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Abstract

V
isible light communications (VLC) has been proposed as a promising way for next-

generation wireless communication networks to mitigate the scarcity of the radio

frequency (RF) spectrum, and has consequently attracted much attention. Accordingly,

this thesis investigates single-input single-output (SISO) VLC when subject to signal-

dependent shot noise (SDSN). Firstly, we consider the case of fixed-location user located in

an indoor environment. For instance, in a classroom setting, a teacher may utilize VLC to

transmit lecture notes and supplementary materials to students’ tablets or laptops, ensuring

a seamless exchange of information without the need for traditional wireless networks.

The topics of discussion include channel estimation and data transmission, where in the

former, we introduce both least square (LS) and maximum likelihood (ML) estimators.

The Cramér–Rao lower bound (CRLB) of the channel estimation error is also derived.

In terms of data transmission, we propose optimal and sub-optimal receiver designs and

present their bit error rate (BER) performances. In specific, we derive a closed-form

expression of the BER for the sub-optimal receiver and an approximated version for the

optimal one. Our analysis indicates that the performance of the CRLB demonstrates no

linear relationship with the SDSN, thermal noise, or fading channel gain. On the other

hand, SDSN has quite a severe effect on the channel estimation error bound, and as such,

it can dramatically degrade the BER performance. Heightened performance degradation

can also be explained by the joint effects of the channel estimation error and SDSN.

Secondly, we consider the case of random location of the user located in an indoor

environment, such as a conference room within a corporate office where the user may

move around freely during a meeting or presentation. In particular, the second part of

this research estimates the channel of the considered system using ML, LS, linear mini-

mum mean square error (LMMSE), maximum posteriori probability (MAP) and minimum
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mean square error (MMSE) estimators. Furthermore, a Bayesian Cramér-Rao lower bound

(BCRLB) is derived for the proposed system and it is compared to the mean square error

(MSE) of the proposed estimators. The problem of the unknown SDSN factor at the re-

ceiver side is discussed and two solutions are investigated. The receiver of a VLC system

under SDSN and random channel gain is designed and its BER is studied. Monte Carlo

simulation results of the proposed estimators, which show the dramatic effect of the SDSN

on the considered system, are provided. In particular, the presence of noise variance, as

well as the SDSN factor, causes an increase in the MSE of the system, while increasing the

power reinforces the system performance.

Moreover, the third part of this research explores the interplay between SDSN and

another inherent noise in the light source called relative intensity noise (RIN), revealing

their combined adverse effect on channel estimation accuracy in a VLC system. Towards

this direction, we first derive CRLB in the presence of the SDSN and the RIN, which

gives a lower estimate for the variance of an unbiased estimator. Then, we present the

derivation of LS and ML channel estimators. Furthermore, we present the optimal receiver

in ML sense and compare it with a simple threshold detector as a sub-optimal solution,

quantifying the impact of channel estimation accuracy on both receivers. The findings

presented in this part reveal that the RIN and the SDSN jointly have a significant adverse

effect on the VLC channel estimation, consequently leading to a pronounced degradation in

BER performance of the VLC system. In addition, we proposed optimal and sub-optimal

receiver designs and present their BER. The Monte Carlo simulation results of the BER

for the two presented receivers show that the optimal receiver performance excels beyond

the performance of the sub-optimal receiver.

In other words, our study focuses on investigating the effects of signal-dependent noise in

VLC systems. Initially, we explored how SDSN impacts VLC systems serving fixed-location

iv



users. Subsequently, we delved into the influence of SDSN in scenarios where channel

gain variability arises from the randomness of user locations. Following, we analyzed

the combined impact of SDSN and RIN on the performance of VLC systems catering to

fixed-location users in indoor environments. Our investigation involved the use of various

channel estimation techniques, which were compared against a derived lower bound to

evaluate their performance. Additionally, we designed different receivers to demonstrate

how such noise affects the BER of the considered VLC systems.
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Chapter 1

Introduction

1.1 Background and Motivations

Optical communication, among the earliest forms of communication, was historically

employed by utilizing fire and the reflection of sunlight. Visible light communi-

cation (VLC) is a type of wireless optical communication based on light-emitting diode

(LED)/laser diode (LD) for data transmission. This technology has experienced signifi-

cant growth in recent years, capturing widespread attention from researchers.

The surge in broadband services has escalated the need for communication technolo-

gies that offer both high performance and high capacity. However, radio frequency (RF)

spectrum resources are limited and costly, and it is highly crowded [2]. Motivated by

the revolution in solid lighting manufacturing, academic and industrial researchers have

suggested VLC as an alternative to RF communication to address these limitations. Com-

pared to RF, VLC has many advantages, including open licensing, wide spectrum, and

resistance to radio interference, while being robust and providing efficient communication

at short distances [3].

Channel estimation is a crucial task to ensure the robustness, error-free operation,

and reliability of the VLC system. Over time, various channel estimation schemes have
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been devised for RF-based wireless communication systems. However, there are notable

distinctions between RF and VLC channels. VLC channel is effectively more intense due

to the line-of-sight (LoS) and non-line-of-sight (NLoS) optical multipath reflections coming

from the walls and ceilings that compose an indoor environment. Moreover, the position,

shape, and size of the opaque physical obstacles have a severe effect on the characteristics

of the VLC channel [4].

It is important to mention that VLC channels have some properties that set them

apart from RF. The VLC transmitted signal should be nonnegative and have a real value

since light is used for data modulation (and it is well known that a light signal cannot

be negative or have a complex value). To achieve accurate channel estimation, it’s crucial

to consider the noise added to the signal during the transmission process. Many works

have considered the constraints of the VLC channel gain [5]. However, only a few studied

the effect of the SDSN in the VLC system. Taking these into careful consideration, the

statistical nature of the VLC channel was modeled in [6] using a monotonic decreasing

distribution with additive noise corrupting the channel. Notwithstanding that, none of the

aforementioned channel estimation studies considered this statistical channel model for a

VLC system since it poses major challenges to the provision of reliable data transmission.

Up until now, the channel model in [6] was considered only in [7], where the performance

of an indoor single-input single-output (SISO) VLC system was evaluated with imperfect

channel state information (CSI) at the receiver.

On the other hand, the existence of signal-dependent noise is also a key physical char-

acteristic that differentiates VLC from RF for certain receiving devices [8]. Typically,

signal-dependent distortions are observed in high signal-to-noise ratio (SNR) VLC links

that employ high-gain narrow field-of-view photon avalanche diode (APD) receivers [9].

The photodetector shot noise, which, considering the increasing number of received pho-

tons, can be approximated using a Gaussian process, is also signal dependent due to the

quantum nature of the received optical energy [10,11].
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It is widely known that the optimal version of many designs no longer supports signal-

dependent shot noise (SDSN), leading to a dramatic deterioration in the system per-

formance along with increased background noises [11, 12]. Thus, the necessity of re-

investigating the design structures when SDSN plays a non-negligible role is highlighted

in [12], where effective modulation design techniques were proposed for both single and

multi-carrier VLC systems. Meanwhile, the mutual information and its lower bound were

analyzed for spatial modulation-based VLC in the presence of input-dependent noise in [13].

Following these, efficient transceiver design methods were studied in [14]. The theoretical

expression of the BER was obtained in [15], and channel capacity bounds were derived

in [8] for VLC systems with signal-dependent Gaussian noise. However, SDSN leads to

analytical complications when it comes to deriving closed-form expressions, adding to the

already existing challenges to signal processing and modulation design. Therefore, SDSN

models have not been sufficiently studied in the VLC field yet.

The lack of studies on VLC systems under the joint impacts of SDSN and imperfect

CSI motivates our work. This study fills in the gap by analytically evaluating the error

performance of an indoor VLC system with a single light source at the transmitter side and

a single photo-diode at the receiver side. We consider the monotonic decreasing distribution

model for the channel gain as given in [6]. Specifically, an optimal receiver is proposed

and compared to a sub-optimal one. Furthermore, we estimate VLC channel gains using

different methods and compare their performance to a derived benchmark. In particular,

we first consider that the location of the user is fixed, and then we study the case of random

user location.

Another essential source of signal-dependent noise in optical communication systems is

relative intensity noise (RIN). RIN represents the undesired fluctuations in the power of an

optical signal relative to its average power. The presence of RIN can significantly impact

the quality of the transmitted signal, consequently affecting the overall performance of the

communication link [16].
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Numerous researchers have delved into the study of RIN, exploring its origins, measure-

ment techniques, and its impact on various optical communication systems. Specifically,

in [17], researchers numerically investigated the RIN of quantum dot lasers through a rate

equation, considering both spontaneous emission and carrier contributions. The study re-

veals that carrier noise originating from the ground and excited states significantly amplifies

the RIN of the laser. While in [18], the RIN of the comb lines from a quantum-dot comb

source lasers have been characterized using complementary time- and frequency-domain

measurements. The time-domain results yield the average RIN over the 6 GHz measure-

ment bandwidth, correlation time, and power spectral density. The frequency-domain

results yield the RIN spectra and integrated RIN.

The effect of an asymmetric design of an external cavity semiconductor laser sensor

on the sensor RIN was studied in [19]. While in [20], through numerical simulations,

researchers studied the effect of RIN on the performance of low-complexity heterodyne

optical coherent receivers. Furthermore, the numerical and simulation methods were used

to demonstrate the impact of RIN for hybrid-cavity semiconductor lasers in [21].

Notably, the literature does not explore the impact of RIN in the presence of SDSN

in VLC systems. This research gap motivated us to introduce RIN to the noises in the

VLC system under consideration in this work. The joint effect of SDSN and RIN on VLC

system estimation is a focal point of this thesis.

1.2 Thesis Contributions

Compared to the existing literature and motivated by the significance of the previous

reasons, the contribution of this work can be summarized as follows:

1. In the first phase of this study, the performance of the SISO-VLC system is examined

under the condition of a fixed user location in the presence of SDSN. The study reveals
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that SDSN can degrade the Bit Error Rate (BER) performance and has a significant

impact on the channel estimation error bound.

2. The Cramér–Rao lower bound (CRLB) can be used as a benchmark to evaluate the

unbiased estimators’ efficiency when the system under the effects of SDSN is derived.

Both of the least square (LS) and maximum likelihood (ML) estimators are proposed,

and their performance is compared with the derived CRLB.

3. An optimal receiver design that can properly treat the SDSN is proposed, and its

performance is compared with the traditional ML one. More specifically, we de-

rive a closed-form expression of the sub-optimal receiver BER and an approximated

expression of the BER for the optimal one.

4. Additionally, the effect of imperfect CSI on the system performance is studied. In

particular, the error performance in the presence of imperfect CSI has been obtained

and analyzed.

5. In the second phase, we consider the case of random user location, investigating the

impact of SDSN on a SISO-VLC system in the presence of a random channel.

6. We derive a Bayesian CRLB (BCRLB) for the considered random VLC channel

with SDSN. Moreover, Four different estimators, namely LS, ML, maximum pos-

terior probability (MAP), minimum mean square error (MMSE) and linear MMSE

(LMMSE) are used to estimate the random VLC channel. Their mean square error

(MSE) is then compared with the derived BCRLB to evaluate their performance.

7. Two different techniques are proposed to solve the problem of an unknown SDSN

factor (ζ2) at the receiver. Both of the techniques are applied to estimate the channel

gain h using an LMMSE estimator. The MSE of the estimation procedure with

unknown ζ2 is compared to that of the known ζ2 case.
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8. In the third phase of this study, we investigate the joint effect of RIN and SDSN, along

with the presence of thermal noise on the performance of an indoor VLC system. In

our analysis, we take into account that RIN is proportional to the transmitted power

and the channel gain, while SDSN is proportional to the square root of both.

9. To quantify the ultimate performance limits, we derive the Fisher information for

the proposed system model, leading to the computation of the CRLB. We utilize

the CRLB to compare and evaluate the performance of the derived LS and ML

estimators.

10. We derive a closed-form expression for the MSE of the LS estimator in the presence of

the joint RIN and SDSN effect and verify it through simulation results. In addition,

we propose an optimum receiver considering the joint effects of RIN, SDSN and shot

noise as well as a sub-optimal receiver neglecting RIN and SDSN.

11. We present simulation results to demonstrate the significant degradation of system

performance due to the presence of RIN. In addition, the effects of SDSN and thermal

noise are studied.

1.3 Thesis Organization

The rest of the report is organized as follows: Chapter 2 introduces the necessary theoretical

concepts and key points of this thesis. Specifically, this chapter provides a background on

the VLC system, along with the channel estimation, fisher information, and the CRLB.

The following is Chapter 3, which presents the proposed channel and VLC system for a

fixed user location with SDSN. It includes the derivations of two estimators, the CRLB of

the system, and two receiver designs. Additionally, this chapter introduces the simulation

results for this part of the work and provides discussions on them.
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Next is Chapter 4, where we address the randomness stemming from user mobility.

Consequently, we introduce and discuss five channel estimators for a SISO VLC system in

the presence of SDSN with a random user location. Additionally, we derive the benchmark

BCRLB. We delve into a special case where the SDSN factor is unknown, presenting

and comparing two different solutions. Furthermore, we propose optimal and sub-optimal

receiver designs. The chapter presents and discusses simulation results for the estimators,

BCRLB and BER of the receivers.

Afterward, in Chapter 5, we explore the impact of RIN jointly with SDSN. A detailed

discussion of numerous cases is presented to illustrate the severe degradation of SISO-VLC

system performance. To analyze the effect of RIN and SDSN on the proposed system, we

derive the MSE for both the simplest and most commonly used estimators, considering

the presence of both noises alongside the well-known thermal noise. Additionally, we

utilize the CRLB derived in this chapter to assess the performance of the estimators. The

receiver design is modified to accommodate the joint presence of the three types of noises

under consideration, leading to a redesign of the receivers. The chapter concludes with the

introduction of simulation results and discussions on these results, ultimately ending with

conclusions.

In the concluding Chapter 6, we consolidate the core elements of our research, providing

a comprehensive summary of the crucial results and conclusions derived from our study.

Beyond this retrospective analysis, we pivot our attention toward the future, presenting

opportunities for continued exploration and research. By delineating potential directions

and highlighting areas deserving sustained attention, we adopt a holistic approach.
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Chapter 2

Preliminaries and Literature Review

This chapter gives a general idea about the VLC system. In addition to that, the

fundamentals of fisher information and CRLB are explained. The literature review

is provided in the last subsection of this chapter.

2.1 Introduction to VLC

The concept of using light for communication dates back to the 19th century, during a

period when Alexander Graham Bell did the first wireless transmission by inventing the

photophone that modulated sunlight over several hundred meters and succeeded in trans-

mitting speech. However, these early attempts were limited by the available technology

and the lack of efficient light sources. The concept of using visible light for communication

gained momentum in the early 21st century as advancements in LED technology made it

more practical. Researchers started exploring the potential of VLC for high-speed data

transmission [22].

The development in transmission technology, VLC-based transmission systems capital-

ize on their advantages by employing components that are both cost-effective and high-

performing. This positions VLC as an increasingly competitive technology when compared
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Figure 2.1: Visible light communication EM spectrum

to RF-based wireless communications. Furthermore, the widespread adoption of visible

light communication in recent times can be attributed to its numerous advantages, which

encompass, among other aspects, the following elements:

• Wide spectrum: The RF spectrum is constrained within the range of 3 kHz to

300 GHz and with the escalating demand for high-speed wireless services, there is a

significant increase in congestion within the RF spectrum. On the other hand, VLC

offers is at least 1000 times greater, which is from 400 THz to 780 THz as shown in

Fig. 2.1 [23]. Therefore, it offers a huge, wide, unlicensed and unregulated bandwidth

within the range of several THz, which solves the problem of RF spectrum crunch

and allows for high data rates up to a few tens of Gbps.

• No electromagnetic interference: VLC is regarded as inherently immune to

interference with RF signals since light does not cause interference with RF waves.

Therefore, VLC is ideal to be used in RF interference-sensitive areas like hospitals,

aircraft cabins, and petrochemical industries to only name a few.

• High energy efficiency: VLC operates using the light sources which are already

present in for illumination purposes. By leveraging existing lighting infrastructure

for communication, VLC eliminates the need for separate energy-consuming trans-

mitters, reducing overall power consumption. Also, LEDs used in VLC represent the
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forefront of lighting technology, offering an impressive 80% reduction in energy con-

sumption compared to traditional lighting sources. It’s noteworthy that if LEDs were

to replace all conventional light sources currently in use, there could be a significant

50%reduction in global electricity consumption [24].

• Cost-effectiveness: Unlike other wireless communication technologies, the imple-

mentation cost of VLC is significantly lower. Only a few additional modules are

added to the lighting compared to the substantial installation setup cost of an entire

communication system, as seen in RF-based wireless communication. In addition,

the swift progress in the light sources industry contributes to a reduction in the cost

of producing VLC transceivers on a large scale.

• Health safety: In contrast to various other wireless communication technologies,

VLC is inherently considered safe for human health. Unlike RF communications,

VLC does not generate radiation, and it uses diffusive light source, distinguishing

it from other optical communication technologies which use a concentrated optical

power within a narrow beam. Furthermore, VLC adheres to eye and skin safety

regulations.

2.2 VLC System Architecture

In this subsection, the basic system model of VLC with detailed VLC transmitter and

receiver block diagrams are illustrated [25,26]. Although the VLC transmitter and receiver

are physically separated, they are connected by a VLC channel. The VLC channel model

is illustrated in detail in the next chapter.
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Figure 2.2: Visible light communication system transmitter

2.2.1 VLC Transmitter

As shown in Fig 2.2, the VLC transmitter compromises an encoder which transforms

the data to digital form, and then this stream of data goes into the modulator. In the

modulation process, the data is modulated using the intensity of the light signal which

is referred to as intensity modulation (IM). Then, the modulated data and the dimming

control signal are combined in the driver circuitry. The dimming control block provides the

light source with a sufficient amount of current to adjust the brightness of the light source.

As the brightness of the light source depends on the need of the application, for instant,

in the case of public places, auditoriums, etc.., high levels of illumination are needed but

in the case of offices and houses, etc.., low levels of illumination are required. Finally, this

modulated data signal is fed to the light source to be transmitted.

Innovating the LEDs by the solid-state lighting (SSL) industry to replace conventional

incandescent and fluorescent lamps is the main driver for VLC technology. LED has

unique characteristics compared to other artificial light sources. Although LED provides

high brightness, it consumes low power and has a high response besides the small size.

White light is widely recognized as an accepted source of illumination, and it is commonly

used for illumination in indoor and outdoor environments. Wherefore, SSL industry uses

two methods to generate the white light from LEDs as shown in Fig 2.3. The first method
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is using a yellowish phosphor layer to coat blue LED. In this approach, the white light

is emitted by blue light generated by the LEDs which is absorbed by the phosphor layer.

Consequently, the blue wavelength excites the phosphor causing it to glow white. The kind

of LED manipulated by this approach is called white phosphorescent LED (WPLED). The

second method is called (RGB) LEDs, it produces white light by combining three different

coloureds of LEDs. Red, green and blue lights are mixed in the approach to generate the

white light.

Although WPLED is preferred over RGB LED in VLC due to the lower complexity and

cost because it needs only one LED, the slow response of phosphor limits the modulation

bandwidth of the WPLED to a few MHz. However, some techniques can be employed to

achieve high data rate‘ [27]:

• Using a blue filter at the receiver side to filter out the slow-response yellowish com-

ponents.

• Using pre-equalizer at the LED driving module at the transmitter side.

• Using post-equalizer at the receiver side.

• A big raising in the data rate can be obtained by merging the three former mentioned

methods.

• Implementation of more complex modulation techniques such as discrete multi-tone

modulation.

2.2.2 VLC Receiver

From the block diagram of the VLC receiver shown in Fig 2.4, it can be figured out

that at the receiving side of a VLC system, the received light signal is concentrated by

passing through an optical concentrator. Then, the unwanted signal components generated
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Figure 2.3: Two methods of generating white light from LEDs, (a) WPLED approach, (b)
RGB LED approach.

because of reflections and refractions are filtered out using the optical filter. After the

filtering process, the desired signal is passed to the photo-diode and then it is fed to a

trans-impedance amplifier to convert the signal from current to voltage signal and amplify

it. The first two steps at the transmitter are reversed at the receiver. Particularly, the

data is demodulated and then decoded to get the original data stream.

In the VLC system, the optical can be received using a photo-diode or image/camera

sensor [26, 27]. Compared to the image/camera sensor, the photo-diode provides a higher

data rate and it uses simpler digital signal processing techniques for decoding the data.

On the other side, the photo-diode cannot isolate the background noise, which means it

is processed with the received signal, therefore, the receiver uses the photo-diode and has

to employ an optical filter before the photo-diode. Additionally, field of view (FOV) is

a challenging aspect in the photo-diode, because the transmitted signal should be within

the FOV and it should be narrow to avoid noise. Oppositely, the image/camera sensor

improved the range of the FOV to wider. This makes the image/camera sensor more

suitable for long-distance mobility.
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Figure 2.4: Visible light communication system receiver

2.3 Noise in VLC System

As in all communication systems, noise is a decisive factor in determining the system

performance because the noise could dramatically decrease the performance of the VLC

networks. The existing noise in the VLC system can be categorized into two main categories

listed below [27]:

• Independent noise: It includes many sources such as the background noise induced by

the sunlight and other artificial light sources, dark current noise caused by the passing

current through the photo-diode with no optical radiation exposure and thermal

noise. Thermal noise which is also known as the Johnson noise is the dominant

signal-independent noise source and it is generated due to the temperature of the

material of the photo-diode at the receiver side. This kind of noise doesn’t depend

on the input signal and it can be modelled as being additive white Gaussian noise

(AWGN) which can be mathematically represented as n ∼ N (0, σ2
n), where σ2

n is the

variance of the noise.

• Dependent noise: This type of noise varies with the signal being measured. In other

words, the amount of noise present in a signal is dependent on the strength or level

of the signal itself. Signal-dependent noise can be particularly problematic in data
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acquisition and signal processing applications, as it can distort or mask important

features of the signal. There are two main sources of signal-dependant noise, which

are the SDSN and the RIN. In LEDs, SDSN is the dominant dependent noise, while

in LDs, the RIN has a significant effect. In particular, low frequency intensity fluctu-

ations in LEDs are much smaller than those in LDs. Therefore RIN can be neglected

in LEDs. Given the importance of SDSN to our research, we extensively discuss it

in the next subsection.

2.4 Signal-Dependent Shot Noise

Today, shot noise remains an important topic of research in both theoretical and experi-

mental physics. It is used to study a wide range of physical phenomena, from the behaviour

of semiconductors and quantum computers to the transmission of information in commu-

nication systems. Understanding the origin and properties of shot noise is essential for

advancing our understanding of the fundamental principles that govern the behaviour of

matter and energy in the universe.

2.4.1 Background and Origin

Signal-dependant shot noise, also known as Poisson noise is a type of random fluctuation

or noise that arises in electrical circuits due to the discrete nature of charged particles.

This phenomenon was first observed in the early 20th century, and it has since become an

important topic in both theoretical and experimental physics.

The concept of shot noise was first introduced in 1918 by Walter Schottky, a German

physicist who was studying the behaviour of electrons in vacuum tubes. At the time, vac-

uum tubes were used as amplifiers and switching devices in electronic circuits, and Schottky

was interested in understanding the nature of the current flowing through them [28].
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Schottky observed that the current in a vacuum tube was not constant, but instead

exhibited random fluctuations that could not be explained using classical physics. Schottky

theorized that these fluctuations were due to the discrete nature of electrons, which could

only flow in discrete packets or "shots" of charge. Schottky’s theory of shot noise was later

confirmed by other physicists, including John B. Johnson and Harry Nyquist, who observed

similar fluctuations in other electronic devices. In the 1920s and 1930s, shot noise became

an important topic of research in the field of electronics, as engineers and physicists worked

to develop more reliable and efficient electronic devices.

In the decades that followed, the study of shot noise expanded to other fields, such

as solid-state physics, quantum mechanics, and information theory. Today, shot noise

is used as a tool for understanding a wide range of physical phenomena, including the

behaviour of semiconductors, the operation of quantum computers, and the transmission

of information in communication systems. One of the most important applications of shot

noise is in the field of quantum mechanics, where it plays a crucial role in the study of

single-particle behaviour. By observing the fluctuations of individual particles, physicists

can gain insights into the quantum nature of matter and the fundamental principles that

govern the behaviour of the universe.

The magnitude of shot noise is proportional to the square root of the current, which

means that the noise becomes more pronounced at higher currents. This is because the

flow of electrons becomes more random and unpredictable as the number of particles in

the current increases. Shot noise is not limited to electronic devices but can also arise in

other physical systems where the flow of particles is discrete. For example, the movement

of grains of sand or the emission of photons from a light source can also exhibit shot

noise [29].
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2.4.2 Theory

Shot noise arises in electronic devices due to the random nature of the behaviour of indi-

vidual electrons in a current flow. The reason shot noise is described as a Poisson process is

that it is caused by the random arrival of electrons, which can be modelled using a Poisson

distribution. A useful analogy for understanding the discrete nature of shot noise can be

visualized by imagining an hourglass lying on its side, with sand in the upper bulb. If

the hourglass is then lifted slightly towards an upright position, the sand will start falling

through the neck of the hourglass one grain at a time. However, the grains of sand will

not arrive in the lower bulb at uniform intervals; rather, each grain will have a different

inter-arrival time, resulting in great variation. This variability in the arrival time of each

grain of sand is an example of shot noise in electronic devices.

The Poisson distribution is used to describe the probability of a specific number of

events occurring in a given time interval, with the probability of a single event being

constant and independent of the arrival of previous events. In the case of shot noise, the

Poisson distribution is used to calculate the probability of a specific number of particles

arriving at a given time. Another reason that shot noise can be modelled as a Poisson

process is that each charge carrier’s arrival is independent and random, with a constant

average rate over time. The Poisson process describes this randomness in the arrival of

charge carriers and the variability in the inter-arrival time between particles.

Considering that number of photons N measured by a given sensor element over a

time interval t, the discrete probability distribution function (PDF) of the charge carrier

counting is given as [30]

Pr(N = k) =
(λt)ke−λt

k!
, (2.1)

where, λ is the expected number of charge carriers per unit time interval, which is propor-

tional to the received light signal. The other parameter λt represents the rate parameter of

the Poisson pdf which corresponds to the expected incident charge carriers count. Follow-

ing that the charge carrier count is a Poisson distributed, and the mean and the variance
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are equal. i.e., E[N ] = V ar[N ] = λt. This demonstrates that SDSN is a signal-dependent

noise. Moreover, the root mean square value of the shot noise current is given by [31]

Ish =
√

2qIf, (2.2)

where q is the charge in Coulombs, I represents the current in amperes, and f is the noise

bandwidth in hertz. Again, here we can observe that the shot noise current is proportional

to the square root of the signal.

A Poisson process is a random process that models the occurrence of discrete events

over time, where the events occur independently of each other and at a constant rate.

In contrast, a Gaussian process is a random process that models continuous functions,

where any finite set of function values is jointly Gaussian distributed. At high numbers of

events, the Poisson process can be approximated by a Gaussian process due to the central

limit theorem, which states that the sum of a large number of independent and identically

distributed random variables tends to follow a normal distribution [28].

In a Poisson process, the number of events that occur in a given time interval follows

a Poisson distribution, which has a mean and variance that are equal. As the number of

events increases, the variance also increases proportionally. However, when the number of

events is large, the Poisson distribution can be approximated by a normal distribution with

the same mean and variance. This approximation is known as the Poisson limit theorem.

Therefore, at high numbers of events, the Poisson process can be modelled as a Gaussian

process, where the mean and variance of the process can be estimated from the observed

data. This approximation allows us to apply techniques from Gaussian process modelling,

such as regression and classification, to Poisson processes. However, it is important to note

that this approximation is only valid when the number of events is sufficiently large. In

VLC, the signal has high intensity, which makes the approximation valid. Consequently,

the SDSN can be represented as SDSN ∼ N (0, σ2
sdsn), where σ2

sdsn = ζ2σ2, ζ2 =
σ2
ds

σ2
n

represents the shot noise scaling factor, and σ2 is the variance of the independent noise.
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2.4.3 Signal-Dependent Shot Noise in VLC system

Shot noise can have a significant effect on the performance of VLC systems. Here are some

of the effects of shot noise in VLC systems [27,32]:

• Reduced SNR: Shot noise introduces random fluctuations in the received signal, which

reduces the SNR of the signal. This can lead to errors in signal detection and degra-

dation in the quality of the received signal.

• Limitations on detection sensitivity: Shot noise places a fundamental limit on the de-

tection sensitivity of the receiver, as it sets a lower bound on the minimum detectable

signal power.

• Interference from other sources: Shot noise from other sources in the system, such as

the transmitter and the amplifier circuits, can add to the overall noise in the system

and degrade the SNR further.

• Impact on modulation schemes: The effect of shot noise is more pronounced in digital

modulation schemes, as the signal is binary and any errors in the signal detection

can lead to significant bit errors.

• Optimization of system parameters: To minimize the effect of shot noise, the system

parameters such as the receiver bandwidth, amplifier gain, and detection threshold

need to be optimized.

Overall, SDSN can be a significant factor in the performance of any wireless commu-

nication system, particularly in low-power and high-frequency applications such as VLC

applications. System designers need to carefully consider the impact of SDSN to ensure

reliable and efficient communication.
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2.5 Relative Intensity Noise

In communication systems, the degradation of signal strength due to the presence of noise

signals is typically measured by the signal-to-noise ratio (SNR). It serves as a crucial indica-

tor reflecting the transmission channel’s quality and the minimum signal power detectable.

RIN is one of the most important factors that causes degradation in SNR. Unlike the

SDSN, RIN is proportional to the intensity, thereby limiting the SNR. In this section, the

theory and the background of RIN are introduced.

2.5.1 Background and Origin

The predominant source of RIN is spontaneous emission [33,34]. Specifically, the intensity

fluctuations come primarily from the spectral properties of a laser. When lasers operate

beyond their lasing threshold (The definition of the lasing threshold is when the stimu-

lated emission exceeds the spontaneous emission.), they predominantly produce stimulated

emission along with a minor quantity of spontaneous emission. Spontaneous emission pho-

tons exhibit unpredictable characteristics, including wavelength, polarization, direction,

and phase. These photons may coincide with the wavelength and direction of stimulated

emission photons, causing fluctuations in the light source’s output intensity and frequency.

In a photodetector the stimulated emission interacts with any residual spontaneous

emission, effectively creating noise that can be observed electrically. Many photodetec-

tors generate an output current that corresponds to the optical power, which is, in turn,

proportional to the square of the electrical field.

Due to this nonlinear relationship between the strength of the optical field and the

photodetector current, photons of varying optical frequencies generate "beat signals," akin

to the processes observed in electrical nonlinear devices handling multiple signals at their

input (such as the mixer in a radio) as shown in Fig 2.5, which represents an event where

the two emissions interfere with each other. The level of beat noise produced in the
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Figure 2.5: Laser intensity noise - an event where two emissions interfere with each other [1]

photodetector is contingent upon the properties of the receiver. Hence the RIN uses to

describe the contributions of the laser intensity fluctuations to the electrical noise in the

receiver relative to the signal power.

2.5.2 Theory

RIN refers to the fluctuations in the output intensity of a laser over time. It is expressed

as a ratio relative to the average intensity and can be written as [35]

< ∆P >2

< Po >2
(2.3)

where < ∆P >2 and < Po >2 are the mean square intensity fluctuation spectral density

of the light output and average light output optical power, respectively. In Fig 2.6, the

left figure illustrates the ideal output intensity of a laser, biased at a d.c. level while all

the parameters influencing the laser, such as temperature, are assumed to be constant. On

the other hand, the right figure shows the real case, when the output intensity of the laser

shows power fluctuation due to intensity noise.
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Figure 2.6: (a) is the ideal output power for a laser with DC bias, and (b) is the real laser
output power having intensity noise.

2.6 Channel Estimation: Classical Approach

Channel estimation is crucial for the performance of any wireless communication system,

i.e., accurate estimation is essential for follow-up equalization, demodulation, and decoding.

Therefore, an accurate estimator leads to reliable communication systems [36]. CRLB,

which can be used as a benchmark to evaluate the estimators’ performance. The estimation

approaches can be classified into the classical approach and the Bayesian approach. In this

section, we will discuss the classical approach. Following that, we will delve into the

Bayesian approach in the subsequent section.

The classical estimation approach, also known as frequentist estimation, is a statistical

framework that focuses on estimating unknown parameters based on the analysis of ob-

served data. In this approach, parameters are considered deterministic but unknown, and

the goal is to use sample data to make inferences about these parameters.

The most common classical estimation method are LS and ML estimation methods. In

addition, CRLB is a fundamental concept in classical statistics that establishes a theoretical

limit on the variance of unbiased estimators for a parameter.
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2.6.1 Fisher Information and Cramer Lower Bound

Suppose that θ is an unknown parameter that is to be estimated from N independent obser-

vations of x. Fisher information measures the amount of information that an observation

x carries about an unknown parameter θ of a distribution that models x.

CRLB gives a lower bound for the variance of any unbiased estimators. Thus if an

estimator is unbiased and has a variance equal to CRLB, it is then impossible to find an

unbiased estimator that has a smaller variance.

To simplify the idea, suppose that we have only one point of pilot signal (N = 1) and

the probability density function (pdf) of x is given as

f(x; θ) =
1√
2πσ2

exp

(
− 1

2σ2
(x− θ)2

)
. (2.4)

Assume that the regularity condition is satisfied, which means that the first moment of

the partial derivative with respect to θ of the natural logarithm of the likelihood function

evaluated at the true parameter value θ

E
{

∂

∂θ
log f(x; θ)

}
= 0. (2.5)

The fisher information is a way of measuring the amount of information about the un-

known parameter θ that is carried by the random variable x. Mathematically, the fisher

information is defined as

I(θ) = E

{(
∂

∂θ
ln f(x; θ)

)2
}
. (2.6)

The CRLB is given in terms of the fisher information as

V ar(θ̂) ≥ 1

I(θ)
, (2.7)

where, θ̂ is the estimator of θ.
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Therefore, the larger amount of information can be obtained from the observations, the

lower CRLB.

2.6.2 Least Square Estimator

The method of least squares is about estimating parameters by minimizing the squared

differences between the parameter value and the parameter estimated value. That means

the LS estimator chooses the estimated value of the parameter that makes the estimated

signal closest to the true value, which means it minimizes the squared error between the

observed signal and its expected value. As we mentioned in the previous subsection,

suppose that we have N independent observations of x. In addition to that, suppose we

have a signal model

s[n] = θh[n], (2.8)

where n = 1, 2, . . . N . Thus, the square error can be measured by taking the sum of the

difference between the real data points and the estimated values of them given as

N∑
n=1

(x[n]− θh[n])2, (2.9)

where h[n], ∀n = 1, 2, . . . N are known. To find the LS error, the previous equation should

be differentiated with respect to the unknown parameter θ and solved to get the estimated

θ as

θ̂ =

∑N
n=1 x[n]h[n]∑N
n=1 h

2[n]
. (2.10)

This method of estimation is characterized by being simple to be understood and ap-

plied. It’s applicable in most cases. Indeed, LS estimation has a strong underlying theo-

retical foundation in statistics. Above all these advantages, it doesn’t need any statistical

information about the unknown parameter. The main disadvantage of the LS estimation

method that is has the least accurate results especially when the data is not normally
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distributed.

2.6.3 Maximum Likelihood Estimator

ML estimation is a method of estimating a parameter that maximizes a likelihood function,

therefore, the point in the parameter space that maximizes the likelihood function is called

the maximum likelihood estimate. Given that we have N points of data x depending on

the unknown parameter θ. Since the logarithmic function is a monotonic function, the

log-likelihood will have a maximum in exactly the same places where the likelihood has

a maximum. Consequently, the estimated θ using the ML estimator can be found by

maximizing the log-likelihood function as

θ̂ = argmin
θ

log f(x; θ), (2.11)

where x denotes the matrix of the N points of data. ML estimator has the advantage

of simplicity and applicability. ML estimator characterize as an asymptotically efficient

estimator. Therefore, it’s asymptotically optimal. That means when the number of pilots

N → ∞, ML estimator is asymptotically unbiased and it attains the CRLB.

2.7 Channel Estimation: Bayesian Approach

The Bayesian estimation approach is a statistical framework that focuses on estimating un-

known parameters by incorporating prior information about parameters and updates them

based on observed data to obtain a posterior distribution. In this approach, parameters are

considered random. The Bayesian approach, when applicable, can therefore improve the

estimation accuracy. This is the Bayesian approach, so named because its implementation

is based directly on Bayes’ theorem.

The most common Bayesian estimation method are MAP, MMSE and LMSSE esti-
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mation methods. Moreover BCRLB provides a bench mark to evaluate the MSE of the

Bayesian estimators.

2.7.1 Bayesian Cramér–Rao Lower Bound

BCRLB is an extension of the CRLB that provides a lower bound on the variance of

any unbiased estimator. The BCRLB takes into account the uncertainty in parameter

estimation by incorporating the prior distribution of the parameters. BCRLB helps to

assess the efficiency of Bayesian estimators by comparing their performance to the lower

bound

The Bayesian information is given as [37]

J = E {I(θ)}+ IR, (2.12)

where I(θ) denotes the Fisher information function and IR represents the contribution of

the prior information that can be calculated from

IR = E
{( ∂

∂h
ln fθ(θ)

)2}
. (2.13)

Here, ln fθ(θ) is the log-PDF of the random variable θ. Therefore, the BCRLB can be

given as

V arB(θ̂) ≥
1

J
, (2.14)

where, VarB(θ̂) is the BCRLB of the random parameter θ, θ̂ is the estimator of θ.

2.7.2 Maximum Posteriori Probability Estimator

MAP estimator is a statistical technique employed for determining the most likely value of

unknown parameter θ within a probabilistic model based on observed data. In particular,
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it integrates prior information about the parameter with the likelihood function fθ(θ) of

the observed data to identify the parameter value f(x; θ) that maximizes the posterior

probability. Hence, the MAP estimator can be expressed as

θ̂MAP = argmax
θ

f(θ|x) = argmax
θ

ln f(θ|x), (2.15)

where f(θ|x) denotes the posteriori function of the of the parameter θ given the data x.

From Bayes’ rule, f(θ|x) can be written as

f(θ|x) = f(x|θ)fθ(θ)
fx(x)

, (2.16)

where fθ(θ) is the prior pdf of the unknown parameter θ, which represents the prior infor-

mation of the parameter. Furthermore, fx(x) denotes the likelihood function of the data x

given the parameter θ. While fx(x) is the pdf of the observed data x. Noting that fx(x) is

constant with respect to parameter θ, the MAP estimator can be calculated by maximizing

f(x|θ)fθ(θ) as follows:

θ̂MAP = argmax
θ

f(x|θ)fθ(θ) = argmax
θ

ln f(x|θ)fθ(θ). (2.17)

2.7.3 Minimum Mean Square Error Estimator (MMSE)

The MMSE method is an estimation technique designed to reduce the anticipated value of

the squared difference between the estimated parameter and the true parameter, commonly

known as the estimation error. This characteristic positions it as a measure of the mean

squared error in estimation. MMSE estimator can be given as

θ̂MMSE = argmin
θ

E[(θ̂ − θ)2]. (2.18)
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In other words, the MMSE is considered the optimal estimator which minimizes the MSE

of the estimation process, often referred to as the conditional mean estimator. This can be

expressed as

θ̂MMSE =E {θ|x} =

∫
θf(θ|x) dθ, (2.19)

where f(θ|x) is the posterior pdf, which can be represented according to Bayes’s Rule as

in (2.16).

It is worth mentioning that while the MMSE is considered as an optimal estimator,

it requires complex calculations of the posterior pdf, and obtaining a closed form for the

MMSE estimator may be challenging or, in some cases, not feasible.

2.7.4 Linear Minimum Mean Square Error Estimator (LMMSE)

LMMSE estimator is a special case of MMSE estimator that is designed to estimate an

unknown parameter θ in a linear fashion. It is particularly applicable when the relationship

between the observed data and the parameter is linear, such as

θ̂ =
N−1∑
n=0

anxn+ aN , (2.20)

where an and aN are weights to be determined such that the MSE E[(θ̂ − θ)2] of the

estimator is minimized. Therefore, the LMMSE estimator can be given as

θ̂ =
Cov(θ,x)

Var(θ)
+ E[θ]. (2.21)

One key advantage of the LMMSE estimator is it is not necessary to determine the pos-

terior pdf of the unknown parameter θ. Unlike MMSE and MAP estimators, the LMMSE

only depends on the first two moments of the parameter θ and the observed data x. This
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characteristic simplifies the computational requirements and offers a more straightforward

implementation.

2.7.5 Final Note:

Classical estimation is commonly used for deterministic parameters, and Bayesian esti-

mation is the preferred approach for random parameters due to the enhanced accuracy it

provides. Nevertheless, classical estimation can be employed to estimate a random param-

eter when there is insufficient prior information available.
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Chapter 3

Visible Light Communication with

Input-Dependent Noise: Channel

Estimation, Optimal Receiver Design

and Performance Analysis

3.1 Introduction

Indoor illumination is currently undergoing a revolution due to the widespread deployment

of LEDs. Unlike older illumination technologies, LEDs are capable of rapidly varying their

light intensities. The change is actually too fast to be visible to the human eye, allowing

data to be encoded in and transmitted through the emitted light. A photodetector (also

known as a photodiode) or an image sensor (i.e. a matrix of photodiodes) can receive

the modulated signals and decode the data. Therefore, LEDs can be utilized not only

for illumination but also for communication. This functionality has given rise to VLC

technology, where LEDs are used for high-speed data transfer (∼100 Mbps in IEEE 802.15.7

standard and up to multiple Gbps in research) [38].
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The use of light propagation for data transmission, whether in terrestrial or satellite

applications, can be traced back decades ago. However, with the ever-increasing demand for

high data rate wireless communication, VLC has recently regained considerable interest

from both industry and academia [39]. VLC has many advantages, such as worldwide

availability, high security and immunity to radio frequency (RF) interference [40].

Additionally, the visible light spectrum is unlicensed and still substantially unused

for communication. Transitioning to this spectrum would allow for low-cost broadband

communication while mitigating spectrum density in the RF. VLC systems have relatively

simple and inexpensive front-end components for both transmitters and receivers that

operate in the baseband. Furthermore, they do not require frequency mixers or complicated

algorithms to correct hardware impairments such as phase noise and in-phase/quadrature-

phase (I/Q) imbalance [41]. Without a doubt, VLC is a promising candidate for short-range

wireless communication in the future technologies.

3.1.1 Related Works

The novel transmission paradigm of VLC is quite different from RF communication. The

essential difference is that the transmitted signals in VLC must be real and positive. A

reliable VLC system is also required to be flicker-free and satisfy specific lighting and power

constraints [42]. Hence, the specifications of VLC requires re-engineering the designs across

many layers, including physical layer (PHY) signal processing and modulations [43]. Con-

sidering this, advanced PHY techniques originally proposed for RF communication have

been reconfigured for use in the context of VLC. For instance, the orthogonal frequency

division multiplexing (OFDM) technique has been applied to VLC with certain adjust-

ments [44–46].

Afterwards, advanced spatial modulation-based techniques were extended to VLC [47,

48]. Taking the power and lighting constraints into account, constellation designs were

revised for multi-carrier VLC systems with the aim of maximizing the minimum distance
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between two arbitrary constellation symbols [49, 50]. Even more, a framework was devel-

oped for LED-based VLC systems for the transmission power and rate optimization [51].

The performance of VLC systems, adopting hybrid modulation techniques, is also investi-

gated under dynamic fading channels [52].

In comparison to RF-based wireless communications, there has been limited consider-

ation of channel estimation for VLC. However, this is a key aspect to investigate when

it comes to the synchronization, equalization and implementation of transceiver functions

(e.g. precoding at the transmitter and data detection at the receiver). Although VLC

channels have unique properties that attract a lot of attention during the study of channel

estimation, the principles of traditional estimation technologies, such as the pilot-aided

schemes, may also apply to VLC scenarios. Considering this, several techniques have been

proposed to enhance the channel estimation performance of VLC systems as well as reduce

their BER [53–59]. For instance, an evaluation of two channel estimation methods, the LS

and MMSE algorithms, for indoor OFDM-based VLC systems was presented in [53].

Indeed, channel estimation schemes for OFDM-based VLC systems and their perfor-

mance are extensively studied in the literature [55]. In addition, [57] proposes a novel

neural network based methodology for the prediction of VLC channel parameters. The

problem associated with finding a scheme that minimizes the noise variance under max-

imum and average power constraints was solved in [60]. Next, the BER performance of

spatial multiplexing in a multiple-input multiple-output (MIMO) VLC system was eval-

uated in [61], where the channel matrix, estimated using constructed codes, was used in

data detection.

Chapter Organization. The rest of the chapter is organized as follows: Section 3.2 de-

scribes the channel and system models. Next, Section 3.3 discusses the channel estimation

and the Cramér–Rao lower bound. Then, Section 3.4 proposes the receiver designs and

presents their performance. Section 3.5 discusses the numerical results and the chapter is

concluded in section 3.6.
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Figure 3.1: Visible light communication system model

3.2 System and Channel Models

We consider a SISO-VLC downlink transmission scenario, where an LED is mounted on the

ceiling of a regular indoor environment to serve a user on the floor. The user is confined

within a circular area1 with radius R as shown in Fig. 3.1. The location of the user is

assumed to be static, and a symbol-by-symbol detection is performed on the receiver side.

However, an extension of this work to include a coded system would be straightforward.

Considering that thermal noise and SDSN affect the optical signal x sent from the LED,

the received signal by the user can be written as

y = hx+
√
hxnds + n, (3.1)

where x = s+d, s is the transmitted symbol and d is the bias level (DC value). n ∼ N (0, σ2
n)

is the signal-independent thermal noise, where N (µ, σ2) represents a Gaussian distribution

with mean µ and variance σ2. The term
√
hxnds is the SDSN term, where nds ∼ N (0, σ2

ds).

We can define a new term ζ2 =
σ2
ds

σ2
n

to represent the shot noise scaling factor. This is used

to indicate the strength of the SDSN compared with the signal-independent thermal noise.
1We assume that all users remain inside the circle. This is a practical assumption widely made in the

literature; however, it is key to note that outside this region, there is no coverage by the specified LED.
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In this way, the shot noise can be represented by nds ∼ N (0, σ2
nζ

2), and the term ζ2, which

can be determined by the receiver parameters, occupies practical values ranging from 1 to

10 [11,62]. However, our analysis is valid for any value of ζ2.

Generally, shot noise demonstrates Poisson distribution. However, it becomes congruent

with Gaussian distribution at large numbers of received photons, and this is associated with

the high-intensity nature of light in VLC systems [11,48,62–64].

The DC offset value d is added to guarantee that the VLC signal is always positive.

Furthermore, h denotes the channel gain of the VLC LoS beam between the LED and the

photodetector. Although there is no exact formula for calculating the channel gain h, the

LoS component has been modeled in the literature depending on several factors, including

the distance between the transmitter and receiver as [6, 27]

h =
Apdη(m+ 1)

2πD2
cosm(ϕtx)Ts(θrx)g(θrx) cos(θrx), (3.2)

where Apd is the detection area of the photodetector. Here, η is the average responsivity of

the receiver, D is the Euclidean distance from the transmitter to the receiver, ϕtx and θrx

refer to the angle of irradiance and the angle of incidence, respectively. Ts(θrx) is the gain

of the receiver’s optical filter, m = −1
log2(cos(Φ1/2))

is the Lambertian radiation order with

LED emission semi-angle Φ1/2. g(θrx) = n2/sin2(ΦFOV) denotes the gain of the optical

concentrator, which depends on the reflective index n of the concentrator and the field-of-

view angle ΦFOV . Note that g(θrx) = 0 when θrx > ΦFOV .

Even though the VLC channel consists of both LoS and NLoS diffused signals caused

by indoor reflectors, the weakest LoS signal is about 7 dB higher than the strongest NLoS

signal in indoor environments [65], and thus, NLoS can be fairly neglected. Hence, we only

consider the LoS VLC link in this work.
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3.3 Channel Estimation and Cramér–Rao lower bound

In this section, we calculate the CRLB, which can be used as a benchmark to evaluate the

estimators’ performance in the presence of the SDSN. Then, LS and ML estimators are

presented and studied.

3.3.1 Fisher Information and Cramér–Rao Lower Bound

In this part of the report, we find the Fisher information to calculate the CRLB. Let N be

the number pilot symbols and x = [x1, x2, · · · , xN]
T be the transmitted pilots’ vector, where

(.)T denotes the transpose operation. Then, the received signal vector y = [y1, y2, . . . , yN]
T

can be written as

y = hx+
√

hdiag(x)nds + n, (3.3)

where diag(x) is an N × N diagonal matrix with the elements of x in the main diagonal,

n = [n1, n2, . . . , nN]
T , and nds = [nds1, nds2, . . . , ndsN]

T . The elements of n are independent

and identically distributed random variables, i.e., n ∼ N (0, σ2
nIN) where IN is the identity

matrix of size N. The same for nds, i.e., nds ∼ N (0, ζ2σ2
nIN). It is worth mentioning that

all the pilot symbols must have positive values, i.e., xi > 0, where i ∈ {1, 2, · · · ,N}.

The lower bound on the variance of any unbiased estimator of h can be obtained using

the CRLB as follows2

σ2
ĥ
≥ 1

J(h)
, (3.4)

where J(h) is the Fisher information of h given by

J(h) = −E
{

∂2

∂h2
ln f(y;h)

}
. (3.5)

Here, E{·} denotes the expectation operator and ln f(y;h) is the log-likelihood function of
2An estimator of a given parameter, e.g., h, is said to be unbiased if its expected value is equal to the

true value of the parameter that should be estimated.
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the unknown channel h. Since we assume that all the samples are independent, the joint

PDF of N observations, which is also equal to the likelihood function of h, f(y;h), can be

written as

f(y;h) =

(
N∏
i=1

1√
2πσ2

n (1 + ζ2hxi)

)
exp

(
− 1

2σ2
n

N∑
i=1

(yi − hxi)
2

1 + ζ2hxi

)
. (3.6)

After some tedious mathematical manipulations, which are provided in APPENDIX A,

J(h) can be expressed as

J(h) =
1

2

N∑
i=1

(ζ2xi)
2

(1 + ζ2hxi)2
+

2x2
i

σ2
n(1 + ζ2hxi)

. (3.7)

Without loss of generality, and assuming that all the transmitted symbols are identical

i.e., xi=p, the Fisher information can be significantly simplified to

J(h) =
Np2

2σ2
n

ζ4σ2
n + 2ζ2hp+ 2

(1 + ζ2hp)2
. (3.8)

Consequently, the CRLB can be expressed as

CRLB =
2σ2

n

Np2
(1 + ζ2hp)2

ζ4σ2
n + 2ζ2hp+ 2

. (3.9)

It is observed from (3.9) that, as the number of pilots increases, the error estimation

decreases. Furthermore, if ζ2 → 0, the CRLB reduces to

lim
ζ2→0

CRLB =
σ2
n

Np2
. (3.10)

This is a well-known result when there is no SDSN, and this validates the presented analysis.

It is worth mentioning that the CRLB in (3.10) does not depend on the fading channel
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itself. However, as ζ2 → ∞, the CRLB in (3.9) can be expressed as

lim
ζ2→∞

CRLB =
2h2

N
. (3.11)

We can see that as ζ2 increases, the CRLB no longer depends on the transmitted power

or the thermal noise. On the other hand, increasing the number of pilot symbols improves

the CRLB; thus increasing the number of pilot symbols is more essential when trying

to improve the CRLB than increasing the transmitted power in the presence of SDSN.

Furthermore, as is evident from (3.11), as ζ increases, the CRLB starts to depend more on

the fading channel h.

Remark 1: The CRLB performance does not have a linear relationship with ζ2, σ2
n, or

h. i.e., increasing ζ2 might increase or decrease the CRLB depending on σ2
n and h values.

It is worth mentioning that in the case of σ2
n approaches zero, i.e., σ2

n → 0, after simple

mathematical manipulations, the CRLB can be expressed as

lim
σ2
n→0

CRLB =
2h2σ2

ds

N(σ2
ds + 2hp)

. (3.12)

As expected, when σ2
ds → 0, the CRLB approaches zero, indicating the perfect case. It

should be noted that CRLB ∝ σ2
n/p

2 and also CRLB ∝ σ2
ds/p, highlighting the greater

severity with which dependent noise affects the CRLB in comparison with thermal noise.

3.3.2 Least Square Estimator

Using the LS estimator, we can obtain a low-complexity receiver with no prior statistical

information. The estimated ĥ can be expressed as

ĥLS =
xTy

∥x∥2
. (3.13)
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The performance of the LS estimator can be evaluated by determining the MSE, which is

equivalent to the variance of the estimation error. Thus, the MSE can be calculated as

ϵLS = ĥLS − h. (3.14)

From (3.13), ĥLS can be simplified to

ĥLS = h+
xT

∥x∥2
√

hdiag(x)nds +
xT

∥x∥2
n. (3.15)

Taking into consideration the fact that E{ĥLS} = h, as seen in (3.15), we can conclude

that the LS estimator is unbiased. Furthermore, by applying both (3.14) and (3.15), ϵLS

can be written as

ϵLS =
xT

∥x∥2
(√

hdiag(x)nds + n
)
. (3.16)

It is evident from (3.16) that ϵLS is a Gaussian random variable, i.e., ϵLS ∼ N (0, σ2
ϵLS

),

where σ2
ϵLS

is inversely proportional to the pilots’ SNR value and can be written as

σ2
ϵLS

=
σ2
n

∑N
i=1 x

2
i (1 + ζ2hxi)(∑N
i=1 x

2
i

)2 . (3.17)

Now, assuming that the transmitted pilot xi = p for all i, σ2
ϵLS

can be further simplified as

σ2
ϵLS

=
σ2
n(1 + ζ2hp)

Np2
. (3.18)

It can be noted from (3.18) that the obtained CRLB is smaller than the σ2
ϵLS

, i.e.,

CRLB

σ2
ϵLS

=
2(1 + ζ2hp)

ζ4σ2
n + 2ζ2hp+ 2

=
2(1 + ζ2hp)

2(1 + ζ2hp) + ζ4σ2
n

< 1. (3.19)

Remark 2: The performance of the LS estimator reaches the CRLB in two cases: 1) when

the transmitted energy p → ∞, and 2) when ζ2 → 0.
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3.3.3 Maximum-Likelihood Estimator

The ML estimator is a technique used to gauge unknown parameters by maximizing their

likelihood PDF. Through the application of this estimator, the log-likelihood of (3.6) can

be given as

ln f(y;h) = −N

2
ln
(
2πσ2

n

)
− 1

2

N∑
i=1

[
ln(1 + ζ2hxi) +

(yi − hxi)
2

σ2
n(1 + ζ2hxi)

]
. (3.20)

The estimated channel in (3.20), can be determined by evaluating ∂
∂h

ln f(y;h) = 0, which

can be expressed as

−1

2

N∑
i=1

ζ2xi

1 + ζ2hxi

+
1

2σ2
n

N∑
i=1

[
2xi(yi − hxi)

1 + ζ2hxi

+
ζ2xi(yi − hxi)

2

(1 + ζ2hxi)2

]
= 0. (3.21)

While it is nearly impossible to manually find a closed-form expression for the roots of the

above equation (ĥML), numerical tools and software, such as Matlab, can easily solve for

ĥML.

In order to simplify the analysis while maintaining a degree of generality, we assume that

the transmitted pilot xi = p. After some mathematical manipulations, which were realized

by taking into account the fact that h can never be negative, (3.21) can be expressed as

the following quadratic equation

−h2 +Bh+ C = 0, (3.22)

where B and C can be expressed respectively as

B = − 2

ζ2p
− ζ2σ2

n

p
, (3.23)
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and

C = −σ2
n

p2
+

∑N
i=1 y

2
i

Np2
+

2
∑N

i=1 yi
Nζ2p2

. (3.24)

When determining the roots of the equation, keeping in mind that the VLC channel

cannot be negative, we can obtain the following result

ĥML =
1

2
B +

1

2

√
B2 + 4C. (3.25)

It is clear here that the estimator is biased, i.e., E{ĥML} ̸= h. When considering the law

of large numbers, however, it remains a reasonable estimator because as N → ∞ and
1
N

∑N
i=1 y

2
i → E{y2i } = h2p2 + σ2

n(1 + ζ2hp), 1
N

∑N
i=1 yi → E{yi} = hp. Therefore, from

(3.25) we obtain

E{ĥML} = E

1

2

[
− 2

ζ2p
− ζ2σ2

n

p

]
+

1

2

√√√√[− 2

ζ2p
− ζ2σ2

n

p

]2
+ 4

[
−σ2

n

p2
+

∑N
i=1 y

2
i

Np2
+

2
∑N

i=1 yi
Nζ2p2

]
N→∞−−−→ 1

2

[
− 2

ζ2p
− ζ2σ2

n

p

]
+

1

2

√[
− 2

ζ2p
− ζ2σ2

n

p

]2
+ 4

[
h2 + h

(
ζ2σ2

n

p
+

2

ζ2p

)]
N→∞−−−→ 1

2

[
− 2

ζ2p
− ζ2σ2

n

p

]
+

1

2

√(
2h+

[
2

ζ2p
+

ζ2σ2
n

p

])2

N→∞−−−→ h. (3.26)

It should be noted here that in practice, it is seldom known in advance how large N

must be in order for (3.26) to hold, however, our simulation results show that, depending

on ζ2, N ∈ {5, 20} is sufficiently enough to satisfy (3.26).

For the values h = 0.1 and σ2 = 1, the results are shown in Tables 3.1 and 3.2 for

varying numbers of pilot symbols. It is evident from the tables that a greater number

of samples is needed for the real value to converge at higher values of ζ2. It can also be

observed that the mean converges around N = 5, for ζ2 = 1, and N = 25 for ζ2 = 5, at
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Figure 3.2: The PDF of N (h,CRLB) and the histogram of the ML estimator when N = 5,
σn

2 = 1 and h = 0.3.

different levels of power.

Unlike the LS estimator, where the estimated ĥLS is always a Gaussian random variable,

it is obvious from (3.25) that ĥML cannot be a Gaussian random variable so long as ζ ̸= 0.

Thus, since the estimation is biased, the estimation error ϵML = h − ĥML cannot be a

Gaussian random variable and cannot have a zero mean. As a result, the MSE does not

equal the variance of the error, ϵML, but rather it equals E{ϵ2ML} − (E{ϵML})2.

It is extremely difficult to analytically study the MSE of the ML estimation, so we must

resort to some sort of approximation. The PDF, or histogram, of ĥML was constructed using

a Monte Carlo simulation in Fig. (3.2), and this was done for N = 5. In the same figure,

the theoretical PDF of N (h,CRLB) is plotted. It is evident from the figure that, when

superimposed, the histogram and theoretical PDF can hardly be distinguished from each

other. In other words, the theoretical PDF and histogram resemble each other to an almost

identical degree. Note that, for N = 5, the estimated PDF is slightly displaced to the left.
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Table 3.1: Theoretical asymptotic and actual mean for ML estimator at different power
levels, when h = 0.1 and ζ2 = 1.

Number of pilots, N 15 dB 20 dB 25 dB 30 dB
1 0.0866 0.0952 0.0984 0.0995
5 0.0974 0.0991 0.0997 0.0999
10 0.0987 0.0995 0.0998 0.1
15 0.0992 0.0997 0.0999 0.1
25 0.0995 0.0998 0.0999 0.1
50 0.0997 0.0999 0.1 0.1

Asymptotic value 0.1

Table 3.2: Theoretical asymptotic and actual mean for ML estimator at different power
levels, when h = 0.1 and ζ2 = 5.

Number of pilots, N 15 dB 20 dB 25 dB 30 dB
1 0.0805 0.0847 0.0926 0.0976
5 0.0951 0.0968 0.0986 0.0995
10 0.0974 0.0984 0.0993 0.998
15 0.0983 0.0989 0.0996 0.0998
25 0.0990 0.0993 0.0997 0.0999
50 0.0995 0.0997 0.0999 0.0999

Asymptotic value 0.1

This can also be observed in Tables 3.1 and 3.2, where the expected value of the estimated

ĥML is to the left of the actual value of h. However, for large values of N , the estimated

PDF is expected to more closely resemble the theoretical PDF.

We can conclude from the above discussion that, with a sufficient number of pilot

symbols (around N = 5), the ML is unbiased and, most importantly, achieves the CRLB,

i.e., ĥML ∼ N (h,CRLB). The ML estimator performance consequently reaches the CRLB.

It is worth mentioning that the LS estimator does not achieve the CRLB with a small

number of pilots, and this comparison demonstrates the superiority of ML over LS. On the

other hand, LS proves to be less complex since the ML estimator requires information on

σ2
n and ζ2.
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3.4 Receiver Designs and Performance Analysis

This section proposes two receiver designs, namely an optimal receiver and its less complex

sub-optimal version. Both receivers are presented under two scenarios: perfect and imper-

fect channel estimation. Furthermore, the error analysis of both receivers is presented in

the context of on-off-keying (OOK) modulation.

3.4.1 Receiver Designs

Considering the discussed VLC wireless communication system, the SDSN changes the

PDF of the received signal. There is a consequent need to design a receiver that can

support the resulting PDF. It is assumed that the M -PAM modulation scheme is applied,

and that (xp = ±(2b+ 1)∆ + d) is the modulated baseband transmitted signal. Here,

b ∈ {0, 1, · · · ,M − 1}, ∆ is the distance between the constellation points, and d is the DC

bias level that is strategically chosen in such a way that all the constellation points have

positive values.

From (3.1), the joint PDF of the received signal y, given the transmitted signal xp, can

be expressed as

fy|xp(y) =
1√

2πσ2
n(hxpζ2 + 1)

× exp

{
− (y − hxp)

2

2σ2
n(hxpζ2 + 1)

}
. (3.27)

Assuming equal probability of all transmitted symbols, i.e., p(xp) =
1
M

, the ML optimal

receiver can be expressed as

x̂opt = max
xp,p=0,··· ,M−1

{
− ln

(
hxpζ

2 + 1
)
− (y − hxp)

2

σ2
n(hxpζ2 + 1)

}
. (3.28)

Here, it can be concluded that the traditional ML receiver, which applies the minimum

Euclidean distance (MED), is not the optimal receiver in the presence of SDSN since it

ignores the existence of SDSN. However, the traditional sub-optimal receiver that does not
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need any statistical information on shot and thermal noises can be written as

x̂sub = min
xp,p=1,··· ,M−1

{
(y − hxp)

2
}
. (3.29)

It will be shown later that both receivers have a comparable error performance in some

cases. The same detection formulas in (3.28) and (3.29) can be applied in the case of

imperfect CSI by replacing h with ĥ.

OOK is the simplest method that can be used in VLC systems (IEEE 802.15.7). With

this technique, the intensity of an optical source is directly modulated by the information

sequences, which are usually binary. It is readily seen that OOK is a special case of M -

PAM, where x0 = 0, x1 = 2A (the DC bias d = A). By applying the optimal receiver

derived in (3.28), the optimal receiver for the OOK can be eventually formulated as

x̂opt =

x0 if ζ2

2
y2 + y < hA+ σ2

n

4Ah
[1 + 2Ahζ2] ln [1 + 2Ahζ2],

x1 otherwise.
(3.30)

Following the same logic, the sub-optimal receiver can be formulated as

x̂sub =

x0 if y ≤ hA,

x1 otherwise.
(3.31)

In this case, the same detection formulas in (3.30) and (3.31) can be applied to the case of

imperfect CSI if we replace h with ĥ. It is worth mentioning that the sub-optimal receiver

is identical to the optimal one in the absence of input-dependent noise.

3.4.2 Error Analysis of Sub-Optimal Receiver

In this subsection, the error analysis of the sub-optimal receiver is discussed. Given the

received signal in (3.1), and by utilizing the M -PAM modulation, (3.1) can be rewritten
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as

y = xph+ ω, (3.32)

where ω ∼ N (0, σ2
n(1 + xphζ

2)).

Perfect Estimation

The conditional probability (conditioned on the channel fading gain h) of using the sub-

optimal receiver to detect xq instead of the transmitted xp can be written as

P (xp, xq|h) = P
(
[y − hxp]

2 > [y − hxq]
2) = P

(
2h(xp − xq)ω > h2(xp − xq)

2
)

= Q

(√
h2(xp − xq)2

4σ2
n (1 + hxpζ2)

)
, (3.33)

where P (·) denotes the probability of an event. Now, the symbol error probability (SER)

of the M -PAM VLC system can be represented as

Ps(e) =
1

M

(
P (x0, x1) + P (xM−1, xM−2) +

M−1∑
i=p

[P (xi−1, xi) + P (xi−1, xi−2)]

)
. (3.34)

As a special case, the BER value for OOK can be written as

P (e|h) = 1

2
P (x0, x1|h) +

1

2
P (x1, x0|h). (3.35)

From (3.33), the BER in (3.35) can be expressed as

P (e|h) = 1

2
Q

(√
h2A2

σ2
n

)
+

1

2
Q

(√
h2A2

σ2
n(1 + 2Ahζ2)

)
. (3.36)

It is worth mentioning that the error probability of P (x0, x1|h) < P (x1, x0|h), and therefore,

the error probability is nonidentical to what is seen in traditional RF systems.
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Moreover, in the absence of SDSN, i.e., ζ = 0, the above expression can be simplified

to

P (e|h)ζ=0 = Q

(√
h2A2

σ2
n

)
. (3.37)

Remark 3: According to (3.36) and (3.37), we have

P (e|h)ζ ̸=0

P (e|h)ζ=0

=
1

2

1 + Q
(√

h2A2

σ2
n[1+2Ahζ2]

)
Q
(√

h2A2

σ2
n

)
 > 1, (3.38)

which is valid because the second term in the bracket is greater than one. Hence, as

expected, the BER performance when ζ = 0 is better than what is seen when ζ ̸= 0.

In other words, the SDSN deteriorates the error system performance. Furthermore, the

asymptotic error performance as ζ → ∞, i.e., large values of ζ, can be written as

P (e|h)ζ→∞ =
1

4
+

1

2
Q

(√
h2A2

σ2
n

)
≈ 1

4
. (3.39)

Imperfect Estimation

The receiver estimates the channel gain h and uses the result in the same metric that

would be applied if the channel was perfectly known. Hence, the conditional probability

of detecting xq instead of the transmitted xp can be expressed as

P (xp, xq|ĥ) = P

([
y − ĥxp

]2
>
[
y − ĥxq

]2)
= Q

√ ĥ2(xp − xq)2

4σ2
n (1 + hxpζ2) + 4x2

pσ
2
ϵ

 , (3.40)

where ϵ denotes the channel estimation error. The SER of M -PAM can be obtained by

substituting (3.40) into (3.34). Moreover, the OOK BER can be rewritten as

P (e|ĥ) = 1

2
Q

√ ĥ2A2

σ2
n

+
1

2
Q

√ ĥ2A2

σ2
n(1 + 2Ahζ2) + 4A2σ2

ϵ

 . (3.41)
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It is clear that the error performance degrades due to imperfect channel estimation.

3.4.3 Error Analysis of the Optimal Receiver for OOK

In this subsection, the optimal error analysis for OOK is presented for both perfect and

imperfect estimation cases. The error probability of P (x1, x0) can be written as

P (x1, x0|h) = P

(
ζ2

2
(2Ah+ ω)2 + 2Ah+ ω < hA+

σ2
n

4Ah
γ ln γ

)
= P

(
ζ2

2
√
γ
u2 + u < −hA

√
γ
+

σ2
n

4Ah
√
γ
ln γ

)
, (3.42)

where γ = 1 + 2Ahζ2 and u ∼ N (0, σ2
n). To simplify the analysis, and for small values of

σ2
n < 0.001, the above equation can be approximated as

P (x1, x0|h) ≈ P

(
u >

hA+ ζ2σ2
n

2
− σ2

n

4Ah
ln(1 + 2Ahζ2)√

1 + 2Ahζ2

)

≈ Q


√√√√[hA+ ζ2σ2

n

2
− σ2

n

4Ah
ln(1 + 2Ahζ2)

]2
σ2
n(1 + 2Ahζ2)

 . (3.43)

Furthermore, the error probability P (x0, x1|h) can be given as

P (x0, x1|h) ≈ Q


√√√√[hA− ζ2σ2

n

2
+ σ2

n(1+2Ahζ2)
4Ah

ln (1 + 2Ahζ2)
]2

σ2
n

 . (3.44)

48



Therefore, the overall error probability can be expressed as

P (e|h) ≈1

2
Q


√√√√[hA+ ζ2σ2

n

2
− σ2

n

4Ah
ln(1 + 2Ahζ2)

]2
σ2
n(1 + 2Ahζ2)



+
1

2
Q


√√√√[hA− ζ2σ2

n

2
+ σ2

n(1+2Ahζ2)
4Ah

ln (1 + 2Ahζ2)
]2

σ2
n

 . (3.45)

Similarly, the error probability for imperfect channel estimation can be expressed as

P (e|ĥ) ≈1

2
Q


√√√√[ĥA− ζ2σ2

n

2
+ σ2

n(1+2Aĥζ2)

4Aĥ
ln
(
1 + 2Aĥζ2

)]2
σ2
n



+
1

2
Q


√√√√[ĥA+ ζ2σ2

n(1+2Ahζ2)

2(1+2Aĥζ2)
− σ2

n

4Aĥ
ln(1 + 2Aĥζ2)

]2
σ2
n(1 + 2Ahζ2)

 . (3.46)

The SER of M -PAM can be obtained by deriving P (xp, xq|h) and substituting it into

(3.34) for perfect channel estimation. Similarly, by deriving P (xp, xq|ĥ) and substituting

it into (3.34), we can determine the SER of M -PAM for imperfect channel estimation.

3.5 Simulation Results and Discussion

The previous section concluded that the ML estimator is biased while the LS is not. Recall

that the CRLB expresses the lower bound of the variance for the unbiased estimators of a

deterministic parameter.

Fig. 3.3 plots the CRLB against the LS and ML estimators’ performance for one pilot

when σn
2 = 10−1 and h = 10−2 at different levels of SDSN. Various observations can be

made, and they can all be summarized as follows:
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Figure 3.3: CRLB, σ2
ϵLS

and σ2
ϵML

when σn
2 = 10−1 and h = 10−2.

• Both ML and LS estimators have the same performance as the CRLB when ζ2 = 0.

• The performance of the ML estimator eclipses that of the LS and CRLB when using

one pilot.

• Increasing the SDSN level increases the difference between the estimators’ perfor-

mances. This can be clearly noticed from the subplots of ζ2 = 3 and ζ2 = 10.

• Increasing the SDSN level has a negative impact on the performance of the LS esti-

mator.

• The relationship between the SDSN level and CRLB is non-linear, as can be con-

cluded when looking at the CRLB subplot. Here, increasing the value of ζ2 has a

positive effect before a threshold power value and a negative effect afterwards. The

same trend can be seen for the ML estimator in the ML subplot.
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Figure 3.4: CRLB, σ2
ϵLS

, and σ2
ϵML

at different number of pilots when σn
2 = 1 and h = 10−1.

• The SDSN has a notable impact on the channel estimation accuracy in the high-

energy region.

• All curves approach the same performance after a certain energy value. This value

shifts to the right at higher levels of SDSN.

Fig. 3.4 plots the CRLB against LS and ML estimators’ performances while increasing

the number of pilots. Here, σn
2 = 1, h = 10−1 and ζ2 = 5. Two conclusions can be drawn

from this figure: 1) All the remarks made when discussing the previous figure remain valid

when increasing the number of pilots and 2) the performance of the ML approaches that

of the CRLB when increasing the number of pilots.

This section discusses the numerical results of SISO-VLC performance in a system under

the joint effects of SDSN and imperfect CSI. All results are analyzed for both the optimal

and sub-optimal receivers. We assume OOK modulation technique with two transmitted
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Figure 3.5: Analytical and simulation BER performance for the optimal and sub-optimal
receivers.

signals x0 = 0, x1 = 2A. The simulation results are obtained using Monte Carlo simulations

using at least 106 transmitted symbols for each figure.

Fig. 3.5 shows the analytical and simulation BER results for the optimal and sub-

optimal receivers when ζ2 = 5 at different values of σ2
n and h. Three conclusions can be

drawn from this figure: 1) In general, the optimal receiver outperforms the sub-optimal one,

however, the performance difference between them shrinks as ζ2 → 0. 2) The analytical

and simulation results of the sub-optimal receiver match perfectly for all values of σ2
n, and

finally 3) The analytical and simulation results of the optimal receiver perfectly match

what is seen when σ2
n = 10−4. We can consequently deduce that our approximation in

(3.45) is fairly accurate, i.e., as long as σ2
n ≤ 10−3.

Fig. 3.6 discusses the impact of ζ2 on the performance of the optimal and sub-optimal

receivers when σn
2 = 10−3, h = 5 × 10−4 and ζ2 is incremented along [0, 3, 10]. It can be

observed that the BER increases as ζ2 increases. Moreover, the result here agrees with

the one in the previous figure, where the optimal receiver outperforms the sub-optimal for
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Figure 3.6: BER performance at different levels of SDSN when σn
2 = 10−3 and h = 5×10−4.

all values of ζ2. Until now, we have discussed the system performance assuming perfect

CSI. In order to achieve more practical results, the joint impacts of imperfect CSI and the

SDSN are analyzed in Figs. 3.7 and 3.8.

In Fig. 3.7, the effect of imperfect CSI is presented when the estimation error variance

equals to the CRLB (σ2
ϵ = CRLB) upon the use of one pilot. As indicated by the figure,

more degradation in the performance can be noticed due to the joint effects of the channel

estimation error and the SDSN. This degradation worsens at higher levels of SDSN. The

effect of imperfect CSI when the estimation error variance has a fixed value of (σ2
ϵ = 10−3) is

given in Fig. 3.8. As the figure shows, more degradation in the performance can be noticed

compared to what was seen in Fig. 3.7 when the estimation error variance reached the

CRLB. This confirms the importance of the estimation phase when trying to maintain the

system performance. One more interesting observation related to the system performance

in the high SNR region can be made: The performance of the sub-optimal receiver at
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Figure 3.7: BER performance at different levels of SDSN when σ2
ϵ equals the CRLB with

one pilot, σn
2 = 10−1 and h = 10−1.

different levels of SDSN saturates and reaches the performance of the optimal receiver

when ζ2 = 0. This can be explained by noting the BER in (3.41) and (3.46), where

BER → Q
(√

ĥ2

4σ2
ϵ

)
as A → ∞. One last conclusion that can be drawn is that the error

performance of the optimal detector saturates at a lower error probability compared to

the sub-optimal detector, i.e., the optimal detector saturates at BER≈ 2× 10−4 while the

sub-optimal saturates at ≈ 1× 10−3.

3.6 Conclusion

This chapter introduces an analytical framework to study the performance of SISO-VLC

under the effect of SDSN in cases perfect and imperfect channel estimation. LS and ML

estimators were proposed and compared to the derived CRLB. Furthermore, optimal and
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Figure 3.8: BER performance at different levels of SDSN when σ2
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sub-optimal receivers were designed and compared. The analytical results corroborated by

Monte Carlo simulation show the superiority of the optimal receiver design compared to

the sub-optimal one in all conditions.

In addition, results demonstrated that SDSN negatively affects the system BER and

the channel estimation error bound, and that it has a non linear effect on CRLB. Closed-

form expressions of BER for sub-optimal detectors with OOK and M -PAM modulation

techniques are derived, and an approximated BER expression for the optimal detector using

OOK is presented. Deriving a closed-form expression of the BER for optimal receiver using

OOK and M -PAM modulation techniques are considered for our future work.
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Chapter 4

Random Channel Estimation in Visible

Light Communication Systems: The

Effect of Input Signal-Dependent Noise

4.1 Introduction

The recent explosive growth in the number of devices connected to mobile networks, along

with the accelerated development of online applications and services, have intensified the

demand for ubiquitous connectivity and high capacity. As a result, there is no end to the

problems faced by RF communications. VLC has been introduced as a complementary

technology to address these challenging problems.

VLC exploits visible light for both illumination and data transmission. It utilizes the

wide, untapped, free, and unlicensed electromagnetic (EM) spectrum from 375 nm to 782

nm [27]. In addition to a wider bandwidth, VLC boasts of many advantages over tra-

ditional RF communications. In particular, VLC does not interfere with RF systems,

which makes it convenient to be used in aircraft cabins, hospitals, mines, and other EM

interference-sensitive environments. Moreover, a particularly unique characteristic of visi-
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ble light, namely that it cannot penetrate through walls, ensures an ideal communication

environment for areas requiring high information security [66].

On the other hand, VLC has garnered significant research interest due to the use of

LEDs for illumination instead of incandescent lamps. Compared to the latter, LEDs have

a higher tolerance to humidity, higher power efficiency, and a smaller size. Furthermore,

the use of LEDs as VLC transmitters is very cost-effective, especially when compared to

using RF communications [67].

In VLC, data is modulated onto the instantaneous intensity of the released light, which

is known as IM VLC [68]. At the receiving end, a photo-detector (PD) or an image

sensor is used to detect the varying intensities of light, a method known as direct detection

(DD) [68]. IM/DD is a simple and low-cost modulation technique; however, it requires

the transmitted signal to satisfy the real and non-negative constraints. These constraints

entail modifications to most modern modulation techniques used in RF systems before their

application in VLC systems. In other words, a very limited number of simple modulation

techniques, such as OOK, pulse position modulation (PPM), pulse amplitude modulation

(PAM), and pulse width modulation (PWM), can be directly employed in VLC, but more

advanced modulation schemes necessitate a few modifications before a first implementation

in VLC [25].

In VLC systems, there are two main sources of noise: thermal noise and shot noise.

The former occurs due to electron excitation in the conductive material of the photo diode,

and is therefore independent of the signal and follows a Gaussian distribution [69].

On the other hand, shot noise is generated by the LED’s transmitted signal at the

receiver, and is due to an incidence of photons interacting with the photo diode. Shot

noise follows a Poisson distribution and is signal-dependent. As such, it is termed SDSN.

Although SDSN is Poisson-distributed, it is often modeled as Gaussian due to the large

number of photons. In fact, ample lighting in VLC systems allows the shot noise to appear

quite Gaussian [9, 11, 70].
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SDSN has a serious deleterious impact on VLC system performance, as it dramatically

reduces the ability to achieve high data rates [71–73].

4.1.1 Related Work

Although VLC is widely used in many applications due to its unique characteristics, its

benefits remain untapped unless channel estimation is accurate [74]. Therefore, in order to

design a reliable VLC system, an efficient estimator is a primary need. Considering that

some work has been done in the literature to estimate the channels of VLC systems. For

instance, in [75], the channel estimation of an OFDM-VLC system using LS and the MMSE

was investigated. In [76], an adaptive statistical Bayesian MMSE technique was presented

for optical OFDM-aided VLC systems, and a new mechanism called the variable statistic

window (VSW), was proposed to enhance the performance of the channel estimator by

exploiting the past channel information. A closed-form expression was derived for the

symbol error probability (SEP) of a SISO VLC system with perfect CSI in [7]. Moreover,

the SEP was derived for the imperfect CSI case, in which the system estimates the channel

gain using the LS estimation technique.

The receiver structure for a wide FOV VLC system with random receiver orientation

and location was presented assuming imperfect CSI in [77]. Here, the LS estimation tech-

nique was used to determine the CSI needed for receiver design. Moreover, using the

designed receiver, the authors derived closed-form expressions for the SEPs. To enhance

the spectral efficiency in multiple-input and single-output (MISO) optical OFDM VLC

systems, a new estimation method called super training-based channel estimation was pro-

posed in [78]. Next, a novel blind channel estimation scheme was designed in [79] with

the aim of enhancing the channel estimation accuracy. In [80], an efficient and flexi-

ble de-noising convolutional neural network (FFDNet)-based channel estimation technique

was investigated for MIMO VLC systems, and the results demonstrated that FFDNET

provided better performance compared to the MMSE technique.
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The optimization of VLC systems under the assumption of average and maximum trans-

mit power constraints was studied in [60]. In order to mitigate the co-channel interference

between the transmitters, LS channel estimation was utilized in [81] with an ML equalizer

for MIMO-VLC systems, and the BER performance was investigated by considering vari-

ous conditions. Furthermore, the performance of the spatial multiplexing in MIMO-VLC

systems was investigated by calculating the BER in [61].

Despite the dramatic distortion effects of the SDSN on the VLC system performance,

there are only a few works considering VLC systems with SDSN. In one of these stud-

ies [82], two methods were proposed to estimate the fixed (deterministic) channel of a

SISO-VLC system, and CRLB was derived. The estimation performance of the proposed

methods was evaluated in terms of MSE. Moreover, designs were proposed for the optimal

and sub-optimal receivers, and their BER performances were also presented. In particular,

we derived a closed-form expression of the BER for the sub-optimal receiver and an ap-

proximated version for the optimal one. In [11], a two-dimensional constellation diagram

was designed for a VLC system with SDSN to minimize the maximum SEP. Different mod-

ulation design methods for both single- and multi-carrier VLC systems with SDSN were

introduced in [12]. Additionally, two different optimization problems were solved to get

the best constellations for the proposed systems. Optimal and approximated traditional

log-likelihood ratio (LLR) were derived for a VLC system using Avalanche photo-diodes

in [83] by considering SDSN.

To the best of the authors’ knowledge, random channel estimation has not been studied

in the literature for VLC systems with SDSN under the effect of imperfect CSI.

Chapter Organization : The rest of the chapter is organized as follows: The channel

and system models are introduced in Section 4.2. In Section 4.3, four different estimators

and the BCRLB are derived under the assumption of a known SDSN factor ζ2, while

Section 4.4 discusses the case of unknown ζ2 at the receiver and proposes two solutions

for it. Section 4.5 proposes a receiver design for the random channel gain h. Next, the
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obtained numerical results are presented with insightful discussions in Section 4.6. Finally,

concluding remarks are provided in Section 4.7.

4.2 System and Channel Models

We consider a SISO-VLC downlink transmission scenario, where an LED is mounted on the

ceiling of a regular indoor environment to serve a user on the floor. The user is confined

within a circular area1 with radius R as shown in Fig. 4.1. The location of the user is

assumed to be static, and a symbol-by-symbol detection is performed on the receiver side.

However, an extension of this work to include a coded system would be straightforward.

Considering that thermal noise and SDSN affect the optical signal x sent from the LED,

the received signal at the user is written as [11,62,84]

y = hx+
√
hxnds + n, (4.1)

where x = s+d, while s is the transmitted symbol and d is the bias level (DC value), which

is added to guarantee that the VLC signal is always positive. Without loss of generality,

and assuming that 1) binary-PAM is used, 2) the input data s ∈ {−A,A}, and 3) the

DC offset d = A, then the transmitted signal x ∈ {0, 2A} and A can be any positive

value. Additionally, n ∼ N (0, σ2
n) is the signal-independent thermal noise, and

√
hxnds

is the SDSN term, where nds ∼ N (0, σ2
ds). Here, we define a new term ζ2 = σ2

ds/σ
2
n, and

call it the shot noise scaling factor, which is used to indicate the strength of the SDSN

compared with the signal-independent thermal noise. Thus, the shot noise is represented

by nds ∼ N (0, σ2
nζ

2), and the term ζ2, which can be determined by the receiver parameters,

takes practical values ranging between 1 and 10 [11,62]. Nevertheless, our analysis is valid

for any value of ζ2.
1We assume that all users remain inside the circle. This is a practical assumption widely made in the

literature; however, it is key to note that outside this region, there is no coverage by the specified LED.
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It is worth noting that the shot noise is generally characterized by a Poisson distribution.

However, the high-intensity nature of light in VLC systems makes it congruent with a

Gaussian distribution at large numbers of received photons [9, 48, 63, 64]. On the other

hand, the PDF of the channel gain h can be given as [85]

fh(h) =

Υ h
−2

m+3
−1 hmin ≤ h ≤ hmax,

0 otherwise,
(4.2)

where Υ can be expanded as

Υ =
2C

2
m+3 ((m+ 1)L(m+1))

2
m+3

(m+ 3)R2
. (4.3)

Here, C being a transceiver-dependent constant, L is the vertical distance from the LED

to the receiver plane and m denotes the order of the Lambertian radiation pattern followed

by the LED, which is given by

m =
−1

log2(cos(Φ1/2))
, (4.4)

where Φ1/2 is the LED transmitter emission semi-angle at a half-power level.

For there to be unity in the condition of the channel power [7], i.e., E{h2} = 1, we

have (
C(m+ 1)Lm+1

)2
=

(m+ 2)R2 (L2 (R2 + L2))
m+2

(R2 + L2)m+2 − L2(m+2)
, (4.5)

and the values of hmin and hmax are given in [7] as

hmin =
RL(m+2)(m+ 2)1/2

(R2 + L2)1/2
(
(R2 + L2)m+2 − L2(m+2)

)1/2 , (4.6)

hmax =
RL(m+2)(m+ 2)1/2

L
(
(R2 + L2)m+2 − L2(m+2)

)1/2 . (4.7)

Consequently, noting that σ2
h = E{h2} − µ2

h, the mean value of the random channel gain
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Figure 4.1: The SISO VLC system model.

h can be calculated as

µh =
(m+ 3)Υ×

(
RL(m+2)(m+ 2)1/2

)m+1
m+3

(m+ 1)×
((
R2 + L2

)m+2 − L2(m+2)
) m+1

2(m+3)

(
1

L
m+1
m+3

− 1

(L2 +R2)
m+1

2(m+3)

)
. (4.8)

4.3 Bayesian Cramér–Rao Lower Bound and Channel

Estimation for Known ζ2

In this section, considering that the factor ζ2 is known, the BCRLB is firstly derived to get

a benchmark to evaluate the performance of the presented estimators. Then, the details

of the five estimators (ML, LS, MAP, LMMSE and MMSE) that are proposed to solve

the random channel gain estimation problem in VLC systems are given. Furthermore,

the numerical and simulation results of SISO-VLC performance are discussed in a system

under the joint effects of SDSN and imperfect CSI. The results are analyzed by assuming

that the factor ζ2 is known for all considered estimators.
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4.3.1 Bayesian Cramér–Rao Lower Bound (BCRLB)

Let it be assumed that a sequence of N pilot symbols, x, is conveyed from the transmitter

of the VLC system to the receiver in order to estimate the random channel gain, h, before

the realization of data transmission. Denoting the pilot symbols as x = [x1, x2, · · · , xN]
T

and defining the various additive noises with n = [n1, n2, . . . , nN]
T , the received signal

vector y = [y1, y2, . . . , yN ]
T can be expressed by

y = hx+
√
hdiag(x)nds + n. (4.9)

Note that the elements of n are independent and identically distributed (i.i.d.) Gaussian

random variables with zero mean, i.e., n ∼ N (0, σ2
nIN), where IN is the identity matrix

of size N . Now, suppose that the prior information of the channel gain PDF, fh(h), is

available at the receiver, then the Bayesian information is given as [37]

J = E {If (h)}+ IR, (4.10)

where If (h) denotes the Fisher information function and IR represents the contribution of

the prior information that can be calculated from

IR = E
{( ∂

∂h
ln fh(h)

)2}
. (4.11)

Here, ln fh(h) is the log-PDF of the random variable h, the first derivative with respect to

h, which is obtained as

∂

∂h
ln fh(h) =

(
−2

m+ 3
− 1

)
1

h
. (4.12)

Substituting (4.12) into (4.11), IR can be expressed by

IR =

(
2

m+ 3
+ 1

)2

E

{
1

h2

}
. (4.13)
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Considering that the expected value of a random variable z can be determined by

E {g(z)} =
∫ zmax

zmin
g(z)fz(z)dz, and by calculating the term E

{
1
h2

}
, (4.13) can be rewritten

as

IR = −Υ
(m+ 5)2

2(m+ 3)(m+ 4)

(
h
(−2m−8

m+3
)

max − h
(−2m−8

m+3
)

min

)
. (4.14)

Following that, the term E{If (h)} in (4.10), which represents the contribution of the

data, should be obtained to find the Bayesian information. Therefore, If (h) is calculated

first from

If (h) = −E
{

∂2

∂h2
ln f(y|h)

}
, (4.15)

where ln f(y|h) is the log-likelihood function of the unknown channel h. Since we assume

that all the samples are i.i.d., the joint PDF of N observations, which is also equal to the

likelihood function of h, f(y|h), can be written as

f(y|h) =

(
N∏
i=1

1√
2πσ2

n (1 + ζ2hxi)

)
exp

(
− 1

2σ2
n

N∑
i=1

(yi − hxi)
2

1 + ζ2hxi

)
. (4.16)

Taking the natural logarithm of f(y|h), we have

ln f(y|h) =− N

2
ln
(
2πσ2

n

)
− 1

2

N∑
i=1

ln
(
1 + ζ2hxi

)
− 1

2σ2
n

N∑
i=1

(yi − hxi)
2

1 + ζ2hxi

. (4.17)

Thus, the first partial derivative of ln f(y|h) with respect to h can be obtained as

∂

∂h
ln f(y|h) =− 1

2

N∑
i=1

ζ2xi

1 + ζ2hxi

+
1

2σ2
n

N∑
i=1

2xi(yi − hxi)

1 + ζ2hxi

+
ζ2xi(yi − hxi)

2

(1 + ζ2hxi)2
. (4.18)

Then, the second partial derivative is found to be

∂2

∂h2
f(y|h) = 1

2σ2
n

N∑
i=1

σ2
n(ζ

2xi)
2

(1 + ζ2hxi)2
−
[

2(xi)
2

1 + ζ2hxi

+
2ζ2(xi)

2(yi − hxi)

(1 + ζ2hxi)2
+

2ζ2(xi)
2(yi − hxi)

(1 + ζ2hxi)2
+

2(ζ2xi)
2(yi − hxi)

2

(1 + ζ2hxi)3

]
. (4.19)
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Noting that E{yi} = hxi and E{(yi−hxi)
2} = σ2

n(1+ζ2hxi), If (h) in (4.10) can be written

as follows

If (h) =
1

2

N∑
i=1

(ζ2xi)
2

(1 + ζ2hxi)2
+

2x2
i

σ2
n(1 + ζ2hxi)

. (4.20)

Without loss of generality, and assuming that xi = p (∀i = 1, · · · , N), E {If (h)} can

be expressed by

E {If (h)}
Nζ4p2

2
E
{

1

(1 + ζ2hp)2

}
+

Np2

σ2
n

E
{

1

(1 + ζ2hp)

}
. (4.21)

Furthermore, utilizing (4.2), (4.21) can be rewritten as

E {If (h)} =
Nζ4p2

2
Υ

∫ hmax

hmin

h−(m+5)/(m+3)

(1 + ζ2hp)2
dh+

Np2

σ2
n

Υ

∫ hmax

hmin

h−(m+5)/(m+3)

(1 + ζ2hp)
dh. (4.22)

After some mathematical manipulations, (4.22) can be rewritten as follows

E {If (h)} =

[
−ΥNζ4p2

4
(m+ 3)h

−2
(m+3)

2

F1

(
−2

(m+ 3)
, 2;

(m+ 1)

(m+ 3)
;−phζ2

)
− ΥNp2

2σ2
n

(m+ 3)h
−2

m+3 2F1

(
−2

(m+ 3)
, 1;

(m+ 1)

(m+ 3)
;−phζ2

)]hmax

hmin

. (4.23)

Consequently, the BCRLB can be calculated from

σ2
ϵ ≥ 1

J
, (4.24)

where J can be obtained by substituting (23) and (14) into (4.10).

Remark 1: The Fisher information function of the SISO-VLC system without SDSN

can be obtained by substituting ζ = 0 in (4.20), and thus, it can be written as follows

If (h) =
N∑
i=1

x2
i

σ2
n

. (4.25)

Additionally, assuming that xi = p (∀i = 1, · · · , N), the contribution of the data, which is
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defined in (4.21), turns into

E {If (h)} =
Np2

σ2
n

. (4.26)

Therefore, the BCRLB of the SISO-VLC system can be given in the absence of SDSN as

follows

σ2
ϵ ≥

[
Np2

σ2
n

− Υ(m+ 5)2

2(m+ 3)(m+ 4)

(
h
(−2m−8

m+3
)

max − h
(−2m−8

m+3
)

min

)]−1

. (4.27)

It can be noted that the BCRLB is less than the CRLB given in [82], which is expected

because of the prior information function. That is, the more information the receiver has

about the channel gain, the less estimation error there will be [86].

4.3.2 Least Square (LS) Estimator

The LS estimator provides a less complex alternative to the ML estimator. In this method,

no prior statistical information is needed. Instead, the estimated channel, ĥ, is expressed

by

ĥLS =
xTy

∥x∥2
. (4.28)

In order to evaluate and compare the performance of the estimators, we calculate the MSE

value, which is equivalent to the variance of the estimation error in the LS estimator.

Considering that, the error of the LS estimator can be given as

ϵLS = ĥLS − h. (4.29)
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On the other hand, ĥLS can be expressed using (4.1) as

ĥLS = h+
xT

∥x∥2
√

hdiag(x)nds +
xT

∥x∥2
n. (4.30)

Realizing that E{ĥLS} = µh from (4.30), it can be concluded that the LS estimator is

unbiased. Furthermore, utilizing both (4.29) and (4.30), ϵLS can be written as

ϵLS =
xT

∥x∥2
(√

hdiag(x)nds + n
)
. (4.31)

It can be noted from (4.31) that ϵLS is a Gaussian random variable, i.e., ϵLS ∼ N (0, σ2
ϵLS

).

Here, the variance of the estimation error, σ2
ϵLS

, is inversely proportional to the pilots’ SNR

value, and it can be given by

σ2
ϵLS

=
σ2
n

∑N
i=1 x

2
i (1 + ζ2µhxi)(∑N
i=1 x

2
i

)2 . (4.32)

Now, assuming that the transmitted pilot xi = p for all i, σ2
ϵLS

can be simplified as follows

σ2
ϵLS

=
σ2
n(1 + ζ2µhp)

Np2
. (4.33)

It is also worth noting that the error variance for the LS estimator, which gives the

MSE, becomes σ2
ϵLS

= σ2
n

Np2
for ζ2 = 0. This is not a surprising result, since it is traditionally

well-known for the case of no SDSN. However, in the presence of the SDSN and large p,

the MSE can be approximated as σ2
ϵLS =

σ2
hζ

2µh

Np
. It is important to note the implication of

this on the decay of the MSE, namely that the decay is mitigated by the presence of SDSN

(i.e., proportional to 1/p) and remains much more dramatic in its absence (proportional

to 1/p2).
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4.3.3 Maximum Likelihood (ML) Estimator

The ML estimator can be defined as finding the value of the parameter h, such that the

likelihood function is maximized. Applying this estimator, the channel gain of the VLC

system can be calculated by making (4.18) equal to zero and then solving it for h as follows

∂

∂h
ln f(y|h) = −1

2

N∑
i=1

ζ2xi

1 + ζ2hxi

+
1

2σ2
n

N∑
i=1

[
2xi(yi − hxi)

1 + ζ2hxi

+
ζ2xi(yi − hxi)

2

(1 + ζ2hxi)2

]
= 0

(4.34)

If we assume that the same pilot signals are sent each time, i.e., xi = p for all i, then the

estimated value of h can be found to be

−ĥ2 +Bĥ+ C = 0, (4.35)

Taking into account that the channel gain h cannot be negative, ĥ can be calculated as

ĥML =
B +

√
B2 + 4C

2
, (4.36)

where B and C are given by

B = −σ2
nζ

2

p
− 2

ζ2p
, (4.37)

and

C = −σ2
n

p2
+ 2

∑N
i=1 yi

Np2ζ2
+

∑N
i=1 y

2
i

Np2
. (4.38)

Since it is difficult to calculate the MSE of the ML estimator analytically, the perfor-

mance of the ML estimator will be studied using simulation results.

Remark 2: Please note from (4.34) that in the absence of SDSN, i.e., ζ2 = 0,

∂

∂h
ln f(y|h) = 1

2σ2
n

N∑
i=1

2xi(yi − hxi)

1 + ζ2hxi

= 0 (4.39)
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Assuming that xi = p (∀i = 1, · · · , N), the channel gain can be calculated as ĥML =
∑N

i=1 yi
Np

,

which is equal to ĥLS in (4.28). This means that in the absence of SDSN, both ML and LS

have the same performance, which consequently means that the MSE of ML equals that

of the LS which equals σ2
n

Np2
at ζ2 = 0.

Remark 3: Although our derived ML estimator is biased, i.e., E{ĥML} ̸= E{h}, it is

asymptotically unbiased 2 indeed. In other words, E{ĥML} = E{h} at very large numbers

of symbols, i.e. N → ∞. Therefore, with a large number of symbols, N , the ML is unbiased

and achieves the CRLB, i.e., ĥML ∼ N (h,CRLB) [87], where CRLB equals the inverse of

the Fisher information function given in (4.20). Assuming that xi = p (∀i = 1, · · · , N),

the CRLB can be written as

CRLB =
2σ2

n

Np2
(1 + ζ2hp)2

ζ4σ2
n + 2ζ2hp+ 2

. (4.40)

Channel estimation is affected by the transmitted power, noise variance σ2
n, SDSN factor

ζ2 and the number of pilots; therefore, it is challenging to know the sufficient number of

symbols to get an unbiased ML estimator.

Table 4.1 plots the values of E{ĥML} against the number of symbols N , is provided to

study the real value of convergence for different values of ζ2, σ2
n and different transmitted

power levels. It can be noticed from this table that more samples are required to get

an acceptable convergence level at higher ζ2. Furthermore, with an increase in the noise

variance σ2
n, more pilots need to be sent for a satisfactory convergence. In particular, at

p = 0 dB, ζ2 = 5, and N = 1, E{ĥML} = 0.648 at σ2
n = 0.1, while it equals to 0.6602

at σ2
n = 1 at the same values of p, ζ2 and N . It can also be proven by simulation that

E{ĥML} ≈ E{h}, while transmitting 20 symbols.
2An estimator of a given random parameter, e.g., h, is said to be unbiased if its expected value is equal

to mean of the parameter that should be estimated.
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Table 4.1: E{ĥML} at different number of pilots N at E{h} = 0.8, different power levels,
two different values of ζ2 and two different σ2

n values

σ2
n = 0.1

ζ2 = 5 ζ2 = 10

N/p 0 10 20 0 10 20

1 0.648 0.775 0.797 0.637 0.752 0.795
5 0.767 0.795 0.799 0.760 0.791 0.799
10 0.783 0.797 0.799 0.779 0.795 0.799
20 0.792 0.798 0.799 0.789 0.797 0.799
30 0.794 0.799 0.799 0.793 0.798 0.799

σ2
n = 1

1 0.6602 0.6663 0.7756 0.7125 0.6534 0.7521
5 0.7630 0.7704 0.7953 0.7779 0.7634 0.7910
10 0.7804 0.7851 0.7976 0.7895 0.7814 0.7955
20 0.7901 0.7927 0.7988 0.7940 0.7904 0.7978
30 0.7934 0.7951 0.7991 0.7968 0.7939 0.7986

4.3.4 Linear Minimum Mean Square Error (LMMSE) Estimator

The LMMSE estimator is a linear estimator that minimizes the MSE and can be defined

by E
{
[ĥ− h]2

}
. Considering that, the estimated channel, ĥLMMSE, can be written as [87]

ĥLMMSE =
σ2
h∥x∥2xT (y − xµh)

σ2
h∥x∥4 + µhζ2σ2

nx
Tdiag(xi)x+ σ2

n∥x∥2
+ µh, (4.41)

where µh is the mean of the channel h, and σ2
h represents its variance that can be calculated

from σ2
h = E{h2} − (µh)

2.

Given that ĥLMMSE = h+ ϵLMMSE, it can be said that the estimation error ϵLMMSE is a

Gaussian random variable with ϵLMMSE ∼ N (0, σ2
ϵLMMSE

). Here, σ2
ϵLMMSE

can be derived as

σ2
ϵLMMSE

= σ2
h

[
µhζ

2σ2
nx

Tdiag(xi)x+ σ2
n∥x∥2

σ2
h∥x∥4 + µhζ2σ2

nx
Tdiag(xi)x+ σ2

n∥x∥2

]
. (4.42)
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Finally, assuming xi = p (∀i = 1, · · · , N), and considering that xTdiag(xi)x =
∑N

i=1(xi)
3,

then (4.42) can be rewritten in a simplified form as follows

σ2
ϵLMMSE

= σ2
hσ

2
n

1 + µhζ
2p

σ2
hNp2 + [µhζ2p+ 1] σ2

n

. (4.43)

Remark 4: Various observations can be made from (4.43) all of which can be summa-

rized as follows: i) At very low levels of transmitted power, i.e., p → 0, the MSE approaches

to σ2
h, i.e., σ2

ϵLMMSE
≈ σ2

h. Indeed, this is obvious, since the samples are highly corrupted by

the thermal noise and the MSE depends only on the prior information. ii) As the power

increases, the MSE approximates to σ2
nµh

Np
. In this case, the estimation does not depend on

the variance of the channel gain σ2
h. It depends on the mean of the channel gain µh of the

prior information.

4.3.5 Maximum Posterior Probability (MAP) Estimator

It is known that a posterior function of f(h|y) includes all information of the channel gain

h. An estimator that finds the channel gain h maximizing the posterior function is called

MAP estimator. According to this, the random channel gain h can be estimated from

ĥMAP = argmax
h

f(h|y) = argmax
h

ln f(h|y), (4.44)

where f(h|y) can be given as

f(h|y) = f(y|h)fh(h)
fY (y)

. (4.45)

It is clear from (4.44) that the maximum value of the log-posteriori function, ln f(h|y),

can be calculated in order to find ĥMAP. Thus, it is solved by using the following equation

∂

∂h
ln

f(y|h)fh(h)
fY (y)

= 0. (4.46)
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Since fY (y) is a constant with respect to h, therefore, by substituting (4.16) and (4.2) into

(4.46), we have

∂

∂h

[−N

2
ln
(
2πσ2

n

)
− 1

2

N∑
i=1

ln
(
1 + ζ2hxi

)
− 1

2σ2
n

N∑
i=1

(yi − hxi)
2

1 + ζ2hxi

− (m+ 5)

(m+ 3)
lnh− ln fY (y)

]
= 0.

(4.47)

Now, solving the derivation in (4.47) results in

− (m+ 5)

(m+ 3)

1

h
− 1

2

N∑
i=1

ζ2xi

1 + ζ2hxi

+
1

2σ2
n

N∑
i=1

[
2xi(yi − hxi)

1 + ζ2hxi

+
ζ2xi(yi − hxi)

2

(1 + ζ2hxi)2

]
= 0. (4.48)

Assuming that xi = p (∀i = 1, . . . , N), the channel gain, h, can be found by solving:

h3 +Bh2 + Ch+D = 0, the parameters of which are equal to

B =
1

Np

(
Nσ2

nζ
2 +

2N

ζ2
+ 2σ2

nζ
2 (m+ 5)

(m+ 3)

)
,

C =
1

p2N

(
Nσ2

n −
2
∑N

i=1 yi
ζ2

−
N∑
i=1

y2i + 4σ2
n

(m+ 5)

(m+ 3)

)
,

D =
(m+ 5)

(m+ 3)

2σ2
n

ζ2p3N
. (4.49)

The solution can be found numerically by taking into account that channel gain h

should be real positive. It can be noticed that it is hard to find a closed form for this

solution. So, the performance of the MAP estimator will be investigated by using Monte

Carlo simulations.

4.3.6 Minimum Mean Square Error (MMSE) Estimator

The MMSE is an estimation method that minimizes the mean squared error, which means

it is optimal in a statistical sense. The MMSE estimator is actually the expectation of the
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posterior function f(h|y). Therefore, the estimated channel gain is obtained as

ĥMMSE = E {h|y} , (4.50)

where f(h|y) is given in (4.45). Using Bayes’ theorem, the MMSE estimator can also be

defined as follows [87]

ĥMMSE =

∫ hmax

hmin

hf(y|h) fh(h)
fY (y)

dh

=
Υ

fY (y)(2πσ2
n)

N/2

∫ hmax

hmin

h
−2

m+3

[
N∏
i=1

1√
(1 + ζ2hxi)

]
exp

(
− 1

2σ2
n

N∑
i=1

(yi − hxi)
2

1 + ζ2hxi

)
dh.

(4.51)

In case of that xi = p (∀i = 1 . . . N), ĥMMSE is given by

ĥMMSE =
Υ

fY (y)(2πσ2
n)

N/2

∫ hmax

hmin

h
−2

m+3

(1 + ζ2hp)
N
2

exp
(
− 1

2σ2
n

N∑
i=1

(yi − hp)2

1 + ζ2hp

)
dh. (4.52)

Moreover, fY (y) in (4.51) represents the marginal PDF of y, which can be given as

fY (y) =
N∏
i=1

fYi
(yi) =

N∏
i=1

∫ hmax

hmin

f(yi|h)fh(h) dh

=
ΥN

(2πσ2
n)

N/2

N∏
i=1

[∫ hmax

hmin

h
−2

m+3
−1√

(1 + ζ2hxi)
exp

(
−(yi − hxi)

2

2σ2
n(1 + ζ2hxi)

)
dh

]
. (4.53)

Assuming also that xi = p (∀i = 1 . . . N) here, (4.53) can be simplified as follows

fY (y) =
ΥN

(2πσ2
n)

N/2

N∏
i=1

[∫ hmax

hmin

h
−2

m+3
−1√

(1 + ζ2hp)
exp

(
−(yi − hp)2

2σ2
n(1 + ζ2hp)

)
dh

]
. (4.54)
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Consequently, by taking advantage of (4.52) and (4.54), the estimated channel gain ĥMMSE

can be written as

ĥMMSE = Υ(−N+1)

∫ hmax

hmin

h
−2

m+3

(1+ζ2hp)
N
2
exp

(
− 1

2σ2
n

∑N
i=1

(yi−hp)2

1+ζ2hp

)
dh∏N

i=1

∫ hmax

hmin

h
−2

m+3−1√
(1+ζ2hp)

exp
(

−(yi−hp)2

2σ2
n(1+ζ2hp)

)
dh

. (4.55)

4.4 Channel Estimation for Two Special Cases

Considering the previous section, it is appreciable that the LS and LMMSE are the least

complex estimation methods, since they are linear functions of the received samples y(n),

i.e., ĥ =
∑N−1

n=0 α(n)y(n), where α(n) is a constant that can be found from (4.28) for ĥLS,

and can be calculated from (4.41) for ĥLMMSE. However, when prior statistical information

is available, the LMMSE technique demonstrates a significant improvement in estimation

performance as compared to the LS, even though applying LMMSE requires ζ2 to be known

at the receiver.

In this section, we consider: i) the case of unknown ζ2 at the receiver side, while using

the LMMSE estimator, and ii) joint ML estimation for both ζ2 and h. These special cases

are investigated in the following two subsections.

4.4.1 LMMSE Estimation for h under the case of Unknown ζ2

In this section, we study the effect of ignoring the effect of ζ2 on the performance of the

LMMSE by writing ζ2 = 0 in (4.41), while assuming that µh and σ2
h are known at the

receiver. In this case, the LMMSE estimator can be defined as (since ζ2 is unknown)

h̆LMMSE =
σ2
hx

T (y − xµh)

σ2
h∥x∥2 + σ2

n

+ µh, (4.56)
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and the MSE can be expressed by

MSEh̆ = σ2
h −

σ4
h

σ2
h +

σ2
n

Np2

+
σ4
hµhζ

2 σ2
n

Np

(σ2
h +

σ2
n

Np2
)2
. (4.57)

It can be clearly seen from the above equation that the MSE with the knowledge of ζ2

in (4.43) is less than MSE with unknown ζ2.

The difference between the MSE considering ζ2 in (4.43) and the MSE ignoring ζ2

in (4.57) can be easily found as

∆ =
σ4
hµhζ

2 σ2
n

Np

(σ2
h +

σ2
n

Np2
)2
. (4.58)

Here, ∆ is maximized at p =
√

3σ2
n

Nσ2
h
, and it is at this point that the difference between the

two MSE curves is the largest.

Although we study the effect of ignoring SDSN on the performance of the LMMSE

estimator only for simplicity, our results can be generalized for all estimators depending

on ζ2.

4.4.2 Joint ML Estimation for Unknown ζ2 and Unknown h

In this section, we assume that the scaling factor ζ2 and the channel gain h are both

unknown. In that case, in order to estimate the channel gain h, we first estimate ζ2 from

∂

∂ζ2
ln f(y|h) =− 1

2

N∑
i=1

hxi

1 + ζ2hxi

+
1

2σ2
n

N∑
i=1

hxi(yi − hxi)
2

(1 + ζ2hxi)2
= 0. (4.59)

Assuming that xi = p (∀i = 1, . . . , N), the estimation of ζ2 can be given for the ML

estimator as

ζ̂2ML =
1

σ2
nNhp

N∑
i=1

(yi − hp)2 − 1

hp
. (4.60)
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Then, the channel gain h can be calculated by substituting (4.60) in (4.34) and solving

numerically for h (because it is complex to find a solution mathematically).

4.5 Receiver Designs And Performance Analysis

One of the significant effects of the SDSN in VLC systems is the change in the PDF of

the observations on y, which makes proposing a new receiver design that is compatible

to the modifications of the PDF an absolute must. OOK is the most common single

carrier modulation (SCM) used to modulate VLC signals (IEEE 802.15.7). It is a simple

modulation method, where a data bit "1" is sent by turning the LED on and a data bit

"0" is sent by turning it off. Indeed, OOK can be considered a special case of M -PAM,

specifically where x = 2A (the DC bias d = A).

Consider the following two hypotheses: i) H1, which is the signal present hypothesis,

and ii) H0, which is the noise-only hypothesis. These hypotheses can be symbolically

written for N pilot symbols as

H1 : y = hx+
√

hdiag(x)nds + n,

H0 : y = n. (4.61)

Then, we have to choose between the two hypotheses H0 and H1 to decide on the appro-

priate symbol.

The PDFs under these two hypotheses are denoted by f(y;h,H1) and f(y;h,H0),

respectively, which can be given as follows

f(y;h,H1) =

(
N∏
i=1

1√
2πσ2

n (1 + ζ2hxi)

)
exp

(
− 1

2σ2
n

N∑
i=1

(yi − hxi)
2

1 + ζ2hxi

)
(4.62)

f(y;h,H0) =

(
N∏
i=1

1√
2πσ2

n

)
exp

(
− 1

2σ2
n

N∑
i=1

y2i

)
. (4.63)
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Then, the likelihood ratio can be written by

Λ(y) =
f(y;h,H1)

f(y;h,H0)
. (4.64)

Assuming that the probabilities of the two hypotheses are equal, i.e., p(H1) = p(H0), an

optimal ML receiver can be designed as follows

Λ(y) =
f(y;h,H1)

f(y;h,H0)

H1

≷ 1
H0

(4.65)

Now, keeping in mind that OOK is in effect, the ML decision rule can be defined by [82]:

x̂ML =

H0 if ζ2

2
y2 + y < hA+ σ2

n

4Ah
[1 + 2Ahζ2] ln [1 + 2Ahζ2],

H1 otherwise.
(4.66)

In the case of imperfect CSI, where the channel gain h is unknown, the ML receiver

first estimates the gain h and then employs it in the same decision rule given for the perfect

CSI case in (4.66), as follows

x̂ML =

H0 if ζ2

2
y2 + y < ĥA+ σ2

n

4Aĥ

[
1 + 2Aĥζ2

]
ln
[
1 + 2Aĥζ2

]
,

H1 otherwise.
(4.67)

4.6 Simulation Results and Discussion

In this section, the numerical results of the SISO-VLC system performance are discussed

considering both SDSN and imperfect CSI for various estimators. The provided results are

obtained using Monte Carlo simulations, each of which is realized for 105 symbols.

Firstly, the MSE results of the proposed estimators, namely LS, ML, LMMSE, MAP,

and MMSE, are given with an increasing source power in Fig. 4.2, and compared to the

BCRLB for one pilot, while σ2
n = 0.1 and ζ2 = 10. It can be observed from Fig. 4.2
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Figure 4.2: The BCRLB and the MSE values of the LS, ML, LMMSE, MAP, and MMSE
estimators versus the source power for σ2

n = 0.1 and ζ2 = 10.

that the LS estimator has the highest MSE among all considered estimators, while on

the other hand, MMSE has the lowest MSE. The differences between the MSE of the

studied estimators shrink at the cost of additional power. Moreover, it can be noticed

from Fig. 4.2 that the MSE values for both LS and ML increase inversely with source

power. However, the BCRLB and the MSE of the other estimators (MAP, LMMSE and

MMSE) approach a certain value, which provides better performance at low power levels.

Consequently, it can be said that the estimators considering prior information generally

have better performances than the estimators that do not.

Fig. 4.3 demonstrates the effect of increasing SDSN levels i.e., ζ2 on the system perfor-

mance. The figure plots the curves at low SDSN (ζ2 = 2) and at high SDSN (ζ2 = 10) at

constant shot noise i.e. σ2
n = 0.1. Clearly, an increase in ζ2 results increases the MSE of

the estimators and the BCLB as well. Furthermore, it can be noticed from the figure that
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Figure 4.3: The BCRLB and the MSE values of the proposed estimators versus the source
power for σ2

n = 0.1 at different values of ζ2.

the curves of ML and LS approach each other as ζ2 decreases. The gap between the two

curves keeps shrinking until they have exactly the same MSE value at ζ2 = 0, as stated in

Remark 2, which is consistent with the results provided in [82].

The effect of the shot noise on the estimators’ performances is introduced in Fig. 4.4.

It is rather clear that the MSE values of all estimators as well as the BCRLB are higher

at σ2
n = 0.1 compared to σ2

n = 0.01. The implication of this is that σ2
n negatively affects

the estimation performance of the system. Moreover, it can be observed from Fig. 4.4

that the gaps not only between the MSE values of the estimators but also between the

estimators and the BCLRB widen with increasing values of σ2
n. Consequently, the study

of the system performance for different estimators provides more benefits when the shot

noise level increases. Moreover, all studied estimators give similar results at high power.

Fig. 4.5 introduces the MSE of the LMMSE estimator when considering and ignoring
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Figure 4.4: The BCRLB and the MSE values of the proposed estimators versus the source
power for ζ2 = 10 at different values of σ2

n.

the existence of SDSN. The MSE results of the LMMSE estimator that ignores the SDSN

are presented by the curves named LMMSE-Ign in this figure. Interestingly, it is observed

that the effect of ignoring ζ2 has less of an impact on either very small or high values of

the power. However, it has a higher impact on the region between -10 dB and 10 dB for

σ2
n = 0.1 and between -5 dB and 15 dB σ2

n = 1, which causes the higher MSE seen in the

figure. Indeed this depends on the value of σ2
n.

Fig. 4.5 also illustrates that the difference between the LMMSE and LMMSE-Ign in-

creases with ascending power until a certain value, and then decreases from there. This

trend is compatible with (4.9). Returning to (4.9), it can also be noticed that the term

hx is dominant at very high power values. This diminishes the effect of ζ2, leading to

minimizing the gap between the curve of MSE considering the existence of ζ2 (LMMSE)

and the curve of MSE ignoring the existence of ζ2 (LMMSE-Ign). On the other hand, the
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Figure 4.5: The MSE of the LMMSE and LMMSE-Ign versus the source power for σ2
n = 0.1

and σ2
n = 1 at different values of ζ2.

shot noise n in (4.9) is the dominant term at very low power values, leading to an implicit

suppression of any effect that ζ2 may have.

A conclusion can be made that, although considering the existence of the SDSN in esti-

mation the channel of the VLC system causes some additional complexity at the estimator

as in (4.41), a hefty performance improvement can be observed. In Fig. 4.5, considering

the SDSN when estimating the channel gain h (LMMSE) dropped the MSE of the system

more than 80% compared to the MSE of the estimation ignoring the SDSN at σ2
n = 1

and ζ2 = 10. A drop of more than 55% can be obtained at σ2
n = 0.1 and ζ2 = 10. This

enhancement increases with two factors, namely ζ2 and σ2
n. It is worth noting that the

curves of the LMMSE and LMMSE-Ign are exactly matched at ζ2 = 0 as expected from the

theoretical analysis. Fig. 4.6 compares two curves. The first one is the MSE of estimating

the channel gain h using the ML estimator. In this technique, the unknown ζ2 is estimated
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Figure 4.6: The MSE of the ML estimator for both estimated and known ζ2 cases at the
receiver versus the source power, while σ2

n = 0.1.

and then used to estimate h at different power values and different levels of SDSN (ζ2).

The second curve is the MSE of the estimated h when the parameter ζ2 is known at the

receiver side. It is illustrated that good results can be achieved by estimating ζ2 when the

ζ2 is unknown to the receiver. Over and above, it can be noted that the gap between the

two MSE curves shrinks as power increases. An opposite effect can be observed by the

presence of SDSN (ζ2) i.e. the gap widens as ζ2 increases.

The BER performance of the ML receiver using the OOK modulation technique is given

in Fig. 4.7. Naturally, the SDSN dramatically reduces the performance of the receiver.

Besides that, the increasing noise variance, σ2
n, increases the BER of the designed receiver.

Furthermore, the effect of ζ increases with the increment of power, as seen from Fig. 4.7.

The difference between the curves of BER at different values of ζ becomes larger when the

transmitted power level increases. In addition to that, ζ2 has a more significant effect at

σ2
n = 0.001 than at σ2

n = 0.01.
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Figure 4.7: BER performance of OOK modulation for ML receiver versus the transmitted
power in dB at different values of ζ2 and σ2

n.

4.7 Conclusion

In this chapter, we study the estimation of SISO-VLC random channels affected by the

SDSN in both the cases of known and unknown intensities of SDSN i.e. the parameter ζ2.

Different estimators are utilized in the proposed system and a BCRLB is derived to serve

as a benchmark for the MSE of all estimators. The obtained results comparing the MSE

of the estimators show that the MMSE has the smallest MSE values among all proposed

estimators. LMMSE is the runner-up, which has an MSE that is bigger than that of the

MMSE estimator and less than that of the MSE of the MAP estimator. ML has a higher

MSE than that of the MAP but is lower than that of the LS estimator. Finally, the LS

estimator has the worst performance. Noting that the SDSN level is measured by both

values of ζ2 and σ2
n, the investigation of the SDSN effect on the performance of the system

in this chapter demonstrates that at a higher level of SDSN, higher MSE is seen upon

estimation. σ2
n. In particular, the system performs better at small values of ζ2 and σ2

n.
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A special condition, where the receiver does not know the value of ζ2, is studied, and

the receiver estimates the channel h while ignoring the existence of the SDSN. Another

solution for dealing with the unknown ζ2 using an ML estimator is presented in this work.

We present comparisons between the results of our proposed methods with the results of

a case with known parameters for the user. These comparisons show the validity of the

introduced solutions. It can be concluded that the VLC with accurate estimators can be

a promising alternative to RF communications.

In addition, a design for the receiver of the VLC system with the effect of SDSN and the

random channel gain h is suggested and the BER of the proposed receiver is studied. The

results expounded that the existence of SDSN negatively affects the BER of the system,

which can be observed by noting the raised BER with the increase in ζ2.
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Chapter 5

Signal-Dependent Shot and Relative

Intensity Noise in Channel Estimation

of Indoor VLC Systems

5.1 Introduction

Recently, the use of wireless connectivity has been increasing day by day. In particular,

Ericsson’s projection indicates that the monthly usage of a smartphone will approach 35

GB by the end of 2026 [88]. Conventional RF communications cannot meet the ever-

growing demand for global connectivity due to the constrained RF spectrum, resulting

in what is called a spectrum crunch. This issue has garnered tremendous attention from

researchers, who are diligently investigating new technologies to address it. VLC is an

emerging technology that researchers have introduced to tackle the spectrum crunch in RF

communications. VLC utilizes a vast unlicensed spectrum in the range of 430 to 790 THz,

offering high data rates, particularly suitable for indoor applications where the majority of

users are located.

VLC offers several notable advantages. Firstly, VLC possesses inherent immunity to
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RF signal interference and distinguishes itself by not disrupting the critical functions of

highly sensitive electronic systems. As a result, VLC readily integrates into environments

with RF restrictions, including settings such as aircraft, healthcare facilities, public street

lighting systems, nuclear facilities, and more. Furthermore, in contrast to RF signals,

visible light cannot penetrate walls, further enhancing the advantages of VLC, including

robust physical layer security and the potential for a high-frequency reuse factor [89]. One

key attribute of VLC is its safety for human health, as VLC is compliant with safety

regulations for both the eyes and the skin [90].

Approximately 80% of mobile data users have been reported to be located in indoor

environments [91], where the typical range for the distance between the transmitter and the

receiver is 1 to 5 meters, and indoor illuminance levels typically range from 300 to 500 lx.

Commercial LEDs have been used as the optical front end of the transmitter in indoor VLC

systems, resulting in remarkable outcomes. Data rates exceeding few Gbits/s have been

achieved in VLC systems by employing LEDs [92–95]. However, achieving such high data

rates requires advanced modulation techniques to address the limited modulation band-

width of LEDs. This matter entails the reliance on intricate transmitter-driving circuitry

or the integration of frequency domain equalization at the receiving end, subsequently

leading to the escalation of the overall computational complexity.

Micro-LEDs have been proposed as an alternative solution to overcome the limited

bandwidth of the LEDs [96–99]. Despite achieving high-speed VLC systems using Micro-

LEDs, the limited output power leads to inadequate distance and coverage area. Fur-

thermore, increasing the densities of the injected carrier leads to the droop problem of

efficiency [100].

Semiconductor LDs can operate at high current intensities without experiencing effi-

ciency droop. Consequently, they have emerged as a compelling choice to replace LEDs in

high data-rate VLC systems [101]. Compared to LEDs, LDs can achieve higher modulation

bandwidths, larger communication distances, and much higher efficiencies at higher input
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power densities [102].

While LDs are commonly used in outdoor communication settings due to their narrow

beam widths, it has been demonstrated that they can also be effectively applied in indoor

communication applications, yielding outstanding results. The mixing of lights from semi-

conductor LDs that emit red, green, and blue colors to create a Lambertian source suitable

for indoor lighting was investigated in [103,104]. A hybrid LD-LED approach was used to

create an indoor lighting source that is conducive to illumination [105,106].

The vertical-cavity surface-emitting laser (VCSEL) has been proposed as a promising

device to replace LEDs in high-speed communications. VCSEL is a specific configuration

of a semiconductor LD in which the laser beam is emitted vertically or perpendicularly

from the top surface of the diode. This type of LD semiconductor is characterized by

outstanding features, including high-speed modulation, exceptional power conversion effi-

ciency, affordability, and compact [107, 108]. Recent research has shown that VCSEL can

be used effectively in indoor communications [109,110].

Despite numerous advantages, LDs suffer from two main sources of noise, which can

be classified as signal-independent noise and signal-dependent noise. The primary source

of signal-independent noise is thermal noise, which originates from electron excitation in

the conductive material of the photodiode. The level of thermal noise increases as the

operating temperature of the receiver electronics increases and decreases with an increase

in resistance. Therefore, it is independent of the input signal and follows a Gaussian

distribution [111].

The second noise type varies with the input signal strength and it includes two main

sources which are the SDSN and the relative RIN [112–114]. The SDSN is generated

at the receiver by the discrete nature of electrons or photons of the transmitted signal

from the LD [115]. Even though SDSN originally adheres to a Poisson distribution, it is

usually treated as Gaussian due to the substantial number of photons involved in VLC

signal. [9]. It is worth noting that the SDSN is positively proportional to the square root
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of the transmitted power signal.

While the RIN is directly proportional to the transmitted VLC signal, which is at-

tributed to the source of the RIN, it is generated due to fluctuations in the intensity of

a laser or optical signal relative to its average power [116]. Therefore, RIN is a signal-

dependent noise, and it follows the Gaussian distribution [117, 118]. The fluctuations in

the signal intensity caused by RIN lead to errors during the signal detection process, con-

sequently resulting in an increased BER. Additionally, RIN degrades SNR, which in turn

reduces overall system performance [119–121].

5.1.1 Related Works

In VLC systems, the primary principle involves using light signals to transmit data from

the transmitter to the receiver. The transmitter typically includes an LD that encodes

data into visible light signals through IM. This modulation technique doesn’t require phase

information for communication. The receiver consists of a photosensitive element, typically

a photodiode (PD) or an image sensor, which captures the transmitted light signals and

converts them into electrical signals using DD techniques.

The new transmission model sets VLC apart from RF communications, with VLC

requiring transmitted signals to be real and non-negative [122]. These specifications lead

to substantial changes in the designs of VLC systems, especially in the physical layer and

modulation techniques, compared to RF systems.

With regard to modulation techniques, a very small number of simple modulation

techniques, such as OOK, PPM, PAM, and PWM, can be directly employed in VLC [122,

123]. While a significant amount of work has been done to adjust the more advanced

modulation schemes prior to their deployment in VLC, such as OFDM [124] and its

variants [125–133].

Channel estimation is a critical component in the design of reliable VLC systems, and

extensive research has been conducted in this area. In [134], the widely used LS channel
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estimation scheme was adapted for VLC. In [135], an algorithm based on LS was proposed

for channel estimation in an OFDM-based multiuser MISO VLC system, optimizing pilot

sequences and tones to minimize the MSE of the channel estimator. The authors of [136]

investigated the performance of five different channel gain estimation techniques for SISO-

VLC systems, including LS, ML, MAP, LMMSE, and MMSE. Additionally, in [77], the

authors introduced a receiver configuration for a wide FOV VLC system. This design

considered random variations in receiver orientation and placement while accounting for

imperfect CSI. They employed the LS estimation scheme to obtain the required CSI for

receiver design.

The impact of SDSN in VLC systems has been considered in only a few sporadic

research works. In [137], the authors studied two estimation methods used to estimate the

fixed (deterministic) channel of a SISO-VLC system, deriving a benchmark for the MSE of

the estimators. On the other hand, the performance of five different estimation techniques

in VLC systems was investigated in [138]. Additionally, in [139], the authors explored the

effect of SDSN on the estimation error bounds for distance estimation in both synchronous

and asynchronous VLC systems. To the best of the authors’ knowledge, no research has

investigated the effect of RIN on the channel estimation of VLC systems. Furthermore, no

literature review has examined the joint impact of RIN and SDSN in VLC systems. These

gaps in existing research motivated the authors to pursue this chapter.

Chapter Organization. The rest of the chapter is organized as follows: In Section 5.2, we

provide the channel and the system models of an indoor VLC system under consideration.

In Section 5.3, we present the derivations of the Fisher information, CRLB, MSE of the LS

estimator, and MSE of the ML estimator. In Section 5.4, we introduce the receiver designs

and analyze their performances. Section 5.5 presents the numerical results with a detailed

discussion. Finally, the conclusions are drawn in Section 5.6.
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Figure 5.1: Visible light communication system model

5.2 System and Channel Models

As illustrated in Fig. 5.1, we consider an indoor VLC downlink transmission scenario,

where a single LD-based lighting source serves as the wireless transmitter and the VLC

receiver is in the form of a photodetector.

We assume that IM/DD is employed. Let x = s + d denotes the transmitted signal,

where s is the transmitted symbol and d is the bias level (DC value), which is added

to guarantee that the VLC signal is always positive. Under the assumption of OOK

modulation, the input data takes values of s ∈ {−A,A} with the DC offset value of d = A.

Therefore, the transmitted signal takes values of x ∈ {0, 2A}.

The received signal can be written as

y = hx+
√
hxnds + hxnR + n, (5.1)
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where n ∼ N (0, σ2
n) is the signal-independent thermal noise. The term

√
hxnds is the

SDSN term, where nds ∼ N (0, σ2
ds). The term nR denotes the RIN with the Gaussian

distribution i.e., nR ∼ N (0, σ2
R).

In (1), h denotes the channel coefficient of the VLC line-of-sight (LoS) link between

the LD-based lighting source and the photodetector. Although there is no exact formula

to calculate h, it has been modeled in literature as [6, 27, 140]

h =


Apdη(m+1)

2πD2 cosm(ϕtx)Ts(θrx)g(θrx) cos(θrx) 0 ≤ θrx ≤ Ψ

0 Ψ < θrx,

(5.2)

where Apd is the detection area of the photodetector at the receiver, η is the average receiver

responsivity, and D is the Euclidean distance from transmitter to receiver. Here, ϕtx and

θrx refer to the angle of irradiance and angle of incidence, respectively. Ts(θrx) is the gain

of the receiver’s optical filter, m = −1
log2(cos(Φ1/2))

is the Lambertian radiation order with

lighting source emission semi-angle Φ1/2. g(θrx) is the gain of the optical concentrator and

given as

g(θrx) =

Υ n2

sin2(Ψ)
0 ≤ θrx ≤ Ψ,

0 Ψ < θrx,

(5.3)

which depends on the reflective index n of the concentrator and the FOV angle Ψ.

5.3 Cramér–Rao lower bound

In this section, we calculate the CRLB in the presence of the SDSN and the RIN. This

bound gives a lower estimate for the variance of an unbiased estimator. Then, we present

the derivation of LS and ML estimators as channel estimators.
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5.3.1 Fisher Information and Cramér–Rao Lower Bound

In this section, we derive the Fisher information to calculate the CRLB.

Let x = [x1, x2, · · · , xN ]
T denote the transmitted pilots’ vector where N is the number of

pilot symbols. The received signal vector y = [y1, y2, . . . , yN ]
T can be written as

y = hx+
√
hdiag(x)nds + hdiag(x)nR + n, (5.4)

where diag(x) is an N ×N diagonal matrix with the elements of x in the main diagonal,

n = [n1, n2, . . . , nN ]
T , nds = [nds1, nds2, . . . , ndsN ]

T and nR = [nR1, nR2, . . . , nRN ]
T . The

elements of n are independent and identically distributed Gaussian random variables, i.e.,

n ∼ N (0, σ2
nIN). Similarly, we have nds ∼ N (0, σ2

RIN) and nR ∼ N (0, σ2
RIN).

The lower bound on the variance of any unbiased estimator of h can be obtained using

the CRLB as1

σ2
ĥ
≥ 1

J(h)
, (5.5)

where J(h) is the Fisher information of h given by

J(h) = −E
{

∂2

∂h2
ln f(y;h)

}
. (5.6)

Here, ln f(y;h) is the log-likelihood function of the unknown channel h. Since all the

samples are independent, the joint probability density function (PDF) of N observations

can be written as

f(y;h) = exp

(
−1

2

N∑
i=1

(yi − hxi)
2

σ2
n + σ2

dshxi + σ2
Rh

2x2
i

)
N∏
i=1

1√
2π (σ2

n + σ2
dshxi + σ2

Rh
2x2

i )
· (5.7)

After some tedious mathematical manipulations (see APPENDIX B), J(h) can be expressed
1An estimator of a given parameter, e.g., h, is said to be unbiased if its expected value is equal to the

true value of the parameter that should be estimated.
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as

J(h) =
1

2

N∑
i=1

[
2x2

i (1 + σ2
R)

σ2
n + σ2

dshxi + σ2
Rh

2x2
i

+
(xiσ

2
ds + 2hx2

iσ
2
R)

2

(σ2
n + σ2

dshxi + σ2
Rh

2x2
i )

2

]
· (5.8)

Under the assumption that all the transmitted pilot symbols are identical i.e., xi=p, the

Fisher information can be simplified to

J(h) =
Np2

2

2(1 + σ2
R)(σ

2
n + σ2

dshp+ σ2
Rh

2p2) + (σ2
ds + 2hpσ2

R)
2

(σ2
n + σ2

dshp+ σ2
Rh

2p2)2
· (5.9)

Consequently, the CRLB can be expressed as

CRLB =
2

Np2
(σ2

n + σ2
dshp+ σ2

Rh
2p2)2

2(1 + σ2
R)(σ

2
n + σ2

dshp+ σ2
Rh

2p2) + (σ2
ds + 2hpσ2

R)
2
· (5.10)

For sufficiently high levels of transmitted power, the CRLB approaches the saturation value

of 2
N

h2σ2
R

2+6σ2
R
, which is independent of p.

Special Case 1: In the case of negligible level of RIN, i.e., σ2
R → 0 [141], the CRLB

reduces to

lim
σ2
R→0

CRLB → 2

Np2
(σ2

n + σ2
dshp)

2

2(σ2
n + σ2

dshp) + (σ2
ds)

2
, (5.11)

which coincides with the CRLB derived in [82].

At high power p without the RIN, the CRLB can be approximated to

CRLB → 1

N

hσ2
ds

p
· (5.12)

On the opposite side, at a high level of the RIN, the CRLB can be approximated as

lim
σ2
R→∞

CRLB → h2

3N
· (5.13)

It is interesting to note that the CRLB no longer hinges on the transmitted power or

the noise level. Instead, it is contingent upon the channel gain and the number of pilots.
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Notably, increasing the number of pilots enhances the CRLB, in contrast to the impact of

power, where no improvement in the CRLB is observed.

Special Case 2: In the case of very low SDSN level, i.e., σ2
ds → 0 [142,143], the CRLB

reduces to

lim
σ2
ds→0

CRLB → 2

Np2
(σ2

n + σ2
Rh

2p2)2

2(1 + σ2
R)(σ

2
n + σ2

Rh
2p2) + (2hpσ2

R)
2
· (5.14)

At high power p without the SDSN, the CRLB can be approximated to

lim
p→∞

CRLB → 2

N

h2σ2
R

2 + 6σ2
R

, (5.15)

which is the same result obtained when both SDSN and RIN do exist. Oppositely, at a

high level of the SDSN, the CRLB can be approximated as

lim
σ2
ds→∞

CRLB → 2h

Np
, (5.16)

which does not depend on the noise but it depends on the power and the channel gain h.

Special Case 3: When both RIN and SDSN noises are negligible compared to the

thermal noise, i.e., σ2
R → 0 and σ2

ds → 0 [142], CRLB is approximated as

lim
σ2
ds→0,σ2

R→0
CRLB → σ2

n

Np2
, (5.17)

which is widely used in the analysis of RF wireless systems [144].

If the SDSN and the RIN are excessive, the CRLB can be approximated as

lim
σ2
ds→∞,σ2

R→∞
CRLB → h2

3N
· (5.18)

It is worth mentioning that the same result is obtained when only RIN is very high,

emphasizing the dominant effect of RIN versus SDSN.

Special Case 4: When the thermal noise n is negligible compared to RIN and
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SDSN [143], the CRLB can be approximated as

lim
σ2
n→0

CRLB → 2

Np2
(σ2

dshp+ σ2
Rh

2p2)2

2(1 + σ2
R)(σ

2
dshp+ σ2

Rh
2p2) + (σ2

ds + 2hpσ2
R)

2
· (5.19)

At high power p with negligible value of thermal noise n, the CRLB can be approximated

to

CRLB → 2

N

σ2
Rh

2p

2 + 6σ2
R

· (5.20)

This aligns with the result obtained in (5.15). Consequently, the presence of RIN dominates

the occurrence of SDSN in scenarios characterized by high power. In contrast, under

conditions of high thermal noise n, the CRB can be approximated as

lim
σ2
n→∞

CRLB → 2

Np2
· σ2

n

2(1 + σ2
R)

· (5.21)

It is observed that even under conditions of very high thermal noise, RIN continues to

impact the CRLB, which is not the case for SDSN.

Examining (5.10), (5.11), (5.14), and (5.17) reveals that at high power, the CRLB is

inversely proportional to p in the presence of SDSN and thermal noise n. However, it

becomes inversely proportional to p2 when both RIN and SDSN are absent. Conversely,

in the presence of RIN and high transmitted power, the CRLB saturates. This saturation

occurs whether SDSN is present or not, signifying the dominance of RIN over SDSN.

Furthermore, it can be noted that increasing transmitted power significantly reduces the

CRLB when only thermal noise is present. However, when both thermal noise and SDSN

are present, the reduction in the CRLB is smaller. Meanwhile, RIN prevents any further

reduction in the CRLB even with increased transmitted power.
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5.3.2 Least Square Estimator

For the LS estimator, the estimated ĥ can be expressed as

ĥLS =
xTy

∥x∥2
· (5.22)

Replacing (5.4) in (5.22), we obtain

ĥLS = h+
xT

∥x∥2
√

hdiag(x)nds +
xT

∥x∥2
hdiag(x)nR +

xT

∥x∥2
n· (5.23)

The performance of the LS estimator can be evaluated by determining the MSE, which

is equivalent to the variance of the estimation error. Thus, the MSE can be calculated as

ϵLS = ĥLS − h· (5.24)

It can be readily checked that the LS estimator is unbiased, i.e., E{ĥLS} = h. Therefore,

ϵLS can be written as

ϵLS =
xT

∥x∥2
(√

hdiag(x)nds + nR + n
)
· (5.25)

It is evident from (5.25) that ϵLS is a Gaussian random variable, i.e., ϵLS ∼ N (0, σ2
ϵLS

),

where σ2
ϵLS

is inversely proportional to the pilots’ SNR value and can be written as

σ2
ϵLS

=

∑N
i=1 x

2
i (σ

2
n + σ2

dshxi + σ2
Rh

2x2
i )(∑N

i=1 x
2
i

)2 · (5.26)

For xi = p, σ2
ϵLS

can be further simplified as

σ2
ϵLS

=
σ2
n + σ2

dshp+ σ2
Rh

2p2

Np2
· (5.27)

From (5.27), it is observed that increasing the power leads the σ2
ϵLS

to a saturation level
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while increasing the number of the pilots decreases the error variance σ2
ϵLS

effectively en-

hancing the LS estimator performance.

5.3.3 Maximum-Likelihood Estimator

The ML estimator is based on the maximization of likelihood PDF. In our case, the log-

likelihood of (5.7) is given as

ln f(y;h) =− N

2
ln (2π)− 1

2

N∑
i=1

ln
(
σ2
n + σ2

dshxi + σ2
Rh

2x2
i

)
− 1

2

N∑
i=1

(yi − hxi)
2

σ2
n + σ2

dshxi + σ2
Rh

2x2
i

· (5.28)

The estimated channel can be determined by evaluating ∂
∂h

ln f(y;h) = 0, i.e.,

∂

∂h
ln f(y;h) =− 1

2

N∑
i=1

[
σ2
dsxi + 2σ2

Rhx
2
i

σ2
n + σ2

dshxi + σ2
Rh

2x2
i

− 2xi(yi − hxi)

σ2
n + σ2

dshxi + σ2
Rh

2x2
i

−(σ2
dsxi + 2σ2

Rhx
2
i )(yi − hxi)

2

(σ2
n + σ2

dshxi + σ2
Rh

2x2
i )

2

]
= 0· (5.29)

Under the assumption that the transmitted pilots are identical, i.e. xi = p, (5.29) can

be expressed in the form of a cubic equation as

Ah3 +Bh2 + Ch+D = 0, (5.30)
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where A, B, C and D are respectively given by

A = 2Np4σ4
R, (5.31)

B = 3Nσ2
dsσ

2
Rp

3 +Nσ2
dsp

3 + 2p3σ2
R

N∑
i=1

yi, (5.32)

C = Nσ4
dsp

2 + 2Nσ2
Rσ

2
np

2 + 2Np2σ2
n − 2σ2

Rp
2

N∑
i=1

y2i , (5.33)

D = Nσ2
dspσ

2
n − 2pσ2

n

N∑
i=1

yi − σ2
dsp

N∑
i=1

y2i . (5.34)

It is difficult, if not impossible, to manually find a closed-form expression for the roots

of (5.30). However, numerical tools and software can be used to yield a solution

In the absence of RIN and SDSN, i.e., σ2
R = 0 and σ2

ds = 0, we have

∂

∂h
ln f(y|h) = 1

2σ2
n

N∑
i=1

2xi(yi − hxi) = 0· (5.35)

The estimated channel gain can be now calculated as ĥML =
∑N

i=1 yi
Np

, which is equal to ĥLS

in (5.22). This yields the well-known result in the literature that both ML and LS have

the same performance in the presence of only additive thermal noise.

Remark: One of the key properties of the ML estimator is that it becomes asymptoti-

cally unbiased, meaning that as the transmitted pilots size increases, the ML estimator ap-

proaches the true parameter value it is estimating. By means of clarification, E{ĥML} = h

at very large numbers of symbols, i.e. N → ∞. [145]. Table 5.1 proves that the proposed

ML estimator in this work satisfies this property. From the table, it can be concluded

that at a higher value of σ2
R more pilots are needed to be transmitted to converge the real

value of the channel gain. Taking a closer examination of the table, at p = 20 dB, N = 1,

σ2
ds = 0.1 and σ2

R = 0.1, the E{ĥML} = 1.3038, while at the same level of transmitted

power, number of pilots, SDSN level but σ2
R = 0.10, E{ĥML} = 1.1044 In the same way,
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Table 5.1: Theoretical asymptotic and actual mean for ML estimator at different power
levels, when h = 1 and σ2

n = 0.1 at different power levels, two different values of σ2
R and

two different σ2
ds values.

σ2
R = 0.1

σ2
ds = 0.1 σ2

ds = 0.01

Np 0 10 20 0 10 20

1 1.5268 1.3185 1.3038 1.4434 1.3053 1.3024
5 1.2356 1.1424 1.1358 1.1983 1.1365 1.1352
10 1.1666 1.1007 1.0961 1.1402 1.0965 1.0956
30 1.0962 1.0581 1.0555 1.0810 1.0557 1.0552
50 1.0745 1.0450 1.0430 1.0627 1.0432 1.0428

σ2
R = 0.01

1 1.4546 1.1441 1.1044 1.3455 1.1090 1.1000
5 1.2033 1.0644 1.0467 1.1545 1.0487 1.0447
10 1.1438 1.0456 1.0330 1.1093 1.0345 1.0316
30 1.0830 1.0263 1.0191 1.0631 1.0199 1.0183
50 1.0643 1.0204 1.0148 1.0489 1.0154 1.0141

the increment in σ2
ds obstructs the ML estimator from being unbiased. Practically, it is

hard to predict the number of pilots needed to satisfy the unbiased property of the ML

estimator. Generally, for our proposed model, it can be observed that N = 50 is enough

for the E{ĥML} to reach the real value of the channel gain.

5.4 Receiver Design and Error Rate Performance

Based on the ML decision rule, the optimal receiver takes the form of the well-known

Euclidean distance decoder in the presence of additive white Gaussian noise that models

the thermal noise. In the following, we derive the ML detector in the presence of RIN and

SDSN in addition to the thermal noise.

From (5.1), the joint PDF of the received signal y, given the transmitted signal xp, ∀p =
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0, 1 can be expressed as

fy|xp(y) =
1√

2π(σ2
n + σ2

dshxp + h2x2
pσ

2
R)

exp

{
− (y − hxp)

2

2(σ2
n + σ2

dshxp + h2x2
pσ

2
R)

}
. (5.36)

Assuming equal probability of both transmitted symbols, i.e., p(xp) = 1
2
, the optimal

receiver in ML sense can be expressed as

x̂ = max
xp,p=0,1

{
− ln

(
σ2
n + hxpσ

2
ds + h2x2

pσ
2
R

)
− (y − hxp)

2

(σ2
n + hxpσ2

ds + h2x2
pσ

2
R)

}
· (5.37)

Therefore, we have the following two hypotheses: i) H1, which is the signal present

hypothesis, where x1 = 2A and ii) H0, which is the signal absent hypothesis, where x0 = 0.

These two hypotheses can be expressed as

H1 : y = 2hA+
√
2Ahnds + 2AhnR + n,

H0 : y = n. (5.38)

Using (5.36), the PDFs under these two hypotheses can be written as

f(y;h,H1) =
( 1√

2π(σ2
n + 2Ahσ2

ds + 4A2h2σ2
R)

)
exp

(
−1

2

(y − 2Ah)2

σ2
n + 2Ahσ2

ds + 4A2h2σ2
R

)
·

f(y;h,H0) = (
1√
2πσ2

n

) exp
(
− y2

2σ2
n

)
· (5.39)

Based on the likelihood ratio, the optimal ML receiver takes the form of [146]

Λ(y) =
f(y;h,H1)

f(y;h,H0)

H1

≷ 1
H0

· (5.40)
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Figure 5.2: The CRLB and the MSE values of the LS and the ML estimators versus the
source power at different numbers of transmitted pilots for σ2

n = 0.1, σ2
ds = 0.1 and σ2

R = 0.1
and h = 1.

Replacing (5.39) in (5.40), the ML decision rule is found as

x̂ML =


H0 if (2Ahσ2

ds + 4Ah2σ2
R)y

2 + 4Ahσ2
ny < 4A2h2σ2

n

+σ2
nF (lnF − lnσ2

n),

H1 otherwise,

(5.41)

where F = σ2
n + 2Ahσ2

ds + 4A2h2σ2
R.

In the case of imperfect CSI, where the channel gain h is unknown, the receiver first

estimates the gain h and then employs it in the same decision rule given for the perfect
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CSI case in (5.41), as follows

x̂ML =

H0 if (2Aĥσ2
ds + 4Ah2σ2

R)y
2 + 4Aĥσ2

ny < 4Aĥ2ĥ2σ2
n+σ2

nG(lnG− lnσ2
n),

H1 otherwise,

(5.42)

where G = σ2
n + 2Aĥσ2

ds + 4A2ĥ2σ2
R.

As a simpler solution, we now consider a receiver that does not need prior information

about the channel.

Under this condition, (5.42) reduces to

x̂sub =

H0 if y ≤ ĥA,

H1 otherwise,
(5.43)

which is basically a threshold detector, and we refer to it as a sub-optimal receiver.

Error analysis of ML decision rule in (5.42) becomes challenging due to the non-

Gaussian nature of the term y2 in equations (5.41) and (5.42). Therefore, we resort to

examining the error probability through numerical simulation, as presented in the upcom-

ing simulation results section. On the other hand, the error analysis of the threshold

detector can be calculated in closed form. In particular, we first write (5.1) as

y = xph+ ω, (5.44)

where ω ∼ N (0, (σ2
n + xphσ

2
ds + x2

ph
2σ2

R)). Then the conditional probability (conditioned

on the channel coefficient h) of detecting xq instead of the transmitted xp can be written
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Figure 5.3: The CRLB and the MSE values of the LS and the ML estimators versus the
source power at different values of the thermal noise variance σ2

n for the same value of
σ2
R = 0.01, σ2

ds = 0.01, h = 1 and N = 1.

as

P (xp, xq|h) = P
(
[y − hxp]

2 > [y − hxq]
2) = P

(
2h(xp − xq)ω > h2(xp − xq)

2
)

= Q

(√
h2(xp − xq)2

4
(
σ2
n + hxpσ2

ds + h2x2
pσ

2
R

)) , (5.45)

where P (·) denotes the probability of an event. Substituting in (5.45) by x0 and x1, the

BER can be expressed as

P (e|h) = 1

2
P (x0, x1|h) +

1

2
P (x1, x0|h)

=
1

2
Q

(√
h2A2

σ2
n

)
+

1

2
Q

(√
h2A2

σ2
n + 2Ahσ2

ds + 4A2h2σ2
R

)
· (5.46)
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Figure 5.4: The CRLB and the MSE values of the LS and the ML estimators versus the
source power at different values of the signal-dependent noise variance σ2

ds for σ2
n = 0.01,

σ2
R = 0.01, h = 1 and N = 1.

In the absence of SDSN and RIN, i.e., σ2
ds = 0 and σ2

R = 0, the above expression can be

simplified to the well-known formula of

P (e|h)ζ=0 = Q

(√
h2A2

σ2
n

)
· (5.47)

Remark: According to (5.46) and (5.47), we have

P (e|h)σ2
ds ̸=0,σ2

R ̸=0

P (e|h)σ2
ds=0,σ2

R=0

=
1

2

1 + Q
(√

h2A2

σ2
n+2Ahσ2

ds+4A2h2σ2
R

)
Q
(√

h2A2

σ2
n

)
 > 1, (5.48)

which is valid because the second term in the bracket is greater than one. Hence, as

expected, the BER performance when σ2
R = 0 and σ2

ds = 0 is better than what is seen
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Figure 5.5: The CRLB and the MSE values of the LS and the ML estimators versus the
source power at different values of the signal-dependent noise variance σ2

R for σ2
n = 0.01,

h = 1 and N = 1.

when σ2
R ̸= 0 and σ2

ds ̸= 0. In other words, the signal-dependent noise (SDSN and RIN)

degrades the error system performance. Furthermore, the asymptotic error performance

as σ2
ds → ∞, σ2

R → ∞, can be written as

P (e|h)σ2
ds→∞,σ2

R→∞ =
1

4
+

1

2
Q

(√
h2A2

σ2
n

)
≈ 1

4
· (5.49)

5.5 Numerical Results

In this section, we present numerical results to support the theoretical results obtained in

the previous sections.

In Fig. 5.2, we compare the MSE of the LS and ML estimators with the CRLB. The

curves are plotted under conditions of σ2
n = 0.1, σ2

ds = 0.1, σ2
R = 0.1, and h = 1, as the

number of transmitted pilots N increases from 1 to 3 and then to 10. Several observa-
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tions can be drawn from this figure. Firstly, the ML estimator consistently outperforms

the LS estimator. Secondly, at low and medium transmitted power levels, increasing the

transmitted power p improves the system performance. Conversely, at high transmitted

power, an error floor emerges due to RIN, which is power-dependent. Thirdly, with all

other factors held constant, increasing the number of pilots substantially reduces the MSE

of both ML and LS estimators, along with a decrease in the CRLB. In conclusion, while

increasing transmitted power ceases to enhance the system performance in the high-power

regime, increasing the number of pilots continues to enhance system performance at all

transmitted power levels.

In Fig. 5.3, we investigate the impact of thermal noise. Keeping all other parameters

constant, namely, the RIN variance σ2
R = 0.01, SDSN variance σ2

ds = 0.01, shot noise

variance σ2
n = 0.01, and channel gain h = 1, increasing the thermal noise variance σ2

n

results in an increase in the MSE of the considered estimators and the CRLB, consequently

degrading the overall system performance. However, this effect diminishes with an increase

in source power due to the dominance of RIN. Specifically, as depicted in the figure, all

curves with different σ2
n values converge at p = 10 dBW, indicating the termination of the

thermal noise effect.

In Fig. 5.4, three groups of curves are compared, illustrating the MSE for both LS and

ML estimators, along with the CRLB. These curves are plotted as the SDSN variance σ2
ds

increases from 0 to 0.05 and then to 0.1. Notably, the MSE for both estimators and the

CRLB increases with higher values of σ2
ds. While the impact of SDSN noise is pronounced

at lower power levels, its influence diminishes at higher power levels. Specifically, the effect

of the noise becomes negligible at 20 dBW, as expected due to the dominance of RIN. The

analysis reveals that the RIN effect persists at higher transmitted power levels compared

to the power level at which the thermal noise impact is negligible, as seen in Fig. ??. This

observation can be attributed to the direct proportionality of SDSN to the square root of

power p, while thermal noise does not depend on power.
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Figure 5.6: BER performance versus the source power at different levels of the RIN when
σ2
n = 0.01, σ2

ds = 0.01, h = 0.4 and N = 1.

In Fig. 5.5, we investigate the effect of RIN. The MSE of the LS and ML estimators

are compared with the CRLB at various RIN variance values. Additionally, these curves

are contrasted with the case of a receiver where only thermal noise is present. The com-

parison reveals that RIN significantly degrades the performance of both estimators. It

is noteworthy that in the case where only thermal noise is present, performance contin-

uously improves with increasing power. Conversely, in the presence of RIN, the MSE of

the estimators reaches a threshold value at relatively high power levels. Specifically, SDSN

mitigates the system enhancement caused by the power rise due to its proportionality to

the square root of power, while RIN leads to a saturation level at high power due to its

direct proportionality to power. Consequently, when both RIN and SDSN are present, the

MSE of channel estimators rapidly reaches a threshold level.

In Fig. 5.6, we present the BER performance of the VLC system based on the optimal

receiver in (5.42) and sub-optimal receiver in (5.43). We assume σ2
n = 0.01, σ2

ds = 0.01,
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h = 4 × 10−1, N = 1, while we consider different levels of RIN, i.e., σ2
R is increased along

[0.01, 0.05, 0.1]. As a benchmark, the BER is also plotted for σ2
R = 0 and σ2

ds = 0. The

results illustrate that the optimal receiver outperforms the threshold detector as expected,

and the performance gap widens as transmitted power increases. It is also observed that

the BER increases with the increase of the RIN variance. The BER curves exhibit error

floors as the power level increases, and it becomes apparent that the curves approach

these error floors more rapidly with an elevated value of σ2
R, while all other parameters

remain constant. In Fig. 5.7, a similar comparison is provided for various SDSN variances.

The curves in the figure reveal a substantial adverse impact on the VLC system under

examination due to SDSN. This detrimental effect becomes increasingly noticeable as the

value of SDSN variance escalates. Furthermore, the findings presented in this figure align

with those in the earlier figure, demonstrating that the optimal receiver outperforms the

threshold detector for all σ2
ds values. The performances of both receivers typically exhibit

a close match in the scenario when both σ2
R and σ2

ds equal zero.

5.6 Conclusions

In this chapter, we considered a VLC system that uses LD-empowered luminary as the

wireless transmitter. While LDs provide much higher bandwidth in comparison to LEDs

commonly used in VLC systems, LDs suffer from SDSN and RIN. To demonstrate the

effect of these noise sources on the channel estimation performance, we calculated the

CRLB in the presence of the SDSN and the RIN. The MSE of the LS and ML estimators

for the channel gain were analyzed and compared against the derived CRLB. Furthermore,

we presented the optimal receiver in ML sense and compared it with a simple threshold

detector as a sub-optimal solution. Our results quantified the combined impact of RIN

and SDSN on the channel estimation, revealing that RIN is the dominant noise source,

particularly at higher levels of transmitted power. Therefore, considering these types of

noise in designing communication systems can enhance the performance of the systems.
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Figure 5.7: BER performance versus the source power at different values of the SDSN noise
variance when σ2

n = 0.01, σ2
R = 0.01, h = 0.4 and N = 1.

5.7 Publications Resulted from This Chapter

• M. Yaseen, M. Elamassie, S. Ikki, M. Uysal, "Signal-Dependent Shot and Relative

Intensity Noise in Channel Estimation of Laser Diode-based Indoor VLC Systems" ,

(2nd round, Revision) IEEE Transactions on Communications.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

"In this research, we present a comprehensive study of the input signal-dependent noise in

VLC systems. The study comprises three main phases. The first phase examines the effect

of SDSN in VLC systems under the scenario of fixed-location users. The second phase

investigates the impact of SDSN when considering a model of random user locations. In

the third phase, we explore the presence of RIN and SDSN in SISO VLC systems with fixed-

location users. The findings of our research, as presented in this thesis, can be summarized

as follows:

• Chapter 3 proposed a SISO-VLC downlink transmission scenario wherein an LED,

positioned on the ceiling of a typical indoor setting, serves a user fixedly located

on the floor. The research focused on channel estimation, considering the impact of

SDSN and thermal noise on the received signal at the user end. The derived CRLB

served as a benchmark, demonstrating a non-linear relationship with SDSN. The

SDSN level’s influence on the CRLB depended on other components of the system

model.
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• Continuing in Chapter 3, the LS and ML estimators were derived to estimate the

channel gain of our considered system model with the effect of SDSN, and their per-

formances were compared with the CRLB. Performance comparisons of LS, ML, and

CRLB indicated higher MSE for LS than ML, while the CRLB outperformed both.

The SDSN level increment magnified the performance gap between the estimators

and the CRLB.

• In the context of data transmission, we presented optimal and sub-optimal receiver

designs and evaluated their BER performances in Chapter 3. Specifically, we intro-

duced a closed-form expression for the BER of the sub-optimal receiver and provided

an approximated version for the optimal one. The findings in this part of the research

underscored the substantial influence of SDSN on BER when compared to a scenario

with no SDSN.

• In Chapter 4, we expanded upon our research from Chapter 3 by examining the influ-

ence of SDSN on the SISO-VLC downlink transmission system model for a random

user location scenario, implying that the channel gain is also random. Consequently,

we derived the BCRLB, serving as the lower bound for unbiased MSE estimators.

The outcomes indicated a rise in the BCRLB with an increase in the SDSN level.

• Furthermore, to estimate the channel gain of our introduced system model in Chap-

ter 4, we derived five different estimators, namely, LS, ML, MAP, LMMSE, and

MMSE. The comparison results showed the superiority of the MMSE estimator

among other estimators. In addition, it showed that the estimators uses prior infor-

mation and generally have better performances than the estimators do not depend

on channel gain prior information. However, all estimators suffered negatively from

SDSN.

• In Chapter 4, we examined a scenario wherein the receiver had no information about

the SDSN factor. Two solutions were put forth and thoroughly examined. Compar-
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isons between these two solutions and the case where the SDSN factor was known

validated the effectiveness of the proposed solutions.

• Finally, in Chapter 4, the receiver of a VLC system operating under SDSN and ran-

dom channel gain was formulated, and its BER was examined. The results elucidated

that the presence of SDSN has an adverse impact on the system’s BER, as evidenced

by an observed increase in BER with the rising SDSN level.

• In Chapter 5, we explored the combined influence of SDSN and RIN on channel es-

timation in SISO VLC system for a fixed location user. To establish a benchmark

for comparing the MSE of other estimators, we initially presented a derivation of

the CRLB in the presence of both SDSN and RIN. Subsequently, LS and ML esti-

mators were formulated and juxtaposed against the CRLB. Our findings provided

a quantitative assessment of the cumulative impact of RIN and SDSN on channel

estimation, highlighting RIN as the predominant noise source, especially at higher

levels of transmitted power.

• Continuing in Chapter 5, both simulation and analytical outcomes pertaining to

the MSE of estimators and the CRLB underscored the pronounced impact of the

simultaneous existence of SDSN and RIN. Furthermore, the results indicated that

the performances of the estimators and the CRLB could be improved by increasing

the transmitted power up to a specific threshold, beyond which the curves reached

a saturation level. It is noteworthy that augmenting the number of pilots proved

effective in diminishing both the MSE and the CRLB in all instances.

• Finally, Chapter 5 introduced the designs of both optimal and sub-optimal receivers,

considering the combined influence of RIN and SDSN. The outcomes demonstrated

the superior performance of the optimal receiver. Additionally, the simulation results

unveiled a significant detrimental effect on the VLC system being studied, arising

from the simultaneous presence of SDSN and RIN.
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6.2 Future Work

VLC has been applied in various fields, and there are limited studies on the impact of signal-

dependent noise on the performance of VLC systems [11, 14, 62]. Consequently, there are

several issues related to signal-dependent noise that still need exploration in different VLC

systems. In this thesis, we initially focused on the channel estimation of a SISO VLC

system with a fixed-location user in the presence of SDSN. Subsequently, we investigated

the channel estimation of the same SISO VLC system, considering the randomness of the

user’s location. Following that, we examined the joint impact of SDSN and RIN on the

channel estimation of the fixed-user SISO VLC system.

The following are suggested open research topics:

1. Explore the combined influence of SDSN and RIN on the channel estimation in a

SISO-VLC system with a user’s location characterized by randomness.

2. Investigate the channel estimation of a VLC system for a user with a random orien-

tation and fixed location, considering the impact of SDSN.

3. Examine the channel estimation of a VLC system for a user with a random orientation

and fixed location, taking into account the effects of both SDSN and RIN.

4. Delve into the channel estimation of a SISO VLC system, considering the joint impact

of a user’s random location and orientation in the presence of SDSN.

5. Study the channel estimation of a SISO VLC system, taking into account the joint

impact of a user’s random location and orientation in the presence of both SDSN

and RIN.

6. Investigate the estimation of channel gains of a MIMO VLC system scenario with

correlated channel gains.
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7. Explore the application of the Kalman filter technique to enhance channel estimation

in VLC systems.

8. Examine channel estimation in VLC systems using machine learning methods, in-

cluding both supervised and unsupervised approaches.

9. Investigate channel estimation of outdoor VLC systems.

10. Conduct a study on the channel estimation of underwater VLC systems.
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APPENDIX A

Derivation of CRLB of SISO VLC

System with SDSN

This appendix shows the derivation of the result given in (3.7). The CRLB of the

variance of the estimated variable h can be obtained as the Fisher Information inverse

of h which is given as

J(h) = −E
{

∂2

∂h2
ln f(y;h)

}
, (1)

where E{·} is the expectation operator and ln f(y;h) is the log-likelihood function of the

unknown channel h. Assuming that all samples are independent, the joint PDF of N

observations, which is also equal to the likelihood function of h, can be written as

f(y;h) =

(
N∏
i=1

1√
2πσ2

n (1 + ζ2hxi)

)
e
− 1

2σ2
n

∑N
i=1

(yi−hxi)
2

1+ζ2hxi . (2)

Taking the natural logarithm, we have

ln f(y;h) = −N

2
ln
(
2πσ2

n

)
− 1

2

N∑
i=1

ln
(
1 + ζ2hxi

)
− 1

2σ2
n

N∑
i=1

(yi − hxi)
2

1 + ζ2hxi

.
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The first partial derivative with respect to h can be obtained as

∂

∂h
ln f(y;h) = −1

2

N∑
i=1

ζ2xi

1 + ζ2hxi

+
1

2σ2
n

N∑
i=1

2xi(yi − hxi)

1 + ζ2hxi

+
ζ2xi(yi − hxi)

2

(1 + ζ2hxi)2
. (3)

Then, the second partial derivative can be obtained as

∂2

∂h2
ln f(y;h) =

1

2

N∑
i=1

(ζ2xi)
2

(1 + ζ2hxi)2
− 1

2σ2
n

[
2(xi)

2

1 + ζ2hxi

+
2ζ2(xi)

2(yi − hxi)

(1 + ζ2hxi)2
+

2ζ2(xi)
2(yi − hxi)

(1 + ζ2hxi)2
+

2(ζ2xi)
2(yi − hxi)

2

(1 + ζ2hxi)3

]
. (4)

Furthermore, (4) can be simplified to

∂2

∂h2
f(y;h) =

1

2σ2
n

N∑
i=1

σ2
n(ζ

2xi)
2

(1 + ζ2hxi)2
−
[

2(xi)
2

1 + ζ2hxi

+
2ζ2(xi)

2(yi − hxi)

(1 + ζ2hxi)2
+

2ζ2(xi)
2(yi − hxi)

(1 + ζ2hxi)2
+

2(ζ2xi)
2(yi − hxi)

2

(1 + ζ2hxi)3

]
. (5)

Finally, by taking the expectation (note that E{yi} = hxi and E{(yi − hxi)
2} = σ2

n(1 +

ζ2hxi)), the Fisher Information can be written as

J(h) =
1

2

N∑
i=1

(ζ2xi)
2

(1 + ζ2hxi)2
+

2x2
i

σ2
n(1 + ζ2hxi)

, (6)

which concludes the proof of (3.7).
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APPENDIX B

Derivation of CRLB of SISO VLC

System With the Joint Effect of RIN

and SDSN

This appendix presents the derivation of (5.8). The CRLB of the variance of the

estimated variable h can be obtained as its Fisher information inverse of h given as

J(h) = −E
{

∂2

∂h2
ln f(y;h)

}
, (7)

where ln f(y;h) is the log-likelihood function of the unknown channel h. Assuming that

all samples are independent, the joint PDF of N observations, which is also equal to the

likelihood function of h, can be written as

f(y;h) =
N∏
i=1

1√
2π (σ2

n + σ2
dshxi + σ2

Rh
2x2

i )
exp

(
−1

2

N∑
i=1

(yi − hxi)
2

σ2
n + σ2

dshxi + σ2
Rh

2x2
i

)
· (8)
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Taking the natural logarithm, we have

ln f(y;h) =− N

2
ln (2π)− 1

2

N∑
i=1

ln
(
σ2
n + σ2

dshxi + σ2
Rh

2x2
i

)
− 1

2

N∑
i=1

(yi − hxi)
2

σ2
n + σ2

dshxi + σ2
Rh

2x2
i

·

(9)

The first partial derivative with respect to h can be obtained as

∂

∂h
ln f(y;h) =− 1

2

N∑
i=1

[
σ2
dsxi + 2σ2

Rhx
2
i

σ2
n + σ2

dshxi + σ2
Rh

2x2
i

− 2xi(yi − hxi)

σ2
n + σ2

dshxi + σ2
Rh

2x2
i

−(σ2
dsxi + 2σ2

Rhx
2
i )(yi − hxi)

2

(σ2
n + σ2

dshxi + σ2
Rh

2x2
i )

2

]
· (10)

Then, the second partial derivative can be obtained as

∂2

∂h2
ln f(y;h) = −1

2

N∑
i=1

[
2σ2

Rx
2
i

σ2
n + σ2

dshxi + σ2
Rh

2x2
i

− (σ2
dsxi + 2σ2

Rhx
2
i )

2

(σ2
n + σ2

dshxi + σ2
Rh

2x2
i )

2

+
2x2

i

σ2
n + σ2

dshxi + σ2
Rh

2x2
i

+
2xi(σ

2
dsxi + 2σ2

Rhx
2
i )(yi − hxi)

(σ2
n + σ2

dshxi + σ2
Rh

2x2
i )

2
+

2σ2
dsx

2
i (yi − hxi)

(σ2
n + σ2

dshxi + σ2
Rh

2x2
i )

2

+
2σ2

dsxi(σ
2
dsxi + 2σ2

Rhx
2
i )

2)(yi − hxi)
2

(σ2
n + σ2

dshxi + σ2
Rh

2x2
i )

3
− 2x2

iσ
2
R(yi − hxi)

2 − 4hx3
iσ

2
r(yi − hxi)

(σ2
n + σ2

dshxi + σ2
Rh

2x2
i )

2

+
4hx2

iσ
2
R(xiσ

2
ds + 2hx2

iσ
2
R)(yi − hxi)

2

(σ2
n + σ2

dshxi + σ2
Rh

2x2
i )

3

]
· (11)

(11) can be further simplified to

∂2

∂h2
f(y;h) =− 1

2

N∑
i=1

[ x2
i (1 + σ2

R)

σ2
n + σ2

dshxi + σ2
Rh

2x2
i

− (σ2
dsxi + 2σ2

Rhx
2
i )(σ

2
dsxi + 2hx2

iσ
2
R − 2xi(yi − hxi))

(σ2
n + σ2

dshxi + σ2
Rh

2x2
i )

2

− (yi − hxi)(2x
2
iσ

2
Ryi − 6hx3

iσ
2
R − σ2

dsx
2
i )

(σ2
n + σ2

dshxi + σ2
Rh

2x2
i )

2

+
2(xiσ

2
ds + 2hxiσ

2
R)

2(yi − hxi)
2(σ2

dsxi + 2hx2
iσ

2
R)

(σ2
n + σ2

dshxi + σ2
Rh

2x2
i )

3

]
· (12)
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Finally, by taking the expectation (note that E{yi} = hxi and E{(yi − hxi)
2} = σ2

n +

hxiσ
2
ds + h2x2

iσ
2
R), Fisher information can be written as

J(h) =
1

2

N∑
i=1

[
2x2

i (1 + σ2
R)

σ2
n + σ2

dshxi + σ2
Rh

2x2
i

+
(xiσ

2
ds + 2hx2

iσ
2
R)

2

(σ2
n + σ2

dshxi + σ2
Rh

2x2
i )

2

]
, (13)

which yields (5.8).
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