant at P \leq 0.05 (bold).

A.2 - Graphs

Figure A.2.4 – Marchmont Marsh, Dissolved Organic Carbon, water profiles by month. Mean values plotted with error bars depicting one standard error. Dashed/dotted line indicates sediment-water interface. ANOVA test (comparing both plots, depths: 10-0 cm above to 30-40 cm below sediment-water interface), results significant at $P \le 0.05$ (bold).

Figure A.2.5 – Marchmont Marsh, pH, water profiles by month. Mean values plotted with error bars depicting one standard error. Dashed/dotted line indicates sediment-water interface. ANOVA test (comparing both plots, depths: 10-0 cm above to 30-40 cm below sediment-water interface), results significant at P \leq 0.05 (bold).

Figure A.2.6 – Marchmont Marsh, Total Alkalinity as CaCO₃, water profiles by month. Mean values plotted with error bars depicting one standard error. Dashed/dotted line indicates sediment-water interface. ANOVA test (comparing both plots, depths: 10-0 cm above to 30-40 cm below sediment-water interface), results significant at $P \le 0.05$ (bold).

Figure A.2.7 – Marchmont Marsh, Conductivity, water profiles by month. Mean values plotted with error bars depicting one standard error. Dashed/dotted line indicates sediment-water interface. Removed one outlier from Non-Vegetated September data (30-40 cm depth = 188 μ S/cm). ANOVA test (comparing both plots, no outliers removed, depths: 10-0 cm above to 30-40 cm below sediment-water interface), results significant at P≤ 0.05 (bold).

Figure A.2.8 – Marchmont Marsh, Total Aluminum, water profiles by month. Mean values plotted with error bars depicting one standard error. Dashed/dotted line indicates sediment-water interface. Removed two outliers from Non-Vegetated August data (40-50 cm depth = 3.08 mg/L; 30-40 cm depth = 1.755 mg/L) and one outlier from Vegetated August data (30-40 cm depth = 0.727 mg/L). ANOVA test (comparing both plots, no outliers removed, depths: 10-0 cm above to 30-40 cm below sediment-water interface), results significant at P ≤ 0.05 (bold).

Figure A.2.9 – Marchmont Marsh, Total Barium, water profiles by month. Mean values plotted with error bars depicting one standard error. Dashed/dotted line indicates sediment-water interface. Removed one outlier from Non-Vegetated July data (10-20 cm depth = 0.154 mg/L). ANOVA test (comparing both plots, no outliers removed, depths: 10-0 cm above to 30-40 cm below sediment-water interface), results significant at P \leq 0.05 (bold).

Figure A.2.10 – Marchmont Marsh, Total Calcium, water profiles by month. Mean values plotted with error bars depicting one standard error. Dashed/dotted line indicates sediment-water interface. ANOVA test (comparing both plots, depths: 10-0 cm above to 30-40 cm below sediment-water interface), results significant at $P \le 0.05$ (bold).

Figure A.2.11 – Marchmont Marsh, Total Iron, water profiles by month. Mean values plotted with error bars depicting one standard error. Dashed/dotted line indicates sediment-water interface. ANOVA test (comparing both plots, depths: 10-0 cm above to 30-40 cm below sediment-water interface), results significant at $P \le 0.05$ (bold).

Figure A.2.12 – Marchmont Marsh, Total Potassium, water profiles by month. Mean values plotted with error bars depicting one standard error. Dashed/dotted line indicates sediment-water interface. Removed one outlier from Vegetated October data (20-30 cm depth = 4.42 mg/L). ANOVA test (comparing both plots, no outliers removed, depths: 10-0 cm above to 30-40 cm below sediment-water interface), results significant at P \leq 0.05 (bold).

Figure A.2.13 – Marchmont Marsh, Total Magnesium, water profiles by month. Mean values plotted with error bars depicting one standard error. Dashed/dotted line indicates sediment-water interface. ANOVA test (comparing both plots, depths: 10-0 cm above to 30-40 cm below sediment-water interface), results significant at $P \le 0.05$ (bold).

Figure A.2.14 – Marchmont Marsh, Total Manganese, water profiles by month. Mean values plotted with error bars depicting one standard error. Dashed/dotted line indicates sediment-water interface. Removed one outlier from Vegetated September data (0-10 cm depth = 1.0704 mg/L). ANOVA test (comparing both plots, no outliers removed, depths: 10-0 cm above to 30-40 cm below sediment-water interface), results significant at P \leq 0.05 (bold).

A.2 - Graphs

Figure A.2.15 – Marchmont Marsh, Total Sodium, water profiles by month. Mean values plotted with error bars depicting one standard error. Dashed/dotted line indicates sediment-water interface. ANOVA test (comparing both plots, depths: 10-0 cm above to 30-40 cm below sediment-water interface), results significant at $P \le 0.05$ (bold).

Figure A.2.16 – Marchmont Marsh, Total Sulphur, water profiles by month. Mean values plotted with error bars depicting one standard error. Dashed/dotted line indicates sediment-water interface. ANOVA test (comparing both plots, depths: 10-0 cm above to 30-40 cm below sediment-water interface), results significant at $P \le 0.05$ (bold).

Figure A.2.17 – Marchmont Marsh, Total Strontium, water profiles by month. Mean values plotted with error bars depicting one standard error. Dashed/dotted line indicates sediment-water interface. ANOVA test (comparing both plots, depths: 10-0 cm above to 30-40 cm below sediment-water interface), results significant at $P \le 0.05$ (bold).

Figure A.2.19 – Marchmont Marsh, Total Reactive Silicates SiO₂, July water profile. Mean values plotted with error bars depicting one standard error. Dashed/dotted line indicates sediment-water interface. ANOVA test (comparing both plots, depths: 10-0 cm above to 30-40 cm below sediment-water interface), results significant at $P \le 0.05$ (bold).

A.3 - Control Data

Table A.3.1 - Marchmont Marsh, Water Sample Analytical Results, Control Data

		,																																
		1														Para	meter / M	lethod D	Oetection	n Limit /	Units													
				Total	Phosphate PO -P	Nitrite	Nitrate	DOC	с рН	Total Alkalinity	Conductivity										Tot	al Met	als										Reactive Silicates	Chlorophyll
				•	1041					as CaCO ₃		Al	As	Ba	Be	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	Pb	S	Sr	Ti	V	Zn	SiO ₂	a
				0.0050	0.0250	0.006	0.0090	0.50	n/a	1.0	0.50	0.0050	0.0050	0.0030	0.002	0.0050	0.0010	0.010	0.002	0.002	0.002	0.10	0.010	0.0002	0.010	0.002	0.0050	0.050	0.0050	0.010	0.006	0.0010	0.25	0.2
Lab ID	Month Analyzed	Sample Date	Sample ID	mg/L	mg/L	mg/L	mg/L	mg/L	. n/a	mg/L	uS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	$\mu g/L$
EL100219-107	July	06/29/10	MM-Launch	0.0110	0.0125	0.003	0.0110	0.25	5.50	1.4	1.10	0.0080	0.0025	0.0015	0.001	0.0025	0.0005	0.005	0.001	0.009	0.001	0.01	0.005	0.0001	0.005	0.001	0.0025	0.025	0.0025	0.005	0.003	0.0030	0.00	
EL100219-108	July	07/26/10	MM-Control	0.0025	0.0125	0.003	0.0370	3.60	6.40	5.0	9.90	0.0060	0.0025	0.0015	0.001	1.0250	0.0005	0.005	0.001	0.002	0.004	0.01	0.330	0.0017	0.180	0.001	0.0025	0.080	0.0025	0.005	0.003	0.0120	0.20	
EL100219-109	July	07/26/10	MM-Water	0.0130	0.0125	0.003	0.0045	4.90	7.64	122.1	261.60	0.0100	0.0025	0.0540	0.001	29.5200	0.0005	0.005	0.001	0.002	0.083	0.96	10.060	0.0234	4.280	0.001	0.0025	1.820	0.0960	0.005	0.003	0.0040	9.70	
EL100261-106	August	07/27/10	MM-Launch	0.0025	0.0125	0.003	0.0045	0.25	5.44	1.5	1.00	0.0025	0.0025	0.0015	0.001	0.0025	0.0005	0.005	0.001	0.001	0.001	0.05	0.005	0.0001	0.005	0.001	0.0025	0.025	0.0025	0.005	0.003	0.01		
EL100261-105	August	08/26/10	MMVP-Control	0.0025	0.0125	0.018	0.0045	2.5	5.57	2.1	2.00	0.0025	0.0025	0.0015	0.001	0.051	0.0005	0.005	0.001	0.001	0.001	0.05	0.01	0.0026	0.02	0.001	0.0025	0.025	0.0025	0.005	0.003	0.003		
EL100261-104	August	08/26/10	MM-Water	0.007	0.0125	0.003	0.0045	4.9	7.71	133.2	268.30	0.013	0.0025	0.058	0.001	31.34	0.0005	0.005	0.001	0.001	0.071	1.06	10.54	0.0107	4.68	0.001	0.0025	1.94	0.103	0.005	0.003	0.002		-
EL100300-103	September	08/27/10	MM-Launch	0.0200	0.0125	0.003	0.0045		5.66	5 1.5	0.90	0.0025	0.0025	0.0015	-	0.0130					0.001	0.05	0.005	0.0010	0.005			0.025	0.0025			0.0050		
EL100300-104	September	09/25/10	MMVPControl	0.0150	0.0125	0.003	0.0045	- I	5.96	1.9	2.30	0.0025	0.0025	0.0015		0.1090					0.001	0.05	0.010	0.0005	0.030	- 1		0.025	0.0025		1	0.0110		
EL100300-102	September	09/25/10	MM-Water	0.0220	0.0125	0.003	0.0045	- I	7.72	133.6	292.30	0.0100	0.0025	0.0600		35.9120					0.061	1.37	10.630	0.0035	5.410			1.800	0.1080		1	0.0070		
EL100333-109	October	09/24/10	MM-Launch	0.0100	0.0125	0.003	0.0330	· ·	5.39	1.2	0.90	0.0025	0.0025	0.0015	-	0.0025					0.001	0.05	0.050	0.0001	0.005			0.025	0.0025			0.0090		
EL100333-108	October	10/20/10	MM/VPControl	0.0025	0.0125	0.003	0.0045	- I	5.57	1.4	1.50	0.0025	0.0025	0.0015		0.0240					0.001	0.05	0.050	0.0003	0.020	-		0.025	0.0025		1	0.0040		
EL100333-107	October	10/20/10	MM-Water	0.0080	0.0125	0.003	0.0110	/ - ·	7.94	130.8	284.70	0.0100	0.0025	0.0600		37.2100					0.056	1.28	11.260	0.0046	5.030			2.160	0.1080		1	0.0030		

<u>A.4 – Photos</u>

Figure A.4.1 – Marchmont Marsh, near Orillia, Ontario.

Figure A.4.2 – Marchmont Marsh, showing vegetated and non-vegetated plots.

Figure A.4.3 – Constructed pore water sampler.

Figure A.4.4 – Pore water sampler dialysis test, demonstrating number of days to reach equilibrium.

Figure A.4.5 – Completed pore water sampler, showing two installed samplers (all holes filled with samplers during launch).

Figure A.4.6 – Marchmont Marsh sampler preparation, showing filling of sampler with deoxygenated distilled deionized water.

Figure A.4.7 – Marchmont Marsh pore water sampler installation, showing insertion of sampler into sediment of non-vegetated plot.

Appendix A Marchmont Marsh Data

Figure A.4.8 – Marchmont Marsh pore water sampler installed in non-vegetated plot, showing three samplers above sediment-water interface.

Figure A.4.9 – Control sample apparatus launch, showing launched samplers.

Appendix A Marchmont Marsh Data

Figure A.4.10 – Marchmont Marsh sample collection, showing samplers after removal. Note samplers above sediment-water interface with a coating of algae.

Figure A.4.11 – Marchmont Marsh sample collection, showing sample transfer to sample bottle.

Appendix A Marchmont Marsh Data

APPENDIX B

Victoria Point Data

CONTENTS

B.1 –]	Data Tables	.134
٠	Table B.1.1 – Surface water analytical data, 10-0 cm above SWI	.134
٠	Table B.1.2 – Pore water analytical data, 0-10 cm below SWI	.134
٠	Table B.1.3 – Pore water analytical data, 10-20 cm below SWI	.135
•	Table B.1.4 – Pore water analytical data, 20-30 cm below SWI	.135
٠	Table B.1.5 – Pore water analytical data, 30-40 cm below SWI	.136
٠	Table B.1.6 – Pore water analytical data, 40-50 cm below SWI	.136
٠	Table B.1.7 – Water Sample Analytical Results, July to October	.137
٠	Table B.1.8 – Sediment Analytical Results	.142
٠	Table B.1.9 – Wild Rice Vegetation Analytical Results	.142
٠	Table B.1.10 – Water Data Trends Between Plots	.143
•	Table B.1.11 – Water Data Trends Between Months	.146
٠	Table B.1.12 – Water Sample Statistical Analysis	.148
٠	Table B.1.13 – Water Sample Statistical Analysis by Month	.149
•	Table B.1.14 – Water Sample Statistical Analysis by Plot	.151
B.2 – 0	Graphs	.153
•	Figure B.2.1 – Total Phosphorus, Water Profiles by Month	.153
•	Figure B.2.2 – Phosphate PO ₄ -P, Water Profiles by Month	.154
•	Figure B.2.3 – Nitrate NO ₃ -N, Water Profiles by Month	.155
•	Figure B.2.4 – Dissolved Organic Carbon, August Water Profile	.156
•	Figure B.2.5 – pH, Water Profiles by Month	.157
•	Figure B.2.6 – Total Alkalinity as CaCO ₃ , Water Profiles by Month	.158
٠	Figure B.2.7 – Conductivity, Water Profiles by Month	.159
•	Figure B.2.8 – Total Aluminum, Water Profiles by Month	.160
•	Figure B.2.9 – Total Barium, Water Profiles by Month	.161
•	Figure B.2.10 – Total Calcium, Water Profiles by Month	.162

٠	Figure B.2.11 – Total Iron, Water Profiles by Month	163
•	Figure B.2.12 – Total Potassium, Water Profiles by Month	164
•	Figure B.2.13 – Total Magnesium, Water Profiles by Month	165
•	Figure B.2.14 – Total Manganese, Water Profiles by Month	166
•	Figure B.2.15 – Total Sodium, Water Profiles by Month	167
•	Figure B.2.16 – Total Sulphur, Water Profiles by Month	168
•	Figure B.2.17 – Total Strontium, Water Profiles by Month	169
•	Figure B.2.18 – Total Zinc, Water Profiles by Month	170
B.3 –	Control Data	171
•	Table B.3.1 – Water Sample Analytical Results, Control Data	171
B.4 –	Photos	172
•	Figure B.4.1 – Victoria Point wetland, near Orillia, Ontario	172
•	Figure B.4.2 – Victoria Point fence installation	172
•	Figure B.4.3 – Victoria Point, completed fence	173
•	Figure B.4.4 – Victoria Point, wild rice seeding	173
•	Figure B.4.5 – Victoria Point, wild rice growth in vegetated plots	174
•	Figure B.4.6 – Victoria Point, vegetation growth in mixed-vegetation plots	
	(wild rice and water lilies dominant)	174
•	Figure B.4.7 – Victoria Point pore water sampler installation, showing	
	insertion of sampler into sediment of vegetated plot	175
•	Figure B.4.8 – Victoria Point pore water samplers installed in non-vegetate	ed
	and vegetated plots	175
•	Figure B.4.9 – Victoria Point in October, note significantly reduced	
	water level	176
•	Figure B.4.10 – Victoria Point sample bottles sorted for analysis in LUEL.	176

<u>B.1 - Data Tables</u>

Table B.1.1 - Victoria Point surface water analytical data, 10-0 cm above SWI. Data presented by month and plot type.

			August									Septemb	er																
Analytical			Non-Veg	getated		Vegetate	ed		Mixed V	/egetation		Non-Veg	getated		Vegetate	d		Mixed V	egetation		Non-Veg	getated		Vegetate	ed		Mixed V	/egetation	1
Parameter	Units	DL	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n
Total P	mg/L	0.005	0.330	0.391	6	0.138	0.124	8	0.248	0.335	2	0.106	0.113	4	0.318	0.237	9	0.295	0.365	3	0.045	0.034	4	0.256	-	1			
Phosphate	mg/L	0.025	0.078	0.161	6	0.016	0.009	8	0.082	0.099	2	0.017	0.009	4	0.042	0.044	9	0.272	0.424	3	0.013	0	4	0.013	-	1			
Nitrate	mg/L	0.009	0.005	0	6	0.005	0	8	0.005	0	2	0.005	0	4	0.006	0.005	9	0.032	0.021	3	0.005	0	4	0.005	-	1			
pН	N/A	N/A	6.87	0.05	2	7.10	0.03	3	7.08	-	1	7.25	0.06	2				7.05	-	1									
Alkalinity	mg/L	1.0	214.7	22.1	2	146.7	5.4	3	137.5	-	1	174.2	1.4	2				206.3	-	1									
Conductivity	µS/cm	0.50	494.25	44.34	2	357.53	10.36	3	350.50	-	1	443.20	1.13	2				484.50	-	1									
Total Al	mg/L	0.005	0.013	0.002	3	0.012	0.004	6	0.013	-	1	0.007	0.001	3	0.006	0.001	2	0.009	0.001	3	0.007	-	1						
Total Ba	mg/L	0.003	0.063	0.018	3	0.037	0.011	6	0.027	-	1	0.041	0.010	3	0.048	0.007	2	0.046	0.003	3	0.030	-	1						
Total Ca	mg/L	0.005	84.260	19.939	3	54.567	11.037	6	49.200	-	1	60.934	5.808	3	71.097	9.603	2	76.454	10.042	3	59.896	-	1						
Total Fe	mg/L	0.002	0.157	0.054	3	0.040	0.040	6	0.017	-	1	0.022	0.011	3	0.069	0.050	2	0.066	0.029	3	0.028	-	1						
Total K	mg/L	0.10	2.75	0.91	3	1.12	0.43	6	0.83	-	1	2.04	0.10	3	2.40	0.45	2	1.49	0.20	3	2.08	-	1						
Total Mg	mg/L	0.01	6.22	1.25	3	4.27	0.47	6	4.41	-	1	5.33	0.23	3	5.92	0.87	2	6.09	0.51	3	5.45	-	1						
Total Mn	mg/L	0.0002	0.3329	0.1156	3	0.1136	0.0998	6	0.0448	-	1	0.0237	0.0105	3	0.0638	0.0652	2	0.0596	0.0408	3	0.0355	-	1						
Total Na	mg/L	0.01	18.27	0.97	3	19.06	0.86	6	16.18	-	1	19.13	0.53	3	20.54	0.20	2	18.81	1.64	3	20.24	-	1						
Total S	mg/L	0.05	1.13	0.09	3	1.19	0.19	6	1.65	-	1	2.27	0.41	3	1.66	0.43	2	1.57	0.50	3	2.13	-	1						
Total Sr	mg/L	0.005	0.218	0.045	3	0.153	0.028	6	0.134	-	1	0.164	0.016	3	0.195	0.030	2	0.197	0.024	3	0.151	-	1						
Total Zn	mg/L	0.001	0.008	0.002	3	0.013	0.003	6	0.012	-	1	0.005	0.002	3	0.007	0.001	2	0.005	0.002	3	0.001	-	1						
DOC	mg/L	0.50	19.38	0.71	6	20.65	2.27	8	15.85	2.33	2																		

Notes

DL = method detection limit; N/A = not applicable; SD = standard deviation; n = sample size; -- = not analyzed; - = incalculable

<DL results recorded as 0.5*DL

			August						September								October												
Analytical			Non-Veg	Non-Vegetated			Vegetated			Mixed Vegetation			getated		Vegetate	d		Mixed V	egetation		Non-Vegetated			Vegetate	ed		Mixed Vegetation		
Parameter	Units	DL	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n
Total P	mg/L	0.005	0.671	0.554	6	0.254	0.160	9	0.326	0.299	5	0.298	0.249	6	0.449	0.224	9	0.394	0.365	5	0.047	0.028	6	0.215	0.065	3	0.099	0.110	5
Phosphate	mg/L	0.025	0.403	0.398	6	0.041	0.056	9	0.057	0.099	5	0.133	0.144	6	0.104	0.080	9	0.209	0.283	5	0.030	0.042	6	0.127	0.053	3	0.069	0.106	5
Nitrate	mg/L	0.009	0.005	0	6	0.005	0	9	0.005	0	5	0.006	0.004	6	0.005	0	9	0.053	0.105	5	0.005	0	6	0.005	0	3	0.005	0	5
pН	N/A	N/A	6.79	0.06	6	6.79	0.06	9	6.76	0.13	5	6.91	0.06	6	6.96	0.08	9	6.80	0.09	5	6.98	0.06	6	6.85	0.14	3	6.83	0.07	4
Alkalinity	mg/L	1.0	334.7	59.7	6	262.2	47.3	9	217.3	25.8	5	273.6	26.8	6	234.3	38.2	9	234.3	47.4	5	208.6	16.9	6	181.3	35.2	3	166.3	21.8	4
Conductivity	µS/cm	0.50	708.70	113.06	6	550.89	77.70	9	511.50	62.23	5	610.12	46.29	6	541.82	66.89	9	539.64	75.62	5	488.05	29.06	6	434.37	75.42	3	423.33	37.34	4
Total Al	mg/L	0.005	0.012	0.001	6	0.013	0.002	9	0.014	0.003	5	0.008	0.002	6	0.006	0.002	9	0.024	0.017	5	0.008	0.002	6	0.008	0.002	3	0.008	0.002	5
Total Ba	mg/L	0.003	0.075	0.012	6	0.064	0.012	9	0.054	0.007	5	0.065	0.004	6	0.057	0.009	9	0.050	0.009	5	0.046	0.005	6	0.041	0.008	3	0.038	0.004	5
Total Ca	mg/L	0.005	104.093	12.214	6	83.971	12.902	9	75.584	8.727	5	90.054	7.954	6	78.829	9.753	9	83.175	15.300	5	75.089	5.261	6	66.129	11.514	3	66.640	8.417	5
Total Fe	mg/L	0.002	0.239	0.065	6	0.214	0.060	9	0.155	0.056	5	0.138	0.050	6	0.111	0.042	9	0.108	0.031	5	0.103	0.027	6	0.115	0.018	3	0.073	0.018	5
Total K	mg/L	0.10	5.02	1.35	6	2.92	0.75	9	2.67	0.95	5	4.06	0.65	6	3.01	0.48	9	1.13	0.71	5	3.70	0.68	6	2.92	0.26	3	1.83	0.50	5
Total Mg	mg/L	0.01	7.11	0.78	6	6.27	0.86	9	5.91	0.72	5	6.80	0.65	6	6.22	0.73	9	6.76	0.92	5	5.52	0.33	6	5.15	1.11	3	5.35	0.36	5
Total Mn	mg/L	0.0002	0.5513	0.1146	6	0.4416	0.1459	9	0.1749	0.0754	5	0.1926	0.1912	6	0.2111	0.1175	9	0.1396	0.0589	5	0.2156	0.1422	6	0.3001	0.0772	3	0.0873	0.0359	5
Total Na	mg/L	0.01	17.26	0.81	6	17.30	1.07	9	17.96	1.24	5	17.71	0.75	6	19.53	1.27	9	19.34	1.71	5	17.62	0.89	6	16.35	2.43	3	18.13	1.14	5
Total S	mg/L	0.05	0.94	0.12	6	0.87	0.12	9	1.20	0.15	5	1.12	0.14	6	1.22	0.21	9	1.37	0.39	5	0.99	0.19	6	0.93	0.34	3	1.90	0.62	5
Total Sr	mg/L	0.005	0.256	0.025	6	0.225	0.038	9	0.192	0.018	5	0.232	0.013	6	0.213	0.026	9	0.210	0.034	5	0.185	0.014	6	0.163	0.034	3	0.159	0.015	5
Total Zn	mg/L	0.001	0.006	0.001	6	0.007	0.002	9	0.006	0.001	5	0.007	0.001	6	0.006	0.001	9	0.005	0.002	5	0.002	0.002	6	0.002	0.001	3	0.002	0.003	5
DOC	mg/L	0.50	16.72	0.96	6	16.10	1.47	9	14.32	2.73	5																		

Notes

DL = method detection limit; N/A = not applicable; SD = standard deviation; n = sample size; -- = not analyzed

<DL results recorded as 0.5*DL

Table B.1.3 - Victoria Point pore water analytical data, 10-20 cm below SWI. Data presented by month and plot type.

			August									September										October							
Analytical			Non-Veg	Non-Vegetated			ed		Mixed Vegetation			Non-Ve	getated		Vegetate	ed		Mixed V	/egetation		Non-Ve	getated		Vegetate	ed		Mixed V	/egetatior	1
Parameter	Units	DL	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n
Total P	mg/L	0.005	0.971	0.581	6	0.529	0.280	9	0.467	0.424	5	0.573	0.106	6	0.732	0.237	9	0.375	0.280	5	0.416	0.209	6	0.562	0.035	3	0.326	0.101	5
Phosphate	mg/L	0.025	0.607	0.475	6	0.160	0.163	9	0.065	0.110	5	0.215	0.092	6	0.244	0.124	9	0.223	0.158	5	0.198	0.102	6	0.398	0.017	3	0.285	0.084	5
Nitrate	mg/L	0.009	0.005	0	6	0.005	0	9	0.005	0	5	0.005	0	6	0.005	0	9	0.005	0	5	0.005	0	6	0.005	0	3	0.005	0	5
pН	N/A	N/A	6.76	0.02	6	6.69	0.04	9	6.62	0.15	5	6.80	0.02	6	6.81	0.07	9	6.71	0.08	5	6.85	0.08	6	6.77	0.07	3	6.69	0.07	5
Alkalinity	mg/L	1.0	338.9	22.4	6	290.6	36.7	9	210.6	22.8	5	311.5	15.7	6	270.2	35.2	9	239.5	46.6	5	270.7	20.9	6	225.5	34.8	3	203.7	40.5	5
Conductivity	µS/cm	0.50	720.63	50.03	6	598.90	63.85	9	505.90	70.16	5	678.88	32.83	6	601.92	66.66	9	552.80	79.76	5	602.35	30.91	6	512.57	70.03	3	480.34	66.49	5
Total Al	mg/L	0.005	0.010	0.002	6	0.014	0.002	9	0.018	0.006	5	0.010	0.005	6	0.006	0.002	9	0.032	0.019	5	0.007	0.001	6	0.008	0.001	3	0.009	0.005	5
Total Ba	mg/L	0.003	0.070	0.005	6	0.063	0.008	9	0.049	0.007	5	0.071	0.004	6	0.062	0.007	9	0.051	0.010	5	0.059	0.005	6	0.049	0.006	3	0.044	0.008	5
Total Ca	mg/L	0.005	103.087	6.350	6	90.953	8.614	9	73.532	9.230	5	98.974	6.741	6	87.983	9.644	9	83.923	15.045	5	92.426	8.800	6	79.909	7.709	3	75.500	13.713	5
Total Fe	mg/L	0.002	0.155	0.062	6	0.182	0.038	9	0.141	0.076	5	0.133	0.047	6	0.128	0.019	9	0.090	0.029	5	0.139	0.034	6	0.139	0.018	3	0.110	0.028	5
Total K	mg/L	0.10	5.51	1.24	6	3.61	1.02	9	3.21	2.37	5	4.93	0.81	6	3.48	0.60	9	1.03	1.24	5	4.72	0.93	6	3.65	0.42	3	1.65	1.20	5
Total Mg	mg/L	0.01	6.93	0.19	6	6.68	0.72	9	6.00	0.84	5	6.89	0.35	6	6.64	0.76	9	6.75	1.00	5	6.64	0.31	6	5.87	1.20	3	5.73	0.59	5
Total Mn	mg/L	0.0002	0.4843	0.0558	6	0.4697	0.1090	9	0.2000	0.1036	5	0.3077	0.1865	6	0.3179	0.0995	9	0.1461	0.0834	5	0.3657	0.1497	6	0.3789	0.1075	3	0.2047	0.0733	5
Total Na	mg/L	0.01	16.17	1.08	6	16.82	0.91	9	17.89	3.79	5	15.87	0.92	6	17.29	1.30	9	18.79	1.10	5	16.66	0.74	6	15.65	1.32	3	17.68	2.23	5
Total S	mg/L	0.05	0.85	0.12	6	0.90	0.14	9	1.02	0.24	5	1.00	0.16	6	0.99	0.23	9	1.19	0.33	5	0.93	0.15	6	0.85	0.25	3	1.19	0.34	5
Total Sr	mg/L	0.005	0.240	0.018	6	0.227	0.029	9	0.180	0.021	5	0.238	0.017	6	0.225	0.028	9	0.205	0.032	5	0.222	0.018	6	0.189	0.030	3	0.173	0.024	5
Total Zn	mg/L	0.001	0.005	0.001	6	0.007	0.002	9	0.005	0.001	5	0.006	0.001	6	0.006	0.001	9	0.005	0.002	5	0.001	0.001	6	0.002	0.001	3	0.002	0.002	5
DOC	mg/L	0.50	14.43	0.99	6	15.23	1.10	9	13.84	4.53	5																		

 $\label{eq:DL} \begin{array}{l} \textbf{Notes} \\ DL = method \ detection \ limit; \ N/A = not \ applicable; \ SD = standard \ deviation; \ n = sample \ size; { -- = not \ analyzed \ analyzed \ begin{tabular}{l} \hline \end{tabular} \end{array}$ <DL results recorded as 0.5*DL

Table B.1.4 - Victoria Point	pore water analytical	ata, 20-30 cm below SWI	 Data presented 	by month and	plot ty	/pe.
------------------------------	-----------------------	-------------------------	------------------------------------	--------------	---------	------

			August						September									October											
Analytical			Non-Veg	Non-Vegetated			Vegetated			'egetation		Non-Veg	getated		Vegetate	d		Mixed V	'egetation	Non-Ve	getated		Vegetated Mixed Ve				/egetation	1	
Parameter	Units	DL	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n
Total P	mg/L	0.005	0.865	0.537	6	0.598	0.407	9	0.383	0.444	5	0.562	0.231	6	0.749	0.362	9	0.479	0.463	5	0.607	0.284	6	0.577	0.160	3	0.380	0.229	5
Phosphate	mg/L	0.025	0.569	0.456	6	0.239	0.233	9	0.033	0.045	5	0.313	0.171	6	0.272	0.192	9	0.257	0.225	5	0.342	0.196	6	0.378	0.124	3	0.270	0.146	5
Nitrate	mg/L	0.009	0.005	0	6	0.005	0	9	0.005	0	5	0.037	0.079	6	0.005	0	9	0.010	0.012	5	0.005	0	6	0.005	0	3	0.005	0	5
pH	N/A	N/A	6.77	0.04	6	6.71	0.04	9	6.57	0.11	5	6.78	0.02	5	6.77	0.09	9	6.62	0.21	4	6.86	0.11	6	6.74	0.08	3	6.63	0.07	5
Alkalinity	mg/L	1.0	340.6	30.3	6	305.5	30.4	9	200.9	35.5	5	326.0	23.7	5	280.5	26.6	9	243.5	20.0	4	282.4	23.3	6	248.8	36.2	3	229.7	67.7	5
Conductivity	μS/cm	0.50	705.87	60.53	6	618.77	46.26	9	483.46	78.46	5	699.40	46.72	5	615.47	50.31	9	574.68	26.58	4	618.20	34.48	6	550.67	70.32	3	533.00	129.86	5
Total Al	mg/L	0.005	0.012	0.002	6	0.015	0.002	9	0.018	0.003	5	0.007	0.003	6	0.006	0.004	9	0.028	0.013	5	0.009	0.002	6	0.005	0.002	3	0.009	0.003	5
Total Ba	mg/L	0.003	0.069	0.004	6	0.067	0.006	9	0.046	0.009	5	0.073	0.007	6	0.062	0.006	9	0.052	0.007	5	0.061	0.007	6	0.054	0.007	3	0.049	0.016	5
Total Ca	mg/L	0.005	105.063	6.515	6	97.109	9.754	9	70.708	11.995	5	106.237	9.836	6	91.747	5.941	9	85.615	10.315	5	95.883	12.660	6	87.549	7.763	3	85.356	23.633	5
Total Fe	mg/L	0.002	0.087	0.024	6	0.126	0.038	9	0.094	0.053	5	0.090	0.047	6	0.099	0.036	9	0.087	0.055	5	0.093	0.039	6	0.134	0.022	3	0.110	0.047	5
Total K	mg/L	0.10	4.68	1.06	6	3.62	1.19	9	2.64	2.80	5	4.80	1.52	6	3.49	1.12	9	1.85	2.02	5	4.41	0.93	6	3.39	0.99	3	2.09	2.55	5
Total Mg	mg/L	0.01	6.53	0.50	6	6.49	0.66	9	5.77	0.97	5	6.90	0.41	6	6.40	0.61	9	6.76	0.60	5	6.51	0.38	6	6.10	1.25	3	6.36	0.67	5
Total Mn	mg/L	0.0002	0.3688	0.0571	6	0.3837	0.1069	9	0.1737	0.0726	5	0.2850	0.2115	6	0.2801	0.0992	9	0.1673	0.1293	5	0.2726	0.1340	6	0.3777	0.1089	3	0.2745	0.2045	5
Total Na	mg/L	0.01	14.93	0.94	6	16.56	1.01	9	17.86	4.30	5	15.06	1.39	6	16.41	1.63	9	19.53	3.78	5	15.57	1.56	6	15.21	1.49	3	19.59	3.74	5
Total S	mg/L	0.05	0.77	0.12	6	0.91	0.21	9	0.88	0.24	5	0.86	0.15	6	0.88	0.18	9	0.94	0.26	5	0.83	0.10	6	0.76	0.27	3	0.95	0.26	5
Total Sr	mg/L	0.005	0.227	0.013	6	0.228	0.023	9	0.165	0.027	5	0.242	0.024	6	0.219	0.017	9	0.201	0.022	5	0.218	0.028	6	0.203	0.029	3	0.190	0.037	5
Total Zn	mg/L	0.001	0.007	0.001	6	0.008	0.002	9	0.005	0.001	5	0.006	0.001	6	0.006	0.001	9	0.005	0.002	5	0.002	0.002	6	0.003	0.001	3	0.003	0.002	5
DOC	mg/L	0.50	13.60	0.84	6	14.77	1.93	9	12.28	2.46	5																		

Notes

 $DL = method \ detection \ limit; \ N/A = not \ applicable; \ SD = standard \ deviation; \ n = sample \ size; \ -- = not \ analyzed$ <DL results recorded as 0.5*DL
Table B.1.5 - Victoria Point pore water analytical data, 30-40 cm below SWI. Data presented by month and plot type.

			August									Septemb	er								October								
Analytical			Non-Veg	getated		Vegetate	d		Mixed V	/egetation		Non-Ve	getated		Vegetate	ed		Mixed V	/egetation		Non-Ve	getated		Vegetate	ed		Mixed V	/egetation	1
Parameter	Units	DL	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n
Total P	mg/L	0.005	0.640	0.453	6	0.495	0.527	9	0.387	0.580	5	0.391	0.241	6	0.613	0.405	9	0.328	0.272	5	0.496	0.253	6	0.583	0.369	3	0.309	0.216	5
Phosphate	mg/L	0.025	0.384	0.358	6	0.190	0.296	9	0.129	0.260	5	0.193	0.135	6	0.212	0.172	9	0.220	0.196	5	0.249	0.139	6	0.415	0.270	3	0.200	0.083	5
Nitrate	mg/L	0.009	0.005	0	6	0.005	0	9	0.005	0	5	0.011	0.016	6	0.005	0	9	0.005	0	5	0.005	0	6	0.005	0	3	0.005	0	5
pН	N/A	N/A	6.80	0.04	6	6.71	0.03	9	6.57	0.06	5	6.82	0.08	5	6.79	0.07	8	6.61	0.13	4	6.83	0.06	6	6.73	0.07	3	6.64	0.07	5
Alkalinity	mg/L	1.0	355.1	34.1	6	317.7	30.4	9	198.1	54.0	5	326.0	30.2	5	292.1	21.1	8	233.2	54.5	4	282.1	25.9	6	265.0	7.3	3	243.3	65.7	5
Conductivity	µS/cm	0.50	730.03	60.92	6	635.89	43.27	9	481.76	108.92	5	692.56	53.45	5	630.59	38.84	8	554.98	96.55	4	613.05	35.89	6	578.13	3.31	3	560.10	133.64	5
Total Al	mg/L	0.005	0.012	0.003	6	0.015	0.002	9	0.019	0.003	5	0.007	0.002	6	0.008	0.004	9	0.030	0.026	5	0.008	0.001	6	0.006	0.001	3	0.012	0.005	5
Total Ba	mg/L	0.003	0.068	0.007	6	0.066	0.005	9	0.044	0.012	5	0.069	0.008	6	0.064	0.004	9	0.053	0.008	5	0.059	0.006	6	0.057	0.001	3	0.052	0.014	5
Total Ca	mg/L	0.005	112.623	17.450	6	102.216	11.199	9	71.972	18.515	5	105.640	15.190	6	97.707	8.324	9	90.855	19.785	5	97.686	16.978	6	95.956	10.469	3	90.672	22.566	5
Total Fe	mg/L	0.002	0.066	0.019	6	0.098	0.025	9	0.082	0.051	5	0.054	0.012	6	0.074	0.028	9	0.077	0.040	5	0.078	0.035	6	0.114	0.044	3	0.087	0.027	5
Total K	mg/L	0.10	3.58	1.31	6	2.87	1.43	9	2.11	2.97	5	4.96	2.01	6	3.50	1.28	9	2.16	2.30	5	3.71	1.17	6	3.23	1.74	3	2.56	2.68	5
Total Mg	mg/L	0.01	6.76	0.37	6	6.38	0.49	9	5.87	1.56	5	6.66	0.42	6	6.42	0.56	9	6.84	1.14	5	6.37	0.61	6	6.11	0.42	3	6.69	0.88	5
Total Mn	mg/L	0.0002	0.2609	0.0529	5	0.2943	0.0726	9	0.1443	0.0626	5	0.1642	0.1192	6	0.1986	0.1004	9	0.1411	0.0853	5	0.2005	0.1116	6	0.3353	0.1456	3	0.2101	0.0992	5
Total Na	mg/L	0.01	13.63	1.29	5	14.67	1.42	9	17.09	6.02	5	13.47	0.95	6	15.38	1.42	9	17.45	5.62	5	13.82	1.25	6	15.85	3.99	3	19.89	5.65	5
Total S	mg/L	0.05	0.62	0.04	5	0.80	0.23	9	0.73	0.18	5	0.73	0.08	6	0.83	0.14	9	0.79	0.19	5	0.71	0.06	6	0.72	0.22	3	0.82	0.23	5
Total Sr	mg/L	0.005	0.227	0.031	5	0.226	0.012	9	0.163	0.040	5	0.230	0.028	6	0.224	0.015	9	0.20	0.04	5	0.214	0.035	6	0.207	0.008	3	0.198	0.037	5
Total Zn	mg/L	0.001	0.006	0.001	5	0.008	0.001	9	0.005	0.001	5	0.007	0.002	6	0.006	0.001	9	0.006	0.003	5	0.002	0.001	6	0.002	0.001	3	0.003	0.002	5
DOC	mg/L	0.50	13.15	1.06	6	13.54	1.46	9	13.08	5.34	5																		

Notes

DL = method detection limit; N/A = not applicable; SD = standard deviation; n = sample size; -- = not analyzed <DL results recorded as 0.5*DL

Table B.1.6 - Victoria Point pore water analytical data, 40-50 cm below SWI. Data presented by mo	nth and	1 plo	ot typ	pe.
--	---------	-------	--------	-----

			August									Septemb	er								October								
Analytical			Non-Veg	getated		Vegetate	d		Mixed V	'egetation		Non-Veg	getated		Vegetate	d		Mixed V	/egetation		Non-Veg	getated		Vegetate	d		Mixed V	'egetation	ı
Parameter	Units	DL	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n
Total P	mg/L	0.005	0.310	0.179	5	0.268	0.287	6	0.143	0.095	5	0.304	0.194	5	0.454	0.390	9	0.211	0.158	2	0.326	0.184	6	0.349	0.243	3	0.276	0.280	5
Phosphate	mg/L	0.025	0.113	0.122	5	0.198	0.454	6	0.019	0.015	5	0.134	0.113	5	0.143	0.075	9	0.138	0.035	2	0.152	0.091	6	0.231	0.191	3	0.164	0.139	5
Nitrate	mg/L	0.009	0.005	0	5	0.005	0	6	0.005	0	5	0.005	0	5	0.007	0.005	9	0.013	0.012	2	0.005	0	6	0.005	0	3	0.005	0	5
pH	N/A	N/A	6.83	0.06	2	6.71	0.03	3	6.62	0.11	4	6.81	0.06	3	6.82	0.18	2	6.72	-	1	6.90	0.03	2	6.95	0.23	3	6.63	0.14	5
Alkalinity	mg/L	1.0	320.7	27.9	2	325.4	21.6	3	220.6	60.8	4	339.6	8.9	3	295.6	17.1	2	298.3	-	1	285.3	3.6	2	294.4	21.1	3	256.4	83.5	5
Conductivity	µS/cm	0.50	653.30	42.57	2	650.40	32.67	3	521.65	99.44	4	706.57	14.76	3	630.50	36.49	2	670.60	-	1	610.40	9.76	2	615.60	37.67	3	582.98	156.25	5
Total Al	mg/L	0.005	0.015	0.004	4	0.018	0.004	4	0.022	0.005	5	0.010	0.006	4	0.007	0.002	8	0.021	0.008	2	0.006	0.004	6	0.010	0.002	3	0.011	0.007	5
Total Ba	mg/L	0.003	0.063	0.005	4	0.065	0.008	4	0.044	0.006	5	0.070	0.005	4	0.063	0.004	8	0.055	0.006	2	0.061	0.003	6	0.060	0.003	3	0.055	0.018	5
Total Ca	mg/L	0.005	107.440	15.761	4	104.045	11.712	4	80.684	18.078	5	113.987	7.940	4	100.922	10.214	8	99.277	14.524	2	106.229	14.082	6	108.676	10.602	3	96.268	30.846	5
Total Fe	mg/L	0.002	0.077	0.044	4	0.075	0.026	4	0.068	0.029	5	0.036	0.003	4	0.053	0.019	8	0.053	0.033	2	0.063	0.019	6	0.111	0.037	3	0.085	0.035	5
Total K	mg/L	0.10	3.10	1.05	4	3.40	1.54	4	1.04	0.60	5	3.41	1.50	4	3.59	1.74	8	1.04	0.06	2	3.12	1.26	6	2.55	0.99	3	3.50	3.66	5
Total Mg	mg/L	0.01	6.40	0.31	4	6.62	0.54	4	5.91	1.26	5	6.94	0.37	4	6.36	0.59	8	7.50	1.29	2	6.57	0.48	6	6.42	0.79	3	6.75	1.40	5
Total Mn	mg/L	0.0002	0.2132	0.0940	4	0.1912	0.0260	4	0.1230	0.0820	5	0.0555	0.0337	4	0.1283	0.0968	8	0.1003	0.0684	2	0.1428	0.0748	6	0.2516	0.0850	3	0.1768	0.0875	5
Total Na	mg/L	0.01	12.60	1.00	4	15.31	2.36	4	15.18	3.09	5	12.89	0.66	4	14.20	1.76	8	17.44	3.53	2	12.87	1.07	6	14.08	1.27	3	18.77	6.09	5
Total S	mg/L	0.05	0.48	0.02	4	0.87	0.24	4	0.63	0.08	5	0.63	0.05	4	0.95	0.70	8	0.81	0.30	2	0.56	0.12	6	0.60	0.28	3	0.67	0.21	5
Total Sr	mg/L	0.005	0.217	0.028	4	0.231	0.017	4	0.170	0.028	5	0.234	0.019	4	0.220	0.016	8	0.215	0.038	2	0.219	0.025	6	0.222	0.005	3	0.202	0.055	5
Total Zn	mg/L	0.001	0.006	0.004	4	0.008	0.001	4	0.008	0.003	5	0.005	0.002	4	0.004	0.002	8	0.004	0.002	2	0.005	0.004	6	0.002	0.002	3	0.003	0.003	5
DOC	mg/L	0.50	11.74	1.54	5	13.45	3.05	6	11.32	1.57	5																		

Notes

DL = method detection limit; N/A = not applicable; SD = standard deviation; n = sample size; -- = not analyzed; - = incalculable <DL results recorded as 0.5*DL

Table B.1.7 - V	/ictoria Point,	, Water Sample	Analytical R	esults, July	to October																									
				1	1	1 1			T-1-1						Parame	ter / Meth	od Detecti	ion Limit /	Units										D	
			Total	Phosphate	Nitrite	Nitrate	DOC	nH	1 otal Alkalinity	Conductivity										Tota	l Metals								Silicates	Chlorophyll
			Р	PO ₄ -P	NO ₂ -N	NO ₃ -N	Doc	p	as CaCO ₁	conductivity	Al	As	Ba	Be	Ca	Cd	Co	Cr	Cu	Fe	К	Mø	Mn	Na Ni	Ph S	Sr	Ti	V Zn	SiO ₂	"a"
			0.0050	0.0250	0.006	0.0090	0.50	n/a	1.0	0.50	0.0050	0.0050	0.0030	0.002	0.0050	0.0010	0.010	0.002	0.002	0.002	0.10	0.010	0.0002	0.010 0.002	2 0.0050 0.0	0 0.0050	0.010 0.	006 0.0010	0.250	0.2
Lab ID	Sample Date	Sample ID	mg/L	mg/L	mg/L	mg/L	mg/L	n/a	mg/L	uS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L mg/L	. mg/L mg/	L mg/L	mg/L m	g/L mg/L	mg/L	µg/L
EL100222-014	07/22/10	Rice Plot	0.0380	0.0125	0.003	0.0045	12.70	7.56	97.6	285.00	0.0210	0.0025	0.0250	0.001	42.7800	0.0005	0.005	0.001	0.001	0.019	0.78	4.540	0.0351	16.710 0.00	1 0.0025 2.9	0.1250	0.005 0.	003 0.0280	7.50	10.9
EL100253-004	08/24/10	VP-AV-1a-1 VP AV 1a 0	0.0110	0.0125	0.003	0.0045	17.5	7.08	137.5	350.50	0.0130	0.0025	0.0270	0.001	49.2000	0.0005	0.005	0.001	0.001	0.017	0.83	4.410	0.0448	16.180 0.001	1 0.0025 1.6	0 0.1340	0.005 0.	003 0.0120	-	
EL100253-005	08/24/10	VP-AV-1a-0 VP-AV-1a-2	0.0300	0.0125	0.003	0.0045	11.5	6.82	195.7	462.10	0.0150	0.0025	0.0550	0.001	73 3600	0.0005	0.005	0.001	0.001	0 141	2.22	5 520	0 1423	17 040 0 001	0 0025 1 13	0 0 1880	0.005 0	003 0 0050		
EL100253-007	08/24/10	VP-AV-1a-3	0.1920	0.0125	0.003	0.0045	11.7	6.65	185.4	448.60	0.0180	0.0025	0.0450	0.001	67.1200	0.0005	0.005	0.001	0.001	0.113	2.04	5.380	0.1508	16.000 0.001	1 0.0025 0.8	0.1660	0.005 0.	003 0.0050		
EL100253-008	08/24/10	VP-AV-1a-4	0.0920	0.0125	0.003	0.0045	10.2	6.51	157.7	393.90	0.0180	0.0070	0.0380	0.001	58.5200	0.0005	0.005	0.001	0.001	0.056	0.76	4.690	0.1386	14.660 0.001	1 0.0025 0.6	0.1330	0.005 0.	003 0.0060	-	
EL100253-009	08/24/10	VP-AV-1a-5	0.0420	0.0125	0.003	0.0045	11.4	6.58	158.7	403.50	0.0210	0.0025	0.0370	0.001	61.2200	0.0005	0.005	0.001	0.001	0.042	0.21	4.940	0.1275	11.960 0.001	1 0.0025 0.5	50 0.1360	0.005 0.	003 0.0050		
EL100253-010 EL100253-011	08/24/10	VP-AV-1a-0 VP-AV-1a-7	0.0380	0.0125	0.003	0.0045	9.1	0.04		462.70	0.0210	0.0023	0.0400	0.001	86.4000	0.0005	0.005	0.001	0.001	0.051	0.26	5.300	0.0654	11.740 0.001	1 0.0025 0.34	0 0.1510	0.005 0.	003 0.0080	-	
EL100253-012	08/24/10	VP-AV-1b-2	0.1830	0.0125	0.003	0.0045	14.1	6.74	228.0	519.00	0.0130	0.0025	0.0570	0.001	78.9000	0.0005	0.005	0.001	0.001	0.197	2.00	5.980	0.2022	18.980 0.001	1 0.0025 1.0	0.1940	0.005 0.	003 0.0060		
EL100253-013	08/24/10	VP-AV-1b-3	0.1930	0.0125	0.003	0.0045	12.3	6.66	210.6	489.80	0.0130	0.0025	0.0460	0.001	71.0000	0.0005	0.005	0.001	0.001	0.144	1.19	5.590	0.2062	17.360 0.001	1 0.0025 0.8	0.1600	0.005 0.	003 0.0070	-	
EL100253-014	08/24/10	VP-AV-1b-4	0.1240	0.0125	0.003	0.0045	12.6	6.60	222.8	512.30	0.0180	0.0025	0.0480	0.001	78.5400	0.0005	0.005	0.001	0.001	0.132	0.68	5.930	0.2400	18.410 0.001	1 0.0025 0.7-	0 0.1620	0.005 0.	003 0.0060		
EL100253-015 EL100253-016	08/24/10	VP-AV-10-5 VP-AV-1b-6	0.1780	0.0125	0.003	0.0045	12.6	6.67	239.4	543.40	0.0220	0.0023	0.0480	0.001	105 1800	0.0005	0.005	0.001	0.001	0.093	0.44	7 670	0.1568	18 170 0.001	1 0.0025 0.6	0 0.1700	0.005 0	003 0.0060	-	
EL100253-017	08/24/10	VP-AV-1c-2	0.7050	0.0125	0.003	0.0045	18.9	6.54	240.7	590.30	0.0170	0.0025	0.0610	0.001	85.2600	0.0005	0.005	0.001	0.001	0.226	4.06	6.680	0.2860	19.190 0.001	1 0.0025 1.3	0.2100	0.005 0.	003 0.0060		
EL100253-018	08/24/10	VP-AV-1c-3	1.1830	0.0125	0.003	0.0045	21.9	6.36	247.6	627.00	0.0280	0.0025	0.0620	0.001	89.8400	0.0005	0.005	0.001	0.001	0.270	7.22	7.470	0.3754	23.880 0.001	1 0.0025 1.2	50 0.2150	0.005 0.	003 0.0060		
EL100253-019	08/24/10	VP-AV-1c-4	1.1520	0.0125	0.003	0.0045	16.4	6.42	249.0	601.30	0.0220	0.0025	0.0610	0.001	87.5600	0.0005	0.005	0.001	0.001	0.169	7.44	7.310	0.2634	24.600 0.001	1 0.0025 1.0	0.2080	0.005 0.	003 0.0060	-	
EL100253-020 EL100253-021	08/24/10	VP-AV-1c-5 VP-AV-1c-6	0.2500	0.5940	0.003	0.0045	13.0	6.69	2/1.5	644.00 553.10	0.0210	0.0025	0.0640	0.001	96.8600	0.0005	0.005	0.001	0.001	0.159	1.50	6.760	0.2462	26.900 0.001 18.480 0.001	1 0.0025 0.9	0 0.2300	0.005 0.	003 0.0060		
EL100253-021	08/24/10	VP-AV-1d-1	0.4850	0.1520	0.003	0.0045	14.2			-		0.0025			-	0.0005						-					-		-	-
EL100253-023	08/24/10	VP-AV-1d-2	0.5900	0.2330	0.003	0.0045	13.9	6.83	238.1	548.30	0.0150	0.0025	0.0530	0.001	78.4800	0.0005	0.005	0.001	0.001	0.121	3.22	6.470	0.1605	18.250 0.00	1 0.0025 1.3	0.2030	0.005 0.	003 0.0060		
EL100253-024	08/24/10	VP-AV-1d-3	0.5250	0.2620	0.003	0.0045	12.2	6.71	207.0	495.20	0.0150	0.0025	0.0460	0.001	70.1400	0.0005	0.005	0.001	0.001	0.090	3.30	5.830	0.1556	18.480 0.00	1 0.0025 1.3	0.1790	0.005 0.	003 0.0040		
EL100253-025	08/24/10	VP-AV-1d-4	0.3790	0.1130	0.003	0.0045	0.7	6.69	191.5	466.10	0.0170	0.0025	0.0420	0.001	65.8000	0.0005	0.005	0.001	0.001	0.064	2.60	5.530	0.1202	17.970 0.001	1 0.0025 1.20	0 0.1640	0.005 0.	003 0.0050	-	
EL100253-020	08/24/10	VP-AV-1d-5	0.1390	0.0125	0.003	0.0045	9.7	0.05		420.40	0.0180	0.0025	0.0380	0.001	75 6800	0.0005	0.005	0.001	0.001	0.045	0.62	5 180	0.0385	14 550 0.001	1 0.0023 0.3	0 0.1430	0.005 0	003 0.0040		
EL100253-028	08/24/10	VP-AV-1e-2	0.0610	0.0125	0.003	0.0045	13.0	6.86	184.1	437.80	0.0090	0.0025	0.0430	0.001	61.9200	0.0005	0.005	0.001	0.001	0.089	1.83	4.900	0.0833	16.330 0.001	1 0.0025 1.0	0 0.1640	0.005 0.	003 0.0050		
EL100253-029	08/24/10	VP-AV-1e-3	0.2410	0.0260	0.003	0.0045	11.1	6.72	202.4	468.90	0.0180	0.0025	0.0470	0.001	69.5600	0.0005	0.005	0.001	0.001	0.086	2.28	5.720	0.1119	13.730 0.001	1 0.0025 0.8	0 0.1820	0.005 0.	003 0.0050	-	
EL100253-030	08/24/10	VP-AV-1e-4	0.1700	0.0125	0.003	0.0045	11.2	6.64	183.5	443.70	0.0140	0.0025	0.0390	0.001	63.1200	0.0005	0.005	0.001	0.001	0.050	1.70	5.380	0.1061	13.640 0.001	1 0.0025 0.70	60 0.1590	0.005 0.	003 0.0040		
EL100253-031 EL100253-032	08/24/10	VP-AV-1e-5 VP-AV-1e-6	0.1350	0.0125	0.003	0.0045	11.5	6.46	151.8	424.00	0.0140	0.0025	0.0340	0.001	57 7800	0.0005	0.005	0.001	0.001	0.057	1.23	4.570	0.0902	13 370 0.001	1 0.0025 0.5	0 0.1320	0.005 0.	003 0.0040	-	
EL100256-004	08/25/10	VP-V-1a-2	0.3930	0.1420	0.003	0.0045	15.6	6.72	206.8	455.30	0.0130	0.0025	0.0530	0.001	69.0200	0.0005	0.005	0.001	0.001	0.174	2.72	5.180	0.4590	16.140 0.00	1 0.0025 0.70	60 0.1760	0.005 0.	003 0.0060		
EL100256-005	08/25/10	VP-V-1a-1	0.3220	0.0390	0.003	0.0045	18.4						;	·	; -															
EL100256-006	08/25/10	VP-V-1a-3	0.4140	0.1600	0.003	0.0045	13.0	6.61	241.1	511.50	0.0140	0.0080	0.0530	0.001	83.0600	0.0005	0.005	0.001	0.001	0.197	3.72	6.160	0.4848	16.090 0.001	1 0.0025 0.7	80 0.1910	0.005 0.	003 0.0100	-	
EL100256-007	08/25/10	VP-V-1a-4 VP-V-1a-5	0.2990	0.0490	0.003	0.0045	12.6	6.69	306.5	613.90	0.0130	0.0080	0.0640	0.001	104 3000	0.0005	0.005	0.001	0.001	0.089	2.88	5 530	0.3748	12.450 0.001	1 0.0025 0.64	0 0.2080	0.005 0	003 0.0080		
EL100256-009	08/25/10	VP-V-1a-6	0.1080	0.0125	0.003	0.0045	13.0	6.68	335.5	655.20	0.0220	0.0070	0.0630	0.001	112.2000	0.0005	0.005	0.001	0.001	0.100	2.18	5.860	0.2130	12.310 0.00	1 0.0025 0.5	0 0.2270	0.005 0.	003 0.0080		
EL100256-010	08/25/10	VP-V-1a-7	0.0570	0.0125	0.003	0.0045	14.0	6.69	346.1	666.70	0.0250	0.0025	0.0730	0.001	123.8600	0.0005	0.005	0.001	0.001	0.111	1.45	6.650	0.1933	14.310 0.001	1 0.0025 0.6 2	0.2530	0.005 0.	003 0.0070		
EL100256-011	08/25/10	VP-V-1a-8	0.0210	0.0125	0.003	0.0045	12.2			-	0.0240	0.0050	0.0610	0.001	124.0200	0.0005	0.005	0.001	0.001	0.080	0.71	6.310	0.1239	12.450 0.001	1 0.0025 0.44	0.2420	0.005 0.	003 0.0110	-	
EL100256-012 EL100256-013	08/25/10	VP-V-10-1 VP-V-1b-2	0.1310	0.0125	0.003	0.0045	15.6	6.74	223.6	491.30	0.0090	0.0070	0.0410	0.001	72 4200	0.0005	0.005	0.001	0.001	0.042	1.05	4.100	0.1648	15 150 0.001	1 0.0025 1.0	0 0.1450	0.005 0.	003 0.0110	-	
EL100256-014	08/25/10	VP-V-1b-3	0.2100	0.0125	0.003	0.0045	15.9	6.74	270.8	555.20	0.0120	0.0120	0.0550	0.001	88.6600	0.0005	0.005	0.001	0.001	0.146	1.25	5.470	0.4522	15.090 0.001	1 0.0025 0.6	0 0.1900	0.005 0.	003 0.0090		
EL100256-015	08/25/10	VP-V-1b-4	0.1390	0.0125	0.003	0.0045	13.4	6.72	321.7	619.60	0.0130	0.0110	0.0640	0.001	107.5200	0.0005	0.005	0.001	0.001	0.093	1.15	5.360	0.3188	14.800 0.001	1 0.0025 0.6	0.2080	0.005 0.	003 0.0070		
EL100256-016	08/25/10	VP-V-1b-5	0.1140	0.0125	0.003	0.0045	14.9	6.73	341.6	653.30	0.0150	0.0150	0.0670	0.001	118.1600	0.0005	0.005	0.001	0.001	0.120	0.72	5.630	0.2536	14.650 0.001	1 0.0025 0.5	0.2220	0.005 0.	003 0.0090		
EL100256-017 EL100256-018	08/25/10	VP-V-1c-1 VP-V-1c-2	0.0500	0.0125	0.003	0.0045	24.4	6.76	270.4	555.70	0.0090	0.0150	0.0280	0.001	93 5000	0.0005	0.005	0.001	0.001	0.015	3.00	6 480	0.0851	18.230 0.001	1 0.0025 1.2.	0 0.1340	0.005 0	003 0.0150	-	
EL100256-019	08/25/10	VP-V-1c-3	0.4480	0.0620	0.003	0.0045	15.7	6.69	320.1	633.20	0.0140	0.0120	0.0700	0.001	102.7400	0.0005	0.005	0.001	0.001	0.189	3.36	6.770	0.5770	17.360 0.001	1 0.0025 0.7	0.2520	0.005 0.	003 0.0070		
EL100256-020	08/25/10	VP-V-1c-4	0.3470	0.0930	0.003	0.0045	16.4	6.80	338.7	656.90	0.0160	0.0130	0.0700	0.001	108.8000	0.0005	0.005	0.001	0.001	0.185	2.14	6.630	0.5618	15.380 0.001	1 0.0025 0.6	0 0.2520	0.005 0.	003 0.0100	-	
EL100256-021	08/25/10	VP-V-1c-5	0.0760	0.0125	0.003	0.0045	14.3	6.73	346.0	656.10	0.0150	0.0120	0.0650	0.001	116.7600	0.0005	0.005	0.001	0.001	0.100	0.50	6.600	0.3670	13.330 0.001	1 0.0025 0.5	20 0.2440	0.005 0.	003 0.0080		
EL100256-022 EL100256-023	08/25/10	VP-V-10-0 VP-V-2a-2	0.0510	0.0125	0.003	0.0045	14.8	6.81	276.3	574.10	0.0140	 1 0.0080	1 0 0730	0.001	89 1000	0.0005	0.005	0.001	- 0.001	0 257	2.68	6 580		18 100 0 001	1 0 0025 0 9	0 0 2490	0.005 0	003 0 0050	-	
EL100256-024	08/25/10	VP-V-2a-3	0.1850	0.0125	0.003	0.0045	16.0	6.69	295.2	609.30	0.0170	0.0120	0.0620	0.001	89.4400	0.0005	0.005	0.001	0.001	0.177	3.20	7.270	0.3106	17.330 0.001	1 0.0025 1.0	0 0.2370	0.005 0.	003 0.0060		
EL100256-025	08/25/10	VP-V-2a-4	0.2440	0.0125	0.003	0.0045	12.3	6.68	291.3	584.90	0.0120	0.0120	0.0630	0.001	87.9400	0.0005	0.005	0.001	0.001	0.118	4.12	6.930	0.2610	17.720 0.001	0.0025 1.1	0 0.2250	0.005 0.	003 0.0060		
EL100256-026	08/25/10	VP-V-2a-5	0.1780	0.0125	0.003	0.0045	11.6	6.70	299.1	621.00	0.0150	0.0100	0.0640	0.001	87.3400	0.0005	0.005	0.001	0.001	0.140	4.26	6.650	0.2552	16.430 0.001	1 0.0025 1.20	0 0.2190	0.005 0.	003 0.0060		
EL100256-027	08/25/10	VP-V-2a-6 VP-V-2a-7	0.2190	0.0125	0.003	0.0045	9.0	6.83	323.6	640.20	0.0120	0.0120	0.0630	0.001	91.3800	0.0005	0.005	0.001	0.001	0.096	4.08	6.740	0.2108	12 990 0.001	1 0.0025 1.1	0 0.2170	0.005 0	003 0.0070		-
EL100256-029	08/25/10	VP-V-2a-8	0.2430	0.0125	0.003	0.0045	8.9	6.96	342.4	644.30	0.0220	0.0070	0.0610	0.001	106.2000	0.0005	0.005	0.001	0.001	0.051	2.30	6.300	0.0934	11.300 0.001	1 0.0025 0.3	0 0.2030	0.005 0.	003 0.0070		-
EL100256-030	08/25/10	VP-V-2b-1	0.0290	0.0125	0.003	0.0045	21.6		-		0.0180	0.0025	0.0330	0.001	49.4400	0.0005	0.005	0.001	0.001	0.024	1.04	4.250	0.0390	19.520 0.00	0.0025 1.39	0 0.1430	0.005 0.	003 0.0150		
EL100256-033	08/25/10	VP-V-2b-2	0.2780	0.0125	0.003	0.0045	15.5	6.88	306.4	625.00	0.0140	0.0130	0.0770	0.001	92.8400	0.0005	0.005	0.001	0.001	0.291	3.88	6.450	0.4860	17.430 0.001	1 0.0025 0.9	0 0.2490	0.005 0.	003 0.0070		
EL100256-034 EL100256-035	08/25/10	VP-V-2b-3 VP-V-2b-4	0.7590	0.3670	0.003	0.0045	14.6	6.70	286.6	616.70	0.0140	0.0010	0.0690	0.001	89.7600	0.0005	0.005	0.001	0.001	0.212	4.48	6.270	0.4308	16.930 0.00	1 0.0025 0.9	0 0.2180	0.005 0.	003 0.0050		
EL100256-036	08/25/10	VP-V-2b-5	0.5610	0.1770	0.003	0.0045	13.3	6.68	305.1	613.50	0.0130	0.0150	0.0690	0.001	99.6800	0.0005	0.005	0.001	0.001	0.110	2.84	6.630	0.3118	15.130 0.001	1 0.0025 0.70	0 0.2250	0.005 0.	003 0.0060		
EL100256-037	08/25/10	VP-V-2c-1	0.3050	0.0125	0.003	0.0045	18.0		-	-	-			·				-										`		
EL100256-038	08/25/10	VP-V-2c-2	0.2140	0.0125	0.003	0.0045	14.4	6.75	265.3	557.00	0.0160	0.0080	0.0580	0.001	83.1000	0.0005	0.005	0.001	0.001	0.198	4.06	6.460	0.3228	17.660 0.001	1 0.0025 0.90	0 0.2220	0.005 0.	003 0.0060		
EL100256-039	08/25/10	VP-V-2c-3 VP-V-2c-4	0.9180	0.3610	0.003	0.0045	14.1	6.69	269.4	578.90	0.0140	0.0110	0.0550	0.001	83.4000	0.0005	0.005	0.001	0.001	0.142	4.50	6.710	0.3124	17.480 0.001	1 0.0025 1.12	0 0.2140	0.005 0	003 0.0070		-
EL100256-040	08/25/10	VP-V-2c-5	0.3540	0.0600	0.003	0.0045	12.2	6.68	263.9	563.30	0.0100	0.0130	0.0560	0.001	87.6800	0.0005	0.005	0.001	0.001	0.069	2.64	6.570	0.1706	16.250 0.001	1 0.0025 1.0	0.2090	0.005 0.	003 0.0060		-
EL100256-042	08/25/10	VP-V-2c-6	0.1510	0.0125	0.003	0.0045	12.8			-	0.0190	0.0130	0.0580	0.001	96.9600	0.0005	0.005	0.001	0.001	0.056	2.08	7.130	0.1832	15.350 0.001	1 0.0025 0.84	0 0.2240	0.005 0.	003 0.0080		
EL100256-043	08/25/10	VP-V-3a-1	0.0220	0.0125	0.003	0.0045	22.0	7.12	140.5	347.90	0.0100	0.0080	0.0270	0.001	48.1400	0.0005	0.005	0.001	0.006	0.015	0.82	3.940	0.0144	18.480 0.00	1 0.0025 1.30	0 0.1340	0.005 0.	003 0.0080		
EL100256-044	08/25/10	VP-V-3a-2 VP-V-3a-2	0.1960	0.0125	0.003	0.0045	1/./	6.69	261.1	432.60 541.60	0.0130	0.0090	0.0500	0.001	62.8600	0.0005	0.005	0.001	0.001	0.088	2.28	4.770	0.1818	17.670 0.001	1 0.0025 1.0	0 0.1/20	0.005 0	003 0.0100		-
EL100256-045	08/25/10	VP-V-3a-4	0.4150	0.1070	0.003	0.0045	14.2	6.71	280.9	581.30	0.0170	0.0080	0.0650	0.001	95.4000	0.0005	0.005	0.001	0.001	0.095	4.52	6.200	0.4372	17.680 0.001	1 0.0025 0.8	0 0.2200	0.005 0.	003 0.0100		-
EL100256-047	08/25/10	VP-V-3a-5	0.3340	0.0330	0.003	0.0045	15.9	6.67	302.0	617.90	0.0150	0.0025	0.0680	0.001	103.9600	0.0005	0.005	0.001	0.001	0.059	3.80	6.310	0.3290	16.090 0.001	1 0.0025 0.8	0 0.2330	0.005 0.	003 0.0100		
EL100256-048	08/25/10	VP-V-3a-6	0.2430	0.0125	0.003	0.0045	17.2	6.70	340.0	680.40	0.0200	0.0070	0.0760	0.001	115.6400	0.0005	0.005	0.001	0.001	0.049	5.24	6.760	0.1579	18.070 0.001	1 0.0025 0.8	0 0.2550	0.005 0.	003 0.0090		
EL100256-049	08/25/10	VP-V-3a-7	0.2410	0.0125	0.003	0.0045	15.1	6.66	368.5	725.90	0.0200	0.0025	0.0770	0.001	123.2000	0.0005	0.005	0.001	0.001	0.058	5.62	6.660	0.2362	15.380 0.001	1 0.0025 0.6	0.2520	0.005 0.	003 0.0080		-

Table B.1.7 - V	ictoria Point,	Water Sample	Analytical Re	esults, July	to October																											
															Paramet	er / Metho	od Detectio	n Limit /	Units													
			T	Dhoonhoto	Nitalto	Nituata			Total											Total	Matala									R	leactive	Chieven
			1 otai B	PO P	NO N	NO N	DOC	pH	Alkalinity	Conductivity										Total	victais									s	ilicates	Cnioropnyii
			r	r04-r	102-10	NO3-N			as CaCO ₃		Al	As	Ba	Be	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	Pb	S Sr	Ti	V	Zn	SiO ₂	· a ·
			0.0050	0.0250	0.006	0.0090	0.50	n/a	1.0	0.50	0.0050	0.0050	0.0030	0.002	0.0050	0.0010	0.010	0.002	0.002	0.002	0.10	0.010	0.0002	0.010	0.002	0.0050	0.050 0.0050	0.010	0.006 0	0.0010	0.250	0.2
Lab ID	Sample Date	Sample ID	mg/L	mg/L	mg/L	mg/L	mg/L	n/a	mg/L	uS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L mg/L	mg/L	mg/L	mg/L	mg/L	µg/L
EL100256-051	08/25/10	VP-V-3b-2	0.5890	0.1370	0.003	0.0045	15.2	6.78	288.6	602.90	0.0140	0.0110	0.0690	0.001	93.2000	0.0005	0.005	0.001	0.001	0.238	3.12	6.960	0.6264	17.300	0.001	0.0025	0.950 0.2500	0.005	0.003 0	0.0070		
EL100256-052	08/25/10	VP-V-3b-3	0.9390	0.3790	0.003	0.0045	16.3	6.70	306.5	636.90	0.0140	0.0100	0.0690	0.001	93.8600	0.0005	0.005	0.001	0.001	0.193	3.96	7.330	0.5948	16.600	0.001	0.0025	0.990 0.2500	0.005	0.003 0	0.0070		
EL100256-053	08/25/10	VP-V-3b-4	1.3510	0.6310	0.003	0.0045	16.0	6.71	315.7	648.30	0.0160	0.0025	0.0680	0.001	93.4200	0.0005	0.005	0.001	0.001	0.108	4.36	6.980	0.4594	16.550	0.001	0.0025	1.120 0.2440	0.005	0.003 0	0.0070		
EL100256-054	08/25/10	VP-V-3b-5	1.5810	0.7950	0.003	0.0045	12.5	6.74	332.5	667.80	0.0140	0.0070	0.0690	0.001	94.3800	0.0005	0.005	0.001	0.001	0.092	4.44	6.470	0.4198	14.070	0.001	0.0025	0.820 0.2310	0.005	0.003 0	0.0070		
EL100256-055	08/25/10	VP-V-3c-1	0.0430	0.0125	0.003	0.0045	19.3	7.10	150.6	368.50	0.0120	0.0070	0.0380	0.001	52.2000	0.0005	0.005	0.001	0.001	0.027	1.02	4.240	0.0904	20.280	0.001	0.0025	1.280 0.1500	0.005	0.003 0	0.0160		
EL100256-056	08/25/10	VP-V-3c-2	0.1020	0.0125	0.003	0.0045	18.7	6.80	333.2	664.10	0.0150	0.0090	0.0790	0.001	99.7000	0.0005	0.005	0.001	0.001	0.245	2.94	7.560	0.6038	17.110	0.001	0.0025	0.870 0.2780	0.005	0.003 0	0.0050		
EL100256-057	08/25/10	VP-V-3c-3	0.4610	0.0470	0.003	0.0045	15.8	6.75	364.6	727.00	0.0170	0.0070	0.0770	0.001	106.8400	0.0005	0.005	0.001	0.001	0.250	3.52	7.850	0.5956	16.290	0.001	0.0025	0.920 0.2770	0.005	0.003 0	0.0060		
EL100256-058	08/25/10	VP-V-3c-4	0.9110	0.3810	0.003	0.0045	18.3	6.77	358.6	710.60	0.0160	0.0130	0.0790	0.001	110.6400	0.0005	0.005	0.001	0.001	0.180	3.72	7.620	0.4616	16.130	0.001	0.0025	1.000 0.2710	0.005	0.003 0	0.0080		
EL100256-059	08/25/10	VP-V-3c-5	1.1460	0.5990	0.003	0.0045	14.7	6.75	362.9	/16.20	0.0170	0.0025	0.0720	0.001	107.6800	0.0005	0.005	0.001	0.001	0.099	3.74	7.020	0.2/46	13.600	0.001	0.0025	0.870 0.2390	0.005	0.003 0	0.0080		
EL100256-060	08/25/10	VP-V-3c-6	0.8370	1.1250	0.003	0.0045	17.0				-				-																	
EL100253-033	08/24/10	VP-NV-Ia-I	0.8/30	0.4060	0.003	0.0045	18.7				0.0150	0.0025	0.0830	0.001	106.4000	0.0005	0.005	0.001	0.001	0.215	3.64	7.660	0.4550	19.190	0.001	0.0025	1.070 0.2670	0.005	0.003 0	0.0050		
EL100253-034	08/24/10	VP-NV-1a-2	1.4860	1.0710	0.003	0.0045	15.7	6.70	225.4	7/4.10	0.0120	0.0025	0.0/10	0.001	01 7400	0.0005	0.005	0.001	0.001	0.159	4.40	7.740	0.4662	16.370	0.001	0.0025	0.700 0.2410	0.005	0.003 0	0.0050		
EL100253-035	08/24/10	VP-NV-1a-3	1.3030	0.7610	0.003	0.0045	14.8	6.78	200.4	/05./0	0.0120	0.0025	0.0620	0.001	91.7400	0.0005	0.005	0.001	0.001	0.074	3.90	6.960	0.3752	14.580	0.001	0.0025	0.790 0.2060	0.005	0.003 0	0.0050		
EL100233-030	08/24/10	VD NV 1a 5	0.6400	0.7010	0.003	0.0045	12.9	6.79	201.9	620.60	0.0120	0.0023	0.0620	0.001	92.8000	0.0005	0.005	0.001	0.001	0.038	3.30	6 100	0.3140	12.090	0.001	0.0025	0.890 0.2000	0.005	0.003 0	0.0070		
EL100253-039	08/24/10	VP NV 1a 6	0.0400	0.3980	0.003	0.0045	10.1	6.87	291.8	623.20	0.0120	0.0025	0.0530	0.001	03 0200	0.0005	0.005	0.001	0.001	0.040	2.90	6.110	0.1338	11.060	0.001	0.0025	0.580 0.1800	0.005	0.003 0	0.0000		
EL100253-040	08/24/10	VP NV 1a 7	0.3900	0.0580	0.003	0.0045	9.5	0.07	500.7	025.20	0.0120	0.0023	0.0580	0.001	101 6600	0.0005	0.005	0.001	0.001	0.037	2.70	6.050	0.1157	10.740	0.001	0.0025	0.280 0.1900	0.005	0.003 0	0070		-
EL100253-041	08/24/10	VP-NV-1h-1	0.7920	0.0125	0.003	0.0045	19.1	·	-	-	-							0.001	0.001		2.40				0.001						-	-
EL100253-043	08/24/10	VP-NV-1h-2	0.8040	0 3770	0.003	0.0045	17.8	679	381.4	787 90	0.0120	0.0025	0.0960	0.001	123 3400	0.0005	0.005	0.001	0.001	0.336	4 92	7 600	0.6708	18 100	0.001	0.0025	1 050 0 2950	0.005	0.003 0	0.0050		
EL100253-044	08/24/10	VP-NV-1h-3	1.0750	0 7060	0.003	0.0045	15.4	6.78	360.4	764 70	0.0090	0.0060	0.0750	0.001	107 7000	0.0005	0.005	0.001	0.001	0.166	5.08	6.830	0 4848	16 650	0.001	0.0025	0.980 0.2450	0.005	0.003 0	0.0050		
EL100253-045	08/24/10	VP-NV-1h-4	0.7150	0.5980	0.003	0.0045	14.5	6.81	360.2	755.80	0.0130	0.0025	0.0700	0.001	106 9400	0.0005	0.005	0.001	0.001	0.095	4 56	6 720	0.3108	15 440	0.001	0.0025	0.850 0.2300	0.005	0.003 0	0.0070		
EL100253-046	08/24/10	VP-NV-1b-5	0.7140	0.4690	0.003	0.0045	13.4	6.85	350.9	728.40	0.0120	0.0080	0.0680	0.001	108.2000	0.0005	0.005	0.001	0.001	0.063	4.24	6.670	0.2218	14.680	0.001	0.0025	0.620 0.2250	0.005	0.003 0	0.0050		
EL100253-047	08/24/10	VP-NV-1b-6	0.4980	0.3110	0.003	0.0045	11.4				0.0130	0.0050	0.0610	0.001	99.6000	0.0005	0.005	0.001	0.001	0.045	3.52	6.180	0.1341	12.640	0.001	0.0025	0.460 0.2010	0.005	0.003 0	0.0110		
EL100253-048	08/24/10	VP-NV-1c-1	0.0950	0.0125	0.003	0.0045	20.7	6.83	230.3	525.60	0.0120	0.0025	0.0590	0.001	78.6600	0.0005	0.005	0.001	0.001	0.149	2.80	5.600	0.3186	18.370	0.001	0.0025	1.100 0.2070	0.005	0.003 0	0.0090		
EL100253-049	08/24/10	VP-NV-1c-2	0.7090	0.3480	0.003	0.0045	17.8	6.71	370.1	780.70	0.0130	0.0025	0.0790	0.001	109.0800	0.0005	0.005	0.001	0.001	0.215	6.60	7.680	0.6300	17.440	0.001	0.0025	1.010 0.2690	0.005	0.003 0	0.0050		
EL100253-050	08/24/10	VP-NV-1c-3	1.6590	1.0880	0.003	0.0045	15.6	6.76	362.6	780.00	0.0120	0.0025	0.0750	0.001	109.6600	0.0005	0.005	0.001	0.001	0.089	6.62	7.210	0.5076	17.210	0.001	0.0025	1.030 0.2540	0.005	0.003 0	0.0050		
EL100253-051	08/24/10	VP-NV-1c-4	1.7560	1.3060	0.003	0.0045	14.6	6.81	388.9	805.60	0.0140	0.0025	0.0740	0.001	110.9400	0.0005	0.005	0.001	0.001	0.057	5.54	7.090	0.3692	15.110	0.001	0.0025	0.880 0.2450	0.005	0.003 0	0.0060		
EL100253-052	08/24/10	VP-NV-1c-5	1.4220	1.0320	0.003	0.0045	13.0	6.83	388.3	800.90	0.0100	0.0025	0.0700	0.001	108.4000	0.0005	0.005	0.001	0.001	0.047	4.56	6.850	0.2260	13.270	0.001	0.0025	0.690 0.2250	0.005	0.003 0	0.0050		
EL100253-053	08/24/10	VP-NV-2a-1	0.1240	0.0125	0.003	0.0045	19.1	6.90	199.0	462.90	0.0120	0.0025	0.0480	0.001	67.7200	0.0005	0.005	0.001	0.001	0.108	1.82	5.410	0.2252	17.250	0.001	0.0025	1.230 0.1790	0.005	0.003 0	0.0090		
EL100253-054	08/24/10	VP-NV-2a-2	0.9360	0.5970	0.003	0.0045	16.7	6.76	375.6	783.10	0.0110	0.0050	0.0750	0.001	107.4400	0.0005	0.005	0.001	0.001	0.290	6.62	7.400	0.6636	16.140	0.001	0.0025	0.900 0.2630	0.005	0.003 0	0.0040		
EL100253-055	08/24/10	VP-NV-2a-3	1.1980	0.7580	0.003	0.0045	13.4	6.73	352.8	742.40	0.0090	0.0060	0.0720	0.001	104.6800	0.0005	0.005	0.001	0.001	0.177	7.10	6.700	0.5048	15.020	0.001	0.0025	0.730 0.2410	0.005	0.003 0	0.0040		
EL100253-056	08/24/10	VP-NV-2a-4	0.9270	0.5530	0.003	0.0045	12.5	6.73	344.8	670.50	0.0140	0.0080	0.0690	0.001	103.2400	0.0005	0.005	0.001	0.001	0.106	6.22	6.300	0.3508	13.310	0.001	0.0025	0.630 0.2220	0.005	0.003 0	0.0060		-
EL100253-057	08/24/10	VP-NV-2a-5	0.6010	0.2490	0.003	0.0045	12.4	6.82	360.8	724.40	0.0170	0.0080	0.0710	0.001	111.3200	0.0005	0.005	0.001	0.001	0.096	5.32	6.860	0.2732	12.900	0.001	0.0025	0.600 0.2370	0.005	0.003 0	0.0060		-
EL100253-058	08/24/10	VP-NV-2a-6	0.3940	0.1020	0.003	0.0045	10.5	6.79	340.4	683.40	0.0140	0.0025	0.0670	0.001	106.4400	0.0005	0.005	0.001	0.001	0.128	4.30	6.770	0.2660	11.810	0.001	0.0025	0.460 0.2280	0.005	0.003 0	0.0060		
EL100253-059	08/24/10	VP-NV-2a-7	0.2500	0.0125	0.003	0.0045	10.5	0.89	354.1	699.90	0.0180	0.0090	0.0680	0.001	115.7800	0.0005	0.005	0.001	0.001	0.062	3.40	0.0/0	0.1130	10.240	0.001	0.0025	0.300 0.2230	0.005	0.003 0	0.0080		
EL100253-060	08/24/10	VP-INV-2a-8	0.1350	0.0125	0.003	0.0045	9.7	0.98	303.2	707.20	0.0160	0.0025	0.0680	0.001	1119.7200	0.0005	0.005	0.001	0.001	0.116	2.94	0.500	0.0990	10.340	0.001	0.0025	0.210 0.2230	0.005	0.003 0	5.0020		
EL100253-061	08/24/10	VP-NV-20-1	0.0330	0.0125	0.003	0.0045	19.1		250.9		- 0.0140	0.0026		- 0.001	-	0.0005	0.005	0.001	0.001	0.102	4.26	6 260	0.4200	17 710	0.001		0.840 0.2260		0.002 0			
EL100233-002	08/24/10	VP NV 2b 2	0.0330	0.0370	0.003	0.0045	13.0	6.76	230.8	653.80	0.0140	0.0023	0.0670	0.001	100 8200	0.0005	0.005	0.001	0.001	0.195	5.84	6.820	0.4390	16.820	0.001	0.0025	0.840 0.2200	0.005	0.003 0	0.0070		
EL100253-065	08/24/10	VP-NV-20-3	0.1880	0.0125	0.003	0.0045	13.4	6.73	315.7	657.40	0.0100	0.0025	0.0680	0.001	107 7800	0.0005	0.005	0.001	0.001	0.092	4.62	5 730	0.4106	15 740	0.001	0.0025	0.650 0.2420	0.005	0.003 0	0.0070	-	-
EL100253-065	08/24/10	VP-NV-2b-5	0.0390	0.0125	0.003	0.0045	14.5	679	380.4	768 30	0.0120	0.0060	0.0730	0.001	134 8000	0.0005	0.005	0.001	0.001	0.069	2.12	6 880	0.3482	15 210	0.001	0.0025	0.630 0.2200	0.005	0.003 0	0.0070		
EL100253-066	08/24/10	VP-NV-2b-6	0.0490	0.0125	0.003	0.0045	13.3				0.0200	0.0070	0.0680	0.001	129 8000	0.0005	0.005	0.001	0.001	0.099	1.87	6 520	0.3188	14 000	0.001	0.0025	0.480 0.2510	0.005	0.003 0	0.0020		
EL100253-067	08/24/10	VP-NV-2c-1	0.0620	0.0125	0.003	0.0045	19.6															1										
EL100253-068	08/24/10	VP-NV-2c-2	0.0570	0.0125	0.003	0.0045	16.7	6.87	265.6	575.50	0.0110	0.0025	0.0680	0.001	94.4600	0.0005	0.005	0.001	0.001	0.238	3.26	5.980	0.4384	17.820	0.001	0.0025	0.770 0.2400	0.005	0.003 0	0.0070		
EL100253-069	08/24/10	VP-NV-2c-3	0.2470	0.0125	0.003	0.0045	14.1	6.77	321.3	677.20	0.0090	0.0060	0.0690	0.001	103.9200	0.0005	0.005	0.001	0.001	0.239	4.52	7.060	0.5340	16.710	0.001	0.0025	0.820 0.2530	0.005	0.003 0	0.0060		
EL100253-070	08/24/10	VP-NV-2c-4	0.5220	0.1820	0.003	0.0045	13.7	6.73	324.3	680.40	0.0080	0.0060	0.0680	0.001	108.6800	0.0005	0.005	0.001	0.001	0.111	3.62	6.390	0.4574	15.630	0.001	0.0025	0.720 0.2340	0.005	0.003 0	0.0060		
EL100253-071	08/24/10	VP-NV-2c-5	0.4210	0.1410	0.003	0.0045	14.0	6.74	358.5	737.60	0.0130	0.0050	0.0730	0.001	127.9200	0.0005	0.005	0.001	0.001	0.077	2.34	7.220	'	'	'		· _ · _	· - ·	- '			
EL100253-072	08/24/10	VP-NV-2c-6	0.2120	0.0125	0.003	0.0045	13.4				-				-							-										
EL100303-004	09/25/10	VP-AV-1a-1	0.0500	0.0125	0.003	0.0520				-	0.0090	0.0025	0.0430		67.3870					0.032	1.71	5.910	0.0147	20.180			2.110 0.1760		0	0.0060		
EL100303-005	09/25/10	VP-AV-1a-2	0.1640	0.0125	0.003	0.0090		6.735	228.8	535.40	0.0480	0.0025	0.0570		78.8870				-	0.161	2.12	6.190	0.1562	20.560			1.340 0.2040		0	0.0070		
EL100303-006	09/25/10	VP-AV-1a-3	0.7890	0.4110	0.003	0.0045		6.597	246.8	582.80	0.0220	0.0025	0.0660		82.9270					0.114	3.24	6.310	0.2810	20.240			1.010 0.2060		0	0.0060		
EL100303-007	09/25/10	VP-AV-1a-4	0.8280	0.5370	0.003	0.0310		6.390	215.3	551.50	0.0300	0.0025	0.0580		78.0070					0.110	4.42	6.480	0.2998	24.080			0.800 0.1900		0	0.0060		
EL100303-008	09/25/10	VP-AV-1a-5	0.5950	0.4500	0.003	0.0045		6.583	243.7	590.70	0.0250	0.0025	0.0600		88.7270					0.055	2.92	7.110	0.1941	25.580			0.820 0.2050		- 0	0.0050		
EL100303-009	09/25/10	VP-AV-1a-6	0.0990	0.1130	0.003	0.0210					0.0150	0.0025	0.0500		89.0070					0.030	1.08	6.590	0.0519	14.940			0.600 0.1880		0	J.0020		
EL100303-010	09/25/10	VP-AV-1a-7	0.0530	0.0640	0.003	0.0045		6.720	269.0	589.90	0.0340	0.0025	0.0510		99.5270					0.047	0.62	6.550	0.0456	12.650			0.560 0.2000		- 0	0.0050		-
EL100303-011	09/25/10	VP-AV-1b-1	0.7140	0.7610	0.003	0.0350					0.0090	0.0025	0.0490		87.2470					0.083	1.43	6.670	0.0700	19.250			1.470 0.2230		0	0.0020		
EL100303-012	09/25/10	VP-AV-1b-2	0.9380	0.6970	0.003	0.0045		6.829	293.4	632.10	0.0100	0.0025	0.0570		103.0070					0.091	0.99	7.550	0.1560	18.500			1.320 0.2470		- 0	0.0020		
EL100303-013	09/25/10	VP-AV-1b-3	0.2590	0.2040	0.003	0.0045		6.747	289.2	630.20	0.0240	0.0025	0.0540		103.3070					0.068	0.41	7.550	0.1067	18.450			0.820 0.1870		- 0	0.0030		
EL100303-014	09/25/10	VP-AV-10-4	0.1010	0.0880	0.003	0.0045		6.747	250.0	554.00	0.0130	0.0025	0.0470		02.0470					0.042	0.31	6.650	0.0078	12 410			0.820 0.1870		- 0	0.0010		
EL100303-015	09/25/10	VP-AV-10-5	0.0450	0.0125	0.003	0.0045		6.017	164.2	334.00	0.0120	0.0025	0.0480		93.0470					0.041	1.28	5.770	0.0840	20.400			1 810 0 1600		- 0	0.0030		
EL100303-010	09/25/10	VP-AV-10-2	0.0890	0.0290	0.003	0.0045	-	6.689	171.3	438.60	0.0450	0.0025	0.0370		63 4870					0.091	0.57	5 950	0.0595	18 290			1.520 0.1630		- 0	0.0050	-	
EL100303-019	09/25/10	VP-4V-10-3	0.0930	0.0125	0.003	0.0045				150.00	0.0470	0.0025	0.0430	-	71 7470					0.064	0.42	6 840	0.0339	20.800			1 370 0 1810		- 0	0.0050		
EL100303-019	09/25/10	VP-AV-10-5	0.3450	0.1740	0.003	0.0045		6 4 4 9	155.5	423.40	0.0750	0.0025	0.0410		58 8870					0.099	5.74	5 1 5 0	0.0743	14 260			0.780 0.1440		- 0	0.0090		
EL100303-020	09/25/10	VP-AV-1d-2	0.1860	0.1500	0.003	0.2400		6.687	257.0	583.60	0.0240	0.0025	0.0490	-	90 5070					0.100	0.12	8 040	0.0934	20 540			1 590 0 2360		- 0	0.0030		
EL100303-021	09/25/10	VP-AV-1d-3	0.2150	0.1220	0.003	0.0045		6.675	272.1	608.60	0.0580	0.0025	0.0500		92.3270					0.122	0.29	8.060	0.1581	19.550			1.500 0.2360		0	0.0060		
EL100303-022	09/25/10	VP-AV-1d-4	1.1090	0.4390	0.003	0.0045		6,490	246.4	610.30	0.0290	0.0025	0.0610		93,1070					0.173	3.66	7.690	0.3086	21,440			0.970 0.2330		0	0.0050		
EL100303-023	09/25/10	VP-AV-1d-5	0.5970	0.3970	0.003	0.0045		6.670	282.8	651.80	0.0240	0.0025	0.0600		103.2270					0.136	1.75	8.290	0.2662	21.080			1.090 0.2440		0	0.0040		
EL100303-024	09/25/10	VP-AV-1d-6	0.3220	0.1620	0.003	0.0045		6.715	298.3	670.60	0.0260	0.0025	0.0590		109.5470					0.076	1.00	8.410	0.1487	19.930			1.020 0.2420		0	0.0050		
EL100303-025	09/25/10	VP-AV-1e-0	0.1130	0.0280	0.003	0.0045				-	-				-							-										
EL100303-026	09/25/10	VP-AV-1e-1	0.1200	0.0430	0.003	0.0100		7.046	206.3	484.50	0.0100	0.0025	0.0470		74.7270					0.082	1.32	5.690	0.0942	16.990			1.130 0.1930		- 0	0.0060		
EL100303-027	09/25/10	VP-AV-1e-2	0.6020	0.1710	0.003	0.0045		6.834	228.1	516.20	0.0070	0.0025	0.0520		81.9670					0.082	1.14	6.470	0.2208	16.700			0.770 0.2010		0	0.0070		
EL100303-028	09/25/10	VP-AV-1e-3	0.5220	0.3500	0.003	0.0045		6.800	218.2	503.80	0.0120	0.0025	0.0480		77.5670					0.055	0.64	5.870	0.1250	17.440			0.740 0.1830		- 0	0.0070		
EL100303-029	09/25/10	VP-AV-1e-4	0.2660	0.2080	0.003	0.0045		6.834	262.4	579.30	0.0210	0.0025	0.0520		95.8870					0.046	0.42	6.750	0.1265	16.390			0.720 0.2130		0	0.0070		
EI 100202 020	00/26/10	VD AV L.C	0.0500	0.0640	0.002	0.0047					0.0160	0.0026	0.0560		110 2970				_	0.052	0.22	7 110	0.0860	12,010			0 (00 0 0 0 0 0 0 0		0	0000		

Appendix B Victoria Point Data

Table B.1.7 - V	'ictoria Point,	Water Sample	Analytical R	esults, July	to October																								
															Paramet	ter / Meth	od Detectio	n Limit / I	Units										
			Total	Phosphate	Nitrite	Nitrate	POG		Total											Total Metals								Reactive	Chlorophyll
			Р	PO₄-P	NO2-N	NO3-N	DOC	рн	Alkalinity	Conductivity			D.	D .	C .	61	0	0	0	E. V	M	M	N.	NP DL		- Tri	V 2.	Silicates	"a"
			0.0050	0.0350	0.007	0.0000	0.50	,	10	0.50	AI	AS	Ba 0.0020	Be	0.0050	0.0010	0.010	0.002	0.002	FC K	Mg	NIN 0.0002 0	INA D	NI PD	5 Sr	0.010	v Zn	0.250	0.2
Lab ID	Sample Date	Sample ID	0.0050 mg/I	0.0250 ma/l	0.000 ma/l	0.0090 ma/l	0.50 mg/I	n/a n/a	1.0 ma/l	0.50 uS/cm	0.0050 ma/l	0.0050 ma/I	0.0030 mg/l	0.002 ma/l	0.0050 ma/I	0.0010 mg/I	0.010 ma/l	0.002 ma/l	0.002 mg/I	0.002 0.10 mg/l mg/l	0.010 ma/l	0.0002 0 mg/l 1	ng/I m	002 0.0050 mg/l mg/l	ma/I ma/I	0.010 mg/l	0.006 0.0010 mg/l mg/l	0.250 ma/l	0.2 ug/I
EL100303-031	09/25/10	VP-V-1a-1	0.2840	0.0125	0.003	0.0045					-				-						-								
EL100303-032	09/25/10	VP-V-1a-2	0.3370	0.1410	0.003	0.0045		7.025	213.1	501.50	0.0050	0.0025	0.0530	-	76.1270					0.074 2.78	5.740	0.1478 2	0.580		1.370 0.2000		- 0.0060		
EL100303-033	09/25/10	VP-V-1a-3	0.8760	0.3600	0.003	0.0045		6.726	251.5	565.90	0.0060	0.0025	0.0650	-	84.7470				- 1	0.140 4.30	6.240	0.5152 1	8.090		0.820 0.2090		0.0060		
EL100303-034	09/25/10	VP-V-1a-4	0.8140	0.5380	0.003	0.0045		6.703	272.7	601.40	0.0070	0.0025	0.0650		92.7670					0.135 4.68	6.240	0.4444 1	8.510		0.760 0.2200		- 0.0060		
EL100303-035	09/25/10	VP-V-1a-5	0.5550	0.2630	0.003	0.0045		6.772	288.0	624.20	0.0070	0.0025	0.0680		100.0470					0.101 4.66	6.140	0.3694 1	6.480		0.650 0.2280		- 0.0070		
EL100303-036	09/25/10	VP-V-1a-0	0.2790	0.1410	0.003	0.0180	-	6 763	308.8	650.40	0.0080	0.0025	0.0630	-	107.4870			-		0.052 3.36	5.880	0.0997 1	5.020		0.670 0.2250		- 0.0080		
EL100303-038	09/25/10	VP-V-1a-8	0.1030	0.0125	0.003	0.0045					0.0080	0.0025	0.0600		112.8670					0.070 1.56	6.040	0.1154 1	3.040		0.370 0.2310		- 0.0020		
EL100303-039	09/25/10	VP-V-1b-1	0.4740	0.0125	0.003	0.0045									-						-								
EL100303-040	09/25/10	VP-V-1b-2	0.5870	0.0750	0.003	0.0045		6.977	204.9	486.80	0.0090	0.0025	0.0480		70.8870					0.113 2.40	5.440	0.1886 1	9.180		1.000 0.1890		- 0.0070		
EL100303-041	09/25/10	VP-V-1b-3	1.0010	0.3400	0.003	0.0045		6.802	229.8	522.30	0.0050	0.0025	0.0500		76.6870					0.116 2.54	5.690	0.2770 1	6.620		0.750 0.1840		- 0.0060		
EL100303-042	09/25/10	VP-V-1b-4	0.4930	0.1620	0.003	0.0045		6.737	258.1	563.10	0.0160	0.0025	0.0550	-	91.3270					0.084 1.82	5.120	0.1578 1	6.900		0.720 0.1850		- 0.0070		
EL100303-043	09/25/10	VP-V-10-5	0.3960	0.1880	0.003	0.0045		0.758	207.0	579.80	0.0150	0.0025	0.0580		95.8870					0.067 2.04	5.260	0.0929 1	5.000		2.660 0.1980		- 0.0060		
EL100303-044	09/25/10	VP-V-1c-1	0.0800	0.0630	0.003	0.0180	-	-	-	_	0.0050	0.0025	0.0430		64.3070		-	-		0.033 2.08	5.300	0.0278 1	0.400		1.960 0.1740	-	- 0.0060	_	-
EL100303-048	09/25/10	VP-V-1c-2	0.3250	0.1590	0.003	0.0045		6.909	230.2	524.80	0.0060	0.0025	0.0560		81.3670				1	0.128 2.74	6.390	0.2948 1	9.260		1.030 0.2190		0.0070		
EL100303-049	09/25/10	VP-V-1c-3	0.3130	0.1490	0.003	0.0045		6.753	272.0	595.00	0.0025	0.0025	0.0610		93.4670]	0.136 2.76	6.760	0.3958 1	7.260		0.830 0.2310		0.0080		
EL100303-050	09/25/10	VP-V-1c-4	0.1120	0.0690	0.003	0.0045		6.657	261.9	575.80	0.0080	0.0025	0.0580		93.8270					0.048 2.28	5.870	0.2646 1	6.530		0.660 0.2130		- 0.0070		
EL100303-051	09/25/10	VP-V-1c-5	0.0700	0.0430	0.003	0.0045		6.780	308.2	650.80	0.0070	0.0025	0.0650		113.3670	(0.040 1.72	6.540	0.1445 1	5.670		0.770 0.2440		- 0.0060		
EL100303-052	09/25/10	VP-V-1c-6	0.0630	0.0125	0.003	0.0110					0.0060	0.0026			77 9970					0.104 0.72	- 6 520				1 250 0 2160				
EL100303-053	09/25/10	VP-V-2a-2	0.5340	0.0900	0.003	0.0045	-	6 863	280.5	628.20	0.0060	0.0025	0.0530		89 4670			-		0.104 2.72	7 420	0.1099 2	9 090		1 360 0 2410		- 0.0070		-
EL100303-055	09/25/10	VP-V-2a-3	0.5250	0.1830	0.003	0.0045		6.853	317.6	696.10	0.0080	0.0025	0.0690		101.3470				'	0.124 3.16	8.140	0.2226 1	8.870		1.360 0.2650		- 0.0060		
EL100303-056	09/25/10	VP-V-2a-4	0.4100	0.0970	0.003	0.0045		6.818	269.3	599.30	0.0025	0.0025	0.0560		85.2670				1	0.059 2.82	6.770	0.1626 1	6.120		0.990 0.2130		- 0.0050		
EL100303-057	09/25/10	VP-V-2a-5	0.3700	0.1010	0.003	0.0045		6.917	278.6	606.00	0.0025	0.0025	0.0560		85.1070					0.044 2.42	6.640	0.0992 1	4.520		0.910 0.2070		- 0.0050		
EL100303-058	09/25/10	VP-V-2a-6	0.3330	0.1240	0.003	0.0045		6.946	283.5	604.70	0.0070	0.0025	0.0580		92.1070					0.043 2.18	6.700	0.0912 1	3.290		0.680 0.2080		0.0060		
EL100303-059	09/25/10	VP-V-2a-7	0.2230	0.0700	0.003	0.0045		6.944	298.0	611.70	0.0070	0.0025	0.0560		97.8870					0.033 1.93	6.230	0.0470 1	1.390		0.390 0.1980		- 0.0060		
EL100303-060 EL100303-061	09/25/10	VP-V-2a-8	0.1820	0.0030	0.003	0.0045		-	-		-				_						_								
EL100303-062	09/25/10	VP-V-2b-2	0.1850	0.0125	0.003	0.0045	-	7.010	215.2	513.70	0.0060	0.0025	0.0590		73.8270					0.055 2.96	5.710	0.0137 2	1.180		1.280 0.2010		- 0.0050	_	-
EL100303-063	09/25/10	VP-V-2b-3	0.8830	0.4660	0.003	0.0045		6.812	275.2	611.20	0.0060	0.0025	0.0640		86.6670				'	0.126 3.38	6.680	0.2652 1	7.290		0.930 0.2290		- 0.0070		
EL100303-064	09/25/10	VP-V-2b-4	0.9710	0.2010	0.003	0.0045		6.778	294.8	637.90	0.0060	0.0025	0.0670		95.6070]	0.062 2.98	6.670	0.1701 1	6.510		0.950 0.2260		- 0.0060		
EL100303-065	09/25/10	VP-V-2b-5	0.7060	0.1270	0.003	0.0045		6.801	316.8	670.80	0.0090	0.0025	0.0680		106.5470	2				0.046 2.78	6.900	0.1360 1	5.990		0.860 0.2380		- 0.0050		
EL100303-066	09/25/10	VP-V-2b-6	0.1960	0.1250	0.003	0.0045			-		0.0110	0.0025	0.0670	-	122.6470) (0.031 1.88	7.210	0.0820 1	4.260		0.680 0.2500		- 0.0030		
EL100303-067	09/25/10	VP-V-20-1	0.0740	0.0125	0.003	0.0045	-	7 125	173.8	441.20	0.0025	0.0025		-	61 3070			-		0.060 2.56	5 500		0.040		1 640 0 1710		- 0.0070		
EL100303-069	09/25/10	VP-V-2c-3	0.4590	0.0520	0.003	0.0045	-	6.779	228.3	537.40	0.0025	0.0025	0.0520		74.5270				'	0.089 3.70	6.090	0.1849 1	8.870		1.230 0.1980		- 0.0050	_	-
EL100303-070	09/25/10	VP-V-2c-4	0.8290	0.2040	0.003	0.0045		6.680	262.3	597.20	0.0025	0.0025	0.0600		82.8470				'	0.130 5.06	6.770	0.3108 1	8.550		1.230 0.2180		0.0060		
EL100303-071	09/25/10	VP-V-2c-5	0.4940	0.1970	0.003	0.0045		6.686	280.7	619.90	0.0025	0.0025	0.0640		91.5270				1	0.120 4.40	7.060	0.2798 1	7.460		1.090 0.2350		0.0060		
EL100303-072	09/25/10	VP-V-2c-6	0.3340	0.1640	0.003	0.0045					0.0025	0.0025	0.0590		90.0670					0.058 4.42	6.710	0.2218 1	6.110		0.900 0.2170		- 0.0020		
EL100303-073	09/25/10	VP-V-3a-1	0.5560	0.0770	0.003	0.0045		-			- 0.0050				-						-				1 070 0 2100				
EL100303-074	09/25/10	VP-V-3a-2 VP-V-3a-2	0.8670	0.1/80	0.003	0.0045		6.935	234.2	545.40	0.0050	0.0025	0.0570		82 3670					0.105 3.28	5.880	0.2728 2	7.120		0.870 0.2100		- 0.0060		
EL100303-075	09/25/10	VP-V-3a-4	0.3070	0.1980	0.003	0.0045	-	6 768	261.6	580.90	0.0060	0.0025	0.0600		85 9670			-		0.120 5.94	6 210	0.3346 1	6 650		0.770 0.2030		- 0.0060	_	-
EL100303-077	09/25/10	VP-V-3a-5	0.4460	0.1260	0.003	0.0045		6.734	273.5	598.20	0.0060	0.0025	0.0640		93.1470					0.097 5.28	6.000	0.3050 1	6.120		0.660 0.2180		0.0060		
EL100303-078	09/25/10	VP-V-3a-6	0.5180	0.1510	0.003	0.0045		6.697	307.7	656.30	0.0070	0.0025	0.0700		105.2470	2]	0.093 7.20	6.260	0.3264 1	6.560		0.550 0.2300		- 0.0060		
EL100303-079	09/25/10	VP-V-3a-7	0.3400	0.1100	0.003	0.0045		6.738	331.9	696.10	0.0170	0.0025	0.0710		115.2070	<u> </u>				0.098 5.36	6.670	0.2048 1	6.520		0.490 0.2420		0.0060		
EL100303-080	09/25/10	VP-V-3a-8	0.0540	0.0450	0.003	0.0045					0.0130	0.0025	0.0670		126.9070)				0.085 1.59	6.680	0.1199 1	3.150		0.340 0.2490		- 0.0030		
EL100303-081 EL100303-082	09/25/10	VP-V-3D-1 VP-V-3D-1	0.6450	0.0390	0.003	0.0045	-	6 930	266.5	599.10	0.0025	0.0025	0.0630		87 4470					0 172 3 36	6 900	0 3886 1	8 210		1 070 0 2430		- 0.0050		
EL100303-082	09/25/10	VP-V-3b-3	0.8620	0.2250	0.003	0.0045	-	6.789	283.1	621.50	0.0070	0.0025	0.0640		90.8270				'	0.131 3.40	6.650	0.3470 1	4.600		0.870 0.2340		- 0.0060	_	-
EL100303-084	09/25/10	VP-V-3b-4	1.1720	0.2430	0.003	0.0045		6.933	309.4	661.90	0.0025	0.0025	0.0690		98.6070				1	0.112 3.22	6.840	0.3382 1	3.900		0.860 0.2420		- 0.0050		
EL100303-085	09/25/10	VP-V-3b-5	1.4270	0.2290	0.003	0.0045		- '			0.0060	0.0025	0.0670		95.6470]	0.083 4.28	6.440	0.2300 1	3.640		0.880 0.2270		- 0.0060		
EL100303-086	09/25/10	VP-V-3b-6	1.3190	0.2040	0.003	0.0045					0.0060	0.0025	0.0660		97.6470					0.049 4.00	6.340	0.0953 1	2.120		0.770 0.2170		- 0.0020		
EL100303-087	09/25/10	VP-V-3c-1	0.5740	0.1400	0.003	0.0045					- 0.0000									0.120 2.00	-				1 120 0 2440				
EL100303-090 EL100303-091	09/25/10	VP-V-3C-2	0.0830	0.2380	0.003	0.0045	-	6.889	326.8	712.40	0.0080	0.0060	0.0690	-	91.5870					0.159 5.98	7.430	0.2426 1	6 860		1.130 0.2440		- 0.0090		
EL100303-091	09/25/10	VP-V-3c-4	1.2230	0.6290	0.003	0.0045	-	6.826	334.3	721.70	0.0050	0.0070	0.0710		99.5070				'	0.138 4.18	7.090	0.3380 1	4.050		1.020 0.2410		- 0.0060	_	-
EL100303-093	09/25/10	VP-V-3c-5	1.0570	0.6340	0.003	0.0045		6.855	323.2	695.00	0.0130	0.0025	0.0640		98.0870				1	0.068 3.88	6.840	0.1304 1	2.990		0.890 0.2240		0.0060		
EL100303-094	09/25/10	VP-V-3c-6	0.8160	0.2830	0.003	0.0045				-	0.0060	0.0025	0.0600		95.4070					0.063 3.62	6.530	0.0824 1	1.640		0.720 0.2150		0.0030		
EL100303-095	09/25/10	VP-NV-1a-1	0.0490	0.0125	0.003	0.0045		7.207	173.2	442.40	0.0060	0.0025	0.0450		62.6270					0.022 2.16	5.420	0.0209 1	8.900		2.120 0.1680		- 0.0040		
EL100303-096	09/25/10	VP-NV-1a-2	0.7080	0.4110	0.003	0.0140		6.924	302.1	662.20	0.0070	0.0070	0.0650		95.2070					0.102 4.20	7.290	0.1272 1	6.980		1.250 0.2310		- 0.0070		
EL100303-097	09/25/10	VP-NV-1a-3 VP-NV-1a-4	0.5130	0.2980	0.003	0.0045		6.806	305.8	661.60	0.0180	0.0023	0.0670	-	93 5870		-			0.057 4.48	6.820	0.0813 1	4 070		1.120 0.2100		- 0.0050	-	-
EL100303-099	09/25/10	VP-NV-1a-5	0.4720	0.2810	0.003	0.0045	-	6.807	277.5	608.20	0.0070	0.0060	0.0600	_	85.4270				-	0.048 4.80	6.190	0.0764 1	3.040		0.880 0.1940		- 0.0050		-
EL100303-100	09/25/10	VP-NV-1a-6	0.2380	0.1030	0.003	0.0045		6.875	336.4	698.50	0.0170	0.0080	0.0690		112.1070				'	0.038 4.02	6.630	0.0447 1	2.510		0.650 0.2200		- 0.0060		
EL100303-101	09/25/10	VP-NV-1a-7	0.1200	0.0590	0.003	0.0045		'			0.0100	0.0080	0.0690		118.8670	(1	0.037 3.34	6.460	0.0136 1	1.150		0.290 0.2190		- 0.0060		
EL100303-102	09/25/10	VP-NV-1b-1	0.2740	0.0125	0.003	0.0045					-				-						-								
EL100303-103	09/25/10	VP-NV-1b-2	0.3040	0.0430	0.003	0.0045		6.821	288.6	639.30	0.0060	0.0100	0.0650		96.5470					0.158 4.96	7.740	0.1408 1	8.030		1.250 0.2430		- 0.0070		
EL100303-104	09/25/10	VP-NV-1b-3	0.5550	0.1940	0.003	0.0045		0.802	323.0	/11.70	0.0120	0.0025	0.0690	-	105.2470					0.049 4.96	7.440	0.0871 1	5.680		0.820 0.2400		- 0.0060		
EL100303-105	09/25/10	VP-NV-10-4	0.2070	0.0810	0.003	0.0045	-				0.0025	0.0025	0.0590		93.0870					0.045 3.76	6.350	0.0336 1	4.330		0.720 0.2050		- 0.0070	-	
EL100303-107	09/25/10	VP-NV-1b-6	0.1840	0.0400	0.003	0.0045					0.0025	0.0025	0.0630		106.3070				1	0.033 3.40	6.620	0.0158 1	3.550		0.620 0.2170		- 0.0020		
EL100303-108	09/25/10	VP-NV-1c-1	0.0590	0.0125	0.003	0.0045					0.0080	0.0050	0.0300		54.4670				1	0.012 1.97	5.070	0.0148 1	8.750		2.730 0.1460		- 0.0080		
FI 100303-109	09/25/10	VP-NV-1c-2	0.0430	0.0125	0.003	0.0045		6 976	240.3	553.00	0.0070	0.0060	0.0640		80.0070					0.092 2.94	6 1 0 0	0.0236 1	8 450		1 090 0 2190		0.0060		

Appendix B Victoria Point Data

Table B.1.7 - V	/ictoria Point,	, Water Sample	e Analytical R	esults, July	to October																									
															Paramet	er / Metho	d Detecti	on Limit / U	nits							_				
			Total	Phosphate	Nitrite	Nitrate			Total											Total M	etals							R	eactive	Chlorophyll
			Р	PO ₄ -P	NO2-N	NO3-N	DOC	рН	Alkalinity	Conductivity			-		-		- 1	_		-					T = T =			s	ilicates	"a"
					-	-			as CaCO3		Al	As	Ba	Be	e Ca	Cd	Со	Cr	Cu	Fe	К	Mg Mn	Na	Ni Pb	S S	r ?	Ti V	Zn	SIO ₂	
			0.0050	0.0250	0.006	0.0090	0.50	n/a	1.0	0.50	0.0050	0.0050	0 0.0030	0.00	02 0.0050	0.0010	0.010	0.002 (0.002 0	0.002 0	.10	0.010 0.000	2 0.010	0.002 0.00.	0 0.050 0.00	50 0.0	010 0.006	0.0010	0.250	0.2
Lab ID	Sample Date	Sample ID VD NV 1a 2	mg/L	mg/L 0.2420	mg/L 0.002	mg/L	mg/L	n/a	mg/L 210.5	uS/cm	mg/L	mg/L	mg/L	mg/.	L mg/L	mg/L	mg/L	mg/L	mg/L I	mg/L m	12	mg/L mg/l	. mg/L	mg/L mg/	0.870 0.26	<u>(L mş</u>	g/L mg/L	mg/L	mg/L	µg/L
EL100303-111	09/25/10	VP-NV-1c-3	0.8680	0.3420	0.003	0.0045		6 768	330.1	721.10	0.0070	0.003	0.0730	- 2	102 2470	·			- (0.160 5	92	6 910 0 525	0 15 560		0.770 0.25	500		0.0060	-	
EL100303-112	09/25/10	VP-NV-1c-5	0.6950	0.3870	0.003	0.0045	-	6.813	343.0	724.40	0.0070	0.007	0.0730	·	109.2070				- (0.059 5	.82	7.090 0.195	2 13.900		0.680 0.24	420	'	0.0070	-	-
EL100303-113	09/25/10	VP-NV-1c-6	0.6200	0.3180	0.003	0.0045					-																			
EL100303-114	09/25/10	VP-NV-2a-2	0.0300	0.0700	0.003	0.0045		6.951	242.6	558.60	0.0080	0.007	0.0590		80.1070				(0.091 4	.12	6.100 0.038	6 18.140		1.210 0.21	170		0.0050		
EL100303-115	09/25/10	VP-NV-2a-3	0.4790	0.1090	0.003	0.0045		6.841	323.3	705.60	0.0060	0.007	0.0690		98.7470				(0.184 6	.30	6.980 0.442	6 16.090		1.120 0.23	370		0.0080		
EL100303-116	09/25/10	VP-NV-2a-4	0.7860	0.5790	0.003	0.1980		6.772	349.7	745.70	0.0080	0.009	0.0770		108.5270				(0.079 6	.30	6.800 0.323	6 15.230		0.960 0.24	110		0.0070		
EL100303-117	09/25/10	VP-NV-2a-5	0.6210	0.2560	0.003	0.0440		6.731	318.6	679.10	0.0080	0.009	0.0720		102.2670				- (0.057 5	.48	6.320 0.241	8 13.360		0.710 0.22	10		0.0080		
EL100303-118	09/25/10	VP-NV-2a-6	0.3490	0.1570	0.003	0.0045		6.757	332.7	697.60	0.0080	0.008	0.0750		112.4070				- (0.038 4	.86	7.150 0.066	0 13.330		0.680 0.24	+00 ·		0.0060		
EL100303-119	09/25/10	VP-NV-2a-/	0.2680	0.1020	0.003	0.0045		6.782	354.5	692.10	0.0050	0.007	0.0740		113./2/0					0.028 4	.58	7.260 0.018	8 12.880		0.510 0.24	120		0.0100		
EL100303-120	09/25/10	VP NV 2b 1	0.0400	0.0300	0.003	0.0045		7 289	175.2	444.00	0.0080	0.002	0.0740	- 2	65 7070					0.033 2	00	5.490 0.035	3 19 740		1.960 0.13	780		0.0040		
EL100303-121	09/25/10	VP-NV-2b-2	0.3620	0.1340	0.003	0.0045	-	6.852	272.1	603.10	0.0070	0.002	5 0.0660	·	91.6870				- (0 173 4	08	6 760 0 297	4 16 570		0.920 0.23	330	'	0.0060	-	-
EL100303-123	09/25/10	VP-NV-2b-3	0.7740	0.1280	0.003	0.0045		6.784	293.3	640.20	0.0060	0.002	5 0.0710		97.9470				- (0.115 4	.88	6.490 0.230	0 15.260		0.760 0.23	330	'	0.0040		
EL100303-124	09/25/10	VP-NV-2b-4	0.3530	0.1630	0.003	0.0045		6.772	297.3	638.30	0.0070	0.002	0.0690		104.9070				(0.061 3	.88	6.270 0.151	3 12.910		0.620 0.23	300	'	0.0040		
EL100303-125	09/25/10	VP-NV-2b-5	0.1000	0.0540	0.003	0.0045		6.950	355.7	747.20	0.0080	0.006	0.0790		125.9870				- (0.042 7	.94	6.840 0.090	0 11.860		0.750 0.26	510]	0.0040		
EL100303-126	09/25/10	VP-NV-2c-2	0.3410	0.1280	0.003	0.0045		6.918	295.7	644.50	0.0120	0.002	5 0.0720		96.7670				(0.212 4	.06	6.790 0.528	2 18.060		1.010 0.24	190		0.0080		
EL100303-127	09/25/10	VP-NV-2c-3	0.5370	0.2160	0.003	0.0045		6.793	326.9	702.40	0.0080	0.002	5 0.0750		106.5870				- (0.150 3	.86	6.980 0.518	4 16.710		1.010 0.25	380		0.0070		
EL100303-128	09/25/10	VP-NV-2c-4	0.3840	0.1580	0.003	0.0045		6.802	347.1	730.30	0.0110	0.006	0.0820		123.50/0				- (0.132 2	.92	7.520 0.541	8 16.890		0.950 0.28	50		0.0070		
EL100303-129	09/25/10	VP-NV-2c-5	0.2500	0.0960	0.003	0.0045		6.802	335.0	703.90	0.0090	0.002	0.0720		125 1270					0.074 1	.98	7.150 0.348	6 12 170		0.650 0.25	580		0.0100		
EL100303-130	10/21/10	VP-AV-1a-2	0.0250	0.0310	0.0030	0.0045		0.802	547.7	725.00	0.0080	0.007	5 0.0420	-	76.0360				(0.054 2	32	5 290 0.078	1 17 620		1.360 0.13	730		0.0040		
EL100336-004	10/21/10	VP-AV-1a-3	0.3850	0.2810	0.0030	0.0045		6.598	253.6	555.60	0.0170	0.002	5 0.0550	·	91,9960				- (0.130 3	.74	5.730 0.329	6 20.420		1.100 0.19	20	'	0.0020		
EL100336-006	10/21/10	VP-AV-1a-4	0.6980	0.3080	0.0030	0.0045		6.559	346.3	758.40	0.0130	0.002	0.0770		125.7560				(0.186 6	.54	7.240 0.638	8 26.220		1.000 0.25	500	'	0.0030		
EL100336-007	10/21/10	VP-AV-1a-5	0.6740	0.2680	0.0030	0.0045		6.562	356.0	794.90	0.0150	0.002	0.0770		128.4360				(0.124 7	.22	8.190 0.374	0 29.760		0.740 0.26	006	'	0.0030		
EL100336-008	10/21/10	VP-AV-1a-6	0.7030	0.2710	0.0030	0.0045		6.717	385.6	836.60	0.0230	0.002	0.0860		141.3560				(0.135 9	.72	8.780 0.311	6 27.100		0.820 0.28	150		0.0020		
EL100336-009	10/21/10	VP-AV-1a-7	0.2510	0.0800	0.0030	0.0045		6.673	295.5	646.10	0.0190	0.002	0.0690		116.4960				- (0.062 6	.40	6.940 0.151	9 12.930		0.490 0.22	240		0.0030		
EL100336-010	10/21/10	VP-AV-1a-8	0.1580	0.1040	0.0030	0.0045		6.830	354.2	723.20	0.0110	0.002	0.0680		135.3760				- (0.05/ 3	.24	7.480 0.181	0 14.260		0.410 0.24	190 520		0.0020		
EL100336-011 EL100336-012	10/21/10	VP-AV-1a-9 VP-AV-1b-2	0.2900	0.0125	0.0030	0.0045		6.869	166.6	412.20	0.0100	0.002	5 0.0090		62 6160					0.071 2	00	5.040 0.128	4 16 730		1.400 0.14	520		0.0000	-	
EL100336-013	10/21/10	VP-AV-1b-3	0.4010	0.3850	0.0030	0.0045		6.738	186.1	442.70	0.0070	0.002	5 0.0400	·	67.9160	·			- (0.074 1	.40	5.140 0.189	1 14.740		0.730 0.15	550	'	0.0050		
EL100336-014	10/21/10	VP-AV-1b-4	0.5160	0.4720	0.0030	0.0045		6.657	212.7	492.00	0.0080	0.002	0.0450		76.2560				(0.065 1	.88	5.540 0.212	4 17.500		0.600 0.16	570	'	0.0060		
EL100336-015	10/21/10	VP-AV-1b-5	0.3270	0.3050	0.0030	0.0045		6.670	232.2	522.70	0.0080	0.002	0.0490		88.6760				- (0.077 1	.23	6.060 0.234	8 16.030		0.530 0.19	20]	0.0070		
EL100336-016	10/21/10	VP-AV-1b-6	0.0940	0.0125	0.0030	0.0045		6.591	250.4	563.30	0.0090	0.002	0.0500		100.0960					0.107 1	.80	6.390 0.209	2 13.060		0.430 0.20	110		0.0080		
EL100336-017	10/21/10	VP-AV-1c-2	0.2930	0.2580	0.0030	0.0045		6.733	178.4	449.80	0.0100	0.002	5 0.0380		69.4560					0.102 1	.18	5.910 0.120	3 19.850		2.160 0.16	<u>>60</u>		0.0010		
EL100336-018	10/21/10	VP-AV-1c-3	0.4030	0.3530	0.0030	0.0045		6.745	211.2	511.10	0.0090	0.002	5 0.0410		84 7160					0.144 0	1.95	6.550 0.1/8	0 19.220		1.490 0.18	·90		0.0020		
EL100336-019	10/21/10	VP-AV-10-4	0.1990	0.5170	0.0030	0.0045		6 746	234.9	530.10	0.0080	0.002	5 0.0450	- 2	89.6360	·				0.072 0	49	6 750 0 150	3 17 960		1.070 0.19	280		0.0020	-	
EL100336-021	10/21/10	VP-AV-1c-6	0.1000	0.1790	0.0030	0.0045	-	6.823	279.1	602.90	0.0090	0.002	5 0.0520	·	105.1160	·			- (0.068 0	.36	7.530 0.158	3 16.410		0.920 0.21	190	'	0.0020	_	-
EL100336-022	10/21/10	VP-AV-1d-2	0.0690	0.0290	0.0030	0.0045		6.872	184.5	455.90	0.0060	0.002	0.0400		70.8360				(0.063 2	.22	5.470 0.045	6 18.180		1.750 0.16	590	'	0.0005		
EL100336-023	10/21/10	VP-AV-1d-3	0.2610	0.2050	0.0030	0.0045		6.744	221.8	513.60	0.0050	0.002	0.0510		82.1360				- (0.096 1	.33	6.040 0.190	5 16.500		1.050 0.19	200		0.0005		
EL100336-024	10/21/10	VP-AV-1d-4	0.1760	0.1420	0.0030	0.0045		6.607	197.4	477.10	0.0060	0.002	0.0420		74.9560					0.079 0	.86	6.340 0.188	1 18.290		0.790 0.17	/40		0.0030		
EL100336-025	10/21/10	VP-AV-1d-5	0.1300	0.1030	0.0030	0.0045		6.605	196.0	477.10	0.0200	0.002	5 0.0440		74.4560				- (0.056 2	.28	6.260 0.143	7 16.530		0.720 0.16	<u>,80</u>		0.0020		
EL100330-020	10/21/10	VP-AV-1d-0	0.0620	0.0320	0.0030	0.0045		6.840	135.5	375.40	0.0080	0.002	5 0.0460		54 2560					0.047 2	/12	5.030 0.101	0 18 200		2.840 0.12	120		0.0020		
EL100336-027	10/21/10	VP-AV-10-2	0.1790	0.0125	0.0030	0.0045		6.644	145.7	385.80	0.0070	0.002	5 0.0320		56 3760	·				0.074 1	183	5 190 0 135	8 17 520		1 570 0 14	410		0.0010	-	
EL100336-029	10/21/10	VP-AV-1e-4	0.1640	0.1130	0.0030	0.0045		6.587	172.2	426.40	0.0060	0.002	5 0.0380		65.0960				- (0.117 0	.69	5.910 0.165	0 17.390		1.130 0.16	500	'	0.0010		
EL100336-030	10/21/10	VP-AV-1e-5	0.2140	0.1660	0.0030	0.0045		6.626	197.3	475.70	0.0080	0.002	5 0.0420		72.1560	·			(0.104 1	.59	6.200 0.147	8 19.190		1.060 0.17	/30	'	0.0020		
EL100336-031	10/21/10	VP-AV-1e-6	0.4220	0.3240	0.0030	0.0045		6.465	185.0	468.90	0.0060	0.002	5 0.0390		64.9760				(0.067 3	.58	5.490 0.104	0 23.160		0.670 0.15	510		0.0005		
EL100336-032	10/22/10	VP-V-1a-1	0.2560	0.0125	0.0030	0.0045																				÷				
EL100336-033	10/22/10	VP-V-1a-2	0.2740	0.1720	0.0030	0.0045		6.701	149.9	370.10	0.0080	0.002	0.0330		55.5560				- (0.094 2	.64	4.380 0.298	4 14.510		0.910 0.13	150		0.0005		
EL100336-034	10/22/10	VP-V-1a-5	0.3220	0.3900	0.0030	0.0045		0.095	218.6	451.90	0.0070	0.002	0.0440		/ 3.6960		-	-	- (0.120 3	.88	5 330 0.428	2 14.580		0.750 0.16	300 810		0.0010	-	
EL100336-035	10/22/10	VP-V-1a-4	0.1590	0.1030	0.0030	0.0045		6.720	273.4	578 40	0.0050	0.002	5 0.0560		107 8760		-		- 7	0.085 1	.35	6.220 0 301	4 12.850		0.770 0.12	160		0.0020	-	
EL100336-037	10/22/10	VP-V-1a-6	0.1050	0.0410	0.0030	0.0045	-	6.757	306.7	626.80	0.0090	0.002	5 0.0600	·	120.9160	·			- (0.077 1	.48	6.260 0.213	8 12.620		0.460 0.22	240	'	0.0010	-	-
EL100336-038	10/22/10	VP-V-1a-7	0.4220	0.2980	0.0030	0.0045		6.753	331.9	673.00	0.0090	0.002	0.0660		129.2560	·			(0.116 2	.56	6.800 0.298	4 15.580		0.370 0.24	400	'	0.0020		
EL100336-039	10/22/10	VP-V-1a-8	0.0720	0.0125	0.0030	0.0045		7.083	356.6	696.10	0.0100	0.002	5 0.0630		138.3760				(0.143 0	.98	6.440 0.147	5 10.580		0.230 0.23	360]	0.0080		
EL100336-040	10/22/10	VP-V-2a-2	0.1460	0.0690	0.0030	0.0045		6.963	219.4	517.40	0.0100	0.002	0.0490		78.3960				- (0.129 2	.96	6.420 0.223	8 19.100		1.280 0.20	100		0.0020		
EL100336-041	10/22/10	VP-V-2a-3	0.5860	0.4170	0.0030	0.0045		6.841	263.4	589.20	0.0080	0.002	0.0550		88.5360					0.142 3	.16	7.230 0.255	6 17.010		1.130 0.22	:30		0.0010		
EL100336-042	10/22/10	VP-V-2a-4	0.6970	0.5210	0.0030	0.0045		6.828	289.0	628.10 574.70	0.0050	0.002	0.0610		96.4160					0.130 3	.30	6.470 0.258	4 16.390		1.050 0.23	1 <u>20</u>		0.0040		
EL100336-043	10/22/10	VP-V-2a-5 VP V 2a 6	0.8300	0.3380	0.0030	0.0045		6.894	306.5	646.40	0.0030	0.002	5 0.0500		102 3560				- (0.092 3	42	7 280 0 192	1 14.320		0.900 0.20	260		0.0030		
EL100336-045	10/22/10	VP-V-2a-7	0.4070	0.3070	0.0030	0.0045		6.943	287.1	598.00	0.0110	0.002	5 0.0580		99.4560				- (0.076 2	.36	6.380 0.116	9 12.080		0.540 0.20	020	'	0.0010		-
EL100336-046	10/22/10	VP-V-2a-8	0.1950	0.1390	0.0030	0.0045				-	0.0230	0.002	0.0540	-	102.0160				(0.063 1	.77	5.650 0.058	7 9.440		0.290 0.18	\$30	'	0.0005		
EL100336-049	10/22/10	VP-V-3a-2	0.2260	0.1400	0.0030	0.0045		6.890	174.7	415.60	0.0070	0.002	5 0.0400		64.4360				- (0.121 3	.16	4.650 0.378	2 15.430		0.610 0.15	30		0.0020		
EL100336-050	10/22/10	VP-V-3a-3	0.5790	0.3860	0.0030	0.0045		6.778	218.2	496.60	0.0080	0.002	0.0490		77.4960				(0.155 3	.90	5.370 0.453	0 15.560		0.660 0.17	/90		0.0030		
EL100336-051	10/22/10	VP-V-3a-4	0.6400	0.3170	0.0030	0.0045		6.731	238.9	533.10	0.0070	0.002	0.0530		84.2560				- (0.157 4	.42	5.430 0.471	8 15.700		0.530 0.19	/20		0.0020		
EL100336-052	10/22/10	VP-V-3a-5	0.7600	0.5830	0.0030	0.0045		0.672	260.2	581.30	0.0070	0.002	0.0580		91.7360				- (0.164 4	. /8	5.050 0.494	8 20.380		0.480 0.20	170		0.0005		
EL100330-053 EL100336-053	10/22/10	VP-V-58-6 VP-V 29.7	0.3510	0.2290	0.0030	0.0045		6 808	317.7	573.00	0.0100	0.002	5 0.0580		118 5560				- (0.151 2	20	6 040 0 284	8 13 680		0.420 0.21	330		0.0020	-	-
EL100336-054	10/22/10	VP-V-3a-8	0.1260	0.0125	0.0030	0.0045		6.871	363.3	718.80	0.0160	0.002	5 0.0630		133.5760				- (0.139 1	.22	6.290 0.198	4 11.780		0.310 0.23	450		0.0005	-	
EL100336-056	10/22/10	VP-NV-1a-1	0.0330	0.0125	0.0030	0.0045					0.0070	0.002	5 0.0300		59.8960				(0.028 2	.08	5.450 0.035	5 20.240		2.130 0.15	510		0.0010		
EL100336-057	10/22/10	VP-NV-1a-2	0.0570	0.0125	0.0030	0.0045		6.940	220.0	514.50	0.0070	0.002	5 0.0520	-	77.4160				- (0.134 4	.22	5.830 0.414	4 17.910		1.280 0.19) 30	'	0.0005		
EL100336-058	10/22/10	VP-NV-1a-3	0.5230	0.3040	0.0030	0.0045		6.841	274.3	615.10	0.0080	0.002	0.0620		92.1760				(0.108 5	.06	7.090 0.423	8 16.880		1.190 0.22	20		0.0005		
EI 100226 050	1 10/22/10	1 VD NV 1o 4	0.5800	0.2050	0.0030	0.0045		6 828	272.6	594.50	0.0070	0.002	1 0 0560		87 2060				(0.063 4	22	6 560 0 281	0 1 1 4 200		0.020 0.20	400		0.0005		

Table B.1./ -	victoria Point	, water Sample	Analytical	Results, July	to Octobe	r																											
				1			r	-		T	1				Paramet	er / Meth	od Detect	ion Limit	/ Units													1	
			Total	Phosphate	Nitrite	Nitrate	noc		Total											Tota	l Metals											Reactive	Chlorophyll
			Р	PO₄-P	NO2-N	NO3-N	DOC	рн	Alkalinity	Conductivity							0					1 14						0				Silicates	"a"
									as CaCO3		AI	As	Ва	Ве	Ca	Cd	Co	Cr	Cu	Fe	ĸ	Mg	Mn	Na	Ni	Pb	8	Sr	n	V	Zn	3102	
		6 I.W	0.0050	0.0250	0.006	0.0090	0.50	n/a	1.0	0.50	0.0050	0.0050	0.0030	0.002	0.0050	0.0010	0.010	0.002	0.002	0.002	0.10	0.010	0.0002	0.010	0.002	0.0050	0.050	0.0050	0.010	0.006	0.0010	0.250	0.2
Lab ID EI 100336-060	Sample Date	VP NV 1a 5	mg/L 0.5560	mg/L 0.4220	mg/L 0.0030	mg/L	mg/L	n/a	mg/L 250.7	uS/cm 576.90	mg/L 0.0070	mg/L 0.0025	mg/L	mg/L	mg/L 82.2760	mg/L	mg/L	mg/L	mg/L	mg/L 0.063	mg/L 2.02	mg/L 5 770	mg/L 0.2312	mg/L 12.680	mg/L	mg/L	mg/L 0.730	mg/L 0.1810	mg/L	mg/L	mg/L 0.0010	mg/L	µg/L
EL100336-060	10/22/10	VP-NV-1a-6	0.3720	0.1650	0.0030	0.0045		6.876	287.8	617.30	0.0070	0.0025	0.0590	·	93 6760	·		-	-	0.005	3.90	6 1 50	0.1971	12.000		-	0.610	0.1980		-	0.0010		
EL100336-062	10/22/10	VP-NV-1a-7	0.2410	0.1480	0.0030	0.0045					0.0080	0.0025	0.0610		103 4560					0.015	3.32	6 1 1 0	0.1132	11 140			0.360	0.2000			0.0010		
EL100336-063	10/22/10	VP-NV-1a-8	0.2240	0.0870	0.0030	0.0045									-							-									_		
EL100336-064	10/22/10	VP-NV-1b-1	0.0960	0.0125	0.0030	0.0045					-											-					-						
EL100336-065	10/22/10	VP-NV-1b-2	0.0990	0.1160	0.0030	0.0045		6.884	194.4	473.60	0.0070	0.0025	0.0490		72.2160					0.089	4.66	5.560	0.2616	18.690			0.930	0.1810			0.0020		
EL100336-066	10/22/10	VP-NV-1b-3	0.6430	0.2200	0.0030	0.0045		6.718	240.9	560.30	0.0070	0.0025	0.0540		80.8360					0.144	6.14	6.420	0.4972	17.420			0.810	0.1980			0.0010		
EL100336-067	10/22/10	VP-NV-1b-4	0.8260	0.4370	0.0030	0.0045		6.726	252.9	580.30	0.0090	0.0025	0.0580		83.8960					0.094	5.60	6.360	0.3766	16.990			0.800	0.1940			0.0020		
EL100336-068	10/22/10	VP-NV-1b-5	0.7020	0.3500	0.0030	0.0045		6.718	261.5	591.50	0.0070	0.0025	0.0560	-	85.9960					0.074	4.82	6.170	0.3070	15.310			0.690	0.1920			0.0020		
EL100336-069	10/22/10	VP-NV-1b-6	0.3210	0.1410	0.0030	0.0045					0.0050	0.0025	0.0640		109.6760					0.052	3.76	6.850	0.1523	14.980			0.510	0.2190			0.0070		
EL100336-070	10/22/10	VP-NV-1c-1	0.0240	0.0125	0.0030	0.0045					-				-												-						
EL100336-071	10/22/10	VP-NV-1c-2	0.0260	0.0125	0.0030	0.0045		7.010	181.5	438.10	0.0050	0.0025	0.0390		66.4160					0.065	3.72	4.930	0.0593	16.730			0.820	0.1620			0.0020		
EL100336-072	10/22/10	VP-NV-1c-3	0.4560	0.2330	0.0030	0.0045		6.875	254.7	577.10	0.0090	0.0025	0.0520		83.6360					0.126	4.60	6.290	0.3014	15.970			0.930	0.2050			0.0020		
EL100336-073	10/22/10	VP-NV-1c-4	0.7780	0.3260	0.0030	0.0045		6.803	264.1	590.40	0.0060	0.0025	0.0520		85.9960					0.047	4.76	5.930	0.0966	14.020			0.820	0.1930			0.0020		
EL100336-074	10/22/10	VP-NV-1c-5	0.6240	0.2350	0.0030	0.0045		6.823	268.9	590.20	0.0070	0.0025	0.0550		90.2360					0.040	4.58	6.020	0.0541	12.510			0.760	0.1970			0.0030		
EL100336-075	10/22/10	VP-NV-1c-6	0.5140	0.2780	0.0030	0.0045					0.0025	0.0025	0.0580		96.3960					0.043	4.22	6.360	0.0403	12.340			0.750	0.2040			0.0100		
EL100336-076	10/22/10	VP-NV-2a-2	0.0410	0.0125	0.0030	0.0045		6.969	211.8	494.00	0.0090	0.0025	0.0460		74.7560					0.133	3.68	5.380	0.3278	16.380			0.890	0.1790			0.0060		
EL100336-077	10/22/10	VP-NV-2a-3	0.5340	0.2540	0.0030	0.0045		6.947	294.4	643.70	0.0080	0.0025	0.0630		96.5360					0.195	5.08	6.840	0.5268	15.830			0.880	0.2350			0.0005		
EL100336-078	10/22/10	VP-NV-2a-4	0.8930	0.6550	0.0030	0.0045		7.040	285.7	629.90	0.0120	0.0025	0.0620		95.1760					0.117	4.98	0.380	0.3312	14.940			0.770	0.2130			0.0010		
EL100336-079	10/22/10	VP-NV-2a-5	0.6820	0.2510	0.0030	0.0045		0.845	2/0.1	607.30	0.0090	0.0025	0.0570		89.5360					0.101	4.38	5.980	0.2452	13.130			0.600	0.1960			0.0005		
EL100336-080	10/22/10	VP-NV-2a-6	0.3020	0.2120	0.0030	0.0045		6.918	282.7	603.50	0.0070	0.0025	0.0570		92.5760					0.081	3.78	5.950	0.1730	11.960			0.430	0.1930			0.0060		
EL100336-081	10/22/10	VP-NV-2a-7	0.3200	0.2560	0.0030	0.0045		6.890	283.7	596.60	0.0070	0.0025	0.0570		93.7560					0.072	3.32	6.000	0.1193	10.490			0.340	0.1950			0.0005		-
EL100336-082	10/22/10	VP-NV-2a-8	0.1960	0.0125	0.0030	0.0045		7.055	328.0	601.00	0.0090	0.0025	0.0640		81 2260					0.073	2.94	6.230	0.0611	17.740			0.210	0.2110			0.0020		-
EL100336-083	10/22/10	VP-NV-2D-2	0.0300	0.0125	0.0030	0.0045		6.881	222.9	623.20	0.0100	0.0025	0.0480		104.0160					0.098	3.00	6.760	0.1469	16.270			0.840	0.2000			0.0020		-
EL100330-084	10/22/10	VP NV 2b 4	0.1520	0.0620	0.0030	0.0045		6.021	210.8	654.10	0.0070	0.0025	0.0670	•	111 5560					0.081	2.04	6.830	0.1219	15.110			0.770	0.2420			0.0020		
EL100336-085	10/22/10	VP NV 26 5	0.0410	0.0020	0.0030	0.0045		6.864	324.0	670.20	0.0070	0.0025	0.0670		123 1360					0.055	1.90	7 210	0.0688	14.050			0.700	0.2470			0.0000	-	-
EL100336-080	10/22/10	VP NV 26 6	0.0250	0.0125	0.0030	0.0045		0.004	524.7	070.20	0.0070	0.0025	0.0620		124 4960				-	0.033	1.25	7.080	0.0648	12 680		-	0.590	0.2520			0.0020	-	-
EL100336-088	10/22/10	VP-NV-20-0	0.0260	0.0125	0.0030	0.0045					-				-							-					-						
EL100336-089	10/22/10	VP-NV-2c-2	0.0280	0.0125	0.0030	0.0045		7.025	220.8	492.40	0.0070	0.0025	0.0440		78 4960					0.099	2.84	5 620	0.0813	18 250			1.150	0.1920		-	0.0020		
EL100336-090	10/22/10	VP-NV-2c-3	0.2590	0.1630	0.0030	0.0045		6.850	267.7	594.60	0.0060	0.0025	0.0610	·	97 3560					0.157	3.94	6 4 2 0	0.3232	17 570			0.970	0.2320			0.0005		
EL100336-091	10/22/10	VP-NV-2c-4	0.4150	0.2650	0.0030	0.0045		6.825	307.1	660.00	0.0100	0.0025	0.0700		111.3760	·				0.155	3.94	7.010	0.4244	17.970			0.960	0.2580			0.0030		
EL100336-092	10/22/10	VP-NV-2c-5	0.3680	0.2250	0.0030	0.0045		6.829	301.7	642.20	0.0100	0.0050	0.0670		114,9360	·				0.136	2.64	7.050	0.2964	15.250			0.770	0.2580			0.0010		
EL100336-093	10/22/10	VP-NV-2c-6	0.2230	0.1040	0.0030	0.0045					0.0025	0.0025	0.0640		120.5560					0.086	1.81	7.040	0.2288	12.830			0.470	0.2450			0.0080		
																							•								· · · · · · · · · · · · · · · · · · ·		
July sample: surface	water																																

July sample 2: surface water Sample E Judes (Sample E Judes (Sample E) (W = Vices) (W = Vices) (W = Vices) (W = Vices) (W = Non-Vegetated, NV = No

Table B.1.8 - Victoria Point, Sediment Sample Analytical Results

			Total Recoverable	Total Recoverabl											To	tal Recove	rable Met	als												
			Phosphorus	e	Al	As	Ba	Be	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Mo	Na	Ni	Pb	S	Sb	Se	Sn	Sr	Ti	TI	V	Zn
			3.20	1.20	1.20	2.00	2.00	0.04	0.04	0.08	0.20	0.08	0.20	0.20	0.40	0.20	0.04	2.00	0.40	0.20	1.00	1.20	2.00	2.00	2.00	0.40	2.00	2.00	0.40	0.20
Lab ID	Sample Date	Sample ID	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	μg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g
EL120240 -013	10/21/10	VPSEDOCT10	1433.33	157.65	2457.32	6.16	47.71	0.08	19238.8	1.07	0.45	7.52	19	5363.09	615.11	1630.67	107.48	1.00	456.72	9.87	36.96	12517.9	1.00	2.85	2.87	53.23	112.08	1.00	9.84	92.69
Notes																														
Sample ID code: Sit	e (VP = Victoria Po	int) - Date																												
Value in grev font =	Value half of Detec	tion Limit (result < De	tection Limit)																											

Table B.1.9 - Victoria Point, Wild Rice Vegetation Analytical Results

1														Paran	neter / Me	thod Dete	ection Limi	t / Units											
					Dry Plant	P in	N in										Motols in	Plant Tic											
					Weight	Plant	Plant										wictais in	r fant 11s	suc										
					(subsample	Tissue	Tissue	Al	As	Ba	Be	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	Pb	S	Si	Sr	Ti	v	Zn
					analyzed)	0.80	0.01	5.00	5.00	10.00	0.04	0.10	0.40	0.10	0.25	0.02	0.10	5.00	0.10	0.01	0.10	0.03	2.50	3.00	0.50	0.10	0.95	0.05	0.10
Lab ID	Lab ID Sample Dat Plant Part # of Plants g μg/g μg/																												
EL100061-012	Lab ID Sample Date <t< td=""></t<>																												
EL100061-013	JODGE-1012 OP/SVEG-S-10 Stem 10 3.04 1137.19 0.45 21.95 5.00 0.02 6148.28 0.20 0.05 0.125 104064.50 840.54 842.5 182.75 165.06 603.74 124.83 123.75 133.01 1.43.8 0.17 4.58																												
EL100061-014	09/25/10	VP-SVEG-L-11	Leaf	10	1.69	1480.69	0.71	377.55	2.50	28.99	0.02	10403.20	0.20	0.47	1.300	4.21	1020.39	2551.00	776.54	903.00	1570.97	2.830	7.08	3375.07	157.81	28.42	14.63	2.00	20.24
EL100061-015	09/25/10	VP-SVEG-R-12	Root	10	1.84	1365.69	0.89	300.65	2.50	15.73	0.02	6763.28	0.20	1.59	3.200	8.49	11869.30	3766.00	712.04	193.95	9843.47	4.240	7.24	6213.07	54.31	19.88	12.78	2.83	87.02
Note																													
Sample ID code: Site	(VP = Victoria Po	oint) - Month & Sample	e Type (S = Septer	nber; VEG = Ve	getation) - Plan	t Part (I = In	florescence	; S = Stem;	L = Leaf; R = R	toot) - Sample #																			

Sample ID code: Site (VP = V clorin Point) - Month & Sample Type (S = September; VEG = V egetation) - Plant Part (I = inforescence; S = stem; L = Lear; $\kappa = Root$) - Sample Value in grey font = Value half of Detection Limit (result < Detection Limit)

Analytical Parameter	Month	Plot Trend
	August	V & MV lower concentration than NV (P = <0.001). No significant difference between V and MV.
Total P	September	NV & MV lower concentration than V ($P = <0.001$). No significant difference between NV and MV.
	October	NV & MV lower concentration than V ($P = 0.017$). No significant difference between NV and MV.
	August	V & MV lower concentration than NV ($P = 0.002$). No significant difference between V and MV.
Phosphate (PO_4-P)	September	No significant trend between plots.
(1041)	October	NV & MV lower concentration than V ($P = 0.003$). No significant difference between NV and MV.
Nitrate	August	No significant trend between plots.
(NO ₃ -N)	September	No significant trend between plots.
	October	No significant trend between plots.
	August	No significant trend between plots.
pH	September	MV lower value than V and NV ($P = <0.001$). No significant difference between V and NV.
	October	MV lower value than V ($P = 0.010$) and NV ($P = <0.001$). No significant difference between V and NV.
	August	MV lower concentration than V and NV ($P = <0.001$). V lower concentration than NV ($P = 0.002$).
Total Alkalinity (as CaCO ₃)	September	MV lower concentration than NV (P = 0.009). No significant difference between V and MV. No significant difference between V and NV.
	October	MV lower concentration than V ($P = 0.009$) and NV ($P = <0.001$). V lower concentration than NV ($P = 0.006$).
	August	MV lower concentration than V and NV ($P = <0.001$). V lower concentration than NV ($P = <0.001$).
Cond- uctivity	September	NV higher concentration than V ($P = 0.023$) and MV ($P = 0.005$). No significant difference between V and MV.
	October	NV higher concentration than V ($P = 0.003$) and MV ($P = <0.001$). No significant difference between V and MV.
DOC	August	MV lower concentration than NV ($P = 0.010$) and V ($P = <0.001$). No significant difference between NV and V.
	August	NV lower concentration than V (P = 0.039) and MV (P = <0.001). V lower concentration than MV (P = 0.010).
Total Al	September	MV lower concentration than V and NV ($P = <0.001$). No significant difference between V and NV.
	October	No significant trend between plots.

	Table B.1.10 –	Victoria	Point.	Water	Data	Trends	Between	Plots.
--	-----------------------	----------	--------	-------	------	--------	---------	--------

Analytical Parameter	Month	Plot Trend
	August	MV lower concentration than V ($P = 0.001$) and NV ($P = <0.001$). No significant difference between V and NV.
Total Ba	September	MV lower concentration than V ($P = 0.016$) and NV ($P = <0.001$). No significant difference between V and NV.
	October	MV lower concentration than V (P = 0.016) and NV (P = <0.001). V lower concentration than NV (P = 0.011).
T . 1 C	August	MV lower concentration than V and NV ($P = <0.001$). V lower concentration than NV ($P = 0.002$).
I otal Ca	September	No significant trend between plots.
	October	NV higher concentration than V ($P = 0.033$) and MV ($P = <0.001$). No significant difference between V and MV.
	August	No significant trend between plots.
Total Fe	September	No significant trend between plots.
Total TC	October	V higher concentration than MV and NV ($P = 0.004$). No significant difference between MV and NV.
	August	MV lower concentration than V ($P = 0.036$) and NV ($P = <0.001$). V lower concentration than NV ($P = 0.006$).
Total K	September	MV lower concentration than V and NV ($P = <0.001$). No significant difference between V and NV.
	October	MV lower concentration than NV (P = 0.003). No significant difference between MV and V. No significant difference between NV and V.
	August	NV higher concentration than V ($P = 0.049$) and MV ($P = 0.001$). No significant difference between V and MV.
Total Mg	September	V lower concentration than MV (P = 0.019). No significant difference between V and NV. No significant difference between MV and NV.
	October	V lower concentration than NV (P = 0.018). No significant difference between MV and V. No significant difference between MV and NV.
	August	MV lower concentration than V ($P = 0.002$) and NV ($P = <0.001$). No significant difference between V and NV.
Total Mn	September	MV lower concentration than V ($P = 0.040$). No significant difference between MV and NV. No significant difference between V and NV.
	October	V higher concentration than NV ($P = 0.006$) and MV ($P = <0.001$). No significant difference between NV and MV.

Table B.1.10 – Victoria Point, Water Data Trends Between Plots.

Analytical Parameter	Month	Plot Trend
	August	NV lower concentration than MV (P = 0.028). No significant difference between NV and V. No significant difference between MV and V.
Total Na	September	NV lower concentration than V ($P = 0.048$) and MV ($P = <0.001$). No significant difference between V and MV.
	October	MV higher concentration than V and NV ($P = 0.001$). No significant difference between V and NV.
T . 10	August	NV lower concentration than MV ($P = 0.023$). No significant difference between NV and V. No significant difference between MV and V.
Total S	September	No significant trend between plots.
	October	MV higher concentration than NV ($P = 0.006$) and V ($P = 0.003$). No significant difference between NV and V.
	August	MV lower concentration than V and NV ($P = <0.001$). No significant difference between V and NV.
Total Sr	September	No significant trend between plots.
	October	NV higher concentration than V ($P = 0.036$) and MV ($P = <0.001$). No significant difference between V and MV.
Total Zn	August	V higher concentration than MV ($P = 0.003$) and NV ($P = <0.001$). No significant difference between MV and NV.
	September	MV lower concentration than NV ($P = 0.001$) and V ($P = <0.001$). No significant difference between NV and V.
	October	No significant trend between plots.

Table B.1.10 – Victoria Point, Water Data Trends Between Plots.

Analytical Parameter	Plot	Monthly Trend
	V	Concentration increasing between August and October ($P = 0.016$).
Total P	NV	Concentration decreasing between August vs. September ($P = <0.001$) & October ($P = 0.003$).
		No significant difference between September and October.
	MV	No significant trend between months.
	V	Concentration increasing between August and October ($P = 0.023$).
Phosphate (PO ₁ -P)	NV	Concentration decreasing between August vs. September ($P = 0.002$) & October ($P = 0.002$).
(104-1)		No significant difference between September and October.
	MV	No significant trend between months.
Nitrate (NO ₃ -N)	V	Concentration increasing between August and September ($P = 0.011$). Concentration decreasing between September and October ($P = 0.011$). No significant difference between August and October.
	NV	No significant trend between months.
	MV	No significant trend between months.
	V	No significant trend between months.
pН	NV	No significant trend between months.
	MV	No significant trend between months.
	V	No significant trend between months.
Total	NV	Concentration decreased between August vs. September ($P = 0.010$) and October ($P = 0.016$).
(as		No significant difference between September and October.
CaCO ₃)	MV	Concentration increased between August vs. September ($P = 0.004$) and October ($P = 0.018$).
		No significant difference between September and October.
	V	No significant trend between months.
Cond-	NV	Concentration decreased between August vs. September and October $(P = 0.005)$.
uctivity		No significant difference between September and October.
	MV	Concentration increased between August vs. September ($P = 0.004$) and October ($P = 0.016$).
		No significant difference between September and October.
		Concentration decreased between August and September ($P = <0.001$).
	V	Concentration increased between September and October ($P = 0.010$). No significant difference between August and October.
Total Al	NV	No significant trend between months.
		Concentration increased between August and September ($P = <0.001$).
	MV	Concentration decreased between September and October ($P = <0.001$).
		No significant difference between August and October.

Table B.1.11 – Victoria Point, Water Data Trends Between Months.

Analytical Parameter	Plot	Monthly Trend
	V	No significant trend between months.
Total Ba	NV	No significant trend between months.
Total Du	MV	Concentration increased between August vs. September ($P = 0.014$) and October ($P = 0.006$).
	V	No significant trend between months.
Total Ca	NV	Concentration decreased between August vs. September ($P = 0.031$) and October ($P = 0.021$).
	MV	Concentration increased between August vs. September ($P = <0.001$) and October ($P = 0.002$).
	V	No significant trend between months.
Total Fe	NV	No significant trend between months.
	MV	No significant trend between months.
	V	No significant trend between months.
Total K	NV	No significant trend between months.
	MV	No significant trend between months.
	V	No significant trend between months.
Total Mg	NV	No significant trend between months.
	MV	Concentration increased between August vs. September ($P = <0.001$) and October ($P = 0.005$).
	V	Concentration decreased between August and October ($P = 0.010$).
Total Mn	NV	Concentration decreased between August and September ($P = 0.027$).
	MV	Concentration decreased between August and September ($P = 0.047$).
Total Na	V	Concentration decreased between August and September ($P = 0.001$) vs. October.
	NV	No significant trend between months.
	MV	No significant trend between months.
	V	No significant trend between months.
Total S	NV	No significant trend between months.
	MV	No significant trend between months.
	V	No significant trend between months.
Total Sr	NV	No significant trend between months.
	MV	Concentration increased between August vs. September ($P = <0.001$) and October ($P = 0.001$).
	V	Concentration decreased between August and October ($P = 0.006$).
Total Zn	NV	No significant trend between months.
	MV	No significant trend between months.

Table B.1.11 – Victoria Point, Water Data Trends Between Months.

Table B.1.12 - V	ictoria P	oint, Wa	nter Sam	ple Stati	istical Aı	nalysis																						
	Veg	etated vs.	Non-Veg (All m	etated vs.	Mixed Ve depths)	egetation	Plots		Ve	getated vs (All m	s. Non-Ve onths all	egetated F	lots			Mixed	Vegetatio (All m	on vs. Nor onths all	I-Vegetat	ed Plots			Vege	etated vs. (All m	Mixed Ve onths all o	egetation depths)	Plots	
	1	Data Test	(P > 0.05	5)				1	Data Test	(P > 0.05	5)				1	Data Test	(P > 0.0)	5)			0.05		Data Test	(P > 0.05	5)			
	Norr	nality	Equal	Variance	ANC	OVA (P≤	0.05)	Norr	nality	Equal	ariance	ANC	ova (P≤	0.05)	Norr	nality	Equal	Variance	ANC	VA (P≤	0.05)	Nori	nality	Equal	ariance	ANG	ova (P≤	0.05)
Parameter	Result	P	Result	Р	F	Р	Sig	Result	P	Result	Р	F	Р	Sig	Result	Р	Result	Р	F	Р	Sig	Result	P	Result	Р	F	Р	Sig
Total P	fail	< 0.050	pass	0.163	6.686	< 0.001	Y	fail	<0.050	pass	0.143	6.246	< 0.001	Y	pass	0.701	pass	0.797	8.892	< 0.001	Y	fail	< 0.050	pass	0.137	6.429	< 0.001	Y
Phosphate PO ₄ -P	fail	< 0.050	pass	0.733	4.190	< 0.001	Y	pass	0.120	pass	0.274	7.595	< 0.001	Y	fail	< 0.050	pass	0.682	4.520	0.004	Y	fail	< 0.050	pass	0.772	2.704	0.040	Y
Nitrate NO ₃ -N	fail	< 0.050	fail	< 0.050	2.096	0.057	N	fail	<0.050	fail	< 0.050	1.243	0.314	Ν	fail	<0.050	fail	< 0.050	1.522	0.214	Ν	fail	< 0.050	fail	< 0.050	3.185	0.021	Y
DOC*	pass	0.385	pass	0.353	16.371	< 0.001	Y																					
рН	fail	< 0.050	pass	0.436	8.946	< 0.001	Y	fail	<0.050	pass	0.372	1.067	0.100	Ν	fail	< 0.050	pass	0.414	12.325	< 0.001	Y	fail	< 0.050	pass	0.425	9.372	< 0.001	Y
Total Alkalinity as CaCO ₃	pass	0.137	pass	0.604	21.243	< 0.001	Y	pass	0.140	pass	0.683	9.763	< 0.001	Y	pass	0.225	pass	0.516	34.741	< 0.001	Y	pass	0.359	pass	0.474	10.161	< 0.001	Y
Conductivity	pass	0.568	pass	0.739	22.466	< 0.001	Y	pass	0.577	pass	0.731	15.134	< 0.001	Y	pass	0.614	pass	0.810	35.581	< 0.001	Y	pass	0.678	pass	0.432	7.194	< 0.001	Y
Total Al	fail	<0.050	pass	0.295	28.147	< 0.001	Y	pass	0.466	fail	< 0.050	5.889	< 0.001	Y	fail	< 0.050	pass	0.609	29.253	< 0.001	Y	fail	< 0.050	pass	0.270	31.312	< 0.001	Y
Total Ba	fail	< 0.050	pass	0.914	16.160	< 0.001	Y	fail	< 0.050	pass	0.800	4.062	0.006	Y	fail	< 0.050	pass	0.973	22.687	< 0.001	Y	fail	< 0.050	pass	0.526	14.208	< 0.001	Y
Total Ca	fail	< 0.050	pass	0.900	16.342	< 0.001	Y	pass	0.082	pass	0.838	7.620	< 0.001	Y	fail	< 0.050	pass	0.932	23.778	< 0.001	Y	pass	0.632	pass	0.497	11.231	< 0.001	Y
Total Fe	fail	< 0.050	pass	0.681	1.806	0.102	Ν	fail	< 0.050	pass	0.460	1.397	0.255	Ν	fail	<0.050	pass	0.674	1.238	0.317	Ν	fail	< 0.050	pass	0.932	3.618	0.012	Y
Total K	pass	0.078	pass	0.813	16.900	< 0.001	Y	pass	0.300	pass	0.777	5.648	< 0.001	Y	pass	0.136	pass	0.973	32.550	< 0.001	Y	pass	0.087	pass	0.518	9.615	< 0.001	Y
Total Mg	fail	< 0.050	pass	0.560	6.249	< 0.001	Y	fail	< 0.050	pass	0.554	4.290	0.005	Y	fail	< 0.050	pass	0.548	7.314	< 0.001	Y	fail	< 0.050	pass	0.333	7.391	< 0.001	Y
Total Mn	pass	0.443	pass	0.789	9.549	< 0.001	Y	pass	0.306	pass	0.655	4.693	0.003	Y	pass	0.540	pass	0.871	7.372	< 0.001	Y	pass	0.779	pass	0.626	15.991	< 0.001	Y
Total Na	pass	0.326	fail	< 0.050	8.566	< 0.001	Y	pass	0.242	fail	< 0.050	5.125	0.002	Y	pass	0.406	pass	0.234	8.893	< 0.001	Y	pass	0.219	fail	< 0.050	6.164	< 0.001	Y
Total S	fail	< 0.050	pass	0.891	3.978	0.001	Y	pass	0.073	pass	0.814	2.106	0.093	Ν	pass	0.156	pass	0.795	4.900	0.002	Y	pass	0.059	pass	0.877	3.456	0.015	Y
Total Sr	fail	< 0.050	pass	0.865	14.438	< 0.001	Y	pass	0.135	pass	0.795	3.182	0.021	Y	fail	< 0.050	pass	0.960	21.945	< 0.001	Y	pass	0.105	pass	0.366	15.061	< 0.001	Y
Total Zn	fail	< 0.050	fail	< 0.050	2.841	0.013	Y	fail	< 0.050	fail	<0.050	3.359	0.016	Y	pass	0.172	fail	< 0.050	2.028	0.104	Ν	pass	0.186	fail	< 0.050	3.802	0.009	Y

Notes All months = August, September and October; All depths = 10-0 cm above sediment-water interface, 0-10 cm, 10-20 cm, 20-30 cm, 30-40 cm and 40-50 cm below sediment-water interface * = DOC data only available for August Sig = Significant; Y = Yes; N = No Value -- in grey box = data not available / incalculable

Table B.1.13 - V i	ictoria Point,	Water S	Sample S	tatistica	l Analysi	is by Mo	nth													
					All Plots				Vege	tated vs.	Non-Vege	etated	Mix	ed Veget	ation vs. I	Non-	V	egetated	vs. Mixee	d
				(4	All depths	<u>s)</u>				Plots (A	ll depths)		Vege	etated Plo	ots (All de	pths)	Vege	tation Pl	ots (All de	pths)
		I	Data Test	$(P \ge 0.05)$)	ANO	VA (P <	0.05)	Tuke	y Test	T- 1	Fest	Tukey	y Test	T- 1	ſest	Tukey	Test	Т-Т	est
		Norn	nality	Equal V	ariance	-	· (=	~ .	(P ≤	0.05)	(P≤0	0.001)	(P ≤	0.05)	(P≤0	0.001)	(P ≤	0.05)	(P ≤ 0	.001)
Parameter	Month	Result	P	Result	P	F	P	Sig	P	Sig	P	Sig	P	Sig	P	Sig	P	Sig	P	S1g
Total D	August	pass	0.322	pass	0.818	23.361	< 0.001	Y	<0.001	Y	< 0.001	Y	< 0.001	Y	< 0.001	Y	0.721	N	0.476	N
Total P	September	pass foil	0.822	pass	0.172	5 5 2 5	<0.001	Y V	0.002	Y V	<0.001	Y N*	0.976	N	0.865	IN N	0.002	Y	0.001	Y N*
	August	nass	0.123	pass	0.939	9 293	0.007	V I	0.023	V I	0.006	V	0.003	Y	0.047	N*	0.029	N	0.032	N
Phosphate	Sentember	fail	<0.050	pass	0.461	1.983	0.172	N			0.784	N			0.168	N			0.186	N
PO ₄ -P	October	pass	0.537	pass	0.471	8.909	0.003	Y	0.004	Y	0.006	N*	0.839	N	0.464	N	0.017	Y	0.015	N*
Niturata	August	fail	< 0.050	pass	1.000	1.000	0.391	N			0.341	N			0.341	N			0.341	N
Nitrate NO N	September	pass	0.210	pass	0.055	2.661	0.103	N			0.227	N			0.287	Ν			0.047	N*
1103-11	October	fail	< 0.050	pass	1.000	0.000	1.000	N			1.000	N			1.000	N			1.000	N
	August	pass	0.385	pass	0.353	16.371	< 0.001	Y	0.094	Ν	0.013	N*	0.010	Y	0.011	N*	< 0.001	Y	< 0.001	Y
DOC	September																			
	October																			
	August	pass	0.263	pass	0.346	3.331	0.064	N			0.660	N			0.069	N			0.024	N*
рн	September	pass	0.339	pass	0.148	/0.85/	< 0.001	Y	0.999	N	0.957	N	< 0.001	Y	< 0.001	Y	< 0.001	Y	< 0.001	Y N#
	October	Tall	< 0.050	pass	0.549	10.008	< 0.001	Y V	0.132	N V	0.108	IN N#	< 0.001	Y	< 0.001	Y	0.010	Y	0.017	N*
Total Alkalinity	Sontombor	pass	0.989	pass	0.298	6 501	<0.001	I V	0.002	I N	0.003	N*	0.001	I V	0.001	I N*	0.591	I N	0.358	I N
as CaCO ₃	October	pass	0.349	pass	0.834	27.775	< 0.010	Y	0.006	Y	0.008	N*	< 0.001	Y	<0.001	Y	0.009	Y	0.008	N*
	August	pass	0.901	pass	0.498	56.032	< 0.001	Y	< 0.001	Y	< 0.001	Y	< 0.001	Y	< 0.001	Y	< 0.001	Y	0.000	Y
Conductivity	September	pass	0.814	pass	0.412	8.328	0.004	Y	0.023	Y	0.005	N*	0.005	Y	0.007	N*	0.811	Ν	0.546	N
	October	pass	0.573	pass	0.946	19.750	< 0.001	Y	0.003	Y	0.003	N*	< 0.001	Y	< 0.001	Y	0.187	Ν	0.086	N
	August	pass	0.692	pass	0.204	18.726	< 0.001	Y	0.039	Y	0.012	N*	< 0.001	Y	< 0.001	Y	0.011	Y	0.003	N*
Total Al	September	fail	< 0.050	pass	0.534	51.061	< 0.001	Y	0.528	Ν	0.076	N	< 0.001	Y	< 0.001	Y	< 0.001	Y	< 0.001	Y
	October	pass	0.643	pass	0.068	3.786	0.051	N			0.776	N			0.013	N*			0.057	N
	August	pass	0.461	pass	0.941	26.021	< 0.001	Y	0.061	N	0.048	N*	< 0.001	Y	< 0.001	Y	0.001	Y	< 0.001	Y
Total Ba	September	pass	0.102	pass	0.640	13.673	< 0.001	Y	0.147	N	0.060	N	< 0.001	Y	0.001	Y	0.016	Y	0.004	N*
	October	pass	0.962	pass	0.621	23.772	< 0.001	Y	0.011	Y	0.011	N* N*	< 0.001	Y	< 0.001	Y	0.016	Y	0.004	N*
Total Ca	August	pass	0.740	pass	0.645	3 025	0.079	I N	0.002	1	0.003	N	<0.001	1	0.088	I N	<0.001		0.739	I N
i otai Ca	October	pass	0.639	pass	0.337	13 317	<0.077	Y	0.033	Y	0.032	N*	<0.001	Y	<0.000	Y	0.118	N	0.061	N
	August	fail	< 0.059	pass	0.600	1.702	0.216	N			0.557	N			0.139	N			0.134	N
Total Fe	September	pass	0.535	pass	0.185	1.942	0.178	N			0.088	N			0.289	N			0.425	N
	October	pass	0.148	pass	0.847	10.651	0.002	Y	0.004	Y	0.003	N*	0.982	N	0.865	N	0.004	Y	0.003	N*
	August	pass	0.129	pass	0.792	21.069	< 0.001	Y	0.006	Y	0.007	N*	< 0.001	Y	< 0.001	Y	0.036	Y	0.022	N*
Total K	September	pass	0.846	pass	0.431	41.114	< 0.001	Y	0.068	N	0.026	N*	< 0.001	Y	< 0.001	Y	< 0.001	Y	< 0.001	Y
	October	pass	0.614	pass	0.340	8.999	0.004	Y	0.176	N	0.039	N*	0.003	Y	0.005	N*	0.102	Ν	0.063	N
	August	fail	< 0.050	pass	0.332	10.285	0.002	Y	0.049	Y	0.057	N	0.001	Y	0.001	Y	0.172	N	0.018	N*
Total Mg	September	pass	0.850	pass	0.897	4.822	0.024	Y	0.260	N	0.118	N N#	0.336	N	0.218	N	0.019	Y	0.007	N*
	October	pass	0.498	pass	0.198	5.164	0.022	Y	0.018	Y	0.003	N*	0.506	N	0.361	N	0.161	N	0.074	N
Total Mn	August	pass	0.169	pass	0.711	19.012	<0.001	Y	0.180	N	0.129	N N*	< 0.001	Y	< 0.001	Y	0.002	Y	<0.001	Y N*
i otai Min	September	pass	0.907	pass	0.240	4.556	0.032	Y	0.078	N	0.030	N*	0.934	N	0.773	N	0.040	Y	0.009	N*

Appendix B

Victoria Point Data

					All Plots				Veget	ated vs.	Non-Vege	tated	Mix	ed Vegeta	ation vs. N	Non-	۱ ۱	egetated	vs. Mixee	d
				(.	All depths	5)			_	Plots (A	ll depths)		Vege	tated Plo	ts (All de	pths)	Vege	tation Ple	ots (All de	epths)
		I	Data Test	$(P \ge 0.05)$)	ANO		0.05)	Tukey	Test	Т-Т	`est	Tukey	/ Test	Т-Т	`est	Tukey	y Test	T-T	ſest
		Norn	nality	Equal V	ariance	ANU	NA (r≤	0.05)	(P ≤	0.05)	(P≤0	.001)	(P ≤ 0	0.05)	(P ≤ 0	.001)	(P ≤	0.05)	(P ≤ 0).001)
Parameter	Month	Result	Р	Result	Р	F	Р	Sig	Р	Sig	Р	Sig	Р	Sig	Р	Sig	Р	Sig	Р	Sig
	October	pass	0.313	pass	0.590	15.262	< 0.001	Y	0.006	Y	0.002	N*	0.196	Ν	0.117	Ν	< 0.001	Y	0.001	Y
	August	pass	0.072	pass	0.436	4.488	0.030	Y	0.129	Ν	0.010	N*	0.028	Y	0.033	N*	0.687	Ν	0.463	N
Total Na	September	pass	0.830	fail	< 0.050	13.437	< 0.001	Y	0.048	Y	< 0.001	Y	< 0.001	Y	0.001	Y	0.054	Ν	0.048	N*
	October	pass	0.187	fail	< 0.050	14.648	< 0.001	Y	0.996	Ν	0.925	Ν	0.001	Y	0.003	N*	0.001	Y	0.001	Y
	August	pass	0.220	pass	0.513	4.882	0.023	Y	0.098	Ν	0.035	N*	0.023	Y	0.009	N*	0.720	Ν	0.506	N
Total S	September	pass	0.628	pass	0.742	0.472	0.633	N			0.532	Ν			0.420	Ν			0.749	N
	October	pass	0.415	pass	0.606	10.570	0.002	Y	0.850	Ν	0.517	Ν	0.006	Y	0.005	N*	0.003	Y	0.006	N*
	August	pass	0.330	pass	0.553	32.754	< 0.001	Y	0.116	Ν	0.101	Ν	< 0.001	Y	< 0.001	Y	< 0.001	Y	< 0.001	Y
Total Sr	September	pass	0.269	pass	0.669	2.740	0.097	Ν			0.392	Ν			0.076	Ν			0.112	N
	October	pass	0.741	pass	0.724	14.663	< 0.001	Y	0.036	Y	0.027	N*	< 0.001	Y	< 0.001	Y	0.069	Ν	0.024	N*
	August	pass	0.514	pass	0.085	15.736	< 0.001	Y	< 0.001	Y	< 0.001	Y	0.449	Ν	0.326	Ν	0.003	Y	0.002	N*
Total Zn	September	pass	0.431	pass	0.701	14.596	< 0.001	Y	0.989	N	0.897	N	0.001	Y	< 0.001	Y	< 0.001	Y	0.002	N*
	October	pass	0.489	pass	0.705	1.305	0.305	N			0.469	N			0.395	Ν			0.133	N

All depths = 10-0 cm above sediment-water interface, 0-10 cm, 10-20 cm, 20-30 cm, 30-40 cm and 40-50 cm below sediment-water interface Sig = Significant; Y = Yes; N = No; N* = T-Test only: No based on P value ≤ 0.001 , Yes based on P value ≤ 0.05

Value -- in grey box = data not available / incalculable

Table B.1.1	4 - Victoria Point, V	Vater Sa	mple Sta	atistical	Analysis	by Plot														
				A	All Month	s			Α	ugust vs.	Septemb	er	Se	ptember	vs. Octob	er	I	August vs	s. October	
				(All depths	3)				(All d	epths)			(All d	epths)			(All d	epths)	
]	Data Test	$(P \ge 0.05)$)	ANO	VA (P <	0.05)	Tukey	y Test	T-1	ſest	Tukey	7 Test	T-1	lest	Tukey	Test	T-T	est
		Norn	nality	Equal V	ariance			0.02)	(P ≤	0.05)	(P≤0	0.001)	(P ≤	0.05)	(P≤0).001)	(P ≤	0.05)	(P ≤ 0	.001)
Parameter	Plot	Result	Р	Result	Р	F	Р	Sig	Р	Sig	Р	Sig	Р	Sig	Р	Sig	Р	Sig	Р	Sig
	Non-Vegetated	pass	0.099	pass	0.519	13.741	< 0.001	Y	< 0.001	Y	< 0.001	Y	0.715	N	0.497	N	0.003	Y	0.003	N*
Total P	Vegetated	fail	< 0.050	pass	0.121	5.095	0.020	Y	0.346	N	0.001	Y	0.221	N	0.171	N	0.016	Y	0.026	N*
	Mixed Vegetation	pass	0.151	pass	0.711	0.078	0.925	N			0.814	N			0.901	N			0.666	N
Phosphate	Non-Vegetated	pass	0.198	pass	0.149	12.858	< 0.001	Y	0.002	Y	0.004	N*	0.999	N	0.962	N	0.002	Y	0.002	N*
PO₄-P	Vegetated	pass	0.071	pass	0.346	4.992	0.022	Y	0.814	N	0.571	N	0.076	N	0.009	N*	0.023	Y	0.028	N*
	Mixed Vegetation	fail	< 0.050	pass	0.678	2.805	0.095	N			0.073	N			0.251	N			0.189	N
Nitrate	Non-Vegetated	fail	< 0.050	fail	< 0.050	0.074	0.929	N			0.792	N			0.792	N			< 0.001	Y
NO ₃ -N	Vegetated	1a11	<0.050	1a11	<0.050	2.031	0.005	Y	0.011	Ŷ	0.020	N*	0.011	Ŷ	0.020	N*	1.000	IN	<0.001	Y
	Mixed Vegetation	Tall	<0.050	Tall	<0.050	2.223	0.145	N			0.148	N			0.190	IN			<0.001	Ŷ
DOC	Non-vegetated																			
DOC	vegetated																			
	Nixed vegetation	fail				1 308		N			0.895	 N				 N*			0.296	 N
" U	Non-Vegetated	fail	<0.050	pass	0.285	0.121	0.302	N			0.893	IN N			0.003	IN .			0.290	N
pn	Vegetated	Tall	<0.030 0.164	pass	0.329	1.622	0.007	IN N			0.378	IN N			0.720	IN N			0.904	N
	Mixed Vegetation	pass	0.104	pass	0.373	7.649	0.232	N		 V	0.175	IN N#			0.847	IN N			0.231	IN N#
Total	Non-Vegetated	pass	0.136	pass	0.798	/.648	0.006	Y	0.010	Ŷ	0.010	N*	0.997	IN	0.948	IN N	0.016	Ŷ	0.002	IN*
Alkalinity	Vegetated	pass	0.625	pass	0.399	0.743	0.495	N			0.306	N			0.501	N			0.534	N
as CaCO3	Mixed Vegetation	pass	0.316	pass	0.304	8./16	0.003	Y	0.004	Y	0.007	N*	0.849	N	0.626	N	0.018	Y	0.001	Y
Conduc-	Non-Vegetated	pass	0.318	pass	0.977	9.891	0.002	Y	0.005	Y	0.005	N*	0.991	N	0.903	N	0.005	Y	0.002	N*
tivity	Vegetated	pass	0.834	pass	0.290	0.169	0.846	N			0.633	N			0.827	N			0.729	N
	Mixed Vegetation	pass	0.392	pass	0.398	8.853	0.003	Y	0.004	Y	0.006	N*	0.871	N	0.644	N	0.016	Y	0.003	N*
	Non-Vegetated	pass	0.496	pass	0.510	1.929	0.180	N			0.328	N			0.106	N			0.311	N
Total Al	Vegetated	pass	0.693	fail	< 0.050	12.517	< 0.001	Y	< 0.001	Y	< 0.001	Y	0.010	Y	0.021	N*	0.514	N	0.332	N
	Mixed Vegetation	fail	< 0.050	pass	0.507	21.545	< 0.001	Y	< 0.001	Y	< 0.001	Y	< 0.001	Y	0.001	Y	1.000	N	0.941	N
	Non-Vegetated	pass	0.071	pass	0.896	2.092	0.158	N			0.204	N			0.673	N			0.092	N
Total Ba	Vegetated	fail	< 0.050	pass	0.186	0.482	0.628	N			0.691	N			0.312	N			0.431	Ν
	Mixed Vegetation	pass	0.396	pass	0.704	8.479	0.004	Y	0.014	Y	0.017	N*	0.812	N	0.517	N	0.006	Y	0.002	N*
	Non-Vegetated	pass	0.189	pass	0.860	5.798	0.014	Y	0.031	Y	0.036	N*	0.979	N	0.835	N	0.021	Y	0.006	N*
Total Ca	Vegetated	pass	0.403	pass	0.261	0.226	0.801	Ν			0.548	N			0.766	N			0.729	N
	Mixed Vegetation	pass	0.139	pass	0.488	16.878	< 0.001	Y	< 0.001	Y	< 0.001	Y	0.608	Ν	0.383	N	0.002	Y	< 0.001	Y
	Non-Vegetated	fail	< 0.050	pass	0.443	1.105	0.357	Ν			0.256	N			0.531	Ν			0.363	Ν
Total Fe	Vegetated	pass	0.069	pass	0.756	2.277	0.139	Ν			0.442	N			0.116	N			0.082	Ν
	Mixed Vegetation	pass	0.082	pass	0.895	2.124	0.156	Ν			0.102	N			0.414	Ν			0.254	Ν
	Non-Vegetated	pass	0.465	pass	0.972	1.782	0.202	Ν			0.445	N			0.306	N			0.084	Ν
Total K	Vegetated	pass	0.062	pass	0.383	0.717	0.505	Ν			0.342	N			0.164	Ν			0.899	Ν
	Mixed Vegetation	pass	0.335	pass	0.502	2.432	0.124	Ν			0.104	N			0.088	Ν			0.543	Ν
	Non-Vegetated	fail	< 0.050	pass	0.517	2.836	0.090	Ν			0.096	N			0.772	Ν			0.110	Ν
Total Mg	Vegetated	fail	< 0.050	pass	0.265	0.875	0.438	Ν			0.576	N			0.237	Ν			0.275	Ν

Table B.1.1	4 - Victoria Point, V	Vater Sa	mple St	atistical	Analysis	by Plot														
				A (.	All Month All depths	s ;)			Au	igust vs. (All d	Septembe epths)	er	Se	ptember (All d	vs. Octob epths)	er	A	August vs (All d	epths)	
		I	Data Test	(P ≥ 0.05)	ANO	VA (De	0.05)	Tukey	Test	Т-Т	est	Tukey	Test	T-T	est	Tukey	Test	T-T	est
		Norn	nality	Equal V	ariance	ANO		0.03)	(P≤0).05)	(P ≤ 0	.001)	(P ≤	0.05)	(P ≤ 0	.001)	(P ≤ 0	0.05)	(P ≤ 0.	.001)
Parameter	Plot	Result	Р	Result	Р	F	Р	Sig	Р	Sig	Р	Sig	Р	Sig	Р	Sig	Р	Sig	Р	Sig
	Mixed Vegetation pass 0.458 pass 0.250 20.876 <0.001															Ν	0.005	Y	0.002	N*
Non-Vegetated pass 0.618 pass 0.698 4.613 0.027 Y 0.030 N* 0.762 N 0.438 N 0.103 N Total Mn Vegetated pass 0.138 pass 0.659 6.052 0.013 Y 0.366 N 0.198 N 0.120 N 0.023 N* 0.010 Y															Ν	0.043	N*			
Total Mn	vtal Mn Vegetated pass 0.138 pass 0.659 6.052 0.013 Y 0.366 N 0.198 N															N*	0.010	Y	0.016	N*
	Mixed Vegetation pass 0.938 pass 0.585 4.095 0.040 Y 0.047 Y 0.023 N*															N	0.105	N	0.032	N*
	Non-Vegetated pass 0.233 pass 0.093 0.148 0.863 N 0.514 N															N			0.927	Ν
Total Na	Vegetated	pass	0.181	pass	0.951	14.243	< 0.001	Y	0.996	Ν	0.937	Ν	0.001	Y	< 0.001	Y	0.001	Y	0.001	Y
	Mixed Vegetation	pass	0.340	pass	0.627	1.632	0.231	Ν			0.274	Ν			0.527	Ν			0.107	N
	Non-Vegetated	pass	0.069	pass	0.682	0.631	0.546	Ν			0.334	Ν			0.611	Ν			0.487	N
Total S	Vegetated	pass	0.610	pass	0.569	3.146	0.074	Ν			0.477	N			0.061	Ν			0.057	N
	Mixed Vegetation	pass	0.159	pass	0.813	2.046	0.166	Ν			0.251	N			0.062	N			0.432	N
	Non-Vegetated	pass	0.419	pass	0.927	2.773	0.094	Ν			0.075	N			0.563	N			0.104	N
Total Sr	Vegetated	pass	0.244	pass	0.198	1.028	0.383	Ν			0.408	N			0.431	Ν			0.270	N
	Mixed Vegetation	pass	0.070	pass	0.597	18.995	< 0.001	Y	< 0.001	Y	< 0.001	Y	0.549	N	0.369	Ν	0.001	Y	< 0.001	Y
	Non-Vegetated	pass	0.091	fail	< 0.050	1.991	0.171	Ν			< 0.001	Y			0.527	N			0.339	N
Total Zn	Vegetated	pass	0.264	fail	< 0.050	7.106	0.007	Y	0.471	N	0.044	N*	0.055	N	0.067	Ν	0.006	Y	0.010	N*
	Mixed Vegetation	pass	0.651	fail	< 0.050	3.038	0.080	Ν			0.479	N			0.068	N			0.148	N
Notes All depths = 10-) cm above sediment-water	interface, 0	-10 cm, 10-	20 cm, 20-3	60 cm, 30-40) cm and 40	-50 cm belo	w sediment	-water interfa	ace										
Sig = Significant	; Y = Yes; N = No; N* = T	-Test only:	No based of	n P value ≤0	0.001, Yes b	ased on P v	alue ≤0.05													

Value -- in grey box = data not available / incalculable

B.2 – Graphs

Figure B.2.1 – Victoria Point, Total Phosphorus, water profiles by month. Mean values plotted with error bars depicting one standard error. Dashed/dotted line indicates sediment-water interface. Note: October water level extremely low with little vegetation remaining in all plots. ANOVA test (comparing all plots, depths: 10-0 cm above to 40-50 cm below sediment-water interface), results significant at $P \le 0.05$ (bold).

B.2 - Graphs

Figure B.2.3 – Victoria Point, Nitrate NO₃-N, water profiles by month. Mean values plotted with error bars depicting one standard error. Dashed/dotted line indicates sediment-water interface. Note: October water level extremely low with little vegetation remaining in all plots. ANOVA test (comparing all plots, depths: 10-0 cm above to 40-50 cm below sediment-water interface), results significant at P \leq 0.05 (bold).

B.2 - Graphs

Figure B.2.4 – Victoria Point, Dissolved Organic Carbon, August water profile. Mean values plotted with error bars depicting one standard error. Dashed/dotted line indicates sediment-water interface. ANOVA test (comparing all plots, depths: 10-0 cm above to 40-50 cm below sediment-water interface), results significant at $P \le 0.05$ (bold).

Figure B.2.5 – Victoria Point, pH, water profiles by month. Mean values plotted with error bars depicting one standard error. Dashed/dotted line indicates sediment-water interface. Note: October water level extremely low with little vegetation remaining in all plots. ANOVA test (comparing all plots, depths: 10-0 cm above to 40-50 cm below sediment-water interface), results significant at $P \le 0.05$ (bold).

B.2 - Graphs

October

B.2 - Graphs

October F = 19.750 20-10 = <0.001 10-0 water sediment 0-10 Depth (cm range) 10-20 20-30 30-40 40-50 50-60 60-70 Mixed Vegetation Non-Vegetated 70-80 Vegetated 300 350 400 450 500 550 600 650 700 750 800 850 Conductivity (µS/cm)

B.2 - Graphs

B.2 - Graphs

October F = 23.772 20-10 P = <0.001 10-0 water sediment 0-10 Depth (cm range) 10-20 20-30 30-40 40-50 50-60 60-70 Mixed Vegetation Non-Vegetated 70-80 Vegetated 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 Total Barium (mg/L)

Figure B.2.9 – Victoria Point, Total Barium, water profiles by month. Mean values plotted with error bars depicting one standard error. Dashed/dotted line indicates sediment-water interface. Note: October water level extremely low with little vegetation remaining in all plots. ANOVA test (comparing all plots, depths: 10-0 cm above to 40-50 cm below sediment-water interface), results significant at $P \le 0.05$ (bold).

B.2 - Graphs

Figure B.2.10 – Victoria Point, Total Calcium, water profiles by month. Mean values plotted with error bars depicting one standard error. Dashed/dotted line indicates sediment-water interface. Note: October water level extremely low with little vegetation remaining in all plots. ANOVA test (comparing all plots, depths: 10-0 cm above to 40-50 cm below sediment-water interface), results significant at $P \le 0.05$ (bold).

B.2 - Graphs

October F = 10.651 20-10 P = 0.002 10-0 water sediment 0-10 Depth (cm range) 10-20 20-30 30-40 40-50 50-60 60-70 Mixed Vegetation Non-Vegetated 70-80 Vegetated 0.00 0.05 0.10 0.15 0.20 0.25 0.30 Total Iron (mg/L)

Figure B.2.11 – Victoria Point, Total Iron, water profiles by month. Mean values plotted with error bars depicting one standard error. Dashed/dotted line indicates sediment-water interface. Note: October water level extremely low with little vegetation remaining in all plots. ANOVA test (comparing all plots, depths: 10-0 cm above to 40-50 cm below sediment-water interface), results significant at $P \le 0.05$ (bold).

Figure B.2.12 – Victoria Point, Total Potassium, water profiles by month. Mean values plotted with error bars depicting one standard error. Dashed/dotted line indicates sediment-water interface. Note: October water level extremely low with little vegetation remaining in all plots. ANOVA test (comparing all plots, depths: 10-0 cm above to 40-50 cm below sediment-water interface), results significant at $P \le 0.05$ (bold).

B.2 - Graphs

Figure B.2.14 – Victoria Point, Total Manganese, water profiles by month. Mean values plotted with error bars depicting one standard error. Dashed/dotted line indicates sediment-water interface. Note: October water level extremely low with little vegetation remaining in all plots. ANOVA test (comparing all plots, depths: 10-0 cm above to 40-50 cm below sediment-water interface), results significant at $P \le 0.05$ (bold).

B.2 - Graphs

Figure B.2.15 – Victoria Point, Total Sodium, water profiles by month. Mean values plotted with error bars depicting one standard error. Dashed/dotted line indicates sediment-water interface. Note: October water level extremely low with little vegetation remaining in all plots. ANOVA test (comparing all plots, depths: 10-0 cm above to 40-50 cm below sediment-water interface), results significant at $P \le 0.05$ (bold).

Figure B.2.16 – Victoria Point, Total Sulphur, water profiles by month. Mean values plotted with error bars depicting one standard error. Dashed/dotted line indicates sediment-water interface. Note: October water level extremely low with little vegetation remaining in all plots. ANOVA test (comparing all plots, depths: 10-0 cm above to 40-50 cm below sediment-water interface), results significant at $P \le 0.05$ (bold).

B.2 - Graphs

October F = 14.663 20-10 P = <0.001 10-0 water sediment 0-10 Depth (cm range) 10-20 20-30 30-40 40-50 50-60 60-70 Mixed Vegetation Non-Vegetated 70-80 egetated 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 Total Strontium (mg/L)

Figure B.2.17 – Victoria Point, Total Strontium, water profiles by month. Mean values plotted with error bars depicting one standard error. Dashed/dotted line indicates sediment-water interface. Note: October water level extremely low with little vegetation remaining in all plots. ANOVA test (comparing all plots, depths: 10-0 cm above to 40-50 cm below sediment-water interface), results significant at $P \le 0.05$ (bold).

B.2 - Graphs

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 Total Zinc (mg/L)

Figure B.2.18 – Victoria Point, Total Zinc, water profiles by month. Mean values plotted with error bars depicting one standard error. Dashed/dotted line indicates sediment-water interface. Note: October water level extremely low with little vegetation remaining in all plots. ANOVA test (comparing all plots, depths: 10-0 cm above to 40-50 cm below sediment-water interface), results significant at $P \le 0.05$ (bold).

<u>B.3 - Control</u> Table B.3.1 - V	<u>l Data</u> /ictoria Point, Wa	ter Sample A	nalytical Results	s, Contro	l Data																													l
			1			-					-		-			Para	meter / M	ethod D	Detection	Limit /	Units						-		-			-	-	-
				Total	Phosphate	Nitrite	Nitrate	DOC	рН	Total Alkalinity	Conductivity										Т	otal Met	als										Reactive Silicates	Chlorophyll
	1			r	1041	1102-11	103-11			as CaCO ₃		Al	As	Ba	Be	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	Pb	S	Sr	Ti	V	Zn	SiO ₂	a
	'			0.0050	0.0250	0.006	0.0090	0.50	n/a	1.0	0.50	0.0050	0.0050	0.0030	0.002	0.0050	0.0010	0.010	0.002	0.002	0.002	0.10	0.010	0.0002	0.010	0.002	0.0050	0.050	0.0050	0.010	0.006	0.0010	0.25	0.2
Lab ID	Month Analyzed	Sample Date	Sample ID	mg/L	mg/L	mg/L	mg/L	mg/L	n/a	mg/L	uS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L
EL100256-062	August	07/22/10	VP-Launch	0.0025	0.0125	0.003	0.0045	0.25	5.56	1.9	0.9	0.0025	0.0025	0.0015	0.001	0.0110	0.0005	0.005	0.001	0.001	0.001	0.05	0.005	0.0001	0.005	0.001	0.0025	0.025	0.0025	0.005	0.003	0.0010	i /	- /
EL100261-105	August	08/26/10	MMVP-Control	0.0025	00125 0.0125 0.018 0.0045 2.5 5.7 2.1 2.00 0.0025 0.0025 0.0015 0.001 0.005 0.0005 0.000 0.001 0.001 0.005 0.001 0.0026 0.02 0.001 0.0025 0.025 0.0025 0.003 0.003 0.003 0.003 0.003 0.001 0.01 0.															i /	- /													
EL100256-061	August	08/25/10	VP-Water	0.0025 0.0125 0.018 0.0045 2.5 5.57 2.1 2.00 0.0025 0.0015 0.001															0.0030															
EL100303-132	September	08/25/10	VP-Launch	0.0130	0.0125	0.003	0.0170	/ /	5.54	1.3	1.10	0.0025	0.0025	0.0015	-	0.0080					0.001	0.05	0.005	0.0001	0.010		-	0.025	0.0025			0.0090	i 1	
EL100300-104	September	09/25/10	MMVPControl	0.0150	0.0125	0.003	0.0045	/	5.96	1.9	2.30	0.0025	0.0025	0.0015	- 1	0.1090					0.001	0.05	0.010	0.0005	0.030		-	0.025	0.0025			0.0110	i 1	
EL100303-131	September	09/25/10	VP-Water	0.0540	0.0125	0.003	0.0140	/	7.02	158.4	420.80	0.0080	0.0060	0.0350	-	58.2070					0.025	2.42	5.080	0.0823	19.050		-	2.310	0.1520			0.0050		
EL100336-095	October	09/25/10	VP-Launch	0.0090	0.0125	0.0030	0.0045	/	5.2910	1.0000	1.1000	0.0025	0.0025	0.0015	- 1	0.0025					0.0010	0.0500	0.0050	0.0001	0.0050		-	0.0250	0.0025			0.0090		
EL100333-108	October	10/20/10	MM/VPControl	0.0025	0.0125	0.003	0.0045	/	5.57	1.4	1.50	0.0025	0.0025	0.0015	- /	0.0240					0.001	0.05	0.050	0.0003	0.020			0.025	0.0025			0.0040		
EL100336-094	October	10/22/10	VP-Water	0.0690	0.0125	0.0030	0.0045	- I	7.1610	151.7000	414.4000	0.0150	0.0025	0.0300	- 1	62.7560					0.0360	2.0600	5.6700	0.0161	20.2200		-	2.4900	0.1560		1	0.0030	(/	- 1
Notes Sample ID code: Site Value in grey box =	: (MM = Marchmont Mars = parameter not analyzed	sh; VP = Victoria Po	oint) - Sample Type (La	aunch = Surfi	ace Water on day	y of peeper d	leployment;	Control =	Control A	.pparatus Water S	sample collected on	day of peepe	r collection; 1	Water = Surfi	ace Water	r on day of pe	eper collectio	m)																
Value = in grey box =	Volumenter not analyzed	internete la Press	at an Thinks																															

Value --- in grey box = parameter not analyzed Value in grey font = Value half of Detection Limit (result < Detection Limi
<u>B.4 – Photos</u>

Figure B.4.1 – Victoria Point wetland, near Orillia, Ontario.

Figure B.4.2 – Victoria Point fence installation.

Appendix B Victoria Point Data

B.4 - Photos

Figure B.4.3 – Victoria Point, completed fence.

Figure B.4.4 – Victoria Point, wild rice seeding.

B.4 - Photos

Figure B.4.5 – Victoria Point, wild rice growth in vegetated plots.

Figure B.4.6 – Victoria Point, vegetation growth in mixed-vegetation plots (wild rice and water lilies dominant).

Appendix B Victoria Point Data

B.4 - Photos

Figure B.4.7 – Victoria Point pore water sampler installation, showing insertion of sampler into sediment of vegetated plot.

Figure B.4.8 – Victoria Point pore water samplers installed in non-vegetated and vegetated plots.

Figure B.4.9 – Victoria Point in October, note significantly reduced water level.

Figure B.4.10 – Victoria Point sample bottles sorted for analysis in LUEL.

Figure A.4.12 – Marchmont Marsh, sample collection, showing sample storage for transport to laboratory.

Figure A.4.13 – Marchmont Marsh, sample analysis in LUEL.

Appendix A Marchmont Marsh Data

APPENDIX C

Zizania palustris Root Plaque Examination Data

CONTENTS

C.1 –	SEM In	nages and EDXA X-Ray Spectra	.180
•	C.1.1 -	- Lake Tamblyn	.180
	0	Figure C.1.1.1 – Lake Tamblyn, Sample 1	.180
	0	Figure C.1.1.2 – Lake Tamblyn, Sample 2	.181
	0	Figure C.1.1.3 – Lake Tamblyn, Sample 2	.182
	0	Figure C.1.1.4 – Lake Tamblyn, Sample 3	.183
	0	Figure C.1.1.5 – Lake Tamblyn, Sample 4	.184
	0	Figure C.1.1.6 – Lake Tamblyn, Sample 5	.186
	0	Table C.1.1.1 – Lake Tamblyn, Zizania palustris Root Plaque SEM	
		Data Compilation	.187
	0	Table C.1.1.2 – Lake Tamblyn, Zizania palustris Root Plaque EDXA	ł
		x-Ray Data Compilation	.188
•	C.1.2 -	- Marchmont Marsh	.189
	0	Figure C.1.2.1 – Marchmont Marsh, Sample 1	.189
	0	Figure C.1.2.2 – Marchmont Marsh, Sample 2	.190
	0	Figure C.1.2.3 – Marchmont Marsh, Sample 3	.191
	0	Figure C.1.2.4 – Marchmont Marsh, Sample 4	.192
	0	Figure C.1.2.5 – Marchmont Marsh, Sample 8	.193
	0	Figure C.1.2.6 – Marchmont Marsh, Sample 9	.195
	0	Figure C.1.2.7 – Marchmont Marsh, Sample 10	.197
	0	Figure C.1.2.8 – Marchmont Marsh, Sample 11	.198
	0	Table C.1.2.1 – Marchmont Marsh, Zizania palustris Root Plaque	
		SEM Data Compilation	.200
	0	Table C.1.2.2 – Marchmont Marsh, Zizania palustris Root Plaque	
		EDXA x-Ray Data Compilation	.201
•	C.1.3 -	- Partridge Crop Lake	.202
	0	Figure C.1.3.1 – Partridge Crop Lake, Sample 1	.202
	0	Figure C.1.3.2 – Partridge Crop Lake, Sample 2	.203
	0	Figure C.1.3.3 – Partridge Crop Lake, Sample 3	.204
	0	Figure C.1.3.4 – Partridge Crop Lake, Sample 4	.206
	0	Figure C.1.3.5 – Partridge Crop Lake, Sample 5	.208
	0	Figure C.1.3.6 – Partridge Crop Lake, Sample 6	.210
	0	Table C.1.3.1 – Partridge Crop Lake, Zizania palustris Root Plaque	
		SEM Data Compilation	.212
	0	Table C.1.3.2 – Partridge Crop Lake, Zizania palustris Root Plaque	
		EDXA x-Ray Data Compilation	.213

•	C.1.4 – Lower Steep Rock Lake	.214
	 Figure C.1.4.1 – Lower Steep Rock Lake, Sample 1 	.214
	 Figure C.1.4.2 – Lower Steep Rock Lake, Sample 2 	.215
	 Figure C.1.4.3 – Lower Steep Rock Lake, Sample 3 	.216
	 Figure C.1.4.4 – Lower Steep Rock Lake, Sample 4 	.218
	 Figure C.1.4.5 – Lower Steep Rock Lake, Sample 5 	.220
	 Figure C.1.4.6 – Lower Steep Rock Lake, Sample 6 	.221
	 Table C.1.4.1 – Lower Steep Rock Lake, Zizania palustris Root Plaq 	ue
	SEM Data Compilation	.223
	 Table C.1.4.2 – Lower Steep Rock Lake, Zizania palustris Root Plaq 	ue
	x-Ray Data Compilation	.224
٠	C.1.5 – Whitefish Lake	.225
	 Figure C.1.5.1 – Whitefish Lake, Sample 1 	.225
	 Figure C.1.5.2 – Whitefish Lake, Sample 2 	.226
	 Figure C.1.5.3 – Whitefish Lake, Sample 3 	.227
	 Figure C.1.5.4 – Whitefish Lake, Sample 4 	.229
	 Figure C.1.5.5 – Whitefish Lake, Sample 8 	.231
	 Figure C.1.5.6 – Whitefish Lake, Sample 9 	.232
	 Figure C.1.5.7 – Whitefish Lake, Sample 10 	.234
	• Table C.1.5.1 – Whitefish Lake, <i>Zizania palustris</i> Root Plaque SEM	
	Data Compilation	.236
	• Table C.1.5.2 – Whitefish Lake, <i>Zizania palustris</i> Root Plaque EDXA	A
	 Table C.1.5.2 – Whitefish Lake, <i>Zizania palustris</i> Root Plaque EDXA x-Ray Data Compilation 	A .237
•	 Table C.1.5.2 – Whitefish Lake, <i>Zizania palustris</i> Root Plaque EDXA x-Ray Data Compilation C.1.6 – Plaque Observation Summary 	A .237 .238
•	 Table C.1.5.2 – Whitefish Lake, <i>Zizania palustris</i> Root Plaque EDXA x-Ray Data Compilation C.1.6 – Plaque Observation Summary Table C.1.6.1 – Plaque Structure, <i>Zizania palustris</i> Root Plaque SEM 	A .237 .238 I
•	 Table C.1.5.2 – Whitefish Lake, <i>Zizania palustris</i> Root Plaque EDXA x-Ray Data Compilation C.1.6 – Plaque Observation Summary Table C.1.6.1 – Plaque Structure, <i>Zizania palustris</i> Root Plaque SEM Image Data Compilation 	A .237 .238 1 .238
•	 Table C.1.5.2 – Whitefish Lake, <i>Zizania palustris</i> Root Plaque EDXA x-Ray Data Compilation C.1.6 – Plaque Observation Summary Table C.1.6.1 – Plaque Structure, <i>Zizania palustris</i> Root Plaque SEN Image Data Compilation Table C.1.6.2 – Plaque Composition, <i>Zizania palustris</i> Root Plaque 	A .237 .238 I .238
•	 Table C.1.5.2 – Whitefish Lake, Zizania palustris Root Plaque EDXA x-Ray Data Compilation C.1.6 – Plaque Observation Summary Table C.1.6.1 – Plaque Structure, Zizania palustris Root Plaque SEM Image Data Compilation Table C.1.6.2 – Plaque Composition, Zizania palustris Root Plaque EDXA X-ray Spectra Data Compilation 	A .237 .238 I .238 .239
•	 Table C.1.5.2 – Whitefish Lake, <i>Zizania palustris</i> Root Plaque EDXA x-Ray Data Compilation C.1.6 – Plaque Observation Summary Table C.1.6.1 – Plaque Structure, <i>Zizania palustris</i> Root Plaque SEM Image Data Compilation Table C.1.6.2 – Plaque Composition, <i>Zizania palustris</i> Root Plaque EDXA X-ray Spectra Data Compilation. Table C.1.6.3 – Plaque Deposition, <i>Zizania palustris</i> Root Plaque EDXA X ray Spectra Data Compilation. 	A .237 .238 I .238 .239
•	 Table C.1.5.2 – Whitefish Lake, Zizania palustris Root Plaque EDXA x-Ray Data Compilation C.1.6 – Plaque Observation Summary Table C.1.6.1 – Plaque Structure, Zizania palustris Root Plaque SEM Image Data Compilation Table C.1.6.2 – Plaque Composition, Zizania palustris Root Plaque EDXA X-ray Spectra Data Compilation Table C.1.6.3 – Plaque Deposition, Zizania palustris Root Plaque EDXA X-ray Spectra Data Compilation 	A .237 .238 1 .238 .239 .240
• C.2 –	 Table C.1.5.2 – Whitefish Lake, <i>Zizania palustris</i> Root Plaque EDXA x-Ray Data Compilation C.1.6 – Plaque Observation Summary Table C.1.6.1 – Plaque Structure, <i>Zizania palustris</i> Root Plaque SEM Image Data Compilation Table C.1.6.2 – Plaque Composition, <i>Zizania palustris</i> Root Plaque EDXA X-ray Spectra Data Compilation Table C.1.6.3 – Plaque Deposition, <i>Zizania palustris</i> Root Plaque EDXA X-ray Spectra Data Compilation Table C.1.6.3 – Plaque Deposition, <i>Zizania palustris</i> Root Plaque EDXA X-ray Spectra Data Compilation 	A .237 .238 1 .238 .239 .240 .241
• C.2 –	 Table C.1.5.2 – Whitefish Lake, <i>Zizania palustris</i> Root Plaque EDXA x-Ray Data Compilation C.1.6 – Plaque Observation Summary Table C.1.6.1 – Plaque Structure, <i>Zizania palustris</i> Root Plaque SEM Image Data Compilation Table C.1.6.2 – Plaque Composition, <i>Zizania palustris</i> Root Plaque EDXA X-ray Spectra Data Compilation Table C.1.6.3 – Plaque Deposition, <i>Zizania palustris</i> Root Plaque EDXA X-ray Spectra Data Compilation Table C.1.6.3 – Plaque Deposition, <i>Zizania palustris</i> Root Plaque EDXA X-ray Spectra Data Compilation Table C.1.6.3 – Plaque Deposition, <i>Zizania palustris</i> Root Plaque EDXA X-ray Spectra Data Compilation 	A .237 .238 1 .238 .239 .240 .240 .241 .241
• C.2 – •	 Table C.1.5.2 – Whitefish Lake, <i>Zizania palustris</i> Root Plaque EDXA x-Ray Data Compilation C.1.6 – Plaque Observation Summary Table C.1.6.1 – Plaque Structure, <i>Zizania palustris</i> Root Plaque SEM Image Data Compilation Table C.1.6.2 – Plaque Composition, <i>Zizania palustris</i> Root Plaque EDXA X-ray Spectra Data Compilation Table C.1.6.3 – Plaque Deposition, <i>Zizania palustris</i> Root Plaque EDXA X-ray Spectra Data Compilation Table C.1.6.3 – Plaque Deposition, <i>Zizania palustris</i> Root Plaque EDXA X-ray Spectra Data Compilation Figure C.2.1 – Partridge Crop Lake, Sample 5. Figure C.2.2 – Marchmont Marsh, Sample 8 	A .237 .238 1 .238 .239 .240 .241 .241 .241
• C.2 – •	 Table C.1.5.2 – Whitefish Lake, <i>Zizania palustris</i> Root Plaque EDXA x-Ray Data Compilation C.1.6 – Plaque Observation Summary Table C.1.6.1 – Plaque Structure, <i>Zizania palustris</i> Root Plaque SEM Image Data Compilation Table C.1.6.2 – Plaque Composition, <i>Zizania palustris</i> Root Plaque EDXA X-ray Spectra Data Compilation Table C.1.6.3 – Plaque Deposition, <i>Zizania palustris</i> Root Plaque EDXA X-ray Spectra Data Compilation Table C.1.6.3 – Plaque Deposition, <i>Zizania palustris</i> Root Plaque EDXA X-ray Spectra Data Compilation. Figure C.2.1 – Partridge Crop Lake, Sample 5 Figure C.2.3 – Marchmont Marsh, Sample 8 	A .237 .238 1 .238 .239 .240 .241 .241 .242 .243
• C.2 – • •	 Table C.1.5.2 – Whitefish Lake, Zizania palustris Root Plaque EDXA x-Ray Data Compilation C.1.6 – Plaque Observation Summary Table C.1.6.1 – Plaque Structure, Zizania palustris Root Plaque SEM Image Data Compilation Table C.1.6.2 – Plaque Composition, Zizania palustris Root Plaque EDXA X-ray Spectra Data Compilation Table C.1.6.3 – Plaque Deposition, Zizania palustris Root Plaque EDXA X-ray Spectra Data Compilation Table C.1.6.3 – Plaque Deposition, Zizania palustris Root Plaque EDXA X-ray Spectra Data Compilation Table C.1.6.3 – Plaque Deposition, Zizania palustris Root Plaque EDXA X-ray Spectra Data Compilation Figure C.2.1 – Partridge Crop Lake, Sample 5. Figure C.2.2 – Marchmont Marsh, Sample 8 Figure C.2.4 – Marchmont Marsh, Sample 8 	A .237 .238 1 .238 .239 .240 .241 .241 .241 .242 .243 .244
• C.2 – • •	 Table C.1.5.2 – Whitefish Lake, <i>Zizania palustris</i> Root Plaque EDXA x-Ray Data Compilation C.1.6 – Plaque Observation Summary Table C.1.6.1 – Plaque Structure, <i>Zizania palustris</i> Root Plaque SEM Image Data Compilation Table C.1.6.2 – Plaque Composition, <i>Zizania palustris</i> Root Plaque EDXA X-ray Spectra Data Compilation Table C.1.6.3 – Plaque Deposition, <i>Zizania palustris</i> Root Plaque EDXA X-ray Spectra Data Compilation Table C.1.6.3 – Plaque Deposition, <i>Zizania palustris</i> Root Plaque EDXA X-ray Spectra Data Compilation Figure C.2.1 – Partridge Crop Lake, Sample 5 Figure C.2.2 – Marchmont Marsh, Sample 8 Figure C.2.4 – Marchmont Marsh, Sample 8 Figure C.2.5 – Whitefish Lake, Sample 10 	A .237 .238 1 .238 .239 .240 .241 .241 .241 .242 .243 .244 .245
• C.2 – • • • • • • •	 Table C.1.5.2 – Whitefish Lake, Zizania palustris Root Plaque EDXA x-Ray Data Compilation C.1.6 – Plaque Observation Summary Table C.1.6.1 – Plaque Structure, Zizania palustris Root Plaque SEN Image Data Compilation Table C.1.6.2 – Plaque Composition, Zizania palustris Root Plaque EDXA X-ray Spectra Data Compilation Table C.1.6.3 – Plaque Deposition, Zizania palustris Root Plaque EDXA X-ray Spectra Data Compilation Table C.1.6.3 – Plaque Deposition, Zizania palustris Root Plaque EDXA X-ray Spectra Data Compilation Table C.2.1 – Partridge Crop Lake, Sample 5 Figure C.2.2 – Marchmont Marsh, Sample 8 Figure C.2.4 – Marchmont Marsh, Sample 8 Figure C.2.5 – Whitefish Lake, Sample 10 	A .237 .238 1 .238 .239 .240 .241 .241 .241 .242 .243 .244 .245 .246
• • • • • • •	 Table C.1.5.2 – Whitefish Lake, Zizania palustris Root Plaque EDXA x-Ray Data Compilation	A .237 .238 1 .238 .239 .240 .241 .241 .241 .242 .243 .244 .245 .246 .246
C.2 – • • • •	 Table C.1.5.2 – Whitefish Lake, Zizania palustris Root Plaque EDXA x-Ray Data Compilation C.1.6 – Plaque Observation Summary Table C.1.6.1 – Plaque Structure, Zizania palustris Root Plaque SEM Image Data Compilation Table C.1.6.2 – Plaque Composition, Zizania palustris Root Plaque EDXA X-ray Spectra Data Compilation Table C.1.6.3 – Plaque Deposition, Zizania palustris Root Plaque EDXA X-ray Spectra Data Compilation Table C.1.6.3 – Plaque Deposition, Zizania palustris Root Plaque EDXA X-ray Spectra Data Compilation Table C.1.6.3 – Plaque Deposition, Zizania palustris Root Plaque EDXA X-ray Spectra Data Compilation Table C.2.1 – Partridge Crop Lake, Sample 5 Figure C.2.2 – Marchmont Marsh, Sample 8 Figure C.2.4 – Marchmont Marsh, Sample 8 Figure C.2.5 – Whitefish Lake, Sample 10 Plaque Anomalies Figure C.3.1 – Marchmont Marsh, Sample 8 Figure C.3.2 – Marchmont Marsh, Sample 8 Figure C.3.2 – Marchmont Marsh, Sample 8 	A .237 .238 1 .238 .239 .240 .241 .241 .242 .243 .244 .245 .246 .246 .248
C.2 - • • • •	 Table C.1.5.2 – Whitefish Lake, <i>Zizania palustris</i> Root Plaque EDXA x-Ray Data Compilation	A .237 .238 1 .238 .239 .240 .241 .241 .241 .242 .243 .244 .245 .246 .246 .246 .248

	253
• C.4.1 – Control Samples, SEM Images and EDXA X-Ray Spectra	253
• Figure C.4.1.1 – Marchmont Marsh, Sample 5	253
• Figure C.4.1.2 – Marchmont Marsh, Sample 6	254
• Figure C.4.1.3 – Marchmont Marsh, Sample 7	256
• Figure C.4.1.4 – Whitefish Lake, Sample 5	257
• Figure C.4.1.5 – Whitefish Lake, Sample 6	258
• Figure C.4.1.6 – Whitefish Lake, Sample 7	259
• Figure C.4.1.7 – Blank stub, no sample EDXA x-ray spectra	260
• Table C.4.1.1 – Control Samples, Zizania palustris Root Plaque Sl	EM
Data Compilation	261
• Table C.4.1.2 – Control Samples, Zizania palustris Root Plaque	
EDXA x-Ray Data Compilation	262
• C.4.2 – Control Samples, Element Maps	263
• Figure C.4.2.1 – Whitefish Lake, Sample 6	263
• Figure C.4.2.2 – Marchmont Marsh, Sample 6	264
• C.4.3 – Water Analytical Base Data	265
• Table C.4.3.1 - Water Analytical Data, Collected Near Zizania pal	ustris
Sample Sites	265
C.5 – Photos	266
• Figure C.5.1 – Lake Tamblyn wild rice root sample preparation prior to fr	eeze-
drying	266
• Figure C.5.2 – Marchmont Marsh wild rice root sample	266
• Figure C.5.3 – Prepared samples of Marchmont Marsh wild rice roots price	or
to freeze-drying	267
• Figure C.5.4 – Partridge Crop Lake wild rice root sample preparation prio	r
to freeze-drying	267
• Figure C.5.5 – Lower Steep Rock Lake wild rice root sample preparation	
prior to freeze-drying	268
• Figure C.5.6 – Prepared samples of Whitefish Lake wild rice roots prior to)
freeze-drying	268
 Figure C 5.7 – Prepared samples for freeze-drying 	269
• Figure $C.J. = 1$ repared samples for neeze-urying	.7
 Figure C.5.7 – Frepared samples for freeze-drying Figure C.5.8 – LABCONCO Freeze Dry System (freeze-dryer) used to dr 	v
 Figure C.5.8 – LABCONCO Freeze Dry System (freeze-dryer) used to dry wild rice root samples	y 269
 Figure C.5.9 – Freeze-dried samples for freeze-drying Figure C.5.9 – LABCONCO Freeze Dry System (freeze-dryer) used to dry wild rice root samples Figure C.5.9 – Freeze-dried wild rice root samples mounted on stubs with 	y 269 carbon
 Figure C.5.8 – LABCONCO Freeze Dry System (freeze-dryer) used to dr wild rice root samples Figure C.5.9 – Freeze-dried wild rice root samples mounted on stubs with tape, in preparation for SEM and x-ray analysis 	y 269 carbon 270
 Figure C.5.7 – Frepared samples for freeze-drying Figure C.5.8 – LABCONCO Freeze Dry System (freeze-dryer) used to dr wild rice root samples Figure C.5.9 – Freeze-dried wild rice root samples mounted on stubs with tape, in preparation for SEM and x-ray analysis Figure C.5.10 – JEOL JSM-5900LV Scanning Electron Microscope (SEM) 	,269 carbon 270 [) fitted

<u>C.1 – SEM Images and EDXA X-Ray Spectra</u>

C.1.1 – Lake Tamblyn

Figure C.1.1.1 – Lake Tamblyn, Sample 1 (longitudinal section: root surface orangebrown), SEM images with associated EDXA x-ray spectra (x-ray location shown by box); A. x750, root surface with plaque; B. x1,000, root surface with particulate deposits and plaque.

Figure C.1.1.2 – Lake Tamblyn, Sample 2 (longitudinal section: root surface orangebrown), SEM images with associated EDXA x-ray spectra (x-ray location shown by box); A. x900, root surface with plaque crust; B. x700, root surface with plaque crust ; C. x2,500, close-up of broken-away plaque crust.

C.1.1 – Lake Tamblyn

Figure C.1.1.4 – Lake Tamblyn, Sample 3 (carbon-coated longitudinal section: root surface orange-brown), SEM images with associated EDXA x-ray spectra (x-ray location shown by box); A. x700, root surface with plaque crust; B. x220, root surface with plaque at cut edge.

Figure C.1.1.5 (cont'd on next page)

Appendix C Zizania palustris Root Plaque Examination

Figure C.1.1.5 – Lake Tamblyn, Sample 4 (carbon-coated cross section: root surface orange-brown), SEM images with associated EDXA x-ray spectra (x-ray location shown by box); A. x110, overview of cross section; B. x600, root surface with plaque; C. x650, root surface (spectrum C.1), outer cortex (spectrum C.2) and cortex (spectrum C.3); D. x650, epidermis / root surface (spectrum D.1) and epidermis cell interior (spectra D.2 and D.3); E. x350, root vascular cylinder.

Figure C.1.1.6 – Lake Tamblyn, Sample 5 (longitudinal section: root surface orange-brown), SEM images with associated EDXA x-ray spectra (x-ray location shown by box); A. x600, root surface cells, packed with plaque (spectrum A.1) and with surface plaque (spectrum A.2); B.1 x300, root surface with plaque, B.2 x950, zoom of B.1 (dashed box area) showing "hallow" cell interior (spectrum E.3) and exterior (spectrum E.4).

Table C.1.1.1 - Lake Tamblyn, Zizania palustris Root Plaque SEM Image Data Compilation

C.1.1 - Lake Tamblyn

Sample Data SEM Observation Data																
Site	Sampla	Root	Imaga	Image	Plaqua Prosont	Zoom		Prin	nary Deposi	tion		Secondary	Deposition		Comments	
Site	Sample	Colour	image	Location	T laque T resent	20011	Type	% Coverage	Thickness	Location	Туре	% Coverage	Thickness	Location	Deposits	
LT	1	orange-brown	Α	root surface	Y	750	thin	100	thin	cell surface	-	-	-	-	none	plaque extremely thin, only evidence of presence is x-ray spectra
LT	1	orange-brown	в	root surface	Y	1,000	thin	100	thin	cell surface	-	-	-	-	CaCO3 & soil	plaque extremely thin, only evidence of presence is x-ray spectra, particulates not likely plaque
LT	2	orange-brown	А	root surface	Y	900	crust	95	thick	cell surface	broken away	5	N/A	N/A	none	consistent crust, gaps only where crust broken away from cell surface; cracks along cell lines
LT	2	orange-brown	в	root surface	Y	700	crust	90	4 µm	cell surface	broken away	10	N/A	N/A	none	consistent crust, gaps only where crust broken away from cell surface; cracks along cell lines
LT	2	orange-brown	С	root surface	Y	2,500	crust	85	4 µm	cell surface	broken away	15	N/A	N/A	none	consistent crust, gaps only where crust broken away from cell surface; cracks along cell lines
LT	2	orange-brown	Α	root surface	Y	600	crust	75	thick	on and within cells	broken away	25	N/A	N/A	none	crust delineates individual cells
LT	2	orange-brown	В	root surface	Y	900	crust	70	3 µm	on and within cells	broken away	30	N/A	N/A	none	crust appears in and on cells
LT	2	orange-brown	С	root surface	Y	2,500	crust	65	3 µm	on and within cells	broken away	35	N/A	N/A	none	plaque cell cast (similar to that in Chen et al., 1980b)
LT	3	orange-brown	Α	root surface	Y	700	crust	70	thick	in surface cells	broken away	30	N/A	N/A	CaCO3 & soil	cell appears destroyed where crust broken away
LT	3	orange-brown	В	root surface	Y	220	crust	90	unknown	unknown	broken away	10	N/A	N/A	CaCO ₃ & soil	unsure if in or on cell; deposition % based on observed root surface area
LT	4	orange-brown	Α	cross section	N/A	110	-	-	-	-	-	-	-	-	-	cross section image for reference to subsequent image locations
LT	4	orange-brown	В	root surface	Y	600	thin	100	thin	cell surface	-	-	-	-	soil	deposition % based on observed root surface area
LT	4	orange-brown	С	cross section	Y	650	thin	N/A	thin	cell surface	-	-	-	-	none	small portion of root surface visible
LT	4	orange-brown	D	root surface	Y	650	thin	100	thin	on and within cells	-	-	-	-	none	location of plaque based on x-ray spectra of interior of cells
LT	4	orange-brown	Е	vascular cylinder	N/A	350	-	-	-	-	-	-	-	-	-	vascular cylinder image for x-ray spectrum reference
LT	5	orange-brown	А	root surface	Y	600	thin	75	thin	cell surface	packed cells	25	unknown	in surface cells	CaCO ₃ & soil	plaque-packed cells and one hallow-plaque cell cast observed (similar to that in Chen et al., 1980b)
LT	5	orange-brown	B.1	root surface	Y	300	thin	80	thin	cell surface	packed cells	20	unknown	in surface cells	CaCO ₃ & soil	plaque-packed cells and three hallow-plaque cell casts observed (similar to that in Chen et al., 1980b)
LT	5	orange-brown	B.2	root surface	Y	950	thin	60	thin	cell surface	packed cells	40	unknown	in surface cells	CaCO3 & soil	two hallow-plaque cell casts (similar to that in Chen et al., 1980b)

Notes

Plaque thickness = thin (too thin to measure, approximately <1 μm)

Plaque thickness = thick (not able to measure, at least >1.5 μ m)

-=N/A

C.1.1 - Lake Tamblyn

Sample Data												
Site	Sample	Root	Spectrum	Plaque	Location	Re	lative Pea	ak Height	t of Eleme	ents	Other Particulate	Comments
Site	Sample	Colour	Speed uni	Present	Elocation	1	2	3	4	5	Deposits	
LT	1	orange-brown	А	Y	root surface	0	С	Fe	Si	Ca	none	
LT	1	orange-brown	В	Y	root surface	0	Fe	С	Si	Al	CaCO ₃ & soil	
LT	2	orange-brown	А	Y	root surface	Fe	0	С	Si	Al	none	
LT	2	orange-brown	В	Y	root surface	Fe	0	Al	Si	С	none	
LT	2	orange-brown	С	Y	piece of plaque	Fe	Al	0	Si	Ca	none	piece of root plaque on plaque-crusted surface
LT	3	orange-brown	А	Y	root surface	Fe	0	С	Ca	Si	CaCO ₃ & soil	
LT	3	orange-brown	В	Y	root surface	0	С	Fe	Si	Ca	CaCO ₃ & soil	
LT	4	orange-brown	В	Y	root surface	Fe	0	С	Si	Ca(Fe)	soil	
LT	4	orange-brown	C.1	Y	root surface	Al	С	Fe	0	Si	none	
LT	4	orange-brown	C.2	N/A	outer cortex	С	0	Ca	Fe	Al	none	root interior, high Ca and Fe
LT	4	orange-brown	C.3	N/A	cortex	С	0	Fe	Si	Ca	none	root interior, high Fe
LT	4	orange-brown	D.1	Y	root surface	С	0	Fe	Si(Fe)	Ca	none	
LT	4	orange-brown	D.2	N/A	epidermis cells	С	0	Fe	Si	Ca(Fe)	none	cell interior, similar to cell surface
LT	4	orange-brown	D.3	N/A	epidermis cells	С	0	Fe	Si	Ca(Fe)	none	cell interior, similar to cell surface
LT	4	orange-brown	Е	N/A	vascular cylinder	С	0	-	-	-	-	other element peaks extremely low
LT	5	orange-brown	A.1	Y	root surface	Fe	0	С	Si	Ca(Fe)	CaCO ₃ & soil	plaque-packed cell
LT	5	orange-brown	A.2	Y	root surface	Fe	С	0	Al	Ca	CaCO ₃ & soil	thin plaqued cell
LT	5	orange-brown	B.3	Y	epidermis cells	С	0	Fe	Si	Ca	CaCO ₃ & soil	interior of hallow-plaque cell cast (Chen et al., 1980b)
LT	5	orange-brown	B.4	Y	epidermis cells	0	Fe	С	Si	Ca(Fe)	CaCO ₃ & soil	exterior of hallow-plaque cell cast (Chen et al., 1980b)

Table C.1.1.2 - Lake Tamblyn, Zizania palustris Root Plaque EDXA X-Ray Spectra Data Compilation

Notes

Relative Peak Height of Elements: Xx(Yy) means that element Xx had the next highest peak relative to element Yy, shown in brackets because it is the second peak for element Yy

- = element peaks too low to determine relative height

C.1.2 – Marchmont Marsh

Figure C.1.2.1 – Marchmont Marsh, Sample 1 (longitudinal section: root surface orangebrown), SEM images with associated EDXA x-ray spectra (x-ray location shown by box); A. x85, root surface showing lateral roots and particulate deposits (likely soil) and plaqued cells (white); B. x600, root surface with one plaqued cell.

Figure C.1.2.2 – Marchmont Marsh, Sample 2 (longitudinal section: root surface orangebrown), SEM images with associated EDXA x-ray spectra (x-ray location shown by box); A. x600, root surface with particulate deposits; B. x1,200, root surface; C. x600, root surface.

Figure C.1.2.3 – Marchmont Marsh, Sample 3 (longitudinal section: root surface orangebrown), SEM images with associated EDXA x-ray spectra (x-ray location shown by box); A. x600, root surface with particulate deposits and little plaque present; B. x600, root surface with particulate deposits; C. x1,000, root surface with particulate deposits (likely CaCO₃).

Figure C.1.2.4 – Marchmont Marsh, Sample 4 (longitudinal section: root surface orangebrown), SEM images with associated EDXA x-ray spectra (x-ray location shown by box); A. x110, root surface near cut edge; B. x900, root surface with particulate deposits (soil and plaque); C. x600, general root surface, showing white plaqued cells.

Figure C.1.2.5 (cont'd on next page)

Appendix C Zizania palustris Root Plaque Examination

Figure C.1.2.5 – Marchmont Marsh, Sample 8 (longitudinal section: oldest portion of root, root surface orange-brown), SEM images with associated EDXA x-ray spectra (x-ray location shown by box); A. x500, root surface with plaque-crusted cells (spectrum A.1) and plaqued cells (spectrum A.2); B. x1,000, root surface with plaque-crusted cells; C. x950, root surface, habit of plaque crust on cell edge; D. x300, unplaqued lateral root surface (spectrum D.1) and root surface with plaque-crusted cells (spectrum D.2).

Figure C.1.2.6 (cont'd on next page)

Figure C.1.2.6 – Marchmont Marsh, Sample 9 (longitudinal section: middle-aged portion of root, root surface orange-brown), SEM images with associated EDXA x-ray spectra (x-ray location shown by box); A. x650, root surface with plaque-packed cells (spectrum A.1) and surface-plaqued cells (spectrum A.2); B. x800, root surface with plaque-packed cells (spectrum B.1) and surface-plaqued cells (spectrum B.2); C. x1,000, plaqued root surface.

Figure C.1.2.7 – Marchmont Marsh, Sample 10 (longitudinal section: youngest portion of root, root surface orange-brown), SEM images with associated EDXA x-ray spectra (x-ray location shown by box); A. x1,000, plaqued root surface (spectrum A.1) and deposit between two cells (spectrum A.2); B. x900, unevenly plaqued root surface with light areas (spectrum B.1) and dark areas (spectrum B.2).

Appendix C

Figure C.1.2.8 (cont'd on next page)

Figure C.1.2.8 – Marchmont Marsh, Sample 11 (longitudinal section: youngest portion of root, root surface orange-brown), SEM images with associated EDXA x-ray spectra (x-ray location shown by box); A. x200, root surface with plaque-crusted areas; B. x2,200, plaque-crusted cells with cell cast; C. x800, plaque crust; D. x1,500, plaque crust; E. x1,000, root surface with plaque-crusted areas (spectrum E.1) and surface-plaqued areas (spectrum E.2).

C.1.2 - Marchmont Marsh

Table C.1.2.1 - Marchmont Marsh, Zizania palustris Root Plaque SEM Image Data Compilation

	Sample	Data	SEM Observation Data													
Site	Site Sample Root		Imaga	Image	Plaque Present	Zaam	Primary Deposition			n		Secondar	Secondary Deposition		Other Particulate	Comments
Site	Sample	Colour	mage	Location	riaque rresent	20011	Туре	% Coverage	Thickness	Location	Туре	% Coverage	Thickness	Location	Deposits	
MM	1	orange-brown	А	whole section	N/A	85	-	-	-	-	-	-	-	-	soil	longitudinal section image for reference to subsequent image locations
MM	1	orange-brown	В	root surface	Y	600	thin	95	thin	cell surface	packed cells	5	unknown	unknown	soil	single plaque-packed cell in image (white in image)
MM	2	orange-brown	Α	root surface	Y	600	thin	100	thin	cell surface	-	-	-	-	KCl	KCl appears evenly distributed with plaque
MM	2	orange-brown	В	root surface	Y	1,200	thin	100	thin	cell surface	-	-	-	-	KCl	KCl appears evenly distributed with plaque
MM	2	orange-brown	С	root surface	Y	600	thin	75	thin	cell surface	crust	25	unknown	cell surface	KCl	KCl appears evenly distributed with plaque
MM	3	orange-brown	А	root surface	Ν	600	-	-	-	-	-	-	-	-	present, unknown	may be a very slight plaque present, slight peak in Fe shown in x-ray spectra
MM	3	orange-brown	В	root surface	N	600	-	-	-	-	-	-	-	-	present, unknown	no plaque present
MM	3	orange-brown	С	root surface	N	1,000	-	-	-	-	-	-	-	-	present, unknown	no plaque present
MM	4	orange-brown	А	whole section	N/A	110	-	-	-	-	-	-	-	-	soil	longitudinal section image for reference to subsequent image locations
MM	4	orange-brown	В	root surface	Y	900	unknown	-	-	-	-	-	-	-	soil	plaque may be thin, too much soil to confirm
MM	4	orange-brown	С	root surface	Y	600	thin	70	thin	cell surface	packed cells	30	unknown	unknown	soil	white cells indicative of plaque-packed cells
MM	8	orange-brown	А	root surface	Y	500	crust	85	thick	cell surface	thin	15	thin	cell surface	soil	oldest portion of root: crust follows shape of cells, could be on and within cells, difficult to determine
MM	8	orange-brown	В	root surface	Y	1,000	crust	50	1.5 - 3 μm	cell surface	thin	50	thin	cell surface	none	oldest portion of root: crust could be on and within cells, difficult to determine
MM	8	orange-brown	С	root surface	Y	950	crust	60	2 µm	cell surface	thin	40	thin	cell surface	none	oldest portion of root: crust appears to be on the surface of compacted cells (likely compacted from sample processing), deposition % based on observed root surface cell area
MM	8	orange-brown	D	root surface	Y	300	crust	60	thick	cell surface	thin	40	thin	cell surface	none	oldest portion of root: plaque type and deposition % based on observed root surface area (minus lateral root area which has no plaque)
MM	9	orange-brown	А	root surface	Y	650	thin	50	thin	cell surface	packed cells	50	unknown	on and within cells	soil	middle-aged portion of root: plaque appears to be within plaque- packed cells
MM	9	orange-brown	В	root surface	Y	800	thin	90	thin	cell surface	packed cells	10	unknown	on and within cells	soil	middle-aged portion of root: plaque-packed and thin plaqued cells
MM	9	orange-brown	С	root surface	Y	1,000	thin	85	thin	cell surface	packed cells	15	unknown	unknown	none	middle-aged portion of root
MM	10	orange-brown	А	root surface	Y	1,000	thin	100	thin	cell surface	-	-	-	-	S	youngest portion of root: strip of particulate deposit along centre cell, composed of sulphur
MM	10	orange-brown	В	root surface	Y	900	thin	100	thin	cell surface	-	-	-	-	soil	youngest portion of root: plaque unevenly distributed
MM	11	orange-brown	А	whole section	N/A	200	-	-	-	-	-	-	-	-	-	youngest portion of root: longitudinal section image, plaque crust over lower portion of root and along middle-line
MM	11	orange-brown	В	root surface	Y	2,200	crust	100	$2 \mbox{ to } 7 \mu m$	on and within cells	-	-	-	-	none	youngest portion of root: plaque-crusted area with plaque cell cast (similar to that in Chen et al., 1980b)
MM	11	orange-brown	С	root surface	Y	800	crust	100	thick	on and within cells	-	-	-	-	none	youngest portion of root: thick plaque crust
MM	11	orange-brown	D	root surface	Y	1,500	crust	100	4 μm	on and within cells	-	-	-	-	none	youngest portion of root: thick plaque crust
MM	11	orange-brown	Е	root surface	Y	1,000	thin	75	thick	on and within cells	crust	25	thin	cell surface	none	youngest portion of root: crusted area, thin plaque on remainder of root

Notes

Plaque thickness = thin (too thin to measure, approximately <1 μ m) Plaque thickness = thick (not able to measure, at least >1.5 μ m)

- = N/A

	Sample	Data			2							
Site	Sample	Root	Spectrum	Plaque	Location	Re	lative Pea	ak Height	of Elem	ents	Other Particulate	Comments
Site	Sampie	Colour	speetrum	Present	Elocation	1	2	3	4	5	Deposits	
MM	1	orange-brown	В	Y	root surface	Fe	С	Al	0	Si	soil	spectra on single plaque-packed cell
MM	2	orange-brown	А	Y	root surface	С	0	Cl	K	Fe	KCl	KCl present, evenly distributed
MM	2	orange-brown	В	Y	root surface	С	Fe	Cl	K	0	KCl	KCl present, evenly distributed
MM	2	orange-brown	С	Y	root surface	K	Fe	С	Cl	0	KCl	KCl present, evenly distributed
MM	3	orange-brown	А	Ν	root surface	С	0	Cl	Al	Fe	present, unknown	may be a slight Fe plaque, not prominent
MM	3	orange-brown	В	Ν	root surface	С	0	Al	-	-	present, unknown	particulate deposits visible, unsure of composition
MM	3	orange-brown	С	Ν	root surface	С	Al	0	Ca	-	present, unknown	particulate deposits visible, unsure of composition
MM	4	orange-brown	В	Y	root surface	С	0	Si	Fe	Al	soil	soil particulates and plaque present
MM	4	orange-brown	С	Y	root surface	С	0	Fe	Al	K	soil	
MM	8	orange-brown	A.1	Y	root surface	0	Fe	С	Si	Al	soil	oldest portion of root: crust follows shape of cells, Fe peak stronger in crust
MM	8	orange-brown	A.2	Y	root surface	С	0	Fe	Al	Ca	soil	oldest portion of root: cells with thin plaque
MM	8	orange-brown	В	Y	root surface	С	Fe	0	Al	Si	none	oldest portion of root: crust follows shape of cells
MM	8	orange-brown	D.1	Ν	lateral root	С	0	-	-	-	none	oldest portion of root: other element peaks extremely low
MM	8	orange-brown	D.2	Y	root surface	Fe	0	С	Ca	S(Fe)	none	oldest portion of root: crust
MM	9	orange-brown	A.1	Y	root surface	С	0	Fe	Si(Fe)	S	soil	middle-aged portion of root: plaque-packed cell
MM	9	orange-brown	A.2	Y	root surface	Fe	С	0	Si	Al	soil	middle-aged portion of root: thin-plaqued cell
MM	9	orange-brown	B.1	Y	root surface	Fe	С	Al	Ca	O(Fe)	soil	middle-aged portion of root: plaque-packed cell
MM	9	orange-brown	B.2	Y	root surface	Fe	С	Si	0	Al	soil	middle-aged portion of root: thin-plaqued cell
MM	9	orange-brown	С	Y	root surface	Fe	С	Si	0	Al	none	middle-aged portion of root: dark area, soil particulates and plaque present
MM	10	orange-brown	A.1	Y	root surface	Fe	С	O(Fe)	Ca	Al	none	youngest portion of root: thin plaque
MM	10	orange-brown	A.2	N	between-cell deposit	S	С	Fe	-	-	S	youngest portion of root: particulate deposit between cells
MM	10	orange-brown	B.1	Y	root surface	Fe	С	0	Si	Al(Fe)	soil	youngest portion of root: uneven thin plaque distribution: light area
MM	10	orange-brown	B.2	Y	root surface	С	Fe	0	Si	Al	soil	youngest portion of root: uneven thin plaque distribution: dark area
MM	11	orange-brown	В	Y	root surface	Fe	0	С	Al(Fe)	Si	none	youngest portion of root: plaque cast (Chen et al., 1980b)
MM	11	orange-brown	С	Y	root surface	Fe	0	С	Si(Fe)	Al	none	youngest portion of root: plaque crust
MM	11	orange-brown	D	Y	root surface	0	С	Fe	Al(Fe)	Si	none	youngest portion of root: plaque crust
MM	11	orange-brown	E.1	Y	root surface	С	Fe	0	Si(Fe)	Ca	none	youngest portion of root: plaque crust
MM	11	orange-brown	E.2	Y	root surface	С	0	Fe	Al	Ca	none	youngest portion of root: thin plaque

Table C.1.2.2 - Marchmont Marsh, Zizania palustris Root Plaque EDXA X-Ray Spectra Data Compilation

Notes

Relative Peak Height of Elements: Xx(Yy) means that element Xx had the next highest peak relative to element Yy, shown in brackets because it is the second peak for element Yy

- = element peaks too low to determine relative height

Appendix C

Zizania palustris Root Plaque Examination

C.1.3 – Partridge Crop Lake

Figure C.1.3.1 – Partridge Crop Lake, Sample 1 (longitudinal section: root surface orange-brown), SEM images with associated EDXA x-ray spectra (x-ray location shown by box); A. x750, plaque-crusted root surface, note deposit follows contours of cells; B. x1,000, plaque-crusted root surface; C. x250, root surface with lateral root protruding; D. x600, plaque-crusted root surface.

Figure C.1.3.2 – Partridge Crop Lake, Sample 2 (longitudinal section: root surface orange-brown), SEM images with associated EDXA x-ray spectra (x-ray location shown by box); A. x300, root surface with plaque; B. x750, root surface cell packed with plaque; C. x750, root surface with particulate deposits.

Figure C.1.3.3 (cont'd on next page)

Appendix C Zizania palustris Root Plaque Examination

Figure C.1.3.3 – Partridge Crop Lake, Sample 3 (carbon-coated cross section: root surface orange-brown), SEM images with associated EDXA x-ray spectra (x-ray location shown by box); A. x180, outer cortex (spectrum A.1) and cortex (spectrum A.2); B. x450, root surface (spectrum B.1) and cortex (spectrum B.2); C. x600, epidermis / root surface (spectrum C.1), epidermis cell interior (spectrum C.2) and outer cortex (spectrum C.3).

Figure C.1.3.4 (cont'd on next page)

Figure C.1.3.4 – Partridge Crop Lake, Sample 4 (carbon-coated cross section: root surface orange-brown), SEM images with associated EDXA x-ray spectra (x-ray location shown by box); A. x550, epidermis cell interior (spectrum A.1), plaque-packed epidermis cell (spectrum A.2), outer cortex (spectrum A.3), and cortex (spectra A.4 and A.5); B. x850, root surface (spectrum B.1) and outer cortex (spectrum B.2).

Figure C.1.3.5 (cont'd on next page)

Figure C.1.3.5 – Partridge Crop Lake, Sample 5 (carbon-coated cross section: root surface orange-brown), SEM images with associated EDXA x-ray spectra (x-ray location shown by box); A. x330, epidermis cell interior (spectrum A.1), outer cortex (spectrum A.2) and cortex (spectrum A.3); B. x700, root / epidermis surface (spectrum B.1), epidermis cell interior (spectrum B.2), outer cortex (spectrum B.3) and cortex (spectrum B.4).

Figure C.1.3.6 (cont'd on next page)

Appendix C Zizania palustris Root Plaque Examination

Figure C.1.3.6 – Partridge Crop Lake, Sample 6 (longitudinal section: root surface orange-brown), SEM images with associated EDXA x-ray spectra (x-ray location shown by box); A. x100, root surface with plaque crust; B. x600, plaque crust; C. x600, plaque crust; D. x1,500, plaque crust; E. x1,000, root surface with plaque crust broken away (spectrum E.1) and present (spectrum E.2); F. x500, root surface with plaque crust broken away (spectrum F.1) and present (spectrum F.2).

C.1.3 - Partridge Crop Lake

Table C.1.3.1 - Partridge Crop Lake, Zizania palustris Root Plaque SEM Image Data Compilation

	Sample	Data	SEM Observation Data													
Site	Sample	Root	Image	Image	Plaque Present	Zoom		Prima	ry Depositio	on		Secondary D	eposition		Other Particulate	Comments
Site	Sample	Colour	mage	Location	T laque T resent	Zoom	Туре	% Coverage	Thickness	Location	Туре	% Coverage	Thickness	Location	Deposits	
SeR	1	orange-brown	Α	root surface	Y	750	crust	100	thick	cell surface	-	-	-	-	none	crust appears to be of variable thickness
SeR	1	orange-brown	В	root surface	Y	1,000	crust	100	thick	cell surface	-	-	-	-	none	crust appears to be of variable thickness
SeR	1	orange-brown	С	root surface	Y	250	crust	100	thick	cell surface	-	-	-	-	none	crust appears to be of variable thickness; plaque appears present on lateral root
SeR	1	orange-brown	D	root surface	Y	600	crust	100	thick	cell surface	-	-	-	-	none	consistent thickness in crust, some cracks
SeR	2	orange-brown	Α	root surface	Y	300	thin	85	thin	cell surface	packed cells	15	unknown	within cells	none	deposition % based on observed root surface area
SeR	2	orange-brown	В	root surface	Y	750	thin	90	thin	cell surface	packed cells	10	unknown	within cells	soil	
SeR	2	orange-brown	С	root surface	Y	750	thin	100	thin	cell surface	-	-	-	-	soil	
SeR	3	orange-brown	Α	cross section	Y	180	thin	100	thin	cell surface	-	-	-	-	soil	deposition % based on observed root surface area
SeR	3	orange-brown	В	cross section	Y	450	thin	100	thin	cell surface	-	-	-	-	none	deposition % based on observed root surface area
SeR	3	orange-brown	С	cross section	N/A	600	-	-	-	-	-	-	-	-	-	cross section, no root surface visible to assess plaque
SeR	4	orange-brown	А	cross section	N/A	550	crust	100	thick	on and within cells	-	-	-	-	none	plaque deposits on root surface and within root surface cells, but not past epidermis
SeR	4	orange-brown	В	cross section	Y	850	crust	100	1.5 µm	on and within cells	-	-	-	-	soil	plaque deposits on root surface and within root surface cells, but not past epidermis
SeR	5	orange-brown	Α	cross section	N/A	330	-	-	-	-	-	-	-	-	-	cross section, no root surface visible to assess plaque
SeR	5	orange-brown	В	cross section	Y	700	unknown	-	-	-	-	-	-	-	-	cross section, not enough root surface visible to assess plaque thickness, can confirm presence
SeR	6	orange-brown	Α	root surface	Y	100	crust	90	thick	on and within cells	broken away	10	unknown	within cells	none	deposition % based on observed root surface area
SeR	6	orange-brown	В	root surface	Y	600	crust	100	thick	on and within cells	-	-	-	-	none	thick plaque crust, follows contours of cells
SeR	6	orange-brown	С	root surface	Y	600	crust	90	thick	on and within cells	broken away	10	unknown	within cells	none	where plaque crust has broken away, appears that the cell wall of the root surface cell is gone as well
SeR	6	orange-brown	D	root surface	Y	1,500	crust	95	3 µm	within cells	broken away	5	unknown	within cells	none	plaque-crusted area with plaque cell cast (similar to that in Chen et al., 1980b)
SeR	6	orange-brown	Е	root surface	Y	1,000	crust	80	thick	on and within cells	broken away	20	unknown	within cells	none	where plaque crust has broken away, appears that the cell wall of the root surface cell is gone as well
SeR	6	orange-brown	F	root surface	Y	500	crust	60	thick	unknown	broken away	40	unknown	unknown	soil	cannot tell if plaque is in or on cells

Notes

 $\label{eq:plaque thickness} \begin{array}{l} \mbox{Plaque thickness} = \mbox{thin to measure, approximately <1 μm} \\ \mbox{Plaque thickness} = \mbox{thick (not able to measure, at least $>1.5 μm}) \end{array}$

- = N/A

	Sample	Data	X-Ray Spectra Data									
Site	Sample	Root	Spectrum	Plaque	Location	Re	lative Pea	ak Height	of Elem	ents	Other Particulate	Comments
Site	Sampie	Colour	Speed and	Present	Elocation	1	2	3	4	5	Deposits	
SeR	1	orange-brown	А	Y	root surface	Fe	0	C(Fe)	Κ	Si	none	plaque crust
SeR	1	orange-brown	D	Y	root surface	Si	Fe	0	Al	K	none visible	soil may be incoporated into plaque crust
SeR	2	orange-brown	В	Y	root surface	Fe	K	С	0	Al	none	plaque-packed cell
SeR	2	orange-brown	С	Y	root surface	Fe	0	С	Κ	Al	none	
SeR	3	orange-brown	A.1	N/A	outer cortex	С	K	0	Fe	Р	N/A	root interior, for comparison to root surface
SeR	3	orange-brown	A.2	N/A	cortex	Ca	K	С	0	Fe	N/A	root interior, for comparison to root surface
SeR	3	orange-brown	B.1	Y	root surface	Fe	С	Al	Κ	0	none	
SeR	3	orange-brown	B.2	N/A	cortex	Ca	K	Fe(Ca)	-	-	N/A	root interior, for comparison to root surface
SeR	3	orange-brown	C.1	Y	root surface	Al	Fe	0	С	K	none	
SeR	3	orange-brown	C.2	N/A	epidermis cells	Fe	Al	Ca	Κ	-	N/A	root interior, for comparison to root surface
SeR	3	orange-brown	C.3	N/A	outer cortex	С	0	K	-	-	N/A	root interior, for comparison to root surface
SeR	4	orange-brown	A.1	Y	epidermis cells	С	0	Fe	Al	Si	none	surface cell
SeR	4	orange-brown	A.2	Y	epidermis cells	Fe	С	Al	0	K	none	plaque-packed cell
SeR	4	orange-brown	A.3	N/A	outer cortex	С	0	-	-	-	N/A	root interior, for comparison to root surface
SeR	4	orange-brown	A.4	N/A	cortex	С	K	0	Fe	-	N/A	root interior, for comparison to root surface
SeR	4	orange-brown	A.5	N/A	cortex	С	K	Ca	Fe	0	N/A	root interior, for comparison to root surface
SeR	4	orange-brown	B.1	Y	epidermis cells	С	0	Fe	Si	Al	none	plaque crust
SeR	4	orange-brown	B.2	N/A	outer cortex	С	0	Si	Κ	-	N/A	root interior, for comparison to root surface
SeR	5	orange-brown	A.1	N/A	epidermis cells	С	0	Fe	Al	K	N/A	surface cell
SeR	5	orange-brown	A.2	N/A	outer cortex	С	0	K	Ca	Si	N/A	root interior, for comparison to root surface
SeR	5	orange-brown	A.3	N/A	cortex	С	K	Ca	0	-	N/A	root interior, for comparison to root surface
SeR	5	orange-brown	B.1	Y	root surface	Fe	С	0	Al	K	none	plaque visible
SeR	5	orange-brown	B.2	N/A	epidermis cells	С	0	Al	Fe	K	N/A	Fe spectrum greatly reduced compared to root surface
SeR	5	orange-brown	B.3	N/A	outer cortex	С	0	K	Fe	-	N/A	root interior, for comparison to root surface
SeR	5	orange-brown	B.4	N/A	cortex	С	0	K	Ca	Fe	N/A	root interior, for comparison to root surface
SeR	6	orange-brown	E.1	Y	root surface	Fe	K	Al	С	0	none	root surface, appears that crust is broken away
SeR	6	orange-brown	E.2	Y	root surface	Fe	Κ	Ca(Fe)	Al	0	none	plaque crust, extremely high Fe
SeR	6	orange-brown	F.1	Y	root surface	С	0	Fe	Κ	Al	none	root surface where plaque crust has broken away
SeR	6	orange-brown	F.2	Y	root surface	Fe	0	С	Si	K(Fe)	soil	plaque crust, extremely high Fe

Table C.1.3.2 - Partridge Crop Lake, Zizania palustris Root Plaque EDXA X-Ray Spectra Data Compilation

Notes

Relative Peak Height of Elements: Xx(Yy) means that element Xx had the next highest peak relative to element Yy, shown in brackets because it is the second peak for element Yy

- = element peaks too low to determine relative height

Appendix C

Zizania palustris Root Plaque Examination

C.1.4 – Lower Steep Rock Lake

Figure C.1.4.1 – Lower Steep Rock Lake, Sample 1 (longitudinal section: root surface orange-brown), SEM images with associated EDXA x-ray spectra (x-ray location shown by box); A. x1,000, plaque-crusted root surface; B. x600, root surface; C. x950, root surface with particulate deposits.

214

Figure C.1.4.2 – Lower Steep Rock Lake, Sample 2 (longitudinal section: root surface orange-brown), SEM images with associated EDXA x-ray spectra (x-ray location shown by box); A. x600, root surface; B. x1,000, root surface with particulate deposits; C. x750, root surface with particulate deposits.

215

Figure C.1.4.3 (cont'd on next page)

Appendix C Zizania palustris Root Plaque Examination

Figure C.1.4.3 – Lower Steep Rock Lake, Sample 3 (cross section: root surface orangebrown), SEM images with associated EDXA x-ray spectra (x-ray location shown by box); A. x650, "crusted" root surface (spectrum A.1), outer cortex (spectrum A.2) and cortex (spectrum A.3); B. x650, root surface (spectrum B.1), outer cortex (spectrum B.2) and cortex (spectrum B.3); C. x1,000, root surface (spectrum C.1), outer cortex (spectrum C.2) and cortex (spectrum C.3).

Figure C.1.4.4 (cont'd on next page)

Appendix C Zizania palustris Root Plaque Examination

Figure C.1.4.4 – Lower Steep Rock Lake, Sample 4 (carbon-coated cross section: root surface orange-brown), SEM images with associated EDXA x-ray spectra (x-ray location shown by box); A. x140, root cross section; B. x270, root vascular cylinder; C. x600, epidermis/root surface cells filled with plaque (spectrum C.1), outer cortex (spectrum C.2) and cortex (spectrum C.3); D. x600, epidermis cell interior (spectrum D.1), outer cortex (spectrum D.2) and cortex (spectrum D.3); E. x650, epidermis plaque-filled cell interior (spectrum E.1), epidermis empty cell interior (spec. E.2) and cortex (spec. E.3).

Appendix C

Figure C.1.4.5 – Lower Steep Rock Lake, Sample 5 (carbon-coated cross section: root surface orange-brown), SEM images with associated EDXA x-ray spectra (x-ray location shown by box); A. x220, root surface (spectrum A.1), outer cortex (spectrum A.2) and cortex (spectrum A.3); B. x350, root surface cells (spectrum B.1), outer cortex (spectrum B.2) and cortex (spectrum B.3).

220

Appendix C

Zizania palustris Root Plaque Examination

Figure C.1.4.6 (cont'd on next page)

Figure C.1.4.6 – Lower Steep Rock Lake, Sample 6 (cross section: root surface orangebrown), SEM images with associated EDXA x-ray spectra (x-ray location shown by box); A. x85, root cross section; B. x1,000, root surface (spectrum B.1) and outer cortex (spectrum B.2); C. x450, lateral root, showing root surface plaque coverage; D. x950, root vascular cylinder; E. root surface with plaque, three zoomed images showing plaque thickness (area shown by dashed box), E.1 x1,000, E.2 x2,000, E.3 x7,000.

C.1.4 - Lower Steep Rock Lake

	Sample	Data	a SEM Observation Data													
Site	Sample	Root	Image	Image	Plaque Present	Zoom		Primary I	Deposition			Secondary	Deposition		Other Particulate	Comments
Site	Sampre	Colour	image	Location	Theque Tresent	20011	Туре	% Coverage	Thickness	Location	Туре	% Coverage	Thickness	Location	Deposits	
StR	1	orange-brown	Α	root surface	Y	1,000	crust	100	1 µm	cell surface	-	-	-	-	none	thin plaque crust, cell surface flaking up
StR	1	orange-brown	В	root surface	Y	600	crust	100	1 µm	cell surface	-	-	-	-	none	even crust
StR	1	orange-brown	С	root surface	Y	950	crust	100	1 µm	cell surface	-	-	-	-	soil	bits of soil and plaque on surface
StR	2	orange-brown	А	root surface	Y	600	thin with crust pieces	100	thin	cell surface	-	-	-	-	soil	thin plaque with pieces of plaque on surface
StR	2	orange-brown	В	root surface	Y	1,000	thin with crust pieces	100	thin	cell surface	-	-	-	-	soil	thin plaque with pieces of plaque (up to 20 μ m in length) on surface
StR	2	orange-brown	С	root surface	Y	750	thin with crust pieces	100	thin	cell surface	-	-	-	-	soil	thin plaque with pieces of plaque (up to 10 μ m in length) on surface
StR	3	orange-brown	А	cross section	Y	650	unknown	-	-	-	-	-	-	-	soil	cross section, not enough root surface visible to assess plaque thickness, can confirm presence
StR	3	orange-brown	В	cross section	Y	650	unknown	-	-	-	-	-	-	-	soil	cross section, not enough root surface visible to assess plaque thickness, can confirm presence
StR	3	orange-brown	С	cross section	N/A	1,000	-	-	-	-	-	-	-	-	soil	cross section, not enough root surface visible to assess plaque presence
StR	4	orange-brown	Α	cross section	N/A	140	-	-	-	-	-	-	-	-	-	cross section image for reference to subsequent image locations
StR	4	orange-brown	В	cross section	N/A	270	-	-	-	-	-	-	-	-	-	cross section image for reference to subsequent image locations
StR	4	orange-brown	С	cross section	Y	600	crust/packed cells	N/A	-	-	-	-	-	-	none	root surface cells filled with loosely-packed plaque, from root surface to epidermis cells, up to 40 μ m in depth
StR	4	orange-brown	D	cross section	Y	600	crust/packed cells	N/A	2 µm	on and within cells	-	-	-	-	none	deposition % based on observed root surface area
StR	4	orange-brown	Е	cross section	Y	650	crust/packed cells	N/A	2 to 30 µm	on and within cells	-	-	-	-	none	deposition % based on observed root surface area
StR	5	orange-brown	Α	cross section	Ν	220	-	-	-	-	-	-	-	-	soil	no plaque on root surface
StR	5	orange-brown	В	cross section	Y	350	thin	N/A	thin	cell surface	-	-	-	-	soil	thin plaque on root surface
StR	6	orange-brown	Α	cross section	N/A	85	-	-	-	-	-	-	-	-	-	cross section image for reference to subsequent image locations
StR	6	orange-brown	В	cross section	Y	1,000	crust	100	1 µm	cell surface	-	-	-	-	soil	flakey crust on root surface, deposition % based on observed root surface area
StR	6	orange-brown	С	root surface	Y	450	crust	100	thick	cell surface	-	-	-	-	soil	plaque crust on root and lateral root surface
StR	6	orange-brown	D	vascular cylinder	N/A	95	-	-	-	-	-	-	-	-	-	root interior
StR	6	orange-brown	E.1	root surface	Y	1,000	crust	100	1 to 2 μm	cell surface	-	-	-	-	none	plaque crust on root surface
StR	6	orange-brown	E.2	root surface	Y	2,000	crust	N/A	1 to 2 μm	cell surface	-	-	-	-	none	zoom of above; plaque crust on root surface
StR	6	orange-brown	E.3	root surface	Y	7,000	crust	N/A	1 to 2 µm	cell surface	-	-	-	-	none	zoom of above; plaque crust on two root surface cells

Table C.1.4.1 - Lower Steep Rock Lake, Zizania palustris Root Plaque SEM Image Data Compilation

Notes

$$\label{eq:plaque thickness} \begin{split} Plaque thickness = thin (too thin to measure, approximately <1 \ \mu m) \\ Plaque thickness = thick (not able to measure, at least >1.5 \ \mu m) \end{split}$$

- = N/A

C.1.4 - Lower Steep Rock Lake

	Sample	Data				X-Ray	Spectra	Data				
Site	Sample	Root	Spectrum	Plaque	Location	Re	lative Pe	ak Heigh	t of Elem	ents	Other Particulate	Comments
Site	Sample	Colour	speen un	Present	Elocation	1	2	3	4	5	Deposits	
StR	1	orange-brown	A	Y	root surface	Fe	0	Al	C(Fe)	K(Fe)	none	flakey plaque crust
StR	1	orange-brown	В	Y	root surface	Fe	0	Al(Fe)	С	K	none	even plaque crust
StR	1	orange-brown	С	Y	root surface	Fe	0	Al	С	Si	soil	bits of soil and plaque on surface of crust
StR	2	orange-brown	Α	Y	root surface	С	Fe	0	Na	Al	soil	thin plaque with pieces
StR	2	orange-brown	В	Y	piece of plaque	Fe	0	Si	Al	С	soil	large piece of plaque on root surface
StR	2	orange-brown	С	Y	root surface	С	Fe	0	Al	Na/Si	soil	thin plaque with pieces
StR	3	orange-brown	A.1	Y	root surface	Fe	С	0	Al	Si	soil	unsure of plaque type
StR	3	orange-brown	A.2	Y	outer cortex	Fe	С	0	Al	Si	N/A	root interior, for comparison to root surface; plaque presence may be result of sample preparation
StR	3	orange-brown	A.3	N/A	cortex	С	0	Al	Fe	K	N/A	root interior, for comparison to root surface
StR	3	orange-brown	B.1	Y	root surface	С	0	Fe	Al	Si	soil	unsure of plaque type
StR	3	orange-brown	B.2	Y	outer cortex	Fe	С	K	Al	0	N/A	high Fe, plaque present, consistent with that of A.2
StR	3	orange-brown	B.3	N/A	cortex	С	0	Si	K	Al	N/A	root interior, for comparison to root surface
StR	3	orange-brown	C.1	Ν	root surface	Si	Al	0	Na	Ca	soil	surface "crust" appears to be soil
StR	3	orange-brown	C.2	N/A	outer cortex	С	0	Fe	K	Cl	N/A	root interior, for comparison to root surface
StR	3	orange-brown	C.3	N/A	cortex	Fe	K	Cl	С	Ca	N/A	root interior, for comparison to root surface
StR	4	orange-brown	В	N/A	vascular cylinder	С	K	Cl	0	S	N/A	root interior, for comparison to root surface
StR	4	orange-brown	C.1	Y	epidermis cells	С	Fe	0	K	-	none	root surface cells filled with plaque, collapsed down to epidermis
StR	4	orange-brown	C.2	Y	outer cortex	Fe	K	Cl	Ca(Fe)	-	none	epidermis with root surface cells collapsed in
StR	4	orange-brown	C.3	N/A	cortex	С	0	-	-	-	N/A	cortex intact, no plaque
StR	4	orange-brown	D.1	Y	epidermis cells	Fe	K	С	0	Cl	none	plaque-filled surface cells
StR	4	orange-brown	D.2	Y	outer cortex	Fe	K	Cl	Ca	С	none	epidermis cells with plaque
StR	4	orange-brown	D.3	N/A	cortex	С	K	Cl	Fe	0	N/A	root interior, for comparison to root surface
StR	4	orange-brown	E.1	Y	epidermis cells	Fe	0	С	K(Fe)	Si	none	plaque-packed surface cell
StR	4	orange-brown	E.2	Y	epidermis cells	Fe	K	Cl(Fe)	-	-	none	empty surface cell; still high Fe
StR	4	orange-brown	E.3	N/A	cortex	С	Fe	0	Κ	Si	N/A	root interior, for comparison to root surface; high Fe
StR	5	orange-brown	A.1	N	root surface	Si	0	С	Mg	Al	soil	no plaque
StR	5	orange-brown	A.2	N/A	outer cortex	С	0	-	-	-	N/A	root interior, for comparison to root surface
StR	5	orange-brown	A.3	N/A	cortex	С	0	K	-	-	N/A	root interior, for comparison to root surface
StR	5	orange-brown	B.1	Y	epidermis cells	С	0	Fe	Al	Si	soil	slight root surface plaque
StR	5	orange-brown	B.2	N/A	outer cortex	С	0	K	-	-	N/A	root interior, for comparison to root surface
StR	5	orange-brown	B.3	N/A	cortex	С	K	0	Р	Ca	N/A	root interior, for comparison to root surface
StR	6	orange-brown	B.1	Y	root surface	Fe	0	Si	С	K/Al	soil	flakey plaque crust
StR	6	orange-brown	B.2	Y	outer cortex	С	Fe	0	K	Si	none	root interior, for comparison to root surface; plaque present
StR	6	orange-brown	С	Y	root surface	С	0	Fe	Si	Al(Fe)	soil	plaque crust on root and lateral root surface
StR	6	orange-brown	D	N/A	vascular cylinder	С	0	Κ	Cl	Р	N/A	root interior, for comparison to root surface
StR	6	orange-brown	E.4	Y	root surface	Fe	0	С	Si	Al(Fe)	none	plaque crust

Table C.1.4.2 - Lower Steep Rock Lake, Zizania palustris Root Plaque EDXA X-Ray Spectra Data Compilation

Notes

Relative Peak Height of Elements: Xx(Yy) means that element Xx had the next highest peak relative to element Yy, shown in brackets because it is the second peak for element Yy Relative Peak Height of Elements: Xx/Yy means that element Xx and Yy had equal peak heights

- = element peaks too low to determine relative height

C.1.5 – Whitefish Lake

Figure C.1.5.1 – Whitefish Lake, Sample 1 (longitudinal section: root surface orangebrown), SEM images with associated EDXA x-ray spectra (x-ray location shown by box); A. x450, root surface; B. x750, root surface, no plaque; C. x700, root surface with little plaque.

Figure C.1.5.2 – Whitefish Lake, Sample 2 (longitudinal section: root surface orangebrown), SEM images with associated EDXA x-ray spectra (x-ray location shown by box); A. x1,100, root surface with plaque/particulate deposits; B. x850, root surface with plaque.

Figure C.1.5.3 (cont'd on next page)

Appendix C Zizania palustris Root Plaque Examination

Figure C.1.5.3 – Whitefish Lake, Sample 3 (carbon-coated cross section: root surface orange-brown), SEM images with associated EDXA x-ray spectra (x-ray location shown by box); A. x90, root cross section; B. x700, root surface with plaque crust; C. x750, epidermis / root surface (spectrum C.1), epidermis cell interior (spectrum C.2) and outer cortex (spectrum C.3); D. x1,000, root surface with plaque crust; E. x1,200, epidermis / root surface (spectrum E.1), outer cortex (spectrum E.2) and cortex (spectrum E.3).

Figure C.1.5.4 (cont'd on next page)

Figure C.1.5.4 – Whitefish Lake, Sample 4 (carbon-coated cross section: root surface orange-brown), SEM images with associated EDXA x-ray spectra (x-ray location shown by box); A. x110, lateral root within epidermis (spectrum A.1), lateral root outside of epidermis (spectrum A.2) and root surface (spectrum A.3); B. x370, root surface (spectrum B.1) and cortex (spectrum B.2); C. x650, lateral root surface within epidermis; D. x500, root surface (spectrum D.1) and cortex (spectrum D.2).

230

Figure C.1.5.5 – Whitefish Lake, Sample 8 (longitudinal section: oldest portion of root, root surface orange-brown), SEM images with associated EDXA x-ray spectra (x-ray location shown by box); A. x1,000, root surface, no plaque; B. x2,000, cell with CaCO₃ deposit; C. x700, root surface, cell with CaCO₃ deposit (spectrum C.1) and cell without deposit (spectrum C.2).

Figure C.1.5.6 (cont'd on next page)

Appendix C Zizania palustris Root Plaque Examination

Figure C.1.5.6 – Whitefish Lake, Sample 9 (longitudinal section: middle-aged portion of root, root surface orange-brown), SEM images with associated EDXA x-ray spectra (x-ray location shown by box); A. x850, general root surface; B. x500, lateral root protruding through root surface; C. x1,500, lateral root surface, light coloured cell (spectrum C.1) and dark coloured cell (spectrum C.2); D. x450, root surface with Fe particulate matter deposit.

Figure C.1.5.7 (cont'd on next page)

Figure C.1.5.7 – Whitefish Lake, Sample 10 (longitudinal section: youngest portion of root, root surface orange-brown), SEM images with associated EDXA x-ray spectra (x-ray location shown by box); A. x200, general root surface showing lateral roots; B. x1,200, root surface, cell packed with plaque (spectrum B.1) and un-packed cell (spectrum B.2); C. x2,000, close-up of plaque-packed cell; D. x1,200, root surface with precipitate (spectrum D.1) and without precipitate (spectrum D.2).

C.1.5 - Whitefish Lake

Table C.1.5.1 - Whitefish Lake, Zizania palustris Root Plaque SEM Image Data Compilation

	Sample	Data	SEM Observation Data													
Site	Sampla	Root	Imaga	Image	Plaqua Prosont	Zoom		Primary	Deposition			Secondary D	Deposition		Other Particulate	Comments
Site	Sample	Colour	image	Location	T laque T Tesent	20011	Туре	% Coverage	Thickness	Location	Туре	% Coverage	Thickness	Location	Deposits	
WF	1	orange-brown	Α	root surface	Ν	450	-	-		-	-	-	-		none	may be some thin plaque, not visible
WF	1	orange-brown	В	root surface	N	750	-	-	-	-	-	-	-	-	none	no plaque
WF	1	orange-brown	С	root surface	Y	700	thin	100	thin	cell surface	-	-	-	-	none	very little thin plaque
WF	2	orange-brown	Α	root surface	Y	1,100	crust	100	thin	cell surface	-	-	-	-	none	flakey plaque crust
WF	2	orange-brown	В	root surface	Y	850	crust	100	thin	cell surface	-	-	-	-	none	flakey plaque crust
WF	3	orange-brown	Α	cross section	N/A	- 90	-	-	-	-	-	-	-	-	-	cross section image for reference to subsequent image locations
WF	3	orange-brown	В	root surface	Y	700	crust	t 85 3 µm on and within cells		on and within cells	broken away	15	unknown	within	soil	crust follows contours of cells, where plaque crust broken away, appears that cell wall of root surface cell is gone
WF	3	orange-brown	С	cross section	Y	750	crust	N/A	1 μm	cell surface	-	-	-	-	none	cross section, not enough root surface visible to assess plaque thickness, can confirm presence
WF	3	orange-brown	D	root surface	Y	1,000	crust	85	1 to 14 µm	cell surface	broken away	15	unknown	within	soil	thick crust, follows contours of cells
WF	3	orange-brown	E	cross section	Y	1,200	crust	N/A	2 µm	cell surface	-	-	-	-	none	thin plaque precipitate may also be present on root epidermis cells
WF	4	orange-brown	Α	cross section	N	110	-	-	-	-	-	-	-	-	none	cross section image for reference to subsequent image locations
WF	4	orange-brown	В	cross section	Ν	370	-	-	-	-	-	-	-	-	none	cross section, no plaque on root surface
WF	4	orange-brown	С	lateral root surface	Ν	650	-	-	-	-	-	-	-	-	none	lateral root within epidermis, has flakey surface, not likely plaque
WF	4	orange-brown	D	cross section	Ν	500	-	-	-	-	-	-	-	•	none	cross section, no plaque on root surface
WF	8	orange-brown	Α	root surface	Ν	1,000	-	-	-	-	-	-	-	•	-	oldest portion of root: no plaque
WF	8	orange-brown	В	root surface	Ν	2,000	-	-	÷	-	-	-	-	•	-	oldest portion of root: no plaque
WF	8	orange-brown	С	root surface	N	700	-	-	-	-	-	-	-	-	CaCO ₃	oldest portion of root: no plaque, CaCO3 deposits
WF	9	orange-brown	Α	root surface	Y	850	thin	100	thin	cell surface	-	-	-	-	none	middle-aged portion of root: extremely thin plaque
WF	9	orange-brown	В	root surface	Ν	500	-	-	-	-	-	-	-	-	Fe deposit	middle-aged portion of root: Fe/particulate matter deposit
WF	9	orange-brown	С	lateral root surface	Ν	1,500	-	-	1	-	-	-	-	-	none	middle-aged portion of root: lateral root has flakey surface, not likely plaque
WF	9	orange-brown	D	root surface	N	450	-	-	-	-	-	-	-	-	Fe deposit	middle-aged portion of root: Fe/particulate matter deposit
WF	10	orange-brown	А	whole section	N/A	200	-	-	-	-	-	-	-	-		youngest portion of root: longitudinal section image for reference to subsequent image locations
WF	10	orange-brown	В	root surface	Y	1,200	thin	65	thin	cell surface	packed cells	35	unknown	within	none	youngest portion of root: plaque-packed cells
WF	10	orange-brown	С	root surface	Y	2,000	packed cells	65	unknown	within	thin	35	thin	cell surface	none	youngest portion of root: zoom of prior image of plaque-packed cells
WF	10	orange-brown	D	root surface	Y	1,200	thin	100	thin	cell surface	-	-	-	-	none	youngest portion of root: plaque precipitate appears uneven, thicker on certain cells

Notes

Plaque thickness = thin (too thin to measure, approximately <1 μm) Plaque thickness = thick (not able to measure, at least >1.5 μm) $_{-}$ = N/A

C.1.5 - Whitefish Lake

	Sample	Data										
Site	Sample	Root	Spectrum	Plaque	Location	Re	lative Pea	ak Height	t of Eleme	ents	Other Particulate	Comments
one	Sumpte	Colour	speenum	Present	Locution	1	2	3	4	5	Deposits	
WF	1	orange-brown	В	N	root surface	С	Al	0	S	-	none	no plaque
WF	1	orange-brown	С	Y	root surface	С	0	S	Fe	-	none	very little plaque
WF	2	orange-brown	Α	Y	root surface	Fe	Al	C	S	0	none	flakey plaque crust
WF	2	orange-brown	В	Y	root surface	Fe	Al	С	0	Cl	none	flakey plaque crust
WF	3	orange-brown	В	Y	root surface	Fe	0	С	S(Fe)	-	soil	plaque crust
WF	3	orange-brown	C.1	Y	root surface	С	0	Fe	Al	S(Fe)	none	
WF	3	orange-brown	C.2	Y	epidermis cells	С	0	Fe	S	Al	none	plaque present within cells
WF	3	orange-brown	C.3	Ν	outer cortex	С	0	Fe	S	-	N/A	root interior, high Fe
WF	3	orange-brown	D	Y	root surface	Fe	Al	-	-	-	soil	thick plaque crust
WF	3	orange-brown	E.1	Y	root surface	Fe	Al	С	S	O(Fe)	none	plaque crust
WF	3	orange-brown	E.2	Y	outer cortex	Fe	С	Al	S	0	none	plaque precipitates visible
WF	3	orange-brown	E.3	N/A	cortex	Fe	С	S	K	Ca	N/A	root interior, Fe elevated though not high
WF	4	orange-brown	A.1	Ν	lateral root surface	С	0	-	-	-	none	lateral root within epidermis, no plaque
WF	4	orange-brown	A.2	N	lateral root surface	Al	С	K	0	-	none	lateral root protruding outside of epidermis, no plaque
WF	4	orange-brown	A.3	Ν	root surface	Al	С	Fe	S	Si	none	no plaque
WF	4	orange-brown	B.1	Ν	root surface	Al	С	Fe	Cl	K	none	no plaque
WF	4	orange-brown	B.2	Ν	cortex	С	0	S	Na	K	N/A	root interior
WF	4	orange-brown	С	Ν	lateral root surface	Fe	K	S	Cl	-	none	Fe elevated, though not high (only 1.7 counts per second)
WF	4	orange-brown	D.1	Ν	root surface	Al	С	Fe	-	-	none	no plaque
WF	4	orange-brown	D.2	N/A	cortex	Fe	Al	K	C(Fe)	-	none	root interior, Fe elevated though not high
WF	8	orange-brown	Α	N	root surface	С	0	Al	S	-	none	oldest portion of root: root surface with no plaque
WF	8	orange-brown	В	Ν	root surface	С	Ca	0	Al	K	none	oldest portion of root: root surface cell with Ca deposit
WF	8	orange-brown	C.1	Ν	root surface	С	0	Ca	Al	-	CaCO ₃	oldest portion of root: root surface cell with particulates
WF	8	orange-brown	C.2	Ν	root surface	С	0	-	-	-	none	oldest portion of root: root surface cell without particulates
WF	9	orange-brown	А	Y	root surface	С	0	Fe	K	-	none	middle-aged portion of root: extremely thin plaque
WF	9	orange-brown	В	N	root surface	С	0	Fe	Al	Si	Fe deposit	middle-aged portion of root: Fe/particulate matter deposit
WF	9	orange-brown	C.1	N	lateral root surface	С	0	Fe	Ca	-	none	middle-aged portion of root: lighter coloured cell
WF	9	orange-brown	C.2	N	lateral root surface	С	0	Al	-	-	none	middle-aged portion of root: darker coloured cell
WF	9	orange-brown	D	Ν	deposit on root surface	Fe	С	Ca	Al	K	Fe deposit	middle-aged portion of root: Fe/particulate matter deposit
WF	10	orange-brown	B.1	Y	root surface cells	С	Fe	0	Si	S	none	youngest portion of root: plaque-packed cell
WF	10	orange-brown	B.2	Y	root surface cells	С	0	Fe	Si	Al	none	youngest portion of root: thin plaque
WF	10	orange-brown	С	Y	root surface cells	С	Fe	0	Si	Р	none	youngest portion of root: plaque-packed cell
WF	10	orange-brown	D.1	Y	root surface cells	С	Fe	0	Si	Ca(Fe)	none	youngest portion of root: thicker thin plaque
WF	10	orange-brown	D.2	Y	root surface cells	С	0	Fe	Al	Ca	none	youngest portion of root: thin plaque

Table C.1.5.2 - Whitefish Lake, Zizania palustris Root Plaque EDXA X-Ray Spectra Data Compilation

Notes

Relative Peak Height of Elements: Xx(Yy) means that element Xx had the next highest peak relative to element Yy, shown in brackets because it is the second peak for element Yy

- = element peaks too low to determine relative height

C.1.6 – Plaque Observation Summary

Sai	mple Data	Plaque Type Observed									
Site	# Images Observed with Plaque	Crust	Thin	Thin & Packed cells	Thin & Crust	Crust & Packed cells					
LT	16	8	5	3	0	0					
ММ	18	3	4	5	6	0					
SeR	16	11	3	2	0	0					
StR	15	8	1	0	3	3					
WF	11	6	3	2	0	0					
Totals	76	36	16	12	9	3					
%1	mages with Plaque Type	47.4%	21.1%	15.8%	11.8%	3.9%					

 Table C.1.6.1 - Plaque Structure, Zizania palustris
 Root Plaque SEM Image Data Summary

Notes

Site = Marchmont Marsh (MM), Partridge Crop Lake (SeR), Lower Steep Rock Lake (StR), Whitefish Lake (WF)

"Broken away" plaque type observation not included; not a type, only a different form of crust plaque

C.1.6 - Plaque Observation Summary

Sa	mple Data	X-ray Spectra - Two Most Abundant Elements											
Site	# Plaque X-ray Spectra Collected	Fe + O	Fe + Al	Fe + K	Fe + Si	Fe + Cl	O + Si	O + S	O + Cl				
LT	14	12	2	0	0	0	0	0	0				
ММ	23	15	2	1	2	1	1	0	1				
SeR	14	7	3	3	1	0	0	0	0				
StR	21	16	0	5	0	0	0	0	0				
WF	15	9	5	0	0	0	0	1	0				
Totals	87	59	12	9	3	1	1	1	1				
	% X-ray Spectra with Two Most Abundant Elements			10.3%	3.4%	1.1%	1.1%	1.1%	1.1%				

Table C.1.6.2 - Plaque Composition, Zizania palustris Root Plaque EDXA X-Ray Spectra Data Summary

Notes

Site = Marchmont Marsh (MM), Partridge Crop Lake (SeR), Lower Steep Rock Lake (StR), Whitefish Lake (WF)

Two most abundant elements based on relative peak height observations in x-ray spectrum.

	Sample Data		Location and Fe Presence											
Sito	# Samples with	Total # X-ray	Epidermi	s - Surface	Epidermi	s - Interior	Outer	Cortex	Co	rtex	Vascular Cylinder			
Site	Collected	Profiles	# X-ray Spectra	Iron Presence	# X-ray Spectra	Iron Presence	# X-ray Spectra	Iron Presence	# X-ray Spectra	Iron Presence	# X-ray Spectra	Iron Presence		
LT	1	8	3	3	2	2	1	0	1	1	1	0		
MM	0	0	0	0	0	0	0	0	0	0	0	0		
SeR	3	21	3	3	6	5	6	0	6	0	0	0		
StR	4	24	5	5	5	5	6	5	6	1	2	0		
WF	1	8	4	4	1	1	2	2	1	1	0	0		
Totals 9 61			15	15	14	13	15	7	14	3	3	0		
% Obse	rvations with Fe Pre	esent at Location	10	0%	92.	9%	46.	7%	21.	4%	0%			

Table C.1.6.3 - Plaque Deposition, Zizania palustris Root Plaque EDXA X-Ray Spectra Profile Data Summary

Notes

Site = Marchmont Marsh (MM), Partridge Crop Lake (SeR), Lower Steep Rock Lake (StR), Whitefish Lake (WF)

Data from cross section samples with plaque (none collected from MM samples)

Outer Cortex = layer of small cells 2 - 3 cells thick, directly adjacent to the epidermis

"Iron Presence" based on Fe being one of the two most abundant elements, based on relative peak height observations in x-ray spectrum.

Iron presence in cortex may be due to x-ray disperson since cortex spectra collected in cells adjacent to outer cortex

C.2 – Element Maps

Figure C.2.1 – Partridge Crop Lake, Sample 5 (carbon-coated cross section: root surface orangebrown), SEM image with associated EDXA element maps. A. x90, original image; B. coloured points indicate the presence and location of each of the elements Fe (red), O (green) and P (blue); C. light coloured points indicate the presence and location of each element (as labelled).

C.2 – Element Maps

Figure C.2.2 – Marchmont Marsh, Sample 8 (longitudinal section: root surface orange-brown), SEM image with associated EDXA element maps. A. x100, original image; B. coloured points indicate the presence and location of each of the elements Fe (red), O (green) and P (blue); C. light coloured points indicate the presence and location of each element (as labelled).
C.2 – Element Maps

Figure C.2.3 – Marchmont Marsh, Sample 8 (longitudinal section: root surface orange-brown), SEM image with associated EDXA element maps. A. x350, original image; B. coloured points indicate the presence and location of each of the elements Fe (red), O (green) and P (blue); C. light coloured points indicate the presence and location of each element (as labelled).

C.2 – Element Maps

Figure C.2.4 – Marchmont Marsh, Sample 8 (longitudinal section: root surface orange-brown), SEM image with associated EDXA element maps. A. x1,000, original image; B. coloured points indicate the presence and location of each of the elements Fe (red), O (green) and P (blue); C. light coloured points indicate the presence and location of each element (as labelled).

C.2 – Element Maps

Figure C.2.5 – Whitefish Lake, Sample 10 (longitudinal section: root surface orange-brown), SEM image with associated EDXA element maps. A. x150, original image; B. coloured points indicate the presence and location of each of the elements Fe (red), O (green) and P (blue); C. light coloured points indicate the presence and location of each element (as labelled).

<u>C.3 – Plaque Anomalies</u>

Figure C.3.1 (cont'd on next page)

C.3 – Plaque Anomalies

Figure C.3.1 – Marchmont Marsh, Sample 8 (longitudinal section: oldest portion of root, root surface orange-brown), SEM images; root surface with grooves present in plaque crust, A. three zoom images (area shown by dashed box), A.1 x1,200, A.2 x2,500, A.3 x5,000; B. x1,600, C. x1,000, and D. x950.

Figure C.3.2 (cont'd on next page)

Figure C.3.2 – Marchmont Marsh, Sample 8 (gold-coated longitudinal section: oldest portion of root, root surface orange-brown), SEM images from Hitachi SU-70 SEM;
A. x12,000, holes in plaque crust; root surface with grooves present in plaque crust,
B. x4,000, C. x6,000, D. x45,000, E. x18,000 and F. x10,000.

C.3 – Plaque Anomalies

Figure C.3.3 – Whitefish Lake, Sample 3 (carbon-coated cross section: root surface orange-brown), SEM images; root surface with grooves present in plaque crust, A. x700 and B. x1,000 (note grooves extending through entire depth of plaque crust).

C.3 – Plaque Anomalies

Figure C.3.4 (cont'd on next page)

C.3 – Plaque Anomalies

Figure C.3.4 – Whitefish Lake, Sample 3 (gold-coated longitudinal section: root surface orange-brown), SEM images from Hitachi SU-70 SEM; A. x2,200, grooves present across cell surface in plaque crust; root surface with grooves present in plaque crust, B. x12,000, C x20,000, D x9,990, E x12,000 and F x10,000

C.4 – Base/Control Data

C.4.1 – Control Samples, SEM Images and EDXA X-Ray Spectra

Figure C.4.1.1 – Marchmont Marsh, Sample 5 (longitudinal section: control, root surface white), SEM images with associated EDXA x-ray spectra (x-ray location shown by box); A. x400, root surface; B. x700, root surface ; C. x600, root surface.

Figure C.4.1.2 (cont'd on next page)

Figure C.4.1.2 – Marchmont Marsh, Sample 6 (cross section: control, root surface white), SEM images with associated EDXA x-ray spectra (x-ray location shown by box); A. x400, epidermis / root surface (spectrum A.1), epidermis cell interior (spectrum A.2), outer cortex (spectrum A.3) and cortex (spectra A.4 and A.5); B. x800, epidermis / root surface (spectrum B.1) and outer cortex (spectrum B.2).

Figure C.4.1.3 – Marchmont Marsh, Sample 7 (longitudinal section: control, root surface white), SEM images with associated EDXA x-ray spectra (x-ray location shown by box); A. x700, root surface (spectrum A.1) and root surface with CaCO₃ particulate deposits (spectrum A.2); B. x200, root surface (spectrum B.1) and root surface with CaCO₃ particulate deposits (spectrum B.2).

Appendix C

Figure C.4.1.4 – Whitefish Lake, Sample 5 (longitudinal section: control, root surface light yellow), SEM images with associated EDXA x-ray spectra (x-ray location shown by box); A. x150, root surface (white particulates likely CaCO₃); B. x500, root surface (spectrum B.1) and CaCO₃ particulate deposits (spectrum B.2); C. x1,100, root surface.

257

Appendix C

Figure C.4.1.5 – Whitefish Lake, Sample 6 (longitudinal section: control, root surface light yellow), SEM images with associated EDXA x-ray spectra (x-ray location shown by box); A. x400, root surface with CaCO₃ particulate deposits; B. x600, root surface; C. x1,000, root surface.

Figure C.4.1.6 – Whitefish Lake, Sample 7 (cross section: control, root surface light yellow), SEM images with associated EDXA x-ray spectra (x-ray location shown by box); A. x95, cross section showing cortex (spectrum A.1) and root surface (spectrum A.2); B. x450, epidermis / root surface (spectrum B.1), outer cortex (spectrum B.2) and cortex (spectrum B.3).

Appendix C

Zizania palustris Root Plaque Examination

Figure C.4.1.7 – Blank stub, no sample EDXA x-ray spectra. X-ray spectra of carbontape at three locations (A, B and C).

C.4.1 - Control Samples

	Sample Data							SEM	I Observati	ion Data								
Site	Sample	Root	Image	Image	Plaqua Prosont	Zoom	Primary Deposition Secondary Deposition							Other Particulate	Comments			
Site	Sampie	Colour	image	Location	I laque I resent	2.0011	Туре	% Coverage	Thickness Location		Туре	% Coverage	Thickness	Location	Deposits			
MM	5	white	Α	root surface	Ν	400	-	-	-	-	-	-	-	-	none	no plaque		
MM	5	white	В	root surface	Ν	700	-	-	-	-	-	-	-	-	none	no plaque		
MM	5	white	С	root surface	Ν	600	-	-	-	-	-	-	-	-	none	no plaque		
MM	6	white	А	cross section	N	400	-	-	-	-	-	-	-	-	none	no plaque		
MM	6	white	В	cross section	Ν	800	-	-	-	-	-	-	-	-	none	no plaque		
MM	7	white	А	root surface	Ν	700	-	-	-	-	-	-	-	-	CaCO ₃	CaCO ₃ deposits (white spots), no plaque		
MM	7	white	В	root surface	Ν	200	-	-	-	-	-	-	-	-	CaCO ₃	CaCO ₃ deposits (white spots), no plaque		
WF	5	light yellow	А	root surface	Ν	150	-	-	-	-	-	-	-	-	CaCO ₃	CaCO ₃ deposits (white spots), no plaque		
WF	5	light yellow	В	root surface	Ν	500	-	-	-	-	-	-	-	-	CaCO ₃ and soil	CaCO3 deposits (white spots) and soil, no plaque		
WF	5	light yellow	С	root surface	Ν	1,100	-	-	-	-	-	-	-	-	none	no plaque		
WF	6	light yellow	А	root surface	N	400	-	-	-	-	-	-	-	-	CaCO ₃	CaCO ₃ deposits (white spots), no plaque		
WF	6	light yellow	В	root surface	N	600	-	-	-	-	-	-	-	-	CaCO ₃	CaCO ₃ deposits (white spots), no plaque		
WF	6	light yellow	С	root surface	Ν	1,000	-	-	-	-	-	-	-	-	CaCO ₃	CaCO ₃ deposits (white spots), no plaque		
WF	7	light yellow	А	cross section	N	95	-	-	-	-	-	-	-	-	none	no plaque		
WF	7	light yellow	В	cross section	N	450	-	-	-	-	-	-	-	-	none	no plaque		

Table C.4.1.1 - Control Samples, Zizania palustris Root Plaque SEM Image Data Compilation

Notes

- = N/A

	Sample	Data				X-Ray S	Spectra 1	Data						
Site	Sampla	Root	Speatrum	Plaque	Location	Re	lative Pea	ak Height	t of Eleme	ents	Other Particulate	Comments		
Site	Sample	Colour	spectrum	Present	Location	1	2	3	4	5	Deposits			
MM	5	white	А	Ν	root surface	С	0	-	-	-	none	no plaque		
MM	5	white	В	Ν	root surface	С	0	Al	-	-	none	no plaque		
MM	5	white	С	Ν	root surface	С	Al	0	Ca	-	none	no plaque		
MM	6	white	A.1	Ν	root surface	С	0	Al	-	-	none	no plaque		
MM	6	white	A.2	N	epidermis cells	С	Al	0	-	-	none	no plaque		
MM	6	white	A.3	Ν	outer cortex	С	0	-	-	-	none	root interior		
MM	6	white	A.4	Ν	cortex	С	0	K	-	-	none	root interior		
MM	6	white	A.5	N	cortex	С	0	K	-	-	none	root interior		
MM	6	white	B.1	Ν	root surface	С	0	Al	-	-	none	no plaque		
MM	6	white	B.2	Ν	outer cortex	С	0	Al	-	-	none	root interior		
MM	7	white	A.1	Ν	root surface	С	0	Al	Cl	K	none	no plaque		
MM	7	white	A.2	Ν	root surface	С	0	Ca	-	-	CaCO ₃	CaCO ₃ deposits, no plaque		
MM	7	white	B.1	Ν	root surface	С	0	Al	-	-	none	no plaque		
MM	7	white	B.2	Ν	root surface	С	0	Ca	Al	-	CaCO ₃	CaCO ₃ deposits, no plaque		
WF	5	light yellow	А	Ν	root surface	С	0	S	-	-	none	no plaque		
WF	5	light yellow	B.1	Ν	root surface	С	0	K	Al	S	none	no plaque		
WF	5	light yellow	B.2	Ν	root surface	С	Ca	Si	0	Al	soil and CaCO ₃	CaCO3 deposits and soil, no plaque		
WF	5	light yellow	С	N	root surface	С	0	Al	-	-	none	no plaque		
WF	6	light yellow	А	Ν	root surface	Ca	С	0	Al(Ca)	-	CaCO ₃	CaCO ₃ deposits, no plaque		
WF	6	light yellow	В	Ν	root surface	С	0	-	-	-	none	no plaque		
WF	6	light yellow	С	Ν	root surface	С	0	K	S	-	none	no plaque		
WF	7	light yellow	A.1	Ν	cortex	С	0	K	S	Cl	none	root interior		
WF	7	light yellow	A.2	Ν	root surface	С	0	Al	-	-	none	no plaque		
WF	7	light yellow	B.1	Ν	root surface	Al	С	K	0	Fe	none	no plaque		
WF	7	light yellow	B.2	Ν	outer cortex	С	0	Al	K	-	none	root interior		
WF	7	light yellow	B.3	Ν	cortex	С	0	Al	К	S	none	root interior		
N/A	N/A	N/A	А	N/A	carbon tape	С	0	-	-	-	N/A	blank stub with carbon tape, no sample		
N/A	N/A	N/A	В	N/A	carbon tape	С	0	-	-	-	N/A	blank stub with carbon tape, no sample		
N/A	N/A	N/A	С	N/A	carbon tape	С	0	-	-	-	N/A	blank stub with carbon tape, no sample		

Table C.4.1.2 - Control Samples, Zizania palustris Root Plaque EDXA X-Ray Spectra Data Compilation

Notes

Relative Peak Height of Elements: Xx(Yy) means that element Xx had the next highest peak relative to element Yy, shown in brackets because it is the second peak for element Yy

- = element peaks too low to determine relative height Appendix C

Zizania palustris Root Plaque Examination

C.4.2 – Control Samples, Element Maps

Figure C.4.2.1 – Whitefish Lake, Sample 6 (longitudinal section: control, root surface light yellow), SEM image with associated EDXA element maps. A. x150, original image; B. coloured points indicate the presence and location of each of the elements Fe (red), O (green) and P (blue); C. light coloured points indicate the presence and location of each element (as labelled).

Figure C.4.2.2 – Marchmont Marsh, Sample 6 (cross section: control, root surface white), SEM image with associated EDXA element maps. A. x100, original image; B. coloured points indicate the presence and location of each of the elements Fe (red), O (green) and P (blue); C. light coloured points indicate the presence and location of each element (as labelled).

C.4.3 – Water Analytical Base Data

Table C	C.4.3.1	- W	ater	Analytical	Data,	Collected N	lear .	Zizania	palustris	Sam	ple S	lites
---------	---------	-----	------	------------	-------	-------------	--------	---------	-----------	-----	-------	-------

	S	ample Data			Analytical Parameters (Units)															
		Sample ID			Total Alkalinity	Con-ductivity	ductivity		Total Metals N-NH.+NH. Nitrate N								Nitrate NO ₂ -N	Total K.	Total P	
Sample Date	Site		Matrix	Depth	as CaCO ₃		pН	Al	Ca	Fe	К	Mg	Mn	Na	S	Zn			Nitrogen	101111
					(mg/L)	(µS/cm)		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
25-Sep-10	MM	MM-Water	Water	Surface	133.6	292.3	7.715	0.010	35.912	0.061	1.37	10.63	0.0035	5.41	1.80	0.007	-	0.0045 ^B	-	0.022
25-Sep-10	MM	MM-V-1a-1	Water	Surface	135.5	290.6	7.774	0.010	38.192	0.225	1.45	10.93	0.0397	5.97	1.76	0.015	-	0.0045 ^B	-	0.027
25-Sep-10	MM	MM-V-1a-2	Sediment Porewater	0-10 cm ^A	127.9	270.4	6.981	0.013	35.392	1.503	0.95	7.81	0.3492	4.30	0.23	0.007	-	0.0045 ^B	-	0.210
25-Sep-10	MM	MM-V-1a-3	Sediment Porewater	10-20 cm ^A	127.8	268.0	6.867	0.016	36.972	1.961	0.87	7.17	0.2998	4.42	0.20	0.008	-	0.0045 ^B	-	0.145
25-Sep-10	MM	MM-V-1a-4	Sediment Porewater	20-30 cm ^A	133.4	287.1	6.829	0.043	40.092	2.408	0.64	7.35	0.2928	5.00	0.14	0.008	-	0.0045 ^B	-	0.085
25-Jul-11	SeR	PCrop4	Water	Surface	20.3	56.8	6.831	0.046	6.947	0.168	0.50	1.43	0.0131	1.87	0.77	0.002	0.015	0.030	0.406	0.016
25-Jul-11	SeR	PCrop6	Water	Surface	20.4	57.3	6.825	0.052	6.993	0.165	0.52	1.44	0.0129	1.90	0.78	0.004	0.025	0.037	0.423	0.017
06-Sep-11	SeR	PCrEpi	Water	Surface	20.7	59.0	6.710	0.049	6.754	0.163	0.50	1.35	0.0137	1.76	0.77	0.004	0.005 ^B	0.023	0.304	0.005
06-Sep-11	SeR	PCrOut	Water	Surface	21.2	59.1	6.709	0.051	6.642	0.164	0.50	1.33	0.0132	1.72	0.74	0.004	0.005 ^B	0.024	0.349	0.008
27-Jul-11	StR	LSR01	Water	Surface	36.6	97.8	7.136	0.055	12.695	0.308	0.54	2.10	0.0461	3.23	1.04	0.004	0.057	0.023	0.506	0.019
27-Jul-11	StR	LSR02	Water	Surface	36.8	99.6	7.233	0.014	12.436	0.156	0.54	2.07	0.0300	3.34	1.01	0.005	0.034	0.0045 ^B	0.450	0.016
07-Sep-11	StR	LSRIn1	Water	Surface	37.9	100.0	6.903	0.034	10.880	0.093	0.74	1.99	0.0341	2.65	1.14	0.012	0.053	0.195	0.560	0.013
07-Sep-11	StR	LSREpi	Water	Surface	38.3	101.1	8.126	0.033	9.885	0.094	0.56	1.64	0.0446	2.83	0.90	0.004	0.005 ^B	0.0045 ^B	0.445	0.010
Summer 1997 ^C	WF	Wild Rice (30m)	Water	Surface	-	103.0	6.840	0.074	144.100	0.239	2.57	38.81	0.1090	16.10	1.03	0.003	-	-	0.430	0.008

Notes

No water data available for Lake Tamblyn sample collection site

All samples analyzed at Lakehead University Environmental Laboratory (LUEL) according to LUEL QA/QC protocols, CALA approved.

- = parameter not analyzed

A = Depth below sediment-water interface

B = Results reported as "less than detection limit" are shown as half of the value of the detection limit

C = Data presented are means of seven sampling dates from mid-June to mid-September 1997, data published by Lee & McNaughton, 2004

Site = Marchmont Marsh (MM), Partridge Crop Lake (SeR), Lower Steep Rock Lake (StR), Whitefish Lake (WF)

<u>C.5 – Photos</u>

Figure C.5.1 – Lake Tamblyn wild rice root sample preparation prior to freeze-drying.

Figure C.5.2 – Marchmont Marsh wild rice root sample.

MAL 1412-2 Sept. 18/11 Ks all

Figure C.5.3 – Prepared samples of Marchmont Marsh wild rice roots prior to freezedrying.

Figure C.5.4 – Partridge Crop Lake wild rice root sample preparation prior to freezedrying.

Figure C.5.5 – Lower Steep Rock Lake wild rice root sample preparation prior to freezedrying.

WF-1 Syt,18/11 KT

Figure C.5.6 – Prepared samples of Whitefish Lake wild rice roots prior to freeze-drying.

C.5 - Photos

Figure C.5.7 – Prepared samples for freeze-drying.

Figure C.5.8 – LABCONCO Freeze Dry System (freeze-dryer) used to dry wild rice root samples. Located in the Lakehead University Instrument Laboratory (LUIL).

Figure C.5.9 – Freeze-dried wild rice root samples mounted on stubs with carbon tape, in preparation for SEM and x-ray analysis. Sample 10 is gold-coated.

Figure C.5.10 – JEOL JSM-5900LV Scanning Electron Microscope (SEM) fitted with EDXA to view and x-ray wild rice root samples. Located in the Lakehead University Instrument Laboratory (LUIL).